Real-time Terrain Rendering and
Processing

A Report submitted in partial fulfillment of the
requirements for the degree of

Master of Science (by Research)
in
Computer Science and Engineering

by
Shiben Bhattacharjee
200607022

A

International Institute of Information Technology
Hyderabad, INDIA
July 2010

Real-time Terrain Rendering and Processing

A Report submitted in partial fulfillment of the
requirements for the degree of

Master of Science (by Research)
in
Computer Science and Engineering

by

Shiben Bhattacharjee
200607022
shiben@esearch.iiit.ac.in

International Institute of Information Technology
Hyderabad, INDIA
July 2010

Copyright© Shiben Bhattacharjee, 2010
All Rights Reserved

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titfé&deal-time Terrain Rendering and Processing”
by Shiben Bhattacharjee, has been carried out under mywssiparand is not submitted elsewhere for
a degree.

Date Advisor: P. J. Narayanan

To my Mom, Dad and Sister

Acknowledgements

I would like to thank my advisor, Prof. P. J. Narayanan, wheehiaeen very patient, motivating and
have helped in many ways to tackle different problems. | he&mt a lot from him and | thank him for
being very supportive and understanding.

Most importantly, |1 thank my Mom and Dad for so easily suppgrtme with everything | wish to

to me and | wish them all the good blessings in this world.

| thank the masters program for giving me an opportunity weeand be in a position to think about a
perspective in life. I'll thank the CVIT research lab and theulty for giving an awesome workspace
and resources (graphics cards, w0O0t) to head start with.

| thank Soumyajit Deb who shared nice ideas at the early sthgey work. | also thank Suryakant
Patidar, who was my project partner, for being a very gooehttiand helping me with everything. |
thank my friends:Dada, Bansee, Fanta, Parry, Shetty, Quhailer, Jagga, JJ, and Peetee. Thanks for all
the knowledge sharing and fun times! :D

| thank SONY for making the Playstati®h(2, 3, Portable) and the killer games, especially Guel
of War® series. | also thank Dr. Gordon Freeman from Blackmesa to imel think about the most
difficult problems like when to take cover, crouch, bunnyhbreak crates or solve puzzles.. . lol.

KTHXBYE

4 8 15 16 23 42

Abstract

Terrains are of great interest in flight simulators, geolbi@pnformation systems and computer
games. In computer graphics, terrain rendering is a speas® because of their bulk. They cannot be
handled as a single entity like other object models like aé&mpcars and crates. Triangulated irregular
networks of terrains are typically created by simplifyinglense representation. Such representations
are popular in GIS and computational geometry. The recentdtin graphics is to use regular grid
representations since they go well with today’s graphicsiliare. We explore different representation
techniques to render terrains in this thesis. We look intd-tiene rendering, editing, and physical
interaction with external objects on terrains. We also gméa representation for efficient rendering of
spherical terrains. Apart from rendering terrains reiakdly, we develop a method to render terrains
artistically with painterly abstraction as well.

We create a system that exploits the power and flexibilityhef tnodern GPUs to store, render,
and manipulate terrains with minimal CPU involvement (Cledd < 4%). The central idea is to use
a regular-grid representation, hierarchically dividedixed size blocks/tiles that change in resolution.
The potentially visible portion of the terrain is cachedna highest necessary resolution and is rendered
from the GPU. The cache is updated with the viewerpoint. Lrawsolutions used for farther areas of
the terrain can be constructed from the cache on the GPUy$d@RUs have a limited capability to
generate geometry within itself. Thus, the CPU can sendna ¢jgometry template which is expanded
to the triangles by GPU. The CPU performs a coarse cullingp®tites with the GPU performing fine
culling. Our system enables the terrain to be modified pracdly or edited interactively on the GPU
with no CPU involvement. The terrain can also interact witlarge number of external objects in
real-time with all the physics calculations done on the GPU.

Terrains can also be mapped over a sphere for a planetagtustru However, terrains on sphere
require a different representation due to the pole singulaf latitude-longitude representation. A
2D grid of height cannot be mapped directly on a sphere wiifoun triangle count. Spheres can
be rendered uniformly using Hierarchical Triangular MeBIT) but the representation does not fit
with 2D grid of heightmaps. We present a unified represamatf HTM and clipmapping (flat terrain
rendering technique) to render spherical terrains. Ouresgmtation works at any distance from the
planet/sphere without any scripted work arounds.

The regular nature of terrain data also enables us to rehdesamples in a required order with
no overhead of sorting. This introduces the possibility pblecations which require sorted ordered

vi

Vii

triangles. We explore non photo realisitic rendering ofaigrs. Artistic painterly appearance and the
impression of terrains is created by effectively rendesegeral translucent brush strokes in a back to
front order. The strokes are located in 3D space for frardeatme coherence during animation. The
strokes are oriented along the slope of terrain analogotisetavay artists paint on canvas. We use
shaders to render strokes in real-time. A level of detaiesod is used to maintain a uniform stroke
density in screen space. Various styles can be achieveddifiément stroke variations. We achieve
real-time painterly rendering with a combination of objspace positioning and image space rendering
of strokes.

Contents

Chapter

1

INtroduction
1.1 Contributions of thethesis e e

Previous Related Work
2.1 Terrain Rendering and Manipulation
2.2 Spherical Terrain Rendering e
2.3 Non-Photo Realistic Renderingand terrains

Real-time Terrain Rendering
3.1 DataOrganization e e
3.2 ViewFrustumCulling. e
3.3 LOD and Blending Factor Calculation
34 Rendering e e e
3.5 TileStitching e
3.6 Conclusions e

Terrain Rendering and Manipulationusing GPUs.
4.1 Terrain Representation e
4.2 TerrainRendering e e e e e
421 Stagel:CPU
422 Stage2: GPU
4.2.3 Tile StitchingandBlending
43 Caching
4.3.1 Lateral Motion of Viewpoint
4.3.2 Vertical Motion
4.3.3 JobQueuingScheme
4.4 Terrain Deformation and Manipulation
45 Results. e
46 Conclusions e

Spherical Terrain Rendering L
5.1 Hexagonal Geometry Clipmaps Overview ccovvr v v v oo
5.2 Representation

521 HTMTerrainData o v e e e e e e

5.2.2 Conversionof PlanetData i .

CONTENTS iX

5.3 ClipmapUpdates e 37
54 Rendering e 37
5.4.1 Smooth Level of Detail Transition 39

54.2 ViewFrustumCulling 39

5.4.3 Handlingthe WholePlanet, 40

55 Results. e 41
5.6 ConcCluSionS e e e e 42

6 Painterly Renderingof Terrains 45
6.1 Overview of our Approach e 45
6.2 Terrain Representation e 46
6.2.1 Representationofdata 47

6.2.2 LevelofDetail 47

6.3 Back-to-Front Stroke Ordering e 48
6.4 Stroke Rendering e 49
6.5 Results. 51
6.6 Conclusions e e 52

7 ConcClusSiONS e 58

Bibliography e e 61

Figure

11

1.2
13

14

3.1

3.2
3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

List of Figures

Page

Left: Elevation data of Puget Sound. Right: Color textiar the terrain(Dataset Cour-
tesy: The United Sates Geological Survey (USGS), made available by The University

of Washington) 2
Left: Terrain with regular grid. Right: Same terrainwitIN. (Image Courtesy: Land-

Serf wwwilandserf.org, User'sGuide) 3
(a) Cartography system does not distribute samplesllgaqibover the sphere. (b)
Hierarchical Triangular Mesh is a technique which represarsphere uniformly. . . . 4
Left: Real Photograph, Right: Painterly Rendering effthotograph(lmage Courtesy:

A Hertzmann[23]) 5
Data organization: An e.g. with = 3 andm = 3, blue circled height values are
original, rest are interpolated. Note that, they occupystiae area on ground 11
View frustum culling and LOD assignment 11
Tile Stitching: tilei, j is stitched only ta,j +1andi+ 1,5 12

(a) An terrain with highest resolution storeddisx 4 blocks, next ir2 x 2 blocks and so

on, using fixed size blocks. (b) A block withx 4 tiles each witht x 4 tilelets 15
The GPU Cache (shown shaded) is a contiguous sectiore @étrain residing in the
GPU as a regular grid at a resolution determined by the étevéat of the viewpoint V.

The rendering resolution also depends on the distéahce 16
An array texture with 16 layers and the GPU cache4s d pointer texture that stores
the layer IDs. 17

Tiles outside view frustum (marked red) are discardedhieyCPU. Intersecting tiles
(gray) will go through a second level of culling by the GPWelor tiles (yellow) are
rendered directly. LoDs of tiles to be rendered is a functibdistance from the viewpoint. 18
(a) The CPU renders each tile (here of §iz@) as points using two geometry templates,

one for the interior (shown in blue) and the other for the totaurg (red/yellow/green) of

the tile. (b) Tilelet used in the interior of the tiles. In thastern border (green), tilelet

(c) is used when the neighbor has a higher LoD and (d) is udedsdr. In the northern
border (red), tilelet (e) is used when neighbor has a higlo& and (f) is used if lower.

Yellow region gets handled automatically. 19
Picture of tilelets after VFC. Farther tiles need fewletdts. The red tilelets are dis-
carded by the second level culling onthe GPU. 20
Framerates for a typical flight over the terrain with Jradd W|thout (green) the second
levelof culling. e 21

LIST OF FIGURES Xi

4.8 Atile of size9 x 9 with a northern neighbor of lower resolution and an easteenaf

higher resolution. The tilelets of Figure 4.5 are used forex stitching. 22
4.9 Atile at LoD =1 (left) blends its alternate heights (shroim red) with its lower LoD

(middle) usingx. When the tile shifts its LoD, the change is not noticeablgis process

isvalidinreverseaswell. L 22
4.10 Later motion and panftilt (left) involve discarding larshaped region and bringing in

new blocks (yellow) from the CPU. When the viewpoint comew/alothe merge level

decreases (middle). The extents of GPU cache are halvedagadich higher resolution

is brought in from the CPU. When the viewpoint goes up, themstof the cache are

doubled and the existing data is compressed into one quadiaw data is brought in

from the CPU with nearer blocks getting higher priority intaggered manner (right).

The data transfer is scheduled in a staggered manner ndetd sfndering speed. . . . 23
4.11 (a) The mouse motion over the screen triggers intgeaetiiting of the terrain. (b) A

terrain of2 x 2 block (left) and the results of editing it (right). Editingm involve

multiple blocks at boundaries (showncircled) 26
4.12 Deformation and rendering times for a typical flightrosentinuously deforming terrain. 27
4.13 Physics computation and rendering times with 256Kshkatkeracting with the terrain.

Aframerate of 100 fpsispossible. e 28
4.14 A view of Mt Rainier, a terrain with real texture, reait physics with balls, realtime

physics with a deforming terrain. 28
4.15 Cache update time, total rendering time, and the teaiage for a typical flight over the

terrain. L e 30
5.1 Poles have singularity and the whole sphere has unevwgpling. 32
5.2 After a decided number of recursion a desired detail bé&spis reachefl mage Cour-

tesy: A. Szalay, J. Gray, etal. [48]). 33
5.3 (a) Regular terrain, (b) Skewed terrain after sampledered with equilateral triangles.

If clipped from the marked region, yields a hexagon. 33
5.4 (a) 2D grid clipped to form a six sided polygon, (b) Theygain takes shape of hexagon

when rendered with equilateral triangles. L. 34
5.5 (a) Hexagonal clipmaps as viewed from top, (b) Hexageligmaps in the physical

form, (c) Hexagonal clipmaps in usable memory. 35
5.6 Two adjacent base triangles form a diamond. Four suchatids complete the octahe-

dron. . . . L 35
5.7 A typical planet data converted to be HTM compliant ané a&de product it has no

redundant information. L L L e 36

5.8 With the motion in camera, new data is torroidally updatethe layers of the array
texture. (a) Layer before update, (b) Camera moves (grégpgdate region (red), (c)

Layer after update(lmage Courtesy: A. Asirvatham, H. Hoppe[2]). 37
5.9 Bilinear interpolation at the vertices of a renderingchil creates a mesh between the
block-bounds. 38

5.10 As the camera moves these distorted states of the gipytde. Each red quadrilateral
comes from a unique rendering block. There are three statkgiae rendering blocks
arerequired. L e e e e e e e e 38

5.11 View Frustum Culling is a mere selection of relevanesidccording to camerayaw. . 39

Xii

LIST OF FIGURES

5.12 Diamonds combined into a single big-texture. Note thatNorth Pole comes in the
middle and South Poleisatthecorners.a..... 40
5.13 Movement of camera accross the whole planet will entepunultiple diamonds in
view. At the poles, camera will see a terrain which is spagowver all the four diamonds. 40
5.14 Performance resuts on Puget Sound data treated as@ndiaom an Nvidia 8800 Ultra. 41
5.15 Performance resuts on Puget Sound data treated as@ndiaom an Nvidia GTX 280. 41
5.16 Performance resuts on Puget Sound data treated as@ndiaom an Nvidia GTX 480. 42

5.17 Hexagonal Clipmaps are closer to the shape of concemtries. 43
5.18 Different clipmaps shown in differentshades. 43
5.19 Blending factor in transition, blackness level intksavalue otr. 44
5.20 A scene while a flythrough on the spherical terrain. 44

6.1 Each height in the height-map is converted into a re@angich is oriented along the

terrain’s slope at that point. A& x 8 grid is shown as example. 46
6.2 Reference pointis at the center of ground-plane piojeci the view frustum (marked

as blue). Reference point is kept within thie 2 blocks. As it goes out it is re-centered.

The figure assumebx 4 cachesize. 47
6.3 Tiles outside view frustum (marked red) are eliminafgbks totally inside (grey shaded)

are rendered with strokes at each of its sample’s locatio@®s of tiles to be rendered

and the blending factor is calculated as a function of distafrewer strokes are drawn

foralower LODtile. e 48
6.4 (a) Atile can be viewed from many yaw directions, but agilyht zones are sufficient

for a back to front ordering of samples in it. (b) Four possidirangements of samples

for some ranges shown in (a); Other ranges can be handled girtfilar way. 49
6.5 View frustum culling algorithm testing tiles in a specifirder depending upon the cam-

era’s orientation. Here zoreis shown. Such eight orders of testing are possible as

explained in Figure 6.4. e e e e 49
6.6 Overview of rendering of stroke. Each vertex from the Vils converted into a rect-

angle which is mapped with a stroke texture. 50
6.7 Slope-map, Puget Sounddatasetc....... 50

6.8 The color output and the normal map output of the scenaseé to Phong shade on

top of it to stylize it. The effect is that of shining a spoltitgon the painting. The normal

map is contrast stretched here for visibility. 52
6.9 Walkthrough overtheterrain uue...... 53
6.10 (top-left) Strokes placed along slope with some pleatimns in orientation. (top-right)

Strokes placed along the perpendicular to the normal. diveteft) Strokes placed with

a fixed orientation. (bottom-right) A sharp stroke textud&y is a pre-painted texture. . 53

6.11 Distantview of Mount Rainer 54
6.12 Strokes running along perpendicular to normals. b4
6.13 Aregion in Puget Sound painterly rendered which hasHenght varlatlons 55
6.14 A real textured dataset rendered ina painterly style.. 55
6.15 Simple rectangles are used instead of proper brudtesttoillustrate the flow of strokes
alongahill 65
6.16 Avalleyregion e 56

6.17 Mountains and valleys in Puget Sound painterly remtdere 57

Chapter 1

I ntroduction

Terrain refers to the geometric structure of a land surfackisa physical feature for many scientific
and engineering study. Topography, relief, tract and él@vaare used as synonyms. Terrains have
been studied for long because its understanding is impoftarmany of reasons. The terrain of a
region determines its envrionmental conditions whichteeta fertility of land and water movement,
and thus agriculture and hydrology. Weather patterns aatlgreffected by the terrain. Terrains also
determine the suitability for human settlement; flat, fertand, river banks and plateaus tend to be
better populated. Transportation is mostly dependentmaits. Terrains are given critical importance
in military operations mostly for movement of vehicles,qaeent of artilleries for best range, strategic
positioning of armed forces etc. The structure of terraias lbeen exploited in wars for both defensive
and offensive modes of operations. The importance of tereatends to its formation as well. The
topology of a region can be due to volcanic erruptions, eadRkes, faults, landslides, water movement
or meteorite impact.

An important aspect of the study of terrains involve terrdgualization. Traditionally, for the pur-
pose of visualization, maps have been used extensivelyogfaphic maps represent the shape or form
of the land surface. The maps represent 3D surface as a twamdiomal entity preserving the surface
structure as much as possible. Maps are mostly used as adragisualizing landscape morphology
but it is expected that users will be interested in undedstanthe shape of the surface and may wish
to measure distances, slopes or heights. Thus, a high defjemeuracy is required. This creates a
conflict between the requirements for metric accuracy asdalirealism. Mapping techniques such as
isolines provide an accurate representation of landforresway that is planimetrically correct but is
not well suited to its visualization. The best topograph&ps combine contours with relief shading or
layer tints to provide visually more effective represeiot@of terrain such as physical maps of an atlas.
Topographic maps are usually created by sampling surveypbaving known elevations. These may
be the only truly accurate elevations on the map.

With computer graphics, it is possible to visualize tersdmtheir original form in three dimensions
unlike topographic maps. Computer graphics is the studyigifadly synthesizing objects (rendering)
and manipulating geometric information for appropriatsual content. Terrains can be rendered by

computers on a visual output device to a high degree of acgtfimavisualization. Virtual terrains have a
lot of uses in land planning and usage, urban planning, Nisi@n of weather and other environmental
attributes, planning for strategy and tactics of militapetations, transportation, virtual tourism and
travel planning, virtual Bathemetry for submarines, Desifj radio/TV/cellular transmitter placement
and signal analysis, Education, geographical & generateete, Games and entertainment, Real estate
etc.

Virtual terrains clearly have many applications and thekik®ps growing. To render terrains, a terrain
in the form of data (i.e. digital form) is needed as input te tenderer application. The most basic type
of representation of terrains in digital form is a heightpra digital elevation model (DEM). A DEM
is a representation of the topography of the Earth or anctindace in digital format. In contrast with
topographical maps, the height information is stored insteraformat. That is, the map will divide the
area into rectangular pixels and store the elevation of pa@h. In that sense, digital elevation model
(DEM) data are sampled arrays of surface elevations inrrésten. A DEM is same as a grayscale
image with each pixel representing an elevation value {€idul). Since such data is raw, DEMs are

Figure 1.1 Left: Elevation data of Puget Sound. Right: Color textunetifie terrain.(Dataset Courtesy:
The United States Geological Survey (USGS), made available by The University of Washington)

also used to extract terrain parameters, model water flowassmmovement other than visualization as
3D rendering. Digital elevation models may be prepared inmaber of ways, but they are frequently
obtained by remote sensing rather than direct survey. Quimnigue for generating digital elevation
models is interferometric synthetic aperture radar; twaspa of a radar satellite (such as RADARSAT1)
suffice to generate a digital elevation map tens of kilonseter a side with a resolution of around ten
meters. One also obtains an image of the surface cover. @tagrods of generating DEMs often
involve interpolating digital contour maps that may haverb@roduced by direct survey of the land
surface; this method is still used in mountain areas, whaterferometry is not always satisfactory.
Note that the contour data or any other sampled elevaticasdtt (by GPS or ground survey) are not
DEMs. A DEM implies that elevation is available continugusit each location in the study area.
The quality of a DEM is a measure of how accurate elevation &ah pixel (absolute accuracy) and
how accurately is the morphology presented (relative aoy)r Several factors play important roles

for quality of DEM derived products: terrain roughness, plng density (elevation data collection
method), grid resolution or pixel size, interpolation algon and vertical resolution.

In computer graphics, objects to be rendered should be sepi@ed in a triangle mesh form. A
heightmap contains only the elevation values, but becalgg regular grid nature, the spatial ground
coordinates are straight forward to calculate from the xnoliethe height value. The connectivity is
implied in the mesh structure. Thus heightmaps are suffiteerender terrains. The main difference
between a terrain and any other model is that, though teisarsingle model in the graphics system,
part of it is viewed from close and part of it is seen from farthee same time, at every view point.
Whereas other models (e.g. rocks, cars, chairs, marines, gliens) are either viewed from far or
from near on a whole. Bigger models (e.g. castles) are oftekeb in smaller models which are
handled independently. The detail of these models is clthageording to its distance from the camera.
Distance of an object from the camera is a rough measure ofntogh area the object will cover on
the screen (farther objects occupy less screen spacer, olgjsets occupy more). The differelevels of
detail of a main model are kept separately as different modelsetheg and are selected to render given
its distance from the camera. This is not easily possiblégiwains since terrains are continous surfaces
and any discontinuity due to level of detail managementsrtfie visualization experience. Terrain can
become one of the most critical components in the scene shaing rendered. To keep the terrain
engine running in real time can be a difficult task. To be eifec the terrain needs to meet a number
of requirements, many of which can compete with each othéerrain should appear to be continuous
to the end user, yet the mesh should be simplified or culledevpessible, to reduce the load on the
graphics hardware. In a gaming system, for example, teisaendered till the point a player can reach,
and then use a terrain drawn onto an imposter to simulagdrilnountains in the distance. The terrain
should appear realistic to the setting for the environmggttthis can be taxing on the video card, and a
balance needs to be maintained.

Figure 1.2 Left: Terrain with regular grid. Right: Same terrain withNLl(Image Courtesy: LandSerf
www.landserf.org, User’s Guide)

Terrain in many regions can be flat, because of which the DEM dedundantly contains same
elevation values over a long range of indices. Since theida&gular, there is no adaptive control over
the detail available in a 2D grid of heightmaps, it is all & same detail. To reduce this redundancy,
terrains are sometimes converted from a regular grid otiteim a triangulated irregular network (TIN).
The irregular representations contain fewer trianglesabeitmore complex to represent and manipulate
(Figure 1.2). They provide rendering efficiency at the cdstase of performing other operations like
editing of the terrain or physics computations over it. Sthdevel of detail is hard to maintain with
TIN based terrain rendering. TINs have been used to rendairie in games and other applications for
a long time, but with the introduction of new programmableUSPDEM data tend to be better since
they can be treated as textures (images) in the GPU memowgygiith of heights is usually split into
smaller rectangular blocks for efficient storage and mdatfmn. Such a grid can be stored on the video
memory of the GPU and rendered directly from there.

Terrain rendering goes beyond rendering terrains over adlse. Many applications like to show a
fast fly through over the terrain, from ground level to greaights from which the terrain of the planet
is seen. A 2D grid seems to correspond directly with a la¢itadd longitude based representation of
spherical terrains, but this does not distribute the sasmglgularly at all latitudes and has singularity at
the poles (Figure 1.3(a)). Spherical terrains have theiaddi difficulty of handling regular sampling of

(a) (b)

Figure 1.3 (a) Cartography system does not distribute samples eqalalbyer the sphere. (b) Hierar-
chical Triangular Mesh is a technique which represents arsplmiformly.

heights, time consuming spherical coordinates calculafibetter memory management for the planet
and lack of precision in calculations of coordinates dueht ‘ery large number of samples. Few
graphics applications have been able to show a seamlesgdlygtin from space to surface of planet
(or vice versa). Most games use camera tricks and scriptpebsees to give an unfinished experience.
Google Earth™ seems to do the job but has severe pole singularity problechéaaks a smooth level
of detail scheme. A good representation which can sampléerspegularly and still allowing the use
2D grid of heights to render the mapped terrain is thus nacgss handle terrains on spherical planets
(Figure 1.3(b)).

Figure 1.4 Left: Real Photograph, Right: Painterly Rendering of thetpgraph.(Image Courtesy: A.
Hertzmann [23])

Terrains are sometimes also required to be visualized intasti@form. The intentions of an artist
come out as the aesthetics and expressiveness of the paifitire accurate rendering done by com-
puters fails to provide images with a such a feeling. Anioraiare therefore often created by artists
by painting a number of frames and is a tedious job. Compii@ve been used over the years to gen-
erate the surrounding environments of the main characiEng reduces the artist’'s effort, but leads
to a visual disparity between the hand drawn objects andrnieomment. Painterly rendering,r@n-
photo-realistic rendering technique, can bring artistic abstraction to a real phaiplgr(Figure 1.4) or
a rendering and thus mix the computer generated scenesheithand drawn elements. Therefore,
painterly rendering has attracted the attention of grapt@searchers. Creating abstraction of landscape
and terrains seems an interesting problem since they arenoann artistic creations and animations.
Painterly rendering technique for general polygons exitese cannot be applied directly to terrains
because of level of detail complexities and richness duerg view range as explained before. An
optimal composition of terrain rendering methods and aiyptrendering is essential for real-time per-
formance and high quality rendering.

In this thesis, we present a real-time terrain renderingesyswvhich is capable of producing high
quality outputs with efficient rendering speed. The thelis ahows how our system allows manipu-
lation of terrain, particularly interactive editing of tain, deformation over time and objects behaving
according to physics over the terrain. We explore renddengins over spherical structure for planets
with uniform sample distribution of samples (heights) oa #lurface of the planet (sphere) as well. We
also used our flat terrain rendering system to created notepalisitc illustrations of terrains which
look like paintings. A list of contribution of the thesis isropiled in the next section.

This thesis is categorized in a number of Chapters. Chapgbeds light on previous related work
in the area of terrain rendering. It contains sections whighrequired for subsequent chapters. Chap-
ter 3 explains the basic terrain system. In Chapter 4 we exgha& implmentation details and some
contributions at the side of exploiting the GPUs of our syst&€hapter 5 focuses on a different prob-
lem of rendering terrains over a planetary structure anchpproach. Chapter 6 explains how abstract
illustration of terrains is done to mimic hand painted lodke following chapter counts the results and
conclusions of the thesis.

1.1

Contributions of the thesis

A terrain representation that uses fixed-size blocks idsgand GPU caching. This enables fast
rendering along with accessibility to edit and manipulateains, and simple physics operations.

. A scheme of sending light geometry templates from the Gi’thé GPU, which are expanded

into the actual geometry. This keeps the CPU free to do o#isistwhile the GPU performs the
bulk of the rendering work.

A hierarchical two-level culling scheme with the CPU mglin units of large tiles and the GPU
culling in units of smaller tilelets for high rendering pemnance. The rendering rate doubles
with this.

Clever interleaving of data transfer from the CPU to théJ®&dkeep the cache up- dated correctly
without affecting the rendering rates. This guaranteesdraates above a desired threshold all
the time during rendering of arbitrarily large terrains.

Fast, interactive and procedural manipulation andreglitf GPU-resident terrains using the frag-
ment shader. The highly parallel GPU resources are emplonadelbly to do this, improving the
system performance.

. A zero-overhead method to render samples of terrain ik ttafront order without the need of

sorting. We utilize this to render alpha blended strokesainterly rendering of terrains.

Level of detail scheme of terrains is used to reduce oeas® detail of brush strokes according to
distance in painterly rendering of terrains. The level dhdef the terrain is changed smoothly
with distance from the viewpoint. This avoids the problemstibkes getting cluttered at far
distances, which can be visually distracting. Level of dleiao reduces the rendering load.

Hexagonal Geometry Clipmaps for spherical terrain reandewhich is a simple combination of
Geometry Clipmaps (an efficient terrain rendering techejqand Hierarchical Triangular Mesh
(A uniform sampling and indexing algorithm for spheres)

A new method to sample maps of planet earth which has nadeah information compared to
the conventional cartographical maps we see in atlas. We 5286 of storage space with this
representation and is required for the terrain data to fh Wwiixagonal geometry clipmaps.

Chapter 2

Previous Related Wor k

In this chapter, we review the related prior work on terr@presentation and rendering. We discuss
the previous work on terrain rendering in general in Secfldn In Section 2.2, we describe major
earlier work in spherical terrain rendering. In the follogisection, we look at a brief history of non
photo-realistic rendering, and its relation with terragmdering.

2.1 Terrain Rendering and Manipulation

Terrain rendering is a well-studied problem. Triangulategtular networks are created from regular
grids with connectivity typically decided using a triangtibn process such as Delaunay’s [10,13,15,16,
28]. They provide rendering efficiency at the cost of easeediopming other operations and are popular
in GIS and computational geometry, but the recent trenddplgjcs is to use regular grid representations.
Hierarchical tree structures like quadtrees exploit theg®iD structure of terrains and have been used to
represent them. They are storage efficient and lend theesselell for compression [6, 14, 35, 36, 42],
but not always efficient for random access of the height walughe hierarchical approach has also
been combined with triangulation for better rendering @ariance [8, 33]. Terrains have also been
partitioned into fixed size square patches of differentltdégms. The tiled structures provide compact
representation and easy rendering. The block boundariesteaw artifacts which are taken care of
using special zero-area triangles and stitching [38, 49je fixed size blocks also limit the range of
resolutions supported when a tile is reduced to a singlehheig

Losasso and Hoppe introduced a multiresolution, fixed mgrsiae scheme for efficient representa-
tion and rendering of large terrains, called the geometpr@ps [38]. They use a square region around
the viewer as a geometry clipmap with high resolution at #m&re and lower resolutions on the outer
rings. The fixed memory structure involves constant rengdoad. The geometry clipmap were stored
in the GPU and rendered from there [2] and were also extermsohierical coordinates [11]. Geometry
clipmaps provide good rendering performance, but the sgmtation does not lend itself to editing or
modification of the terrain, which is possible especiallytatay’'s GPUs. They also store multiple res-
olutions of portions of the terrain. Schneider and Westemraport an LoD based rendering technique

for terrains that use the GPU extensively using a multirggm, tiled structure [46]. Their method gives
high rendering rates but has all limitations of the fixedtépresentations, such as hard boundaries that
need special handling. Rectangular patches have been sisedraless patches with stitching strips but
requires the simultaneous storage of multiple resolutjdiik

Terrains are traditionally considered static and fixed. dbrafng and editing are performed rarely
during visualization. Earlier work on terrain modificatiomclude multiresolution detail patches by
He et al. [22] and modelling soil slippage by Li and MosheW].3 The height-maps are amenable
to quick editing, unlike the irregular representations.laAtand Garland edit the terrain in real-time
using a few editing strokes for applications such as gectdgimulations [3], using a wavelet-based
representation. They use a two-step approach to recovearta@ and to edit it. Schneider et al. present
a system to generate very large landscapes on the GPU usiegtpd grids [45]. They generate and
render procedural terrains using shaders but do not haedl¢earrains. Physics of particles has always
been studied as an independent problem. Recently Kipfér[8ldand Kolb et al. [32] implemented a
particle system on the GPU.

2.2 Spherical Terrain Rendering

When terrains are mapped over a planetary structure, mosnoaoly a sphere, we call §pherical
terrain rendering in short. Spherical Terrain Rendering involves additigmalblems involving correct
distribution of samples over the surface of sphere, reptasen of sphere, level of detail, view range,
spherical surface coordinates and calculation overhaadsEarly work in Spherical Terrain Rendering
originate from plannar terrain methods and then their déxiea to a spherical base.

O’Neil [41] and Gerstner [18] extended the ROAM algorithnd]Tor a planetary structure. The
problem with above and other non-grid based algorithm i¢ tiva data needs real-time processing.
Addressing this issue, Hill [27] favored a tiled block sadut Cigoni et al. [8] extended the BDAM
algorithm to suit planets [9]. These algorithms divide thenpt in square regions and use a cube as
the base. Google Earth, a successful commercial applicatidgfers from flickering, possibly due to
pole singularity problems. Modern GPU friendly Geometrip@iaps [2] was first used by Clasen and
Hege [11] in spherical clipmaps for fast rendering, howglask of direct correspondence of height
data to vertices produced aliasing issues.

Independent from the research in Spherical Terrain RemgleHierarchical Triangular Mesh [48]
caught our interest which primarily focuses on supportiaggpatial indexing and searching at different
resolutions, from arc seconds to hemispheres. We are mmneested in HTM’s subdivision and its
uniform sampling of the sphere. Modern GPU friendly ternandering techniques, however, rely on
right triangles fundamentally for the tessellation of thedin. HTMs are strictly based on equialateral
triangles. To use any existing terrain rendering methogdmmaps [2], we have to find a way of mak-
ing that technique work with equilateral triangles. Ourlgeas to use the best of sphere representation

systems (HTM) and efficient terrain rendering methods (GatonClipmaps [38]), and create a simple
combination of two, yet technically sound.

2.3 Non-Photo Realistic Rendering and terrains

Abstract representation of still images was introduced helbérli [19] using image color gradient
and user interactivity for painting. Hertzmann [23] placesved brush strokes of multiple sizes on
images for painterly rendering. The technique fills colomsing big strokes in the middle of a region
and uses progressively smaller strokes as one approaaghesiges of the region. Shiraishi and Ya-
maguchi [47] improves the performance of above method bycpmating the continuous strokes by
placement of rectangular strokes discreetly along thestigereate painterly appearance. Santella and
DeCarlo [44] uses eye tracking data to get points of focusrages and create painterly rendering with
focus information. All these techniques work well on siniglages but involve iterative techniques that
make them cumbersome for real-time applications [25]. Aldbey are applied on each frame of an
animation independently, it can lead to a flickering of st®klue to incoherence of strokes between
frames. Painterly rendering has been tried and made cahamevideos as well [26], [21], but these
techniques are not well suited for 3D rendering.

Painterly rendering for animation was introduced by Me#][She eliminated shower door effect
and achieved frame to frame coherence by rendering seversti btrokes whose positions stick the 3D
model's surfaces. However, view dependent sorting of tsesdes is required for alpha compositing,
making it unsuitable for real-time animations. Recent wi@k0] describe a real-time painterly pro-
cess inspired by Meier using programmable graphics hamwiney render the polygonal model first
and store the depth map. A second pass uses the depth mapaeerestliuded strokes so that the
strokes/billboards can be rendered in any order. For a aoogid distant scene, such as a terrain, the
inaccuracies due to precision in the depth map and compesitdsoundaries can reduce the visual qual-
ity. Terrains are rich models containing many samples andldibe rendered with large view distances.
Other modes of NPR have been created in past for terrainsariReimk approaches [12, 29] exist which
mostly focus on silhouette of the terrain. These are, howelfferent than painterly rendering process
which is the focus here.

Chapter 3

Real-time Terrain Rendering

Terrain data is basically a 2D grid of heightmaps betweerckiriangles can be rendered to give it
a rigid water-tight look. However, the number of heights banvery large and drawing all the triangles
all the time is not practical on a real-time system. We apjifigiint methods to achieve a real-time
performance. In Section 3.1, we see how terrains are divilskedtiles and how tiles are kept in the
memory. Section 3.2 shows how tiled structure helps in elating regions of terrain which are not in
the camera’s view. Next section, Section 3.3 shows the rdaghfurther improving the performance by
exploiting loss of detail of farther regions of terrain irewi. Regular tiles become very small at the far
extremities of the viewing frustum. We take care of this peab by using low levels of detail for such
tiles in view. However usage of level of detail brings anom@blem of terrain popping which happens
due to change in level of detail when the camera is moving. &l&tate blending factors on a per tile
basis and is used to smoothly change the level of detail.dtioge3.5 we see another problem of cracks
introduced by the LOD system, which is due to difference iL@ surrounding tiles. We address this
by stitching surrounding tiles. Section 3.4 finally desesbhe rendering method which works upon the
described methods. We describe the various steps involvéidst creating our terrain representation
and then rendering it.

3.1 DataOrganization

Terrain data consists of a height value for every pointon a rectangular grid. We divide it intdes
of equal size for rendering. By equal we mean they cover theesactangular area on the heightmap.
To handle levels of detail, we arrange the data in a specific War a tile with size2™ x 2" height
values, we storen number of LODsyn < n, m is a user defined nhumber based upon characteristics
and size of the terrain. We also keep the distance betweaneadjheights in, y ass,, s, Fig 3.1. For
an LOD! we have2"~*+1 + 1 x 27=+1 4 1 (I > 0) number of height values ar¥ + 1 x 2" + 1 for
I = 0. Note the extra heights at the end corners of the tiles, theyhee height values at the starting
corners of the next tile; kept as they help in stitching (se€tiSn 3.5). This means= 0 holds highest
detail andl = m holds lowest detail as illustrated in Fig. 3.1. Fas 0 we keep original height values

10

4
b
A

ela——el)

D, a

1=0 =1 1=2 1=3
241 x 2%+1 241 x 2+1 251 x 2%+1 241 x 2'+1
All heights original Alternative heights Alternative heights Alternative heights
interpolated interpolated interpolated
- T TP T T
% F——+——+ + 4 - - 4

D, Q D, 0
A4 A% =4 A\

x| x| sx

Figure 3.1 Data organization: An e.g. with = 3 andm = 3, blue circled height values are original,
rest are interpolated. Note that, they occupy the same argeoond

-

@

h at (2i,2j) locations,0 < i,j < 2"~!. We replace the height values @i, 2; + 1) locations with
avg(ha; 2, hoi2j+2), at(2i + 1,25) locations withavg(ha; 25, hoito,2;), at(2i + 1,25 + 1) locations
with avg(hai 2;, heit2.2j+2); Whered, j vary as bounded. This is done so that while rendering when
LOD [with alternate height values dropped, we don’t see any ahanthe structure.

3.2 View Frustum Culling

Bounding rectangle |+ Tiles rejected out of
projection

Projection of view
frustum on the
base plain

Tiles assigned with 1=2

Distances separated by
LOD transition distance__|

Tiles assigned with =1

Base Line——| Tiles assigned with 1=0

Figure 3.2 View frustum culling and LOD assignment

In each frame, we query the graphics API for view frustum éiqna and calculate the projectidn
of the frustum (generally a trapezoid) on the base plains base plain is = ay, ay, is the approximated
average height of the terrain in view of previous frame. Tisecause we haven't accessed the terrain
data yet and thus will be using the data from previous franseragg that the view hasn’'t changed
much. We then calculate orthogonal bounding rectangl®.oM/e can directly map the coordinates
of the bounding rectangle to tile indices. Using these tildides, we find other tiles that are insiée
(Fig.3.2). We keep the indices that return positive in aliidfer B; for use in rendering. We do not
need to do 3D view frustum culling as terrains are injectiwections onz, y, and thus can be reduced
to 2D in turn to reduce number of required calculations.

11

3.3 LOD and Blending Factor Calculation

Using the camera parameters we calculate a base line, thatpendicular to the view vector and
parallel to the ground plane. For each tilef#, we calculate the perpendicular distantef its mid
point from this line (Fig.3.2). This distancéis used to calculate LODas|d/I;| wherel, is the LOD
transition distance. We choose this distardastead of the direct distance of the tile from the camera
because if the field of view of the camera is high, we shall gmcendering tiles at the corner of screen
that are actually close to camera in screen space but farj@ctobpace in very low level of detalil.
The valuefrac(d/l;) is the blending factorv. « is used for smooth level of detail changes of tiles as
explained in Section 3.4. We salrand« in B; along with the tile indices.

3.4 Rendering

With all data in place, the tiles can be rendered frBm For all tile indices inB;, we load the level
[andl + 1 of that tile. The index is clamped ta to avoid memory exceptions. The distance between
adjacent heights fdrcan be calculated ds,,, s,,) = (s, 5)2! Fig 3.1. We calculate the heightsfor
[>0as
h = haiy),(1 = a) + hg g, 0

[= 0is aspecial caséi = h(i,j)o(l —a)+ h jy, o i, j vary as bounded. We can now see that when
is0, h = h(;,25),, and whenvis 1, h = h(i,j)(l+1)- Thus this blending factor is able to smoothly change
between the two height values of 2 different LODs of the sadfeeas we move the camera. On the fly,
we also calculate the average of the heights at the mid pbthese tilesga,,, which will be used in the
next frame for view frustum culling (See Section 3.2).

3.5 Tile Stitching

ij+l ij+l1

i+, i+l

i ij
Figure 3.3 Tile Stitching: tiles, j is stitched only ta, 7 + 1 andi + 1, j

Since every tile is getting assignédnda independently, we find un-tessellated areas near the corner
of each of the tiles. We assume that a tile on the ground witD L@an have a nearby tile whose LOD
can be only — 1 orl + 1. This makes tile stitching easy and smooth blending of LODs&/ perfectly.

Our assumption remains true iffis always more than the maximum distance a tile can extenten t

12

ground, i.e., the tile is never able to skip an LOD in betwegn for a tile index;, ¢; in B;, we get the
landa of t(;, 1), t; andt;, t(;41), and use them for the corner heightsgt; Fig 3.3. Note that we are
not looking at(i — 1, j), (¢, j — 1) indices of tiles since those corners are already stitchezhbier tiles.

3.6 Conclusions

In this chapter we presented a fundamental terrain rerglsgistem which introduces the categories
of problems involved. Using the representation of tiledisiire of terrain, we were able to do a quick
view frustum culling and level of detail management. Witls tsystem we showed how important role
a representation plays in designing a good rendering sch&hig chapter shows a very simple terrain
renderer, is limited to theory and does not address the iskandling very large terrains. In the
following chapters, we will address practical problems distuss adaptivity of the technigues to the
use of current graphics hardware.

13

Chapter 4

Terrain Rendering and M anipulation using GPUs

We present a scheme to render terrains, deform them, edit tired perform physics involving them
at real-time rates. We use a representation that combied##ud-size structure of geometry clipmaps
and the regularity of tiled blocks. The terrain is cachedren@PU using fixed-size rectangular blocks.
The resolution of the blocks depends on the view and changhsheight of the camera. A blocked,
tiled, height-map representation resides at the GPU catcal tames for fast rendering and real time
modification. The cache is kept updated in extent and rasalbily sending data when needed.

The main contributions of this paper are: (a) A terrain reimdesystem that achieves a rendering
speed of 100 frames per second on arbitrarily large terwith®ut the CPU, the GPU, or the bandwidth
between them being the bottleneck. CPU load is less than 16i%é rendering at 100 fps (b) A way to
interactively modify and interact with the terrain simuléusly with rendering, performed entirely in
the GPU at real-time rates. This enables terrain deformstimteractive editing and the computation
of simple physics of external objects interacting with teedin. The following innovations make the
above possible. (i) A terrain representation that uses keel blocks of grids and GPU caching that
enables fast rendering and correct editing and manipualaifi)) A scheme of sending light geometry
templates from the CPU to the GPU, which are expanded intachel geometry. This keeps the CPU
free to do other tasks while the GPU performs the bulk of tineleeing work. (iii) A two-level culling
scheme with the CPU culling in units of large tiles and the GRIing in units of smaller tilelets
for high rendering performance. The rendering rate dowsids this. (iv) Clever interleaving of data
transfer from the CPU to the GPU to keep the cache updatedatlyrwithout affecting the rendering
rates. This guarantees 100 fps rendering of arbitrarilydaerrains. (v) Fast, interactive and procedural
manipulation and editing of GPU-resident terrains usirgftgment shader. The highly parallel GPU
resources are employed profitably to do this, improving fistesn performance.

We demonstrate the performance of our system using an NS8RBOGTX GPU. We can fix the
framerate at 100 while handlingla\/ x 1M terrain which uses 2 TB for the heightsOur system
renders upto 350 million triangles per second on parts ofyatfipath and achieves an average rate of

The large terrain is a periodic extension of X x 16K Puget Sound terrain. The terrain system is unaware of the
replication. The CPU module that loads the terrain is awhtieeofact and returns pointers to existing data when goirygpihe

14

160 million triangles per second. The frame rate of 100 camamtained even while half the terrain
is deforming or is being edited or when 256K balls are boumain it. We exploit the advanced SM4.0
features of the GPU to achieve the high performance [43].

The terrain representation and rendering are explaineceatidhs 6.2 and 4.2 respectively. The
caching system is explained in Section 4.3. Terrain maatmn schemes are presented in Section 4.4.
Section 6.5 presents experimental results. Some congudmarks are given in Section 4.6.

4.1 Terrain Representation

o L=2, 1x1 Blocks ' ' '
/E R } } } lq— Block
N \ \ \
EL:L?XZ Blocks | T T T
i / ~ | | | _
/ . \ > ~. | | | | Tile
Y a4 7z |- S —
L L L LS !
LT T |
L /L /£ /L 7 Lo R —— 7 Tilelet
L=0, 4x4 Blocks i i i
(a) (b)

Figure4.1 (a) An terrain with highest resolution stored4ink 4 blocks, next ir2 x 2 blocks and so on,
using fixed size blocks. (b) A block with x 4 tiles each witht x 4 tilelets

We represent the terrain as a regular 2D grid of heights witkea post distance in X and Y direc-
tions. Fixed-sizéblocks are used as the base units of storage and transfer from thediRe) GPU. A
block consists ofiles, which are the basic rendering units. Tiles extend in thengdoXY plane and
take part in view frustum culling. Tiles are further dividiedo smallertilelets (Figure 4.1(b)).

CPU Representation: The terrain is stored in main memory and sent to GPU as blodks.use
blocks of sizel024 x 1024 as larger blocks are more efficient for transfer. The CPU sisces all
lower resolutions of the terrain as blocks of the same siZadititate quick transfer of arbitrary levels
of detail of the terrains to the GPU (Figure 4.1(a)) at the oba maximum ofl /3 more memory. Thus,
a terrain of32 x 32 blocks at the highest resolution neddisx 16 blocks in the next lower resolution.
View frustum culling takes place at finer resolution in temhsiles. Tile size should balance the culling
and rendering loads. We use larger tiles in our system, milyr256 x 256, since geometry is discarded
also at the GPU as explained later.

Different parts of the terrains need to be rendered at diffielevels of detail or resolutions. Tlevel-
of-detail (LoD) at which a tile is rendered depends on two factors: the etsvaf the viewpoint and
the distance along the ground from the viewpoint. The réndeaesolution reduces as the elevatibn

15

Figure4.2 The GPU Cache (shown shaded) is a contiguous section ofrtaéteesiding in the GPU as
aregular grid at a resolution determined by the elevaliayf the viewpoint V. The rendering resolution
also depends on the distanbe

or the distanceD increases (Figure 4.2). Resolution is changed in disctepes 9y doubling or halving
the post-distanceMerge level denotes the level-of-detail of the terrain determined leydlevation and
distance level denotes the same due to the ground distance to the view|Butit.take discrete integral
values. Level O represents the terrain at the highest dégadl ; + 1 represents the terrain at half the
resolution of leveli. The LoD is expressed as the number of level shifts from tigadst resolution
available. Theendering LoD of a tile is the sum of merge and distance levels.

The transition distance in elevation for shifting the mdeyel depends on the image-size to which a
triangle projects. We shift the merge level when the pogadie maps to about 3 pixels (see [38]). For
a 90 degree field of view andi®24 x 768 window, the transition distance comes out tollde4 /(3 x
2 x tan ¢/2) — about 170 times the post-distance — when the viewpointosecto the ground. The
transition distance doubles with each reduction in regmiuas the post-distance doubles. This scheme
can handle terrains of very high resolutions. Since thesitian distance depends on the post-distance,
the higher resolutions will be used only when the viewpaintipser to the ground. We use the same
distance for ground transition distance for near uniformdweour due to camera changing elevation or
distance. Farther tiles render with low detail or higher Lmibnber.

Resolution reduction is achieved easily on our representll dropping alternate rows and columns.
Thus, an LoD level has a post distance thatdstimes the post distance at level 0. Thus a higher res-
olution block contains all lower resolution ones, which tengenerated by sub-sampling. We choose
sub-sampling instead of filtering for creating low resalng because it preserves height values whereas
filtering changes the heights in lower resolutions. Subggeng is also fast but produces no artifacts
when combined with our blending scheme explained in the section.

GPU Representation: The GPU Cache holds a contiguous 2D grid of blocks at the merge-level
resolution around thpoint of reference determined by the camera location. The resolution depends o
the view elevatiorn® (Figure 4.2) and is the highest resolution needed for remglérom that elevation.

It also contains all lower resolutions as explained befofaus, all data for rendering the terrain is
entirely in the GPU memory. The appropriate LoD for eachisilgenerated on the fly by sub-sampling.
Tiles are further divided int@ x 2 tilelets by the GPU and used for the fingvo-level of culling explained

later. The GPU Cache is updated when the merge level change® @levation or the region changes

16

due to change in camera location. It is to be noted that thenexin the ground of the blocks and tiles
change with the merge level as they have fixed sizes.

Implementation Details: The GPU Cache is stored as amay texture, introduced in SM4.0. The
cache can be attached to a single texture unit and a heighiecarcessed on the fly by the GPU without
periodic texture binding by the CPU. Heights are accessi) tisree coordinated:to select the block
(also called a layer) and, y to fetch the post from that layer. Each layer of the arrayuextan be
updated randomly. We use a sepanadiiter-texture to store the layer IDs (Figure 4.3). The pointer-
texture is a 2D array of layer IDs and presents the GPU Cacheastiguous 2D array of blocks. The
[coordinate is fetched using the 2D indices of the block. Taiatpr-texture is updated with new layer
numbers when the GPU cache is updated. The unified architeat&M4.0 provides fast access to the
texture for all shader units.

Array Texture Pointer Texture

Figure 4.3 An array texture with 16 layers and the GPU cache &s<at pointer texture that stores the
layer IDs.

The blocks and tiles have fixed memory sizes and variablenexta the ground. A block at merge-
level I + 1 spans four times the area of the same at IévéThe merge and distance levels provide a
unified LoD scheme with nearly constant triangle count onsitreen for all elevations of the camera.
The amount of data to be rendered also is nearly constartedéghtions due to the shift in resolution.
This plays an important role in achieving real-time perfance on large terrains. Our system also
supports mapping of real texture images to the terrain. @tedures are kept in a parallel cache on the
video memory with a matching block of texture for each blatkhe GPU cache. The resolution of the
texture blocks is kept updated for seamless performanceh Black is mipmapped independently to
avoid aliasing for far-off tiles. Hardware mipmapping mayt produce the desired results as the screen
space measure used by it may not match the resolution redugsied for the terrains. We currently
store the complete texture images in multiple resolutionthe video memory. The texture cache stores
the coordinates of windows to it.

4.2 Terrain Rendering

The GPU performs most of the rendering under CPU’s cooridinatThe CPU culls every tile in
the GPU cache to the view frustum. It them sends the geometmplate, consisting of a vertex buffer

17

object (VBO) of points, for each tile to the GPU. This keeps @PU load the communications to the
GPU very low. The GPU discards tilelets of the geometry timadlitside frustum and expands the rest
into the triangles.

421 Stagel: CPU

The 2D grid scheme makes it easy to compute the extents sf tilecks, and tilelets using simple
calculations. Each tile has an index in the grid of tiles. T}U eliminates tiles outside the view
frustum and computes the LoD level for the rest of the tiléshén sends the corresponding geometry
templates to the GPU.

View
Frustum

Tile Reference
Point

Figure 4.4 Tiles outside view frustum (marked red) are discarded byQR#&. Intersecting tiles (gray)
will go through a second level of culling by the GPU. Interiibes (yellow) are rendered directly. LoDs
of tiles to be rendered is a function of distance from the pieint.

View Frustum Culling: The orthogonal footprint of the view frustum and its boumdimox are
estimated in the grid of tiles first, as shown in Figure 4.4e Blounding sphere of each tile is tested
against the six planes of the view frustum and those lyingidatare discarded. Tiles that intersect a
frustum wall are tagged specially boundary tags as theiets will undergo a second level of culling in
the GPU.

Level of Detail: The GPU cache holds the terrain at the current merge-levieé PU uses the
distance of each tile from the camera to compute the disttaved The distance-level of each tile thus
denotes the drop in resolution from the data stored in the &ile. Farther tiles will get a higher LoD
number or lower detail. Thus, proximate tiles will be reratewith high detail and distant ones with
low detail (Figure 4.4). The detail factdy is computed a®g; 5(1 + %), whered is the distance of
the mid point of the tile from camera (Figure 4.2) anid the current diagonal length of the tile. The
termd/t will give linear LoD bands and the logarithm will ensure erpatial thickness for equi-detail

18

bands. This results in near-uniform distribution of tiletail on the screen. The base of the logarithm
affects the width of the LoD bands. A value of 1.5 gives acaklgt triangle count and quality in our
experience and ensures a minimum LoD band thickness of len€Ttius, adjacent tiles will not differ
by more than one level which is necessary for seamlessistitels explained later. The integer paft|

of the detail factor is used as the distance-ldydb shift the resolution and the fractional part is used
as themorphing factor « for the entire tile. Morphing of different LoDs is necesséwyavoid popping
artifacts as explained later.

Rendering: The CPU sends each tile to the GPU along vijtithe morphing factor, and the bound-
ary flag. To reduce CPU load,geometry template of a VBO of point primitives is sent for each tile.
Each point of the template represents atilelet to be redd®e currently use x 2 tilelets. A128 x 128
VBO is used for the fulR56 x 256 tile. Smaller VBOs are used if the distance-level is gretitan 0.
The same template can be used for all tiles at a particultardis-level. This process is explained in
detail in Section 4.2.2.

O%\\

stich @
VBO @
VBO Q\>
O O O
VANLIWAN

©o0o — () /NN
O 0O Oo—]

N /N
\VARV

—~

<) (d)

Tile

@ (e) U]

Figure 4.5 (a) The CPU renders each tile (here of size 9) as points using two geometry templates,
one for the interior (shown in blue) and the other for the latawg (red/yellow/green) of the tile. (b)
Tilelet used in the interior of the tiles. In the eastern leor@@reen), tilelet (c) is used when the neighbor
has a higher LoD and (d) is used if lower. In the northern bo¢des), tilelet (e) is used when neighbor
has a higher LoD and (f) is used if lower. Yellow region getadiad automatically.

Adjacent tiles can have different resolutions which cawsgssal inconsistencies at the joints. We
use agtitching process for border rows and columns to avoid this. Each tilehes with its northern
and eastern neighbors as explained later. Stitching regjain extra row and column of indices of the
neighbor to be available to each tile. Thus, the actual tde gsed i257 x 257 with its last row and
column being the first row and columns of the adjacent tileBUGends separastitch templates to
effect correct stitching (Figure 4.5(a)).

19

422 Stage?2: GPU

The GPU receives a point for tilelet of a tile being rendedea@with its LoD and morphing factors.
First, the tilelets outside the frustum are discarded,ltiesuin a fine culling in terms of x 2 sections
of the terrain. Geometry is generated for the survivindetkeby accessing the terrain from the GPU
cache.

Tilelet Generation and Culling: The GPU receives the index, the LoD number, the morphing
factor, and geometry template for each tile (Figure 4.5(@We index is mapped to the block index of
the pointer texture and the layer and tile ID of the GPU Cadte coordinates of the incoming point
primitive of the template represents the top-left cornethefcorresponding tilelet and the LoD can be
used to compute the other corners. The heights of the coanerfetched from the GPU cache. These
four points are tested against the view frustum by the vestexier. The tilelet is tagged as outside if all
four points are outside before sending down the pipelingaréatice, conservative testing is performed
to counter possible error introduced by the quadrilateppireximation of the tilelet. This process of
second level culling is performed only on the tiles thatrisget the view frustum walls as tagged by the
CPU. Other points are passed down the pipeline withoutigsti

A culled tilelet

Tilelets of intersecting S

tiles tested for second Inside tiles not tested for
level culling second level culling

Figure 4.6 Picture of tilelets after VFC. Farther tiles need fewerdils. The red tilelets are discarded
by the second level culling on the GPU.

The geometry shader of the GPUs can discard primitives fi@ptpeline or add primitives to it.
The tilelets that are tagged by the vertex shader are disdarthis second level culling accomplishes
accurate culling with no load to the CPU. Figure 4.7 shows tihea frame rate is doubled if second
level culling is used on a typical rendering. We experimeémngth different tilelet sizes. The smallest
tilelet with stitching capability has a size 8fx 3. This performs the best due to the deterioration in
performance of the geometry shader as the amount of datdputsuincreases [17]. The geometry
shader generates triangles for the remaining tilelets. cbioedinates of the top left point and the LoD
number are used to access fhe 3 grid points. The post distance at levas 2! times the post distance
at level 0. Triangles of the tilelet, as shown in Figure 4-B(are sent down the pipeline.

20

450 T T

T T T T T
With Second Level Culling —+—
Without Second Level Culling

400

350

300

250

200

Frames per Second

150

100

0 100 200 300 400 500 600 700 800 900
Time

Figure4.7 Framerates for a typical flight over the terrain with (reddl arthout (green) the second level
of culling.

Figure 4.7 shows the performance of the system over a tyftiglal over the terrain with and without
the second level culling. The second level culling improthes system performance by a factor of 2
overall. The camera is looking approximately down betweamés 250 to 450. The tiles nearer to the
camera contain more tilelets as seen in Figure 4.6. The ddewel culling is most effective on them as
a result.

4.2.3 Tile Stitching and Blending

Tiles can be rendered independently if the northern row asteen columns are included. However,
stitching is necessary when the northern or eastern neidtasoa different LoD. Gaps in the terrain may
be visible otherwise. Zero area triangles have been usdtktiate this problem in the literature [38],
but is an inelegant and incorrect solution. We use a speesidped geometry template with indices
of only the northern and eastern borders of a generic tilstitthing (Figure 4.5(a)). The CPU sends
these templates with tile indices, LoD number, morphingadiaas well as the LoD number and morphing
factor of the neighbouring tiles.

The stitching templates use the same vertex shader. Thwinetey shader selects one of the tilelets
in the border areas (Figures 4.5(b-f)) based on the LoD nwnbEilelets of the eastern border can
be rendered with equal LoD to the parent tile (Figure 4.5(lo)ver LoD than the parent tile (Figure

21

tilelets

N NSNS
e

H
SUSISONNNIN

NE

B R

ER

NENONNUNINNL

=
SENINUNENES

Figure 4.8 Atile of size9 x 9 with a northern neighbor of lower resolution and an eastemas higher
resolution. The tilelets of Figure 4.5 are used for corréttting.

4.5(d)), or higher LoD than the parent tile (Figure 4.5(@)0)e same goes for the tilelets along northern
border (Figure 4.5(b, f, €)). The geometry shader can réezegmd render these tessellation styles using
the available information. The north-eastern tilelet vhig adjacent to both neighbours gets handled
automatically. An example tessellation of a tile is showigure 4.8. Our stitching scheme maintains

coherence at the borders of tiles with no abrupt changesps: disalso requires less number of triangles

compared to schemes like zero area triangles [38] and intedo extraneous geometry.

Gt G5 L1

LOD=l,0=0 =) LOD=l,0=0.99 E==)> LOD=I+1, a=0

Figure4.9 Atile at LoD =1 (left) blends its alternate heights (showrréal) with its lower LoD (middle)
usinga. When the tile shifts its LoD, the change is not noticeablbisprocess is valid in reverse as
well.

The morphing factor is used to smoothen the change in LoDdang popping of geometry. The
morphing factora has a rangg0, 1) and is used to interpolate between the heights of the culoedt
level and of one lower level. Thus, the final height used fadeging ish = ah; + (1 — «)h;1 Where
[is the LoD of the tile (Figure 4.9). As a tile of LoDmoves closer to farther edge of its LoD band
(due to camera moving back), itswill drop to 0. When it crosses into the next band, the LoD will
shift to/ + 1 and the alpha will become 1. When a tile moves from far to neahanges from 0 to

22

Lateral motion Moving down —————=

- _;\/\\

~<———— Movingup —mm—=

Figure 4.10 Later motion and pan/tilt (left) involve discarding an Lagted region and bringing in new
blocks (yellow) from the CPU. When the viewpoint comes dotie, merge level decreases (middle).
The extents of GPU cache are halved and data at a highertiesakibrought in from the CPU. When
the viewpoint goes up, the extents of the cache are doubkktharexisting data is compressed into one
guadrant. New data is brought in from the CPU with nearerks@etting higher priority in a staggered
manner (right). The data transfer is scheduled in a staggaesner not to affect rendering speed.

1 smoothly and increases the resolution of the tile. For traar heights, the morphing factor for the
adjacent tile is used, as the neighbouring tile will changé.©OD independently. This is the difference
when rendering the stitching triangles. This blending sel@nsures a continuous transition between
different resolutions.

4.3 Caching

The GPU Cache containg x N blocks at the merge-level resolution, which is the maximasolu-
tion of the terrain needed at the elevation of the camera.sidegV depends on the maximum visibility
required at the highest resolution. The visibility douldsshe merge-level increases. We D&e- 8 for
most of our experiments, needing storage for 64 blocks oG#PE. The cache is updated periodically
to hold all the data needed for rendering when viewpoint gganOne option is to keep the GPU cache
symmetric with respect to the viewpoint as is done by LosasgbHoppe [38]. This ensures that all
data to look around from a particular point is present in tiJ@ache. We, instead, try to keep the GPU
cache symmetric with respect tareference point, which is the centre of the orthographic projection
of the view frustum onto the ground (Figure 4.10).

4.3.1 Lateral Motion of Viewpoint

Lateral motion, pan, and tilt at a constant elevation bringew data to the GPU cache at the same
resolution. We use the position of the reference point irciehed terrain to trigger the data transfer. If
the reference point goes outside the centraln block of the GPU cache —where= N/2, —the cache
is re-centered by bringing another row or column of block¢hatcurrent merge level, (Figure 4.10)
discarding blocks on the other side of the cache. We loaddhettocks by overwriting the discardable
blocks. The data from the CPU is loaded to selected layetsedditray texture and the pointer texture is
updated to rearrange the layer IDs on the GPU. F& ar8 GPU Cache with each block taking 2MB

23

of memory (024 x 1024, 16-bit height values), a lateral motion cache update n&6MB of data to be
uploaded to the GPU. The data transfer time is controlledguajob-queuing scheme explained later.

4.3.2 Vertical Motion

When the camera goes up, the extent of the visible terraieases and the resolution decreases.
Similarly when the camera comes down, the terrain extermedses and the detail increases. For this,
we change the merge level or the base resolution of the GPUeCakhis process keeps the memory
footprint constant without compromising the requiremdatsendering.

Ascending Motion: The merge level increases and the resolution halves wheneWwpoint moves
up. A quarter of the GPU cache can be filled by sub-samplingnaedjing the current contents of the
cache (Figure 4.10). New data has to be brought to the rengaggiace. The merging is performed on
the GPU using a separate fragment shader pass that subesasnpl copies heights fronx 2 blocks
into a single unused block. This is achieved by the bindimgtéinget and source blocks as frame buffer
objects or textures and drawing a block-sized quad. Thisga® needs one extra block of storage on
the GPU. The array texture thus has an extra layer which isikegn unused-layer queue, outside of
pointer-texture. When merging, an unused layer is dequanddised as the target. The original four
blocks are queued as unused after the merge. At the end ofdlging process 75% of the blocks
will be free (Figure 4.10). New data is brought to them frora @PU in the proximity order from the
reference point and stored in unused layers. The data éraisdfiggered before the new area is needed
and can complete over a few frames. After the process coewpléte GPU Cache will hawy x N
blocks and one unused layer. For&an 8 GPU Cache, we merge 64 blocks into 16 blocks in the GPU
using 16 merge operations. After that, 48 blocks or 96MB @teaded from the CPU to the GPU.

If the original terrain is one million square, we can g&4, 1024 = 10 global LoDs. We reduce the
resolution in factors of 2 until the entire terrain fits inteetGPU Cache. Thus the number of merge-
levels depend on the cache size and the total size of théntekide use a GPU Cache size i 8 of
1K x 1K sized blocks for thé6K x 16K Puget Sound data. It contains 14 LoD levels and only one
(= log, 16384 — log, 8192) merge-level before the GPU cache is filled.1A/ x 1M data with the
same cache can use=# {og, 1M — log, 8192) merge levels. The data transfer time is controlled using
ajob-queuing scheme explained later.

Descending Motion: When the resolution increases due to a reduction in elevatie blocks of
the cache are replaced by higher resolution blocks, andthEdxtent of the terrain reduces. This is
data intensive as the entire GPU Cache needs to be replaced.

A quarter of the GPU Cache that will remain in the view are fidsintified. The physical area of
each block is to be replaced by four high resolution blockfie Temaining layers are added to the
unused-layer queue (Figure 4.10). Each block is replacdl itgi 4 higher resolution descendents in
order. As soon as four blocks are loaded using the unuseds|aie pointer texture is updated and the
low resolution block is enqueued as unused. When the prigéiséshed, we will haveV x N layers
in the GPU cache and one unused layer. The higher resolgtiootineeded for rendering immediately

24

since distance LoD increases smoothly. The increase itutesois also anticipated ahead of time to
avoid visible update changes. FoB8 & 8 blocks, we have to bring the 128 MB into the GPU memory
to increase the merge level resolution. The data transfex i6 controlled using pob-queuing scheme
explained next.

4.3.3 Job Queuing Scheme

Our primary goal is to maintain a steady frame-rate. We tleatiata transfer and merge operations
as “jobs” and queue them to be executed when the rendericggsdas time. Running all the operations
at the same frame can freeze the rendering at times and thffegtiality of visualization. We execute as
many jobs as possible to keep the total frame tifhesafely within the fps constraints. The total frame
timeis,T; = T, + T,, whereT, is time for rendering and’, is the total time taken by the jobs in the
cache updating process. For 100 fps renderiads 10 ms and we are left witl,, < 10 — T,. ms for
updating. We steal cycles for the update process When 10ms without affecting the fps.

The transfer of a block of 2MB from the main memory to the GPkéta2 ms on the current GPUs.
A merge operation takes less than 0.5 ms. The number of jobe fmerformed is calculated as=
(10—-T,)/K whereK is a constant denoting the worst case time for the job. Fanel&if 7, = 5 ms,
and K = 2 ms for a layer update, then = 2 jobs can be performed per frame.nlf< 1, we do half
jobs, by uploading half of a block. Over some number of franadisoperations are completed. This
adaptive job-queuing ensures a frame-rate of 100 in peetithout any hiccups.

For the cache to be completely updated before the next uygdatinecessitated, the user speed will
be limited. For lateral motion, the worst case scenarioa#l the blocks are updated by half jobs needing
8 jobs or 16 frames or 0.16 seconds. If a block spdnans at the current merge level, then the speed
limit on the camera is{/0.16) kms/seconds. In case of ascending motion, a worst casergceneurs
when data uploading is done using half jobs, needing 96 fsamé& second to complete. The speed will
be limited toX kms/second. In case of downward motion, if all 64 blocks gr@ated using half jobs,
we need 128 frames, restricting the user speell tb.28 kms/second. As we go up, the blocks span
double the distance on ground and thus the speed doubldsefoekt merge level. It is clear that the
vertical motion determines the speed limit. However, fartal motion is most common during terrain
visualization and hence the restrictions are not limitigr a post-distance of 10m for the Puget Sound
data,8 x 8 blocks provide a visibility of up to 80 kms when the viewpditlose to the ground. With a
block’s span of 10 kms, the horizontal speed limit comel)i®.16 = 62.5 kms/second ant0/1 = 10
kms/seconds in case of vertical motion. Both are quite dabép

When the merge-level changes, the GPU cache gets updatgueteiy over a finite time. Until
then, artifacts can appear since the cache is mixed withradhaw layers. We usdirty texture flags to
handle this. As soon as the merge-level changes, all th&dare markedirty. When marked dirty, the
renderer uses the lower resolution, as with the old mengg:I&s soon as the new layers get updated
and older layers are made unused, new blocks are marked Glemnway the rendering remains free of
artifacts.

25

4.4 Terrain Deformation and Manipulation

Terrains are traditionally used only as static geometrities. The rectangular grid representation
makes it easy to manipulate them interactively or procdiues well as to simulate interactions of
other objects with it. The height map structure of terrairekenthem suitable for topology-preserving
deformations. However, deforming terrains is computatignexpensive as they are massive entities.
Deforming and simultaneous rendering of terrains pose @ giellenge.

Interactive and Procedural Manipulation: The GPU representation of the terrain that we use lends
itself to interactive and procedural manipulation easlyploit the computing power and architecture
of the modern GPUs. A fragment shader can operate on eadht ivaige independently or in relation
to its neighborhood. The parameters for the deformatiorcgs® should be given to the shader. This
includes the user inputs like the mouse path for interaetilieng and relevant parameters for procedural
deformation. A deformation pass is triggered on each blgotirbwing a block-sized quad after setting
up the parameters. Deformation passes are sandwicheddreteralering passes. This simulates terrain
dynamics in regular frame intervals.

Unedited Blocks Edited regions involving
more than 1 block

(a) (b)

Figure4.11 (a) The mouse motion over the screen triggers interactimgebf the terrain. (b) A terrain
of 2 x 2 block (left) and the results of editing it (right). Editingminvolve multiple blocks at boundaries
(shown circled)

Interactive editing of the terrains can also be performeith e user guiding the change in heights
(Figure 4.11(a)). The screen point is back projected todvpdint and transformed to the the terrain
coordinates to get a point of impact. Heights are modifiecthas the distance from the point using
user selected radius and intensity of impact. Figure 4)1difaws how a channel can be cut on the
terrain by dragging the mouse. Multiple blocks may need tediited, based on the point of impact
(Figure 4.11(b)). For procedural dynamism based on timedistdnce, each deformation pass makes
incremental changes to the terrain, between renderinggepa3tie accompanying video shows a crater
formation and a sinusoidal wave passing through the terfidie heights at each point are computed by
the fragment processor using a suitable equation and ubséguently for rendering.

26

A deformation pass takes about 250 microseconds per bloeksa#' no drop in framerates when
only a few blocks are modified in each frame. Figure 4.12 shihwasplot of the deformation and
rendering times as different numbers of blocks are editedrpene. The modification of the terrain
happens entirely on the GPU. We start a simultaneous pracesse CPU to effect the same changes
on the base terrain. This is similar to write-through of meyrmmaches. The CPU can keep up with the
GPU for user-guided editing since the CPU load is low. Focedural deformations, only the last state
needs to be created on the CPU. This can be performed as thésdighily loaded.

12 T T T r
L ... Deformation Time
11 [WM Rendering Time
10| WAV . " —Total time™
" | [Blocks edited *
B 9f N\ ey A | Lud
Q 1 v
3 8
@
.é 7 5
£ 6 F '
2 N
E 5}
'_
4
M2
3 | . ‘; _— .
2 JQJ 1 A A 1 |
0 100 200 300 400 500 600 700

Frames

Figure 4.12 Deformation and rendering times for a typical flight overamously deforming terrain.

The GPU cache is a single array texture. It can be bound agyke $#BO and modified in place
using a fragment shader. Layered rendering of the currebts@Rables independent editing of multiple
blocks in single deformation step. The modified terrain candmdered immediately as the GPU Cache
itself is updated in place.

Real-time Object-Terrain Interaction: Terrains can be used as the base to simulate several inter-
actions with external objects like a bouncing ball. Thoulgh éxact physics involved could be quite
complex, effective simulation and visualization can bei@ad with moderate computation power. We
take the example of multiple balls bouncing over the terrBials are modelled as simple point objects
are bounce based on the local surface orientation. A gternitéorce pulls the balls downward always.
If a ball collides with the terrain, local geometry detergsrits reflected direction and velocity.

The positions and velocities of each ball is stored as twtutex in the GPU memory. The positions
will be updated by a fragment shader using the velocity and tiifference in an update pass that takes
place between rendering passes. The fragment shader less aothe textures through an FBO for the
update pass. The update pass will also implement the physatsas collision with the terrain. The
velocity may change as a result of the physics. The terraghhéas to be looked up for a given 3D
position of the ball to check for collision. This is done byngerting thexy location to the GPU cache
block and grid coordinates, looking up the layer ID from theck number using the pointer texture,
and accessing the height.

27

11

10 1
g u
(2]
2
s 8 1
(5]
2 71]
E
s o |
g s5¢]
oLl |
3 L .
2 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

Frames

Figure 4.13 Physics computation and rendering times with 256K balleratting with the terrain. A
frame rate of 100 fps is possible.

If balls are present, a rendering pass renders them at timeémt locations. The vertex shader fetches
the positions of a ball, checks for visibility in the frustiand renders it procedurally as a front facing
circle. Figure 4.13 shows a flight over the terrain with a tgraof a million balls interacting with it
running at 100 fps. The system can achieve 60 fps with 1 milball¥. The accompanying video
shows visual results from it. Though we use a simple constalotity model currently, other physics
models can also be implemented.

45 Results

Figure 4.14 A view of Mt Rainier, a terrain with real texture, realtimeysics with balls, realtime
physics with a deforming terrain.

The overall algorithm is given in Algorithm 1, with parts five CPU and the shader units on the
GPU. We present experimental results using our system. kstgdts are given in the accompanying
video. We performed all our experiments on an Nvidia 8800 Gi§ixg OpenGL and GLSL shaders on
Linux with a Pentium Core 2 Duo CPU running at 2.4 GHz.

2Transform feedback is the recommended mode on SM4.0 GPUsherate positions and geometry on the fly. Updating
the positions using transform feedback is slow and achielest 17 fps with 4K balls. Fragment shaders are much faster

28

Algorithm 1 Terrain Rendering

1: Load terrain data as blocks at all LoDs

2. Create geometry templates for different LoDs as VBOs
3: for each framalo

4. CPU:

5. Update GPU Cachidé necessary using job queuing

6: Discard outside tiles and tag intersecting ones

7. Calculate LoDl and blending factow

8: for each tilet do

9: Render the geometry template for the interior tiles

10: Render stitching template if a border tile

11 Vertex Shader:

12: If tile is tagged. check tilelets against frustum and tag disca
13: Pass on the point down the pipeline otherwise

14: Geometry Shader for interior tilelets:

15: Discard points tagged discard

16: Generate triangles ofax 3 tilelet, with o for morphing.
17: Geometry Shader for boundary tilelets:

18: Discard points tagged discard

19: Generate triangles of a stitching tilelet, withfor morphing.

20: Pixel Shader:

21: Apply texture, lighting, and fog

22: end for

23: Initiate deformation pas$ editing or deformation is on
24: Initiate an update velocity/position paggphysics is on
25: Render balls from position texturephysics is on

26: end for

We use the Puget Sound data, consisting 384 x 16384 grid of 16-bit heights covering a square
region of length about 160 km, for most experiments. We ad&ntlhe’192 x 4096 BlueMarble grid with
earth texture and a#1192 x 4096 height data with monochrome satellite image as texture. ikivelated
avery large terrain by first tiling 4 sets of PugetSound, ftigpt along the vertical and horizontal edges.
This 32K x 32K terrain occupies 2 GB of space and can be tiled along X and éttioms infinitely.
We simulated d M x 1M terrain by replicating it 32 times each in X and Y directioReplication was
effected using modulo computation without additional memdhe data-access module on the CPU
was the only unit aware of the replication. The terrain systeas unaware of it. The accompanying
video shows more examples.

Figure 4.15 shows the system performance on a flight over ttiidn sample terrain. The camera
moves laterally till about frame 2000 with significant tilthe thin peaks in update time correspond to
lateral cache updates. The camera goes up and merge sluifisraar frame 2200. The triangle rate
falls when many distance-levels are used as the terrairssictmesn’t benefit from its caching scheme.
The camera starts to come down around frame 3200.

29

12 T T T T

400

TOt:’:ﬂ Rendering Tlime
Update Time
Triangle Rate

10
4 320

- 240

6 |

Time in milliseconds

160

Triangle Rate in millions/sec

80

' Al 1 “‘ “ | ’r

0 500 1000 1500 2000 2500 3000 3500
Frames

Figure 4.15 Cache update time, total rendering time, and the triandgiefoa a typical flight over the
terrain.

The rendering time below 8 milliseconds per frame at all inwith the average around 2.5 ms on
the trillion sample terrain under different viewer motioii$ie system can provide a guaranteed 100 fps
rate without the CPU, the GPU, or the bandwidth between theingta bottleneck. The system achieves
a rendering rate of upto 350 million triangles per second amdverage rate of over 160 MT/s. This
remarkable rates are made possible by exploiting the pofmiiedGPU. The CPU load stays between
5-10% even when the viewpoint moves up/down. We ran expetisnen Puget Sound data using the
geometry clipmap demo provided by Hoppe [2] on the same GPirBystem renders an average of
300K triangles per frame and obtain an average triangleafat®0 million triangles per second. Our
system renders an average of 450K triangles per frame widak piangle rate of 350 MT/s.

46 Conclusions

In this paper, we presented a system for real-time rendediefgrmation, editing, and physics com-
putation of large terrains. The representation enableskgendering and the ability to manipulate the
terrain on-line. The GPU plays the key role in represemntatiendering, and manipulation of the terrain.
The CPU load is kept very low using the geometry templatedeasedering, second level culling, and
terrain manipulation using fragment shaders. We demdestaaly sustained frame rates of over 100
fps and triangle rates of upto 350 million.

The primary limitation of our system is the need for the whigeain to be present on the CPU
memory. This limits the size of the largest terrain that carhbndled since data cannot be accessed

30

from disks at that rate. However, the terrain on the CPU caindneght of as a cache at an appropriate
resolution of the terrain that resides on the disk or ovemigvork. A scheme very similar to what is
used for the GPU cache can then be used to manage the data®©Rlthat an appropriate resolution.
Since the CPU cache will need occasional updates, we caneupadth a parallel low priority thread
using today’s dual core processors. The other limitatiarcems the speed limit on the viewer imposed
by the GPU cache updating. This will improve as the CPU to GBtllvidth improves on future GPUs.

31

Chapter 5

Spherical Terrain Rendering

Earth traditionally have been represented by the cartbgrapstem using latitudes and longitudes.
A 2D grid structure, which we typically see in conventiondha maps, is wrapped around the sphere
using the polar coordinate system and two poles are formdTdrrain rendering is typically done
using a 2D array of heightmaps with algorithms optimizingnmoey usage, CPU usage and quality
of rendering [5, 38, 49]. Rendering terrains on sphere semsasy task because of the coherency
between the latitude/longitude system of the sphere an@Dhgrid nature of terrain data. The intuitive
way would be to use the 2D heightmap data and place them Igliggctegular latitude and longitude
intervals on the sphere. Though the above will apparentlyedhe problem, it has serious difficulties.
The created sphere, shown in Figure 5.1, contains the sambenwf samples at the poles as at the
equator. In other words, the poles get very high resolutiod the equator gets lowest. Both these
points are indistintive on the surface of the sphere andldhget equal detail. Two major problems
here are: Uneven sampling of the sphere and inconvenieglanities at the poles where millions of
vertices coincide.

Figure 5.1 Poles have singularity and the whole sphere has uneven isgmpl

Another way of sampling a sphere is Hierarchical TriangMash which provides almost uniform
detail over the whole surface of the sphere. Starting witto@ahedron containing eight equilateral
triangles, each triangle is spherically subdivided intarfiiangles, recursively. The recursion is stopped
when a required detail is reached (Figure 5.2). This formsaaldgree like structure witk x 4! triangles
given! recursions/levels.

32

Figure 5.2 After a decided number of recursion a desired detail of splsereachedlmage Courtesy:
A. Szalay, J. Gray, et al. [48]).

The HTM, however, is not compatible with terrain renderieghniques. HTMs are fundamentally
based on equilateral triangles whereas a terrain rendsesrright-angled triangles to tessellate the reg-
ular intervals of heights (Figure 5.3(a)). This differetiogits us from directly using a terrain rendering
system with HTM structure of the sphere. In this chapter, ves@nt a method in which we adapt a ter-
rain rendering technique to an HTM representation of thesphMe choose geometry clipmaps as the
terrain rendering technique because of its low and constantory usage, fast rendering and large view
ranges [38]. Thanks to HTM, we will get uniform detail, siteyity free representation, and clipmaps
in addition to fast rendering.

Geometry Clipmaps are based upon creating the mesh withtrighgles as discussed earlier. Using
the equilateral triangles directly will make the resulticlgpmaps rhomboidal in shapes (Figure 5.3(b))
and the relief features will get skewed. We introduce HerafjGeometry Clipmaps which pack equi-
lateral triangles perfectly while retaining clipmap’s lamd constant memory usage and large view
ranges. The HTM underneath ensures uniform samples oveutfece of the sphere.

(a)

Figure 5.3 (a) Regular terrain, (b) Skewed terrain after samples mendeith equilateral triangles. If
clipped from the marked region, yields a hexagon.

33

5.1 Hexagonal Geometry Clipmaps Overview

Rendering equilateral triangles between the heights ofr@ngierrain data will produce a skewed
relief, which is rhombus in shape. We clip the two sharp edddbe rhombus in a way that it forms
a regular hexagon as shown in the Figure 5.4. Note that tipigiey is used only while rendering; the
terrain data resides in square shaped clipmaps alwaysvkod the geometry clipmap’s properties, the
viewpoint is surrounded by hexagonal shells, each witheedwetail farther from camera. This way,
clipmaps can be defined in hexagon shapes to be complianeuitiateral triangles. We describe the
process in detail in subsequent sections.

2N41

Figure 5.4 (a) 2D grid clipped to form a six sided polygon, (b) The polggakes shape of hexagon
when rendered with equilateral triangles.

5.2 Representation

A hexagonal clipmap uses a 2D clipmap structure for the heaigba. A 2D clipmap of a size
(2" +1) x (2" 4+ 1),n > 2 is used in memory. To make a six sided polygon, we diagonaliykm
2n—1 1 1 samples at two opposite corner pairs as unusable. In figd(a)5a six sided polygon is
shown with2" + 1 samples at each of its sides. If we take three adjacent ntinear vertices and
create an equaliteral triangle between them, the six sidgdjpn takes the shape of a regular hexagon
(Figure 5.4(b)). Note that to form regular hexagons with shene number of samples at each side,
we have to maintain clipmaps of siz2" + 1) x (2" + 1) instead of conventional clipmap’s size of
(2" —1) x (2" = 1).

Terrain relief features are physically bound with the rag@D nature of the grid. By using equilat-
eral triangles we skew the relief I39° in a direction. We transform the heightmap sheared in theroth
direction as an offline process. This way the original tesaphysical form is retained since the two
opposite skews compensate each other.

34

0

w7

() (b) (©

Figure 5.5 (a) Hexagonal clipmaps as viewed from top, (b) Hexagonphwips in the physical form,
(c) Hexagonal clipmaps in usable memory.

Using the above representation, we are able to use 2D grightmeap data, which goes well with
the rectangular memory representation of textures on thg, @Rth hexagonal clipmaps. Our rest of
the representation method follows exactly like geometignehps. We maintain a pyramid stack of
clipmaps, with the highest detail given to the middle regao further on reducing detail but occu-
pying more region (Figure 5.5(a)). Memory wise, this takes form of a cylinderical/cuboidal stack
(Figure 5.5(c)); Phyically, this takes the form of a conishbpe (Figure 5.5(b)). According to the
motion of the camera we update our clipmaps in a way simil&: tawsasso and H. Hoppe [38].

Our representation has the problem of needing extra menfince we use hexagonal clipmaps
but maintain regular square clipmaps in memory, it leavesesamount of memory unusable which is
never used. Hexagonal clipmaps end up usSing of the square clipmaps loaded in memory. This is
acceptable because of the already low usage of memory ohapp. Furthermore, we can use those
regions to keep terrain data of other parts of clipmap thereducing the 2D size of the clipmap. We
are investigating this in our future work.

Figure 5.6 Two adjacent base triangles form a diamond. Four such didscomplete the octahedron.

35

521 HTM Terrain Data

An octahedron contains eight equilateral triangles. Thiase triangles are subdivided recursively
[48] until the detail of sphere required is reached (Figutd.5If we consider any two adjacent base
triangles as a single unit, it is3° sheared 2D grid of samples. We call such a unit dsaond. We
maintain usual 2D heightmap data in memory for these diasomte 2D grid data of a diamond has
two noticable properties: Part of the cartographic equaligns with the diagonal of this image and
the poles as the two opposite corners (Figure 5.6). This avagle is represented by only one sample
and equator is represented using the highest resolutioforifoa diamond, we pick one base triangle
from northern hemisphere and its adjacent southern heerigfiiase triangle. Four diamonds form four
2D images and can represent the whole sphere. We considepttese four 2D images as separate
terrains, which are handled independently.

size=4nx2n
(E.g- 1024 x 512)

size=nxn
(E.g. 256 x 256)

Figure 5.7 A typical planet data converted to be HTM compliant and asla product it has no redun-
dant information.

5.2.2 Conversion of Planet Data

Planet data is typically available in cartographic form iakesin x 2n which uses the full row of
values to represent the poles as well as the equator. Wédranthe planet data so that it squeezes into
four diamonds. We cut the cartographic map into four imageize n x 2n. Starting from the middle
row of pixels in these images, we keep shortening each rbwdireach a poles which are left with one
pixel each. These rows are aligned as subsequent diagaraisther image which is our diamond and
is of sizen x n. These four images takex n x n = 4n?> memory space as opposedito x 2n = 8n?
map size, saving0% of disk space as all the redundant data is removed (Figuje 5.7

36

5.3 Clipmap Updates

The terrain data is stored in the main memory in as many réspkias the number of clipmaps
utilized by the system. If we have a terrain of siXex N heights, and we usenumber of clipmaps,
then our main memory usage E;ZO 2% X 2% Clipmaps are technically square images and are loaded
to the GPU memory as a single array texture. For a clipmapzefrsix n, the GPU memory usage is
le n X n. The array texture is bound to a single texture unit and tlaeleshprograms have access to
all the clipmaps at all times. When the clipmaps need to batggddue to camera motion, the selective
layers of the array texture are toroidally updated to holst data (Figure 5.8). This is an adaptation of

the updating scheme of geometry clipmaps of F. Losasso ahtbppe [38].

@ (b)

Figure 5.8 With the motion in camera, new data is torroidally updatethalayers of the array texture.
(a) Layer before update, (b) Camera moves (green), Updaieréed), (c) Layer after updat@dmage
Courtesy: A. Asirvatham, H. Hoppe [2]).

When the camera moves in a horizontal direction, all thenwdips don’t update at the same time. The
inner clipmaps require frequent updates than the outer. drfes is due to the difference in resolution.
For example, if the camera moves 10 meters, both the inn@malp and the outer clipmap need to
update data for 10 meters, inner clipmap being higher inildgtés more data and outer clipmap gets
less data. For camera motion of 1 meter, the outer clipmapmoaypdate at all or will update later.
This means, the lower the detail of a clipmap, the lesser tepdid needs. This distorts the nested
hexagonal grid structure. Thedestorted states periodically cycle as the user moves over the terrain.
Even though our memory update mechanism is same as geortipinags, the hexagonal clipmaps’
rendering distorts in a more complex manner. Differentatlist states need differeréndering blocks
as explained in the next section.

54 Rendering

A rendering block in our representation is a parametricevelouffer object (VBO) containing values
in the rangel0, 1]. Rendering blocks act as templates and can be attached tgiay four points
(block-bounds) to tessellate the enclosing region (Figure 5.9). For ageerdne-to-one mapping of a

37

v AVAVAYAN
Sy
A eeriritiritine AVAVANAY

FAVAV \(/

L /
/
!
Parametric VBO /\/\/\/\/\/\/\/\ .k—
Rendering Block " / FNS N __
,,,,, N 3
/r ' / _&_-~-’4""—"¥f ~—;,‘<"' / /
Vi \
\
,/ \ Contribution in tessellation
\
o . .

Block-Bounds

Figure 5.9 Bilinear interpolation at the vertices of a rendering blackates a mesh between the block-
bounds.

vertex and a sample in the terrain data, we need to maintaifering blocks for every unique structure

possible coming from the different variations of distonsdn clipmap updates (Figure 5.10). A total of

3 unique distorted states are possible and we redquirique rendering blocks (an example is shown
in Figure 5.9) for a perfect tessellation of the terrain. éwing to the clipmap size decided by the

system, these VBOs are pre-computed and loaded into the G#hbry at the start for continous and

quick usage. As the camera moves, the distorted states latdatad between each pair of adjacent
clipmaps. For each distorted state, the corresponding \é@dgsheir block-bounds are sent to the GPU
for rendering.

AV iy

AVAY

A VA LAVAY i\
e R0 N AV
NEER AR e
: G Vv WAN
R iy AVAV)
o i N
N

ARG
TATAYVavaL e 2
O AV A

o AYAYAY)
RVAYA %

AVANAVAVAS
(VAVAVAVAVAVAYAY,
“ AVAVAN VM

INCAREEN

A'%VQVAVAVA?AVAVAV

VA

AVAVA SV,
AVAVAY/

Figure 5.10 As the camera moves these distorted states of the clipmde. cifach red quadrilateral
comes from a unique rendering block. There are three statkriae rendering blocks are required.

The vertex shader of the GPU gets the parametric vertex fneivBO and the block-bounds. Bilin-
ear interpolation gives the world poipj, on the surface of the sphere. This point is then stretchedjalo
the radiusRk asP,, = p, X (R + h)/R to give it the elevatiorh, which is fetched from the clipmaps
kept in the GPU memory as textures. This process does ndv@eostly operations like sine or cosine
to calculate the world point and helps in the performancehefdystem. However, due to interpola-

38

tion, the radius of the planet needs to be set carefully dagto the resolution of the terrain data and
floating point precision limitations.

541 Smooth Level of Detail Transition

Regions on the planet will transit through low to high resiolu or vice versa when the user is
continously moving on the planet. The height data will creadge to the resolution shift which happens
when it goes through different clipmaps. This can createlengumps in the rendered terrain and can
reduce the rendering quality. We morph the heights of thmrdips with its lowest resolution version,
weighted by the distance from camera by the following formul

a = max(min((ax; + byy + ¢)/W,1),0)

h:hl(l—a)+hha

Wherec« is morphing factor}¥ the transition distancé;, y1) the texture coordinates at the elevation
point, h; the elevation at low detail clipmap,, the elevation at high detail clipmap and + by +c¢ =0

the line equation of a clipmap’s side in texture space. Nudethe line equations’ orientation are fixed
for sides, the hexagon never changes its orientation sihees ito fit the HTM triangles. Because of this,

(a, b, c) are constants for each of the six sides. While the camerasnthis changes the height slowly

to the low resolution (Figure 5.19), so that when the nexinshp comes, the height data is already
changed and we don't see any quirks in the visuals. This ledion is done in the vertex shader. The
rendered terrain is technically dynamic but looks rigidnattie motion.

5.4.2 View Frustum Culling

At any point of time, the camera sits at the center of a giarapenal space. By getting the camera
yaw angle, we select the triangular areas of the hexagortvenéin the field of view. Given a horizontal
field of view 0f90°, three adjacent triangular regions are marked for rend€FRigure 5.11). Rendering
blocks are not triggered for the unmarked triangular regjiorhis selection is done at the begining of
every frame to save unnecessary computations.

Figure5.11 View Frustum Culling is a mere selection of relevant sideeting to camera yaw.

39

5.4.3 Handling the Whole Planet

Each diamond is handled as an independent terrain. To hdredkehole spherical planet, we arrange
four diamonds in dig-texture (Figure 5.12). Clipmaps wrap at the bounds of the big-textiost of
the time the camera hovers around a single diamond and gotpiecial needs to be done to handle
the whole planet. But there are two more cases. A cameradlingvacross the longitudes will have
moments when two diamonds are visible. When the camera istinegoles, terrain spans over four
diamonds (Figure 5.13).

Figure5.12 Diamonds combined into a single big-texture. Note that thettNPole comes in the middle
and South Pole is at the corners.

1 Diamond in view

4 Diamonds in view

2 Diamonds in view

Figure 5.13 Movement of camera accross the whole planet will encountétipte diamonds in view.
At the poles, camera will see a terrain which is spanning ailéhe four diamonds.

In such cases, diamonds are still treated as independeainter That means, if four diamonds are
visible, each will be rendered four times using its clipmagad The rendering blocks going out of bound
of the diamond are culled. Few rendering blocks are parta@lt of bounds, for those, the out of bound
triangles ardouried by making their elevation negative or zero. Note that thetbigure theoritically
carries the whole dataset. If the dataset is huge, the kigreemay need to be kept in parts.

40

55 Results

Hexagonal clipmaps give optimal rendering throughput aeady rendering similar to square clipmaps.
Distances from the edges of the hexagonal clipmaps to thepeiat vary less than square clipmaps,
since hexagon is closer to a circle than a square (Figurg,5tIfovides better uniformity in triangle
count on the screen at any camera yaw angle. We implementystans in OpenGL 2.1 and tested
on Nvidia GeForce 8800 Ultra, GTX 280 and GTX 480. For the pagpof the experiments, we took
the Puget Sound data and used it for each diamond over the hhbtes For continuity between the
diamonds, we flipped the data to be continous. We use a cligmaepf257 x 257 forming a hexagon
with side of 129 samples. We get steady framerates in a typical walkthrowgh the terrain. Fig-
ures 5.14,5.15,5.16 show our performance results on pogedsdata. Some rendering results can be
seen in Figures 5.17,5.18,5.20.

25
2.4 A
2.3 A
22 A
2.1 A

. i

1.9 A

Time in miliseconds

1.8 A

17

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401 2601 2801
Frames

Figure 5.14 Performance resuts on Puget Sound data treated as a diapmosual Nvidia 8800 Ultra.

2.4 A

2.2 A

MMMMMW&WMMM“WMWMM*

Time In miliseconds

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401 2601 2801 3001
Frames

Figure 5.15 Performance resuts on Puget Sound data treated as a dianmogual Nvidia GTX 280.

41

0.8 A

08 -

0.7 A "

06 *'w,,w..'ﬂ L] nl i | Il

05 4 w ‘I'I‘I:HL\ \ 11“.‘ n MI“MM"QWJJN! ‘I’W*N""wwah";lﬂr“fﬁm &'%.'hh‘w*hkﬂdﬂl:lﬂlgw‘uﬁlm -".luq'w\‘\,t""f'"* t \Jiw}.#pﬁ)_
|9

04 i ‘

0.3 A

Time In miliseconds

0.2 1
0.1 4

1 201 401 601 801 1001 1201 1401 1601 1801
Frames

Figure 5.16 Performance resuts on Puget Sound data treated as a diaomogual Nvidia GTX 480.

5.6 Conclusions

We presented a Spherical Terrain Rendering algorithm wpiokides uniform sampling of points
over the surface and fast rendering with low memory usagexagtmal Clipmap provides the best
two methods: HTM is best to represent spheres and clipma&pbkest to render terrains. Applications
like Google Earth/Virtual Earth, space simulators, 3D aboetworks (e.g. Second Life) or spacecraft
involving games can show seemless journey from ground toespaing this method. In future, we
would like to improve our memory usage and try to fit usuabteate data in unusable regions of our
clipmaps on the GPU. Apart from this, HTM primarily being aogpatial indexing method, we would
incorporate searches in different resolutions with adgingsand fast look-up.

42

W
i
i, f
o it
AR
b
1
i
il

K

ay

ks

VR
T

i
iy
Al
%
o
o
e
o
’9
X
i

\v\‘%‘:“é

1

A

o

T
s

el

A
ki

i
i
i
i
i
ey £
N

il
i

7
.
:

i
]
;

!
AT
e
it
S
) Ly

vt
R
f#"

=
ATy
s
s,
oy
o
i

i

e

L
i
i
e
%

N
R

e
S
o

,
]
i

A
v
7
o
T
e
Ll
e
£
R
L
e,

S
e
R

i
dis

]
i
i
K
g

vy,
s

i
5
o
R
T

K
5

iy
g
Al ah A A
A
B ST
s
SE SR S
R
Sy ylﬁge;%g%*ﬁew%\%: <
e

oy

o
K
e,
e
A
s
R
5

i
i

%‘

2

v

=

L
i
@
s

)

5
5
i

i
o
i

Va§ 5
o
e,

"A
!
i
'e

K
LA
i
o}

i
AL
ﬂ%{ Ty

e
S
s R
A e
e
e

i
et SR

m

R

R
ey

e

T
TR
sl
il
S5

s AR
o R W
ey L S (L
RTINS

s
vc,‘%\u‘

o) 0

4\.(‘

RN
f

A
R

%

i
I

SRR R
SSResslal

i oG A
TRCLRRRRR

B
e
-.\\"tsm.t:\\:ﬁ:i.i
k ey gt
2RO e

¥ypy P AN SR TS a g,

ST I

A AR R R
R iy R g g
SRR
(\\i‘ssn“:‘\

R
TR e,
v.-'a“;\}:‘lg;: R

R
5 ,:u

i
Ty
]
i

5
e
iha g
Sy
AR
AR |)
R R Vﬁﬂ%"
Y AN
{LLRE i, o
et est vy AN
AN R
il O el Lt
e S A s
B

KRk

S e

'mr.ﬁ‘%,:%%g“ A ““&Sﬂm\\“ R o
R A

AR e N R

Rl AR

Ny
ey

Figure 5.17 Hexagonal Clipmaps are closer to the shape of concentdlesir

Figure 5.18 Different clipmaps shown in different shades.

43

Figure 5.19 Blending factor in transition, blackness level indicatatue ofa.

Figure 5.20 A scene while a flythrough on the spherical terrain.

44

Chapter 6

Painterly Rendering of Terrains

The regular nature of the terrain data make them a specifie dfpnodel. We exploit this special
nature of terrains to provide efficient painterly renderfagthem. A technique to order the triangles
of a terrain from back to the front is at the heart of this. Whiewe an fps of 120 on Puget Sound
terrain data on the Nvidia 8800GTX GPU. In this chapter, wesent a real-time painterly rendering
technique to make abstractions of terrains. We also emgahasi results with post processing for varied
stylizations.

We built our painterly rendering system over the terrairdezing system explained in Chapter which
can achieve 150 fps with an average rate of 84 million triesigler second and a highest of 200 million
triangles per second on current GPUs.

The organization of the chapter is as follows: A brief ovewiof the system is mentioned in sec-
tion 6.1. In section 6.2 we show the representation of terdaita and stroke textures. Here we also
explain view frustum culling and level of detail managemesgction 6.3 shows the method in which
we are ordering the strokes in back to front order. Technigueendering the strokes is mentioned
in section 6.4. lllustrations and the performance of outesysare discussed in section 6.5. We con-
clude with a discussion on technical aspects and aesthatigiderations with some future works in
section 6.6.

6.1 Overview of our Approach

Terrains are heavy objects, often involving millions o&irgles in each frame. Conventional two-
pass painterly rendering techniques will be inefficienttfr@m. We combine painterly rendering with
terrain rendering optimally for real-time performance. Weat each height in the elevation map of
the terrain as a stroke’s location in the 3D world. The poaagation is projected on 2D screen using
projection transformation and a rectangular stroke is eegl at that location, orientated along the
projected slope of the terrain (see Figure 6.1). Real-tigréfopmance is obtained using the following.

1. Only the strokes of the visible part of terrain are renddoeg efficiency. This is achieved with a
view frustum culling algorithm.

45

2. The strokes are rendered in a back to front order for alpha@positing. We exploit the special
property of terrain representation to obtain the back totfoodering in one pass. This is explained
in section 6.3.

3. The level of detail of the terrain is changed smoothly vdistance from the viewpoint. This
avoids the problem of strokes getting cluttered at far dista, which can be visually distracting.
Level of detail also reduces the rendering load.

The whole terrain is kept in the CPU memory. A section of itdexkfor rendering is cached on the
GPU memory as elevation maps. Precomputed stroke texmige,texture, normal map, and the slope
map are also stored in the GPU’s texture memory. The terem@<ached in terms df024 x 1024
blocks and are rendered in terms6df x 64 tiles. The tile is the basic unit for rendering, view frustum
culling, and LoD management.

Figure 6.1 Each height in the height-map is converted into a rectandietwis oriented along the
terrain’s slope at that point. A% x 8 grid is shown as example.

Each stroke is sent by the CPU as a single point primitive asoangtry template, which gets con-
verted into a rectangle on which a stroke texture is mappki i accomplished with DirectX10/SM4.0
based shaders explained in section 6.4. Each point on ttantés rendered as a stroke. The stroke is
aligned in the direction of the slope at the 3D terrain painiitate how artists draw such scenes. We
render the strokes in the back-to-front order by exploiting regular grid structure of tiled terrains.
Points of a tile can be scanned and rendered as strokes iratketd-front order, based on the view
orientation. Eight such orderings are sufficient to handig \d@ew orientation. The tiles that survive
frustum culling are also rendered in the same order to peogithack to front ordering for the entire
terrain without sorting. This procedure enables us to readeatrarily large terrains at frame rates of
120 and above in the painterly style.

6.2 Terrain Representation

Our base terrains are 2D grids of heights with a fixed pod&di® in the X and Y directions.Our fo-
cus is on painterly rendering of the terrain at real-timesatithout the CPU, the GPU, or the bandwidth
between them becoming the bottleneck. The available tedata is loaded in the CPU memory and a
contiguous window of the terrain is kept in the video RAM of t8PU based on the current viewpoint.

46

Figure 6.2 Reference point is at the center of ground-plane projeaifcthe view frustum (marked as
blue). Reference point is kept within tiex 2 blocks. As it goes out it is re-centered. The figure
assumed x 4 cache size.

6.2.1 Representation of data

Terrains are divided into fixed memory-silakocks, each of which is divided into a number tlfes.
Atile is the basic rendering unit for the CPU. Currently,dis are of sizd (024 x 1024 and tiles of size
64 x 64. These blocks are loaded as textures on the GPU memory. WiaimsdaGPU cache consisting
of N x N blocks which gets updated periodically to hold all the dagaded for rendering. We try
to keep the GPU cache symmetric with respect to the projeafahe view frustum on an average
“ground” plane. We do that with the use ofreference point which is kept close to the center of the
GPU cache (Figure 6.2). We use the center of ground-plangemgthe view frustum as the reference
point currently. This ensures fixed in memory representdiio the terrain.

If the reference point goes beyond the certral2 block of the GPU cache, the cache is re-centered
by bringing another row or column of blocks (Figure 6.2). inthe cache is maintained in memory
as an array of texture ids, re-centering involves downlog@di few blocks to the GPU and adjusting
pointers on the CPU. The data transfer time is kept smallguaijob-queuing scheme. The blocks to
be brought in the GPU cache are not done at once, but donessiwag in following frames to avoid
possible jerks. The basic terrain system is able to rendge J&€PU resident terrains at above 100 fps
along with the cache updating in the background.

6.2.2 Levd of Detail

The view frustum culling algorithm treats each tile as basiis. The bounding sphere of tiles
are tested against the six planes of the frustum. On the bé#iss, tiles are marked to be inside or
totally outside the frustum, and are assigned withGD number. LODs (Levels of detail) for a tile
include different resolutions of an area on the ground. Aigalar LOD of a tile can be computed
by dropping alternate samples from the better LOD availablighest LOD for a tile contains all the
samples. We calculate the rendering LOD of a tile using gsagice from the viewpoint (Figure 6.3).
Farther the distance, lower the LOD. LQDbecomes a function of distanekas the integer part of

a7

I

I

I

I

I .
.4 View
Frustum

...... .1 Block
/
1
1
i
1
_________ R A R | View
Tile Reference Point
Point

Figure 6.3 Tiles outside view frustum (marked red) are eliminatededtbtally inside (grey shaded) are
rendered with strokes at each of its sample’s locations. £0files to be rendered and the blending
factor is calculated as a function of distance. Fewer sgrake drawn for a lower LOD tile.

I =log(1+d/d:), whered; is a pre-decided LOD transition distance. When the LOD ofeactianges
from one to another, many samples/strokes may pop up syddest this, we morph the tile from one
LOD to other by fading the alternative strokes away as theguycand vice versa. The fractional part
of [is used as thenorphing factor and is multiplied to the opacity of alternative strokes im trertex
shader. While Wagner [49] uses the morphing factor to gepmowo different heights at that same
location, we use it to fade in or fade out the strokes whichcaraing in and going out respectively,
giving a smooth transition without popping artifacts.

6.3 Back-to-Front Stroke Ordering

A back-to-front ordering of samples/strokes of the teriaiat the heart of our algorithm. We dis-
cretize the camera yaw into 8 zones of edBkieg each shown in Figure 6.4(a). Each zone corresponds
to a particular order of scanning the heights for guarantesk-to-front ordering of triangles. The 8
zones have unique ordering, four of which are shown in Figu4éb). The same scan order applies to
the tiles inside the view frustum as seen in Figure 6.5. letma, we switch the ordering a little while
after the viewpoint is into the new zone to avoid unnecestaygling of the ordering at the boundaries
between zones. Tiles are rendere/BOs (vertex buffer objects) for good performance. A single VBO
can render any tile, as other parameters like tile’s worldiy blending factor etc. is packed up in
texture coordinates. For a given range of orientation ottmaera, an ordering is fixed. Thus each zone
corresponds to a unigue VBO.

The same order is used to scan the tiles for view frustumnzullFigure 6.5 shows one out of eight
of the possibilities for tile scanning shown in Figure 6)4(All the tiles farther from the camera get

48

‘O—T

fo
"

~
3
-

"

— tile

el
Lo

<!
Ny

—~
=3
~

(@

Figure 6.4 (a) A tile can be viewed from many yaw directions, but onlyhtigones are sufficient for
a back to front ordering of samples in it. (b) Four possiblamgements of samples for some ranges
shown in (a); Other ranges can be handled in the similar way.

rendered before the nearer ones. Because of this, all thieestin the screen in that view become
ordered from back to front without the cumbersome need dirgpr

6.4 Stroke Rendering

We send points to the graphics pipeline for each stroke t@bdared. Vertex shader computes the
exact world location of the stroke at this point. It also cédtes the color from the texture and normal
map of the terrain with other lighting information (the uadi architecture of latest GPUs allow fast

e
<>
[— :;
PRI
=~
T / - >
< yai i

Figure 6.5 View frustum culling algorithm testing tiles in a specificder depending upon the camera’s
orientation. Here zone is shown. Such eight orders of testing are possible as @gulan Figure 6.4.

49

texture access from any shader [7]). The alpha of the potttasged according to the morphing factor
decided for that tile from the CPU. The vertex shader forwahgse things to the pipeline.

Figure 6.6 Overview of rendering of stroke. Each vertex from the VBGsgminverted into a rectangle
which is mapped with a stroke texture.

Geometry Shader of the GPU can generate primitives [7].rveds the single point primitive sent
from the CPU into a rectangle for the brush sprite (Figurg.6LBe perspective division of the graphics
pipeline makes the strokes smaller when they go farthetevgainterly rendering needs constant sized
strokes. To compensate for this process, the vertices altgpled with the w value (the perspective
scale factor) before rasterization. This reverses thesidni(Haller and Sperl [20]) and the strokes
always maintain the same size on the screen. This procedsazhto holes in the surface if the camera
goes very close to the ground for a given point density. Waldigsthe multiplication at such distances
when the strokes start to lose density.

Figure 6.7 Slope-map, Puget Sound dataset

The generated rectangle is subsequently oriented in sepme along the slope of the terrain at
that location since artists tend to place their strokesgtbe slopes of mountains running down to the
valleys. We precompute shope-map that gives the direction of maximum gradient at every pairthie
terrain (Figure 6.7). Slope-map stores the gradient veottite world space, which is accessed by the
Geometry Shader for every sample, is transformed to canoeraioates and to the image space to get
the stroke orientation.

50

The fragment shader accesses the stroke texture, and rexdiitacolor with the color coming in
from the pipeline. Alpha blending happens between thesdered strokes so that they mix among
themselves for a smooth output. The outline of the whole otetb described in Algorithm 2.

Algorithm 2 Painterly Rendering of Terrains

1: Load stroke texturest

2: Load heightH, color C, normalN, slopeS map of terrain
3: Create 8 VBOs for different camera yaw-ranges

4: for each framealo

5. Update GPU Cache if necessary (section 6.2.1)
6. Determine zong depending on the yaw-range of the camera
7. Perform VFC and LOD assignment basedqon
8: for each tiledo
9 Send VBOJ]
10: Vertex Shader: Calculate color using lighting
¢ = f(C, N). Calculate positiop using heightid
11: Geometry Shader: Generate a quad af
orient along slopes, assign coloe
12: Fragment Shader: Output colorc, = miz(c, cs).
At a different render target, output color as normal of strtdxture/N;
13: end for
14: Phong shade the output using the normal map
15: end for

For more stylizations, we render the normal maps of theskestrseparately as well. We do this with
multiple render targets supported by modern GPUSs. In ardiftepass, these two outputs are treated as
a texture and its normal map respectively, and are mappedcrean aligned quad. With the help of the
normal map, the scene can be Phong shaded with a varyingligtdurce (Figure 6.8). This process is
inspired by [24] but we do it in real-time on rendered outghasnessing the power of modern GPUSs.

6.5 Results

We built our system and experimented on a Intel Pentium Cddei@ E6400 as the CPU and an
NVIDIA 8800GT as the GPU. We used the OpenGL 2.1 graphicatipand GLSL 1.20 shaders. We
chose different screen resolutions to render upon for speatpha blending is screen size dependent.
Performance is dependent on stroke size as well. We choag#tiaral stroke size; Small enough to give
good performance but not as small to leave holes in the tervdith a resolution 01024 x 768, we got
seamless performance with an average triangle rate of di@mritiangles per second (Figure 6.9). With
aresolution ofi 280 x 1024 we get 35 million triangles per second and 120 fps (averagagitional two
pass painterly rendering technique (with depth map conaintthe first pass) had half the performance
of our system. We did our experiments on Puget Sound teredganavailable from Georgia Tech website.
Blue marble data set was also included in our experiments.us#d some real satellite terrain data-

51

Figure 6.8 The color output and the normal map output of the scene aig tasehong shade on top
of it to stylize it. The effect is that of shining a spotlight the painting. The normal map is contrast
stretched here for visibility.

set and some synthetically created ones as well. We showffinetseof different stroke directions,
with along the slope direction. In Figure 6.12 and 6.10(tigpt), the strokes are oriented along a
perpendicular direction to the XY projection of the normatior. This simulates the effect of strokes
flowing over the ridges instead of along the slopes. An agltigtving with strokes of fixed orientation
is shown in Figure 6.10(bottom-left). Effect of adding shrahdomess to orientations is shown in
Figure 6.10(top-left). Figure 6.10(bottom-right) showe uise of a small brush with sharp strokes. The
accompanying video contains painterly walk-through ondé®@#pund data. Some of our results are
shown in Figure 6.11, 6.13, 6.14, 6.15, 6.17, 6.16.

6.6 Conclusions

We presented a real-time painterly rendering techniquéefoains. We get nice visuals with frame
to frame coherence on animation of the scene. Consideragn@ture of terrains and cumbersome
nature of painterly rendering processes, we get good pedace with our system using latest graphics
hardware. Our system being single pass only, is faster taalitional painterly rendering techniques
involving two passes. With varied stroke textures, andaigons of strokes, different artistic styles can
be achieved with variety of taste. In future, we wish to rertderains with procedural stroke textures
similar to geo-graftals mentioned in [39] and [30] to createn varied visuals and improve performance
by optimizing the techniques specifically for terrains.

52

80 T T

Triangle Rate ' j
Frame Rate 280

240

200

160

120

Frames per second

80

Million triangles per second

40

20 1 1 1 1 1
0 400 800 1200 1600 2000

Frames

Figure 6.9 Walkthrough over the terrain

Figure 6.10 (top-left) Strokes placed along slope with some pertudnatiin orientation. (top-right)
Strokes placed along the perpendicular to the normal.dimteft) Strokes placed with a fixed orienta-
tion. (bottom-right) A sharp stroke texture. Sky is a préfed texture.

53

Figure 6.11 Distant view of Mount Rainer

Figure 6.12 Strokes running along perpendicular to normals.

54

Figure 6.13 A region in Puget Sound painterly rendered which has lowHieigriations.

Figure 6.14 A real textured dataset rendered in a painterly style.

55

Figure 6.15 Simple rectangles are used instead of proper brush strokkgstrate the flow of strokes
along a hill

Figure 6.16 A valley region

56

Figure 6.17 Mountains and valleys in Puget Sound painterly rendered.

57

Chapter 7

Conclusions

In this thesis, we presented methods to render terrainsalrtilme on commodity GPUs. Our aim
was to find methods for different needs of handling terraliesrains sometimes need to be just rendered
and sometimes they need processing in real-time. Terraitlereng can be for pure entertainment or
can be for informational or educational purposes. We widieeexplore ideas which suit this wide
requirements and build systems satisfying them.

We presented a system for real-time rendering, deformagditing, and physics computation of
large terrains. The representation enables quick rerglard has the ability to manipulate the terrain
on-line. We wanted a system which enables application dpee$ direct and simple accessiblity to the
terrain data. For example, applications like video gamesnast cases, have a terrain renderer with
many other components: Networking for multiplayer, physamd animations for realistic behavior,
artifical intelligence of NPCs (non playable characters)réplayability value etc. Our system keeps a
low profile on the CPU keeping a lot of processing margin flieotcomponents in such applications.

Then we presented a Spherical Terrain Rendering algoritimichaprovides uniform sampling of
points over the surface and fast rendering with low memongas Traditional systems used to keep
discrete visibility of the planet from ground zero and fropase. Tricks used distract the viewer when
the flythrough needed a switch between the representations.unified representation enables us to
view the terrain of the planet in real-time from space to goblevel. The reason behind our claim,
that this is the best method to do spherical terrain rendeiit combines two independent and best
methods (HTM to index and sample spheres, and Clipmaps tterdnrrains) in a very simple and
direct way.

We also presented a method to render terrains with an artigtie for abstract visuals. Through
computer graphics, terrains with a pencil, pen or ink steehbeen tried before but painting remained
a cumbersome task. With our back to front ordering methotawit the need of sorting, it is possible to
have many brush strokes in real-time on the screen mixintyeath other, just like an artist mixes them
on a piece of canvas. We get nice visuals with frame to frarheramce on animation of the scene. Con-
sidering rich nature of terrains and cumbersome nature iotgyly rendering processes, we get good
performance with our system using latest graphics hardwidris system opens a lot of possibilities for

58

artists as they can experiment with creating different tygpeensity, or orientation of strokes. Different
artistic styles can be achieved with a variety of taste.

We conclude this thesis by mentioning a number of posslitor future work. Our terrain renderer
requires all data to be present at the main memory since auapr focus was creating a GPU Cache
based system. A scheme very similar to what is used for the &eble can be used to manage the data
on the CPU at an appropriate resolution. Since the CPU cadheegd occasional updates from the
disk, we can update it with a parallel low priority threadngstoday’s dual core or better processors.
With introduction of Solid State Drives as a commodity, daghwill have even better performances.

In spherical terrain rendering system, other than justegnd, HTM’s geospatial indexing capabili-
ties can be used to create a search engine for geologicalpthgal or simple geographical information.
Apart from above, our memory usage right nov9j46 of what we consume in the memory. Since our
system has a low memory footprint in the first place, this dibeseem to be a problem. Nevertheless
fitting usuable terrain data in unusable regions of our clipgwill be a welcomed improvement.

We introduced painterly rendering of terrains and we belithere is a lot of future work needed.
According to emerging painterly styles, they can be algaritally analyzed for working on terrains
along with aesthetical analysis of the results. The ideamdering procedural or vector strokes (similar
to geo-graftals mentioned in [39] and [30]) instead of catrdgitmap strokes is already thrilling. This
will open even more options for artists to create varied alisu

59

Related Publications

Conference Papers:

e Shiben Bhattacharjee and P. J. Narayanan.
Hexagonal Geometry Clipmapsfor Spherical Terrain Rendering,
Sketch, inThe 1st ACM S GGRAPH Conference and Exhibition in Asa (SIGGRAPH Asia), 2008.

e Shiben Bhattacharjee, Suryakant Patidar and P. J. Nanayana
Real-time Rendering and Manipulation of Large Terrains,
Paper, inSxth Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP),
2008.

e Shiben Bhattacharjee and P. J. Narayanan.
Real-time Painterly Rendering of Terrains,
Paper, inSxth Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP),
2008.

e Soumyaijit Deb, P. J. Narayanan and Shiben Bhattacharjee.
Streaming Terrain Rendering,
Sketch, inThe 33rd International Conference and Exhibition on Computer Graphics and Inter-
active Techniques (SIGGRAPH), 2006.

e Shiben Bhattacharjee, Soumyajit Deb, Suryakant PatidhiPad. Narayanan.
Real-time Streaming and Rendering of Terrains,
Paper, inFifth Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP),
2006.

e Shiben Bhattacharjee and Neeharika Adabala.
Texture Guided Realtime Painterly Rendering of Geometric M odels,
Poster, inFifth Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP),
2006.

Technical Reports:

e Suryakant Patidar, Shiben Bhattacharjee, Jagmohan SimpR.a. Narayanan.
Exploiting the Shader Model 4.0 Architecture,
Technical Report, IlIT Hyderabad, 2006.

[1]

(2]

3]

[4]

[5]

[6]
[7]

(8]

[9]

[10]

[11]

[12]

[13]

Bibliography

Concise bibliography of the history of cartograpfmtp://www.newberry.org/collections/conbib.html), The
NewBerry Library.

A. Asirvatham and H. Hoppe. Terrain rendering using dyased geometry clipmap&PU Gems 2, pages
46-53, 2005.

S. Atlan and M. Garland. Interactive multiresolutioritety and display of large terrain€omputer Graph-

ics Forum, 25(2):211-223, 2006.

S. Bhattacharjee and N. Adabala. Texture guided read-painterly rendering of geometric models 5th
Indian Conference, ICVGIP 2006, pages 311-320. LNCS 4338, 2006.

S. Bhattacharjee, S. Patidar, and P. J. Narayanan. tReakendering and manipulation of large terrains. In
6th Indian Conference, ICVGIP, 2008.

J. Blow. Terrain rendering at high levels of detail. Game Devel opers Conference, 2000.

D. Blythe. The direct3d 10 system. BIGGRAPH ’'06: ACM SIGGRAPH 2006 Papers, pages 724-734,
New York, NY, USA, 2006. ACM Press.

P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Pbit; and R. Scopigno. Bdam - batched dynamic
adaptive meshes for high performance terrain visualinatBmmput. Graph. Forum, 22(3), 2003.

P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Pbiw; and R. Scopigno. Planet-sized batched dynamic
adaptive meshes (p-bdam). WS’ 03: Proceedingsof the 14th IEEE Visualization 2003 (VIS 03), page 20,
Washington, DC, USA, 2003. IEEE Computer Society.

P. Cignoni, E. Puppo, and R. Scopigno. Representatiohvésualization of terrain surfaces at variable
resolution.The Visual Computer, 13, 1997.

M. Clasen and H.-C. Hege. Terrain rendering using sphkclipmaps. InEuroVis 2006: Symposium on
Visualization, pages 91-98, 2006.

L. Coconu, O. Deussen, and H.-C. Hege. Real-time pehiakillustration of landscapes. INPAR ’06:
Proceedings of the 4th international symposium on Non-photorealistic animation and rendering, pages 27—
35, New York, NY, USA, 2006. ACM Press.

D. Cohen-Or and Y. Levanoni. Temporal continuity ofdévof detail in delaunay triangulated terrain. In
R. Yagel and G. M. Nielson, editordEEE Misualization ' 96,, pages 37—42, 1996.

61

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. A. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. MilleC. Aldrich, and M. B. Mineev-Weinstein.
Roaming terrain: real-time optimally adapting meshed HBE Visualization, pages 81-88, 1997.

J. EI-Sana and A. Varshney. Generalized view-depetrsgiemplification. Comput. Graph. Forum, 18(3):83—
94, 1999.

L. D. Floriani, P. Magillo, and E. Puppo. Building andwersing a surface at variable resolution | HEE
Visualization, pages 103-110, 1997.

R. Geiss.Generating Complex Procedural Terrains Using the GPU. Addison Wesley, 2007.

T. Gerstner. Multiresolution compression and viszediion of global topographic dataGeoinformatica,
7(1):7-32,2003.

P. Haeberli. Paint by numbers: abstract image reptaens. INS GGRAPH ’90: Proceedings of the 17th
annual conference on Computer graphics and interactive techniques, pages 207-214, New York, NY, USA,
1990. ACM Press.

M. Haller and D. Sperl. Real-time painterly renderingin.r. applications. IGRAPHITE ' 04: Proceedings
of the 2nd international conference on Computer graphics and interactive techniques in Australasia and
South East Asia, pages 30—38, New York, NY, USA, 2004. ACM Press.

J. Hays and |. Essa. Image and video based painterlyadiim InNPAR '04: Proceedings of the 3rd
international symposium on Non-photorealistic animation and rendering, pages 113-120, New York, NY,
USA, 2004. ACM Press.

Y. He, J. Cremer, and Y. E. Papelis. Real-time extemdielolution display of on-line dynamic terrain. In
Graphics Interface, 2002.

A. Hertzmann. Painterly rendering with curved brustolses of multiple sizes. 8 GGRAPH '98: Pro-
ceedings of the 25th annual conference on Computer graphics and interactive techniques, pages 453—-460,
New York, NY, USA, 1998. ACM.

A. Hertzmann. Fast paint texture. MPAR '02: Proceedings of the 2nd international symposium on
Non-photorealistic animation and rendering, New York, NY, USA, 2002. ACM Press.

A. Hertzmann. Tutorial: A survey of stroke-based retinigz |EEE Comput. Graph. Appl., 23(4):70-81,
2003.

A. Hertzmann and K. Perlin. Painterly rendering foreidand interaction. IINPAR '00: Proceedings of
the 1st international symposium on Non-photorealistic animation and rendering, pages 7-12, New York,
NY, USA, 2000. ACM Press.

D. Hilland D. Hill. An efficient, hardware-acceleratdevel-of-detail rendering technique for large terrains.
Technical report, University of Toronto, 2002.

H. Hoppe. Smooth view-dependent level-of-detail cohénd its application to terrain rendering. WS
'98: Proceedings of the conference on Visualization ' 98, pages 3542, Los Alamitos, CA, USA, 1998. IEEE

Computer Society Press.

62

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

M. V. J C Whelan. Formulated silhouettes for sketchiaigidin. InProceedings of Theory and Practice of
Computer Graphics 2003, pages 90-97, Birmingham, UK, 2003.

M. Kaplan, B. Gooch, and E. Cohen. Interactive artisgéadering. InNPAR '00: Proceedings of the
1st international symposium on Non-photorealistic animation and rendering, pages 67—74, New York, NY,
USA, 2000. ACM Press.

P. Kipfer, M. Segal, and R. Westermann. Uberflow: a gpadal particle engine. 18 GGRAPH '04: ACM
SIGGRAPH 2004 Sketches, page 24, New York, NY, USA, 2004. ACM.

A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-basedi&tion and collision detection for large particle
systems. I'HWWS’04: Proceedings of the ACM S GGRAPH/EUROGRAPHICS conference on Graphics
hardware, pages 123—-131, 2004.

J. Levenberg. Fast view-dependent level-of-detaitiexing using cached geometry. WS’ 02: Proceed-

ings of the conference on Visualization’ 02, pages 259-266, Washington, DC, USA, 2002. IEEE Computer
Society.

X. Li and J. M. Moshell. Modeling soil: realtime dynamigodels for soil slippage and manipulation. In

SIGGRAPH, pages 361-368, 1993.

P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N.Uss, and G. A. Turner. Real-time, continuous level
of detail rendering of height fields. 8 GGRAPH, pages 109-118, 1996.

P. Lindstrom and V. Pascucci. Terrain simplificatiomplified: A general framework for view-dependent
out-of-core visualization EEE Transactions on Visualization and Computer Graphics, 8(3):239-254, 2002.
Y. Livny, Z. Kogan, and J. EI-Sana. Seamless patchegporbased terrain renderindournal of WSCG,
15(1-3), 2007.

F. Losasso and H. Hoppe. Geometry clipmaps: terraidegng using nested regular grid8CM Trans.
Graph., 23(3):769-776, 2004.

L. Markosian, B. J. Meier, M. A. Kowalski, L. S. Holden, D. Northrup, and J. F. Hughes. Art-based
rendering with continuous levels of detail. NPAR ’'00: Proceedings of the 1st international symposium

on Non-photorealistic animation and rendering, pages 59—-66, New York, NY, USA, 2000. ACM Press.

B. J. Meier. Painterly rendering for animation. $1GGRAPH ’96: Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques, pages 477-484, New York, NY, USA, 1996.
ACM.

S. O'Neil. Rendering planetary bodies, Gamasutra, 1200

R. Pajarola. Large scale terrain visualization ushgyrestricted quadtree triangulation.| EEE Visualiza-
tion, pages 19-26, 1998.

S. Patidar, S. Bhattacharjee, J. Singh, and P. J. Nagayy&echnical report on shader model 4.0 architecture.
Technical report, IIIT Hyderabad, India, 2007.

63

[44] A. Santella and D. DeCarlo. Abstracted painterly reimgs using eye-tracking data. MPAR’02: Pro-
ceedings of the 2nd international symposium on Non-photorealistic animation and rendering, New York,
NY, USA, 2002. ACM Press.

[45] J. Schneider, T. Boldte, and R. Westermann. Real-tidiing, synthesis, and rendering of infinite land-
scapes on gpus. Proceedings of Vision, Modelling, and Visualization, 2006.

[46] J. Schneider and R. Westermann. Gpu-friendly highlityugerrain rendering. Journal of WSCG, 14(1-
3):49-56, 2006.

[47] M. Shiraishi and Y. Yamaguchi. An algorithm for autoticgpainterly rendering based on local source
image approximation. INPAR’00: Proceedings of the 1st international symposium on Non-photorealistic
animation and rendering, pages 53-58, New York, NY, USA, 2000. ACM Press.

[48] A. Szalay, J. Gray, G. Fekete, P. Kunszt, P. Kukol, an@t#akar. Indexing the sphere with the hierarchical
triangular mesh. Technical report, (MSR-TR-2005-123);dsoft Research, 2005.

[49] D. Wagner. Terrain geomorphing in the vertex shad@itaderX2, Shader Programming Tips and Tricks
with DirectX 9, Wordware Publishing, 2004.

64

