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Abstract

Raytracing dynamic scenes at interactive rates to realtime rates hasteadnt of attention re-
cently. In this dissertation, We present a few strategies for high perfarenay tracing on an off-the-
shelf commodity GGraphics Processing Unit (GPU) traditionally used falaating gaming and other
graphics applications. We utilize the Grid datastructure for spatially arrgnigintriangles and raytrac-
ing efficiently. The construction of grids needs sorting, which is fast daye GPUs. Through results
we demonstrate that the grid acceleration structure is competitive with othardhimal acceleration
datastructures and can be considered as the datastructure of choilymdmic scenes as per-frame
rebuilding is required. We advocate the use of appropriate data streiétureach stage of raytracing,
resulting in multiple structure building per frame. A perspective grid built feradamera achieves per-
fect coherence for primary rays. A perspective grid built with respeeach light source provides the
best performance for shadow rays. We develop a model called Sphiggttt grids to handle lights
positioned inside the model space. However, since perspective geitestr suited for rays with a di-
rections, we resort back to uniform grids to trace arbitrarily directeéetdin rays. Uniform grids are
best for reflection and refraction rays with little coherence. We propngenforced Coherence method
to bring coherence to them by rearranging the ray to voxel mapping usitiggs This gives the best
performance on GPUs with only user managed caches. We also proposple, Independent Voxel
Walk method, which performs best by taking advantage of the L1 and Lt#esaan recent GPUs. We
achieve over 10 fps of total rendering on the Conference model witkigintesource and one reflection
bounce, while rebuilding the data structure for each stage. ldeanpddeere are likely to give high
performance on the future GPUs as well as other manycore architectures

Vi
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Chapter 1

Introduction

Begin at the beginning and
go on till you come
to the end; then stop

— Lewis Carroll, Alice in Wonderland

For sometime now, raytracing has been the method of choice for produieatgrpalistic images.
Over the past few years, interactive to near realtime raytracing has stbahged from being out of
reach to being possible on a large scale computing setup and later everstda@pdeith a commodity
graphics card in it. Interactive raytracing has slowly evolved to includeertx@ngles, more lights and
more shading effects. This evolution has been due to the use of fastievanarand better algorithms
written to make optimum use of it.

The two methods of generating images in computer graphics, raytracingstedization have seen
a lot of development. raytracing is a technique that generates an image@falsy simulating light
travel in the real world. In real world, light rays are emitted from the lightrese and illuminate the
scene. These rays depending on the object they strike, reflectspatEsithrough them. These rays hit
our eyes or in the case of computer graphics, the synthetic lens. Bexaaseénumber of rays never
hit the lens, the simulation of this phenomenon is done backwards, i.e, mgs@erated from the lens
which hit objects (figure 1.1). For every pixel in the image, one or morgisaghot to see if it intersects
an object. Everytime there is a hit, color is calculated using the light position.e Mgyrs might be
generated at this point for reflection and refraction which adds to tismeaf the scene.

Rasterization on the other hand is a technique used for determining the dabgase visible to the
camera. It does not tell us the appearance of objects with respechtotbac in a scene. For this reason,
rasterization by itself can not handle effects like reflection, refractivadews, etc. However there are
techniques (at extra cost of computing) like stencil buffer and shadqupimg which overcome some
of the issues and handle the aforementioned effects. Dedicated Gréjsbiesssing Units (GPUS)
accelerate the process of rasterization because of which rasterizatitastrocess but each and every
step adds an overhead eventually causing the system to significantly siow do
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Figure 1.1 Raytracing illustrated (image courtesy wikipedia)

Both techniques are used in the movie industry where time to render is nosaanh However,
in the gaming industry, only rasterization is used because they need intenaetiormance. There are
dedicated GPUs for the purpose of the accelerating the process. Elpwewames begin to demand
more realism and raytracing becoming more interactive, hybrid games with afmrasterization and
raytracing might come out.

Algorithm 1 Basic raytracing algorithm

for each pixel in the imagdo

compute viewing ray

find first object hit by ray and get the normal

set the pixel color according to material, light position and normal
end for

Algorithm 1 illustrates simple raytracing which computes the pixel colors in thdteed rendered
image using the data of the first intersections. In order to get the objedhaicst hit by the ray, one
has to test the ray against all the objects in the scene and get the first thie é@mplexity of the scene
increases, the number of objects in the scene increases. In a typicakganeeof about 10 million
triangles and a typical movie shot with more than a billion triangles, this method igltiouake a very
long time to get the hit objects. However, this problem can be solved usingd¢hthft rays travel in a
straight line and we need to check the ray against only those objects whielttzer in the path or near
the path of the ray. To do this, often spatial datastructures called ActefeBatastructures are used
which can spatially arrange the objects such that ray by the virtue of itdidinezan query only those
objects which are in the path of its travel.

1.1 Acceleration Datastructures

The process of raytracing can be markedly speeded up by util&aogleration Datastructures
(AD) like Kd-trees, grids and Bounding Volume Hierarchies (BVH). Tedhefuctures exploit the fact



that rays in a scene are not random or arbitrary in nature. Often gfupys agree with the direction
in which they move. This is calleslpatial coherenceSpatial Coherence is particularly high for rays
like camera rays and shadow rays. Coherence allows combining sesgsaiogether in a packet or
a frustum and tracing these bundles of rays. These bundles of myisear traversed through an AD.
Depending on the kind of the acceleration datastructure used, cobererycor may not be exploited.
Finding an intersection for a ray in a scene is often treated as a seattbrprdSearch is made faster
by enforcing some order among the elements, often by sorting. Acceled#ttstructures use this to
speedup raytracing. Treating rays as part of a packet helps ushteeatogether both at a logical level
and as well as the programmatical level when we use SIMD architecturesdess the rays in parallel.
These packets allow data to be brought in at once which helps in removitignecks involved in
getting costly data transfers. Choosing the right AD is very important andris #eeping in mind
various factors. For the past few years, the most important aspebtbadraversal performance [17].

Traversal depends on whether we use spatial subdivision or oligzatt¢hy. In spatial subdivision,
we divide the whole world into separate entities, each encompassing audiffesmber of triangles.
Each triangle can belong to one or more subdivisions. In contrast, dliggarchy references triangles
multiple times in often overlapping entities. In space subdivision structurel,esdity is represented
only once and so the traversal algorithm can traverse these entities trtdrback order and termi-
nate when they find an intersection. Object hierarchy techniques, onhthieland, rely on visiting all
the entities along the the path of the ray irrespective of finding intersectiowettr, since there is a
hierarchy, in the end, every triangle is checked only once in the leaknddhes leads to fewer intersec-
tion tests but at the cost of devoting more time in building such a hierarchye®ne various aspects
across which we can compare ADs. We concentrate on build time and bulltyglrathis thesis, we
assume axis aligned bounding boxes (AABB) that are non-adaptividd 8ue and build quality are
two opposing factors and concentrating on one leads to the deterioratiom ather. There are various
algorithms to estimate the the quality of the AD built. The most well known is the clé&grfdce Area
Heuristic (SAH) algorithm [14, 17]. These algorithms significantly incregetime needed to build
the datastructure. We now briefly describe the three most popular at@@betlatastructures.

1.1.1 Kdtree

Among the spatial datastructures, kdtrees are very efficent for sahamd finding the right triangle
for intersection, making it the fastest datastructure for acceleratingrpytecing performance. Be-
cause of the hierarchy, traversal to the leaf node is cheap and dffidenlarge number of triangles
are eliminated reducing the number of intersection tests. The efficiencyvetded depends on the
quality of the datastructure which in turn depends on how well it treats diffedinds of rays arriving
in arbitrary directions. This metric is accomodated in the datastructure usirgdygtechnique called
Surface Area Heuristic (SAH) [14]. These methods provide the mearssinoaging the cost of traversal
based on the distribution of the rays in the scene.



First we assume a uniformly distributed set of rays, for whom, the probalijigyof hitting a vol-
umeV is proportional to the surface area SA of that volume. If inside the volunt&e probability of
hitting a sub-volumé/,,;, is

PraVaulV) = g

For a random ray R, the cost of testing intersection against a node’l.i<; is the sum of the
traversal stepg{r and the sum of the expected intersection costs of its two children, weightdeeby
probability of hitting them. The intersection cost of a child is locally approximatdxtine number of
triangles contained in it times the cdst to intersect one triangle. If the two child nodes of Nadeare
N, and N, each having.,. andn; triangles in them, then expected cost can be computed as

Cr = Kr + Ki[nPpi(N|N) + n,Ppi(N:|N)]

®
P N
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P, lAi% . I; /®/\ / \ @/ /

Figure 1.2kdtree hierarchy from a set of points in space.

In the recursive build of a kdtree, one needs to break a node into twedab. This decision is
made on the basis of SAH, where split is made at point which gives the minirsgsibpeC'r. If the cost
of splitting is higher than the already determin@g, then the node is left as a leaf node. To compute
the split planes efficiently, many algorithms have been proposed some ohtenbeen described in
[14, 28, 51]

1.1.2 Bounding Volume Hierarchy

Bounding Volume Hierarchy is a hierarchy over the geometric objects in tr@escEvery object
in the scene is enclosed in a tight bounding volume giving a set of boundinges. Some of these



volumes together can be enclosed in a tight bounding volume obeying som&ibeauch as a volume
can not be larger than a preset dimension or the sum of the volumes corshimdd be minimal. Like
kdtrees, these heuristics are captured in a greedy technique callade&Sarea Heuristic (SAH). As we
move from bottom to top, the volume encompassed by the volumes increasesanibotinode having
the entire scene. Thus when rays need to compute intersection, theyagfaéekt the node and descend
to the child nodes only if they pass through the bounding volume. For thigirgiags important to have
a simple bounding volume which can be tested against the ray very fast.

Figure 1.3 Building a BVH (image courtsey wikipedia)

On one hand, a simple bounding box keeps the intersection test simple an@riake other hand,
the bounding box must be able to fit the objects in its volume as tightly as possikien, @n axis
aligned bounding box (AABB) bounding volume is used. Often, long trisghe also split over two
or more volumes to get a tight bounding box. Bounding box at each leeelsna@ few bytes to store
information and can be checked very efficiently. BVHs were introducédaily to solve the issues
posed by kdtree. With their efficient traversal times, kdtrees were wigdidstor static scenes as their
build time is very high. With small changes in the geometry, a kdtree is invalidaids Bith a kdtree
like hierarchy and a faster build process are better suited for dynanmniescecrementally updating the
BVH involves checking the volumme where the changes took place and upda¢im appropriately.
Though it has been seen that with every update, the quality of the trezadesr Therefore, techniques
have been proposed to check if the quality is below a certain threshold twr gacbmplete rebuild of
the hierarchy. BVHSs, due to their efficient elimination of geometry are ugesghsively in games for
collision testing [12, 26]. In most respects like memory consumption, travexdaiques, ability to be
parallelized, and frusta suitability, BVH methods come close to kd-trees.diti@d they are faster to
build and easier to update.

1.1.3 Grids

While BVH and Kd-trees are hierarchical datastructures, grids fall intoctitegory of uniform
spatial subdivision. The datastructure does not adapt to the complexite atene though there has
been some work towards this [22]. Adaptive structures handle complaxeajey but are harder to
build and even harder to update. However, grids are very fast to buildreerefore rebuilding a grid
datastructure maybe more attractive than updating the datastructure.
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Figure 1.4 Spatial Subdivision using a regular grid

Grids work by binning triangles into spatial cells. Conceptually it is similar to raditand can be
looked as a rasterization of triangles into coarse cells. The best paut giid datastructure is that it
can be built in a single pass. There are various parallel techniques mhich it very fast. A complete
rebuild of a grid is usually faster than refitting a BVH to reflect the changasdynamic scene. Being
able to rebuild every frame, one does not have to make any assumptidrfaouwtion which makes
grids an attractive option for fully dynamic scenes. However, grids lasandraversal performance due
to lack of hierarchy. Since, the space is uniformly divided, rays asgiaeitain little advantage. Often
rays are treated independently and if divergence among rays is higérdahis affected significantly.
However, some techniques like mailboxing and slicewise coherent tréaiosa us to use the natural
coherence which might be present and exploit the SIMD hardware toegtet performance.

1.2 Realtime Raytracing of Dynamic Scenes

A good quality datastructure can reduce the traversal times. Parallelizirigatiesal and using
the features of the architecture can take the performance further aphéBmost compelling question
during the design of a realtime raytracer for dynamic scenes is how to balidjld or update the
AD to reflect the changes. As mentioned, build quality can result in subdtanpeovements in ray
traversal performance but at the cost of more time spent on building aw&tastructure. Almost
realtime raytracers need to be able to build a good datastructure fast aibtelde traverse it quickly.
There are several factors which can impact this decision [51]. To eexidhe time-quality tradeoff,
one has to inspect one or more of the following —

e Motion of different kinds. Having a scene that is static, i.e., where triangles do not move,
devoting significant time to build a good quality datastructure is worthwhile ascireeswill
not change and the high cost of building the hierarchy would be amortizedgdspeedy ray
traversal.



e Total number of rays. All things remanining equal, if more rays are being traced, it may be
worthwhile to spend more time on building such that rays collectively will bettploétxcoher-
ence. Also, sampling and multiresolution techniques demand more rays winichctaase the
ray count.

e Kind of rays and number of passes Secondary rays, especially the ones for reflection, area
lights, etc., may access ADs in a haphazard manner affecting the perfiermimultiple passes
are required, many kinds of incoherent rays may be present, whicthé@aotential of slowing
down the system if traversal is inefficient. Different kinds of rays hdiffering properties and
one kind of AD might not be suitable for the other. Therfore rays basetheir type and their
behavior need to use different AD or one that adapts well acrossetitfginds of rays.

With respect to the above points and the discussion on various ADs, grasstisst to build but
inefficient to traverse. Kd-trees are on the other hand very costly to buildfficient to traverse. BVH
lies in the middle of the spectrum. Often, the design decisions of which acieheséructure to use
is driven by these considerations. Scenes can be divided into vaategocies as shown in figure 1.5.
For dynamic scenes, one has to build the datastructure from scratcliateupto reflect changes in
geometry. This can be done by flagging parts of the scene which hamgazhand then redistributing
them in the scene appropriately. In case of animated scenes, knowing tioa iwen be explored to

speedup the rebuilding part of the scene.

S

-
Static Dynamic
~ ~
AN AN
SN SN

[ Camera Static ] [ Camera Moving ] [ Camera Static ] [ Camera Moving ]

Figure 1.5 Classification of different kinds of scenes encountered

We explore a general scenario where changes are not known artbtieerebuilding the datastruc-
ture or updating it are the only ways possible. Previous work by PatidhNanayanan [38] concen-
trated on rebuilding the grid datastructure from scratch for every frawle.take this idea forward
by extending it to updating the datastructure in the conclusion section. Riapuilte datastructure
depends a lot on the kind of datastructure and the time it takes to get caedtruc



1.3 Realtime Raytracing and Our Contributions

Parallelization is at the heart of realtime raytracing. Raytracing is an intheparallel application
as the color of each pixel in the resultant image is independent of othen aAlthe datastructure
building level, a lot of observations have been made leading to more effaa¢astructure building
techniques. There has been a lot of work on speeding up raytraciti;ed@PU and using the SIMD
instructions of CPU to parallelize ray traversal. This is often attained by optighthi& codes for the
hardware. Knowledge of the underlying hardware often yields sutistapeedup. With advances in
parallel computing and architectures, speedup through hardwarend bmincrease at a steady rate.

GPU based computing has recieved a lot of attention in the high performangeuting sphere
due their high computation power packed in affordable and easily availabiievere. Raytracing is
a massively multithreaded application which has the potential of using the GéPliteature to get
significant speedup. GPU based raytracing has seen action both itrutatas building as well as
traversing the rays. However, there has been very little study in the i§sagi@cing for truly dynamic
scenes. As mentioned earlier, to raytrace dynamic scenes, one hashie be lauild the datastructure
very fast. To this end, some of the contributions made in this work are

o Modified the grid datastructure of our previous work to eliminate trianglestkhaiiot contribute
to raytracing.

¢ Introduced a technique of indirect mapping to exploit faster sorting attteatame time higher
SIMD width.

While coherent and locally coherent rays benefit from the datastasctuith hierarchies, grid based
datastructures do not enjoy the benefits of coherence and packéssis Especially important in the
context of realtime raytracing as coherence at every level needs trpbmted to make the system
faster. We look at shadow rays and propose the following ideas to impef@rmance of shadow rays

e Fast shadow tracing by extending perspective grids to shadow rays
e Used spherical grid mapping to accomodate lights inside a scene.

e Load balancing to distribute unevenly spread shadow rays evenly tier lpeocessing.

We also look at true secondary rays which are not coherent anddfetion rays as an example of
these kinds of rays. The behavior of seondary rays is often depeaddind of the scene and we take
a few models representative of their kind and try to understand the teheéreflection rays. For this

e Proposed Enforced Coherence (EC) method to gather rays and &satdbether.

¢ Modified the load balancing scheme of shadow rays to achieve equitablbudistr for process-
ing.



e Compared EC with a more classical technique like Independent Voxel \IWAIK)(on two gen-
erations of graphics hardware to note the performance changes.

Broadly speaking, our message is to look at raytracing in differentstage try to build appropriate
datastructures for each stage to aggresively save on timings and ketegvihreal times low. We also
try to reduce the overall time consumed for each frame to achieve near rerdingcing of scenes
with arbitrarily changing geometry.



Chapter 2

Background and Previous Work

If you would understand anything,
observe its beginning and its development

— Aristotle

Image synthesis has been part of human civilization for a very long timee Simehistoric times,
man has drawn and painted. These drawings were extremely simple. Evqralatengs had problems
in perspective. It was during the renaissance period that perspéstig were discovered by artists like
Brunelleschi, Leonardo Da Vinci and others. Slowly shading also camehiattore and by analysing
the shadow efects, artists started coming with more accurate paintings [10].

With the invention of photography, the trend achieved a boost as cammetdledr techniques were
studied, specially how a camera captures perspective information antiatleves and other shading
effects. With the advent of computers, simple programs were written to drew éind other shapes.
Initially, these lines were either colored with a single color. Through expertisnéienri Gourard and
Bui Tui Phong [15, 40] proposed interpolation schemes to interpolategieetdifferent colors achieving
extra realism in shading techniques. These techniques relied on the plangttaded and its orientation
with respect to the light source.

On a different side, lights were studied. Earlier, light was consideredpesnt source which soon
gave way to different kinds of light sources such as area light seuspmt lights, directional lights,
etc., which added realism to the scene. In 1980, Turner Whitted [S4ppeapa recursive technique to
synthesize an image with reflections and other optical effects. This becangeatindwork on which
all raytracing algorithms were written. Since then much work has gone intotesé of physics of light
and simulating real lighting conditions. Simultaneously work has also gone oowngrthe sampling
schemes to improve the efficiency of rendering the scenes with complex lighs4&2].

Raytracing has been applied to various kinds of geometry like triangledspparametric patches,
implicit surfaces, etc. All these methods involve building an accelerationtdatase and traversing
it to find an intersection. In case of triangles, checking for intersectioon® dy solving the vector,
triangle intersection by cramer’s rule. Woop et. al. andllst et. al. [44, 31] optimized the operations
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on hardware bringing raytracing closer to interactive rates on commoditivaae. For parametric

patches, methods are either subdivision based or numerical basefiviSioh techniques have various
traversal steps before subdividing the bounding volume patch. Nurhtg@miques invovle solving

an equation which might involve high complexity. In case of many models, it isimadmmon to see

primitives with 18 degree equations. Starting with Kajiya et. al. [21] which sb&/&8 degree univariate
polynomial, several other techniques were also proposed like Toth e48alging multivariate Newton

iteration. Manocha and Krishnan [29] used Eigenvalue methods to doriie sa

Point based rendering was proposed first by Levoy and Whitted jA&fduing that points are pow-
erful enough to model any kind of object and details which scanline rengleften lose. Reyes archi-
tecture [8] was a step in the similar direction albeit breaking the scene into malgggms. Rusinkiewicz
and Levoy later devised datastructures for hierarchical culling and.I®Bre has been a lot of work
in sampling the model to produce point samples like randomized sampling Warld [88]ar deter-
ministic sampling of Stamminger and Drettakis [46].

Implicit and procedurally generated surfaces have played a cruséairecomputer graphics. They
do not have detail issues like polygonal geometry and can be tesselatstidraLOD factors. Tradi-
tionally polygonalization has been used to convert implicit surfaces into trlategl models [6] before
rendering it. Marching Cubes algorithm can create polygonal modelsifpiicit surfaces. Purcell et.
al. [42] and Loop and Blinn [27] demonstrated raytracing of quadratitctic-spline curves on the
GPU.

2.1 GPU Computing Model

GPU based methods have been used extensively to speed up applicatiomassive paralellism.
GPUs offer finegrained parallelism along with wider SIMD width which allowgéa number of threads
to process same intruction together. This is especially useful in grapisics) @nd scientific computing
problems where there the instructions are same and data is different &mdtina divergence is less.
Programs which utilize the GPU are typically written in CUDA [34] though theylmawritten in other
ways like OpenCL and Direct Compute as well. These enviroments providbsiract layer of blocks
and threads which hides the internal architecture of the GPU and lets tipapnmer write programs
which scale with changing number of cores in the GPU. These programstoh CPU code which
can invoke upwards of thousands of instances of code to be run oruGRghardware threads. These
large number of threads are logically organised in groups called blotkeads within a single block
have the advantage of cooperating with each other and can be syizeldravith negligible overhead.
They also share data on a small yet high speed on chip shared memorgw®narchitectures, these
threads have access to an L1 cache. Threads across blocksataane d slightly slower L2 cache and
a much slower but considerably larger global memory.

During the execution of the GPU code (kernel), threads are schedubedicdhes of 32 (warp) which
are then launched. These 32 threads execute the same instruction bifdrenttata. Often codes have
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branching instructions which cause the batch of 32 threads to break imésbf threads for different
routes of divergence. Each of the these chunks are procesagehtialy. Therefore, it is desirable to
have as few branching instructions with divergence as possible. Alsmpmeaccess patterns affect
the performance deeply. Threads tend to favoaherent accessashere spatially close locations in
memory are accessed. This is because when a thread accesses a iocagarory, it retrieves a 188
bit chunk of that memory making other accesses amortized. Access time l==cgyner when far away
locations are accessed simultaneously by threads of the same warp. Aalbjitidtweads would want
their data to be in fast on chip locations due to which it is best to get data fovwgbobal memory to
fast shared memory and use it from there.

Like all prallel programs, programs written in GPU often borrow ideasfagieftly collecting data,
data movement, data sorting and data rearrangement [5]. Senguptatét,@Pdtidar et al. [37], Satish
et al. [43] proposed various efficient implementations of these ideas wheghopularly called as primi-
tives. A sort primitive takes an array and outputs the sorted version diérelare many more primitives
which we constantly used to in our methods. GPU based computing methodssesvesed extensively
in areas like protein folding, fluid simulation, stock options simulations etc., [3&ke advantage of
the fine grained parallelism and attain orders of improvement over singteérapiementations.

2.2 Acceleration Datastructure Construction

Raytracing used to be a slow offline process traditionally but has entezealm of interactive
graphics and is used widely now. With proliferation of high performancévaare at commodity prices,
raytracing performance is pushed upwards continously. Theselgpehdve been due to (a) advance-
ments in the algorithm and datastructure sphere and (b) using better harawhwriting optimized
code for the particular hardware. Wald et al. [51] surveyed many oftinent techniques in raytrac-
ing which over the years have translated to performance improvementstiaaiag using multicore
architectures. Here we describe some of the recent work which is diretdtgd to our own.

The datastructure building part of raytracing has often been lookegeepeocessing step and not
considered part of the actual raytracing With raytracing becoming intega@applications can not as-
sume that the scenes to be rendered have static geometry. In truly geasers] there may be objects
flying, colliding, breaking, etc. This change in geometry invalidates the $patiastructure built previ-
ously. For correctness reasons, datastructure has to be built dpe@tds can become the bottleneck
in the process of raytracing. However, much effort has gone intadépgep the process of building
these datsatructures. On the GPU front, Zhou et al. [55] gave effgéeatlel methods for constructing
kdtrees on GPU. While they were efficient in terms of speed, they consateeédf memory which re-
stricted their usage to small to moderately sized scenes (upto 600k triardpesgt al. [18] exteneded
this method using better memaory allocation strategies accounted for this pratdemeale kdtress suit-
able for very large models (more than 7.5M triangles) as well. The methodsopeg# are valid for
moderate to large models with emphasis on speed and interactivity. While thekd@rerated using
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the methods offer interactive to almost realtime performance for raytraitiag,kdtree building time
is still high effectively making the entire process slow if the datastructurdsieebe built constantly.

BVH has also been studied widely in recent times due to its relatively lowetrcation times.
Compared to kdtrees, BVHs have lower memory footprint. Classic methodstaplit triangles keep-
ing the memory usage constant. Also, since primitives are referenced gy the construction time
is relatively fast. Ajmera et al. [3] and Wald et al. [49] gave fast methodgeaate hierarchies which
were extended by Lauterbach et al. [25] to give better building methdusselmethods can build the
datastructure fast [36] but lose out on the quality benchmark making thersed time higher. Methods
like splitting triangles were proposed in [11, 9, 47]. Splitting triangles wasidened a kdtree tech-
nique and using it in BVH improved the overall quality of the hierarchy butificantly increased the
building time. Moreover, these techniques are considerably serial fioigmf methods to build them
on GPU is still an issue. There has also been research on enforcicey sdadivision to build optimal
BVHs by Popov et. al. [41]. Their method proposes a space partitioniragitio to build a better
BVH. Again this technique improves the quality of BVH but takes higher time in mglthe hierarchy.

In contrast to BVH and kdtree methods, grids have recieved less attenB\14 and kdtree are
algorithmically superior datastructures for traversal due to the inhererarbhy making it possible to
eliminate a large number of triangles cheaply. However, due to the simplicity gfritheonstruction,
several methods were proposed to construct it efficiently on CPUtlzk 20] and Lagae and Dutre
[24] gave heuristics to measure the quality of the grid and ability to improve it. edery these tech-
niques led to little performance improvements. However, they were still fasterBWH or kdtree for
construction. On the GPU front, Patidar and Narayanan [38] gave m&hod to sort the triangles and
construct a grid datastructure. However, this datastructure buildingegsavas dependent on atomic
operations. If triangle distribution was high in some region, atomic operatimms significantly de-
crease the performance of the datastructure building. This problemolesidater by Kalajanov and
Slusallek [23] on the newer hardware by sorting on triangle-cell pahisiriethod differed in the way
that they created a list of triangles falling in each cell of grid and sorted idegle-cell pairs based on
the cell values thus getting a list of triangles for each cell. Grids are diffédrem BVH and kdtree
because they do not adapt to the complexity of the scene. Often the eetie isauniformly divided
into cells, some of which maybe sparsely populated while others have a l@mjles. This situation
is often calledteapot in a stadiunscenario where in a grid spanning a large stadium have sparse grid
cells everywhere, except for a few cells with dense population of triangleis scenario leads to higher
datastructure building times as the number of triangles in the same cell is quiteutaetdpenning them
into the same location would result in higher times. Our method which is grids il loasthe princi-
ples proposed by Patidar and Narayanan [38] but we borrow the gjfdiry ideas from Kalojanov and
Slusallek [23] to make our grid building more robust to scenes.
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2.3 Finding intersections through traversal of the datastructures

Raytracing involves tracing rays in space and checking the trianglestérsattion. Acceleration
datastructures help in decreasing the number of triangles to be chedkesl 2eroing in on the triangle
which is intersected. There has been a lot of work in exploring the way magve in space while
checking for intersection. Spatially coherent rays or rays which asedim each other in space often
end up with the same triangles to check. This led to rays being treated asgpaiciays and handling
them together. Packetized rays perform well due to data sharing amdtepping across cells or nodes
in hierarchy together. SIMD traversal techniques utilize this factor toop@rfray traversal and ray-
triangle intersection for many rays together. Wald et al. [50] use the CEAUWt68IMD hardware with
width of 4 to handle packets ¢&f x 2 rays on a uniform grid structure. BVH and kdtree resort to similar
methods through their traversal is much cheaper as they exploit the inléeesachy in BVH and
kdtree. Packets of rays perform best for primary or shadow rayaysr which are close together in
a small space. For primary rays, they diverge from a single point agdckise or move in a single
direction in a systematic manner. The same is true for shadow rays but in/éreegelirection as they
converge to a single point. Wald et al. [50] used this fact to perform awig®coherent traversal which
creates a small frustum and traverses all the rays in it together. Theysdsoailboxing technique to
avoid checking the same triangle again for intersection. This is not neediadastructures like BVH
since each triangle is checked for intersection only once. This also ledelwao overall intersection
checks.

Shadows rays behave differently while exhibiting similarities with primary r&88H and kdtree
exploit the hierarchy to achieve performance while grids are badly sutdtbbdling these rays. Pati-
dar and Narayanan [38] construciparspective gridon the lines of the perspective frustum used in
rasterization scenario to generate first level intersections. Since,ithis gerspective in nature, rays
travel together and check for same triangles giving competitive perfarenanthe best BVH or kdtree
datastructures. However, this datastructure is useless for the sebs@asses like shadow checking
for reflection rays traversal. Our method takes this method and examirgblpagays to mitigate this
problem. At the same time, Hunt and Mark [19] suggested the idea of relyitliirdata structure from
the light point of view on the CPU. Our work is along similar lines but we go frtthead in treating
the space as a spherical volume to handle the shadows more naturally.oesaid to loadbalancing
techniques to make our method more friendly on GPU architecture. In thexcoh®VHs, Garanzha
et al. [13] demonstrated a method to treat shadow rays from point aadiginesources. Their reorder-
ing scheme requires them to build virtual frustums and reorder raysdingdo these frustums. The
technique we propose doesn't use queues. We do not need to cbastirtual grid to reorder the rays
since our basic structure itself is a grid.

True secondary rays pose a problem to all kinds of datastructurésitteaes and BVHSs fare better
due to the hierarchy they possess. In addition, their datastructure is sindf BAH which can han-
dle rays in divergent directions. This helps kdtrees and BVHs manéieaay rays as long they are
spatially close in a small local volume. However Aila and Laine [2] investigat@énrmance of ray
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traversal in a true general case. They schedule rays in a persesardrf to accomodate for the small
ray divergence to get better performance. Their results depend guafiey of the datastructure which
in turn depends on the amount of time invested in building it. There has beervamiken enforcing
coherence among secondary rays. Pharr et al. [39] and Navratil @3] proposed reordering tech-
nigues on multicore CPUs. The ray reordering technique proposed by &ha. [39] queues rays
and schedules the processing of this queue in a way to minimize cache mid4&3 aperations. Re-
cently, Moon et al. [32] suggested the use of Hit Point Heuristic andrZedilling based ray reordering
to achieve cache oblivious coherence on multicore architectures. Dinegmtrate on simplifying the
model and using these simplified models for global illumination methods such asauEtiy and pho-
ton mapping. There has been some work on secondary rays on the Bidde et al. [7] analyzed the
bottlenecks during pathtracing a complex scene and proposed a sofiwgsem that splits up tasks and
schedules them appropriately among CPU and GPU cores. Our methqutios&y hit points from ray
casting for reordering the rays. Aila et al. [1] proposed possible siiea to hardware which can speed
up secondary rays. Their treatment is from a hardware point of vietlyistg the cache performance.
We concentrate on speeding up the tracing of reflection rays.
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Chapter 3

Towards a Better Grid Datastructure

The ability to simplify means
to eliminate the unnecessary so that
the necessary may speak.

— Hans Hoffman, Search for the Real

Motivated by our need to raytrace moderately large scenes (upto 2Mlegrad interactive to near
realtime rates, we propose building a grid datastructure. Grid datastrugtcineap to build and can
be tailor made easily for a particular kind of rays. Our grid datastructutdibg carries forward the
technique proposed by Patidar and Narayanan [38] where we crédaieeadimensional datastructure
with two dimensionatiles in image space and slabs in the depth direction (much like in rasterization)
of the camera. The resultant volume of space bounded by the tile dimensmbhy a finite depth is a
cell.

Figure 3.1 Rays in the same tile move together and remain part of the same slab.

The result of the raytracing is an image, whose each pixel value is thik 0é$i$ corresponding
ray’s intersection. In their work, Patidar and Narayanan [38] divigeithage into tiles and all the rays
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in a tile are coupled together. It should be observed that rays whergisigefrom a camera position
move out in a frustum. These rays hit the image grid and fall into their respeiés. These tiles are

of finite depth, calledslabsand extend in the direction of rays. If the size of slabs grows at the same
size as the divergence of the rays, all the rays which were part of aililalways be part of the same
slab at all times.

In their implementation, Patidar and Narayanan [38] divide the space alerdjrédttion of camera
into discrete slabs. First, they determine to which tile each triangle belongs.isTtigermined by
finding theX andY bounds of triangle in the image space. Using three passes, each sortitgrthles
along X, Y andZ dimensions respectively, a list is obtained where triangles are clustesed ba the
cell they fall in. TheX, Y andZ are concatened into a single unsigned integer and hierarchically sorted
to obtain the ordering. A final scan pass gave the number of trianglestlincedc All this sorting was
done based on th&, Y bounds and the neare8tslab value. Therefore resolution of the grid played
an important role in making a good quality datastructure. A finer grid would rfieansorting and
better binning of triangles but at the cost of extra time spent in sorting. Afeatry experiments, they
concluded that 28 x 128 x 16 was a resolution where the time required to sort and the quality of the
grid datastructure struck an optimal balance.

One drawback of the approach is the assumption that triangles span atroel.4 While this
assumption of small triangles is true for scanned models, there are sceaestriangles are thin and
long, spanning multiple cells across slabs in depth direction. This assumptsonotanger necessary
once the whole problem could be looked as sorting a list of key-valuelpasiesd on the key as proposed
by Kalojanov and Slusallek [23]. They proposed constructing a list ké ednich each triangle spans
resulting in a list ordered by triangles. Sorting the list based on cell valans g list ordered by cell
value. All triangles in the same cell were now together and could be coedidsrpart of one cell. We
use this fact to make our grid construction more robust to scenes with biggeglés. Also, since the
problem is largely reduced to a sorting problem, the construction method »vady dependent on
triangle distribution in the scene. Our implementation on CUDA is same as the algamifB8j except
that we eliminate triangles based on techniques we describe later in the chapter

Using the aforementioned perspective datastructure, traversal becomgutationally cheaper for
camera rays. As the camera rays are shot and hit the grid, all rays faflittie same tile are handled
together. This gives spatial coherence to the rays as these raysadeokt the same triangles in the
slab. Since, all the rays have to check against these triangles, this dataghbin from the slow
global memory to faster shared memory as a preprocessing step. If thenofrthiangles is large,
they are brought in batches. Once a batch of triangles is brought todhedsimemory, all rays check
against each triangle in the batch. Once done, they get a new batch giasamtil all triangles are
finished. There is no ordering among triangles in a slab and all trianglestbde checked to get the
first intersection. However, since there is an ordering among triangles different slabs, there is a
front-to-back ordering which helps a ray terminate if has already fouridtarsection. A pseudocode
of the traversal algorithm is given in algorithm 2.
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Algorithm 2 Ray traversal of Patidar and Narayanan [38]

totaltris < Triangle Count

for thread< totalthreadsin paralleldo
determine the pixel the thread corresponds to
query texture to get ray direction

for each slab in depth directiaio
if all rays in block not donéhen
if first thread in blockhen
load histogram indices and offsets
compute the number of batches required
end if

synchronize threads

for each batclio
load triangles from histogram
for each thread in block in paralldb
load triangle in stored memory
end for

synchronize threads

if ray not donghen
for each triangle stored in shared memdry
if ray intersects trianglthen
ray is done
end if
end for
end if

synchronize threads

end for
end if
end for
end for
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Figure 3.2Rays in the same tile move together and remain part of the same slab.

Taking the minimun¥ slab while binning might not always give the right result. While it does work
for closed objects, where triangles join each othémtibthe model, there can be scenes where triangles
part of different objects and differnt size might be occluding othefigare 3.2, the green triangle by
the virtue of the algorithm would be binned in cell@nd6. Red triangle would be binned in cdld.

A ray checks for intersection against the green triangle as says thatfibtnad an intersection without
ever checking against the red triangle because it lies in the next slatlmlVedlsis problem by checking
if the triangle that intersected the ray actually lies in that particular slab. Onljiditin the slab will

the intersection be valid otherwise the ray will have to proceed in the nextslatiersection checking.

On CUDA, we have a direct mapping between each ray and thread. Alimahe imagespace tile
constitute the block and these tiles together form the grid. When the tracingl keinvoked, threads
in the block ¢4 in our case) work together to bring the data of 64 triangles to fast sharetbme
Once completed, these threads take their respective rays and chauefsection against each of the
triangles in the shared memory. If there are more triangles, they are briougbsequent batches of
number of triangles. This technique amortizes the cost making a one time trahdfga from global
memory to shared memory. Since, all the rays use this data, it is significanéytfasn each ray getting
data from global memory directly.

3.1 Indirect Mapping

In a perspective grid, the tile is a coherent rectangular cross sectimy®f Rays in a tile traverse
same voxels step by step in a manageable way. The size of image tiles andimokelsgrid can
impact the rendering performance. Smaller tiles will result in triangles being firaly binned, i.e.,
more finely sorted. Though this will lead to more time spent in sorting, it will redaxtra ray-triangle
intersection checking.

Ideally each thread should trace its ray independent of others. Thisadto repeated and wasteful
loading of triangle data. On GPU architecture, where triangle data commassfow global memory,
this would penalize performance. Instead threads can cooperate whtlotee to bring data to shared
memory and use it repeatedly before bringing another batch. From thitfatgstandpoint, we would
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Figure 3.3 Change in sorting time (smaller values are better) during datastructure bujleft)ygand
average number of triangles checked (smaller values are better) danegstal stage (right) as number
of threads in a block change. Larger number of threads implies largeofditecks.

like to have small number of tiles but from the architecture point of view, welevavant to have larger
threads. Figure 3.3 shows how the sorting times and number of trianglelsechesry with number
of threads. While one decreases, the other increases with increasiagghrTo get the best of both
worlds, we use a technique calledlirect Mapping

Grid for tracing

Grid for DS

Tiletrace

Figure 3.4256 x 256 imagespace tiles for sorting and DS building. The red colored tile reprethents
size of the tile used for DS building. Four such tiles together form a greertilaytracing, i.e., set of
2 x 2 tiles are together handled in the raytracing step.

We sort the triangle data to small tiles but raytrace using larger tiles (numbweaids) by mapping
more than one tile to a block of threads. The advantage we gain by this is thamatler triangles, we
have fewer triangles to check intersection. Raytracing using larger bhlogld mean that spatially close
rays would cooperate and reuse the data leading to better coherenugralBe we sort the triangles
to kN x kN tiles in image space. For ray tracing, we divide the image Mta N tiles such that a
k x k group of sorting tiles fit into each ray tracing tile. The work groups useitevittacing have more
threads. The available shared memory is partitioned equally among the sorsndutileg raytracing.
Triangles from each sorting tile is brought to the respective area of gredimemory and are checked
for intersection against the rays corresponding to the sorting tiles. iRgfer Figure. 3.4, we sort the
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Figure 3.5Heat map showing the number of triangles checked before declaringeictiers Leftimage
corresponds to direct mapping while there is marked reduction in indiregbingafright). Number of
triangles checked before declaring intersections increases from bpiak@nd is highest in yellow
regions.

triangles to256 x 256 tiles but raytrace td28 x 128 tiles, groups oR x 2 tiles handled by threads in
one block.

The shared memory of each block of threads is divided into 4 partitions asad$ load their data
into their locations. This leads to better utilization of shared memory. Also triandiesh are refer-
enced multiple number of times number are brought directly from L1 cachppsed to the relatively
slower L2 cache in normal mapping, an architecture that has cache.

Indirect mapping increases the time spent in datastructure building. Howeeesmall increase in
sorting time is more than compensated by the decrease in traversal time. Asefghbouring tiles
share data, triangles common to the cells will be brought in once and ragstéeeequipped to handle
coherency. Figure 3.5 shows the number of triangles brought fromagiobmory and checked for
intersection. By sharing shared memory, the four tiles share triangle dhtherefore the CUDA block
on the whole has lesser triangles to check. This directly results in fewsdriazgle intersections and
decrease in tracing time. The effect of indirect mapping is more in scenexchkeed models. The size
of triangles is small and finer sorting gives a better quality datastructure triimgles which do span
multiple cells benefit from the datasharing of tracing method. In large modelsngrevement is not
large as time taken to build datastructure increases but triangles still spanibeslls.

3.2 Culling of Triangles

By building a perspective grid, one gets perfect coherence for pyinags. We can treat primary
rays as packets which can be handled together using a CUDA block &rgrmoup with each pixel
assigned to a thread or a work item. These threads load triangles andfoh@uersection against
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their corresponding rays. This test is done in front to back orderingjfithe ray finds an intersection
in a voxel, it need not check for intersection in next voxel along the patheoray. Thus the kind of
perspective grid that we construct helps in efficient traversal of pyimegys but is not suitable for fast
tracing of other rays. Other kinds of rays like shadow rays or reflectiga have different directions
and this datastructure will not able handle these rays as packets. Alghe$e rays, the dastructure
does not provide any front-to-back ordering, making the the traveveal more time consuming. Since
this datastructure is of very little use for the subsequent passes, weddisaad look at other ways of
traversal for subsequent passes. Therefore would want to spi@idum possible time in constructing
it and traversing it. As opposed to spending time on building a good qualitytdatase which can
handle any kind of ray efficiently, it would be enough to maximize the quality efdatastructure
with respect to primary rays. For this reason, we design the datastrscicinghat it does not contain
triangles which will participate in primary raytracing. By doing this, we deseghe number of triangles
participating in datastructure building decreasing the time spent in building isolteads in lesser ray-
triangle intersection tests and save on tracing time as well. These savings ingitnenstate in faster
completion of primary raytracing pass and devoting time on more time consumisgspas

3.2.1 View Dependent Culling of Triangles

Rasterization based graphics achieves realtime rates by aggresively ¢riflimgles based on the
frustum and whether the triangles are visible from the camera. Since mpeaotive frustum is sim-
ilar to the frustum in rasterization, we borrow the of techniqué&/iefnv Frustum Cullingo eliminate
triangles. This is done during the early stages of the datastructure builBiegworldspace triangles
are transformed to perspective space and checked against thestaduthd frustum. If neither of the
coordinates lie in the frustum, the triangle is flagged and not included in thetdettare building. This
method is especially useful in room like scenes where a large number djlésacan be eliminated
based on where the camera is looking. One has to however check farrther kine cases where there
may be large triangles, none of whose coordinates may lie in the frusturtilbspan across it. A sim-
ple check to determine on which side of the frustum the points are located ripain Belving the issue.
Since, each triangle checks its validity independently, the checking is pamadigets full acceleration
from GPU hardware.

Rasterization based graphics also eliminates triangles based on their onentigtioespect to the
camera also known dack Face Culling Based on whether the triangle faces the camera front side or
back side, it is retained for datstructure building eliminating the others. Feedlmodels, this leads to
substantial decrease in datstructure building as the number of trianglesasea lot. We use the same
technique of computing the normals and then checking its dot product withréetidn of the camera.
Again the test for each triangle is independent and can be done in parallel.
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Algorithm 3 View Frustum Culling Test

totaltris < Triangle Count

for triangle< totaltris in paralleldo
vl, v2, v3«+ triangle.vertexl, vertex2, vertex3

vlin, v2In, v3in« false, false, false

for each vertex invl, v2, va@o
if vertex.x> -1 AND vertex.x< 1then
if vertex.y> -1 AND vertex.y< 1then
if vertex.z> 0 AND vertex.z< 1then
vertexIn<— true
end if
end if
end if
end for

if vlinside OR v2Inside OR v3Insidben
appendToList(triangle)
end if
end for

Algorithm 4 Back Face Culling Test

totaltris — Triangle Count
forward < Camera Forward Direction

for triangle < totaltris in paralleldo
vNormal« viewTranformation(normal)
direction— DOT(forward, vNormal)
if frontFacingthen
appendTolList(triangle)
end if
end for
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3.3 Results

With reference to figure 3.6, both the methods together work best onestamodels. Architectural
scenes like Sibenik Cathedral and Sponza Atrium with their large triangteg shprovement little
improvement. This is also due to the fact that the number of triangles in thesdsisodely high. BFC
and VFC lead to elimination of a small number of triangles. On a finegrainedtectire like GPU,
better speedups come as a result of significant decrease in numbenqalhdecrease would lead to
negligible speedup. Also since, the size of the triangles is large, sorting toedswution doesn't afford
much benefit either as the performance of tracing step would be more deltiss same as the triangle
sharing pattern would be almost the same due to triangles spanning multiple cells.

In the Happy Buddha Model, a scanned model with about 1.09 Million smatl singles, there is
a marked difference in the number of triangles in the final list to be handtedytracing. Back Face
Culling works with closed models where there is a front facing triangle feryelsack facing triangle.
This is not a bad assumption to make considering the fact that scanned muodsis are hollow and
closed. In our experience, architectural models also with their well dedignrmals obey this rule.
Figure 3.5 shows the combined effect of BFC, VFC and indirect mappihg.y€llow and red regions
are all eliminated giving dark to light blue regions which allow much fasteraaytg. Figure 3.6 shows
the decrease of triangle instances with the use of indirect mapping, BFEZRDdThe decrease in the
number of triangle instances result in a direct decrease in sorting time whiehnsost time consuming
step in DS building step.

Number of Triangle Instances

ol |

Buddha Conference Fairy Sibenik

‘ 00 Uniform Grid 0 Perspective Grid ‘

Figure 3.6 Plot demonstating the number of triangle-cell pairs in the DS building step. tami@&rid
is constructed with all the triangles in the list. Perspective Grid is Built after eltmmgé&iangles using
BFC and VFC. Also, using smaller cells, one reduces the duplication of leimagross cells.

The time taken for building a grid datastructure is low compared to BVH or Kdt@reGPU like
architectures, the difference is even wider. Using techniques like BIFC, ahd indirect mapping, we
can hope to make the construction of grids even cheaper. Making itehedlhelp us trace more rays

24



Figure 3.7 Example scenes — Happy Buddha, Conference, Fairy in Forest aauiiS{Bathedral

before the demerits of grid kick in and performance starts degradingistaigood idea when we need
to build the datastructure for every frame or once every few frames.mowie shot with complicated
effects or a game with lots of characters and scenes, changing seenée rebuild of datastructures
which makes the grid an attractive choice. Our method may not be good fior stanes. In case of
static scenes, kdtrees and BVH can always consume time to build a high quadistrdcture which
can trace rays very fast. Also, since the scene is static, one needlddhbuwlatastructure every frame.
Therefore grid is not a good choice for static scenes.
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Chapter 4

Bringing Coherence to Shadow Rays

You never really understand a person
until you consider things from his point of view.

— Harper Lee, To Kill a Mocking Bird

Shadows in raytracing are extremely important. Shadows and other segoay effects are aspects
which make raytracing attractive compared to faster rasterization anfiertbg techniques. Shadows
give us clues of depth and help us judge the position of light better. It sdtlse realism to the
scene being a natural phenomenon. Shadows are computed by spahadtoyy rays from the point
of intersection to the point (point) light source. This ray checks if any pwmis in the way between
the point of intersection and the light source. If yes, then the light is beintpded and the point of
intersection is declared to be in shadow. Algorithmically simple, shadow clgekitcomputationally
expensive. Similar to the primary intersection routine, the rays check fosé@ton but are not spatially
coherent, i.e., the rays do not move together and a notion of being in a lsumahquite valid.

Much work has been done by Wald et al. [50] on the evaluation of shaapsvon multicore SIMD
architectures. They compute a packet of rays and determine a frusttubotiteds this packet. Only
triangles lying in the frustum are checked for intersection against thandlie packet. The technique
is SIMD friendly and works very well on CPUs with small SIMD width. Computthg bounds of the
frustum are SIMD optimized and rays in the packet traverse the grid inereotifashion checking for
intersection. They also use techniques like Frustum Culling and Mailboxingetedsup the traversal
routine. However, there are issues with such a system. When a shaglowitathe silhoutte of an
object, nearby rays might hit some other object, bringing incoherencee Me number of objects,
more compounded the problem will be. Creating a bounding frustum ovackepof such rays would
mean spanning a large volume in the scene and the efficiency of packatsas tost due to checking
overly large number of triangles.

On GPU, the problems are even more compounded. GPU’s SIMD width \veampuch larger than
the SIMD width of the a CPU (SSE). More rays in a packet should behatreiname way to exploit
the advantages of the architecture. Also, the work arounds propossmvi® various problems are
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well suited to CPU. On GPU, most of the ideas are quite expensive arltinesevere degradation in
performance.

Through all these methods, we find that significant improvements in the fooptimization of code
alone is not enough. Rethinking the entire traversal strategy by packgtimrays is important. Ray
packets exploit coherency and utilize SIMD hardware better. At the samettiese packets should be
able to use the simple marching in a grid acceleration structure where raysostegne cell to the next
at the expense of very little computation.

4.1 Merging Shadow Rays

One way to create packets and while preserving the simple traversal dé goidnerge a packet of
nearby rays and then use the merged list for checking intersection.bebygying to the same tile for
primary rays, go through different cells to converge at the light solEgery ray has a fixed sequence
of cells to traverse and all therefore we have a set of sequences.

If there arem rays in a packet each with the sequence of cglls € {1,2,3, ..., m} then

S = {Cf,Cy, C3, .y O}
Sy = {Cf, C3, C3, .., C2}

S; = {Cf, Cs, C, ..., CL Y

Sm = {C", C3", C3", .., O

We merge all the sequences while respecting the ordering inside eadnsequsome of thé‘,{
may be same acros§s. An extra step of removing the duplicates has to be done in order to gedh list
unique cells. The resulting sequengéjs such that

S = {0y, Oy Oy oy C) )

Therefore, the number of resulting sequences would be the same asnthemaf primary ray
packets. On a GPU architecture, this would mean that among packets, s@$ing be done many
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times over relatively smaller sized lists. This task is expensive on CPU aimibjticely expensive

on GPU. In our experiments, we observed typical sizes of lists to be @iuto 30. 64 such lists

would need to be merged. Right now, there is no per block sorting routithé¢hanefore, merging the
individual rays to form a resultant sequence would be computationallyyhdizgs non efficient nature
on GPU architecture led to search for some other techniques to tracenstegdoeffectively.

4.2 Rebuilding the datastructure for Shadow Rays

Among secondary rays, shadow rays are the easiest to handle ddoayistill posess a direction.
All the shadow rays, inspite of starting from widely divergent points, epdit the same light point.
In many ways, they are similar to camera rays but instead of diverging tinencamera point, they
converge to the light point. It is possible to collect all shadow rays andieedhem such that rays
which were otherwise distant are coupled together to form spatially clasoshrays. These rays
together can check for intersection.

To reorder these shadow rays, one must arrive a binning stratege vays by virtue of their spatial
locations are binned and all the spatially close rays are together. Once doisdscan proceed with
handling these rays together. Since, the rays converge to a point, grte wandle them would be to
treat them like primary rays itself, i.e., build a perspective grid, as showgunefi4.1, from the point
of view of light source (treating it like a camera) and bin the shadow ragarding to the tile they pass
through. Such a perspective frustum should encompass the entire amodelys should be able to find
their intersection by stepping through the grid cells. Grid building is cheapbaitding a grid with
respect to to each light source and tracing the reordered rays isectibap tracing the incoherent rays.
Hunt and Mark [19] use the same idea on CPU to construct a grid datastrweith respect to each
light source to trace shadows. However, our technique is differeweasse slabs in Z dimension to
check for lesser triangles and give the rays a chance to terminate early.

Figure 4.1 Reordering shadow rays results in distant but spatially close rays taioéeldaogether.
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Our technique is different from shadow mapping which is used to computi®wsisan the rasteriza-
tion and z-buffering environments. In shadow mapping, one checlesafdr pixel in the rendered scene
if it is occluded from the light source and incurs artifacts due to limited resalutf@ur technique is
exact as it generates a shadow ray and checks for its intersectionematbtk doesn't suffer from any
kind of sampling artifacts. The next two subsections describe the mappthgeardering of shadow
rays and how they fare on GPU. The subsections assume that the figrstiudiatastructure is built and
is available for use. The non trivial issue of the building the light perspedgtiid is dealt in section 4.4.

4.2.1 Mapping Shadow Rays

Perspective grid’s front face (for the light source) is divided into filsslike the the perspective grid
we described for primary rays. Shadow rays are generated frortsmimtersection to the light source.
Each shadow ray is checked against the front face of the perspegiil Each shadow ray intersects
the front plane at a certain point which falls in a tile of the plane. Each shaalpthus records its tile.
The shadow rays are referenced by their primary ray index — a uniguéer.

Algorithm 5 Mapping Shadow Rays

Nx «— Number of Tiles alongX
Ny < Number of Tiles alongd”
Vector NP« Near Plane equation
totalRays— Camera Rays

for ray < totalRaysin paralleldo
Rayldx < Ray Index
[X,Y] « intersection(NP, ray)
[Tx, Ty] «— Bin(X, Y, Tx, Ty)
Tileldx « Tile(Tx, Ty)

list.append(Rayldx, Tileldx)
end for

4.2.2 Reordering Shadow Rays

As mentioned earlier, shadow rays are not coherent when indexee Ipyithary ray indices. Even
spatially close rays have different paths (converging only towardsithevehile distant rays could have
similar paths. Handling all the rays that fall in one tile can help us exploit morereaby and use
the GPU hardware more effectively. This can be done by sorting the listysfwith tile index as the
key. This would effectively bring all the rays with the same together. Inrottoeds, all the rays which
hit the same tile in the near plane are bunched together. Since, the frustemspegtive, this would
lead us to say that the rays which have the same tile will march together steppisantie cells in the
space. This is important because it would allow us to exploit the fact thatsalieare being traversed.
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Triangles of a cell loaded in fast shared memory are used and reusdidtoy rays in that cell. Similar
to primary rays, loading of triangle data is ammortized and spatial coherentijaed.

However, to gain the benefits of coherent rays, one has to be ablerterdbe rays efficiently
on GPU. Inefficiently reordering rays might lead to decrease in speeddfso, if the time needed
to reorder the rays and the time needed to traverse these roorderes mayghly equal to traversing
incoherent rays, the method might not be useful. However, reordesingndeed be performed using
simple operations, which can be processed in parallel, taking advanttmge®@PU architecure to secure
speedup. Reordering is nothing but sorting a key-value pair arrayedpetis of keys. Here, Tile Index
is the key while Ray Index is the value. At the end of sorting, we have tredglayffled among each
other but all the rays having same Tile Index are bunched together. Wédmsave all coherent rays
together. A simple check function (kernel in GPU terminology) can determirexerthe boundaries of
each Tile Index lie and demaracate where rays of one tile end and anetfier b

Unlike sorting of triangles, this is sorting of rays. The number of rays toobed is bound by the
number of pixels in the image and therefore the number of key-value paiesgorted always remains
same. This might change in case of true secondary diffuse rays (like#iseuged in pathtracing) as the
rays in each step might vary and thus the number of the key-value pairsstrteel. Our images are
1024 x 1024 pixels large and therefore have48576 (1M) key-value pairs to be sorted. 1M key-value
key pairs can be sorted in abailb ms on GPU. This time is more or less constant for all scenes. The
small overhead of sorting leads to significantly faster results using auhranes. Sorting is done using
radix sort [43]. As architectures evolve and faster sorting algorithmigeaispeeds will increase even
more [30].

4.3 Load Balancing Shadow Rays

Primary rays had a fixed number of rays going through each tile equal tathber of pixels in it.
This decides the number of CUDA threads and blocks to be used. A littleimgraation can allow
us to gauge the optimum number of threads and blocks to call. However theenofrghadow rays in
each tile is not the same. Areas with large number of primary rays intersespams a large number
of primary rays which in turn populate the tiles they pass through. In that eafew tilest might be
populated very heavily while others remain largely vacant. Such a situatioghbky unfavourable on
GPU as this would lead to improper load on GPU multiprocessors.

4.3.1 Hard and Soft Boundaries

A load balancingscheme gives us an opportunity to distribute the load such that all CUDA%lock
assigned would have an equitable load. A threshold numpesf rays is decided and the number of
rays in each block should be kept to a maximum of that number. A perfatblaanced scheme, i.e.,
each block having a threshold number of rays is not possible. There eviilds where the number
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of rays is fewer than the threshold. Other rays cannot be accomodatethese rays as they traverse
some other tile.

| compact |
list -

> P

sorting get
boundaries ==

break
into
chunks

Figure 4.2 Reordering illustrated. Different colors correspond to different célsrting results in all
the same colors coming togethé&et Boundariegets the locations where enumeration of a new cell
starts. Based on a therhold value (in this fig8erays are divided into chunks and compacted in a tight
array.

In the sorted array, indices are demarcated where rays of one bldanenwhere the rays of other
block begin. We call this demarcation as tierd boundary Rays across hard boundaries can not be
accomodated together in one CUDA block. For example, if theré aags in one tilel};, andm rays in
tile T,,, wherek +m < Ny, these raysannotbe merged as they deal with two different tiles. If merged,
threads would have to load triangles from two different cells and the raygdacheck triangles from
both the cells thus significantly increasing the load on the CUDA block unsagls On the other
hand if k > N, rays are in a tile, they are broken down into chuksrays and each distributed on
a different CUDA block. We call such a chuck demarcation asstifeboundary Soft boundaries lie
between two hard boundaries and indicate the number of blocks whichytheaa be divided into. A
large number of soft boundaries between two hard boundaries indilzatganumber of rays in a single
tile, denoting a large population in a small area.

Suppose a light tile ha® > r rays mapping to it, where is the number that a thread block can
handle efficiently. We assighR/r| blocks in the CUDA program to this tile. Other tiles are mapped
to one thread block each, after eliminating empty ones. The total number afithtecks needed is

N
Ciotal = Y [Rj/r], whereR; is the number of rays in tilg.

7=1
On GPU, we use CUDPP [45] primitives to determine hard and soft boiesdand thus demarcate

the rays falling in different tiles. Figure 4.2 shows the pipeline we follow. fyes which were de-
termined used a mapping technique are ordered by their ray ID. Sorting parsdrts them based on
their tile ID. In the figure, rays having same tile ID have same colors. AsudtreSsorting, all the
rays with same color come together. A subsequent step to mark the bosndiirget us the boundary
indices. A segmented scan on it gives the number of values having the sgrteolor). This allows us
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Algorithm 6 Reordering Load Balancing Shadow Rays
totalrays«< image size

for ray<totalraysin paralleldo
MappingFunc(tilelDArfray], raylDArr[ray])
pseudoArfray| < 0
scratchArfray] « 1
OArf[ray] < 0

end for

sort(tileIDArr, raylDArr)
getBoundaries(tileIDArr, pseudoArr)
segScan(pseudoArr, scratchArr)
getChunks(scratchArr, validArr)
numBlocks«— compact(validArr, oArr)

to break this (possibly huge) packet of rays into multiple sizeable churiis.igdone by marking the
boundaries on the existing array which had the hard boundaries. Bashpoundary (different key) is
also a soft boundary (mapped to a different CUDA block.) To keep toathe first ray in each block,
we do a stream compaction (compaction primitive in CUDPP) step and shrinkithien of cells (in
the spherical grid space) ©@,;. In Figure 4.2y = 3 is used. Thus we have a list of locations to the
values each of which belong to a different CUDA block. The differdoetsveen two adjacent terms in
the array gives us the number of rays belonging to that CUDA block. Timgptetes our load balancing
step and we invoke as many CUDA blocks as the number of elements in the dethpa@ay.

4.4 Spherical Grid Mapping

In the discussion, we have treated light as a camera which has a poingiof amd shoots rays in
a direction. Since our light source is a point light, it has a point of originshatots light rays in all
direction and not a particular direction. If we create a perspective grdsingle direction, we would
have shadows only in that direction. For models that can be bounded ustar, this is great as it
would lead to generate correct shadows.

However, in an architectural scene or a scene with objects all arouhtigin inside the scene or
the model world a frustum can not be created. Figure 4.3 shows the difference in theasas. In
the second case, only a subset of triangles is bounded and the resbldotvs would be incorrect.
Therefore, one has to bound all the triangles and make sure all the tganglee path between the
primary intersections and light source participate in shadow checking.

Since, light rays emanate in all possible directions and since we need toatiobee light rays, we
use a way to divide the world into zones (or tiles.) This can be done by arigsed mapping system
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Figure 4.3 Light outside the scene bounding all the triangles and light among the triaagtegaot
bounding the model.

which can map any point in the world uniquely into other system. We use a smialhvvaf spherical
mapping system to identify each unique point in the world and map it to a tile in the grid

[of /2

-T2

Figure 4.4 Spherical space used for shadows.

A light frustum is constructed in the-0 space wherex andé are respectively the azimuthal and
elevation angles (longitude-latitude scheme). Figure 4.4 shows the splspaca with respect to the
forward, right and up directions. A rectangle in thed space defines the light frustum and plays the
role of the image for primary rays. We define “tiles” on this rectangle to builid of the grid using
constant depth planes. The anglés measured from the forward direction in the forward-right plane
and the anglé is measured from the up direction in the forward-up plane. Lower andrdppits on
the distance from the light source play the role of near and far planes. nfédthod however suffers
from the demerit of pole singularity. All triangles lying in the right-forwardr@a@ is 7), will be
duplicated along all the tiles near the pole. This loss in performance can betedtigy choosing a
"good” forward direction. Choosing the line joining the light position to thetosd of the model helps
us limit the number of triangles along the pole.
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Figure 4.5 Triangles included for shadow checking.

Spherical mapping of this kind treats all directions equally, in an unbiaséibia We would ideally
want to handle only that geometry which is visible and also only include the gepthat lies in the
line of sight from these triangles to the light position. We can do this by bogrithie light frustum
to the include only the bounding box of the camera’s frustum. Bounding tmeregs frustum would
eliminate many triangles, we can go a step further and eliminate all those triatggestdch don't
lie in the light's frustum. Since, these triangles don't lie in the frustum of the litfigty will never
participate in shadow checking. This leads to elimination of more triangles whioléh better from
the point of view of shadow checking as we have lesser triangles to check

We do this by limiting the angular extents of the light's frustum to the bounding fgxajection
of the camera’s view frustum. Figure 4.6 demonstrates the reduction oflegapgrticipating in the
grid building and ray triangle checking. Furthermore, it devotes the gridttlasmaller area, dividing
the area more finely. Instead of devoting area of tiles to triangles which dpantcipate in shadow
checking, we devote tiles to areas which participate in triangle checkingiadd this area more finely.
This technique also points a way to implement spot lights with light fall off. Thet san be marked
as a bounding rectangle in the spherical space shown in Figure 4.6.efnapbstyle of ray mapping to
limit light space rays was used earlier [19]. They handle each frustparately, resulting in a lot of
extra work for the traversals. Furthermore, clamping a cubemap is vaéousedhen it has to identify
the grid which a ray has to check. In contrast, spherical mapping pogidaore unified framework to
compute shadows.

45 Results

We tested our techniques of shadow checking on GTX 280 as well aswlee generation GTX 480
hardware. Since shadow rays are not well distributed, we use datarrgaent, which chiefly consists
of mapping the shadow rays to the spherical map, sorting the rays, bineimggihd performing stream
compaction. The number of (image space) shadow rays is always cooisttleast known at runtime
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Figure 4.6 Bounding rectangle of the geometry in spherical space defines the ligldifin of interest.

and does not change over scenes and models. Therefore regrojeeiration is nearly constant over all
scenes. The mapping operation is embarrasingly parallel and the underégtor operations SIMD
friendly. The subsequent sort, scan and compact operations aeffadgant on GPU (provided the data
is large.) Figure 4.7 shows the times taken by different scenes for thagearent of their shadow rays.
The resolution of the image wag24 X 1024 resulting in1048576 shadow rays.
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Figure 4.7 Time taken for rearrangement of shadow rays for shadow checking.

Building the shadow grid acceleration data structure takes more time than buldangalogous one
for primary rays. This, however depends on the number of triangles indhimg step. Morever, in
the shadow grid building step, there is an additional overhead of sphgridanapping which leads
to higher times. This involves getting the bounds of the camera frustum anddsteicting it to the
bounds of the light frustum. This is done over two kernels which need tovioeated from the host
and therefore consume time. Figure 4.8(a) shows the times taken to buildwstatistructure which
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includes time the light space grid and clamping. Happy Buddha model has thiskiigher cost due to
its higher triangle count. Otherwise one can notice that the overhead oltioiggthe spherical map is
not too high.
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Figure 4.8(a) Time taken for building perspective grid from point of view of light. Timsradso include
time taken to compute spherical grid mapping and rearrangement of shagevor shadow checking.
The plot also shows the times taken to construct a uniform grid for the sane.s(b) Time taken by
shadow rays to traverse the datastructure. UG is Uniform Grid [23], R@risnethod and SBVH is
Spatial BVHs [47].

Fairy Sibenik Conference Happy

Our [23] Our [23] Our [23] Our [23]
Primary DS Build 392 | 16.65| 3.11 | 9.22 | 4.11 | 13.47 | 9.04 | 12.04
Primary Ray Traversal 5.88 | 72.26 | 3.18 | 54.27 | 2.98 | 44.25 | 6.70 | 40.10

Shadow DS Build | 4.19 0.0 3.58 0.0 5.15 0.0 9.08 0.0

Data Rearrangement 3.78 0.0 3.69 0.0 3.72 0.0 3.69 0.0
Shadow Ray Traversal 6.09 | 122.73| 5.69 | 43.73 | 4.52 | 46.64 | 8.43 | 81.18
Total 23.86| 211.68| 19.25| 107.22| 20.48| 104.36| 36.94 | 133.32

FPS 419 | 4.72 |51.94| 9.32 |48.83| 9.58 | 27.07| 7.50

Table 4.1 Time in milliseconds for primary and shadow rays for different stages domeethod and
an implementation of Kalojanov et al. [23]. They use a uniform grid strudturprimary and shadow
rays. Times are on a GTX480 GPU.

The traversal of the light frustum is often dependent on the distancesdfgit source from the
scene. As light moves away from the scene, more rays get bundled iartieetites and there is a large
disparity in the populations of the cells. However load balancing alleviatesrblidgm. Rays falling
in the same tile are broken into chunks for separate processing in diffetddA blocks. Figure 4.9
shows the variation of the time taken to compute shadows as a function of @istant (center of)
the model. Light moves away in the direction of the line joining the light to the cefitdreomodel.
While other bins show a steady rige} rays per bin provides a consistent performance and mitigates
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Figure 4.9 Time taken as a function of distance of light from Fairy model. Times were thkethe
chunks of three different bin size — 64, 128 and 256. Timings were taslrom GTX 280.

the problem of changing light to a great extent. Havg rays in a single bin meant more threads
having to cooperate and march together. Also, sitigeis a large number, it would mean few overall
CUDA blocks and is almost equivalent to a situation without load balancingh®ather handj4 rays
per chunk lead to larger number of blocks with moderate sized block sibeslo@ds are more or less
equally divided and this size remains robust as light moves away from thelmod

Overall, the traversal times for shadow rays in perspective grid bastttbchare quite low and are
almost in line with SBVH based traversal in some cases. Traversal ofromgiad is quite slow and will
lead to poor frame rates. Figure 4.8(b) gives the comparison of the timegahese three methods.
The table’s analysis is incomplete and inaccurate without taking into accaufddhthat to make the
traversal as competitive as BVH, we need to build the grid everyframeepytawe the scene changes.
In case of BVH and uniform grid, one needs to rebuild the datastruchlyenden the scene geometry
changes. In the case of perspective grid datastructure, one neeslsuildl it even if light position
changes.

As discussed already, a scene is either a static scene or a dynamic\deanedependent datastruc-
tures like BVHSs, kdtrees and uniform grids need to build datastructutgswren the scene is dynamic.
View dependent methods like perspective grids need to be rebuilt wheositeon of viewing changes.
In case of light, also when the position of the light changes. For dynamiescéhe time taken by
various datastructures to trace primary and shadow rays is given by

tgggnl = {{tbvh frace trace} X L} x N
total - {{t trace trace} X L} X N
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Wt = U8+ 4 Do + {8+ trcoraer + tiluec} X L} x N
Right now, there are no parallel implementations of SBVH. Sequential buitRintaker2 seconds
to build the hierarchy for a model like Happy Buddha with9 M triangles. In constrast, uniform grid
takes 12 ms on GPU. Perspective grid takems. For number of lights, L, if we plug in the values
from table 4.1 and plot 4.8, we arrive at a condition between the numberhds$ lBgnd the time taken to
build the SBVH ad. = tZ;”;l— ° A plot of the relationship is shown in plot 4.10. We started wiéb
ms because the GPU implementation of SBVH will be atleast as high as HBVH [86hws currently

builds in that time.
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Figure 4.10PIot showing the number of lights required in a scene to let a per-frame @B\WHS0 be
faster than a per-frame per-pass built grid. Numbers are for HapgdgtizuModel.

We can see that for scenes with small number of lights, grid is better beafelssap construction of
perspective grid and its packetized traversal. However, as the lightaserthe number of frustums to
be built increases and that is where SBVH starts outperfroming. The onedistig rebuild of SBVH
handles lights from all directions in about the same way and shows lessrdpmsformance as the
number of lights scale. An SBVH implementation with a build timelo® ms and more than 28 lights,
using a per-frame rebuilt SBVH is cheaper than using a grid which buildgsppctive grid from the
point of view of each and every light source and traces the rays.
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Chapter 5

Coherence in Reflection Rays

Hell, there are no rules here,
we are trying to accomplish something.

—Thomas A. Edison

Reflection rays, in many ways are representative of the generaldsagaiay. They may not possess
a sense of direction, spreading out in all directions. Unlike primary ragsshadow rays, there is
no preferred direction and therefore perspective grids may notdfelder reflection rays. In case of
multiple lights, one had very few directions to take care of and rebuilding ttestacture was less
expensive than inefficient traversal of a uniform grid datastructurghe case of reflection rays, the
number of directions in the worst case can be as high as the number dfheayselves. Therefore it is
better to build a datastructure once and use it for traversals. The atimmetatastructure needs to be
built in each frame as the scene is dynamic, but there no preferred direétiocoherence.

Since uniform grid is inexpensive to build compared to BVH, we build a umifgrid. We build
the grid similar to the one proposed in Kalojanov and Slusallek [23] on GP& nTéthod of building a
uniform grid is similar to the construction of perspective grid. We skip the ¥R€BFC test and check
the triangles against the bounding box of the cells in the scene. Thesemiyifzed cells are formed
by dividing the bounding box of the scene into equal volumed regionsndlga are checked against
these volumes and cell-triangle pairs are created (similar to the perspeaaliveeghod.) A subsequent
sort, scan and stream compaction would give the list of triangles in each cell.

Since the rays do not have any fixed direction, triangles can not be elimibgtesing Back Face
Culling (BFC). Also, since the grid is not a frustum and covers the entienve of the scene, triangles
can not be eliminated using View Frustum Culling (VFC) either. Kalojanov duslaiek [23] traverse
the resultant grid using a method called outlined by Amanatides and Woo [#.aljorithm involves
each ray independently walking from one cell to another. We call this metitmpendent Voxel Walk
algorithm. We also explore a method to form a list of the cells a ray is traversidge@aforce some
coherence by processing all rays through each cell simultaneouslgién tormake the reflection more
GPU friendly. We call this proceduenforced Coherenceethod.
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5.1 Independent Voxel Walk (IVW)

Each ray can walk along the voxels it encounters by computing the nexl,v&tarting with its
starting point. Each ray checks intersection by loading the triangles of tted icencounters. This
continues until the first intersection is found, when the ray terminates. bxeal,vsince there is no
ordering among the triangles, closest intersection is declared aftericeiainst all triangles in it.
Algorithm 7 illustrates the algorithm in form of a pseudocode.

Algorithm 7 Independent Voxel Walk
totalrays« image size

for ray<totalraysin paralleldo
while ray has not found intersectiao
voxel — determineVoxel(ray)
for all triangles in voxel in seriallo
checkintersection()
if found intersectiorthen
break
end if
end for
end while
end for

Traversal and triangle checking are very tightly knit in this very simple @lgorwhich does not
assume any coherence. The lack of coherence can incur heavigsena older generation GPUs
with large SIMD width and no caching. Large SIMD width would mean that a maidenumber of
rays have to check for intersection together. But if these rays arepatially close or diverging, the
trangles which need be picked may not be the same causing a large nungtebaifaccesses and
considerable slowing down of the entire process. Caching exploits locadityrtay be present across
threads. The newer Fermi architecture has a moderate L1 cache ahayed a group of processors in
a multiprocessor (MP) and a large L2 cache common to all processord.1Tésche can be shared by
the threads of a CUDA block and the L2 cache be used by all the threhdsndependent voxel walk
method can benefit from these simple caches if multiple rays are checkingeictien for the same
voxel simultaneously or close together in time. Even if the possiblity of beintgdigaclose is remote,
caching can exploit the least bit of coherence by minimizing the number ohlghobmory accesses. L2
cache is fairly large and can hold a large number of triangles’ data and asma slightly faster global
memory with lesser penalty. As future GPUs and manycore architecturékedyeo have even more
flexible caching mechanisms, this type of approach will benefit from impnews in architectural
improvements.
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5.2 Enforced Coherence

Tracing primary rays is totally coherent because we can identify grouag® which pass through
the same cell at the same time. The triangles of the cell are brought togetherstuatied memory and
the intersection calculations can be performed from the shared memoryanéntorce coherence by
processing all rays that pass through the cell together.

Enforcing coherence involves reordering the rays to force a condifiaoherence. To do this, we
first determine the cells which each ray passes through to get a list pE@8ypairs. We sort this list on
the cell ID to bring all the rays passing through that cell together. Theasy all shuffled but spatially
close rays come together, We can now use a technique similar to primarycragtta get the triangle
data to shared memory. We can allocate a CUDA block to each cell but that leéghto enequitable
distribution of load. Reflection rays like any secondary rays can beecdrated in a small place leading
to disproportionate balance of load. Therefore a load balancing stepassey to divide the load into
chunks and process them using different CUDA blocks.

While this method is good at enforcing coherence, it comes at the costiog lttee ordering of
the ray’s traversal. A ray traverses the grid in certain order and therioglhelps us determine the
closest intersection without having to proceed through all the cells. Haweith sorting the ordering
is lost and the cells are shuffled. Since different rays have diffeiimegtibns, there can’t be a strategy
to quickly decide the order on basis of cell IDs either. The correct waytib process all the cells
and everytime one gets an intersection, check if it is the minimum for that ragaso till the end
of the traversal. If a ray passes through multiple cells, it will checked by nhil@JDA blocks,
possibly concurrently. Therefore when the rays update the closestant®n, updating should be done
atomically. Since this updating is done on a global level, it becomes an oderhreaur method, we
perform atomic operations first on shared memory and then one upda@&p#x block into the global
memory. This reduces the number of the global memory writes consideratdypgeudocode of the
Enforced Coherence method is outlined in Algorithm 8

The first step in intersection checking is to bring the triangle data in the shramedory. This is done
by the threads in the CUDA block, each of which which bring data of onegigafinom global memory.
For cells which have more triangles than the number of threads, trianglescaight in batches. Each
batch is completely used before loading the next batch of triangles. Aslglneantioned, the ordering
is lost, due to which rays can not be terminated on basis of finding an inierse®©ne has to find all
intersections and then get the closest among them.

Due to the large number of elements to be dealt with, reordering is computatiartaigive and
memory intensive. The number of (ray ID, cell ID) pairs for a typicalfeo@nce room scene is abaduix
million pairs, as each ray passes througlcells on an average. This number only indirectly depends
on the geometry of the scene through reflection ray origins and direcfidressorting operations are
fast on today’'s GPUs and have been getting better over the yearsvétead incurred in reordering
and minimum finding can be offset by the coherence we obtain using this method
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Algorithm 8 Enforced Coherence Method

totalrays« image size

for ray<totalraysin paralleldo
countArrray| < 0
countArrjray] < DetermineVoxels(ray)
end for

totalvoxels— 0

for ray<totalraysin paralleldo
totalvoxels— totalvoxels+ countAriray]

end for

allocate memory(tileIDArr, raylDATrr)

for ray<totalraysin paralleldo
DumpVoxels(raylDArfray], tileIDArr [ray])
end for

for i<totalvoxelsin paralleldo
pseudoArfi] < 0
scratchArfi] «— 1
OArr[i] < 0

end for

sort(tileIDArr, raylDATrr)
getBoundaries(tileIDArr, pseudoArr)
segScan(pseudoArr, scratchArr)
getChunks(scratchArr, validArr)
numBlocks«— compact(validArr, oArr)

for all blocks in numBlockslo
while all rays in blockdo
load triangles to shared memory
check for intersection
end while
end for

for rays<totalraysin paralleldo
get minimum of all intersections
end for
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5.3 Results

Due to faster sorting times, the time taken to build the uniform grid is less than the tirtnespaper
of Kalojanov and Slusallek [23]. Furthermore, this grid is constructed omée. Since the construction
of perspective and uniform grid is almost the same with slight differenceyrofthe steps can be
merged. However, we found that the common steps have little overhead whit®thcommon steps
are the ones that can not be merged resulting in little difference in the two nsetalhave pursued
the method of computing the uniform grid separately.

The difference in times between the construction of uniform and perspdstidue to the larger
number of triangles in uniform grid. Because we do not eliminate triangleg BHC and VFC, we
have the same number of triangles as the number of triangles in the origingldrsanup. A part of this
difference is already shown in figure 3.6.

Figure 5.1 The models and viewpoints used for evaluation of the performance oftiefleays. The
models are Conference Room (284k), Happy Buddha (1.09M) ang Farest (174k). The Buddha
model has the reflection parts coloured white.

We compare the performance of the IVW and EC methods on different GRidshis analysis, we
used al28 x 128 x 128 voxel resolution for all scenes. The resolution we have used is not uioper
to problems. A long thin object might have problems with such a resolution @brdjvthe object along
its thin axes would lead to unnecessary overhead. In most of our sexwept a few scanned models
like Dragon or Happy Buddha, all are equally distributed over the three ard such a division is
suitable. However, an interesting future work would be alalyze the modietame up with a model
driven resolution to accomodate the triangle data in a judicious manner. On\B@Used radixsort
from CUDPP [43] to sort the ray-voxel pairs. We focus on threeasgmtative models for this analysis.

Conference Model: This model has a room with a table, a few chairs, and walls. This model
has triangles reasonably uniformly distributed in the scene space anddwly lorizontal or vertical
triangles. As a result, the reflection rays behave well and may have aéggbelof coherence.

Fairy in the Forest Model: This model is mostly sparse with dense geometry at a few locations in
space. The normals vary considerably which makes the reflection ragsmpoherent.
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Buddha Model: This is a scanned model with all the geometry bunched in a tight space. The¢ mod
is finely tessellated because of which the normals vary considerably ibynaggas. Since the number
of triangles are high, intersection checking might dominate the tracing time. Batthdy, we render
the model by itself, with reflections only from itself.

model GPU| DS | ray.cell | cuda ec ivw | speedup

build | pairs | blocks | reorder| trace | total | trace | ivw/ec
ceres 220 3 Lo e | B9 | 10% B3 Aol o
@Y g 66| 1997M| 91K Sered 5o a7t 5977 047
oy |y 2552 2o | oox | ek LS 0 2 2

Table 5.1 Time in milliseconds for reflection rays in each of the broadly classified stages fourth
column gives the number of ray-voxel pairs created during the enumei@ltiays and the fifth col-
umn gives the number of blocks assigned after compaction step. The lastrcgives the relative
performance of the EC and IVW methods.

Table 5.1 summarizes the results on the three models from the viewpoints giviguia b.1. The
enforced coherence (EC) method is slower than the independent wakel(IVW) method on the
GTX480, as the latter can exploit the caches well. In contrast, the EC metimodcis faster on the
GTX280 on Fairy and Happy Buddha models. They perform similarly on th&&ence model, per-
haps due to the moderate coherence of the reflection rays on this modetedrtering time of the
EC method is avoided by the IVW method. Table 5.1 also shows the number-ebxal/pairs created
during the enumeration step. The number is large on models with a lot of emuty apd affects the
performance of the EC method, as it needs more data movement for sorting.

Percentage of Rays Done

100

a0

20 -

| | | |
0 100 200 300 400 500

Iteration

| —— Conference — Fairy Happy |

Figure 5.2 Percentage of rays declaring intersection at each step of iteration.draivg very slowly,
taking 454 iterations to check reflections. In contrast, conference &il&gerations. Happy Buddha
takes just 294 iterations before declaring the status of the reflected rays.
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We analyze the performance of reflection rays on these models. Figusbd2 the percentage of
rays that find their intersections as IVW iteration proceeds. An iteratioa fay is the processing of
a single voxel, beginning with the starting voxel. The Buddha model startsllblwehaves the best
overall with 80% of the rays terminating in fewer than 80 iterations. This isusecall reflections are
self reflections which need only a few iterations. Other rays terminate wbgrtthss the bounding box
of the model. The Conference model starts well, but the progress is shft®e60 iterations. The Fairy
model starts and progresses slowly, needing over 450 iterations fotetionp The timing performance
(Table 5.1) mirrors this directly with Buddha model attaining the best reflectoimpmnance.

We study how the reflection rays are distributed among the voxels. The tay Ffure 5.3 shows
the ray concentration by voxels for the first iteration (or set of voxetdoerd) of the IVW method for
the 3 models. Most voxels of the Buddha model have fewer than 50 ragsgahrough them, while
the other models have a few hundred voxels with over 400 rays in them.aRapsocessed in parallel
by different CUDA threads. If there are more rays in the voxel, theesponding threads check the
same set of triangles for intersection and reuse the same data. This is arsiti@tican make good use
of the L2 cache shared by all threads of the GPU (as the threads girggésese rays may come from
different streaming multiprocessors). Buddha performs the worst ifoiixg the L2 cache, but its
overall performance is best due to early termination seen before. Tofigigure 5.3 zooms into the
tail of the ray distribution plot. The Conference model outscores the Faidehvath a larger number
of dense voxels. The relatively bad performance on Fairy can beiegglpartly by this.

The bottom left of Figure 5.3 shows the divergence present within eaclagy tile or packet of rays
processing the reflection rays. During IVW, the reflection rays are stitigssed as packets correspond-
ing to the tiles of the primary rays. If the number of voxels in a packet or a tilensttee VW method
will have more rays of the CUDA block accessing the same triangles. This fiidilemtly use the L1
cache. Most tiles have low divergence in both Conference and Fairglsiatbt on the Buddha model.
The early part of the plot (bottom right of Figure 5.3) shows that the €anice model exhibits lower
divergence than the Fairy model and performs better, as is confirmee nating times we obtained.

Ray distribution and tile divergence are thus good predictors of reflgatidormance. If the triangle
normals are mostly parallel (as with the Conference model), the reflectiemitiype largely coherent,
if a coherent packet of rays hits it. This will reduce the tile divergenakimproves the performance
with the use of L1 cache. If the triangle distribution is sparse and the triahghss widely varying
normals (as with the Fairy model), the reflection rays emanate at few plagésagel in all directions.
This reduces the number of rays per voxel and diminishes the overfdhpance.

Figure 5.6 and 5.7 show results for some other scenes like Fairy, Sibehi€@nference with a
simulation in midair. Figure 5.7 places the Dragon-Bunny collision in the Conder&oom model.
These frames take 115 ms to 200 ms per frame to render, depending ortiibetitis of the fractured
dragon triangles.

Figure 5.4 presents a comparison of the tracing times of our method and a# I$8¢d method on
a GTX480 for reflection rays. Grids offer no advantages to largelyhammt reflection rays whereas
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Figure 5.3Study of triangle and voxel distributions affecting reflection performafop .left plot shows
the concentration of rays in each voxel. Top right examines the tail of the lpdbmger tail with larger
number of voxels is better for performance. Bottom left shows voxedrdence in each tile. Bottom
right examines the front. Higher number of tiles with less divergence is tprqaerformance.

SBVH treats reflection rays in a nearly same fashion as other rays. rEflestion rays are much slower
in our method, but if we take into account the time needed for SBVH constryet®gain significantly.
However, if rendering a scene requires several reflection orctedrapasses, a BVH-based method can
catch up with ours even if the acceleration structure is built every framferiey to figure 5.4, we can
see that SBVH gains 25 ms per reflection pass over our method for HaygighB model. If SBVH
build time on GPU is 40 times faster than that of CPU, it will take about 80 pass&BVH to catch
up. Similarly, it will take 35 passes if the implementation is 100 times faster.
For a static scene, the total time taken for primary, shadow and reflectidravaysal is given by
toe = 12+ {hace + titace X L+ thae} X N
tirar = tis T {thace + titace X L + thace} X N
tff?gtal = tsg + {tss + tfrace + {tfl]; + treorder + tfq’}ace} x L + t#]ace} x N
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Figure 5.4 Comparison of traversal times between our method (Grid) and SBVH ted\(&BVH) [2]
for various passes in a frame, viz. Primary, Shadow and Reflection Fyysshadow and secondary,
time taken to rebuild the data structure and rearranging the data is also indNuleBlers are as noted
on NVIDIA GTX 480.

However, our consideration is scenes which are dynamic, for which thetéikem for building
datastructure is also brought inside the bracket as it is built every frame.

buvh buvh
ttgtal - {t " trace + ttrace X L + t;race} X N
total {t trace + ttrace X L + t;race} x N
t?gtal - {tds + ttrace + {tzh + t7"€07’d67‘ + ttrace} x L + ttrace} x N

Similar to our anaIyS|s in for shadow rays, if we plug in values for all the temmdskaep the number
of lights to a standar@ and in the best case assume the GPU implementation of SBVH is at low
as as HBVH implmenetation [36] dt60 ms, we see that it would take abouhounces before the
performance of perspective grid based implmentation starts to deteriotatgirigy in the values and
after a little algebra, we arrive at the condition between number of bowarakshe time required for
building SBVH asB = t?ﬂhz; % A plot of the following condition is figure 5.5. We can see that for
scenes with small number of lights, grid is better because of cheap cdiwtrotperspective grid and
its packetized traversal. However, as the bounces increase, the timdyadad in inefficient traversal
of a uniform grid datastructure increases that is where SBVH startsrinaimeng. The one time costly
rebuild of SBVH handles reflections rays from all directions in about #meesway and shows less drop
in performance as the number of lights scale. An SBVH implementation with a build firs@)ans
and more than 18 bounces, using a per-frame rebuilt SBVH is cheapeusireg a grid which builds
a perspective grid from the point of view of each and every light soarad traces the rays. Similar
calculations for number of passes can help us determine the point wh&BWté starts outperforming
the grid datastructure.
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Figure 5.5 Plot showing the number of bounces required in a scene to let a per{@nh&BVH to be
faster than a per-frame per-pass built grid. Numbers are for HapggtizuModel.
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Figure 5.6 In Fairy and Sibenik, only the floor is reflective. In case of Bunny flaatm Conference
Room, the wooden table and the wooden frame of the red chairs is a highlgqablisflective surface.
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Figure 5.7 Dragon, Bunny collision in a conference room.

50



Chapter 6

Discussion and Conclusions

Sentence first,
verdict afterwards.

— Queen of Hearts, Alice in the Wonderland

Most work in speeding up raytracing has looked at various parts tfagyg in an isolated fashion.
There is work on building good quality datastructures but which are costhuild. The moderate
or inferior quality datastructures are efficient to build and well parallelediot are not efficient in
terms of tracing rays. On the other hand, tracing of rays has been Hasajarately. Performance
benchmarks are presented for rays traversing the best quality detastruln the realtime raytracing
context, methods have to be conceived which strike an optimum balancesbetvesgoals of building a
good quality datastructure and achieving realtime traversal perform@hoaugh this dissertation, we
have presented various strategies through which we can use grid detiargtito achieve interactive to
near realtime performance consistently. All the methods we propose magdachpvery well on the
GPU architecture like Nvidia CUDA and OpenCL.

Often, it is known whether the scene is going to be static or dynamic. Also ifytriamic, how often
is it going to change. These clues can help us decide a better datastfocthegpurposes of raytracing.
No one datastructure is superior and often it is best to use a datastrbatie@ on the constraints and
demands. Static scenes are always rendered faster with BVH or Kd@me datastructure with its
slow traversal, in the worst case, might result in orders of magnitude stoswersal. However, with
scenes which change dynamically, a datastructure has to be built everyémeethe changes. Here,
the difference in BVH and grid start narrowing down. However, if thenbar of lights is large, or the
number of passes is high or the scene is being rendered with lots of rpia(tiy global illumination),
investing time in a better datastructure might be the right way even for dynaenesc Grids are an
attractive choice for game like scenes with changing geometry, few lightsraall number of passes.

In practical scenarios, there is often high similarity between two frames insipiteanging geom-
etry. Between any two frames, the number of primitives that might have movgderacked with
moderate ease. Also, the existing ordering among the triangles can benaisine driangles flagged as
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moved can be reinserted into the ordered list. However, updating the datastrdoes not map well
to architectures like GPU with fine grained parallelism. These architecturésddavour large scale
regular operations rather than small scale irregular operations. Addimakset of triangles to a large
set of already sorted list of triangles is an example of such a scenarimdsan entire array rather than
inserting a few elements is faster on GPU and therefore rebuilding the gdadtdacture is ideal in a
GPU setting.

In our experiments, we found that grids perform really well when the rrrabcells to be traversed
is less. Our approach makes such a scenario possible as we removiedrigsigg Back Face Culling
(BFC) and View Frustum Culling (VFC). Also, in the case of secondayg kehere we use a uniform
grid and resort to single ray traversal using the Independent Voatd slgorithm, our technique is able
to take advantage of the fact that rays remain partially coherent for giddiv iterations and some
hidden coherency can be exploited if a cache based architectureespres

Traditionally, building of an acceleration datastructure has been viewednasessary overhead.
Most approaches rely on carefully building an acceleration datasteusuas allow smooth and efficient
traversal. Our work is a significant deprature from this CPU basedaGigty philosophy as we build the
datastructure multiple times to suit the rays to be traced. We show that the tnslkdafig a cheap ray
specialized datastructure again and again more than compensates the buildtémesiof traversal.
This leads to better speeds and tracing larger number of rays beféoenp@nce starts deteriorating in
the secondary rays stage. Our superior performance in case ofdsegaays is due to the this fact,
that we build another frustum from light point of view and handle the siwadalmost same way as
primary rays.

Our main message is to look at different stages of raytracing independeithp consider employ-
ing different and more suitable acceleration datastructures for eash fmeping the total raytracing
time at interactive to near realtime rates.
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