
Real-time Terrain Rendering and

Processing

A Report submitted in partial fulfillment of the

requirements for the degree of

Master of Science (by Research)

in

Computer Science and Engineering

by

Shiben Bhattacharjee

200607022

International Institute of Information Technology

Hyderabad, INDIA

July 2010

Real-time Terrain Rendering and Processing

A Report submitted in partial fulfillment of the

requirements for the degree of

Master of Science (by Research)

in

Computer Science and Engineering

by

Shiben Bhattacharjee

200607022
shiben@research.iiit.ac.in

International Institute of Information Technology

Hyderabad, INDIA

July 2010

Copyright c© Shiben Bhattacharjee, 2010

All Rights Reserved

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY

Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled“Real-time Terrain Rendering and Processing”

by Shiben Bhattacharjee, has been carried out under my supervision and is not submitted elsewhere for

a degree.

Date Advisor: P. J. Narayanan

To my Mom, Dad and Sister

Acknowledgements

I would like to thank my advisor, Prof. P. J. Narayanan, who have been very patient, motivating and

have helped in many ways to tackle different problems. I havelearnt a lot from him and I thank him for

being very supportive and understanding.

Most importantly, I thank my Mom and Dad for so easily supporting me with everything I wish to

go for, they are very nice people. My sister and my brother-in-law (jijaji) as well have been really nice

to me and I wish them all the good blessings in this world.

I thank the masters program for giving me an opportunity to excel and be in a position to think about a

perspective in life. I’ll thank the CVIT research lab and thefaculty for giving an awesome workspace

and resources (graphics cards, w00t) to head start with.

I thank Soumyajit Deb who shared nice ideas at the early stageof my work. I also thank Suryakant

Patidar, who was my project partner, for being a very good friend and helping me with everything. I

thank my friends:Dada, Bansee, Fanta, Parry, Shetty, Suhailer, Jagga, JJ, and Peetee. Thanks for all

the knowledge sharing and fun times! :D

I thank SONY for making the PlaystationR© (2, 3, Portable) and the killer games, especially theGod

of War R© series. I also thank Dr. Gordon Freeman from Blackmesa to help me think about the most

difficult problems like when to take cover, crouch, bunny-hop, break crates or solve puzzles. . . lol.

KTHXBYE

4 8 15 16 23 42

v

Abstract

Terrains are of great interest in flight simulators, geographic information systems and computer

games. In computer graphics, terrain rendering is a specialcase because of their bulk. They cannot be

handled as a single entity like other object models like teapots, cars and crates. Triangulated irregular

networks of terrains are typically created by simplifying adense representation. Such representations

are popular in GIS and computational geometry. The recent trend in graphics is to use regular grid

representations since they go well with today’s graphics hardware. We explore different representation

techniques to render terrains in this thesis. We look into real-time rendering, editing, and physical

interaction with external objects on terrains. We also present a representation for efficient rendering of

spherical terrains. Apart from rendering terrains realistically, we develop a method to render terrains

artistically with painterly abstraction as well.

We create a system that exploits the power and flexibility of the modern GPUs to store, render,

and manipulate terrains with minimal CPU involvement (CPU load< 4%). The central idea is to use

a regular-grid representation, hierarchically divided infixed size blocks/tiles that change in resolution.

The potentially visible portion of the terrain is cached at the highest necessary resolution and is rendered

from the GPU. The cache is updated with the viewerpoint. Lower resolutions used for farther areas of

the terrain can be constructed from the cache on the GPU. Todays GPUs have a limited capability to

generate geometry within itself. Thus, the CPU can send a light geometry template which is expanded

to the triangles by GPU. The CPU performs a coarse culling of the tiles with the GPU performing fine

culling. Our system enables the terrain to be modified procedurally or edited interactively on the GPU

with no CPU involvement. The terrain can also interact with alarge number of external objects in

real-time with all the physics calculations done on the GPU.

Terrains can also be mapped over a sphere for a planetary structure. However, terrains on sphere

require a different representation due to the pole singularity of latitude-longitude representation. A

2D grid of height cannot be mapped directly on a sphere with uniform triangle count. Spheres can

be rendered uniformly using Hierarchical Triangular Mesh (HTM) but the representation does not fit

with 2D grid of heightmaps. We present a unified representation of HTM and clipmapping (flat terrain

rendering technique) to render spherical terrains. Our representation works at any distance from the

planet/sphere without any scripted work arounds.

The regular nature of terrain data also enables us to render the samples in a required order with

no overhead of sorting. This introduces the possibility of applications which require sorted ordered

vi

vii

triangles. We explore non photo realisitic rendering of terrains. Artistic painterly appearance and the

impression of terrains is created by effectively renderingseveral translucent brush strokes in a back to

front order. The strokes are located in 3D space for frame-to-frame coherence during animation. The

strokes are oriented along the slope of terrain analogous tothe way artists paint on canvas. We use

shaders to render strokes in real-time. A level of detail scheme is used to maintain a uniform stroke

density in screen space. Various styles can be achieved withdifferent stroke variations. We achieve

real-time painterly rendering with a combination of objectspace positioning and image space rendering

of strokes.

Contents

Chapter Page

1 Introduction . 1
1.1 Contributions of the thesis 6

2 Previous Related Work. 7
2.1 Terrain Rendering and Manipulation 7
2.2 Spherical Terrain Rendering 8
2.3 Non-Photo Realistic Rendering and terrains 9

3 Real-time Terrain Rendering. 10
3.1 Data Organization 10
3.2 View Frustum Culling 11
3.3 LOD and Blending Factor Calculation 12
3.4 Rendering .. . 12
3.5 Tile Stitching 12
3.6 Conclusions 13

4 Terrain Rendering and Manipulation using GPUs. 14
4.1 Terrain Representation 15
4.2 Terrain Rendering 17

4.2.1 Stage 1: CPU . 18
4.2.2 Stage 2: GPU . 20
4.2.3 Tile Stitching and Blending 21

4.3 Caching .. 23
4.3.1 Lateral Motion of Viewpoint 23
4.3.2 Vertical Motion .. . 24
4.3.3 Job Queuing Scheme .. 25

4.4 Terrain Deformation and Manipulation 26
4.5 Results .. . 28
4.6 Conclusions 30

5 Spherical Terrain Rendering. 32
5.1 Hexagonal Geometry Clipmaps Overview 34
5.2 Representation 34

5.2.1 HTM Terrain Data .36
5.2.2 Conversion of Planet Data 36

viii

CONTENTS ix

5.3 Clipmap Updates 37
5.4 Rendering .. . 37

5.4.1 Smooth Level of Detail Transition 39
5.4.2 View Frustum Culling .. . 39
5.4.3 Handling the Whole Planet 40

5.5 Results .. . 41
5.6 Conclusions 42

6 Painterly Rendering of Terrains. 45
6.1 Overview of our Approach 45
6.2 Terrain Representation 46

6.2.1 Representation of data 47
6.2.2 Level of Detail .. 47

6.3 Back-to-Front Stroke Ordering 48
6.4 Stroke Rendering 49
6.5 Results .. . 51
6.6 Conclusions 52

7 Conclusions . 58

Bibliography . 61

List of Figures

Figure Page

1.1 Left: Elevation data of Puget Sound. Right: Color texture for the terrain.(Dataset Cour-
tesy: The United States Geological Survey (USGS), made available by The University
of Washington) . 2

1.2 Left: Terrain with regular grid. Right: Same terrain with TIN. (Image Courtesy: Land-
Serf www.landserf.org, User’s Guide) . 3

1.3 (a) Cartography system does not distribute samples equally all over the sphere. (b)
Hierarchical Triangular Mesh is a technique which represents a sphere uniformly. . . . 4

1.4 Left: Real Photograph, Right: Painterly Rendering of the photograph.(Image Courtesy:
A. Hertzmann [23]) . 5

3.1 Data organization: An e.g. withn = 3 andm = 3, blue circled height values are
original, rest are interpolated. Note that, they occupy thesame area on ground 11

3.2 View frustum culling and LOD assignment 11
3.3 Tile Stitching: tilei, j is stitched only toi, j + 1 andi+ 1, j 12

4.1 (a) An terrain with highest resolution stored in4× 4 blocks, next in2× 2 blocks and so
on, using fixed size blocks. (b) A block with4× 4 tiles each with4× 4 tilelets 15

4.2 The GPU Cache (shown shaded) is a contiguous section of the terrain residing in the
GPU as a regular grid at a resolution determined by the elevation E of the viewpoint V.
The rendering resolution also depends on the distanceD. 16

4.3 An array texture with 16 layers and the GPU cache as a4× 4 pointer texture that stores
the layer IDs. .17

4.4 Tiles outside view frustum (marked red) are discarded bythe CPU. Intersecting tiles
(gray) will go through a second level of culling by the GPU. Interior tiles (yellow) are
rendered directly. LoDs of tiles to be rendered is a functionof distance from the viewpoint. 18

4.5 (a) The CPU renders each tile (here of size9×9) as points using two geometry templates,
one for the interior (shown in blue) and the other for the boundary (red/yellow/green) of
the tile. (b) Tilelet used in the interior of the tiles. In theeastern border (green), tilelet
(c) is used when the neighbor has a higher LoD and (d) is used iflower. In the northern
border (red), tilelet (e) is used when neighbor has a higher LoD and (f) is used if lower.
Yellow region gets handled automatically. 19

4.6 Picture of tilelets after VFC. Farther tiles need fewer tilelets. The red tilelets are dis-
carded by the second level culling on the GPU. 20

4.7 Framerates for a typical flight over the terrain with (red) and without (green) the second
level of culling. .. . 21

x

LIST OF FIGURES xi

4.8 A tile of size9 × 9 with a northern neighbor of lower resolution and an eastern one of
higher resolution. The tilelets of Figure 4.5 are used for correct stitching. 22

4.9 A tile at LoD = l (left) blends its alternate heights (shown in red) with its lower LoD
(middle) usingα. When the tile shifts its LoD, the change is not noticeable. This process
is valid in reverse as well. 22

4.10 Later motion and pan/tilt (left) involve discarding anL-shaped region and bringing in
new blocks (yellow) from the CPU. When the viewpoint comes down, the merge level
decreases (middle). The extents of GPU cache are halved and data at a higher resolution
is brought in from the CPU. When the viewpoint goes up, the extents of the cache are
doubled and the existing data is compressed into one quadrant. New data is brought in
from the CPU with nearer blocks getting higher priority in a staggered manner (right).
The data transfer is scheduled in a staggered manner not to affect rendering speed. . . . 23

4.11 (a) The mouse motion over the screen triggers interactive editing of the terrain. (b) A
terrain of2 × 2 block (left) and the results of editing it (right). Editing can involve
multiple blocks at boundaries (shown circled) 26

4.12 Deformation and rendering times for a typical flight over continuously deforming terrain. 27
4.13 Physics computation and rendering times with 256K balls interacting with the terrain.

A frame rate of 100 fps is possible. 28
4.14 A view of Mt Rainier, a terrain with real texture, realtime physics with balls, realtime

physics with a deforming terrain. 28
4.15 Cache update time, total rendering time, and the triangle rate for a typical flight over the

terrain. .30

5.1 Poles have singularity and the whole sphere has uneven sampling. 32
5.2 After a decided number of recursion a desired detail of sphere is reached(Image Cour-

tesy: A. Szalay, J. Gray, et al. [48]). 33
5.3 (a) Regular terrain, (b) Skewed terrain after samples rendered with equilateral triangles.

If clipped from the marked region, yields a hexagon. 33
5.4 (a) 2D grid clipped to form a six sided polygon, (b) The polygon takes shape of hexagon

when rendered with equilateral triangles. 34
5.5 (a) Hexagonal clipmaps as viewed from top, (b) Hexagonalclipmaps in the physical

form, (c) Hexagonal clipmaps in usable memory. 35
5.6 Two adjacent base triangles form a diamond. Four such diamonds complete the octahe-

dron. 35
5.7 A typical planet data converted to be HTM compliant and asa side product it has no

redundant information. 36
5.8 With the motion in camera, new data is torroidally updated in the layers of the array

texture. (a) Layer before update, (b) Camera moves (green),Update region (red), (c)
Layer after update.(Image Courtesy: A. Asirvatham, H. Hoppe [2]). 37

5.9 Bilinear interpolation at the vertices of a rendering block creates a mesh between the
block-bounds. .. 38

5.10 As the camera moves these distorted states of the clipmap cycle. Each red quadrilateral
comes from a unique rendering block. There are three states and nine rendering blocks
are required. .. 38

5.11 View Frustum Culling is a mere selection of relevant sides according to camera yaw. . 39

xii LIST OF FIGURES

5.12 Diamonds combined into a single big-texture. Note thatthe North Pole comes in the
middle and South Pole is at the corners. 40

5.13 Movement of camera accross the whole planet will encounter multiple diamonds in
view. At the poles, camera will see a terrain which is spanning over all the four diamonds. 40

5.14 Performance resuts on Puget Sound data treated as a diamond, on an Nvidia 8800 Ultra. 41
5.15 Performance resuts on Puget Sound data treated as a diamond, on an Nvidia GTX 280. 41
5.16 Performance resuts on Puget Sound data treated as a diamond, on an Nvidia GTX 480. 42
5.17 Hexagonal Clipmaps are closer to the shape of concentric circles. 43
5.18 Different clipmaps shown in different shades. 43
5.19 Blending factor in transition, blackness level indicates value ofα. 44
5.20 A scene while a flythrough on the spherical terrain. 44

6.1 Each height in the height-map is converted into a rectangle which is oriented along the
terrain’s slope at that point. An8× 8 grid is shown as example. 46

6.2 Reference point is at the center of ground-plane projection of the view frustum (marked
as blue). Reference point is kept within the2×2 blocks. As it goes out it is re-centered.
The figure assumes4× 4 cache size. 47

6.3 Tiles outside view frustum (marked red) are eliminated.Tiles totally inside (grey shaded)
are rendered with strokes at each of its sample’s locations.LODs of tiles to be rendered
and the blending factor is calculated as a function of distance. Fewer strokes are drawn
for a lower LOD tile. .. 48

6.4 (a) A tile can be viewed from many yaw directions, but onlyeight zones are sufficient
for a back to front ordering of samples in it. (b) Four possible arrangements of samples
for some ranges shown in (a); Other ranges can be handled in the similar way. 49

6.5 View frustum culling algorithm testing tiles in a specific order depending upon the cam-
era’s orientation. Here zone0 is shown. Such eight orders of testing are possible as
explained in Figure 6.4. 49

6.6 Overview of rendering of stroke. Each vertex from the VBOgets converted into a rect-
angle which is mapped with a stroke texture. 50

6.7 Slope-map, Puget Sound dataset 50
6.8 The color output and the normal map output of the scene areused to Phong shade on

top of it to stylize it. The effect is that of shining a spotlight on the painting. The normal
map is contrast stretched here for visibility. 52

6.9 Walkthrough over the terrain 53
6.10 (top-left) Strokes placed along slope with some perturbations in orientation. (top-right)

Strokes placed along the perpendicular to the normal. (bottom-left) Strokes placed with
a fixed orientation. (bottom-right) A sharp stroke texture.Sky is a pre-painted texture. . 53

6.11 Distant view of Mount Rainer 54
6.12 Strokes running along perpendicular to normals. 54
6.13 A region in Puget Sound painterly rendered which has lowheight variations. 55
6.14 A real textured dataset rendered in a painterly style. 55
6.15 Simple rectangles are used instead of proper brush strokes to illustrate the flow of strokes

along a hill . 56
6.16 A valley region 56
6.17 Mountains and valleys in Puget Sound painterly rendered. 57

Chapter 1

Introduction

Terrain refers to the geometric structure of a land surface and is a physical feature for many scientific

and engineering study. Topography, relief, tract and elevation are used as synonyms. Terrains have

been studied for long because its understanding is important for many of reasons. The terrain of a

region determines its envrionmental conditions which relate to fertility of land and water movement,

and thus agriculture and hydrology. Weather patterns are greatly effected by the terrain. Terrains also

determine the suitability for human settlement; flat, fertile land, river banks and plateaus tend to be

better populated. Transportation is mostly dependent on terrains. Terrains are given critical importance

in military operations mostly for movement of vehicles, placement of artilleries for best range, strategic

positioning of armed forces etc. The structure of terrains has been exploited in wars for both defensive

and offensive modes of operations. The importance of terrain extends to its formation as well. The

topology of a region can be due to volcanic erruptions, earthquakes, faults, landslides, water movement

or meteorite impact.

An important aspect of the study of terrains involve terrainvisualization. Traditionally, for the pur-

pose of visualization, maps have been used extensively. Topographic maps represent the shape or form

of the land surface. The maps represent 3D surface as a two dimensional entity preserving the surface

structure as much as possible. Maps are mostly used as a basisfor visualizing landscape morphology

but it is expected that users will be interested in understanding the shape of the surface and may wish

to measure distances, slopes or heights. Thus, a high degreeof accuracy is required. This creates a

conflict between the requirements for metric accuracy and visual realism. Mapping techniques such as

isolines provide an accurate representation of landforms in a way that is planimetrically correct but is

not well suited to its visualization. The best topographic maps combine contours with relief shading or

layer tints to provide visually more effective representation of terrain such as physical maps of an atlas.

Topographic maps are usually created by sampling survey points having known elevations. These may

be the only truly accurate elevations on the map.

With computer graphics, it is possible to visualize terrains in their original form in three dimensions

unlike topographic maps. Computer graphics is the study of digitally synthesizing objects (rendering)

and manipulating geometric information for appropriate visual content. Terrains can be rendered by

1

computers on a visual output device to a high degree of accuracy for visualization. Virtual terrains have a

lot of uses in land planning and usage, urban planning, visualization of weather and other environmental

attributes, planning for strategy and tactics of military operations, transportation, virtual tourism and

travel planning, virtual Bathemetry for submarines, Design of radio/TV/cellular transmitter placement

and signal analysis, Education, geographical & general reference, Games and entertainment, Real estate

etc.

Virtual terrains clearly have many applications and the list keeps growing. To render terrains, a terrain

in the form of data (i.e. digital form) is needed as input to the renderer application. The most basic type

of representation of terrains in digital form is a height-map or digital elevation model (DEM). A DEM

is a representation of the topography of the Earth or anothersurface in digital format. In contrast with

topographical maps, the height information is stored in a raster format. That is, the map will divide the

area into rectangular pixels and store the elevation of eachpixel. In that sense, digital elevation model

(DEM) data are sampled arrays of surface elevations in raster form. A DEM is same as a grayscale

image with each pixel representing an elevation value (Figure 1.1). Since such data is raw, DEMs are

Figure 1.1 Left: Elevation data of Puget Sound. Right: Color texture for the terrain.(Dataset Courtesy:
The United States Geological Survey (USGS), made available by The University of Washington)

also used to extract terrain parameters, model water flow or mass movement other than visualization as

3D rendering. Digital elevation models may be prepared in a number of ways, but they are frequently

obtained by remote sensing rather than direct survey. One technique for generating digital elevation

models is interferometric synthetic aperture radar; two passes of a radar satellite (such as RADARSAT1)

suffice to generate a digital elevation map tens of kilometers on a side with a resolution of around ten

meters. One also obtains an image of the surface cover. Othermethods of generating DEMs often

involve interpolating digital contour maps that may have been produced by direct survey of the land

surface; this method is still used in mountain areas, where interferometry is not always satisfactory.

Note that the contour data or any other sampled elevation datasets (by GPS or ground survey) are not

DEMs. A DEM implies that elevation is available continuously at each location in the study area.

The quality of a DEM is a measure of how accurate elevation is at each pixel (absolute accuracy) and

how accurately is the morphology presented (relative accuracy). Several factors play important roles

2

for quality of DEM derived products: terrain roughness, sampling density (elevation data collection

method), grid resolution or pixel size, interpolation algorithm and vertical resolution.

In computer graphics, objects to be rendered should be representated in a triangle mesh form. A

heightmap contains only the elevation values, but because of its regular grid nature, the spatial ground

coordinates are straight forward to calculate from the index of the height value. The connectivity is

implied in the mesh structure. Thus heightmaps are sufficient to render terrains. The main difference

between a terrain and any other model is that, though terrainis a single model in the graphics system,

part of it is viewed from close and part of it is seen from far, at the same time, at every view point.

Whereas other models (e.g. rocks, cars, chairs, marines, guns, aliens) are either viewed from far or

from near on a whole. Bigger models (e.g. castles) are often broken in smaller models which are

handled independently. The detail of these models is changed according to its distance from the camera.

Distance of an object from the camera is a rough measure of howmuch area the object will cover on

the screen (farther objects occupy less screen space, closer objects occupy more). The differentlevels of

detail of a main model are kept separately as different models altogether and are selected to render given

its distance from the camera. This is not easily possible forterrains since terrains are continous surfaces

and any discontinuity due to level of detail management ruins the visualization experience. Terrain can

become one of the most critical components in the scene that is being rendered. To keep the terrain

engine running in real time can be a difficult task. To be effective, the terrain needs to meet a number

of requirements, many of which can compete with each other. Aterrain should appear to be continuous

to the end user, yet the mesh should be simplified or culled where possible, to reduce the load on the

graphics hardware. In a gaming system, for example, terrainis rendered till the point a player can reach,

and then use a terrain drawn onto an imposter to simulate hills or mountains in the distance. The terrain

should appear realistic to the setting for the environment,yet this can be taxing on the video card, and a

balance needs to be maintained.

Figure 1.2 Left: Terrain with regular grid. Right: Same terrain with TIN. (Image Courtesy: LandSerf
www.landserf.org, User’s Guide)

3

Terrain in many regions can be flat, because of which the DEM data redundantly contains same

elevation values over a long range of indices. Since the datais regular, there is no adaptive control over

the detail available in a 2D grid of heightmaps, it is all at the same detail. To reduce this redundancy,

terrains are sometimes converted from a regular grid of heights to a triangulated irregular network (TIN).

The irregular representations contain fewer triangles butare more complex to represent and manipulate

(Figure 1.2). They provide rendering efficiency at the cost of ease of performing other operations like

editing of the terrain or physics computations over it. Smooth level of detail is hard to maintain with

TIN based terrain rendering. TINs have been used to render terrains in games and other applications for

a long time, but with the introduction of new programmable GPUs, DEM data tend to be better since

they can be treated as textures (images) in the GPU memory. The grid of heights is usually split into

smaller rectangular blocks for efficient storage and manipulation. Such a grid can be stored on the video

memory of the GPU and rendered directly from there.

Terrain rendering goes beyond rendering terrains over a flatbase. Many applications like to show a

fast fly through over the terrain, from ground level to great heights from which the terrain of the planet

is seen. A 2D grid seems to correspond directly with a latitude and longitude based representation of

spherical terrains, but this does not distribute the samples regularly at all latitudes and has singularity at

the poles (Figure 1.3(a)). Spherical terrains have the additional difficulty of handling regular sampling of

Figure 1.3 (a) Cartography system does not distribute samples equallyall over the sphere. (b) Hierar-
chical Triangular Mesh is a technique which represents a sphere uniformly.

heights, time consuming spherical coordinates calculations, better memory management for the planet

and lack of precision in calculations of coordinates due to the very large number of samples. Few

graphics applications have been able to show a seamless fly through from space to surface of planet

(or vice versa). Most games use camera tricks and scripted sequences to give an unfinished experience.

Google EarthTM seems to do the job but has severe pole singularity problems and lacks a smooth level

of detail scheme. A good representation which can sample a sphere regularly and still allowing the use

2D grid of heights to render the mapped terrain is thus necessary to handle terrains on spherical planets

(Figure 1.3(b)).

4

Figure 1.4 Left: Real Photograph, Right: Painterly Rendering of the photograph.(Image Courtesy: A.
Hertzmann [23])

Terrains are sometimes also required to be visualized in an artistic form. The intentions of an artist

come out as the aesthetics and expressiveness of the painting. The accurate rendering done by com-

puters fails to provide images with a such a feeling. Animations are therefore often created by artists

by painting a number of frames and is a tedious job. Computershave been used over the years to gen-

erate the surrounding environments of the main characters.This reduces the artist’s effort, but leads

to a visual disparity between the hand drawn objects and the environment. Painterly rendering, anon-

photo-realistic rendering technique, can bring artistic abstraction to a real photograph (Figure 1.4) or

a rendering and thus mix the computer generated scenes with the hand drawn elements. Therefore,

painterly rendering has attracted the attention of graphics researchers. Creating abstraction of landscape

and terrains seems an interesting problem since they are common in artistic creations and animations.

Painterly rendering technique for general polygons exists. These cannot be applied directly to terrains

because of level of detail complexities and richness due to long view range as explained before. An

optimal composition of terrain rendering methods and painterly rendering is essential for real-time per-

formance and high quality rendering.

In this thesis, we present a real-time terrain rendering system which is capable of producing high

quality outputs with efficient rendering speed. The thesis also shows how our system allows manipu-

lation of terrain, particularly interactive editing of terrain, deformation over time and objects behaving

according to physics over the terrain. We explore renderingterrains over spherical structure for planets

with uniform sample distribution of samples (heights) on the surface of the planet (sphere) as well. We

also used our flat terrain rendering system to created non-photorealisitc illustrations of terrains which

look like paintings. A list of contribution of the thesis is compiled in the next section.

This thesis is categorized in a number of Chapters. Chapter 2sheds light on previous related work

in the area of terrain rendering. It contains sections whichare required for subsequent chapters. Chap-

ter 3 explains the basic terrain system. In Chapter 4 we explain the implmentation details and some

contributions at the side of exploiting the GPUs of our system. Chapter 5 focuses on a different prob-

lem of rendering terrains over a planetary structure and ourapproach. Chapter 6 explains how abstract

illustration of terrains is done to mimic hand painted look.The following chapter counts the results and

conclusions of the thesis.

5

1.1 Contributions of the thesis

1. A terrain representation that uses fixed-size blocks of grids and GPU caching. This enables fast

rendering along with accessibility to edit and manipulate terrains, and simple physics operations.

2. A scheme of sending light geometry templates from the CPU to the GPU, which are expanded

into the actual geometry. This keeps the CPU free to do other tasks while the GPU performs the

bulk of the rendering work.

3. A hierarchical two-level culling scheme with the CPU culling in units of large tiles and the GPU

culling in units of smaller tilelets for high rendering performance. The rendering rate doubles

with this.

4. Clever interleaving of data transfer from the CPU to the GPU to keep the cache up- dated correctly

without affecting the rendering rates. This guarantees frame-rates above a desired threshold all

the time during rendering of arbitrarily large terrains.

5. Fast, interactive and procedural manipulation and editing of GPU-resident terrains using the frag-

ment shader. The highly parallel GPU resources are employedprotably to do this, improving the

system performance.

6. A zero-overhead method to render samples of terrain in back to front order without the need of

sorting. We utilize this to render alpha blended strokes in painterly rendering of terrains.

7. Level of detail scheme of terrains is used to reduce or increase detail of brush strokes according to

distance in painterly rendering of terrains. The level of detail of the terrain is changed smoothly

with distance from the viewpoint. This avoids the problem ofstrokes getting cluttered at far

distances, which can be visually distracting. Level of detail also reduces the rendering load.

8. Hexagonal Geometry Clipmaps for spherical terrain rendering which is a simple combination of

Geometry Clipmaps (an efficient terrain rendering technique) and Hierarchical Triangular Mesh

(A uniform sampling and indexing algorithm for spheres)

9. A new method to sample maps of planet earth which has no redundant information compared to

the conventional cartographical maps we see in atlas. We save 50% of storage space with this

representation and is required for the terrain data to fit with hexagonal geometry clipmaps.

6

Chapter 2

Previous Related Work

In this chapter, we review the related prior work on terrain representation and rendering. We discuss

the previous work on terrain rendering in general in Section2.1. In Section 2.2, we describe major

earlier work in spherical terrain rendering. In the following section, we look at a brief history of non

photo-realistic rendering, and its relation with terrain rendering.

2.1 Terrain Rendering and Manipulation

Terrain rendering is a well-studied problem. Triangulatedirregular networks are created from regular

grids with connectivity typically decided using a triangulation process such as Delaunay’s [10,13,15,16,

28]. They provide rendering efficiency at the cost of ease of performing other operations and are popular

in GIS and computational geometry, but the recent trend in graphics is to use regular grid representations.

Hierarchical tree structures like quadtrees exploit the 2Dgrid structure of terrains and have been used to

represent them. They are storage efficient and lend themselves well for compression [6, 14, 35, 36, 42],

but not always efficient for random access of the height values. The hierarchical approach has also

been combined with triangulation for better rendering performance [8, 33]. Terrains have also been

partitioned into fixed size square patches of different resolutions. The tiled structures provide compact

representation and easy rendering. The block boundaries can show artifacts which are taken care of

using special zero-area triangles and stitching [38, 49]. The fixed size blocks also limit the range of

resolutions supported when a tile is reduced to a single height.

Losasso and Hoppe introduced a multiresolution, fixed memory size scheme for efficient representa-

tion and rendering of large terrains, called the geometry clipmaps [38]. They use a square region around

the viewer as a geometry clipmap with high resolution at the centre and lower resolutions on the outer

rings. The fixed memory structure involves constant rendering load. The geometry clipmap were stored

in the GPU and rendered from there [2] and were also extended to spherical coordinates [11]. Geometry

clipmaps provide good rendering performance, but the representation does not lend itself to editing or

modification of the terrain, which is possible especially ontoday’s GPUs. They also store multiple res-

olutions of portions of the terrain. Schneider and Westermann report an LoD based rendering technique

7

for terrains that use the GPU extensively using a multiresolution, tiled structure [46]. Their method gives

high rendering rates but has all limitations of the fixed tilerepresentations, such as hard boundaries that

need special handling. Rectangular patches have been used as seamless patches with stitching strips but

requires the simultaneous storage of multiple resolutions[37].

Terrains are traditionally considered static and fixed. Deforming and editing are performed rarely

during visualization. Earlier work on terrain modificationinclude multiresolution detail patches by

He et al. [22] and modelling soil slippage by Li and Moshell [34]. The height-maps are amenable

to quick editing, unlike the irregular representations. Atlan and Garland edit the terrain in real-time

using a few editing strokes for applications such as geological simulations [3], using a wavelet-based

representation. They use a two-step approach to recover theterrain and to edit it. Schneider et al. present

a system to generate very large landscapes on the GPU using projected grids [45]. They generate and

render procedural terrains using shaders but do not handle real terrains. Physics of particles has always

been studied as an independent problem. Recently Kipfer at al. [31] and Kolb et al. [32] implemented a

particle system on the GPU.

2.2 Spherical Terrain Rendering

When terrains are mapped over a planetary structure, most commonly a sphere, we call itspherical

terrain rendering in short. Spherical Terrain Rendering involves additionalproblems involving correct

distribution of samples over the surface of sphere, representation of sphere, level of detail, view range,

spherical surface coordinates and calculation overheads etc.. Early work in Spherical Terrain Rendering

originate from plannar terrain methods and then their extentions to a spherical base.

O’Neil [41] and Gerstner [18] extended the ROAM algorithm [14] for a planetary structure. The

problem with above and other non-grid based algorithm is that the data needs real-time processing.

Addressing this issue, Hill [27] favored a tiled block solution. Cigoni et al. [8] extended the BDAM

algorithm to suit planets [9]. These algorithms divide the planet in square regions and use a cube as

the base. Google Earth, a successful commercial application, suffers from flickering, possibly due to

pole singularity problems. Modern GPU friendly Geometry Clipmaps [2] was first used by Clasen and

Hege [11] in spherical clipmaps for fast rendering, however, lack of direct correspondence of height

data to vertices produced aliasing issues.

Independent from the research in Spherical Terrain Rendering, Hierarchical Triangular Mesh [48]

caught our interest which primarily focuses on supporting geospatial indexing and searching at different

resolutions, from arc seconds to hemispheres. We are more interested in HTM’s subdivision and its

uniform sampling of the sphere. Modern GPU friendly terrainrendering techniques, however, rely on

right triangles fundamentally for the tessellation of the terrain. HTMs are strictly based on equialateral

triangles. To use any existing terrain rendering method, say Clipmaps [2], we have to find a way of mak-

ing that technique work with equilateral triangles. Our goal was to use the best of sphere representation

8

systems (HTM) and efficient terrain rendering methods (Geometry Clipmaps [38]), and create a simple

combination of two, yet technically sound.

2.3 Non-Photo Realistic Rendering and terrains

Abstract representation of still images was introduced by Haeberli [19] using image color gradient

and user interactivity for painting. Hertzmann [23] placescurved brush strokes of multiple sizes on

images for painterly rendering. The technique fills color byusing big strokes in the middle of a region

and uses progressively smaller strokes as one approaches the edges of the region. Shiraishi and Ya-

maguchi [47] improves the performance of above method by approximating the continuous strokes by

placement of rectangular strokes discreetly along the edges to create painterly appearance. Santella and

DeCarlo [44] uses eye tracking data to get points of focus on images and create painterly rendering with

focus information. All these techniques work well on singleimages but involve iterative techniques that

make them cumbersome for real-time applications [25]. Alsoif they are applied on each frame of an

animation independently, it can lead to a flickering of strokes due to incoherence of strokes between

frames. Painterly rendering has been tried and made coherent on videos as well [26], [21], but these

techniques are not well suited for 3D rendering.

Painterly rendering for animation was introduced by Meier [40]. She eliminated shower door effect

and achieved frame to frame coherence by rendering several brush strokes whose positions stick the 3D

model’s surfaces. However, view dependent sorting of thesestrokes is required for alpha compositing,

making it unsuitable for real-time animations. Recent work[4, 20] describe a real-time painterly pro-

cess inspired by Meier using programmable graphics hardware. They render the polygonal model first

and store the depth map. A second pass uses the depth map to remove occluded strokes so that the

strokes/billboards can be rendered in any order. For a complex and distant scene, such as a terrain, the

inaccuracies due to precision in the depth map and comparison at boundaries can reduce the visual qual-

ity. Terrains are rich models containing many samples and should be rendered with large view distances.

Other modes of NPR have been created in past for terrains. Penand Ink approaches [12,29] exist which

mostly focus on silhouette of the terrain. These are, however, different than painterly rendering process

which is the focus here.

9

Chapter 3

Real-time Terrain Rendering

Terrain data is basically a 2D grid of heightmaps between which triangles can be rendered to give it

a rigid water-tight look. However, the number of heights canbe very large and drawing all the triangles

all the time is not practical on a real-time system. We apply different methods to achieve a real-time

performance. In Section 3.1, we see how terrains are dividedinto tiles and how tiles are kept in the

memory. Section 3.2 shows how tiled structure helps in eliminating regions of terrain which are not in

the camera’s view. Next section, Section 3.3 shows the method of further improving the performance by

exploiting loss of detail of farther regions of terrain in view. Regular tiles become very small at the far

extremities of the viewing frustum. We take care of this problem by using low levels of detail for such

tiles in view. However usage of level of detail brings another problem of terrain popping which happens

due to change in level of detail when the camera is moving. We calculate blending factors on a per tile

basis and is used to smoothly change the level of detail. In section 3.5 we see another problem of cracks

introduced by the LOD system, which is due to difference in LOD of surrounding tiles. We address this

by stitching surrounding tiles. Section 3.4 finally describes the rendering method which works upon the

described methods. We describe the various steps involved in first creating our terrain representation

and then rendering it.

3.1 Data Organization

Terrain data consists of a height value for every pointx, y on a rectangular grid. We divide it intotiles

of equal size for rendering. By equal we mean they cover the same rectangular area on the heightmap.

To handle levels of detail, we arrange the data in a specific way. For a tile with size2n × 2n height

values, we storem number of LODs,m ≤ n, m is a user defined number based upon characteristics

and size of the terrain. We also keep the distance between adjacent heights inx, y assx, sy Fig 3.1. For

an LODl we have2n−l+1 + 1× 2n−l+1 + 1 (l > 0) number of height values and2n + 1× 2n + 1 for

l = 0. Note the extra heights at the end corners of the tiles, they are the height values at the starting

corners of the next tile; kept as they help in stitching (see Section 3.5). This meansl = 0 holds highest

detail andl = m holds lowest detail as illustrated in Fig. 3.1. Forl > 0 we keep original height values

10

o o o o o

o o o o o

o o o o o

o o o o o

o o o o o

o o o o oo o o o
o o o o oo o o o
o o o o oo o o o
o o o o oo o o o
o o o o oo o o o
o o o o oo o o o
o o o o oo o o o
o o o o oo o o o
o o o o oo o o o

o o o

o o o

o o o

o o

o o

Sx Sx

l=0

2 +1 x 2 +1

All heights original

SxSx

33
l=1

2 +1 x 2 +1

Alternative heights

interpolated

33
l=2

2 +1 x 2 +1

Alternative heights

interpolated

22
l=3

2 +1 x 2 +1

Alternative heights

interpolated

11

Figure 3.1 Data organization: An e.g. withn = 3 andm = 3, blue circled height values are original,
rest are interpolated. Note that, they occupy the same area on ground

h at (2i, 2j) locations,0 ≤ i, j ≤ 2n−l. We replace the height values at(2i, 2j + 1) locations with

avg(h2i,2j , h2i,2j+2), at (2i + 1, 2j) locations withavg(h2i,2j , h2i+2,2j), at (2i + 1, 2j + 1) locations

with avg(h2i,2j , h2i+2,2j+2); wherei, j vary as bounded. This is done so that while rendering when

LOD l with alternate height values dropped, we don’t see any change in the structure.

3.2 View Frustum Culling

Bounding rectangle

Projection of view

frustum on the

base plain

Distances separated by

LOD transition distance

Base Line

Tiles rejected out of

projection

Tiles assigned with l=2

Tiles assigned with l=1

Tiles assigned with l=0

Figure 3.2 View frustum culling and LOD assignment

In each frame, we query the graphics API for view frustum equations and calculate the projectionP

of the frustum (generally a trapezoid) on the base plain. This base plain isz = ah, ah is the approximated

average height of the terrain in view of previous frame. Thisis because we haven’t accessed the terrain

data yet and thus will be using the data from previous frame assuming that the view hasn’t changed

much. We then calculate orthogonal bounding rectangle ofP . We can directly map the coordinates

of the bounding rectangle to tile indices. Using these tile indices, we find other tiles that are insideP

(Fig.3.2). We keep the indices that return positive in a tilebuffer Bt for use in rendering. We do not

need to do 3D view frustum culling as terrains are injective functions onx, y, and thus can be reduced

to 2D in turn to reduce number of required calculations.

11

3.3 LOD and Blending Factor Calculation

Using the camera parameters we calculate a base line, that isperpendicular to the view vector and

parallel to the ground plane. For each tile inBt, we calculate the perpendicular distanced of its mid

point from this line (Fig.3.2). This distanced is used to calculate LODl asbd/ltc wherelt is the LOD

transition distance. We choose this distanced instead of the direct distance of the tile from the camera

because if the field of view of the camera is high, we shall end up rendering tiles at the corner of screen

that are actually close to camera in screen space but far in object space in very low level of detail.

The valuefrac(d/lt) is the blending factorα. α is used for smooth level of detail changes of tiles as

explained in Section 3.4. We savel andα in Bt along with the tile indices.

3.4 Rendering

With all data in place, the tiles can be rendered fromBt. For all tile indices inBt, we load the level

l andl + 1 of that tile. The index is clamped tom to avoid memory exceptions. The distance between

adjacent heights forl can be calculated as(sxl
, syl) = (sx, sy)2

l Fig 3.1. We calculate the heightsh for

l > 0 as

h = h(2i,2j)
l
(1− α) + h(i,j)(l+1)

α

l = 0 is a special case:h = h(i,j)0(1−α)+h(i,j)1α, i, j vary as bounded. We can now see that whenα

is 0, h = h(2i,2j)
l
, and whenα is 1, h = h(i,j)(l+1)

. Thus this blending factor is able to smoothly change

between the two height values of 2 different LODs of the same tile as we move the camera. On the fly,

we also calculate the average of the heights at the mid point of these tiles,ah, which will be used in the

next frame for view frustum culling (See Section 3.2).

3.5 Tile Stitching

i,j

i+1,j

i,j+1

i,j

i+1,j

i,j+1

Figure 3.3 Tile Stitching: tilei, j is stitched only toi, j + 1 andi+ 1, j

Since every tile is getting assignedl andα independently, we find un-tessellated areas near the corner

of each of the tiles. We assume that a tile on the ground with LOD l can have a nearby tile whose LOD

can be onlyl− 1 or l+1. This makes tile stitching easy and smooth blending of LODs works perfectly.

Our assumption remains true ifflt is always more than the maximum distance a tile can extend on the

12

ground, i.e., the tile is never able to skip an LOD in between.So for a tile indexti, tj in Bt, we get the

l andα of t(i+1), tj andti, t(j+1), and use them for the corner heights ofti, tj Fig 3.3. Note that we are

not looking at(i−1, j), (i, j −1) indices of tiles since those corners are already stitched byearlier tiles.

3.6 Conclusions

In this chapter we presented a fundamental terrain rendering system which introduces the categories

of problems involved. Using the representation of tiled structure of terrain, we were able to do a quick

view frustum culling and level of detail management. With this system we showed how important role

a representation plays in designing a good rendering scheme. This chapter shows a very simple terrain

renderer, is limited to theory and does not address the issueof handling very large terrains. In the

following chapters, we will address practical problems anddiscuss adaptivity of the techniques to the

use of current graphics hardware.

13

Chapter 4

Terrain Rendering and Manipulation using GPUs

We present a scheme to render terrains, deform them, edit them, and perform physics involving them

at real-time rates. We use a representation that combines the fixed-size structure of geometry clipmaps

and the regularity of tiled blocks. The terrain is cached on the GPU using fixed-size rectangular blocks.

The resolution of the blocks depends on the view and changes with height of the camera. A blocked,

tiled, height-map representation resides at the GPU cache at all times for fast rendering and real time

modification. The cache is kept updated in extent and resolution by sending data when needed.

The main contributions of this paper are: (a) A terrain rendering system that achieves a rendering

speed of 100 frames per second on arbitrarily large terrainswithout the CPU, the GPU, or the bandwidth

between them being the bottleneck. CPU load is less than 10% while rendering at 100 fps (b) A way to

interactively modify and interact with the terrain simultaneously with rendering, performed entirely in

the GPU at real-time rates. This enables terrain deformations, interactive editing and the computation

of simple physics of external objects interacting with the terrain. The following innovations make the

above possible. (i) A terrain representation that uses fixed-size blocks of grids and GPU caching that

enables fast rendering and correct editing and manipulation. (ii) A scheme of sending light geometry

templates from the CPU to the GPU, which are expanded into theactual geometry. This keeps the CPU

free to do other tasks while the GPU performs the bulk of the rendering work. (iii) A two-level culling

scheme with the CPU culling in units of large tiles and the GPUculling in units of smaller tilelets

for high rendering performance. The rendering rate doubleswith this. (iv) Clever interleaving of data

transfer from the CPU to the GPU to keep the cache updated correctly without affecting the rendering

rates. This guarantees 100 fps rendering of arbitrarily large terrains. (v) Fast, interactive and procedural

manipulation and editing of GPU-resident terrains using the fragment shader. The highly parallel GPU

resources are employed profitably to do this, improving the system performance.

We demonstrate the performance of our system using an Nvidia8800GTX GPU. We can fix the

framerate at 100 while handling a1M × 1M terrain which uses 2 TB for the heights1. Our system

renders upto 350 million triangles per second on parts of a flight path and achieves an average rate of

1The large terrain is a periodic extension of the16K × 16K Puget Sound terrain. The terrain system is unaware of the
replication. The CPU module that loads the terrain is aware of the fact and returns pointers to existing data when going beyond

14

160 million triangles per second. The frame rate of 100 can bemaintained even while half the terrain

is deforming or is being edited or when 256K balls are bouncing on it. We exploit the advanced SM4.0

features of the GPU to achieve the high performance [43].

The terrain representation and rendering are explained in Sections 6.2 and 4.2 respectively. The

caching system is explained in Section 4.3. Terrain manipulation schemes are presented in Section 4.4.

Section 6.5 presents experimental results. Some concluding remarks are given in Section 4.6.

4.1 Terrain Representation

Figure 4.1 (a) An terrain with highest resolution stored in4× 4 blocks, next in2× 2 blocks and so on,
using fixed size blocks. (b) A block with4× 4 tiles each with4× 4 tilelets

We represent the terrain as a regular 2D grid of heights with afixed post distance in X and Y direc-

tions. Fixed-sizeblocks are used as the base units of storage and transfer from the CPUto the GPU. A

block consists oftiles, which are the basic rendering units. Tiles extend in the ground XY plane and

take part in view frustum culling. Tiles are further dividedinto smallertilelets (Figure 4.1(b)).

CPU Representation: The terrain is stored in main memory and sent to GPU as blocks.We use

blocks of size1024 × 1024 as larger blocks are more efficient for transfer. The CPU alsostores all

lower resolutions of the terrain as blocks of the same size tofacilitate quick transfer of arbitrary levels

of detail of the terrains to the GPU (Figure 4.1(a)) at the cost of a maximum of1/3 more memory. Thus,

a terrain of32 × 32 blocks at the highest resolution needs16 × 16 blocks in the next lower resolution.

View frustum culling takes place at finer resolution in termsof tiles. Tile size should balance the culling

and rendering loads. We use larger tiles in our system, currently 256× 256, since geometry is discarded

also at the GPU as explained later.

Different parts of the terrains need to be rendered at different levels of detail or resolutions. Thelevel-

of-detail (LoD) at which a tile is rendered depends on two factors: the elevation of the viewpoint and

the distance along the ground from the viewpoint. The rendering resolution reduces as the elevationE

15

V

E
D

Figure 4.2 The GPU Cache (shown shaded) is a contiguous section of the terrain residing in the GPU as
a regular grid at a resolution determined by the elevationE of the viewpoint V. The rendering resolution
also depends on the distanceD.

or the distanceD increases (Figure 4.2). Resolution is changed in discrete steps by doubling or halving

the post-distance.Merge level denotes the level-of-detail of the terrain determined by the elevation and

distance level denotes the same due to the ground distance to the viewpoint.Both take discrete integral

values. Level 0 represents the terrain at the highest detail; level i + 1 represents the terrain at half the

resolution of leveli. The LoD is expressed as the number of level shifts from the highest resolution

available. Therendering LoD of a tile is the sum of merge and distance levels.

The transition distance in elevation for shifting the mergelevel depends on the image-size to which a

triangle projects. We shift the merge level when the post distance maps to about 3 pixels (see [38]). For

a 90 degree field of view and a1024 × 768 window, the transition distance comes out to be1024/(3 ∗

2 ∗ tan φ/2) – about 170 times the post-distance – when the viewpoint is close to the ground. The

transition distance doubles with each reduction in resolution as the post-distance doubles. This scheme

can handle terrains of very high resolutions. Since the transition distance depends on the post-distance,

the higher resolutions will be used only when the viewpoint is closer to the ground. We use the same

distance for ground transition distance for near uniform behaviour due to camera changing elevation or

distance. Farther tiles render with low detail or higher LoDnumber.

Resolution reduction is achieved easily on our representation by dropping alternate rows and columns.

Thus, an LoD levell has a post distance that is2l times the post distance at level 0. Thus a higher res-

olution block contains all lower resolution ones, which canbe generated by sub-sampling. We choose

sub-sampling instead of filtering for creating low resolutions because it preserves height values whereas

filtering changes the heights in lower resolutions. Sub-sampling is also fast but produces no artifacts

when combined with our blending scheme explained in the nextsection.

GPU Representation: The GPU Cache holds a contiguous 2D grid of blocks at the merge-level

resolution around thepoint of reference determined by the camera location. The resolution depends on

the view elevationE (Figure 4.2) and is the highest resolution needed for rendering from that elevation.

It also contains all lower resolutions as explained before.Thus, all data for rendering the terrain is

entirely in the GPU memory. The appropriate LoD for each tileis generated on the fly by sub-sampling.

Tiles are further divided into2×2 tilelets by the GPU and used for the finertwo-level of culling explained

later. The GPU Cache is updated when the merge level changes due to elevation or the region changes

16

due to change in camera location. It is to be noted that the extent on the ground of the blocks and tiles

change with the merge level as they have fixed sizes.

Implementation Details: The GPU Cache is stored as anarray texture, introduced in SM4.0. The

cache can be attached to a single texture unit and a height canbe accessed on the fly by the GPU without

periodic texture binding by the CPU. Heights are accessed using three coordinates:l to select the block

(also called a layer) andx, y to fetch the post from that layer. Each layer of the array texture can be

updated randomly. We use a separatepointer-texture to store the layer IDs (Figure 4.3). The pointer-

texture is a 2D array of layer IDs and presents the GPU Cache asa contiguous 2D array of blocks. The

l coordinate is fetched using the 2D indices of the block. The pointer-texture is updated with new layer

numbers when the GPU cache is updated. The unified architecture of SM4.0 provides fast access to the

texture for all shader units.

Figure 4.3 An array texture with 16 layers and the GPU cache as a4× 4 pointer texture that stores the
layer IDs.

The blocks and tiles have fixed memory sizes and variable extents on the ground. A block at merge-

level l + 1 spans four times the area of the same at levell. The merge and distance levels provide a

unified LoD scheme with nearly constant triangle count on thescreen for all elevations of the camera.

The amount of data to be rendered also is nearly constant at all elevations due to the shift in resolution.

This plays an important role in achieving real-time performance on large terrains. Our system also

supports mapping of real texture images to the terrain. These textures are kept in a parallel cache on the

video memory with a matching block of texture for each block in the GPU cache. The resolution of the

texture blocks is kept updated for seamless performance. Each block is mipmapped independently to

avoid aliasing for far-off tiles. Hardware mipmapping may not produce the desired results as the screen

space measure used by it may not match the resolution reduction used for the terrains. We currently

store the complete texture images in multiple resolutions on the video memory. The texture cache stores

the coordinates of windows to it.

4.2 Terrain Rendering

The GPU performs most of the rendering under CPU’s coordination. The CPU culls every tile in

the GPU cache to the view frustum. It them sends the geometry template, consisting of a vertex buffer

17

object (VBO) of points, for each tile to the GPU. This keeps the CPU load the communications to the

GPU very low. The GPU discards tilelets of the geometry that lie outside frustum and expands the rest

into the triangles.

4.2.1 Stage 1: CPU

The 2D grid scheme makes it easy to compute the extents of tiles, blocks, and tilelets using simple

calculations. Each tile has an index in the grid of tiles. TheCPU eliminates tiles outside the view

frustum and computes the LoD level for the rest of the tiles. It then sends the corresponding geometry

templates to the GPU.

Figure 4.4 Tiles outside view frustum (marked red) are discarded by theCPU. Intersecting tiles (gray)
will go through a second level of culling by the GPU. Interiortiles (yellow) are rendered directly. LoDs
of tiles to be rendered is a function of distance from the viewpoint.

View Frustum Culling: The orthogonal footprint of the view frustum and its bounding box are

estimated in the grid of tiles first, as shown in Figure 4.4. The bounding sphere of each tile is tested

against the six planes of the view frustum and those lying outside are discarded. Tiles that intersect a

frustum wall are tagged specially boundary tags as their tilelets will undergo a second level of culling in

the GPU.

Level of Detail: The GPU cache holds the terrain at the current merge-level. The CPU uses the

distance of each tile from the camera to compute the distance-level. The distance-level of each tile thus

denotes the drop in resolution from the data stored in the GPUcache. Farther tiles will get a higher LoD

number or lower detail. Thus, proximate tiles will be rendered with high detail and distant ones with

low detail (Figure 4.4). The detail factordl is computed aslog1.5(1 +
d
t
), whered is the distanceE of

the mid point of the tile from camera (Figure 4.2) andt is the current diagonal length of the tile. The

termd/t will give linear LoD bands and the logarithm will ensure exponential thickness for equi-detail

18

bands. This results in near-uniform distribution of tile-detail on the screen. The base of the logarithm

affects the width of the LoD bands. A value of 1.5 gives acceptable triangle count and quality in our

experience and ensures a minimum LoD band thickness of one tile. Thus, adjacent tiles will not differ

by more than one level which is necessary for seamless stitching as explained later. The integer partbdlc

of the detail factor is used as the distance-levelld to shift the resolution and the fractional part is used

as themorphing factor α for the entire tile. Morphing of different LoDs is necessaryto avoid popping

artifacts as explained later.

Rendering: The CPU sends each tile to the GPU along withld, the morphing factor, and the bound-

ary flag. To reduce CPU load, ageometry template of a VBO of point primitives is sent for each tile.

Each point of the template represents a tilelet to be rendered. We currently use2×2 tilelets. A128×128

VBO is used for the full256 × 256 tile. Smaller VBOs are used if the distance-level is greaterthan 0.

The same template can be used for all tiles at a particular distance-level. This process is explained in

detail in Section 4.2.2.

Figure 4.5 (a) The CPU renders each tile (here of size9 × 9) as points using two geometry templates,
one for the interior (shown in blue) and the other for the boundary (red/yellow/green) of the tile. (b)
Tilelet used in the interior of the tiles. In the eastern border (green), tilelet (c) is used when the neighbor
has a higher LoD and (d) is used if lower. In the northern border (red), tilelet (e) is used when neighbor
has a higher LoD and (f) is used if lower. Yellow region gets handled automatically.

Adjacent tiles can have different resolutions which causesvisual inconsistencies at the joints. We

use astitching process for border rows and columns to avoid this. Each tile stitches with its northern

and eastern neighbors as explained later. Stitching requires an extra row and column of indices of the

neighbor to be available to each tile. Thus, the actual tile size used is257 × 257 with its last row and

column being the first row and columns of the adjacent tiles. CPU sends separatestitch templates to

effect correct stitching (Figure 4.5(a)).

19

4.2.2 Stage 2: GPU

The GPU receives a point for tilelet of a tile being rendered along with its LoD and morphing factors.

First, the tilelets outside the frustum are discarded, resulting in a fine culling in terms of2× 2 sections

of the terrain. Geometry is generated for the surviving tilelets by accessing the terrain from the GPU

cache.

Tilelet Generation and Culling: The GPU receives the index, the LoD number, the morphing

factor, and geometry template for each tile (Figure 4.5(a)). The index is mapped to the block index of

the pointer texture and the layer and tile ID of the GPU Cache.The coordinates of the incoming point

primitive of the template represents the top-left corner ofthe corresponding tilelet and the LoD can be

used to compute the other corners. The heights of the cornersare fetched from the GPU cache. These

four points are tested against the view frustum by the vertexshader. The tilelet is tagged as outside if all

four points are outside before sending down the pipeline. Inpractice, conservative testing is performed

to counter possible error introduced by the quadrilateral approximation of the tilelet. This process of

second level culling is performed only on the tiles that intersect the view frustum walls as tagged by the

CPU. Other points are passed down the pipeline without testing.

Figure 4.6 Picture of tilelets after VFC. Farther tiles need fewer tilelets. The red tilelets are discarded
by the second level culling on the GPU.

The geometry shader of the GPUs can discard primitives from the pipeline or add primitives to it.

The tilelets that are tagged by the vertex shader are discarded. This second level culling accomplishes

accurate culling with no load to the CPU. Figure 4.7 shows that the frame rate is doubled if second

level culling is used on a typical rendering. We experimented with different tilelet sizes. The smallest

tilelet with stitching capability has a size of3 × 3. This performs the best due to the deterioration in

performance of the geometry shader as the amount of data it outputs increases [17]. The geometry

shader generates triangles for the remaining tilelets. Thecoordinates of the top left point and the LoD

number are used to access the3× 3 grid points. The post distance at levell is 2l times the post distance

at level 0. Triangles of the tilelet, as shown in Figure 4.5(b-f), are sent down the pipeline.

20

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700 800 900

F
ra

m
es

 p
er

 S
ec

on
d

Time

With Second Level Culling
Without Second Level Culling

Figure 4.7 Framerates for a typical flight over the terrain with (red) and without (green) the second level
of culling.

Figure 4.7 shows the performance of the system over a typicalflight over the terrain with and without

the second level culling. The second level culling improvesthe system performance by a factor of 2

overall. The camera is looking approximately down between frames 250 to 450. The tiles nearer to the

camera contain more tilelets as seen in Figure 4.6. The second level culling is most effective on them as

a result.

4.2.3 Tile Stitching and Blending

Tiles can be rendered independently if the northern row and eastern columns are included. However,

stitching is necessary when the northern or eastern neighbor has a different LoD. Gaps in the terrain may

be visible otherwise. Zero area triangles have been used to alleviate this problem in the literature [38],

but is an inelegant and incorrect solution. We use a special L-shaped geometry template with indices

of only the northern and eastern borders of a generic tile forstitching (Figure 4.5(a)). The CPU sends

these templates with tile indices, LoD number, morphing factor as well as the LoD number and morphing

factor of the neighbouring tiles.

The stitching templates use the same vertex shader. Their geometry shader selects one of the tilelets

in the border areas (Figures 4.5(b-f)) based on the LoD numbers. Tilelets of the eastern border can

be rendered with equal LoD to the parent tile (Figure 4.5(b)), lower LoD than the parent tile (Figure

21

Figure 4.8 A tile of size9× 9 with a northern neighbor of lower resolution and an eastern one of higher
resolution. The tilelets of Figure 4.5 are used for correct stitching.

4.5(d)), or higher LoD than the parent tile (Figure 4.5(c)).The same goes for the tilelets along northern

border (Figure 4.5(b, f, e)). The geometry shader can recognize and render these tessellation styles using

the available information. The north-eastern tilelet which is adjacent to both neighbours gets handled

automatically. An example tessellation of a tile is shown inFigure 4.8. Our stitching scheme maintains

coherence at the borders of tiles with no abrupt changes or gaps. It also requires less number of triangles

compared to schemes like zero area triangles [38] and introduce no extraneous geometry.

Figure 4.9 A tile at LoD = l (left) blends its alternate heights (shown inred) with its lower LoD (middle)
usingα. When the tile shifts its LoD, the change is not noticeable. This process is valid in reverse as
well.

The morphing factor is used to smoothen the change in LoD to avoiding popping of geometry. The

morphing factorα has a range[0, 1) and is used to interpolate between the heights of the currentLoD

level and of one lower level. Thus, the final height used for rendering ish = αhl + (1− α)hl+1 where

l is the LoD of the tile (Figure 4.9). As a tile of LoDl moves closer to farther edge of its LoD band

(due to camera moving back), itsα will drop to 0. When it crosses into the next band, the LoD will

shift to l + 1 and the alpha will become 1. When a tile moves from far to near,α changes from 0 to

22

Moving up

Moving downLateral motion

Figure 4.10 Later motion and pan/tilt (left) involve discarding an L-shaped region and bringing in new
blocks (yellow) from the CPU. When the viewpoint comes down,the merge level decreases (middle).
The extents of GPU cache are halved and data at a higher resolution is brought in from the CPU. When
the viewpoint goes up, the extents of the cache are doubled and the existing data is compressed into one
quadrant. New data is brought in from the CPU with nearer blocks getting higher priority in a staggered
manner (right). The data transfer is scheduled in a staggered manner not to affect rendering speed.

1 smoothly and increases the resolution of the tile. For the corner heights, the morphing factor for the

adjacent tile is used, as the neighbouring tile will change its LOD independently. This is the difference

when rendering the stitching triangles. This blending scheme ensures a continuous transition between

different resolutions.

4.3 Caching

The GPU Cache containsN×N blocks at the merge-level resolution, which is the maximum resolu-

tion of the terrain needed at the elevation of the camera. ThesizeN depends on the maximum visibility

required at the highest resolution. The visibility doublesas the merge-level increases. We useN = 8 for

most of our experiments, needing storage for 64 blocks on theGPU. The cache is updated periodically

to hold all the data needed for rendering when viewpoint changes. One option is to keep the GPU cache

symmetric with respect to the viewpoint as is done by Losassoand Hoppe [38]. This ensures that all

data to look around from a particular point is present in the GPU cache. We, instead, try to keep the GPU

cache symmetric with respect to areference point, which is the centre of the orthographic projection

of the view frustum onto the ground (Figure 4.10).

4.3.1 Lateral Motion of Viewpoint

Lateral motion, pan, and tilt at a constant elevation bring in new data to the GPU cache at the same

resolution. We use the position of the reference point in thecached terrain to trigger the data transfer. If

the reference point goes outside the centraln×n block of the GPU cache – wheren = N/2, – the cache

is re-centered by bringing another row or column of blocks atthe current merge level, (Figure 4.10)

discarding blocks on the other side of the cache. We load the new blocks by overwriting the discardable

blocks. The data from the CPU is loaded to selected layers of the array texture and the pointer texture is

updated to rearrange the layer IDs on the GPU. For an8 × 8 GPU Cache with each block taking 2MB

23

of memory (1024×1024, 16-bit height values), a lateral motion cache update needs16MB of data to be

uploaded to the GPU. The data transfer time is controlled using ajob-queuing scheme explained later.

4.3.2 Vertical Motion

When the camera goes up, the extent of the visible terrain increases and the resolution decreases.

Similarly when the camera comes down, the terrain extent decreases and the detail increases. For this,

we change the merge level or the base resolution of the GPU Cache. This process keeps the memory

footprint constant without compromising the requirementsfor rendering.

Ascending Motion: The merge level increases and the resolution halves when theviewpoint moves

up. A quarter of the GPU cache can be filled by sub-sampling andmerging the current contents of the

cache (Figure 4.10). New data has to be brought to the remaining space. The merging is performed on

the GPU using a separate fragment shader pass that sub-samples and copies heights from2 × 2 blocks

into a single unused block. This is achieved by the binding the target and source blocks as frame buffer

objects or textures and drawing a block-sized quad. This process needs one extra block of storage on

the GPU. The array texture thus has an extra layer which is kept in an unused-layer queue, outside of

pointer-texture. When merging, an unused layer is dequeuedand used as the target. The original four

blocks are queued as unused after the merge. At the end of the merging process 75% of the blocks

will be free (Figure 4.10). New data is brought to them from the CPU in the proximity order from the

reference point and stored in unused layers. The data transfer is triggered before the new area is needed

and can complete over a few frames. After the process completes, the GPU Cache will haveN × N

blocks and one unused layer. For an8 × 8 GPU Cache, we merge 64 blocks into 16 blocks in the GPU

using 16 merge operations. After that, 48 blocks or 96MB are uploaded from the CPU to the GPU.

If the original terrain is one million square, we can getlog2 1024 = 10 global LoDs. We reduce the

resolution in factors of 2 until the entire terrain fits into the GPU Cache. Thus the number of merge-

levels depend on the cache size and the total size of the terrain. We use a GPU Cache size of8 × 8 of

1K × 1K sized blocks for the16K × 16K Puget Sound data. It contains 14 LoD levels and only one

(= log2 16384 − log2 8192) merge-level before the GPU cache is filled. A1M × 1M data with the

same cache can use 7 (= log2 1M − log2 8192) merge levels. The data transfer time is controlled using

a job-queuing scheme explained later.

Descending Motion: When the resolution increases due to a reduction in elevation, the blocks of

the cache are replaced by higher resolution blocks, and the total extent of the terrain reduces. This is

data intensive as the entire GPU Cache needs to be replaced.

A quarter of the GPU Cache that will remain in the view are firstidentified. The physical area of

each block is to be replaced by four high resolution blocks. The remaining layers are added to the

unused-layer queue (Figure 4.10). Each block is replaced with its 4 higher resolution descendents in

order. As soon as four blocks are loaded using the unused layers, the pointer texture is updated and the

low resolution block is enqueued as unused. When the processis finished, we will haveN × N layers

in the GPU cache and one unused layer. The higher resolution is not needed for rendering immediately

24

since distance LoD increases smoothly. The increase in resolution is also anticipated ahead of time to

avoid visible update changes. For a8 × 8 blocks, we have to bring the 128 MB into the GPU memory

to increase the merge level resolution. The data transfer time is controlled using ajob-queuing scheme

explained next.

4.3.3 Job Queuing Scheme

Our primary goal is to maintain a steady frame-rate. We treatthe data transfer and merge operations

as “jobs” and queue them to be executed when the rendering process has time. Running all the operations

at the same frame can freeze the rendering at times and affectthe quality of visualization. We execute as

many jobs as possible to keep the total frame timeTt, safely within the fps constraints. The total frame

time is,Tt = Tr + Tu whereTr is time for rendering andTu is the total time taken by the jobs in the

cache updating process. For 100 fps rendering,Tt is 10 ms and we are left withTu ≤ 10 − Tr ms for

updating. We steal cycles for the update process whenTr < 10ms without affecting the fps.

The transfer of a block of 2MB from the main memory to the GPU takes 2 ms on the current GPUs.

A merge operation takes less than 0.5 ms. The number of jobs tobe performed is calculated asn =

(10−Tr)/K whereK is a constant denoting the worst case time for the job. For example ifTr = 5 ms,

andK = 2 ms for a layer update, thenn = 2 jobs can be performed per frame. Ifn < 1, we do half

jobs, by uploading half of a block. Over some number of frames, all operations are completed. This

adaptive job-queuing ensures a frame-rate of 100 in practice without any hiccups.

For the cache to be completely updated before the next updating is necessitated, the user speed will

be limited. For lateral motion, the worst case scenario is ifall the blocks are updated by half jobs needing

8 jobs or 16 frames or 0.16 seconds. If a block spansX kms at the current merge level, then the speed

limit on the camera isX/0.16) kms/seconds. In case of ascending motion, a worst case scenario occurs

when data uploading is done using half jobs, needing 96 frames or 1 second to complete. The speed will

be limited toX kms/second. In case of downward motion, if all 64 blocks are updated using half jobs,

we need 128 frames, restricting the user speed toX/1.28 kms/second. As we go up, the blocks span

double the distance on ground and thus the speed doubles for the next merge level. It is clear that the

vertical motion determines the speed limit. However, horizontal motion is most common during terrain

visualization and hence the restrictions are not limiting.For a post-distance of 10m for the Puget Sound

data,8× 8 blocks provide a visibility of up to 80 kms when the viewpointis close to the ground. With a

block’s span of 10 kms, the horizontal speed limit comes to10/0.16 = 62.5 kms/second and10/1 = 10

kms/seconds in case of vertical motion. Both are quite acceptable.

When the merge-level changes, the GPU cache gets updated completely over a finite time. Until

then, artifacts can appear since the cache is mixed with old and new layers. We usedirty texture flags to

handle this. As soon as the merge-level changes, all the blocks are markeddirty. When marked dirty, the

renderer uses the lower resolution, as with the old merge-level. As soon as the new layers get updated

and older layers are made unused, new blocks are marked clean. This way the rendering remains free of

artifacts.

25

4.4 Terrain Deformation and Manipulation

Terrains are traditionally used only as static geometric entities. The rectangular grid representation

makes it easy to manipulate them interactively or procedurally as well as to simulate interactions of

other objects with it. The height map structure of terrains make them suitable for topology-preserving

deformations. However, deforming terrains is computationally expensive as they are massive entities.

Deforming and simultaneous rendering of terrains pose a great challenge.

Interactive and Procedural Manipulation: The GPU representation of the terrain that we use lends

itself to interactive and procedural manipulation easily,exploit the computing power and architecture

of the modern GPUs. A fragment shader can operate on each height value independently or in relation

to its neighborhood. The parameters for the deformation process should be given to the shader. This

includes the user inputs like the mouse path for interactiveediting and relevant parameters for procedural

deformation. A deformation pass is triggered on each block by drawing a block-sized quad after setting

up the parameters. Deformation passes are sandwiched between rendering passes. This simulates terrain

dynamics in regular frame intervals.

Figure 4.11 (a) The mouse motion over the screen triggers interactive editing of the terrain. (b) A terrain
of 2×2 block (left) and the results of editing it (right). Editing can involve multiple blocks at boundaries
(shown circled)

Interactive editing of the terrains can also be performed with the user guiding the change in heights

(Figure 4.11(a)). The screen point is back projected to world point and transformed to the the terrain

coordinates to get a point of impact. Heights are modified based on the distance from the point using

user selected radius and intensity of impact. Figure 4.11(a) shows how a channel can be cut on the

terrain by dragging the mouse. Multiple blocks may need to beedited, based on the point of impact

(Figure 4.11(b)). For procedural dynamism based on time anddistance, each deformation pass makes

incremental changes to the terrain, between rendering passes. The accompanying video shows a crater

formation and a sinusoidal wave passing through the terrain. The heights at each point are computed by

the fragment processor using a suitable equation and used subsequently for rendering.

26

A deformation pass takes about 250 microseconds per block. We see no drop in framerates when

only a few blocks are modified in each frame. Figure 4.12 showsthe plot of the deformation and

rendering times as different numbers of blocks are edited per frame. The modification of the terrain

happens entirely on the GPU. We start a simultaneous processon the CPU to effect the same changes

on the base terrain. This is similar to write-through of memory caches. The CPU can keep up with the

GPU for user-guided editing since the CPU load is low. For procedural deformations, only the last state

needs to be created on the CPU. This can be performed as the CPUis lightly loaded.

Figure 4.12 Deformation and rendering times for a typical flight over continuously deforming terrain.

The GPU cache is a single array texture. It can be bound as a single FBO and modified in place

using a fragment shader. Layered rendering of the current GPUs enables independent editing of multiple

blocks in single deformation step. The modified terrain can be rendered immediately as the GPU Cache

itself is updated in place.

Real-time Object-Terrain Interaction: Terrains can be used as the base to simulate several inter-

actions with external objects like a bouncing ball. Though the exact physics involved could be quite

complex, effective simulation and visualization can be achieved with moderate computation power. We

take the example of multiple balls bouncing over the terrain. Balls are modelled as simple point objects

are bounce based on the local surface orientation. A gravitation force pulls the balls downward always.

If a ball collides with the terrain, local geometry determines its reflected direction and velocity.

The positions and velocities of each ball is stored as two textures in the GPU memory. The positions

will be updated by a fragment shader using the velocity and time difference in an update pass that takes

place between rendering passes. The fragment shader has access to the textures through an FBO for the

update pass. The update pass will also implement the physicssuch as collision with the terrain. The

velocity may change as a result of the physics. The terrain height has to be looked up for a given 3D

position of the ball to check for collision. This is done by converting thexy location to the GPU cache

block and grid coordinates, looking up the layer ID from the block number using the pointer texture,

and accessing the height.

27

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 100 200 300 400 500 600 700 800

T
im

e
in

 m
ill

is
ec

on
ds

Frames

Physics calculations time
Rendering Time

Total time

Figure 4.13 Physics computation and rendering times with 256K balls interacting with the terrain. A
frame rate of 100 fps is possible.

If balls are present, a rendering pass renders them at their current locations. The vertex shader fetches

the positions of a ball, checks for visibility in the frustumand renders it procedurally as a front facing

circle. Figure 4.13 shows a flight over the terrain with a quarter of a million balls interacting with it

running at 100 fps. The system can achieve 60 fps with 1 million balls2. The accompanying video

shows visual results from it. Though we use a simple constantvelocity model currently, other physics

models can also be implemented.

4.5 Results

Figure 4.14 A view of Mt Rainier, a terrain with real texture, realtime physics with balls, realtime
physics with a deforming terrain.

The overall algorithm is given in Algorithm 1, with parts forthe CPU and the shader units on the

GPU. We present experimental results using our system. Moreresults are given in the accompanying

video. We performed all our experiments on an Nvidia 8800 GTXusing OpenGL and GLSL shaders on

Linux with a Pentium Core 2 Duo CPU running at 2.4 GHz.

2Transform feedback is the recommended mode on SM4.0 GPUs to generate positions and geometry on the fly. Updating
the positions using transform feedback is slow and achievesabout 17 fps with 4K balls. Fragment shaders are much faster

28

Algorithm 1 Terrain Rendering

1: Load terrain data as blocks at all LoDs
2: Create geometry templates for different LoDs as VBOs
3: for each framedo
4: CPU:
5: Update GPU Cacheif necessary using job queuing
6: Discard outside tiles and tag intersecting ones
7: Calculate LoDl and blending factorα
8: for each tilet do
9: Render the geometry template for the interior tiles

10: Render stitching template if a border tile
11: Vertex Shader:
12: If tile is tagged. check tilelets against frustum and tag discards
13: Pass on the point down the pipeline otherwise
14: Geometry Shader for interior tilelets:
15: Discard points tagged discard
16: Generate triangles of a3× 3 tilelet, withα for morphing.
17: Geometry Shader for boundary tilelets:
18: Discard points tagged discard
19: Generate triangles of a stitching tilelet, withα for morphing.
20: Pixel Shader:
21: Apply texture, lighting, and fog
22: end for
23: Initiate deformation passif editing or deformation is on
24: Initiate an update velocity/position passif physics is on
25: Render balls from position textureif physics is on
26: end for

We use the Puget Sound data, consisting of a16384×16384 grid of 16-bit heights covering a square

region of length about 160 km, for most experiments. We also use the8192×4096 BlueMarble grid with

earth texture and an8192×4096 height data with monochrome satellite image as texture. We simulated

a very large terrain by first tiling 4 sets of PugetSound, flipping it along the vertical and horizontal edges.

This 32K × 32K terrain occupies 2 GB of space and can be tiled along X and Y directions infinitely.

We simulated a1M ×1M terrain by replicating it 32 times each in X and Y directions.Replication was

effected using modulo computation without additional memory. The data-access module on the CPU

was the only unit aware of the replication. The terrain system was unaware of it. The accompanying

video shows more examples.

Figure 4.15 shows the system performance on a flight over the 1trillion sample terrain. The camera

moves laterally till about frame 2000 with significant tilt.The thin peaks in update time correspond to

lateral cache updates. The camera goes up and merge shifts occur near frame 2200. The triangle rate

falls when many distance-levels are used as the terrain access doesn’t benefit from its caching scheme.

The camera starts to come down around frame 3200.

29

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500

 80

 160

 240

 320

 400

T
im

e
in

 m
ill

is
ec

on
ds

T
ria

ng
le

 R
at

e
in

 m
ill

io
ns

/s
ec

Frames

Total Rendering Time
Update Time

Triangle Rate

Figure 4.15 Cache update time, total rendering time, and the triangle rate for a typical flight over the
terrain.

The rendering time below 8 milliseconds per frame at all times, with the average around 2.5 ms on

the trillion sample terrain under different viewer motions. The system can provide a guaranteed 100 fps

rate without the CPU, the GPU, or the bandwidth between them being a bottleneck. The system achieves

a rendering rate of upto 350 million triangles per second andan average rate of over 160 MT/s. This

remarkable rates are made possible by exploiting the power of the GPU. The CPU load stays between

5-10% even when the viewpoint moves up/down. We ran experiments on Puget Sound data using the

geometry clipmap demo provided by Hoppe [2] on the same GPU. Their system renders an average of

300K triangles per frame and obtain an average triangle rateof 100 million triangles per second. Our

system renders an average of 450K triangles per frame with a peak triangle rate of 350 MT/s.

4.6 Conclusions

In this paper, we presented a system for real-time rendering, deformation, editing, and physics com-

putation of large terrains. The representation enables quick rendering and the ability to manipulate the

terrain on-line. The GPU plays the key role in representation, rendering, and manipulation of the terrain.

The CPU load is kept very low using the geometry template based rendering, second level culling, and

terrain manipulation using fragment shaders. We demonstrate fairly sustained frame rates of over 100

fps and triangle rates of upto 350 million.

The primary limitation of our system is the need for the wholeterrain to be present on the CPU

memory. This limits the size of the largest terrain that can be handled since data cannot be accessed

30

from disks at that rate. However, the terrain on the CPU can bethought of as a cache at an appropriate

resolution of the terrain that resides on the disk or over thenetwork. A scheme very similar to what is

used for the GPU cache can then be used to manage the data on theCPU at an appropriate resolution.

Since the CPU cache will need occasional updates, we can update it with a parallel low priority thread

using today’s dual core processors. The other limitation concerns the speed limit on the viewer imposed

by the GPU cache updating. This will improve as the CPU to GPU bandwidth improves on future GPUs.

31

Chapter 5

Spherical Terrain Rendering

Earth traditionally have been represented by the cartography system using latitudes and longitudes.

A 2D grid structure, which we typically see in conventional atlas maps, is wrapped around the sphere

using the polar coordinate system and two poles are formed [1]. Terrain rendering is typically done

using a 2D array of heightmaps with algorithms optimizing memory usage, CPU usage and quality

of rendering [5, 38, 49]. Rendering terrains on sphere seemsan easy task because of the coherency

between the latitude/longitude system of the sphere and the2D grid nature of terrain data. The intuitive

way would be to use the 2D heightmap data and place them directly at regular latitude and longitude

intervals on the sphere. Though the above will apparently solve the problem, it has serious difficulties.

The created sphere, shown in Figure 5.1, contains the same number of samples at the poles as at the

equator. In other words, the poles get very high resolution and the equator gets lowest. Both these

points are indistintive on the surface of the sphere and should get equal detail. Two major problems

here are: Uneven sampling of the sphere and inconvenient singularities at the poles where millions of

vertices coincide.

Figure 5.1 Poles have singularity and the whole sphere has uneven sampling.

Another way of sampling a sphere is Hierarchical TriangularMesh which provides almost uniform

detail over the whole surface of the sphere. Starting with anoctahedron containing eight equilateral

triangles, each triangle is spherically subdivided into four triangles, recursively. The recursion is stopped

when a required detail is reached (Figure 5.2). This forms a quad-tree like structure with8×4l triangles

given l recursions/levels.

32

Figure 5.2 After a decided number of recursion a desired detail of sphere is reached(Image Courtesy:
A. Szalay, J. Gray, et al. [48]).

The HTM, however, is not compatible with terrain rendering techniques. HTMs are fundamentally

based on equilateral triangles whereas a terrain renderer uses right-angled triangles to tessellate the reg-

ular intervals of heights (Figure 5.3(a)). This differencelimits us from directly using a terrain rendering

system with HTM structure of the sphere. In this chapter, we present a method in which we adapt a ter-

rain rendering technique to an HTM representation of the sphere. We choose geometry clipmaps as the

terrain rendering technique because of its low and constantmemory usage, fast rendering and large view

ranges [38]. Thanks to HTM, we will get uniform detail, singularity free representation, and clipmaps

in addition to fast rendering.

Geometry Clipmaps are based upon creating the mesh with right triangles as discussed earlier. Using

the equilateral triangles directly will make the resultingclipmaps rhomboidal in shapes (Figure 5.3(b))

and the relief features will get skewed. We introduce Hexagonal Geometry Clipmaps which pack equi-

lateral triangles perfectly while retaining clipmap’s lowand constant memory usage and large view

ranges. The HTM underneath ensures uniform samples over thesurface of the sphere.

Figure 5.3 (a) Regular terrain, (b) Skewed terrain after samples rendered with equilateral triangles. If
clipped from the marked region, yields a hexagon.

33

5.1 Hexagonal Geometry Clipmaps Overview

Rendering equilateral triangles between the heights of a given terrain data will produce a skewed

relief, which is rhombus in shape. We clip the two sharp edgesof the rhombus in a way that it forms

a regular hexagon as shown in the Figure 5.4. Note that this clipping is used only while rendering; the

terrain data resides in square shaped clipmaps always. Following the geometry clipmap’s properties, the

viewpoint is surrounded by hexagonal shells, each with reduced detail farther from camera. This way,

clipmaps can be defined in hexagon shapes to be compliant withequilateral triangles. We describe the

process in detail in subsequent sections.

Figure 5.4 (a) 2D grid clipped to form a six sided polygon, (b) The polygon takes shape of hexagon
when rendered with equilateral triangles.

5.2 Representation

A hexagonal clipmap uses a 2D clipmap structure for the height data. A 2D clipmap of a size

(2n + 1) × (2n + 1), n ≥ 2 is used in memory. To make a six sided polygon, we diagonally mark

2n−1 + 1 samples at two opposite corner pairs as unusable. In figure 5.4(a), a six sided polygon is

shown with2n + 1 samples at each of its sides. If we take three adjacent non-collinear vertices and

create an equaliteral triangle between them, the six sided polygon takes the shape of a regular hexagon

(Figure 5.4(b)). Note that to form regular hexagons with thesame number of samples at each side,

we have to maintain clipmaps of size(2n + 1) × (2n + 1) instead of conventional clipmap’s size of

(2n − 1)× (2n − 1).

Terrain relief features are physically bound with the regular 2D nature of the grid. By using equilat-

eral triangles we skew the relief by30◦ in a direction. We transform the heightmap sheared in the other

direction as an offline process. This way the original terrain’s physical form is retained since the two

opposite skews compensate each other.

34

Figure 5.5 (a) Hexagonal clipmaps as viewed from top, (b) Hexagonal clipmaps in the physical form,
(c) Hexagonal clipmaps in usable memory.

Using the above representation, we are able to use 2D grid heightmap data, which goes well with

the rectangular memory representation of textures on the GPU, with hexagonal clipmaps. Our rest of

the representation method follows exactly like geometry clipmaps. We maintain a pyramid stack of

clipmaps, with the highest detail given to the middle regionand further on reducing detail but occu-

pying more region (Figure 5.5(a)). Memory wise, this takes the form of a cylinderical/cuboidal stack

(Figure 5.5(c)); Phyically, this takes the form of a conicalshape (Figure 5.5(b)). According to the

motion of the camera we update our clipmaps in a way similar toF. Losasso and H. Hoppe [38].

Our representation has the problem of needing extra memory.Since we use hexagonal clipmaps

but maintain regular square clipmaps in memory, it leaves some amount of memory unusable which is

never used. Hexagonal clipmaps end up using9/16 of the square clipmaps loaded in memory. This is

acceptable because of the already low usage of memory of clipmaps. Furthermore, we can use those

regions to keep terrain data of other parts of clipmap thereby reducing the 2D size of the clipmap. We

are investigating this in our future work.

Figure 5.6 Two adjacent base triangles form a diamond. Four such diamonds complete the octahedron.

35

5.2.1 HTM Terrain Data

An octahedron contains eight equilateral triangles. Thesebase triangles are subdivided recursively

[48] until the detail of sphere required is reached (Figure 5.2). If we consider any two adjacent base

triangles as a single unit, it is a30◦ sheared 2D grid of samples. We call such a unit as adiamond. We

maintain usual 2D heightmap data in memory for these diamonds. The 2D grid data of a diamond has

two noticable properties: Part of the cartographic equatoraligns with the diagonal of this image and

the poles as the two opposite corners (Figure 5.6). This way,a pole is represented by only one sample

and equator is represented using the highest resolution. Toform a diamond, we pick one base triangle

from northern hemisphere and its adjacent southern hemisphere base triangle. Four diamonds form four

2D images and can represent the whole sphere. We consider each of these four 2D images as separate

terrains, which are handled independently.

Figure 5.7 A typical planet data converted to be HTM compliant and as a side product it has no redun-
dant information.

5.2.2 Conversion of Planet Data

Planet data is typically available in cartographic form of size 4n × 2n which uses the full row of

values to represent the poles as well as the equator. We transform the planet data so that it squeezes into

four diamonds. We cut the cartographic map into four images of sizen× 2n. Starting from the middle

row of pixels in these images, we keep shortening each row till we reach a poles which are left with one

pixel each. These rows are aligned as subsequent diagonals in another image which is our diamond and

is of sizen× n. These four images take4× n× n = 4n2 memory space as opposed to4n× 2n = 8n2

map size, saving50% of disk space as all the redundant data is removed (Figure 5.7).

36

5.3 Clipmap Updates

The terrain data is stored in the main memory in as many resolutions as the number of clipmaps

utilized by the system. If we have a terrain of sizeN × N heights, and we usel number of clipmaps,

then our main memory usage is:
∑l

x=0
N
2x ×

N
2x . Clipmaps are technically square images and are loaded

to the GPU memory as a single array texture. For a clipmap of sizen × n, the GPU memory usage is
∑l

1 n × n. The array texture is bound to a single texture unit and the shader programs have access to

all the clipmaps at all times. When the clipmaps need to be updated due to camera motion, the selective

layers of the array texture are toroidally updated to hold new data (Figure 5.8). This is an adaptation of

the updating scheme of geometry clipmaps of F. Losasso and H.Hoppe [38].

Figure 5.8 With the motion in camera, new data is torroidally updated inthe layers of the array texture.
(a) Layer before update, (b) Camera moves (green), Update region (red), (c) Layer after update.(Image
Courtesy: A. Asirvatham, H. Hoppe [2]).

When the camera moves in a horizontal direction, all the clipmaps don’t update at the same time. The

inner clipmaps require frequent updates than the outer ones. This is due to the difference in resolution.

For example, if the camera moves 10 meters, both the inner clipmap and the outer clipmap need to

update data for 10 meters, inner clipmap being higher in detail gets more data and outer clipmap gets

less data. For camera motion of 1 meter, the outer clipmap maynot update at all or will update later.

This means, the lower the detail of a clipmap, the lesser updates it needs. This distorts the nested

hexagonal grid structure. Thesedistorted states periodically cycle as the user moves over the terrain.

Even though our memory update mechanism is same as geometry clipmaps, the hexagonal clipmaps’

rendering distorts in a more complex manner. Different distorted states need differentrendering blocks

as explained in the next section.

5.4 Rendering

A rendering block in our representation is a parametric vertex buffer object (VBO) containing values

in the range[0, 1]. Rendering blocks act as templates and can be attached to anygiven four points

(block-bounds) to tessellate the enclosing region (Figure 5.9). For a perfect one-to-one mapping of a

37

Figure 5.9 Bilinear interpolation at the vertices of a rendering blockcreates a mesh between the block-
bounds.

vertex and a sample in the terrain data, we need to maintain rendering blocks for every unique structure

possible coming from the different variations of distortions in clipmap updates (Figure 5.10). A total of

3 unique distorted states are possible and we require9 unique rendering blocks (an example is shown

in Figure 5.9) for a perfect tessellation of the terrain. According to the clipmap size decided by the

system, these VBOs are pre-computed and loaded into the GPU memory at the start for continous and

quick usage. As the camera moves, the distorted states are calculated between each pair of adjacent

clipmaps. For each distorted state, the corresponding VBOsand their block-bounds are sent to the GPU

for rendering.

Figure 5.10 As the camera moves these distorted states of the clipmap cycle. Each red quadrilateral
comes from a unique rendering block. There are three states and nine rendering blocks are required.

The vertex shader of the GPU gets the parametric vertex from the VBO and the block-bounds. Bilin-

ear interpolation gives the world pointpw on the surface of the sphere. This point is then stretched along

the radiusR asPw = pw × (R + h)/R to give it the elevationh, which is fetched from the clipmaps

kept in the GPU memory as textures. This process does not involve costly operations like sine or cosine

to calculate the world point and helps in the performance of the system. However, due to interpola-

38

tion, the radius of the planet needs to be set carefully according to the resolution of the terrain data and

floating point precision limitations.

5.4.1 Smooth Level of Detail Transition

Regions on the planet will transit through low to high resolution or vice versa when the user is

continously moving on the planet. The height data will change due to the resolution shift which happens

when it goes through different clipmaps. This can create sudden jumps in the rendered terrain and can

reduce the rendering quality. We morph the heights of the clipmaps with its lowest resolution version,

weighted by the distance from camera by the following formula:

α = max(min((ax1 + by1 + c)/W, 1), 0)

h = hl(1− α) + hhα

Whereα is morphing factor,W the transition distance,(x1, y1) the texture coordinates at the elevation

point,hl the elevation at low detail clipmap,hh the elevation at high detail clipmap andax+ by+ c = 0

the line equation of a clipmap’s side in texture space. Note that the line equations’ orientation are fixed

for sides, the hexagon never changes its orientation since it has to fit the HTM triangles. Because of this,

(a, b, c) are constants for each of the six sides. While the camera moves, this changes the height slowly

to the low resolution (Figure 5.19), so that when the next clipmap comes, the height data is already

changed and we don’t see any quirks in the visuals. This calculation is done in the vertex shader. The

rendered terrain is technically dynamic but looks rigid with the motion.

5.4.2 View Frustum Culling

At any point of time, the camera sits at the center of a giant hexagonal space. By getting the camera

yaw angle, we select the triangular areas of the hexagon which are in the field of view. Given a horizontal

field of view of90◦, three adjacent triangular regions are marked for rendering (Figure 5.11). Rendering

blocks are not triggered for the unmarked triangular regions. This selection is done at the begining of

every frame to save unnecessary computations.

Figure 5.11 View Frustum Culling is a mere selection of relevant sides according to camera yaw.

39

5.4.3 Handling the Whole Planet

Each diamond is handled as an independent terrain. To handlethe whole spherical planet, we arrange

four diamonds in abig-texture (Figure 5.12). Clipmaps wrap at the bounds of the big-texture. Most of

the time the camera hovers around a single diamond and nothing special needs to be done to handle

the whole planet. But there are two more cases. A camera travelling across the longitudes will have

moments when two diamonds are visible. When the camera is near the poles, terrain spans over four

diamonds (Figure 5.13).

Figure 5.12 Diamonds combined into a single big-texture. Note that the North Pole comes in the middle
and South Pole is at the corners.

Figure 5.13 Movement of camera accross the whole planet will encounter multiple diamonds in view.
At the poles, camera will see a terrain which is spanning overall the four diamonds.

In such cases, diamonds are still treated as independent terrains. That means, if four diamonds are

visible, each will be rendered four times using its clipmap data. The rendering blocks going out of bound

of the diamond are culled. Few rendering blocks are partially out of bounds, for those, the out of bound

triangles areburied by making their elevation negative or zero. Note that the big-texture theoritically

carries the whole dataset. If the dataset is huge, the big-texture may need to be kept in parts.

40

5.5 Results

Hexagonal clipmaps give optimal rendering throughput and steady rendering similar to square clipmaps.

Distances from the edges of the hexagonal clipmaps to the viewpoint vary less than square clipmaps,

since hexagon is closer to a circle than a square (Figure 5.17), it provides better uniformity in triangle

count on the screen at any camera yaw angle. We implement our system in OpenGL 2.1 and tested

on Nvidia GeForce 8800 Ultra, GTX 280 and GTX 480. For the purpose of the experiments, we took

the Puget Sound data and used it for each diamond over the HTM sphere. For continuity between the

diamonds, we flipped the data to be continous. We use a clipmapsize of257 × 257 forming a hexagon

with side of129 samples. We get steady framerates in a typical walkthrough over the terrain. Fig-

ures 5.14,5.15,5.16 show our performance results on puget sound data. Some rendering results can be

seen in Figures 5.17,5.18,5.20.

Figure 5.14 Performance resuts on Puget Sound data treated as a diamond,on an Nvidia 8800 Ultra.

Figure 5.15 Performance resuts on Puget Sound data treated as a diamond,on an Nvidia GTX 280.

41

Figure 5.16 Performance resuts on Puget Sound data treated as a diamond,on an Nvidia GTX 480.

5.6 Conclusions

We presented a Spherical Terrain Rendering algorithm whichprovides uniform sampling of points

over the surface and fast rendering with low memory usage. Hexagonal Clipmap provides the best

two methods: HTM is best to represent spheres and clipmaps are best to render terrains. Applications

like Google Earth/Virtual Earth, space simulators, 3D social networks (e.g. Second Life) or spacecraft

involving games can show seemless journey from ground to space using this method. In future, we

would like to improve our memory usage and try to fit usuable terrain data in unusable regions of our

clipmaps on the GPU. Apart from this, HTM primarily being a geospatial indexing method, we would

incorporate searches in different resolutions with addressing and fast look-up.

42

Figure 5.17 Hexagonal Clipmaps are closer to the shape of concentric circles.

Figure 5.18 Different clipmaps shown in different shades.

43

Figure 5.19 Blending factor in transition, blackness level indicates value ofα.

Figure 5.20 A scene while a flythrough on the spherical terrain.

44

Chapter 6

Painterly Rendering of Terrains

The regular nature of the terrain data make them a specific type of model. We exploit this special

nature of terrains to provide efficient painterly renderingfor them. A technique to order the triangles

of a terrain from back to the front is at the heart of this. We achieve an fps of 120 on Puget Sound

terrain data on the Nvidia 8800GTX GPU. In this chapter, we present a real-time painterly rendering

technique to make abstractions of terrains. We also emphasise our results with post processing for varied

stylizations.

We built our painterly rendering system over the terrain rendering system explained in Chapter which

can achieve 150 fps with an average rate of 84 million triangles per second and a highest of 200 million

triangles per second on current GPUs.

The organization of the chapter is as follows: A brief overview of the system is mentioned in sec-

tion 6.1. In section 6.2 we show the representation of terrain data and stroke textures. Here we also

explain view frustum culling and level of detail management. section 6.3 shows the method in which

we are ordering the strokes in back to front order. Techniquefor rendering the strokes is mentioned

in section 6.4. Illustrations and the performance of our system are discussed in section 6.5. We con-

clude with a discussion on technical aspects and aesthetic considerations with some future works in

section 6.6.

6.1 Overview of our Approach

Terrains are heavy objects, often involving millions of triangles in each frame. Conventional two-

pass painterly rendering techniques will be inefficient forthem. We combine painterly rendering with

terrain rendering optimally for real-time performance. Wetreat each height in the elevation map of

the terrain as a stroke’s location in the 3D world. The point location is projected on 2D screen using

projection transformation and a rectangular stroke is rendered at that location, orientated along the

projected slope of the terrain (see Figure 6.1). Real-time performance is obtained using the following.

1. Only the strokes of the visible part of terrain are rendered for efficiency. This is achieved with a

view frustum culling algorithm.

45

2. The strokes are rendered in a back to front order for alpha compositing. We exploit the special

property of terrain representation to obtain the back to front ordering in one pass. This is explained

in section 6.3.

3. The level of detail of the terrain is changed smoothly withdistance from the viewpoint. This

avoids the problem of strokes getting cluttered at far distances, which can be visually distracting.

Level of detail also reduces the rendering load.

The whole terrain is kept in the CPU memory. A section of it needed for rendering is cached on the

GPU memory as elevation maps. Precomputed stroke texture, color texture, normal map, and the slope

map are also stored in the GPU’s texture memory. The terrainsare cached in terms of1024 × 1024

blocks and are rendered in terms of64 × 64 tiles. The tile is the basic unit for rendering, view frustum

culling, and LoD management.

Figure 6.1 Each height in the height-map is converted into a rectangle which is oriented along the
terrain’s slope at that point. An8× 8 grid is shown as example.

Each stroke is sent by the CPU as a single point primitive as a geometry template, which gets con-

verted into a rectangle on which a stroke texture is mapped. This is accomplished with DirectX10/SM4.0

based shaders explained in section 6.4. Each point on the terrain is rendered as a stroke. The stroke is

aligned in the direction of the slope at the 3D terrain point to imitate how artists draw such scenes. We

render the strokes in the back-to-front order by exploitingthe regular grid structure of tiled terrains.

Points of a tile can be scanned and rendered as strokes in the back-to-front order, based on the view

orientation. Eight such orderings are sufficient to handle any view orientation. The tiles that survive

frustum culling are also rendered in the same order to provide a back to front ordering for the entire

terrain without sorting. This procedure enables us to render arbitrarily large terrains at frame rates of

120 and above in the painterly style.

6.2 Terrain Representation

Our base terrains are 2D grids of heights with a fixed post-distance in the X and Y directions.Our fo-

cus is on painterly rendering of the terrain at real-time rates without the CPU, the GPU, or the bandwidth

between them becoming the bottleneck. The available terrain data is loaded in the CPU memory and a

contiguous window of the terrain is kept in the video RAM of the GPU based on the current viewpoint.

46

Figure 6.2 Reference point is at the center of ground-plane projectionof the view frustum (marked as
blue). Reference point is kept within the2 × 2 blocks. As it goes out it is re-centered. The figure
assumes4× 4 cache size.

6.2.1 Representation of data

Terrains are divided into fixed memory-sizeblocks, each of which is divided into a number oftiles.

A tile is the basic rendering unit for the CPU. Currently, blocks are of size1024× 1024 and tiles of size

64×64. These blocks are loaded as textures on the GPU memory. We maintain aGPU cache consisting

of N × N blocks which gets updated periodically to hold all the data needed for rendering. We try

to keep the GPU cache symmetric with respect to the projection of the view frustum on an average

“ground” plane. We do that with the use of areference point which is kept close to the center of the

GPU cache (Figure 6.2). We use the center of ground-plane image of the view frustum as the reference

point currently. This ensures fixed in memory representation for the terrain.

If the reference point goes beyond the central2× 2 block of the GPU cache, the cache is re-centered

by bringing another row or column of blocks (Figure 6.2). Since the cache is maintained in memory

as an array of texture ids, re-centering involves downloading a few blocks to the GPU and adjusting

pointers on the CPU. The data transfer time is kept small using a job-queuing scheme. The blocks to

be brought in the GPU cache are not done at once, but done successively in following frames to avoid

possible jerks. The basic terrain system is able to render large, CPU resident terrains at above 100 fps

along with the cache updating in the background.

6.2.2 Level of Detail

The view frustum culling algorithm treats each tile as basicunits. The bounding sphere of tiles

are tested against the six planes of the frustum. On the basisof this, tiles are marked to be inside or

totally outside the frustum, and are assigned with aLOD number. LODs (Levels of detail) for a tile

include different resolutions of an area on the ground. A particular LOD of a tile can be computed

by dropping alternate samples from the better LOD available. Highest LOD for a tile contains all the

samples. We calculate the rendering LOD of a tile using its distance from the viewpoint (Figure 6.3).

Farther the distance, lower the LOD. LODl becomes a function of distanced as the integer part of

47

Figure 6.3 Tiles outside view frustum (marked red) are eliminated. Tiles totally inside (grey shaded) are
rendered with strokes at each of its sample’s locations. LODs of tiles to be rendered and the blending
factor is calculated as a function of distance. Fewer strokes are drawn for a lower LOD tile.

l = log(1 + d/dt), wheredt is a pre-decided LOD transition distance. When the LOD of a tile changes

from one to another, many samples/strokes may pop up suddenly. For this, we morph the tile from one

LOD to other by fading the alternative strokes away as they goout and vice versa. The fractional part

of l is used as themorphing factor and is multiplied to the opacity of alternative strokes in the vertex

shader. While Wagner [49] uses the morphing factor to geomorph two different heights at that same

location, we use it to fade in or fade out the strokes which arecoming in and going out respectively,

giving a smooth transition without popping artifacts.

6.3 Back-to-Front Stroke Ordering

A back-to-front ordering of samples/strokes of the terrainis at the heart of our algorithm. We dis-

cretize the camera yaw into 8 zones of each45 deg each shown in Figure 6.4(a). Each zone corresponds

to a particular order of scanning the heights for guaranteedback-to-front ordering of triangles. The 8

zones have unique ordering, four of which are shown in Figure6.4(b). The same scan order applies to

the tiles inside the view frustum as seen in Figure 6.5. In practice, we switch the ordering a little while

after the viewpoint is into the new zone to avoid unnecessarytoggling of the ordering at the boundaries

between zones. Tiles are rendered asVBOs (vertex buffer objects) for good performance. A single VBO

can render any tile, as other parameters like tile’s world origin, blending factor etc. is packed up in

texture coordinates. For a given range of orientation of thecamera, an ordering is fixed. Thus each zone

corresponds to a unique VBO.

The same order is used to scan the tiles for view frustum culling. Figure 6.5 shows one out of eight

of the possibilities for tile scanning shown in Figure 6.4(a). All the tiles farther from the camera get

48

Figure 6.4 (a) A tile can be viewed from many yaw directions, but only eight zones are sufficient for
a back to front ordering of samples in it. (b) Four possible arrangements of samples for some ranges
shown in (a); Other ranges can be handled in the similar way.

rendered before the nearer ones. Because of this, all the strokes in the screen in that view become

ordered from back to front without the cumbersome need of sorting.

6.4 Stroke Rendering

We send points to the graphics pipeline for each stroke to be rendered. Vertex shader computes the

exact world location of the stroke at this point. It also calculates the color from the texture and normal

map of the terrain with other lighting information (the unified architecture of latest GPUs allow fast

Figure 6.5 View frustum culling algorithm testing tiles in a specific order depending upon the camera’s
orientation. Here zone0 is shown. Such eight orders of testing are possible as explained in Figure 6.4.

49

texture access from any shader [7]). The alpha of the point ischanged according to the morphing factor

decided for that tile from the CPU. The vertex shader forwards these things to the pipeline.

Figure 6.6 Overview of rendering of stroke. Each vertex from the VBO gets converted into a rectangle
which is mapped with a stroke texture.

Geometry Shader of the GPU can generate primitives [7]. It converts the single point primitive sent

from the CPU into a rectangle for the brush sprite (Figure 6.6). The perspective division of the graphics

pipeline makes the strokes smaller when they go farther, while painterly rendering needs constant sized

strokes. To compensate for this process, the vertices are multiplied with thew value (the perspective

scale factor) before rasterization. This reverses the division (Haller and Sperl [20]) and the strokes

always maintain the same size on the screen. This process canlead to holes in the surface if the camera

goes very close to the ground for a given point density. We disable the multiplication at such distances

when the strokes start to lose density.

Figure 6.7 Slope-map, Puget Sound dataset

The generated rectangle is subsequently oriented in screenspace along the slope of the terrain at

that location since artists tend to place their strokes along the slopes of mountains running down to the

valleys. We precompute aslope-map that gives the direction of maximum gradient at every point in the

terrain (Figure 6.7). Slope-map stores the gradient vectorin the world space, which is accessed by the

Geometry Shader for every sample, is transformed to camera coordinates and to the image space to get

the stroke orientation.

50

The fragment shader accesses the stroke texture, and modulates its color with the color coming in

from the pipeline. Alpha blending happens between these rendered strokes so that they mix among

themselves for a smooth output. The outline of the whole method is described in Algorithm 2.

Algorithm 2 Painterly Rendering of Terrains

1: Load stroke texturesst
2: Load heightH, colorC, normalN , slopeS map of terrain
3: Create 8 VBOs for different camera yaw-ranges
4: for each framedo
5: Update GPU Cache if necessary (section 6.2.1)
6: Determine zoneq depending on the yaw-range of the camera
7: Perform VFC and LOD assignment based onq.
8: for each tiledo
9: Send VBO[q]

10: Vertex Shader: Calculate color using lighting
c = f(C,N). Calculate positionp using heightH

11: Geometry Shader: Generate a quad atp,
orient along slopeS, assign colorc

12: Fragment Shader: Output colorco = mix(c, cst).
At a different render target, output color as normal of stroke textureNst

13: end for
14: Phong shade the output using the normal map
15: end for

For more stylizations, we render the normal maps of these strokes separately as well. We do this with

multiple render targets supported by modern GPUs. In a different pass, these two outputs are treated as

a texture and its normal map respectively, and are mapped on ascreen aligned quad. With the help of the

normal map, the scene can be Phong shaded with a varying lighting source (Figure 6.8). This process is

inspired by [24] but we do it in real-time on rendered outputsharnessing the power of modern GPUs.

6.5 Results

We built our system and experimented on a Intel Pentium Core 2Duo E6400 as the CPU and an

NVIDIA 8800GT as the GPU. We used the OpenGL 2.1 graphics library and GLSL 1.20 shaders. We

chose different screen resolutions to render upon for speedof alpha blending is screen size dependent.

Performance is dependent on stroke size as well. We choose anoptimal stroke size; Small enough to give

good performance but not as small to leave holes in the terrain. With a resolution of1024× 768, we got

seamless performance with an average triangle rate of 40 million triangles per second (Figure 6.9). With

a resolution of1280×1024 we get 35 million triangles per second and 120 fps (average).Traditional two

pass painterly rendering technique (with depth map computed in the first pass) had half the performance

of our system. We did our experiments on Puget Sound terrain data available from Georgia Tech website.

Blue marble data set was also included in our experiments. Weused some real satellite terrain data-

51

Figure 6.8 The color output and the normal map output of the scene are used to Phong shade on top
of it to stylize it. The effect is that of shining a spotlight on the painting. The normal map is contrast
stretched here for visibility.

set and some synthetically created ones as well. We show the effects of different stroke directions,

with along the slope direction. In Figure 6.12 and 6.10(top-right), the strokes are oriented along a

perpendicular direction to the XY projection of the normal vector. This simulates the effect of strokes

flowing over the ridges instead of along the slopes. An artistdrawing with strokes of fixed orientation

is shown in Figure 6.10(bottom-left). Effect of adding small randomess to orientations is shown in

Figure 6.10(top-left). Figure 6.10(bottom-right) shows the use of a small brush with sharp strokes. The

accompanying video contains painterly walk-through on Puget Sound data. Some of our results are

shown in Figure 6.11, 6.13, 6.14, 6.15, 6.17, 6.16.

6.6 Conclusions

We presented a real-time painterly rendering technique forterrains. We get nice visuals with frame

to frame coherence on animation of the scene. Considering rich nature of terrains and cumbersome

nature of painterly rendering processes, we get good performance with our system using latest graphics

hardware. Our system being single pass only, is faster than traditional painterly rendering techniques

involving two passes. With varied stroke textures, and orientations of strokes, different artistic styles can

be achieved with variety of taste. In future, we wish to render terrains with procedural stroke textures

similar to geo-graftals mentioned in [39] and [30] to createeven varied visuals and improve performance

by optimizing the techniques specifically for terrains.

52

 20

 30

 40

 50

 60

 70

 80

 0 400 800 1200 1600 2000
 0

 40

 80

 120

 160

 200

 240

 280

M
ill

io
n

tr
ia

ng
le

s
pe

r
se

co
nd

F
ra

m
es

 p
er

 s
ec

on
d

Frames

Triangle Rate
Frame Rate

Figure 6.9 Walkthrough over the terrain

Figure 6.10 (top-left) Strokes placed along slope with some perturbations in orientation. (top-right)
Strokes placed along the perpendicular to the normal. (bottom-left) Strokes placed with a fixed orienta-
tion. (bottom-right) A sharp stroke texture. Sky is a pre-painted texture.

53

Figure 6.11 Distant view of Mount Rainer

Figure 6.12 Strokes running along perpendicular to normals.

54

Figure 6.13 A region in Puget Sound painterly rendered which has low height variations.

Figure 6.14 A real textured dataset rendered in a painterly style.

55

Figure 6.15 Simple rectangles are used instead of proper brush strokes to illustrate the flow of strokes
along a hill

Figure 6.16 A valley region

56

Figure 6.17 Mountains and valleys in Puget Sound painterly rendered.

57

Chapter 7

Conclusions

In this thesis, we presented methods to render terrains in real-time on commodity GPUs. Our aim

was to find methods for different needs of handling terrains.Terrains sometimes need to be just rendered

and sometimes they need processing in real-time. Terrain rendering can be for pure entertainment or

can be for informational or educational purposes. We wishedto explore ideas which suit this wide

requirements and build systems satisfying them.

We presented a system for real-time rendering, deformation, editing, and physics computation of

large terrains. The representation enables quick rendering and has the ability to manipulate the terrain

on-line. We wanted a system which enables application developers direct and simple accessiblity to the

terrain data. For example, applications like video games, in most cases, have a terrain renderer with

many other components: Networking for multiplayer, physics and animations for realistic behavior,

artifical intelligence of NPCs (non playable characters) for replayability value etc. Our system keeps a

low profile on the CPU keeping a lot of processing margin for other components in such applications.

Then we presented a Spherical Terrain Rendering algorithm which provides uniform sampling of

points over the surface and fast rendering with low memory usage. Traditional systems used to keep

discrete visibility of the planet from ground zero and from space. Tricks used distract the viewer when

the flythrough needed a switch between the representations.Our unified representation enables us to

view the terrain of the planet in real-time from space to ground level. The reason behind our claim,

that this is the best method to do spherical terrain rendering, is it combines two independent and best

methods (HTM to index and sample spheres, and Clipmaps to render terrains) in a very simple and

direct way.

We also presented a method to render terrains with an artistic style for abstract visuals. Through

computer graphics, terrains with a pencil, pen or ink style have been tried before but painting remained

a cumbersome task. With our back to front ordering method without the need of sorting, it is possible to

have many brush strokes in real-time on the screen mixing with each other, just like an artist mixes them

on a piece of canvas. We get nice visuals with frame to frame coherence on animation of the scene. Con-

sidering rich nature of terrains and cumbersome nature of painterly rendering processes, we get good

performance with our system using latest graphics hardware. This system opens a lot of possibilities for

58

artists as they can experiment with creating different type, or density, or orientation of strokes. Different

artistic styles can be achieved with a variety of taste.

We conclude this thesis by mentioning a number of possiblities for future work. Our terrain renderer

requires all data to be present at the main memory since our primary focus was creating a GPU Cache

based system. A scheme very similar to what is used for the GPUcache can be used to manage the data

on the CPU at an appropriate resolution. Since the CPU cache will need occasional updates from the

disk, we can update it with a parallel low priority thread using today’s dual core or better processors.

With introduction of Solid State Drives as a commodity, caching will have even better performances.

In spherical terrain rendering system, other than just rendering, HTM’s geospatial indexing capabili-

ties can be used to create a search engine for geological, topological or simple geographical information.

Apart from above, our memory usage right now is9/16 of what we consume in the memory. Since our

system has a low memory footprint in the first place, this doesn’t seem to be a problem. Nevertheless

fitting usuable terrain data in unusable regions of our clipmaps will be a welcomed improvement.

We introduced painterly rendering of terrains and we believe there is a lot of future work needed.

According to emerging painterly styles, they can be algorithmically analyzed for working on terrains

along with aesthetical analysis of the results. The idea of rendering procedural or vector strokes (similar

to geo-graftals mentioned in [39] and [30]) instead of current bitmap strokes is already thrilling. This

will open even more options for artists to create varied visuals.

* * *

59

Related Publications

Conference Papers:

• Shiben Bhattacharjee and P. J. Narayanan.

Hexagonal Geometry Clipmaps for Spherical Terrain Rendering,

Sketch, inThe 1st ACM SIGGRAPH Conference and Exhibition in Asia (SIGGRAPH Asia), 2008.

• Shiben Bhattacharjee, Suryakant Patidar and P. J. Narayanan.

Real-time Rendering and Manipulation of Large Terrains,

Paper, inSixth Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP),

2008.

• Shiben Bhattacharjee and P. J. Narayanan.

Real-time Painterly Rendering of Terrains,

Paper, inSixth Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP),

2008.

• Soumyajit Deb, P. J. Narayanan and Shiben Bhattacharjee.

Streaming Terrain Rendering,

Sketch, inThe 33rd International Conference and Exhibition on Computer Graphics and Inter-

active Techniques (SIGGRAPH), 2006.

• Shiben Bhattacharjee, Soumyajit Deb, Suryakant Patidar and P. J. Narayanan.

Real-time Streaming and Rendering of Terrains,

Paper, inFifth Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP),

2006.

• Shiben Bhattacharjee and Neeharika Adabala.

Texture Guided Realtime Painterly Rendering of Geometric Models,

Poster, inFifth Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP),

2006.

Technical Reports:

• Suryakant Patidar, Shiben Bhattacharjee, Jagmohan Singh and P. J. Narayanan.

Exploiting the Shader Model 4.0 Architecture,

Technical Report, IIIT Hyderabad, 2006.

Bibliography

[1] Concise bibliography of the history of cartography(http://www.newberry.org/collections/conbib.html), The

NewBerry Library.

[2] A. Asirvatham and H. Hoppe. Terrain rendering using gpu-based geometry clipmaps.GPU Gems 2, pages

46–53, 2005.

[3] S. Atlan and M. Garland. Interactive multiresolution editing and display of large terrains.Computer Graph-

ics Forum, 25(2):211–223, 2006.

[4] S. Bhattacharjee and N. Adabala. Texture guided real-time painterly rendering of geometric models. In5th

Indian Conference, ICVGIP 2006, pages 311–320. LNCS 4338, 2006.

[5] S. Bhattacharjee, S. Patidar, and P. J. Narayanan. Real-time rendering and manipulation of large terrains. In

6th Indian Conference, ICVGIP, 2008.

[6] J. Blow. Terrain rendering at high levels of detail. InGame Developers Conference, 2000.

[7] D. Blythe. The direct3d 10 system. InSIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pages 724–734,

New York, NY, USA, 2006. ACM Press.

[8] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno. Bdam - batched dynamic

adaptive meshes for high performance terrain visualization. Comput. Graph. Forum, 22(3), 2003.

[9] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno. Planet-sized batched dynamic

adaptive meshes (p-bdam). InVIS ’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), page 20,

Washington, DC, USA, 2003. IEEE Computer Society.

[10] P. Cignoni, E. Puppo, and R. Scopigno. Representation and visualization of terrain surfaces at variable

resolution.The Visual Computer, 13, 1997.

[11] M. Clasen and H.-C. Hege. Terrain rendering using spherical clipmaps. InEuroVis 2006: Symposium on

Visualization, pages 91–98, 2006.

[12] L. Coconu, O. Deussen, and H.-C. Hege. Real-time pen-and-ink illustration of landscapes. InNPAR ’06:

Proceedings of the 4th international symposium on Non-photorealistic animation and rendering, pages 27–

35, New York, NY, USA, 2006. ACM Press.

[13] D. Cohen-Or and Y. Levanoni. Temporal continuity of levels of detail in delaunay triangulated terrain. In

R. Yagel and G. M. Nielson, editors,IEEE Visualization ’96,, pages 37–42, 1996.

61

[14] M. A. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineev-Weinstein.

Roaming terrain: real-time optimally adapting meshes. InIEEE Visualization, pages 81–88, 1997.

[15] J. El-Sana and A. Varshney. Generalized view-dependent simplification.Comput. Graph. Forum, 18(3):83–

94, 1999.

[16] L. D. Floriani, P. Magillo, and E. Puppo. Building and traversing a surface at variable resolution. InIEEE

Visualization, pages 103–110, 1997.

[17] R. Geiss.Generating Complex Procedural Terrains Using the GPU. Addison Wesley, 2007.

[18] T. Gerstner. Multiresolution compression and visualization of global topographic data.Geoinformatica,

7(1):7–32, 2003.

[19] P. Haeberli. Paint by numbers: abstract image representations. InSIGGRAPH ’90: Proceedings of the 17th

annual conference on Computer graphics and interactive techniques, pages 207–214, New York, NY, USA,

1990. ACM Press.

[20] M. Haller and D. Sperl. Real-time painterly rendering for m.r. applications. InGRAPHITE ’04: Proceedings

of the 2nd international conference on Computer graphics and interactive techniques in Australasia and

South East Asia, pages 30–38, New York, NY, USA, 2004. ACM Press.

[21] J. Hays and I. Essa. Image and video based painterly animation. In NPAR ’04: Proceedings of the 3rd

international symposium on Non-photorealistic animation and rendering, pages 113–120, New York, NY,

USA, 2004. ACM Press.

[22] Y. He, J. Cremer, and Y. E. Papelis. Real-time extendible-resolution display of on-line dynamic terrain. In

Graphics Interface, 2002.

[23] A. Hertzmann. Painterly rendering with curved brush strokes of multiple sizes. InSIGGRAPH ’98: Pro-

ceedings of the 25th annual conference on Computer graphics and interactive techniques, pages 453–460,

New York, NY, USA, 1998. ACM.

[24] A. Hertzmann. Fast paint texture. InNPAR ’02: Proceedings of the 2nd international symposium on

Non-photorealistic animation and rendering, New York, NY, USA, 2002. ACM Press.

[25] A. Hertzmann. Tutorial: A survey of stroke-based rendering. IEEE Comput. Graph. Appl., 23(4):70–81,

2003.

[26] A. Hertzmann and K. Perlin. Painterly rendering for video and interaction. InNPAR ’00: Proceedings of

the 1st international symposium on Non-photorealistic animation and rendering, pages 7–12, New York,

NY, USA, 2000. ACM Press.

[27] D. Hill and D. Hill. An efficient, hardware-accelerated, level-of-detail rendering technique for large terrains.

Technical report, University of Toronto, 2002.

[28] H. Hoppe. Smooth view-dependent level-of-detail control and its application to terrain rendering. InVIS

’98: Proceedings of the conference on Visualization ’98, pages 35–42, Los Alamitos, CA, USA, 1998. IEEE

Computer Society Press.

62

[29] M. V. J C Whelan. Formulated silhouettes for sketching terrain. InProceedings of Theory and Practice of

Computer Graphics 2003, pages 90–97, Birmingham, UK, 2003.

[30] M. Kaplan, B. Gooch, and E. Cohen. Interactive artisticrendering. InNPAR ’00: Proceedings of the

1st international symposium on Non-photorealistic animation and rendering, pages 67–74, New York, NY,

USA, 2000. ACM Press.

[31] P. Kipfer, M. Segal, and R. Westermann. Uberflow: a gpu-based particle engine. InSIGGRAPH ’04: ACM

SIGGRAPH 2004 Sketches, page 24, New York, NY, USA, 2004. ACM.

[32] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation and collision detection for large particle

systems. InHWWS ’04: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, pages 123–131, 2004.

[33] J. Levenberg. Fast view-dependent level-of-detail rendering using cached geometry. InVIS ’02: Proceed-

ings of the conference on Visualization ’02, pages 259–266, Washington, DC, USA, 2002. IEEE Computer

Society.

[34] X. Li and J. M. Moshell. Modeling soil: realtime dynamicmodels for soil slippage and manipulation. In

SIGGRAPH, pages 361–368, 1993.

[35] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner. Real-time, continuous level

of detail rendering of height fields. InSIGGRAPH, pages 109–118, 1996.

[36] P. Lindstrom and V. Pascucci. Terrain simplification simplified: A general framework for view-dependent

out-of-core visualization.IEEE Transactions on Visualization and Computer Graphics, 8(3):239–254, 2002.

[37] Y. Livny, Z. Kogan, and J. El-Sana. Seamless patches forgpu-based terrain rendering.Journal of WSCG,

15(1–3), 2007.

[38] F. Losasso and H. Hoppe. Geometry clipmaps: terrain rendering using nested regular grids.ACM Trans.

Graph., 23(3):769–776, 2004.

[39] L. Markosian, B. J. Meier, M. A. Kowalski, L. S. Holden, J. D. Northrup, and J. F. Hughes. Art-based

rendering with continuous levels of detail. InNPAR ’00: Proceedings of the 1st international symposium

on Non-photorealistic animation and rendering, pages 59–66, New York, NY, USA, 2000. ACM Press.

[40] B. J. Meier. Painterly rendering for animation. InSIGGRAPH ’96: Proceedings of the 23rd annual con-

ference on Computer graphics and interactive techniques, pages 477–484, New York, NY, USA, 1996.

ACM.

[41] S. O’Neil. Rendering planetary bodies, Gamasutra, 2001.

[42] R. Pajarola. Large scale terrain visualization using the restricted quadtree triangulation. InIEEE Visualiza-

tion, pages 19–26, 1998.

[43] S. Patidar, S. Bhattacharjee, J. Singh, and P. J. Narayanan. Technical report on shader model 4.0 architecture.

Technical report, IIIT Hyderabad, India, 2007.

63

[44] A. Santella and D. DeCarlo. Abstracted painterly renderings using eye-tracking data. InNPAR ’02: Pro-

ceedings of the 2nd international symposium on Non-photorealistic animation and rendering, New York,

NY, USA, 2002. ACM Press.

[45] J. Schneider, T. Boldte, and R. Westermann. Real-time editing, synthesis, and rendering of infinite land-

scapes on gpus. InProceedings of Vision, Modelling, and Visualization, 2006.

[46] J. Schneider and R. Westermann. Gpu-friendly high-quality terrain rendering.Journal of WSCG, 14(1-

3):49–56, 2006.

[47] M. Shiraishi and Y. Yamaguchi. An algorithm for automatic painterly rendering based on local source

image approximation. InNPAR ’00: Proceedings of the 1st international symposium on Non-photorealistic

animation and rendering, pages 53–58, New York, NY, USA, 2000. ACM Press.

[48] A. Szalay, J. Gray, G. Fekete, P. Kunszt, P. Kukol, and A.Thakar. Indexing the sphere with the hierarchical

triangular mesh. Technical report, (MSR-TR-2005-123), Microsoft Research, 2005.

[49] D. Wagner. Terrain geomorphing in the vertex shader.ShaderX2, Shader Programming Tips and Tricks

with DirectX 9, Wordware Publishing, 2004.

64

