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Abstract

Vision-based robot navigation has long been a fundamental goal in both robotics and computer vision

research. While the problem is largely solved for robots equipped with active range-finding devices, for

a variety of reasons, the task still remains challenging for robots equipped only with vision sensors.

Vision is an attractive sensor as it helps in the design of economically viable systems with simpler

sensor limitations. It facilitates passive sensing of the environment and provides valuable semantic

information about the scene that is unavailable to other sensors. Two popular paradigms have emerged

to analyze this problem, namely Model-based and Model-free algorithms. Model-based approaches

demandapriori model information to be made available in advance. In case of the latter, required3D

information is computed online. Model-free navigation paradigms have gained popularity over model-

based approaches due to their simpler assumptions and wider applicability. This thesis discusses a

new paradigm to vision-based navigation, namely Image-based navigation. The basic concept is that

model-free paradigms involve an unnecessary intermediate depth computation, which is redundant for

the purpose of navigation. Rather the motion instruction required to control the robot can be inferred

directly from the acquired images. This approach is more attractive as the modeling of objects is now

simply substituted by the memorization of views, which is far easier than 3D modeling.

In this thesis, a new image-based navigation architecture is developed, which facilitates online learn-

ing about the world by a robot (Chap. 2). The framework capacitates a robot to autonomously ex-

plore and navigate a variety of unknown environments, in a way that facilitates path planning and

goal-oriented tasks, using visual maps that are contextually built in the process. It also facilitates the

incorporation of feedback received from performing specific goal oriented tasks to update the visual rep-

resentation. Based on this architecture, the design of the individual algorithms required for performing

the navigation task (exploration, servoing and learning) is discussed.

In Chap. 3, a novel image-based exploration algorithm based on the idea of frontier-based exploration

is proposed. The algorithm infers the frontier boundaries directly from monocular images and uses them

to efficiently explore the environment. The frontiers are detected by using a modified segmentation

scheme, that separates floor regions from non-floor regions. This method exploits the advantage of

the natural structure in the world without involving any 3D reconstruction of the scene. The proposed

algorithm can systematically discover an unknown environment and build a visual representation that is

most suited for navigation.
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Chap. 4 discusses the three major algorithms required for performing the navigation task, namely

localization, planning and servoing. First, the idea of qualitative localization is introduced, wherein the

localization only identifies the most similar image in the database to the current image. A planning

algorithm is then used to infer the right set of intermediate images (from the visual representation) that

would lead the robot from its initial position to the required destination. Finally a feed-back based

control algorithm that exploits the projective transformations existing between the intermediate views is

employed to servo the robot to the goal configuration. The overall algorithm only operates using images

and converges to the destination reliably.

An online learning algorithm is described in Chap. 5. The algorithm utilizes additional scene in-

formation, gathered over time by the robot, to improve its visual representation. This is done by the

way of updating the scene feature descriptors using an incremental learning algorithm. Learning is also

employed to exploit the feedback received from previous experiences of the robot for improving the

navigation performance. Specifically the task of path-planning for trajectory generation is discussed.

An improved reinforcement learning scheme utilizing the potential field method to generate optimal

motion trajectories is presented.

The basic advantage of the overall proposed framework is that the robot is no more-limited to a

restrictive teach-and-replay scenario. It can now build an internal representation of its workspace au-

tonomously and improve it automatically. Further, the navigation task can be accomplished more effi-

ciently by simply exploiting the constraints existing between the images. The proposed approach en-

ables mobile robots to progress in the direction of increased applicability and robustness. Experimental

results on a laboratory set-up confirm the efficacy of the proposed algorithms.

Similar principles had been applied for solving the navigation/servoing problem in non-rigid envi-

ronments during the earlier phase of this thesis and are presented in the Appendix (Chap. A and B).
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Chapter 1

Introduction

The field of robotics has engendered great interest among researchers across various fields in the

recent past. The idea of employing a robot to perform a specific task instead of a human has been fasci-

nating. Robotics encompasses a broad spectrum of technologies in which computational intelligence is

embedded into physical machines, creating systems with capabilities far exceeding the individual basic

components. Such robotic systems can carry out tasks that are unachievable by conventional machines,

or even by humans working with conventional tools.

Robotic systems can be employed for a variety of tasks ranging from performing medical surgery [9]

to the task of assembling a car or to the task of traversing in an urban environment [17]. One principle

ability that one aspires of such systems to perform the above tasks is to move by themselves, that is,

‘autonomously’. Mobile robots are machines that move autonomously, either on the ground or in the

air/space or underwater. Such vehicles are generally unmanned, in the sense that no humans are on

board. The machines move by themselves, with sensors and computational resources on-board to guide

their motion.

The primary application of such robotic vehicles is their capability of traveling where people cannot

go, or where the hazards of human presence are great. For instance, to reach the surface of Mars, a

spacecraft must travel more than a year, and on arrival the surface has no air, water, or resources to

support human life. Hence robotic exploration is a fundamental step that provides enormous scientific

and technological rewards enhancing the knowledge of other planets. The Mars rover is a specific

example of a robotic vehicle capable of local autonomous operation for segments of motion and defined

scientific tasks [4, 43]. Another example of a hostile and hazardous environment where robotic vehicles

are essential tools of work and exploration is the undersea world. Human divers may dive to a hundred

meters or more, but pressure, light, currents and other factors limit such human exploration of the

vast volume of the earth’s oceans [81]. Apart from the above, these vehicles are also employed in

routine tasks that occur over spaces and environments where machine mobility can effectively replace

direct human presence. For example, in large scale cultivation of crops, underground mining etc [26].

Finally applications of robotic vehicles also includes the support of personal assistance (rehabilitation),
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in household tasks, and in entertainment. For example, a wheelchair that utilizes emerging robotic

technologies for providing mobility to the handicapped [22].

Mobile Robot Navigation is known as the ability of a robot to act based on its knowledge and sensor

values in order to reach its goal positions as efficiently and as reliably as possible [5, 72]. At the first

instance, it may seem a seemingly trivial task to navigate a robot as compared to the task of brain surgery

or automobile manufacturing. However the latter tasks are carefully cut out and formed such that they

are largely a high-precision positioning application for a very specialized tool. Whereas in the former

case, the problem is that there is no high precision around, no available databases about what are the

objects in the world and the floor plan. Further, the environment may be unknown (with obstacles),

there may be people moving around, apart from presence of deformable objects such as plants, toys etc.

Dealing with such a variable environment poses a plethora of challenges to a mobile system.

1.1 Mobile Robot Navigation Using Vision Sensors

One of the main obstacles that have hindered the penetration of mobile robots into wide consumer

markets is the unavailability of powerful, versatile and cheap sensing. Vision technology is potentially a

clear winner as far as the ratio of information provided versus cost is considered. Cameras of acceptable

accuracy are currently sold at a price which is one to two orders of magnitude less than laser and

sonar scanners. Vision is an attractive sensor as it helps in the design of economically viable systems

with simpler sensor limitations. Vision potentially offers more portable and cost effective solutions,

as new mass market for camera technology has resulted in significantly reduced price and increased

performance. Moreover it can provide information unavailable to other sensors: for instance, it provides

semantic information of a scene through the understanding of its visual appearance and not just the

geometrical information about it.

The current trend in robot navigation is to try and use vision instead of more traditional range sen-

sors. Vision based robotic systems have gained popularity recently, and several approaches have been

proposed in the recent past. These systems analyze the images of the scene taken by the camera attached

to the robot and use the visual cues to plan their action [8, 11, 22, 33]. The systems employ either reg-

ular cameras (single or multiple) or omnidirectional vision sensors for viewing the environment. The

major distinguishing factor amongst the approaches is the method in perceiving the scene and the way of

extracting the features from the scene. Much attention is being devoted to solve the non-trivial problems

implied by using visual information for navigating an agent through the environment [5, 23, 30].

Vision-based robot navigation [22] has now become a fundamental goal in both robotics and com-

puter vision research (Structure from Motion [30], Visual SLAM [18], Visual Servoing [62] etc). Progress

has been made in the last two decades on two separate fronts: indoor and outdoor robot navigation. The

strides made in both these areas have been significant. For example, earlier it would have been impossi-

ble for an autonomous indoor mobile robot to find its way in a cluttered hallway but now it is not much

of a challenge. Equally impressive progress has been achieved in computer vision for outdoor robot-
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ics, as represented by the NAVLAB [72] and the Prometheus [26] system. Unstructured and dynamic

environments pose a crucial challenge to many real-world applications. With non-vision sensors, it is

impossible to predict and model every possibility. As a result the parameters of the robot system were

earlier tuned in order to work properly in the new environment. However with the emergence of cam-

eras, such environments can be tackled more efficiently. For a summary on the progress of vision-based

navigation, the reader may refer to [5, 22].

Traditionally, it has been assumed that the position of the target and/or the robot was known (or at

least partially known). However, the direct outputs of vision sensors are generally not position informa-

tion, but image features, which may be distorted due to projection, and restricted by the field of view.

In order to obtain the global position and orientation of one object or even just to determine their rela-

tive pose, various algorithms of calibration and transformation are required. Hence, all of the proposed

approaches formulate the vision-based navigation problem as a two-step process: first, to transfer the

sensor features back to pose information, and then make a motion plan in the pose space. However, the

transfer from sensor space to pose space is redundant and introduces unnecessary uncertainty into the

loop. It would be more beneficial to directly use the sensory information and navigate the mobile robot.

It is this aspect, which is the focus of the thesis. More specifically, this thesis deals with the problem of

using off-the-shelf cameras fixed on inexpensive mobile platforms, to enable navigation and control to

given goal configurations directly in the sensor space.

1.2 Image-based Navigation: An Overview

A mobile robot that navigates in a large scale environment needs to know its position in the world

in order to successfully plan its path and its movements. This requires establishing a close relation be-

tween the perceived environment and the commands sent to the low-level controller, which necessitates

complex spatial reasoning relying on some kind of internal environment representation. The general

approach to this problem is to provide the robot with a detailed description of the environment (usually

a geometrical map) obtained using a stereo/monocular vision sensor mounted on the robot. Unfortu-

nately, extracting geometric information of the environment from the camera is time-consuming and

intolerant of noise. Few authors have successfully addressed this solution using very robust uncertainty

management systems [20, 42, 76], while few have circumvented it by efficient management of the envi-

ronment [7, 31, 66, 73]. Unfortunately, either of the above paradigms are not always feasible. There are

situations in which an exact map of the environment is either unavailable or useless: for example, in old

or unexplored buildings or in environments in which the configuration of objects in the space changes

frequently. Therefore, it would be beneficial for the robot to build its own representations of the world.

The philosophy of memory-based reasoning offers an interesting perspective. In the field of artificial

intelligence research, memory-based reasoning has been studied for a long time, which has been origi-

nally motivated from the human reasoning process [8]. In addition to the capability of reasoning about

the environment topology and geometry, humans show a capability for recalling memorized scenes that
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help themselves to navigate. This implies that humans have a sort of visual memory that can help them

locate themselves in a large environment. From these considerations, a new approach to the navigation

and localization problem has been developed, namely image-based navigation [16, 52, 67].

This alternative approach employs a sensor-centered representation of the environment, which is

usually a multidimensional array of sensor readings. In this case, the robotic agent is provided with a set

of views of the environment taken at various locations. These locations are called reference locations

because the robot will refer to them to locate itself in the environment. The corresponding images are

called reference images. In the context of computer vision, the representation usually contains a set

of key-images which are acquired during a training stage and organized within a graph. Nodes of the

graph correspond to key-images, while the arcs link the images containing a distinctive set of common

landmarks. When the robot moves in the environment, it can compare the current view with the reference

images stored in its visual memory. When the robot finds which one of the reference images is more

similar to the current view, it can infer its position in the environment. (If the reference positions are

organized in a metrical map, an approximate geometrical localization can also be derived.) With this

technique, the problem of finding the position of the robot in the environment is reduced to the problem

of finding the best match for the current image among the reference images. A path to follow is then

described by a set of images extracted from the database. This image path is designed so as to provide

enough information to control the robotic system [59].

This research area has attracted recent interest. In [17], neural networks were employed to learn the

relation between input view image and steering angle, to drive systems for both indoor and outdoor use.

Crespi [10] applied memory-based approach to indoor navigation to learn the relation between the input

view image and the lateral position in the corridor. The data learnt in the training phases are models

of the road, but they were only used for following and not for identifying the robot’s position along a

route. In [52], a new model of the route following, called the View-Sequenced Route Representation

was proposed, which was especially useful for corridor environments. In [12], a new algorithm for

navigation was advocated. Using a teach-replay approach, the robot is manually led along a desired path

in a teaching phase, then the robot autonomously follows that path in a replay phase. In [7], an algorithm

for robot navigation using visual servoing was proposed. In this method, visual paths are topologically

organized and the robot navigation mission is defined as a concatenation of visual path subsets, referred

as ‘visual routes’. To address the issue of huge memory requirements and computational costs for

modeling and matching, Nayar et.al. [58] proposed a object recognition method where 3D objects were

represented as manifolds in eigenspace, with parameters of their pose and lighting condition. This was

a significant step as it had made image-based navigation a feasible approach in many application areas.

Current research on image-based navigation faces several issues, of which robustness and adaptabil-

ity are the most challenging. A navigation system should be robust to many types of variations such as

changes in illumination conditions, people wandering around, or objects being used and moved etc. In

addition, the visual appearance of its environment changes continuously in time. These issues pose seri-

ous problems for recognition algorithms that are trained off-line on data acquired once and for all during
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a fixed time span. The current effort is mainly focused in equipping the existing navigation algorithms

with the above desirable though challenging characteristics.

1.3 Problem Statement and Contributions

The goal of this research is to develop autonomous robots that can not only explore their environment

indigenously but also navigate in their workspace intelligently. To achieve this, the recent advances in

the field of computer vision and machine learning research are utilized. The research in these areas have

advanced to such a level that it is now not only possible to make robust and accurate inferences about

the geometry of the world by only using (single or multiple) images in fully natural scenes [32, 63, 70]

but also efficiently learn their models [14, 35, 51]. All these developments have led to an increase in

their application to solve robotic problems, for example see [18, 62, 66]. Specifically, the techniques

developed in these fields provide ample opportunity to perform better in the current context and thus

they are utilized to enhance the image-based navigation paradigm.

In particular, the basic image-based navigation framework has several limitations. The proposed

algorithms are restricted by the limited amount of information that is acquired by them during their

off-line training stage. This dependence limits the knowledge of the robot. However the images that a

robot acquires during navigation provide additional information about its world that could be utilized

to update its memory and thus account for variations in the scene. Secondly, the performance of the

robot over similar tasks remains the same over time. The feedback received by the robot in its previous

experiences is not exploited to improve its performance in later tasks. Lastly the robot workspace is

limited to the explored regions that it visualizes during the off-line training stage. It would be interesting

if the existing approaches could be enabled to automatically adapt to new and changing environments.

Rather than limiting image-based navigation paradigms to a simple teach-and-replay scheme, they can

be extended so as to autonomously learn and navigate in unknown environments, which extend their

capabilities and applications. In this thesis, the above issues are analyzed and a novel framework for

image-based navigation is proposed, which achieves the following characteristics.

• Automatic exploration of new environments to gradually expand the robot workspace and map-

ping directly using images (rather than 3D mapping)

• Autonomous navigation only using information inferred from the robot visual memory

• Incorporation of additional information acquired over time into the robot memory incrementally,

allowing long-term memory building

• Performance improvement via the process of online learning from its current and previous expe-

riences
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1.4 Navigation Environments

Different environmental scenarios have been considered for evaluating the applicability potential of

the proposed algorithms. Two major environments considered are described below.

1.4.1 Indoor and Outdoor Environment for a Mobile Robot

The experiments are conducted in two different real-world environments. The environments consid-

ered include usual office and lab space apart from hallways and corridors. Such environments contain

chairs, desks, tables etc. The goal is to position a robot anywhere in these environments and it should

be able to navigate across different regions.

Outdoor environments pose a more challenging case to the algorithms due to their highly varying

conditions (illumination, texture, dynamic objects etc). However, the methods should be able to adapt

to such variations.

1.4.2 Navigation and Control in Deformable Environments

The problem of navigating a robot end-effector in presence of deformable targets has also been

considered. In robotic vision research, motion analysis has been largely restricted to rigid objects due

to their simplicity, elegance and immediate industrial applicability. However, in real world situations,

motion of physical objects is often non-rigid [1] in nature. Common examples include motion of human

body, flying birds, ocean waves etc.

Dealing with non-rigid motion poses several challenges in the design of optimal servoing strategies.

Non-rigid objects undergo a persistent change in their pose which forbids any single image to character-

ize their state. This is because motion instruction planned based on the features extracted at current time

instant might not be relevant in the next instant as the object undergoes a change in its pose. Further, the

desired configuration of the end-effector cannot be described by using only a single image or a single

pose as it will lead to oscillations of the manipulator even after the goal position is reached. Note that

the unavailability of static features (in case of whole body deformations) and background features (in

case of moving targets) makes it imperative to engender new representation schemes for visual servoing

using only the pose-varying features on the object surface. This necessitates a time-based representa-

tion, rather than a purely spatial one, due to the temporal nature of the object deformations. It must

be emphasized that non-rigid motion encompasses wide range of possible motions ranging from simple

translatory motion such as a waving hand to highly complex motion like that of a beating heart. A gen-

eral representation for all kinds of motions is preferable, but appears to be inconceivable at this stage.

Establishing correspondence between image features is usually the primary step in visual servoing.

However, finding accurate correspondences is often difficult in practical situations; especially, while

matching points in two views separated by large displacement. This is a highly formidable require-
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ment in case of deformable objects as this demands frame-to-frame matching of the object deformations

which is complicated even for simple motions.

Existing servoing schemes are not designed to tackle non-rigidity. Cartesian-based algorithms re-

quire complete3D information of the object which is a strong assumption for deformable targets.

Image-based servoing schemes cannot be directly used as these schemes use information only from

a single image to guide the robot, which results in an oscillatory camera trajectory [61]. Also, these

methods are not completely model-free, since depths of the observed features are needed in the con-

trol law [33]. Further, they demand the exact frame-to-frame correspondences between image features.

Moreover, new representations conceived for modeling the non-rigid motion cannot be directly utilized

in these schemes as the corresponding interaction matrix relating the feature motion in the image space

to the camera motion in the Cartesian space has to be derived. Until now, Jacobian has been derived

only for simple primitives (points, lines) and designing new Jacobian for higher order primitives is a

tedious task.

A different approach to visual servoing is proposed here, in which the motion characteristics of ac-

tive non-rigid objects are used to perform the servoing task, without the requirement of3D structure

information. The approach is based on the bi-dimensional appearance of the objects in the environment

and explicitly takes into account independent object motions. In most cases, where an object has a

repetitive motion, the space-time trajectories of representative points on it will serve to uniquely rep-

resent the object. These trajectories are invariant to object deformations and can be utilized to obtain

a stable estimate of the projective transformation relating the initial and desired views. The estimated

transformation is then used in a feedback-based hybrid control to perform the servoing task.

In the first part of this work, issues in working with a deformable environment were addressed and

results of this study are reported in Appendix (See Chap. A). The rest of this thesis limits its scope to

the specific explanations concerning a mobile robot, though most of the arguments are also valid for the

navigation issues of a manipulator arm in a deformable environment.

1.5 Experimental Set-up

A low-cost apparatus was employed to highlight the applicability of the proposed algorithms. The

experimental setup is comprised of an indigenously designed and built differential drive robotic plat-

form1 (with kinematics similar to a unicycle). The vehicle has two symmetric rows of three wheels on

its sides each actuated by a single low-resolution stepper-motor actuator. It is also comprised of a simple

controller, able to avoid feature occlusions and obstacles (See Fig. 1.1). The vehicle is equipped with an

encoder feedback, ultrasonic range finder and a pan tilt head for a camera.

The proposed algorithms are analyzed using commercially available cameras. Specifically, an IEEE1394

Firewire camera ‘Flea2’ (manufactured by PointGrey) was used. The camera operates at640×480 pixel

resolution and affords a horizontal field of view of approximately60◦. The camera was fitted with a

1The robot was built by Supreeth Achar, B.Tech 2003 Student, IIITH
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(a) (b)

Figure 1.1Experimental Set-up (a) A differential drive robot with a pan-tilt head and an on-board laptop
(b) camera (Flea2)

2.1mm wide-angle lens and achieves a peak frame rate of 30 frames per second (fps). The algorithms

were also analyzed using another off-the-shelf USB camera (Logitech QuickCam Pro 4000). A standard

calibration technique was employed to ascertain the internal parameters of the cameras.

The camera was placed on the front part of the robot platform as shown in Fig. 1.1. A 1130 MHz

Dell Inspiron 700m laptop was mounted on-board the vehicle. The camera was connected to the laptop

using a RS-232 serial cable. The robot operates in its x-z plane and rotates around its y-axis. All the

proposed algorithms were implemented in Matlab/C++.

The experiments were conducted in two different real-world lab environments. The environments

contained chairs, desks, tables etc. Fig. 1.2(a) shows the environment and the robot in its workspace.

Fig. 1.2(b) displays the robot’s view of the workspace.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 explains the proposed image-based naviga-

tion architecture. In Chapter. 3, the concept of image-based exploration is explicated and the proposed

algorithm is presented. The details of localization, planning and navigation algorithms are elucidated

in Chapter. 4. Chapter. 5 explains the need for life-long learning in mobile robotic systems and gives
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(a)

(b)

Figure 1.2 (a) Robot in its workspace (b) Robot’s view of its workspace

details of the devised online learning method. Finally, Chapter. 6 gives the concluding remarks and

provides pointers for future research.
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Chapter 2

Visual Experience Architecture

2.1 Motivation

Vision-based navigation has been mostly analyzed as a localization problem in the literature. The

robot is provided with a set of images obtained during a training stage to describe its environment. Lo-

calization is then performed by comparing the current image with the set of images. However, there has

been no single method developed until now that addresses the issues of exploration, mapping, localiza-

tion, planning, servoing and learning in a single comprehensive framework. Such a framework is more

interesting rather than limiting image-based navigation paradigms to a simple teach-and-replay scheme.

It allows the robot to autonomously learn and navigate in a wide variety of unknown environments

extending their capabilities and applications.

The ability to automatically learn from its past experiences and simultaneously build a dynamic map

while autonomously exploring an unknown environment opens the door for robotic systems to be widely

deployed. Several industrial applications can benefit from this framework, for instance mobile robots

providing services in a small-scale outdoor environment, performing path planning and navigation to

arbitrary destinations, development of robotic navigation guides etc. The recent advances in the field of

computer vision and machine learning (for instance, camera pose estimation under various challenging

conditions [70], real-time visual tracking [66] etc) make this task possible. The techniques developed

in these fields provide ample opportunity to perform better in the current context and thus they can be

adapted to enhance the existing paradigms. The motivation is to adopt the advances in these fields to

enhance the image-based navigation algorithms in the following manner.

1. It is now possible to explore only using simple vision sensors and map the environment simply as

images (View-based Exploration).

2. Servoing can be performed by exploiting the constraints and relationships that exists between

images (robust correspondences and accurate relative pose estimation).

3. Online data acquired by a robot can be utilized to enrich its visual memory (Incremental Updates).
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Figure 2.1Proposed architecture for image-based navigation: Image memory built using an exploration
algorithm is employed to construct a visual experience, which is utilized by the localization and servoing
algorithms. The feedback received during navigation is used to improve its performance.

4. Knowledge gained during past experiences of the robot can be exploited to improve its perfor-

mance in later navigation tasks (Reinforcement Learning).

With the above motivations, this thesis proposes the concept ofOnline Visual Experiencefor the in-

cremental construction and updation of the visual memory of the robot. Further, it also develops strate-

gies for systematic exploration of previously unknown environments and incorporation of the feedback

from previous experiences. It must be emphasized that the proposed approach does not focus on the

construction or improvement of the 3D map of the environment (unlike earlier approaches) but rather

concentrates on improving the visual representation for optimized navigation.

2.2 Proposed Framework

The proposed architecture is illustrated in Fig. 2.1. A database of images describing the environment

is first built by a robot. This is done during the exploration phase. These images are utilized to build

a compact and statistical representation of the environment, which is referred to as visual experience.

Information inferred from the visual experience is used by the localization and servoing algorithms to

navigate the robot. Finally the feedback received during the navigation phase is incorporated back into

the visual experience using the learning scheme. The following subsections elaborate the characteristics

of each component in greater detail.
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2.2.1 Image Database

Environmental models can be known beforehand, but gradual changes deteriorate their usability. A

better approach is to maintain the model directly by using the images taken by the camera. Therefore an

image base is used to efficiently describe the robot workspace. The database consists of a set of images

I = {I1, . . . , In} of the environment taken at various posesP = {P1, . . . , Pn} wherePi = (xi, yi, θi)
in a relative coordinate reference frameF with respect to an initial camera pose. These locations are

the initial reference locations which the robot refers to for locating itself in the environment. The

corresponding images are called reference images. These images should sufficiently sample the entire

workspace.

2.2.2 Exploration

An exploration algorithm is required for systematically discovering a previously unknown environ-

ment or to gather additional information about a partially explored region. It is imperative to design

a strategy to automatically obtain the images that sample and describe the entire workspace. The de-

vised algorithm should intelligently infer unexplored regions only from the images captured by a camera

and navigate to these locations to increase its knowledge of the environment. Such a strategy is more

preferable than limiting the image set to a collection of views obtained during offline training step. The

explored regions should be mapped using images rather than 3D mapping.

2.2.3 Visual Experience

Raw sensor information can overwhelm a planner and prevent it from finding a path because of the

amount of noise and uncertainty that it contains. Therefore using the imagesI, a statistically compact

representation of the worldV (visual experience) is built

V = f(I). (2.1)

This not only ensures robustness to the effects of noise in the sensor system (due to sensor vibrations,

calibration errors, illumination effects etc) but also invariance against different transformations on the

scenes such as translation and scale. It produces a compressed form of the original scenes so as to

speed up the computation of the comparisons yet maintain distinguishing representations of the scenes.

Further, it aids in fusing information extracted from images acquired at different robot poses. We refer

to such a representation asvisual experienceas it abstracts visual information (describing the robots

experience) acquired during navigation. It can in fact be considered analogous to primary memory for

the robotic system (while the image database act as the secondary memory) that makes the localization

and servoing algorithms efficient. An important characteristic of such a representation is a facility

to incrementally build it using the available images and further update itself upon the availability of

alternate images to replace existing images in the databasei.e.,

V ′ = g(V, Inew). (2.2)

12



Such a representation scheme is as powerful as using a complete 3-D model.

2.2.4 Planning & Control

This module constitutes the algorithms required for localization and control of the robot. As the

robot navigates in the environment, it acquires an imageI∗ from its current position and compares it

with its visual experienceV to infer the pose of the robot. When the robot finds which one of the

reference images is more similar to the current view, it can infer its positionP in the environment. With

this technique the problem of finding the pose of the robot in the environment is reduced to the problem

of finding the best match for the current image in the representation. Once the robotlocalizesitself, a

planning algorithm is employed to infer the sequence of images connecting its initial scene view to the

desired scene view. These set of intermediate images have some common overlap amongst them which

is utilized by the servoing algorithm to perform specified goal-oriented tasks. It must be noted that

the servoing algorithm should only utilize information available viz. the visual experience without any

requirement of additionala priori knowledge of the world. Recent advances in computer vision enable

us to design such a control by way of exploiting the constraints and relationships that exist between

images [18, 70].

2.2.5 Feedback and Learning

In real world scenarios, all the information necessary to learn is rarely available a priori; rather new

pieces of information become available over time using which the knowledge base can be constantly

revised. Thus it would be preferable to have an incremental learning system. Specifically, as the robot

maneuvers in the environment, it acquires a new set of imagesI ′ describing its workspace. These views

provide additional hypothesis about the scene that could be used to update the visual experience (See

(2.2)). The improvement could either be in the form of addition of new views into it or replacement

of existing images in the database with better images. Further, the incorporation of multiple views

(hypothesis) of a feature help in capturing the variability in the geometry of the features. It adapts the

representation to reflect the environmental modification that may occur in between the exploration and

the navigation stages. The geometric estimates computed using an online visual experience will be more

accurate leading to the improvement in the performance of the localization and servoing algorithms.

Additionally while performing assigned tasks, the robot might possess imperfect information about

an explored region. One possible solution to circumvent this problem could be to employ geometric

techniques to vary the level of detail of the representation (i.e., either in the form of interpolation by

employing geometric techniques [35]) or by re-invoking the exploration algorithm. However, this may

not be effective all the time. For instance, in case of planning a path from its current position to a

destination, it may originally lack the right set of images that would lead to an optimal trajectory. In

this case, the system should be made intelligent enough to learn the optimal robot trajectory using the

experiences that it gains over time. This facilitates the robot to improve its performance if a similar task
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is performed again. It must be emphasized that in this work, geometric information directly available

from the images is employed to facilitate learning unlike previous learning-based approaches [51, 80].

The proposed architecture presents visual experience as an extension of the visual memory for the

purpose of map representation. As it can be incrementally built and updated, it is referred to asonline

visual experience. The feedback received from the current (and previous) experiences of the robot can

be incorporated into the visual experience. Further the exploration technique facilitates expansion of the

robot workspace into newer avenues.

2.3 Appearance Modeling as Visual Experience

It must be emphasized that a representation of the world is not something from which the world

should be reconstructible. Rather a representation of the world is a statement of facts deducible from

observations, and ideally includes enough facts that anything deducible from past observations is also

deducible from the representation. A representation is not an analogous structure to the world; it is a

collection of facts about the world.

A visually guided mobile robot inhabits a mental world different from the real world. Its observations

do not exactly match the real world. Its physical actions do not occur exactly as intended. The task of

navigating around the world can be eased by having the world map/representation based on primitives

suitable for navigation. The map should also be constructable from visual observations. Conventional

approaches have modeled the world as a projection in a two dimensional plane. However a robot may

not perform many useful tasks in such a case. It must be noted that the world a robot must operate in is

inherently three dimensional even if it can locally move in only a two dimensional plane. Moreover most

approaches have an underlying assumption that it is necessary to produce a world model in an absolute

coordinate system. This is achieved by calibration techniques, which are often time consuming and

are confounded on mobile robots by the fact that the robot itself is not fixed to any coordinate system.

Moreover, the sensors and the control systems involved in the calibration process have both systematic

and random errors.

In the proposed approach, appearance statistics of the images are utilized to compute an efficient,

compact and lower dimensional representation. Appearance may either refer to global image statistics

or the local features extracted from the images. Conventional appearance-based methods model the

underlying low-dimensional structure of the scene by projecting a training set of images with known

camera positions onto a low-dimensional subspace spanned by a few of their principal components.

The choice of the representation of the appearances is fundamental for the matching process (i.e., the

calculation of the similarity between two images). In the following, a brief survey of the methods

available in the literature is provided and the proposed method is then explained.

Eigen-space methods, more popularly known as Principal Component Analysis (PCA), have demon-

strated their success in the field of robot localization as well as in face recognition, data compression,
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and many other applications. In [58], a parametric eigenspace method was adopted. Scene images taken

at various locations were represented as the points in the eigenspace. These points, connected by splines,

composed a manifold in the eigenspace. An image taken during actual navigation is projected onto the

eigenspace to obtain the current location (as the location for the closest point on the manifold). Pourraz

and Crowley [16] compressed a large set of images using the Karhunen-Love transform and used the first

few dimensions of the new representation space to capture the significant variations in scene appearance.

In [42], active vision is combined with robot localization using PCA. In [3], the study of the problem of

batch learning and the use of incremental PCA is presented. Their idea is to deal with on-line learning

of the robot landmarks without recomputing the PCA for the whole samples each time. The work done

in [37] presents the effect of illumination on PCA. It presents illumination invariant features by filter-

ing the eigenimages rather than filtering the original samples. In [67], a comparison among different

appearance-based representation schemes is made. Although their results show that PCA is more robust

and accurate than other methods such as edge-density based etc, it remarks that PCA requires more

computation power. Most of the devised method until now can be classified as either local or global,

based on the feature extraction applied. In the global based approaches, the whole image is considered

as a sample and applied to the PCA as a vector. An example of global features is the work done in [6],

where PCA is globally applied to panoramic images. It introduces robust PCA using an expectation

maximization approach where outliers can be resolved. On the other hand, in the local based approach,

a set of landmarks (small patches) are first selected from the image and transformed into vectors to be

further handled by PCA. In [36], solutions to the problems related to robustness against occlusions and

invariance to the rotation of the sensor were proposed. It defined an eigenspace of spinning-images in

which a model of the environment successfully exploits properties of panoramic images to efficiently

calculate the optimal subspace in terms of principal components analysis of a set of training snapshots

without actually decomposing the covariance matrix.

It must be emphasized that PCA is an appropriate model for data generated by a Gaussian distrib-

ution, or data best described by only a second order correlation. It encodes the data based on second

order dependencies (pixel-wise covariance among the pixels), and ignores higher-order statistics includ-

ing nonlinear relations among the pixel intensity values, such as the relationships among three or more

pixels in an edge or a curve. However, it is well known, that the distribution of natural images is highly

non-linear. To cope with the nonlinearities in the data, in [28], a nonlinear method for learning the

low-dimensional pose of a robot from high-dimensional panoramic images was proposed. The local

geometry of a point and its nearest neighbors on the manifold were used to project the point onto a

low-dimensional coordinate space. An algorithm for Locally Linear Projection (LLP) approximated the

mapping from images to camera positions using a locally weighted neighborhood. The image-based

position measurements were integrated with odometry information in a Bayesian framework to yield

an online estimate of a robots position. However, the method assumes the rotational orientation of the

robot is known and considers only translational degrees of freedom. When rotational angle is included
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in the pose space, the appearance manifold possesses the topology of a solid torus. In this case, it is

impossible to estimate non-Euclidean manifolds.

In the proposed approach, the appearance of a scene is modeled using Kernel PCA (KPCA), which

has gained recent popularity amongst the subspace techniques [14, 41]. Kernel PCA, originally proposed

by Scholkopf et. al., [64] was investigated as a generalization of PCA. While PCA aims to find a

second order correlation of patterns, KPCA takes into account higher order correlations amongst image

patterns thus allowing it to model data generated by non-Gaussian distributions. The success of KPCA

is demonstrated in the area of image processing, such as face recognition, image de-noising, texture

classification and other applications in other different fields. In the following sub-section, the KPCA

technique is briefly reviewed and then the proposed method is explained.

2.3.1 Kernel Principal Component Analysis

In PCA, the covariance matrix is computed asC = 1
l

∑l
i=1 (xi − µ)(xi − µ)t and the principal

components are obtained asv 3 Cv = λv, where the vectorsv1,v2 · · · ,vk corresponding to thek

largest eigen values are the directions along which the data has maximum variance. Kernel PCA can

be derived using the known fact that PCA can be carried out on the dot product matrix instead of the

covariance matrix [64]. Let{xi ∈ RM}N
i=1 denote a set of data. Kernel PCA first maps the data into an

higher-dimensional feature spaceF by a functionφ : RM → F , and then performs standard PCA on

the mapped data. Defining the data matrixX as[φ(x1)φ(x2) . . . φ(xN )], the covariance matrixC in F

becomes

C =
1
N

N∑

i=1

φ(xi)φ(xi)T =
1
N

XXT . (2.3)

It is assumed that the mapped data is centered i.e.,1
N

∑N
i=1 φ(xi) = 0. The eigenvalues and eigen-

vectors ofC can be obtained via solving the eigenvalue problem

λu = Ku, (2.4)

where theN ×N matrixK is the dot product matrix defined byK = 1
N XT X with

Kij =
1
N

φ(xi)φ(xj) =
1
N

k(xi, xj). (2.5)

Let λ ≥ . . . ≥ λP be the nonzero eigenvalues ofK(P ≤ N, P ≤ M) andu1, . . . , uP the corre-

sponding eigenvectors. ThenC has the same eigenvalues asK and there is a one-to-one correspondence

between the nonzero eigenvectors{uh} of K and the nonzero eigenvectors{vh} of C i.e.,vh = αhXuh

whereαh is a constant for normalization. If both of the eigenvectors have unit length,αh = 1√
λhN

. It is

assumed||uh|| = 1√
λhN

so thatαh = 1.

Another perspective to obtain the eigenvectors in the kernel space is to define them in terms of the

linearly independent samples. Without loss of generality, assume that a set ofm linearly independent
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samples{φ(x1, ), . . . , φ(xm)}(m ≤ N) span the space whereN training samples are distributed. Then

the ith eigenvectorvi is represented by

vi = [φ(x1), . . . , φ(xm)]




α1i

...

αmi


 = Φmαi (2.6)

whereαi = [α1i, . . . , αmi]T (i = 1, . . . , m) is a coefficient vector. For a test datax, its hth principal

componentyh can be computed using kernel functions as

yh = vhφ(x) =
N∑

i=1

uh
i k(xi, x) (2.7)

Then theφ image ofx can be reconstructed from its projections onto the firstH(≥ P ) principal

components inF by using a projection operatorPH

PHφ(x) =
H∑

h=1

yhvh (2.8)

Commonly used kernels include:

• Gaussian Kernel:k(x, y) = exp(−‖x−y‖
2σ2 )

• Sigmoid Kernel:k(x, y) = tanh(k(x, y) + Θ)

• Polynomial Kernel:k(x, y) = (x, y)d

The polynomial kernel has three famous degrees: (d = 1) is the linear classical PCA,(d ≥ 1)
the polynomial kernel taking into account integer values, and(0 ≤ d < 1) is the fractional power

polynomial.

In summary, the KPCA algorithm can be summarized as follows.

1. Center the data inF i.e.,
∑

φ(xi) = 0

2. Compute the sample covariance for thel vectors inF asC = 1
l

∑l
i=1 φ(xi)φ(xi)

T = 1
l XXT

3. Obtain a basis of kernel principal components (KPCs)V by diagonalizingC asCV = λV

4. Using result from linear algebra, all solutions to the above problem (i.e., eigen-vectors) should lie

in the linear span of the data vectors i.e.,V =
∑l

i=1 αiφ(xi) = Xα

5. Using the results in Step 2 and 4 in Step 3, we have1
l XXT (Xα) = λXα which yieldslλiαi = Kαi,

whereK is XTX.
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Figure 2.2Extraction of landmarks

Thus the KPCs are implicitly represented in terms of the inputs (image patches)xi’s, the kernelK

and a set of linear coefficientsα. By using an appropriate kernel functionK, the inner product com-

putation in the high-dimensional space is avoided (popularly referred as thekernel trick [41]). Note

that though references to the feature space vectors are made, they are never explicitly computed. To

choose an appropriate kernel function, one can either estimate it from the data or select ita priori (in

the implementations, a Gaussian kernel was chosen based on an empirical study).

2.3.2 Feature Extraction and Graph Representation

In the training or the exploration phase, the robot initially collects a large number of images of the

scene from several different distributed positions. It then extracts sufficient landmarks from the collected

images. Landmarks are the parts of an image which hold sufficient characteristic information about the

image. Usually a small set of landmarks per image are required. Fig. 2.2 displays some sample images

and the landmarks extracted from them. These landmarks are then vectorized. Using these vectors, the

KPCA features are extracted as explained in Sect. 2.3.1 above.

Given these features, the visual experience is modeled as a hierarchical topological map. The map

resembles a graph structure indicating the connected regions of the environment. The nodes in the graph

correspond to images in the environment and edges correspond to paths connecting pairs of images that
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can be traversed. Note that this graph is bidirectional as both front and rear views are stored at each

pose. The relative pose between two adjacent views can be estimated by using the feature correspon-

dences between them and these estimates can be stored along with the graph. It must be emphasized

that methods that provide robust feature correspondences have been recently developed which thereby

help in computation of accurate relative pose estimates (see [70] and the references within). Any am-

biguity in scale of the pose estimates can be resolved using the coarse odometric estimates. (Odometry

between two intermediate views is sufficiently reliable as only relative pose information is being used,

and involves no accumulative errors).

2.4 Contribution and Summary

In summary, this chapter has analyzed different aspects involved in successfully conducting the nav-

igation task and has presented a novel image-based navigation architecture based on the concept of

visual experience. The framework allows online learning about the world by a robot and capacitates

it to autonomously explore and navigate a variety of unknown environments. This is done in a way

that facilitates path planning and goal-oriented tasks, using visual maps that are contextually built in the

process. It also facilitates the incorporation of feedback received from performing specific goal oriented

tasks to update the visual representation. Based on this architecture, the design of the individual algo-

rithms required for performing the navigation task (namely, exploration, servoing and learning) were

discussed. Finally, a topological-map based visual representation has also been presented.
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Chapter 3

Image-based Exploration

3.1 Introduction

A mobile robot needs knowledge about the environment to plan its actions and to fulfill its mission

goals. While many robots can navigate using maps, few can build their own maps. Usually a human

must map the territory in advance, providing either the exact locations of obstacles or a graph represent-

ing the connectivity between open regions. However, gradual changes in the environment deteriorate

the usability of such models for sensor data interpretation. As a result, most mobile robots become

unable to navigate efficiently when placed in unknown environments. A better strategy is to explore the

environment and maintain the geometric models by using the sensor system. The process of exploration

has the potential to free robots from the above limitations.

Exploration is the task of guiding a vehicle through an unknown environment such a way that it

covers the entire environment with its sensors while building a map that can be used for subsequent

navigation. An exploration algorithm is required for systematically discovering a previously unknown

environment or to gather additional information about a partially explored region. A good exploration

strategy is one that generates a complete or nearly complete map in a reasonable amount of time. Such

a strategy is more preferable than limiting the robot memory toapriori knowledge obtained during

offline training step. If a robot is able to build and maintain a map by itself, its functionality within the

environment will be much improved. To achieve such performance only a minimal set of assumptions

about the environment should be made. The algorithm must be reliable and more sophisticated in such

a scenario.

In this chapter, some problems faced in performing the exploration task exclusively using a monocu-

lar vision sensor are examined and an algorithm to build a reliable map of unknown natural environments

in real time is presented. The basic aim is to develop online exploration strategies for inexpensive mo-

bile robot systems working in non-structured domains such as the home, office space etc. The main

contribution of this work is a fully autonomous mapping system that operates without the use of active

ranger sensors and consistently produces reliable maps of large-scale environments suitable for robotic

navigation. A key component of the presented work is the visual map representation. Unlike the vast
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majority of mapping paradigms, which employ range measurements derived from sonar, laser or stereo

cameras, visual maps make no attempt to infer scene geometry, but rather encode visual landmarks

implicitly in the image domain.

3.2 Related Work

Generating maps is one of the fundamental tasks of mobile robots and many researchers have fo-

cused on the problem of representing the environment as well as acquiring models using the representa-

tion [29, 75]. However, much of the research has been conducted in simulation or with robots that pas-

sively observe the world as they are moved by a human controller. The simulations often view the world

as a set of floor-plans. For instance, a blueprint view of a typical office building presents a structure

that seems simple with straightforward rectangular offices, square rooms, straight hallways. Deng and

Papadimitriou [21] investigated the problem of exploring an unknown polygonal room with a bounded

number of polygonal obstacles. The length of the path taken by a robot that learns the environment for

the first time is compared to the length of the shortest night watchman’s tour [15]. Kalyanasundaram

and Pruhs [38] considered the problem of conducting a systematic exploration of an unknown environ-

ment containing a number of convex polygonal obstacles. Iyengar and Rao [34] developed exploration

algorithms inspired by the visibility graph approach to path planning. The problem is modeled in terms

of a point robot moving through a 2-D configuration space populated with polygonal obstacles. In this

case, perfect sensing is assumed, and the robot learns the visibility graph online.

A real mobile robot may have to navigate through rooms cluttered with furniture, where walls may

be hidden behind desks and bookshelves. Though a few systems for autonomous exploration have been

implemented on real robots, these robots have performed well only within environments that satisfy

certain restrictive assumptions. For example, some systems are limited to environments that can be ex-

plored using wall-following [6], while others require that all walls intersect at right angles and that these

walls be unobstructed and visible to the robot [9]. Some indoor environments meet these requirements,

but many do not.

Another stream of researchers have been analyzing a very similar problem under the domain of

Simultaneous Localization and Mapping (SLAM) [76], which has become a very active research topic

in the last decade. The problem of SLAM or Concurrent Mapping and Localization (CML) has received

considerable attention in the robotics community. The basic problem that is addressed here is to build

environmental models or maps from sensor data collected from a moving robot. SLAM is considered

to be one of the cornerstones of autonomous mobile robot navigation and is technically challenging

because the robot position and the world features must be estimated simultaneously from noisy sensor

data. The state of the art algorithms in SLAM can be broadly subdivided into one of the following two

approaches (and various hybrids) [76]. One family of methods collects measurements and incrementally

builds the map while the robot moves (i.e. in an on-line fashion). Usually the map is represented

as a set of landmarks derived from a range sensor, and a Kalman filter is employed to minimize the
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total uncertainty of the robot pose and the individual landmark positions that accumulate during robot

motion. The second category involves first collecting measurements and then post-processing them in a

batch manner. The standard post-processing method is to employ Bayesian framework or Expectation

Maximization (EM), again to minimize the total uncertainty of robot poses and landmark positions. This

method relaxes the restrictive conditions imposed by Kalman filtering methods.

Several exploration models have also been analyzed in literature. Three basic models that have

gained popularity are topological maps, feature-based maps and occupancy grids. Topological maps

can be expressed as a graph, where the nodes represent places and the edge represent adjacency, or

direct connectivity. Occupancy grids use a 2D array to represent the environment. There, each cell takes

one of three values: free space, occupied space or unknown space. Grid-based algorithms have proved to

be very simple and quite useful for obstacle avoidance and planning purposes. However, when the size

of the environment is large, these models become difficult to handle. Feature-based maps may portray

a 2-D or 3-D model. They are another way to represent the environment by using geometric primitives.

In general, all these approaches have, in common, the concept of information gaini.e., moving to the

destinations in the world that are most informative for mapping and which increase its confidence about

its location.

While most of the prior work on mobile robot mapping exploits the use of range data to construct

an explicit geometric map, few researchers have also considered the use of vision sensors [18, 68, 77]

and visual data. Nayar et al. [58] were among the first to consider the use of a purely appearance-based

representation of the world for robot navigation. Several authors have also considered the use of vision-

based sensing to extract a geometric map, which can then be used in a more traditional SLAM context.

Se, et al [65] extract stereo-based landmarks using a scale-invariant filter, and Davison and Kita [18]

considered the problem of actively servoing a stereo head for landmark acquisition as a robot traverses

uneven terrain. Finally, Dellaert et al. [20] take advantage of environmental invariants, such as a planar

ceiling, to construct a mosaic-like map by registering an ensemble of images.

The Achilles heel of the above algorithms is their assumption that the robot can construct an accurate

metric map of its workspace in a global coordinate system. In practice, this is extremely problematic.

Once again the main difficulties stem from the fact that it is not easy to determine the position of the

robot with respect to an absolute coordinate frame of reference. Whenever the robot encounters new

features in the environment, it uses its estimate for its current position to determine where these features

should appear in the map. This implies that any errors in the positioning system will be reflected in the

map that the robot constructs. Moreover these methods are dependent on human control or active range

sensing for planning and obstacle avoidance.

3.3 Proposed Approach

Most image-based navigation techniques assume that a sequence of images are acquired during a

human-guided training step, which allows to derive paths for driving the robot from its initial to the
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goal locations. To overcome this limitation, for the first time, the problem of systematically exploring

an unfamiliar environment by using a single limited-field of view camera is considered. The purpose

of exploration is to discover and memorize the unknown regions of the environment so that the robot

can navigate reliably throughout the environment. The proposed exploration strategy is different from

earlier mapping approaches. Here the mapping is performed directly in terms of images and thus is

particularly suited for image-based navigation paradigms.

The central question in exploration is: Given what is known about the world, where should the

robot be moved to gain as much new information as possible? Initially, it knows nothing except what

it can see from where it is positioned. Its goal is to build a map that describes as much of the world

as possible, and as quickly as possible. The basic idea of the image-based exploration algorithm is to

acquire the right set of images that are pertinent for performing the navigation task. In this context, the

requirement is of a image setI∗ that facilitates optimal motion from one position to the other position

in the robot’s workspace. Rather than acquiring a large number of images and then arriving atI∗, it

would be preferable to have a limited set of views initially and then procure only the required additional

images to buildI∗. This is the main motivation behind our approach.

Our approach is similar to the popular frontier-based exploration strategy [82]. The central idea

behind frontier-based exploration is to gain new information about the world by moving to the boundary

between open space and uncharted territory. Frontiers are the regions on the boundary between open

space and unexplored space. When a robot moves to a frontier, it can see into unexplored space and add

the new information to its map. As a result, the mapped territory expands, pushing back the boundary

between the known and the unknown. Once frontiers have been detected, the robot attempts to navigate

to the nearest accessible, unvisited frontier. By moving to successive frontiers, the robot can constantly

increase its knowledge of the world and extend its map into new territories until the entire environment

has been explored.

In the proposed approach, the frontiers are directly inferred from the images. The basic idea is to

estimate the obstacle-free regions from the images and navigate the robot towards these regions so as to

augment its knowledge about its workspace. In this context, the frontiers are more appropriately referred

as ‘horizons’. Recent research in computer vision and machine learning facilitates better understanding

of images and allows inferring obstacles and obstacle-free regions [32, 63]. These results can be utilized

in the current framework to devise an efficient image-based exploration strategy. The robot initially takes

an image from its current position. From the images acquired, it infers the horizons (see Sect. 3.3.1). All

the detected horizons are maintained in a list. Using this information, it navigates to the next position.

A visited horizon is removed from the list of unexplored ones. When the robot reaches a particular

horizon, that location is added to the list of previously visited horizon. The robot then acquires new

images of the world. It relatively localizes the new view with respect to the previous view and adds

the new information to its visual map. Then the robot again detects horizons present in the images and

attempts to navigate to the nearest accessible, unvisited one. If the robot is unable to make progress

toward it, then it determines that the destination in inaccessible. The robot will then attempt to navigate
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to the closest remaining accessible, unvisited one. If the robot encounters an obstacle while in motion,

the robot backs up a pre-specified amount along the path it was following, and captures new views of

the environment at that location. It continues until no valid horizons are available in the environment.

Note that during the exploration process, at a given pose, the robot may have more than one area

to explore. Thus, some unexplored regions are postponed to be explored later. To come back to the

unexplored areas, the robot stores both front and rear views observed at each pose. Thus it can use the

road-map built during exploration to return to a previous sensing location. The number of intermediate

images needed between a path depends on various factors. If the path is straight-forward (e.g., along a

corridor or facing a wall), then fewer images suffice, whereas for a complicated one (such as turnings

etc), more images may be needed.

If a robot with a perfect map could navigate to a particular point in space, that point is considered

accessible. All accessible space is contiguous, since a path must exist from the robots initial position

to every accessible point. Every such path will be at least partially in mapped territory, since the space

around the robots initial location is mapped at the start. Every path that is partially in unknown territory

will cross a frontier. When the robot navigates to that frontier, it will incorporate more of the space

covered by the path into mapped territory. If the robot does not incorporate the entire path at one

time, then a new frontier will always exist further along the path, separating the known and unknown

segments and providing a new destination for exploration. In this way, a robot using the above strategy

will eventually explore all of the accessible space in the world. Such an approach balances the desire

to see as much of the as-yet-unseen environment as possible, while at the same time having enough

overlap and landmark information with the already scanned part of the indoor environment to guarantee

good map registration and robot localization.

It must be emphasized that in the proposed approach, noa priori scene information is assumed to be

available and the environment may consist of obstacles of unknown geometry. In summary, the overall

algorithm can be summarized is as follows.

• Obtain Images from the Pan-tilt Camera

• Infer the horizons from the images

• Displace the robot towards the nearest horizon

• Relatively localize its new position (with respect to its previous pose)

• Repeat the above steps until no valid horizons remain

The obtained images, as a result of exploration, are stored in a topological graph as explained in

Sect. 2.3. In this graph, each node is associated with its own local coordinate system that is used for

navigation within that path. In the case that more than one path exists between a pair of nodes, an edge

is stored in the graph for each path. An example of a topological map for a portion of a workspace is

graphically illustrated in Fig. 3.1. It displays the map of a rectangular lab environment. The opaque
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Figure 3.1 Example scenario illustrating the exploration algorithm: Frontiers chosen at each pose and
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Figure 3.2Graph built using the captured images

black regions indicate obstacles. The positions that the robot traverses during the exploration are shown

in the graph (Fig. 3.2). The frontiers that the robot estimates are indicated by dots.

The above approach has three main advantages. First, it can explore environments containing both

open and cluttered spaces. Second, it can explore environments where walls and obstacles are in arbi-

trary orientations. Third, it can explore efficiently by moving to the locations that are most likely to add

new information to the map. In the following subsection, methods for detecting horizons for guiding

the exploration process are described.

3.3.1 Inferring Horizons

Two basic method have been explored to infer horizons from the image. The first method is based

on the idea of automatic photopopup proposed by Hoeim et al. [32], while the second uses the concept

of plane segmentation.

Photo Pop-up In [32], the ability to infer scene geometry from a single outdoor image was demon-

strated. Most scenes can be characterized simply by the ground plane, vertical objects i.e., the things

that stick out of the ground (usually at right angles due to gravity), and the sky or the roof region. The

approach attempts to learn the structure of the world through appearance-based models of geometry.

Initially, the models are learnt from a diverse set of images. It then learns to segment the image into
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geometric classes (ground, vertical, and sky) and trains classifiers to recognize each of these classes

given a segmented image. After performing an over-segmentation into super-pixels, the super-pixels are

grouped according to the probability that pairs of super-pixels belong to the same geometric class. The

likelihoods are then estimated, which indicate whether each segment is ‘good’ (i.e., that it is entirely

composed of one geometric label) and the likelihood of each possible geometric label, given that the

segment is good is computed. The robustness of the algorithm is due to the use of large and varied set

of image cues, including color, texture, location, perspective cues, and from combining estimates from

multiple segmentations to get the final estimate of the scene geometry.

The above technique was employed to infer the horizons from the image captured by the camera. By

making the assumption that the terrain local to the robot is planar, the recovered geometric information

can be used to produce a coarse estimate of the geometry of the environment. We then find the geomet-

ric label in the image such that the cells are marked traversable if they belong to the ground class and

obstacles are constructed at the boundary of the ground/vertical intersection. Each traversable region

corresponds to a potential horizon that needs to be visited by the robot. Though the algorithm is robust

enough to detect horizons, the major disadvantage is its computational complexity [32].

Plane SegmentationA simpler approach to detect horizons was also analyzed. The approach is based

on the concept of identifying free spaces by segmenting the floor plane from the obstacle regions. This

is done by partitioning each image frame into a grid of cells in which each cell is compared with a stored

template of the floor. A representative grid of15× 15 pixels was used. This grid is correlated with the

entire image using a simple sum of squared differences (SSD) method.

d(u, v) =
∑
x,y

(I(x, y)− w(x− u, y − v))2 , (3.1)

where I is the image, w is the template window and the summation is over positions x,y under the

template positioned at u,v.

This step differentiates the floor regions from non-floor regions by marking the former in dark colors

(intensities close to zero) while the latter show up with brighter intensities (close to 255). This correlated

image is now segmented into super-pixels using a graph-based segmentation algorithm [24] and the

average intensity of each super-pixel is computed. As a result of this segmentation, the floor regions

can be easily identified by those super-pixels (segments) with their mean intensity below a precomputed

threshold. The overall algorithm is summarized below.

• In an offline step, set a15× 15 representative window/template of floor pixels

• Given a new image, correlate the template with the image

• Segment the resultant correlated image

• Calculate average intensity of each segment
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(a) (b)

Figure 3.3 (a) Side view (b) Top view of the robot

• Threshold segments with mean intensity below a certain threshold

Though this method is environment specific (due to its assumption of a pre-specified template window),

it is computationally efficient and produces reliable and accurate frontier estimates.

3.3.2 Horizon Boundary Computation

Given the pixel locations(x, y) in the image of the mid-points of the horizons, their actual location

is computed using simple trigonometric relations. Fig. 3.3(a) shows the side view of the robot while

Fig. 3.3(b) shows its top view. The heighth of the camera center from the ground plane and its slopeA

from the horizontal are fixed and assumed to be known. Also the camera is assumed to be pre-calibrated

i.e., internal parameters of the camera (the image center and the focal length) are already available. The

transformation to the horizon location can be calculated as follows.

Using the concept of similar triangles, the angleB can be defined as

B = arctan(
y − cy

fy
), (3.2)

where(cx, cy) is the camera center and(fx, fy) is the focal length. The distanced to the obstacle can

be determined asd = h cot(A + B). The orientation of the point can be computed as

β = arctan(
x− cx

fx
). (3.3)

Thus the orientation and the distance to the horizon can be obtained.

Hence by using a single vision sensor, a frontier-based visual exploration algorithm has been devised.

The method stores no explicit prescriptions for moving between the places but exploits the availability
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of an active camera to achieve the task. Further it does not assume anya priori knowledge about the

geometric structure of the environment nor the availability of any known landmarks. This exploration

strategy enables the robot to obtain images of the environment autonomously rather than involving a

human-guided teaching step.

3.4 Experimental Results and Analysis

The goal of the experiments presented is to illustrate that a robot can build reliable image maps of

its workspace using the proposed method. The exploration algorithm was implemented and evaluated

in two real world scenarios. The environment is currently restricted to indoors and the robot is allowed

to wander anywhere within it. The robot is placed anywhere inside the lab and it begins exploring. As

the robot moves across, it takes every visibility area into account.

In Fig. 3.4, the process of extraction of horizons using Photo Pop-up method is shown. The images

consist of a ground floor plane and vertical obstacles. The algorithm identifies the ground plane region

from the obstacle region. The intersection between the two indicates the horizon. In Fig. 3.5, the process

of extraction of frontiers using the plane segmentation approach is displayed. In these images also, the

scene consists of both obstacle and obstacle-free regions. As explained in the algorithm, the template

of the ground is used to separate the ground region from the vertical regions. The horizon is set at

the intersection of the two regions. Fig. 3.6 displays another example output obtained using the plane

segmentation algorithm.

Using the horizons extracted from the image, the robot was navigated through the environment.

Fig. 3.7 shows the different steps during the process of exploration. The robot initially starts in a corner

of the lab, takes an image and detects the horizons. The robot then navigates to the closest horizon

(See Fig. 3.7(b)). Once it arrives at its destination, it adds the new scene views from its new location to

the graph and relatively localizes them (See Fig. 3.8). The robot then detects new horizons from these

images and navigates to the closest one. Fig. 3.7(c) shows the robot after few iterations where it has

explored more of its workspace. In Fig. 3.7(d), the robot has completed its exploration of the entire

workspace. The total time required was less than half an hour. An improved version of this system can

map the same region in about fifteen minutes. Fig. 3.8 shows the resultant graph built. The approach was

also tested in another lab environment. Fig. 3.9 shows the image map built as a result of the exploration

process. (The triangles indicate the positions at which the exploration images were captured.) It must be

emphasized that the second lab area contained large open spaces as well as small boxes, chairs, tables

etc, while the first one was narrow and cluttered with chairs, desks, and workstations. The algorithm

was able to perform reliably in either of the environments.

In our experiments, sonars were used for backup safety. In all robotic applications, special attention

must be devoted to the safety of the robot and other agents in the environment. Given that the visual

map does not encode geometric information, obstacle inference and avoidance requires careful consid-

eration. Sonar is an excellent sensor for reactive obstacle avoidance i.e., for monitoring local obstacles
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missed by the visual sensor as the robot moves along. While the robot moves toward its destination,

reactive obstacle avoidance behaviors prevent collisions with any obstacles not present while the map

was constructed. In a dynamic environment, this is necessary to avoid collisions with, for example,

people who are walking about etc. A sonar rather than a laser was used as the latter usually operates in

a two-dimensional plane, while the sonar projects a three-dimensional cone. So any object that is above

or below the laser plane will be invisible to the laser, but still detectable by the sonar.

3.5 Discussion

This chapter has examined some problems which must be solved by a mobile robot that explores an

unknown environment. A new image-based exploration algorithm based on the concept of horizons has

been introduced for automatically constructing a map from visual observations that is best suited for

the task of navigation. The experiments confirm that by using such maps it is possible to build reliable

maps of robot workspace. However one problem with this approach is that it only distinguishes between

scanned and un-scanned areas and does not take into account the actual information gathered at each

view-point. To overcome this limitation, a more formal notion of information gain (based on the idea of

entropy) might be introduced.
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Figure 3.4 Inferring Horizons using geometric context from a single image (a) Original Images (b)
Extraction of planes
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(a)

(b)

(c)

(d)

(e)

Figure 3.5 Inferring horizons using segmentation-based approach (a) Original Images (b) Correlated
Images (c) Segmented Images (d) Horizons or the Frontier Regions (e) Frontier Map
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(a)

(b)

(c)

(d)

(e)

Figure 3.6 Another example illustrating the inference of horizons using segmentation-based approach
(a) Original Images (b) Correlated Images (c) Segmented Images (d) Frontier Regions (e) Frontier Map
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(a)

(b)

(c)

(d)

Figure 3.7 Image-based Exploration process (a) Robot Starts (b) Robot moves towards closest horizon
(c) Robot after few iterations (d) After completing exploration
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Figure 3.8Graph built at the end of exploration: The positions indicate the robot poses taken

Figure 3.9Result of the exploration process: The positions indicate the robot poses taken
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Chapter 4

Robot Navigation using a Visual Memory

This chapter explains the algorithms required for localization, planning and control of a mobile

robot. To find a solution to a problem, it is often easier to split the problem into two or more parts

and construct the overall solution by combining the solutions to the subproblems. In robot navigation,

this is commonly achieved by splitting the navigation problem into three parts. The first part concerns

the localization of the robot which is essentially identifying the current position of the robot in the

environment. The next part addresses the issue of planning a path for the robot from its current position

to desired goal locations using an abstraction of the environment. The final step is the control part which

handles the details of moving the robot using the path planned amidst obstacles.

The following section briefly reviews the literature in the area of navigation. The rest of the sections

explain the proposed method for navigation.

4.1 Related Work

Based on the success of image understanding and advances in control theory, recent research in

robot navigation has focused on the use of monocular camera-based systems. A significant issue with

such systems is the lack of depth information. From a review of literature, various approaches have

been developed to address the lack of depth information inherent in monocular vision systems. For

example, using consecutive image frames and an object database, Kim et al. [40] proposed a mobile

robot tracking controller based on a monocular visual feedback strategy. To achieve their result, they

linearized the system equations using a Taylor series approximation, and then applied extended Kalman

filtering (EKF) techniques to compensate for the lack of depth information. A drawback of using EKF

techniques to estimate depth information is the requirement for linearizion. Song and Huang [71] use

spatio-temporal apparent velocities obtained from an optical flow of successive images to estimate the

depth information for a monocular guide robot. However, typical drawbacks of optical flow techniques

include the need for temporal smoothing and excessive image processing to determine the image flow;

resulting in an intensive computational burden for real-time robotic control.
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Recently, a monocular visual servo control methodology was developed for unconstrained systems

(e.g., robot manipulators) in a series of papers by Malis and Chaumette [47, 48, 49, 50]. The con-

trol method exploits a combination of reconstructed three-dimensional (3D) task-space information and

two-dimensional (2D) image-space information. The 3D information is reconstructed by decoupling

the interaction between translation and rotation components of a Euclidean homography. Advantages

of this methodology include no requirement of accurate 3D models of the environment, exploitation

of pixel information by the control which increases the potential to force the target to remain in the

camera field-of-view, avoidance of local minimas during navigation and finally singularities only ex-

ist in the image-Jacobian in degenerate cases. Based on the observation that interaction between the

translation and rotation of images can result in slower transient performance due to inefficient camera

motions, Deguchi [19] proposed two algorithms for a robot manipulator application that decouple the

rotation and translation components using a homography and an epipolar condition. More recently,

Corke and Hutchinson [33] also developed a method for decoupling the rotation and translation compo-

nents from the remaining degrees of freedom using a new hybrid image-based visual servoing scheme.

Unfortunately, these approaches typically assume that a constant best guess estimate of a depth-related

parameter can be used in lieu of the actual parameter, but the effects of the parameter mismatch are

not included in the stability analysis. More recently, Chen et al. [12] developed a homography-based

visual servo controller for robot manipulator systems that adaptively compensates for the unknown

time-varying depth parameter for a monocular camera-in-hand system.

4.2 Image-based Qualitative Localization

In the localization phase, the robot should compare the features of the actual scene acquired by it

using its camera with the stored features. The result of such a comparison would lead to the knowledge

of its position in the world. More precisely, as the robot navigates in the environment, it acquires

an imageI∗ from its current position and compares it with its visual experienceV to infer the pose

of the robot. In this context, localization is basically achieved by comparing or matching features of

input image with stored image database. Note that in conventional model-based approach geometric

features such as edges and corners are utilized in the matching process together with the 3D model of

objects [67, 42]. In contrast with this, in image-based approach, 2D images are employed directly in the

matching process.

The comparison is done by first extracting landmarks of the new images (See Fig. 2.2). Then, features

are extracted from these landmarks using the KPCA approach as described in Sect. 2.3. It must be noted

that these features are invariant to translation, rotation, scaling and illumination variations. Each new

feature is compared with each of the feature stored in the map representation. The resulting comparison

leads to the identification of minimum difference between the new features and the original ones. The

most similar image to the new image is found as the one which has the largest weighted sum of the

detected features, where the weights are according to the feature differences. The difference between a
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new feature from the localization phaseFi and a labeled featureFj is expressed by

d(Fi, Fj) = 1− e−ε‖Fi−Fj‖, (4.1)

where the difference is normalized between [0,1].

Once the robot detects which one of the reference images is most similar to its current view (i.e., the

localized image), it then infers its relative pose in the environment with respect to this image. This is

done by computing the homography [30] between the two views (using the feature correspondences) and

then decomposing this homography to obtain the rotation and scaled translation [23]. For more details,

the reader may refer to Appendix (Chap. B). It must be emphasized that localization is qualitative in

nature as the current robot pose with respect to a reference frame is not searched; rather the retrieval

process only informs that the robotic system is in the vicinity of one of the images in the database. Thus,

with this technique the problem of finding the pose of the robot in the environment is reduced to the

problem of finding the best match for the current image in the representation.

After the robot localizes itself, a servoing algorithm is employed to perform a goal-oriented task.

It must be noted that the servoing algorithm should only utilize information available viz. the visual

experience without any additional requirement ofa priori knowledge of the world. Recent advances in

computer vision enable us to design such a control by way of exploiting the constraints and relationships

that exist between images [70, 18]. It must be emphasized that two image retrievals are successively

done in this case: one for the initial image, and one for the desired one.

4.3 Planning Algorithm

Navigation involves both a planner and a controller. The primary goal of the planning process is to

compute an optimal path for traversal, depending on the information gained from exploration and the

current mission goal. Note that for maneuvering to the goal pose, the robot can only utilize information

available in its visual experience. For achieving this, it needs to infer the right set of intermediate

images that would lead it to its goal. The paths are planned by the robot using its topological graph of

the environment.

This strategy allows to take advantage of the available representation to simplify the global planning

task. It must be recalled that the topological graph is a set of nodes and edges where each node in the

graph corresponds to a view in the environment and each edge corresponds to a path connecting a pair

of views. Most edges in the graph are bidirectional, which means that the edge can be used in both

directions (Sect. 2.3).

When a navigation task is defined, the first operation consists of linking the initial and desired images

with the image base. Therefore, the nearest image to the initial image and the desired one are first

searched in the database (localization). The algorithm then performs an image retrieval step to extract

from the database a sequence of images. These images delimit the area of the whole environment that

the robot is allowed to traverse to reach its goal. It must be noted that a straight line (or an optimal)
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Figure 4.1 Example scenario illustrating path-planning: Optimal path (dotted camera poses) is not
realizable due to presence of obstacles. Alternate path (red camera poses) taken by the robot

path may not be realizable due to the presence of obstacles (for instance as indicated by dotted camera

positions in Fig. 4.1). Therefore a valid path is computed from the visual experience by searching for

the shortest path between the two localized nodes using a standard dynamic programming technique

(Dijkstra’s shortest path algorithm) with distance (or time taken) between two nodes acting as the edge

cost.

This methodology assures that consecutive images in the selected sequence contain enough common

features (which is required for the control algorithm) and also that the selected path is the shortest one,

with respect to the weighting system used.

4.4 Servoing Control

The goal of a control algorithm is to maneuver the robot along the planned path using hints from

the sensor system. Given the current and desired images, the training images with the closest projection

to them are found as the result of the localization step. The relative metric pose of the views is then

computed with respect to the localized views from the visual experience using the concept of homog-

raphy. The goal now is to regulate the error in pose so as to achieve the desired pose as illustrated in

Fig. 4.2. Asymptotic regulation of the position/orientation of a mobile robot is achieved by exploiting

visual servo control strategies inspired by the work given in [13, 49, 60]. By comparing the features

of an object in the reference image to features of the object in the current image, image-based geo-

metric relationships are exploited to construct a homography matrix (which relates the actual position

and orientation of the mobile robot to a reference position and orientation) despite the fact that a geo-

metric model of the object is not known. By decomposing the homography into separate translation

and rotation components, measurable signals for the orientation and the scaled Euclidean position can

be obtained. Full Euclidean reconstruction is not possible due to the lack of an object model and the
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lack of depth information from the on-board camera to the target; hence, the resulting translation error

system is unmeasurable.

It must be emphasized that intermediate images along the path only act as consecutive checkpoints

to reach the goal in the sensor space. Therefore perfect convergence towards each intermediate view

is not desirable. In such a scenario, an efficient alternative is to use a simple feed-forward control

to displace the robot between successive intermediate views. Any error introduced while moving in

between currently considered pair of intermediate views can be accounted while computing the relative

pose for the next pair.

In the following, the homography-based visual servo control employed in the proposed approach is

presented.

Homography-based Visual ControlA visual servo control compares the current image of a target with

the desired image and the difference (or ‘error’) is used to drive the camera towards the goal position.

Often the task is not just to regulate the image error but also to ensure a realizable camera trajectory. In

such scenarios, homography-based control acts as a convenient option as it regulates the error in camera

pose by estimating the3D motion parameters only using image information.

Homography is the intrinsic projective geometry between two views of a planar scene that is com-

puted from point feature correspondences. If all the object points lie on a3D plane, their coordinates in

the current imageI and the goal imageI∗ are related by a homography matrix or ‘collineation’ [30].

Assume that a pointP lies on a planeπ whose normal vector isn and the distance of the plane

from the camera center isd in the camera frameF as shown in Fig. 4.3. The point expressed in current

camera frameF is related to goal camera frameF∗ by a rotation matrixR and translation vectort as

P ∗ = (R + t
nT

d
)P. (4.2)

Figure 4.2 Illustration of the mobile robot servoing problem
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Figure 4.3Homography-based Visual Servoing

Assuming the camera intrinsic parameters are known, the image coordinates of the points are given by

p = P
Z andp∗ = P ∗

Z∗ respectively. This transforms (4.2) to

Z∗

Z
p∗ = (R + t

nT

d
)p, (4.3)

which can be rewritten as
Z∗

Z
p∗ = Hp, (4.4)

where

H3×3 = R + t
nT

d
(4.5)

is called the homography matrix up to a scale factorα [30]. The recovered homography can be decom-

posed to obtain the rotation matrixR, the scaled translation vectort
d and the plane normaln using the

procedure described in [23].

The obtainedR andt are applied as the control signals to the robot. The robot is instructed to move

a pre-specified distance in the prescribed direction. It then again acquires a new image and computes

the homography. TheR andt obtained from the newH matrix is now used to control the robot. This

process continues until the features in the current image match those in the desired image. More details

about the control are elaborated in the appendix (Chap. B).

The goal image is assumed to be reached when the distance between the current feature coordinates

and the desired ones fall below a fixed threshold. In case of non-planar environments, an approach

based on epipolar geometry may be employed, wherein a essential matrix is computed instead of a

homography matrix. However, the rest of the control strategy remains the same. In summary, the

servoing algorithm can be described as follows.

• Localize the current and the goal image

• Infer the intermediate views between the two localized views
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Figure 4.4Example scenario illustrating the servoing algorithm
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Figure 4.5Another Example of the servoing strategy

• Compute homography matrixH using the correspondence between two adjacent views

• DecomposeH to getR, T

• Use the estimated pose parameters to displace the robot

• Repeat until the error falls below a threshold (i.e., the features in the current and the goal image

match)

Fig. 4.4 shows an example of the navigation algorithm. The current robot position is denoted by S

and the desired pose isS∗. Images A to I are thea priori available views. The localization algorithm

would identify the location A as the closest to S and I closest toS∗. Images D and G are identified as

intermediate images. Using these images, servoing to the goal pose is performed as described in the

above algorithm. The dotted positions (in red) indicate the path taken by the robot. Fig. 4.5 illustrates

another servoing example along a corridor workspace.

The basic advantage of this approach is that it does not require anya priori knowledge of the scene

primitives and it does not force the robot to converge towards each intermediary position in the path.
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Figure 4.6Graph showing the localization rate Vs number of eigenvalues using KPC features

In this aspect, it is similar to the recently advocated qualitative paradigms [59]. Further, it takes into

account the presence of obstacles in the environment.

4.5 Experimental Results and Analysis

This section presents results of the localization and navigation algorithm to demonstrate their ap-

plicability.

To test the ability of localization, different set of images located in the area around the trained regions

were acquired. The images exhibit different transformations when compared with the training images. It

included images captured, first roughly along the path of the exploration, second in a path that deviates

from the one of exploration (about 0.5 meter from the first exploration path), and third with different

viewpoints and illumination conditions. The images were all640 × 480 8-bit greyscale pixels. As

explained in Sect. 2.3.1, the first step for localizing the images is to extract landmarks from the images.

Each view has 20 candidate landmarks, taken from gray scale images. Each landmark is 15× 15 pixels.

Using these landmarks, the kernel principal components are extracted. The extracted features are then

compared to the existing features as explained in Sect. 4.2 to infer the matching image.

The localization algorithm was accurate in almost all the considered cases. For the first environment

scenario, the recognition rate was around 81% while in the second (lab) environment it was around 83%.

In Fig. 4.7, some results are displayed. The first column shows the the current views acquired by the

robot in its workspace while the second column displays the retrieved images from the image database

that are most similar to the query. The degree of similarity of the retreived image with respect to the

input image is also shown. It must be noted that only gray-scale versions of the displayed color images

are employed in the algorithm.

We analyzed the performance of the algorithm by varying the number of eigenvalues. Fig. 4.6 dis-

plays an analysis of the result. Different number of eigenvalues were used and the localization rate

for each given eigenvalue was calculated. Only part of study where the number of eigenvalues vary-
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ing between 7 and 14 are illustrated. It can be observed that using around 9 to 11 eigenvalues yielded

good performance. Higher eigenvalues lead to lower localization rate because of the increasing size of

the feature vector which led to their embracement of noise. Feature vectors with too few eigenvalues

performed poorly as they can hardly contain sufficient information required to localize an image. The

figure also shows a comparison between PCA and kernel PCA. As displayed, kernel PCA leads to better

performance than PCA. This is because of the inherent nature of KPCA to capture the non-linearities in

the image features.

Several instances of the navigation algorithm were invoked and its performance was analyzed. As

described earlier, the first stage involves the planning step which extracts the set of intermediate images

from the database. Fig. 4.8 presents an example of an image sequence extracted from the base. The top

row shows the initial and the destination images, while the bottom images are the intermediate images.

It can be seen that each couple of images has a common region, which ensures that the environment

between the initial and desired views is correctly defined.

Several instances of homography-based control method were also tested. The analysis was done

both in simulation and through real results on the mobile robot. Simulations were performed in Matlab

environment using a camera with a512×512 pixel array and a sampling time ofT = 40ms. An arbitrary

configuration of points on a planar surface were considered as the scene features as shown in Fig. 4.9.

The figure shows initialF and the finalF ∗ camera coordinate frames along with the feature projections

viewed at their respective poses. The image projection of the points at the initial view are displayed

in blue, while the green points indicate the features at the desired position. The goal is to displace

the features from their initial coordinates to the desired image coordinates while ensuring the features

always remain in the camera field of view. Fig. 4.10 displays the image feature trajectories obtained

by executing the homography-based control method in this scenario. The figure also demonstrates the

exponential decrease in the error of feature coordinates. The application of the devised control yields

a smooth velocity screw with exponential convergence. Fig. 4.11 shows the velocity screw obtained in

case of the above scenario. It must be noted that both, translational and rotational, velocities achieve

final convergence. The figure also displays the final camera trajectory in the Cartesian space.

Fig. 4.12 displays another result obtained using the algorithm. In this case, the features were chosen

as contours extracted from an object. The rest of the approach remained the same. It must be emphasized

that even in this scenario, the algorithm demonstrates good results and final velocity convergence is

achieved.

The simulation experiments were supplemented with experiments performed on the real robot. Fig. 4.13

shows one particular instance of it with the initial view, desired view (that was largely different from the

initial one) and a few of the intermediate images in its path. The average error of the servoing algorithm

for considered test cases is shown in Table I. For each test case the robot was instructed to move to the

same destination ten times from different starting locations that were80cm to 100cm away.

Fig. 4.14 displays one instance of the servoing algorithm using the graph-based representation built

for one of the lab-environments. The red square indicates the initial position of the robot while the
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Table 4.1Servoing Accuracy
test case translational error rotational error

1 102mm 5◦

2 74mm 6◦

3 100mm 4.5◦

4 80mm 5◦

5 95mm 6◦

6 75mm 7◦

7 98mm 4◦

8 84mm 6.5◦

green square signifies the destination. The planning algorithm yielded two possible paths connecting

the initial to the desired position (the yellow and the green paths). The green path was chosen as it is

the shorter of the two. Using these intermediate images, the homography-based control algorithm was

executed and the servoing was achieved. Fig. 4.15 shows the final robot trajectory. As the method only

uses intermediate way-points to move towards the goal, high convergence is not required towards them.

4.6 Discussion

This chapter has examined some issues concerning mobile robot navigation and analyzed a homography-

based visual servo control to navigate the robot. The control only operates using images and converges

to the destination reliably. However one problem with the current strategy is that it is not confirmed

to produce control signals that respect the non-holonomicity constraints of the robot. This is a criti-

cal problem as the rotation and translation obtained directly from the homography matrix may not be

applicable to the robot. Another associated problem is the field of view constraint. It is currently a

challenge to devise an efficient control strategy to navigate a non-holonomic mobile robot that would

always ensure the object features to remain in the camera field of view.
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(a)

(b)

(c)

(d)

Figure 4.7Results of the localization algorithm (Left Column: Query Images; Right column: Retrieved
Images). The degree of similarity was 0.8, 0.78, 0.75, 0.8 respectively
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.8Results of the Planning Step: Top row shows the initial and desired images. The rest of the
images (in clockwise) are the selected intermediate images
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(a) (b)

Figure 4.9Simulation Set-up (a) Camera Poses (b) Image Views

(a) (b)

Figure 4.10(a) Image Trajectories: The path taken by the features from initial coordinates to the desired
coordinates (b) Feature Error: Exponential decrease in the image coordinates error

(a) (b)

Figure 4.11(a) Camera Screw Velocity: Convergence is achieved for both translational and rotational
velocities (b) Final Cartesian Camera Trajectory
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Figure 4.12(a) Initial and Final Camera Views (b) Feature Error (c) Camera Screw Velocity (d) Final
Camera Views (e) Cartesian Camera Trajectory
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.13Result of the navigation: (a) initial view (b-k) intermediate views (l) desired view
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Figure 4.14Analysis of the Servoing algorithm using the graph-based representation

Figure 4.15Servoing using homography-based Control: Actual Path executed by the mobile robot
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Chapter 5

Online Learning for Improved Robot Navigation

5.1 Introduction

Autonomous navigation has long been a challenging task in the research of mobile robots. Through-

out the last decades, this field has witnessed a large variety of approaches. Despite significant progress,

most of them are specialized to perform a narrow set of tasks in a very restrictive kind of environ-

ment. Further, they employ specialized controls that are carefully designed by hand, using extensive

knowledge of the robot, its environment and the task it shall perform. If one is interested in building

autonomous multi-purpose robots, such approaches face some serious bottlenecks. Firstly, designing a

controller requires prior knowledge about the robot, its environment and the tasks it is to perform. Some

of the knowledge is usually easy to obtain, but other knowledge might be very hard to obtain. More-

over, certain knowledge (for instance the particular task one wants a mobile robot to do) might not be

accessible at all at the design-time of the robot. Further, making domain knowledge available demands

hand-coding explicit models of robot hardware, sensors and environments, which requires tremendous

amounts of programming time. As robotic hardware becomes increasingly more complex, and robots

are to become more reactive in more complex and less predictable environments, the task of hand-coding

a robot controller will become more and more a cost-dominating factor in the design of robots. Finally

even if the robot, its environment and its goals can be modeled in sufficient detail, generating control

for a general-purpose robot is of enormous computational complexity.

The idea of having a robot learn to accomplish a task, rather than being programmed explicitly is

an appealing one. It seems easier and much more intuitive to specify what the robot should be doing,

and to let it learn the fine details of how to do it. Machine learning is essentially concerned with the

design of such algorithms which, rather than encoding explicit instructions or programs for the solution

of specific tasks, encode inductive mechanisms whereby solutions to broad classes of problems may be

derived from examples.

The traditional formulation of the machine learning problem has been as a classification problem.

Informally, some domain of individuals are provided for which a general classification is required. The

classification is given by a function from this domain to a some small finite set corresponding to the
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classes. Examples are available as a training set which provides the class of some typical individuals.

In addition, some background knowledge relevant to the inductive task at hand may be available. From

this, the general classification of the individuals must be induced.

Learning provides a useful tool for the automatic design of autonomous robots. A robot working

in similar environments for long periods of time should improve its performance overtime. Initially its

performance may be suboptimal but overtime it gains additional knowledge that should be utilized to

gain optimal behavior. Learning paradigms enable a robot to collect the required knowledge on-the-fly,

through real-world experimentation. If a robot is placed in an unknown environment, or faced with a

novel task for which no a priori solution is available, a robot that learns shall collect new experiences,

acquire new skills, and eventually perform new tasks all by itself.

In the following sections, a brief summary of the related work is presented followed by a quick

review of two popular learning paradigms. The proposed learning algorithms are then explained.

5.2 Related Work

Learning techniques have frequently come to bear in situations where the physical world is extremely

hard to model by hand. For example, Pomerleau describes a computer system that learns to steer a vehi-

cle driving at high speed on public highways, based on sensor data from a video camera [17]. Learning

techniques have also successfully been applied to speed-up robot control, by observing the statisti-

cal regularities of typical situations (like typical robot and environment configurations). For example,

Mitchell [57] describes an approach in which a mobile robot becomes increasingly reactive, by using

observations to compile fast rules out of a database of domain knowledge. In [78], a robot manipulator

is described which learns to insert a peg into a hole without prior knowledge regarding the manipulator

or the hole. Maes and Brooks [46] have successfully applied learning techniques to coordinate a leg

motion for an insect-like robot. Their approach too, operates in the absence of a model of the dynamics

of the system.

In principle a robot could learn any task from scratch given enough time. In practice, however, this

time is too high for most complex tasks, and thus prior knowledge has to be incorporated into the learn-

ing process. In this context, it must be noted that approaches to machine learning can be divided into

two broad categories: inductive learning and analytical learning. Inductive learning techniques gener-

alize sets of training examples via a built-in, domain-independent inductive bias. They typically can

learn functions from scratch, based purely on observation. Analytical approaches to learning generalize

training examples based on domain-specific knowledge. They employ a built-in theory of the domain

of the target function for analyzing and generalizing individual training examples. Both families of

approaches are characterized by opposite strengths and weaknesses. Inductive learning mechanisms

are more general in that they can learn in the absence of prior knowledge. In order to do so, however,

they require large amounts of training data. Analytical learning techniques learn from much less train-

ing data, relying instead on the learners internal domain theory. They hence require the availability
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of an appropriate domain theory. In mobile robot domains, large amounts of training data is typically

hard to obtain due to the slowness of actual robot hardware. Therefore, analytical learning techniques

seem to have a clear advantage. Their strong requirement for accurate domain knowledge, however, has

found to be a severe obstacle in applying analytical learning to realistic robotics domains. Thrun [74]

presented a explanation-based neural network learning algorithm which integrated both analytical and

inductive learning by a smooth blending of both learning principles depending on the quality of the

available domain knowledge. Neural network learning methods generalize from observed training data

to new cases based on an inductive bias that is similar to a smooth interpolation between observed train-

ing points. Theoretical results on learnability, as well as practical experience, show that such purely

inductive methods require dramatically increasing numbers of training examples to learn functions of

increasing complexity. Explanation-based neural network learning is a method that generalizes from

fewer training examples, relying instead on prior knowledge encoded in previously learned networks

that encode domain knowledge.

Smart and Kaelbling addressed such practical issues on a real mobile robot [69]. The tasks investi-

gated were wall following and obstacle avoidance. Learning was carried out in two phases: first, with

the control policy being provided by a pre-programmed controller or a human with a joystick, and sec-

ond, using the learned policy of the robot. Gaskett et al. [25] considered training of a mobile robot

to wander (obstacle avoidance) and pursue a target using real-time vision. This was implemented in

a subsumption architecture, such that target pursuit takes over from wandering when a valid target is

detected.

5.3 Preliminaries

Learning paradigms can be broadly categorized into two major classes, namely, Incremental Learn-

ing and Reinforcement Learning. The following subsections briefly review each of the two paradigms.

5.3.1 Incremental Learning

An implicit assumption in conventional learning approaches is that the training set is available a priori

and that learning ceases once this set has been duly processed. Henceforth, the induced classification

is used exclusively to make predictions about new instances. Such an approach to learning is clearly

not all-encompassing. There are a number of interesting situations where learning must take place over

time, in a kind of continuous fashion rather than as a one-shot experience. For instance, in the past,

most of the autonomous navigation systems relied on tracking specific features, such as lane markings

of outdoor roads, floor or ceiling edges of hallway, while others detected road regions based on features

such as color or texture. All of these systems had a strong reliance on the a priori model about the road’s

appearance, and hand-crafted rules were implemented as the detection algorithm. Unfortunately, these

features may not always be reliable due to a change of environmental conditions. Some roads may not
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have clear lane markings, or some none at all. The variation in illumination and the road conditions can

often invalidate the underlying assumptions used in the vision algorithms. In order to deal with varying

environmental conditions a mobile vehicle may experience, it is necessary for the system to employ

adaptive or incremental mechanisms.

At the heart of the distinction between these forms of learning is the notion of incrementality. It is

argued that incrementality is rather ubiquitous in learning and that the most natural and flexible way

to tackle incremental learning tasks is with incremental learning algorithms. A learning task is incre-

mental if the training examples used to solve it become available over time, usually one at a time. Note

that, if one is prepared to wait long enough, any incremental learning task can, in principle, become a

non-incremental one. Hence, for incremental learning tasks, there is an implicit assumption that waiting

is undesirable and/or impractical. In particular, the nature of the application may render unfeasible the

timely generation of a sufficiently large number of representative examples, either because the environ-

ment changes in time (and thus learning becomes situated or context-sensitive) or because the rate at

which examples become available may be too slow. For example, a robot’s environment is changing

and often unpredictable. Hence, in order to survive and carry out its tasks successfully, a robot must be

able to react and adapt incrementally to the environmental cues. With incremental learning, the training

can be done on-line. This is very important for autonomous navigation, since the information in input

images is huge and highly redundant. The system only needs information which is necessary for the

navigation task [56].

5.3.2 Reinforcement Learning

Another popular learning paradigm that has has been extensively studied by researchers for au-

tonomous robot navigation is Reinforcement Learning. Fig. 5.1 depicts a typical reinforcement learning

system. The learner receives descriptions of the environment, which are called states, from peripheral

sensors and chooses actions to perform. The effect of an action to the environment is evaluated by a

critic or a teacher, which could either be a person or some special sensors, and fed-back to the learner

in the form of positive or negative rewards. The mission of the learner is to find the action rules to

optimally achieve a certain goal through its interaction with the environment. The learning algorithm

handles continuously valued states and actions and can learn from both good and bad experiences.

A supervised learning approach would require a model of ‘good behavior’ from a teacher. Its perfor-

mance would be limited by the ability of this teacher. Reinforcement learning requires only a critic, that

gives scalar rewards (or punishments) based on behavior. Providing a critic only requires that we have

some measure of whether a task is being achieved, we do not need to know how to achieve it. The reward

signal need not be given immediately when an action is performed, as the true effect of an action can

manifest itself after some time. Punishment is also given for use of energy and large changes in motor

commands. Behavior improves based on knowledge of which actions led to rewards and punishments.

In this way, both good and bad experiences are a valuable part of the learning process.
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Figure 5.1A typical structure of reinforcement learning

A simple and straightforward implementation idea of reinforcement learning is assigning each per-

formed action an instant reward and adjusting the corresponding action policies right away. To overcome

the drawbacks in the instant-rewarding method, the idea ofDelayed Rewardingwas introduced. Instead

of evaluating actions separately, delayed-rewarding schemes analyze the effect of action sequences as

a whole and the action policies are adjusted for maximizing the expected future discounted rewards.

Provided that the system model, which includes the state transition matrix and the rewarding policy, is

known, delayed-rewarding problems can be easily solved with traditional Dynamic Programming (DP)

approaches. However, obtaining a precise model for each learning task is actually not easy, especially

when the number of states is large. An elegant solution to model-free learning problems is offered by

the Temporal Difference(TD) method [56]. Action policies are incrementally updated under the TD

learning paradigm by consecutively exploring the outside world. Compared with the model-based ap-

proaches, TD methods learn more robustly, especially for real-time robot control tasks, since it does not

require an accurate model of the world.

Q-Learning One of the most popular reinforcement learning method is the Q-learning paradigm. Q-

learning is particularly interesting because it can learn from actions which it did not itself suggest,

such as those from another controller, or historical data (which is often referred as being exploration-

insensitive) [79]. Q-learning works by incrementally updating the expected values of actions in states.

For every possible state, every possible action is assigned a value which is a function of both the imme-

diate reward for taking that action and the expected reward in the future based on the new state that is

the result of taking that action. This is expressed by the one-step Q-update equation:

Q(s, a) = r(s, a) + γ arg max
a′

(Q(st+1, a
′)−Q(s, a)), (5.1)

whereQ is the expected value of performing actiona in states, r is the reward andγ is the discount

factor. The discount factor makes rewards earned earlier more valuable than those received later. The

Q-values implicitly describe a controller that measures the state, then choose the action with the highest

Q value.
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Reinforcement learning, and in particular Q-learning, seems to be a natural choice for learning con-

trol policies on mobile robots. Instead of designing a low-level control policy, a much higher-level task

description in the form of the reward function can be designed. Designing a sparse reward function is

generally easier than designing the low-level mapping from observations to actions. Often, for robot

tasks, rewards correspond to physical events in the world. This makes its easy to come up with simple

reward functions for many tasks. For example, for an obstacle avoidance task, the robot might get a

reward of+1 for reaching the goal, and−1 for hitting an obstacle. In theory, this is all that is necessary

for the robot to learn the optimal policy.

5.4 Learning as Online Visual Experience

Because of the fast development of computer vision techniques, vision-based robot navigation has

been intensively studied in the recent years, and model-based methods are often used in practical exper-

iments. However, the establishment of environment models is really a time-consuming work. It is thus

desired to design a process for automatic modeling of navigation environments. With this process, it

is not necessary to measure the environment manually. Instead, the robot is just driven manually once

along the desired path, and all jobs about initial model learning will be automatically accomplished

without human involvement. However, certain problems arise when a fully automatic model establish-

ing process is performed. The noise of image processing will reduce the accuracy of the obtained model.

Since the noise coming from image processing will not appear at the same place in each navigation cy-

cle, it is possible that more training using multiple navigation data will reduce the inaccuracy. This

means that after initial model learning, we could utilize the information recorded in each navigation cy-

cle to update the original coarse model, and hopefully a more reliable refined model could be obtained

after several navigation trainings. This leads to our study of incremental learning for robot navigation

in indoor environments.

5.4.1 Incremental Learning for Improved Robot Localization

In real world scenarios, all the information necessary to learn is rarely available a priori; rather new

pieces of information become available over time using which the knowledge base can be constantly

revised. Thus it would be preferable to have an incremental or online learning system. The primary goal

of learning here is to equip the robot with the capabilities to explore the environment with its sensors,

construct an appropriate model of the environment, and navigate efficiently in the learned environment.

The proposed approach consists roughly of three stages. The first stage is initial training, in which the

robot is driven to explore the environment while images captured by the camera and the control status

data are recorded (Chap. 3). Then, a certain off-line procedure is performed to construct the initial

model (Chap. 2). The second stage is to allow the robot to navigate automatically along the desired

path (Chap. 4). And the final stage is to update the learned model with the information collected in the
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previous navigation tasks. A more precise model is obtained after each navigation and update iteration.

The second and the third stages, namely, navigation and model updating, may be repeated several times

in order to obtain a more reliable model.

Specifically, as the robot maneuvers in the environment, it acquires a new set of imagesI ′ describing

its workspace. These views provide additional hypothesis about the scene that could be used to update

the visual experience. The improvement could either be in the form of addition of new views into it

or replacement of existing images in the database with better images. Further, the incorporation of

multiple views (hypothesis) of a feature help in capturing the variability in the geometry of the features.

It also adapts the representation to reflect the environmental modification that may occur in between

the exploration and the navigation stages. The geometric estimates computed using an online visual

experience will be more accurate leading to the improvement in the performance of the localization and

servoing algorithms.

An online version of the KPCA algorithm was utilized to perform the incremental updates to the

constructed visual experience. Incremental KPCA (IKPCA) [14] is a recent development in machine

learning research. Here it has been adopted for the task of vision-based navigation. The basic idea

is to extend a linear PCA updating algorithm [27] to the non-linear case by utilizing the kernel trick.

Conventional Incremental Principal Component Analysis (IPCA) algorithm mainly consists of two op-

erations: augmentation of an eigen-axis and the rotation of eigen-axes [2]. In addition to the above two

operations, the IKPCA algorithm also includes the check on the linear independence of the new sample

to the samples given so far. This is because, although the dimensions of KPCA feature space could be

very large or possibly infinite depending on kernel functions, the feature space degenerates into a lower

dimensional space whose dimensions correspond to the number of linearly independent mapped input

samples. Thus these samples need to be kept in memory to represent eigenvectors during the incremen-

tal learning. The third operation ensures the linear independence of these samples.

Checking of Linear IndependenceAssume thatN samples{x1, . . . , xN} have been given of which

{x1, . . . , xm} are linearly independent. To determine the independence of a new samplex, we calculate

the new kernel matrixK ′ in which the kernel functions ofx and the independent samples are added to

the last row and column of the current kernel matrixK.

K ′ =




k(x1, x)

K
...

k(xm, x)

k(x, x1) . . . k(x, xm) k(x, x)




(5.2)

The dimensionality of the feature space spanned by the eigenvectors andx is equivalent to the rank of

K ′ in (5.2). Therefore, the linear independence ofx can be judged by the rank ofK ′. If K ′ is a full rank

matrix, thenx is linearly independent to{x1, . . . , xm}; thenm ← m + 1 andK = K ′. Otherwise,x is

judged to be dependent, and there is no change to the matrixK.
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Augmentation of Eigen-axisThe decision to augment the eigen-axis is based on the accumulation

ratio. Accumulation ratio is defined as the ratio ofd eigenspace components to the entire set of eigen

components.

A(d) =
∑d

i=1 λi∑m
i=1 λi

(5.3)

The minimum number of componentsd is chosen such thatA(d) is greater than a threshold valueθ.

Given a new sample, the updatedA value can be computed as follows.

The ith eigenvalue corresponds to the variance of the projection ofxj{j = 1, . . . , N} onto the ith

eigenvectorvi (from the famous resultCV = λV ). Given a new sample, the new varianceσ
′2
i is given

as

σ
′2
i =

1
N + 1




N∑

j=1

{vT
i (φ(xj)− c′)}2 + {vT

i (φ(x)− c′)}2


 , (5.4)

wherec′ is the new mean of the given samples defined as

c′ =
1

N + 1
{Nc + φ(x)}. (5.5)

The numerator and the denominator of the updated accumulation ratioA′(d) are given by

d∑

i=1

λ
′
i =

N

N + 1

d∑

i=1

(
λi +

1
N + 1

‖ vT
i (φ(x)− c ‖2)

)
(5.6)

m∑

i=1

λ
′
i =

N

N + 1

(
m∑

i=1

λi +
1

N + 1
‖ φ(x)− c ‖2

)
. (5.7)

The above equations involveφ(x) andc. By applying the kernel and with a few simplifications, their

second terms can be redefined as

‖ vT
i (φ(x)− c) ‖2 = {αT

i (Km(x)− c̃)}2 (5.8)

‖ φ(x)− c ‖2 = k(x, x)− 2βT c̃ + c̃T c̃, (5.9)

whereKm(x) = [k(x1, x), . . . , k(xm, x)]T , β = K−1Km(x) and the mean vector̃c is defined as

c̃′ =
1

N + 1

[
Nc̃ + Km(x)

NβT c̃ + k(x, x)

]
(5.10)

Thus their explicit computation is avoided. If the updated accumulation ratio satisfiesA′(d) ≤ θ, a new

eigen-axis should be augmented (See Fig. 5.2). The new axisvd+1 is defined as the normalized residue

vector h
‖h‖ whereh is given by

h = φ(x)−
d∑

i=1

{φ(x)T vi}vi. (5.11)
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Figure 5.2Augmentation of a new eigen-axis

Since the eigenvectorvd+1 is a vector in the feature space, this is not explicitly calculated. As the

eigenvectors are used only to obtain the features of a query patterny, it is sufficient to obtain only the

projection value tovd+1, which is given as

vT
d+1(φ(y)− c′) =

1
||h||α

′
([

Km(y)
k(x, y)

]
− c̃′

)
(5.12)

where

α′ =

[
−∑d

i=1(Km(x)T αi)αi

1

]
. (5.13)

(5.14)

Rotation of Eigen-axisThe final step of IKPCA is the rotation of eigen-axis to adapt to the variation of

the sample distribution. When a new samplex is given, a new covariance matrixC ′ is given by

C ′ =
N

(N + 1)2
{(N + 1)C + φ̄(x)φ̄(x)T } (5.15)

whereφ̄(x) = φ(x)− c. Then the new eigenvalue problem is given by

C ′V ′ = V ′Λ′ (5.16)

whereV ′ is a new eigenvector matrix andΛ′ is a diagonal matrix whose diagonal elements are the

eigenvalues.

Assume that an eigen-axisvd+1 is augmented. Then the relation between old and new eigenvectors

is given by

V ′ = [V, vd+1]R (5.17)

where R is a rotation matrix. Substituting (5.17) and (5.15) into (5.16) and multiplying by[V, vd+1]T ,

the new eigen value problem is rewritten as

N

N + 1
[V, vd+1]T

{
C +

φ̄(x)φ̄(x)T

N + 1

}
[V, vd+1]R = RΛ′. (5.18)
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The two primary terms in the above equation are separately calculated as

[V, vd+1]T C[V, vd+1] =

[
V T CV V T Cvd+1

vT
d+1CV vT

d+1Cvd+1

]
(5.19)

≈
[

Λ 0
0T 0

]
(5.20)

[V, vd+1]T φ̄(x)φ̄(x)T [V, vd+1] =

[
V T φ̄(x)φ̄(x)T V V T φ̄(x)φ̄(x)T vd+1

vd+1φ̄(x)φ̄(x)T V vT
d+1φ̄(x)φ̄(x)T vd+1

]
(5.21)

=

[
ggT fgT

fgT f2

]
(5.22)

where

g = [α1, . . . , αd](Km(x)− c̃) (5.23)

f = α′
[

Km(x)
k(x, x)

]
−

[
c̃

βT c̃

]
. (5.24)

In order to obtain a set of new eigen-axis, the following intermediate eigenvalue problem has to be

solved
N

N + 1

(
(N + 1)

[
Λ 0
0 0

]
+

[
ggT fgT

fgT f2

])
R = RΛ′. (5.25)

The solution of the above equation gives the rotation matrixR, using which the new eigen-axes can be

obtained from (5.17). The overall incremental KPCA algorithm can be summarized as follows.

• Compute the KPCA algorithm on the landmarks extracted from the first few images

• Given a new image, check for the linear independence of the landmarks extracted from it

– If yes, check if it affects the updated eigen value ratioi.e.,
Pn

1 λiPN
1 λi

falls below the desired

threshold

– If so, add the new eigen-axis into the basis

– Update the orientation of the eigen-axes

• Update the sample mean

The incremental method not only facilitates efficient updates to the representation but also eases the

computational complexity of building the visual representation. It must be noted that in order to obtain

accurate non-linear principal components from complex data distributions, large training datasets are

required, especially for data embedded in a high-dimensional space [56]. This presents a difficulty for

KPCA since it has to store and manipulate all data at once. Moreover the resulting KPCs have to be
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defined implicitly by linear expansions of the training data, thus all data must be saved after training. For

massive datasets, this means high costs for storage resources and computational load during utilization

of KPCs. The IKPCA algorithm essentially avoids the computation of a full-scale KPCA at every

time step by only applying the necessary computation to smaller data blocks for updating the basis

incrementally.

It must be emphasized that the learning in this case is in terms of the increase in the accuracy of the

appearance space, which in turn increases the accuracies in the feature correspondences. This indirectly

improves the geometric estimates computed using the updated visual representation. As a result, this

propels a significant improvement to the accuracy of the localization and servoing algorithms. Further,

this method enables the robot to easily adapt to the variations in the scene.

5.4.2 Reinforcement Learning for Improved Path Planning

This section demonstrates the application of reinforcement learning to the problem of robot navi-

gation. In particular, the problem of path planning of a robot is examined [44], which is the task of

planning motions of a robot for performing a designated task while ensuring that collisions with objects

in its workspace are avoided.

In the path-planning problem, one seeks to generate the course by which the robot can move towards

its destination. The popular methods to solve this problem have been the graph-search and the potential

field methods. In the former, a course is established by considering the connectivity in a network con-

sisting of road maps connecting the initial to the destination; while in the latter, the path is established

by way of applying attractive forces towards the goal and repulsive forces away from the obstacles.

Though the above paradigms have gained popularity, they have certain limitations. In the former case,

complete geometric information about the environment is needed. This is often a strong assumption.

While in the latter, there is possibility of approaching a local minima (where the attractive and repul-

sive forces cancel each other) and thereby displaying oscillatory behavior. Another limitation is their

assumption that the place topology is perfectly known, which implies that a reconstruction step must

be doneapriori. Another stream of research has recently been evaluating the possibility of applying a

reinforcement learning (RL) strategy towards path planning. However, much learning time is needed to

establish a path by RL because the dimension and size of the value functions used in this context are

quite large.

Here a new path-planning scheme is proposed that involves a reinforcement learning scheme along

with the potential field strategy. This scheme does not have the problem of deadlocks like the potential

field method nor does it require huge amounts of learning time like conventional reinforcement learning

methods. This approach exploits information available over multiple iterations to shorten the learning

time.

In the following, the path planning problem using potential field method is briefly reviewed and then

the proposed approach is explained.
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Path Planning using Potential FieldsThe basic concept of the potential field method is to fill the robots

workspace with an artificial potential field(V ) in which the robot is attracted to its goal position and

is repelled away from the obstacles [39]. It essentially involves a gravitation potential(Va) that pulls a

robot towards the goal configuration(Υg) and a repulsive potential(Vr) that repels the robot from an

obstacle. Here theΥ6×1 represents a parametrization of robot workspace.

Motion planning is performed in an iterative fashion. Initially the robot is atΥi with Fi being the

initial camera frame and it has to be displaced to the desired camera frameFg(Υ = Υg). We choose

the parametrizationΥ as[gtTc (uθ)T ], wheregRc,
g tc are the rotational and translational matrix between

current camera frameFc andFg andu andθ are the rotation axis, angle obtained fromgRc. We thus

haveΥi = [gtTi (uθ)T
i ] andΥg = 06×1. Recall that the rotation matrix and the translation vector can be

obtained from the decomposition of the homography matrix as in equation (4.5) (Refer Chap. B).

At each iteration, an artificial forceF (Υ) is induced by the potential function. The force is defined

asF (Υ) = −∇V where∇V denotes the gradient vector ofV at Υ. Using the above conventions,

F (Υ) can be decomposed as the sum of two vectors,Fa(Υ) = −∇Va andFr(Υ) = −∇Vr, which are

referred as the attractive and repulsive forces respectively. Path planning proceeds along the direction

of F (Υ) and the discrete-time trajectory is given by the transition equation:

Υk+1 = Υk + εk
F (Υk)

‖ F (Υk) ‖ , (5.26)

wherek is the incremental index andεk is a positive scaling factor denoting the length of the kth incre-

ment. By repetition of this procedure, a robot moves along a path of operation and finally arrives at the

destination. It must be noted that this procedure does not ensure the optimality of the path. However, it

has gained wide popularity because of its mathematical elegance and simplicity.

Our goal is to deploy a Q-learning framework over the trajectory generated by the potential field

method so as to achieve the optimal robot motion. In [54, 55], an analytical method to obtain the

optimal camera trajectory was presented. Here a learning based approach is proposed to achieve the

same. We assume the robot is observing a unknown planar target. The idea is graphically illustrated in

Fig. 5.3.

The concept of reinforcement learning and Q-learning have been elaborated earlier in Sect. 5.3.2.

The state space, actions and the immediate reward function for the current problem are as follows. The

states corresponds to the camera pose i.e.,gRc and gtc. The actionsa are the motion instructions

commanded at each pose i.e.,4R,4t and the reward functionr(s, a) is defined as the gradient of

the net potential at the current pose i.e.,−∇Va − ∇Vr. The Q-value function can be perceived as the

resultant force at each pose. In (5.1), although the value functionQ(s, a) is a function of a state and

action, in certain scenarios, only a state function is used. This is done so as to decrease the dimension

of the function. In the following, we also parametrize the value function only using the state variable.

The potential functions employed in the current formulation are as defined below.
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Figure 5.3Computing the trajectory for optimal path planning

(a) (b)

Figure 5.4 Repulsive Potential (a) Limits of Image (b) Potential Function incorporating the visibility
constraint

The attractive potential fieldVa is simply defined as a parabolic function in order to minimize the

distance between the current position and the desired one:

Va =
1
2
‖ Υ−Υg ‖2=

1
2
‖ Υ ‖2 . (5.27)

Its gradient, also referred as the attractive force, is obtained as

Fa(Υ) = −∇Va = −Υ. (5.28)

The repulsive potential is employed so as to avoid displacing the camera to those poses that result

in the features leaving the camera field of view. To ensure this, a potential barrier is created around the

camera field of view, assuring that all the features are always observable and do not affect the camera

motion when they are sufficiently far away from the image limits (See Fig.5.4). Thus, the potentialVr

is defined as

63



Vr(s) =

{
−v2

s log
(∏n

j=1(1− uj

uM
)(1− uj

um
)(1− vj

vM
)(1− vj

vm
)
)

if s is in C

0 otherwise
(5.29)

where

vs(s) =
n∏

j=1

(uj − uM − α)(uj − um − α)(vj − vM − α)(vj − vm − α). (5.30)

Heres is the vector made up of the image coordinates of a point(uj , vj) for j = 1, . . . , n andC is the

set{s|∃j uj ∈ [um α] ∩ [uM −α uM ] ∪ vj ∈ [vm α] ∩ [vM −α vM ]} with um, uM , vm, vM being

the limits of the image andα being a positive constant denoting the distance from the image edge. The

gradient potential, referred as the artificial repulsive force, is obtained as [53]

Fr(Υ) = −
(

∂Vr(s)
∂Υ

)T

= −M+L+∇T
s Vr (5.31)

where

M =

[
gRT

c 0
0 L+

w

]
(5.32)

L =

[
1 0 uj ujvj −1− u2

j vj

0 −1 vj 1 + v2
j −ujvj −uj

]
(5.33)

with L+
w defined asI3×3 + θ

2sinc2( θ
2)[u]x + (1 − sinc(θ))[u]2x. Note that the symbol+ indicates the

pseudo inverse.∇T
s Vr is defined as

∇T
s Vr =





2

[
∇v2j

s

∇v2j+1
s

]
vsψs + v2

s

[
− 1

uM
(1− uj

uM
)−1 − 1

um
(1− uj

um
)−1

− 1
vM

(1− vj

vM
)−1 − 1

vm
(1− vj

vm
)−1

]
if s is in C

0 otherwise
(5.34)

where

ψs = log




n∏

j=1

(1− uj

uM
)(1− uj

um
)(1− vj

vM
)(1− vj

vm
)


 (5.35)

∇v2j
s = (2uj − uM − um − 2α)(vj − vM − α)(vi − vm − α)

n∏

j=1,j 6=1

(uj − uM − α)(uj − um − α)(vj − vM − α)(vj − vm − α) (5.36)

∇v2j+1
s = (2vj − vM − vm − 2α)(uj − uM − α)(ui − um − α)

n∏

j=1,j 6=1

(uj − uM − α)(uj − um − α)(vj − vM − α)(vj − vm − α) (5.37)

Initially, the Q-values at each state are set equal to the net potential forces at that pose. At each

iteration, the Q-values are updated not only using the immediate potential function at that pose but also
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using the difference in the adjacent potentials. This ensures that the Q-values are adjusted such the net

potential force at every pose proceeds towards their minimum. The vectorΥk at each instant is now

computed using the current state of Q-values (that act as the new potential force functions at that pose)

as

Υk+1 = Υk + εk
Q

‖ Q ‖ (5.38)

Observe that this is similar to the manner in which the configuration is described according to the slope

of a potential at a particular pose in the potential field method (See (5.26)). The rotation matrixgRc and

the translation vectorgtc can then be recovered from the parameterizationΥk and are used to compute

the homography matrixHπ as [30]

Hπ = gRc − gRT
c

gtc n∗T , (5.39)

wheren∗ denotes the plane normal. According to (4.4), the image coordinates of points belonging to

the plane at timek are given by

µpk = [µuk µvk µ]T = Hπp∗, (5.40)

whereµ indicates a scalar constant. The image coordinatespk can be easily obtained by dividingµpk by

its last component. Thus using the above equations, the intermediate images along the entire trajectory

can be generated at the required resolution. These intermediate images now act as the desired image

configurations that need to be reached at every iteration and in-turn guide the robot from its initial to the

final goal position.

The proposed method ensures that the final generated image trajectory is the optimal one. It must be

recalled that the optimal camera path is defined as the the set of poses[R T ](t) that are characterized by

minimum acceleration or energy [53]. In terms of potential forces, the property of minimum acceleration

or energy can be redefined as

1∑

0

F T
i Fi or

1∑

0

∆F T
i ∆Fi (discrete) (5.41)

∫ 1

0
F T F or

∫ 1

0
Ḟ T Ḟ (continuous) (5.42)

whereF is the net potential force at a given pose (5.26). This signifies that the optimal camera path

corresponds to the set of force functions that result in minimum energy. In the above described Q-

learning approach, at each iteration, the Q-values are adjusted such that the net potential force at every

pose proceeds towards their minimum. This indicates that as the Q-learning episodes progress, the

Q-values finally settle into the state of minimum energy, which suggests that the resultant set of force

functions that satisfy the above conditions. Thus the Q-learning framework indeeds achieves the optimal

trajectory.

In summary, the overall learning-based path planning algorithm can be described as follows -
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• In an off-line step, run the conventional potential field based path planning algorithm. During this

iteration, setQk = Fk (i.e., net force at kth iteration)

• In each online iteration, given the current and the destination image, extract features from them

and compute the rotation R and translation T parameters (obtained from the computation and

decomposition of Homography between the images)

• Using the R and T parameters, compute the attractive and repulsive forces and obtain the net

potential force F at that pose

• SetQk = F + γ(Qk+1 −Qk)

• ResetFk = Qk

• SetΥnew = Υ + ε Fk
||Fk||

• ComputeRnew, Tnew from Υnew

• Obtain the new desired image features

• Servo the robot so as to converge to the above image features

• Repeat until convergence

After the optimal robot trajectory is learnt at the end of Q-learning process, the new set of images

replace the old set of intermediate images connecting the current and the desired views in the visual

representation. As a result, the representation evolves over time. Thus the feedback received from

performing specified goal oriented tasks is being utilized to update the visual experience.

It must be emphasized that the proposed approach is even valid in case of non overlapping image

views i.e., when there is no overlap between the initial and the desired image. In this case, the final state

Q values for each sub-goal are redefined as follows (rather than setting them simply as the absorbing

states). They are now set as sum of potential field force at their current pose and the difference in

potential with the initial Q-value of the next sub-goal. Note that in this case, the attractive potential

force is computed towards the next sub-goal.

It must be noted that rather than a random (or a trial-and-error) search for solutions in the search

space, potential field strategy is being employed in the Q-learning scheme to guide the search process

for the optimal Q-values. This significantly reduces the learning time for generating the optimal path

for a particular task. Moreover, in a trial-and-error method, it is not ensured that the robot stays within

its workspace during the entire learning process. Thus by providing the knowledge gained in terms of

potential field forces, unnecessary trial actions are reduced. Another advantage of employing the Q-

learning scheme is that the knowledge of the potential functions need not be complete at every iteration

i.e., the force at each robot pose need not be perfectly known. If there are any discrepancies, they can

be accounted by the learning methodology.
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Figure 5.5The first 3 principal components: The top row correspond to the KPCA while the bottom is
the IKPCA

5.5 Experimental Results and Analysis

The goal of the experiments presented is to illustrate that a robot can improve its understanding of

the scene overtime and also to analyze the improvement in its performance. All the proposed algo-

rithms were implemented and evaluated in simulations as well as extensive real world scenarios. Real

experiments were performed to analyze the benefit of using an incremental learning scheme. The en-

vironments considered were same as the ones used during the exploration and navigation stages. The

robot wanders anywhere inside the lab. At each time instant, an image is grabbed from the camera and

is used to query the database. If the difference between the current and the desired output is beyond a

pre-specified tolerance, the current sample is learnt to update the visual experience using the incremental

learning algorithm. Otherwise, it is rejected.

The results of the IKPCA algorithm are displayed below. An image database of features that rep-

resent several different distributed positions is initially constructed. As explained in Sect. 2.3.1, the

first step is to extract landmarks from the images. Using the landmarks, the principal components are

extracted as explained in Sect. 5.4.1. As the robot navigates in the environment and acquires new im-

ages, it uses the landmarks extracted from these new images to incrementally update the kernel space.

Fig. 5.5 shows the comparison of the extracted components with those obtained using the regular KPCA

technique for the initial set of images. It can be observed that the components are similar in both cases.

As learning transpires over time, the features are updated and the representation evolves over time.

Fig. 5.6 displays some results of the improved localization. The first column shows the the current

views acquired by the robot in its workspace while the second column displays the retrieved images from
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Figure 5.6 Incremental Learning: In each row, the first image on the left is a query image, the second is
the retrieved image. The degree of similarity was 0.85, 0.89, 0.78 respectively

the image database that are most similar to the query. It must be noted that the degree of similarity of the

retrieved image with respect to the input image has improved as compared to the earlier KPCA based

method. As mentioned earlier, only gray-scale versions of the displayed color images are employed

in the algorithm. An overall improvement in the localization rate was also observed. For the first lab

environment, the localization accuracy was∼ 85% and∼ 88% in the second lab environment using the

incremental algorithm. This resulted in improved feature correspondences across different image views,

which in turn improved the relative pose accuracies. An additional advantage of this method was that it

avoided the need of saving all the image data at a time for computing the KPCs.

For evaluating the performance of the proposed approach, we compared it to other localization al-

gorithms. In particular, the SIFT-based algorithm [45] which has gained recent popularity in object

recognition was considered. On comparison, it was observed that the localization accuracies using the

SIFT-based approach were greater. This is because of the inherent property of the SIFT representation.

As the features are built from the scale-space, they are quite robust and invariant to regular image trans-

formations. However, the proposed algorithm is more interesting as it facilitates incremental learning of

68



Figure 5.7 Illustration of the path planning method: Path obtained by using a potential field method
along with a reinforcement learning scheme generates more optimal and smoother trajectories

the environment features which is not possible by other algorithms. As additional hypothesis of scene

features are available from the new images, IKPCA algorithm provides better updates to the feature

descriptors and thus the accuracy of the kernel basis improve over time. This provides robustness even

in case of wide-baseline views. It must be noted that this selective-learning mechanism not only allows

incremental updation of the representation but also effectively prevents redundant learning.

The proposed path planning algorithm was analyzed via practical experiments. Fig. 5.7 graphically

illustrates the idea. The figure demonstrates the task of navigating a robot from its initial to the final

destination position. Though a valid path is computed using the conventional potential field method,

it is not optimal. When a Q-learning scheme is applied onto the initially generated robot trajectory, it

converges to the optimal one.

Simulations were conducted to study the effect of the proposed method and confirm that introducing

a learning step into the path-planning algorithm indeed improves the navigation performance. The

simulations were conducted in MATLAB environment using a camera (attached to an end-effector) with

a 512 × 512 pixel array and a sampling time ofT = 40ms. The implemented algorithms can directly

be applied to a real robot if matched points in the initial and desired images are available and can then

be tracked. Since tracking is not a primary aspect of this work, the target here is composed of simple

circular marks on a planar surface. The figure shows initialF and the finalF ∗ camera coordinate

frames. The image views corresponding to the desired and initial camera positions are displayed in

Fig. 5.9. Results obtained using the potential field method are first demonstrated and then the results

with the Q-learning method are presented.

The servoing is conducted by perceiving the point features on one of the planes in the scene. The

image projection of the points at the initial view are the starting points of the image trajectory while

the ‘+’ indicate the features at the desired position. The camera displacement between the desired and

the initial camera frames is very important(tx = 300mm, ty = 550mm, tz = 120mm, (uθ)x =
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Figure 5.8 Simulation Set-up: The coordinate frames F,F* denote the initial and goal configurations.
The features on one of the planes are considered during the servoing process.
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Figure 5.9 Image views at the current and final poses

28◦, (uθ)y = 78◦, (uθ)z = 147◦). The goal was to displace the features from their initial coordinates

to the desired image coordinates in an optimal path such that they always remain in the camera field of

view. In order to emphasize the importance of the visibility constraint in the trajectories, a path-planning

experiment without the repulsive potential was performed (See Fig. 5.10). It must be observed that the

visual features get out of the camera field of view. In Fig. 5.11, the planned and the tracked trajectories

using the simple potential field method are plotted. It must be noticed that the tracked trajectories and

the planned trajectories are almost similar. The tracking error(s(t) − s∗(t)) is plotted in Fig. 5.11,

and it confirms the previous comment, since the maximal error is less than ten pixels. The error on the

coordinates of each target point between its current and its desired location in the image is also given.

The convergence of the coordinates to their desired value demonstrates a valid realization of the task.

The 3D camera trajectory is also plotted.

In the next experiment, the same task was repeated but by employing the learning method. In the

experiment,γ was set to 0.7. The number of intermediate points i.e.,k used was about 100. Twenty
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Figure 5.10Path obtained without using repulsive potential

episodes are performed while attempting to servo to the target. The learning algorithm processes these

experiences and incrementally improves its ability to servo to the target. As can be seen in Fig. 5.12,

the expected trajectories are really obtained and perfect convergence of the coordinates to their desired

value was achieved. The motion of each point in the image is, thus, perfectly predictable (observe the

reduction in the tracking error). This experiment confirms that a trajectory following in the image space

using the learning method indeed provides better results and demonstrates the correct realization of the

task. Notice the successful achievement of optimal camera path (unlike the result obtained using the

conventional method). Hence the task is correctly realized and confirms the efficiency of the proposed

learning scheme.

Another result obtained using a different initialization of camera positions is displayed in Fig. 5.13.

The figure displays the variation in the camera trajectories. Observe the improvement in the final camera

trajectory as compared to the one obtained using the conventional potential field method.

5.6 Discussion

In summary, this chapter had presented two important learning-based schemes to improve the nav-

igation performance of a robot. The incremental learning scheme facilitates updation of the visual

representation built during the exploration stage. This not only achieves improved localization but also

makes it robust to variations in the scene. The second contribution has been a reinforcement learning

based approach to path-planning along with potential fields. The algorithm facilitates the learning of the

optimal trajectory for navigating the robot from its current position to the desired position. It must be

emphasized that the proposed approach does not focus on construction or improvement of the 3D map of

the environment (unlike most other learning approaches); rather it improves the internal representation

of the robot workspace so as to yield an optimal navigation performance.

However, certain aspects still need to be analyzed. First, a comprehensive analysis of the perfor-

mance of the incremental learning algorithm is desirable. Second, a more-formal convergence proof
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demonstrating that the proposed reinforcemental learning approach to path planning indeed achieves

the optimal camera trajectory without getting affected by the local minima has to be derived. Another

aspect includes the analysis of a continuous Q-learning framework rather than the proposed discrete

method to achieve superior result. In addition, in order to apply the devised approach onto a mobile

robot, the constraint of non-holonomicity has to be incorporated as a repulsive potential. Finally, the

performance of learning approach should be analyzed by more comprehensive simulations and extensive

real experimentation.
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Figure 5.11Conventional Potential Field Method: (a) Planned and (b) Realized trajectories (c) Tracking
Error (d) Image Feature Error (e) Camera velocity screw (f) Camera Trajectory
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Figure 5.12Learning Method: (a) Planned and (b) Realized trajectories (c) Tracking Error (d) Image
Feature Error (e) Camera velocity screw (f) Camera Trajectory
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(a) (b)

(c) (d)

Figure 5.13Learning Method: (a) Current and (b) Desired image view. (c) Image Trajectory (d) Camera
Trajectory using potential field method and learning method
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Chapter 6

Conclusions

In this thesis, various aspects involved in successfully conducting the robot navigation task were

analyzed. Several ideas to augment the existing approaches so as to improve their performance were

discussed. A novel framework based on visual experience for vision-based robot navigation has been

proposed. The framework allows dynamic building of robot memory and facilitates performance im-

provement by the process of learning from past experiences. Based on this architecture, the design of

the individual algorithms required for performing the navigation task were discussed.

A novel image-based exploration algorithm based on the idea of frontier-based exploration was pro-

posed. The algorithm inferred the frontier boundaries (horizons) from images acquired by a limited

field-of-view camera and used them to efficiently explore the environment. The horizons were detected

by using a graph-based segmentation algorithm that identified obstacle-free regions from obstacles. The

method exploited the natural scene structure in the world and did not involve any partial reconstruc-

tion. The proposed algorithm was able to systematically discover unknown environments and had built

a reliable visual representation that was suitable for the purpose of navigation.

Different algorithms required for performing the navigation task were also presented. The first algo-

rithm concerned the task of qualitative localization, wherein the most similar image in the database to

the current image was retrieved. The set of intermediate images leading from the initial robot view to

the desired view were extracted from the visual memory using a planning algorithm. A feed-back based

algorithm was then employed to control the robot from its current position to the desired position. It

was demonstrated that the navigation task can be accomplished efficiently, reliably and in real-time by

only exploiting the constraints between the images.

Two important learning algorithm were described to facilitate online learning about the world by

the robot. An incremental learning algorithm that was able to incorporate additional scene information,

gathered over time by the robot, to improve its visual representation was presented. Another learning

approach that exploited the feedback received from previous experiences of the robot to improve not

only the navigation performance but also the visual representation was proposed. The reinforcement

learning scheme utilizing the potential field method was applied to the task of path-planning. The ap-

proach generated optimal motion trajectories for guiding the robot to the desired positions in its assigned
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tasks. The proposed algorithms do not focus on the construction or the improvement of geometric maps

of the environment. They achieve performance improvement by improving the internal representation

of the robot workspace.

However, there are certain limitations with the presented algorithms. Specifically, the devised explo-

ration approach only distinguishes between scanned and un-scanned areas of the environment and does

not take into account the actual information gathered at each view-point. To overcome this limitation, a

notion of information gain might be introduced. With regards the servoing approach, a major problem is

that the control strategy is not guaranteed to produce control signals that respect the non-holonomicity

constraints of the robot. Another associated issue is the visibility constraint (i.e., to ensure the object

always is within the camera field of view). The current challenge is to devise an efficient control strategy

to navigate a non-holonomic mobile robot that would always ensure the object features to remain in the

camera field of view. In the context of learning, a critical issue is the optimality of the path generated

by the reinforcement learning scheme. Though the learning approach is guaranteed to generate better

paths in comparison to a direct potential field method, it still needs to be theoretically proven whether

the path generated is indeed the optimal.

In future, this line of inquiry can be continued to develop improved navigation techniques. The spe-

cific modules that could improve the online visual experience architecture include: An algorithm evalu-

ating the ‘utility’ of an image in terms of whether it describes a new region, or improves the description

of an known region to decide if it should be added to the visual map representation (using the notions

of information gain); An image-based visual servoing algorithm respecting the robot’s non holonomic

constraints while ensuring feature points are in camera FOV (without making any assumption about the

planarity or non-planarity of the scene); A learning-based algorithm that can tackle dynamic environ-

ments, which could be done by dynamically assigning ‘weights’ to features extracted from images (the

weights measure the reliability and discriminating power of a feature).

In conclusion, this thesis is an introductory step in the direction of autonomous image-based nav-

igation. We believe that the proposed approach will be essential for mobile robots to progress in the

direction of increased applicability and robustness.
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Visual Servoing in Non-Rigid Environments: A Space-Time Approach

D Santosh and C V Jawahar

Abstract— Most robotic vision algorithms are proposed by
envisaging robots operating in structured environments where
the world is assumed to be rigid. These algorithms fail to
provide optimum behavior when the robot has to be controlled
with respect to active non-rigid targets. This paper presents
a new framework for visual servoing that accomplishes the
robot positioning task even in non-rigid environments. We
introduce a space-time representation scheme for modeling the
deformations of a non-rigid object and propose a model-free
hybrid approach that exploits the two-view geometry induced
by the space-time features to perform the servoing task. Our
formulation can address a variety of non-rigid motions and
can tackle large camera displacements without being affected
by the degeneracies in the task space. Experimental results
validate our approach and demonstrate the robust and stable
behavior.

I. V ISUAL SERVOING IN PRESENCE OF

NON-RIGID MOTION

The problem of controlling the movement of robotic
systems using visual feedback has been a topic of substantial
research in the field of Visual Servoing [10]. Several influen-
tial approaches in this area have been envisaged to perform
the servoing task [4], [13]; however, much of the research
until now presumes structured and rigid environments. In
this paper, we propose an approach to visual servoing that
can control a dynamic system even in an unknown active
non-rigid environment.

In robotic vision research, motion analysis has been largely
restricted to rigid objects due to their simplicity, elegance and
immediate industrial applicability. However, in real world
situations, motion of physical objects is often non-rigid [2]
in nature. Common examples include motion of human body,
flying birds, ocean waves etc. It has been a persistent desire
to employ robots in such natural and unconventional envi-
ronments. For this to be successful, it is desirable to develop
servoing strategies and algorithms that can perform optimally
even in such unstructured scenarios. Our motivation towards
non-rigid motion analysis has been driven by applications
in the areas of surgical robotics, underwater robotics, active
vision systems etc.

Dealing with non-rigid motion poses several challenges in
the design of optimal servoing strategies. Non-rigid objects
undergo a persistent change in their pose which forbids
any single image to characterize their state. This is because
motion instruction planned based on the features extracted at
current time instant might not be relevant in the next instant
as the object undergoes a change in its pose. Further, the

D Santosh and C V Jawahar are with the Center
for Visual Information Technology, International Insti-
tute of Information Technology, Hyderabad 500032, India
{santosh@research.,jawahar@ }iiit.ac.in

Fig. 1. Proposed scheme for visual servoing in non-rigid environments

desired configuration of the end-effector cannot be described
by using only a single image or a single pose as it will lead to
oscillations of the manipulator even after the goal position is
reached. Note that the unavailability of static features (in case
of whole body deformations) and background features (in
case of moving targets) makes it imperative to engender new
representation schemes for visual servoing using only the
pose-varying features on the object surface. This necessitates
a time-based representation, rather than a purely spatial one,
due to the temporal nature of the object deformations. It
must be emphasized that non-rigid motion encompasses wide
range of possible motions ranging from simple translatory
motion such as a waving hand to highly complex motion like
that of a beating heart. A general representation for all kinds
of motions is preferable, but appears to be inconceivable
at this stage. Establishing correspondence between image
features is usually the primary step in visual servoing.
However, finding accurate correspondences is often difficult
in practical situations; especially, while matching points in
two views separated by large displacement. This is a highly
formidable requirement in case of deformable objects as this
demands frame-to-frame matching of the object deformations
which is complicated even for simple motions.

Existing servoing schemes are not designed to tackle non-
rigidity. Cartesian-based algorithms require complete3D
information of the object which is a strong assumption for
deformable targets. Image-based servoing schemes cannot
be directly used as these schemes use information only
from a single image to guide the robot, which results in
an oscillatory camera trajectory [15]. Also, these methods
are not completely model-free, since depths of the observed
features are needed in the control law [10]. Further, they
demand the exact frame-to-frame correspondences between
image features. Moreover, new representations conceived for
modeling the non-rigid motion cannot be directly utilized
in these schemes as the corresponding interaction matrix
relating the feature motion in the image space to the camera
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motion in the Cartesian space has to be derived.
In this paper, we propose a different approach to visual

servoing in which the motion characteristics of active non-
rigid objects are used to perform the servoing task, without
the requirement of3D structure information. Our approach is
based on the bi-dimensional appearance of the objects in the
environment and explicitly takes into account independent
object motions. In most cases, where an object has a repet-
itive motion, the space-time trajectories of representative
points on it will serve to uniquely represent the object
(Sect. II). These trajectories are invariant to object defor-
mations and can be utilized to obtain a stable estimate of
the projective transformation relating the initial and desired
views (Sect. III-A). The estimated transformation is then
used in a feedback-based hybrid control to perform the ser-
voing task (Sect. III-C). The overall algorithm is summarized
in Fig. 1. In [15], a preliminary strategy to tackle non-
rigidity was discussed. In that approach, gross features of the
object deformations were extracted and used in the servoing
algorithm. However, the method handles only simple non-
rigid motions. Further, issues of optimal camera trajectory,
degenerate configurations (such as local minima, singularity)
etc. have not been analyzed. In the current formulation, we
aim to not only generalize our approach to complex non-
rigid motions but also achieve the desirable characteristics
of the servoing algorithm (Sect. III).

II. GEOMETRY OFNON-RIGIDITY

Active non-rigid motion can essentially be classified into
three primary types, namely articulated motion, elastic mo-
tion and fluid motion [2]. This classification is based on the
constraints on the degree of the smoothness and continuity
in the motion. Among the different forms of non-rigidity,
elastic motion constitutes the most general form of non-
rigid motion [2]. Elastic or cyclic motion is ubiquitous in
the natural world. For instance, the motion of heart and
other body organs; motion of flying birds, swaying trees and
moving aquatic animals; ambulatory motion of humans and
animals etc. All such motions involve a regularly repeating
sequence of motion events and thus demonstrate a cyclic
pattern in their deformations. In this paper, we concentrate on
accomplishing the servoing task in presence of such station-
ary elastic objects. It may be noted that global motion from
a moving non-rigid object can be separated by performing
rigid and non-rigid motion segmentation [3].

Different modeling strategies have been proposed in the
field of computer vision to characterize non-rigidity. Most
approaches employ methods like the linear subspace model
(appearance manifold), kinematic chains, dynamic Markov
models etc. to model the deformations as variations to the
model parameters. In these methods, assumptions regarding
the objects and their motion are made, which restrict the class
of objects that can be handled. A standard modeling scheme
for all kinds of motion is very much desirable for the design
of a general servoing strategy. Our pursuit is to engender a
stable representation for a generic non-rigid object.

Fig. 2. Projective transformation in the Space-Time: Point trajectory in the
4D space-time projects onto the3D space-time describing a curve in the
image space

A. Non-Rigid Motion as Space-Time Curves

We represent a non-rigid object using a set of
representative points moving with different velocities [12].
These interest points are locations where the object deforms
in shape, and constitute to its surface appearance. A
deformation of the object induces a change in the point
locations. For a stationary target, its deformations can be
described using the motion of these configuration of points.
This is because repeated activity transforms the points such
that they traverse a fixed trajectory in the three-dimensional
space. For a static observer perceiving the object, these
points always appear to traverse along the same3D curves.

Projections from 4D to 3D Space-Time More formally,
let O be the observed object andP1, . . . , Pn be the interest
points on the object surface in the3D space. Let the3D
coordinate of the pointPi, i = 1, 2, . . . , n be [Xi Yi Zi]T .
The motion of this point in the Euclidean space can be
considered as a set of pointsPk = [Xk Yk Zk Tk]T defining
a curve Ci in a 4D space-time whereTk denotes time.
Assuming a pin-hole camera, the space-time projection of
the point onto the3D (image) space-time satisfies

p̃k ≈MP̃k, (1)

where matrixM denotes the4×5 extended camera matrix,≈
denotes equality up to scale and˜ denotes corresponding ho-
mogeneous coordinates. Although the space-time projection
from Pk to pk cannot be described by projective cameras,
(1) signifies that a point in the real space-time is projected
to an image space-time point by an extended affine camera.
Thus the motions in the4D space are projected onto images
and can be observed as a set of pointsp = [x y t]T in a
3D space-time on image motions extracted from an image
sequence (See Fig. 2). This3D space-time can be perceived
as a spatio-temporal entity with two spatial dimensionx, y
and a time dimensiont. The corresponding image coordi-
natesm can be obtained from the normalized coordinatesp
with an affine transformation

m = Kp, (2)

where K is the camera intrinsic matrix [8]. These points
define the image trajectoryci of the4D space-time curveCi.



Curves have been employed in computer vision for a very
long time. However, most of the works until now refer to
them in the context of shape descriptors. In this paper, the
concept of ‘space-time curves’ is being introduced for vi-
sual servoing purpose. Such a representation offers multiple
benefits. First, such features allow large class of motions
to be accommodated as few constraints are enforced on the
kinds of motion. As they are invariant to the changes in the
object pose, they provide a stable and unique set of features
for visual servoing. Moreover, the desired configuration of
the manipulator can be stably defined using these invariant
features. Further, such a representation avoids the complex
problem of establishing frame-to-frame feature correspon-
dences during the servoing task. The space-time curves
provide a more geometric and intuitive representation of the
object than other past features and thus are more interesting.
Compared to finding corresponding points, corresponding
curves can be easily and robustly identified using multiple
cues e.g., periodicity, curvature etc.

B. Navigation Formulation

Let F0 be the coordinate frame attached to the target, and
F∗ andF be the coordinate frames attached to the calibrated
cameras at the desired and current positions respectively.
Let F∗ be displaced fromF in the Euclidean space by
R ∈ SO(3) and t = [tx, ty, tz]T ∈ <3, whereR, t denote
the rotation matrix and the translation vector respectively.
Considering the angle-axis representation for rotation matrix
R, we haveR = exp([r]×), wherer = uθ, is the vector
containing the angle of rotationθ and the axis of rotation
u, exp is the matrix exponential function and[r]× is the
skew-symmetric representation of the vectorr. The relative
camera pose with respect to frameF∗ is defined by a6× 1
vectorE = [tT rT ]T . The points on the space-time curveCi

in the current frameF get transformed to desired frameF∗
asP ∗ = RP +t, defining the curveC∗i . These points project
onto the normalized planeI∗ asp∗ and their corresponding
image coordinates are obtained using the relationm∗ = Kp∗

(similar to (2)). These image points define the trajectoryc∗i
in the desired frameF∗ (See Fig. 2).

In visual servoing, the goal is to reduce the error in the
desired and the current features so as to drive the disparity
in pose betweenF andF∗ to zero. The objective function
e can be defined as a function of timet as

e(t) = ci(t)− c∗i . (3)

Since the image features are a function of the camera pose
i.e., ci(t) = f(E(t)), (3) can be redefined as

e
′
(t) = E(t)− E∗. (4)

Thus the servoing task reduces to the problem of estimation
of the partial displacement of the camera followed by a
minimization of error in the relative pose parameters. We
assume that the frame rate of the camera is sufficiently high
for capturing one cycle of the points trajectory.

Fig. 3. Homography-based visual servoing using planar curves: The curves
indicate the space-time trajectory of the points on the non-rigid object

III. PROPOSEDSERVOING APPROACH

The goal of our solution is to design a servoing algorithm
to drive the disparity between the current and the desired
camera configurations to zero. The desirable characteristics
of the algorithm are –
• Immunity to non-rigid deformations and continuity in

the velocity screw.
• Ability to tackle large camera displacements without

being affected by degeneracies in the task space.
• Robustness to image measurement errors.
• Independence from prior knowledge of the object model

and parameter initialization.
• Decoupling of camera motion and ensuring feature

visibility.
We employ a hybrid homography-based formulation to

achieve the above desirable characteristics. In literature,
model-free hybrid approaches have been developed to deal
with unknown environments [5], [13]. These methods exploit
the information provided by the projective reconstruction of
the scene computed only from the visual features extracted
from the images.

We begin with a simple, not so strict assumption that the
motion of a point on a non-rigid object can be approximated
to a planar motion [7]. The most general motion of a
sufficiently small element of a deformable object can be
represented in three mutually orthogonal directions (i.e., as
a sum of translation, rotation and an extension). However,
in presence of opaque objects, the visible deformations are
those occurring at the object surface. These deformations
can be assumed to occur locally on the plane. Hence the
dominant motion of the points can be assumed to be planar in
nature. Note that each curve can be planar in any orientation
while the object is non-planar (See Fig. 3).

A. Homography-based Visual Servoing

Given the planarity assumption of the point trajectories,
the projective transformation between the two views of
the scene can be defined using a homography [8]. Several
methods have been proposed in literature to estimate ho-
mography from planar curves [1]. However, most of the
approaches deal with parametric curves. Since non-rigid
motion can be complex, parametric methods might not be
capable of estimating homography in all situations as they
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Fig. 4. Effect of degenerate configurations: (a) Servoing begun using
reference curve A reaches a degeneracy atF

′
whose origin lies on the

reference plane containing curveA (b) Discontinuity in the velocity screw
is due to the switching of curves (A to C) atF

′

are dependent on the chosen parametrization and cannot
handle changes in curve topology. To accommodate arbitrary
large class of motions, we extend the notion of higher order
primitives further to include an ordered collection of points
on a contour. We employ the homography estimation from
contours technique proposed in [11]. In this method, the
homography is estimated using only an ordered set of pixels
of the contour, without the requirement of explicit point to
point correspondences. The algorithm converges to the actual
homography in few iterations and is robust to outliers and
errors in image measurements.

The recovered homography can then be decomposed to
obtain the rotation matrixR, the scaled translation vector
t
d and the plane normaln using the procedure described
in [6]. It must be emphasized that information from mul-
tiple homography estimates, computed for a set of point
trajectories, can be utilized to unambiguously decomposeH
without the requirement ofa priori knowledge or parameter
initialization. The motion parameters are then used in the
control law to generate the optimal velocity instruction.
In [13], a similar method is discussed by Maliset al.
wherein the homography between two views of a planar
contour is estimated and the parameters obtained from its
decomposition are used in a21/2D control to servo the end-
effector.

B. Reliable Homography Computation

A single homography estimate is not sufficient when the
camera has to undergo large displacements in visual servoing
as it can be affected by occlusion of visual features, tracking
(drift) errors, the camera center approaching the feature
plane or due to singular homographies [8]. These degenerate
configurations render the homography invalid. In either of
the cases, when a degeneracy is reached, a new planar curve
has to be chosen as the current curve can no longer be
used for estimating the two-view projective transformation.
This switching causes a discontinuity in the velocity screw
affecting the stability of the robotic system. In Fig. 4, the
effect of switching is demonstrated, where a positioning
task with respect to a non-rigid object is simulated. The
above limitation is caused by the fact that only information
from a single homography is being utilized at a time. To
circumvent this problem, we compute a robust and reliable
estimate of the homography using information from multiple
homography estimates as described in [14]. In this method,

the resultant homography is efficiently computed as a linear
combination of four independent homographies by exploiting
the rank-4 subspace constraint on homographies.

C. Control Law

Given the stable estimate of the motion and structure
parameters (i.e.,R, t

d , n), we describe a control law to obtain
a decoupled camera trajectory without loosing the visibility
of features during servoing. Our approach is motivated by
the controls presented in [5] and [13].

The translational velocity to move directly to the goal
can be determined as−λv( t

d ) d, where λv is a gain fac-
tor and d is the distance to the plane (See Fig. 3). The
rotational velocity is computed as−λωuθ, where λω is
again a gain factor andu, θ denote the rotation axis and
angle that are obtained using the Rodriguez formula as
θ = arccos( 1

2 (tr(R)− 1)), [u]× = R−RT

2 sinc(θ) , where tr(R)
indicates the trace of matrixR. A direct control in the
Cartesian space might result in the features leaving the
camera field of view. However, information from image
features can be incorporated into the decoupled control to
enforce the visibility constraint. We know from the image-
based visual servoing control [10]

[
u − u∗
v − v∗

]
=

[
− 1

Z
0 u

Z
0 − 1

Z
v
Z| {z }

Lν

uv −(1 + u2)
1 + v2 −uv| {z }

Lωxy

v
−u| {z }

Lωz

] [
ν
ω

]
,

(5)
wherep = [u v 1]T = [x 1]T , p∗ = [u∗ v∗ 1]T = [x∗ 1]T

and Z = Z(P ) (See Fig. 3), while[ν ω]T denotes the
velocity screw. Equation (5) can be rewritten asx − x∗ =
[Lν Lωxy Lωz ][ν ωxy ωz]T , which yields

ωxy = L−1
ωxy

[(x− x∗)− Lνν − Lωzωz], (6)

where ν = ( t
d )d̂ and ωz = uzθ. In (6), the rotational

motionωxy is controlled not only to minimize the differences
between the current and the goal image features but also to
compensate the effects caused by translation on the image.
This ensures a straight-line trajectory of the features in the
image. Estimates ofZ andd are required in (5) and (6). This
can be obtained aŝZ = d̂

nT p
andd̂ = d̂∗

det(H) , whered̂∗ is an
estimate of the constant distance to the planeπ in F∗ [13].
In general, this quantity is considered as a gain ratio and a
coarse estimate obtained from a simple stereo technique is
adequate [13]. Consequently, all the parameters required for
the control are now available directly from the homography
decomposition. In summary, the resultant expression for the
velocity v is given as

v = B

[
ν

L−1
ωxy

[(x− x∗)− Lνν − Lωz ωz]
ωz

]

where B =
[

−λvI3×3 03×2 03×1
02×3 −λωxy I2×2 02×1
01×3 01×2 −λωz I1×1

]
. (7)

Equation (7) has only one singularity that occurs atZ = 0
(See expression forLν). However, the robust homography
computation ensures that this degeneracy is always avoided.



Fig. 5. Experimental Setup with the cameras and the objects used

(a)

(b)

(c)

(d)

Fig. 6. Non-Rigid Objects used in the experiments: Three sampled frames
depicting the extreme positions during their motion

Thus using the space-time curves described by the points
belonging to the object, the relative camera displacement
can be reliably computed and used in the above control to
achieve stable servoing behavior uninfluenced by the object
deformations.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We present a series of real and simulation results to
validate the performance of the proposed technique. Real ex-
periments were conducted to validate the proposed modeling
scheme and also to verify the underlying concept behind the
proposed servoing strategyi.e., the estimation of projective
transformation using space-time curve features and obtaining
the relative end-effector displacement; while the performance
of the servoing algorithm was studied in simulation. The
basic implementation of our proposed algorithm can be
summarized into the following steps.

1) In an off-line step, acquire images from the final goal
position and extract the curvesc∗i describing the3D
point trajectories from these images

2) Acquire a sequence of images from the current camera
pose and obtainci

3) Estimate homographyHi induced by the space-time
curves (Sect. III-A) and compute the reliable homog-
raphy estimateHres (Sect. III-B)

4) DecomposeHres to obtain the motion and structure
parameters

5) Using (7), obtain the velocity instructionv and move
the end-effector to the new pose

6) Repeat steps2 to 5 until convergence

(a) (b) (c)

(d) (e) (f)

Fig. 7. Interest points tracked on the objects shown in Fig. 6. Fig.(a) and
(b) show the two corresponding views of Object1. Fig.(c) plots the point
trajectories obtained in case of (a) and (b) that were used to estimate the
homography. Fig.(d),(e) and (f) show one of the views of the Objects 2,3
and 4 respectively, along with the interest point trajectories

Experiments were conducted using an imaging set-up con-
sisting of a1m cubical structure with holders to support CCD
cameras (See Fig. 5). The object motion was tracked using
the real-time GPU-based tracking system developed in [16].
The different objects used in the experiments are shown in
Fig. 6. The objects possess multiple interest points moving
with different velocities resembling non-rigid motion. Fig. 7
shows the tracked motion of the points on the object sur-
face. Using these space-time curve features, the projective
transformation between the two views was estimated and the
relative camera displacement was computed. The computed
result was compared to the ground truth obtained from a
simple calibration technique. The estimated parameters were
very close to the actual values in almost all the cases except
in a few, when the considered point trajectory was out of
plane. From this experiment, we ascertained that the relative
displacement of the camera can be reliably estimated using
the space-time curve features of the non-rigid object.

Simulations were conducted in MATLAB environment
using a camera with a512× 512 pixel array and a sampling
time of T = 40ms. Visual servoing was halted when the
pixel error reduced below1 pixel. An arbitrary configuration
of points emulating a non-rigid object was considered. The
non-rigid motion of the points was simulated using arbitrary
planar curves. The image acquired at the initial and the de-
sired camera position is displayed in Fig. 8(a). The servoing
task was performed using the algorithm summarized above.
Fig. 8(b) shows the smooth convergence of error norm and
Fig. 8(d) displays the camera trajectory. At convergence,
the camera arrives at the reference pose and the visual
features coincide with the desired features. We observe that
the control is stable and the translational and rotational
velocities (Fig. 8(c)) converge to zero within few seconds.
The proposed approach was also tested successfully on mul-
tiple initializations of curves. Further, several experiments
were performed, using different initializations of the camera
configurations, obtaining similar results.

Experiments were also conducted to analyze the perfor-
mance of the algorithm in presence of noise in calibration
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Fig. 8. Simulation Result: (a) Initial (blue) and Desired (green) images (b)
Smooth convergence of Error Norm (c) Stable Velocity Screw (d) Camera
Trajectory
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Fig. 9. Results in presence of (a) Calibration and (b) Image Measurement
errors for the same case as in Fig. 8

(pose) and image measurements. An additive, zero-mean
Gaussian noise with varianceσ = 0.1 was considered.
The parameters were varied in turn and average of the
error measures was analyzed. From Fig. 9, we observe
that the convergence is achieved even in presence of errors
demonstrating the robust behavior of the approach.

Finally, an experiment was conducted to analyze the
behavior of the robust homography computation algorithm.
The degenerate case as shown in Fig. 4 was considered. The
displacement that the camera had to realize was approxima-
tively composed of a rotation of5,−40 and0 degrees around
camerax, y andz axis respectively and a translation of5, 0
and 1cm along those axis. Fig. 10(a) shows the variation
in weights corresponding to the homographies. Observe that
the weight corresponding to degenerateH tends towards the
minimum value as the camera approaches the degeneracy.
The smooth velocity screw in Fig. 10(b) demonstrates the
stable behavior of the algorithm unlike Fig. 4(b).

V. CONCLUSIONS

A new framework for visual servoing has been proposed in
this paper that accomplished the positioning task in unknown
non-rigid environments. The algorithm utilized multiple ho-
mography estimates relating the current and desired camera
views in conjunction with the novel non-rigid modeling
scheme to accomplish the servoing task. The algorithm can
handle most types of non-rigid motions and can tackle large
camera displacements without being affected by degenerate
configurations. A drawback with our present approach is
the requirement of a highfps camera as the sensor has to
perceive the target for a minimum of one cycle at every time
step so as to acquire the complete space-time trajectory of the
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Fig. 10. Robust Homography Computation: (a) Normalized weight values
(b) Velocity Screw. The weight corresponding to the degenerate curve
reduces to a minimum when the degeneracy is approached, thus leading
to a smooth velocity screw (unlike Fig. 4(b))

points. Note that although the points motion is cyclic with
respect to a stationary camera; with a moving camera, the
motion will not project onto periodic image paths due to the
constantly changing camera pose relative to the point motion.
However, this limitation can be overcome by using the recent
developments in the field of multiple-view geometry of the
space-time [9] that attempt to predict the point trajectory
at the current pose using information acquired from current
image and the past views. Our future work will be devoted
to the development of this predictive control.
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Abstract. This paper presents a vision-based control for positioning a
camera with respect to an unknown piecewise planar object. We intro-
duce a novel homography-based approach that integrates information
from multiple homographies to reliably estimate the relative displace-
ment of the camera. This approach is robust to image measurement er-
rors and provides a stable estimate of the camera motion that is free from
degeneracies in the task space. We also develop a new control formula-
tion that meets the contradictory requirements of producing a decoupled
camera trajectory and ensuring object visibility by only utilizing the ho-
mography relating the two views. Experimental results validate the effi-
ciency and robustness of our approach and demonstrate its applicability.

1 Robotic Vision

The use of computer vision techniques to control robotic systems has received
great popularity in recent times [1]. Images captured by cameras attached to
a robot provide ample information about its surroundings that assists it in ef-
ficiently navigating the environment. This field, known as Visual Servoing [2],
has gained recent prominence due to the widespread availability of high quality
cameras and low cost microprocessors. In addition to robotics, visual servoing
algorithms also find interesting applications for interactive vision systems such
as video conferencing, tracking, active vision, augmented reality etc. The vi-
sual feedback increases the accuracy of the overall vision system and relaxes the
requirement of high precision accessories.

Many servoing techniques have been proposed and extensively studied in liter-
ature. In [3], optical flow is used to control the pose of the camera in conjunction
with a Jacobian-based adaptive controller. In [4], 3D object pose is estimated and
utilized to regulate the camera pose error. The class of algorithms similar to the
former method constitute the popular Image-based Visual Servoing techniques
while the latter pertain to Position-based approaches. For the relative merits
and demerits of the above techniques, the reader may refer to [2]. Recently, a
new group of algorithms have been proposed [5,6,7] that exploit a combination
of the above methods to estimate the camera displacement between the desired
and the current pose. They combine the traditional Jacobian-based control with
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other techniques to form the class of Hybrid Visual Servoing algorithms. These
methods yield a decoupled, straight-line camera trajectory and possess a large
singularity-free task space.

Hybrid algorithms can essentially be classified into two primary categories.
Algorithms in the first category are generally based on the computation of the
essential matrix relating the two camera views [7,8]. Although the relative cam-
era displacement can be obtained even for unknown (non-planar) scenes, a prob-
lem with epipolar geometry is that, it degenerates in certain critical cases (for
example, when the target is planar or when the relative displacement is a pure
rotation) and hence is not suitable for servoing. Note that a positioning task is
accomplished only when the current and the desired images of the scene are sim-
ilar, which corresponds to the degenerate case. The second class of algorithms
determine the relative camera displacement by computing the homography in-
duced by a scene plane relating the two views. However, a major drawback of
these methods is the implicit assumption of the planarity of the scene, which pre-
vents their application to real world scenarios as the world is often made up of
non-planar regions. It must be emphasized that in either cases, the degeneracies
critically affect the convergence and predictability of the system. Thus dealing
with such degeneracies is of vital importance in the design of a stable system.

In summary, the desirable characteristics of a hybrid visual-control algorithm
are

– Absence of degeneracies in its task space
– Applicability to both planar and non-planar environments
– Robustness to image measurement errors
– Continuity in velocity instruction and smooth convergence behavior
– Independence from prior knowledge of the object model and initialization of

parameters

In this paper, we propose a new homography-based servoing algorithm that
achieves the above features. Our method integrates homographies induced by
multiple scene planes using geometric and subspace constraints to efficiently
estimate the motion and structure parameters (Fig. 1). Another contribution
of this paper is the development of a modified control law that provides the

Decompose HresEstimate (See Sect. 3)
Obtain Robust Homography

for each Plane
Compute Homography

Extract Features

Modified Control Law
(See Sect. 4)

F

F*

R,t/d,nHHi res

Feedback

Velocity Command V

Desired Image

Features

Non−Planar Object

Fig. 1. Visual-feedback control: Multiple homographies are integrated to obtain a ro-
bust homography, which is used in the modified control law to gain superior perfor-
mance
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complementary characteristics of producing a decoupled camera trajectory and
ensuring object visibility by only using the homography transformation relating
the two camera poses.

2 Homography-Based Visual Control

A visual servo control compares the current image of a target with the desired
image and the difference (or ‘error’) is used to drive the camera towards the goal
position. Often the task is not just to regulate the image error but also to ensure
a realizable camera trajectory. In such scenarios, homography-based control acts
as a convenient option as it regulates the error in camera pose by estimating the
3D motion parameters only using image information.

If all the object points lie on a 3D plane, their coordinates in the current
image I and the goal image I∗ are related by a ‘collineation’ [9]. Assume that a
point P lies on a plane whose normal vector is n as shown in Fig. 2. The point
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Fig. 2. Homography-based Visual Servoing

expressed in current camera frame F is related to goal camera frame F∗ by a
rotation matrix R and translation vector t as

P ∗ = R P + t = (R + t
nT

d
)P, (1)

where d = nT P is the distance of the plane π from the current camera center.
Assuming the camera intrinsic parameters are known, the image coordinates of
the 3D points are given by p = P

Z and p∗ = P∗
Z∗ respectively. This transforms (1)

to
Z∗

Z
p∗ = (R + t

nT

d
)p, (2)
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which can be rewritten as αp∗ = Hp where H3×3 = R + tnT

d is called the
‘homography’ matrix up to a scale factor α [9].

The recovered homography can be decomposed to obtain the rotation matrix
R, the scaled translation vector t

d and the plane normal n using the procedure
described in [10]. Unfortunately, in the most general case the decomposition of
H yields four different solutions (two of them being the ‘opposites’ of the other).
They can be reduced to two solutions by applying the visibility constraint (i.e.,
all the features must lie within the camera field of view). Further ambiguity
can be resolved by decomposing an additional homography induced by another
scene plane. Two pairs of solutions (S1, S2) and (S

′
1, S

′
2) are obtained respectively

and a compatible pair (Si, S
′
j) among them is found, i.e., a pair with common

motion (R, t
d). In general, there is only one compatible pair, and hence the unique

solution can be obtained. Thus using information from multiple planes, H can
be decomposed unambiguously to obtain the motion and structure parameters.
These parameters are used in the control law to generate the optimal velocity
instruction.

2.1 Degenerate Configurations and the Use of Multiple Planes

Some of the limitations of the existing hybrid techniques to estimate the relative
camera displacement were reviewed in Sect. 1. Recently, another method was
proposed by Malis et al. [6] to compute the relative orientation between the two
camera views for a non-planar object using the concept of ‘virtual parallax’ [11].
By defining a plane using three arbitrary points on the object, they estimate the
homography using this virtual plane and perform the positioning task.

A single homography estimate is not sufficient when a camera has to undergo
large displacements in visual servoing as the control can be affected by degenerate
configurations. Degeneracies in the task space can result either due to occlusion
of the feature points, the camera center approaching the world (virtual) plane,
the camera centers and the feature points arriving in a singular configuration [9]
or due to singular homographies. In either of the cases, when a degeneracy is
reached, the plane in consideration is switched i.e., the points used to define the
virtual plane are changed and a new plane using three different points is defined.
This switching causes a discontinuity in the velocity command and leads to the
instability of the control system. In Fig. 3, the effect of switching is demonstrated,
where a positioning task with respect to a piecewise planar object was studied.

The other drawbacks in defining a non-planar object using arbitrary planes
include

– Unfavorable for planar scenes. The methods using virtual parallax are
theoretically inefficient to deal with planar objects as the epipolar geometry
degenerates in this case [6].

– Initialization of plane parameters. In order to resolve the ambiguity in
homography decomposition, a priori information about the normal vector of
the virtual plane is required.

– Assumption of point features. Point correspondences are not available in
many practical situations or could be noisy. Since the virtual plane is defined
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Fig. 3. Velocity Screw using virtual parallax algorithm: (a) Servoing begun using plane

A reaches a degeneracy at F
′
whose origin intersects the plane (b) Discontinuity in the

velocity screw is due to the switching of planes (A to C) at F
′

explicitly using the non-coplanar points on the object, these methods may
not be applicable when such features are not available.

– Effect of measurement errors. Homography estimation is affected due to
measurement errors (‘drift’) in the correspondences. By choosing a different
set of points (that are error-free) to define the virtual plane, one can obtain
better results.

It must be emphasized that the above limitations are caused by the fact that
only information from a single plane is being utilized to perform the positioning
task. The bottleneck has been the fact that there exists no single homography
relating the two camera views that can be absolutely relied upon. Nevertheless,
by selectively exploiting the information available from multiple planes, one can
avoid the above drawbacks and achieve superior performance.

3 Homography Estimation Using Multiple Planes

The objective of the servoing task is to drive the disparity between the current
and the desired camera configurations to zero. The homographies relating the
two camera poses induced by different planar regions are used to guide the
positioning task.

Our approach proceeds initially by partially tessellating the non-planar scene
into piecewise planar patches. This is done by a simple partitioning of the image
features into homogeneous planar regions (See Fig. 6(a)). Interest regions are
detected and the regions subject to planarity constraint form a set of matching
regions [12]. The seed regions act as a ‘driver’ to guide the evolution of planar
patches in the image. Any interest region detector with the ability to detect ro-
bust and stable regions can be employed here. For each pair of matching regions,
a plane-induced homography is calculated.

Even though a single homography is sufficient to determine the motion pa-
rameters (rigidity constraint), information from multiple homographies can be
combined to obtain a reliable estimate of the camera displacement. However, to
avoid the estimation of multiple homographies at each instant, the constraints
on homographies can be exploited to reduce the computations. Recall from (2)
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that any H induced by a 3D scene plane is described by H3×3 ≈ R+ tnT . Given
a homography matrix Hπ induced by some 3D plane π, all other homographies
Hi can be described as λiHπ + tnT

i for a fixed pair of cameras [9]. This obser-
vation results from the fact that all the homographies differ only in their scale
λi and plane ni parameters. Consider k homography matrices H1, H2, . . . , Hk,
each expressed as a column vector in a 9 × k matrix. The rank of this matrix
is known to be utmost four [13]. Hence the space of all homographies between
two fixed camera views is embedded in a 4-dimensional linear subspace of �9.
This observation follows the fundamental fact that multiple planar patches in
the scene share the common global camera geometry (i.e., R, t).

3.1 Computation of the Reliable Homography

Given the rank-4 constraint, any new homography can be computed as a weighted
combination of four linearly independent homographies. The four homographies
are in general selected such that they are induced by planes that possess largest
area and best visibility (if the centroid of the features in a planar region is
within a threshold distance from the nearest image boundary, then it satisfies
the visibility constraint) since they are the most reliable.

The resultant homography Hres is defined as

Hres = λ1H1 + λ2H2 + λ3H3 + λ4H4, (3)

where the weights λi are assigned such that good homographies receive higher
weights while the degenerate or errored estimates are given low priority. By
appropriately choosing the λi’s, a reliable homography can be deduced. Recall
that, in general, any homography in the subspace can be expressed as a linear
combination of four base homographies. In our case, Hres is one such ‘valid’
homography possessing certain desired characteristics.

The principle behind the weight assignment is to prefer valid homographies
and reject singular ones in order to prevent abrupt switching of planes during
a degeneracy. It must be emphasized that most of the degeneracies are not
arbitrary changes and in general, can be predicted in advance. For instance,
distance between a camera and a (virtual) plane gradually regresses to zero.
Likewise, occlusion of planes can be anticipated by the persistent decrease in
area of the planar region (or the number of features). Other degenerate cases
can also be predicted in a similar manner and thus homographies that are likely
to confront a degenerate configuration can be rejected.

Assignment of weights. Let us define the constraints to assign the weights
and hence the parameter λi that is used in the computation of Hres.

– Re-projection Error. This constraint measures the accuracy of the es-
timated homography. A high error in re-projection indicates a poor esti-
mate and such H should receive less weight as parameters obtained from
it will be unreliable. Thus the weights are set inversely proportional to
the re-projection error. This ensures that planar regions that are affected
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by the cumulative tracking errors (‘drift error’) are avoided and thereby
guaranteeing the robustness of Hres to image measurement errors. The ex-
act weight λe

i is defined by first calculating the re-projection error i.e.,
e =

∑
k d(p∗k, Hpk) =

∑
k || p∗

k

||p∗
k|| −

H∗pk

||H∗pk|| || and then assigning it using a
one-sided Normal distribution N(ethres, σe) where ethres is the tolerable re-
projection error and σe is the variance.

– Homography Determinant. This quantity signifies the ‘goodness’ of a
homography estimate. If the determinant is tending toward zero, it suggests
the arrival of a degeneracy and hence such a homography should acquire
low weight. Therefore the weights are set directly proportional to the value
of the determinant D. This constraint ascertains the resultant homography
to be free of singularities. Here again, the weights λD

i are set using a one-
sided Normal density function N(Dthres, σD) where Dthres is the minimum
acceptable determinant.

– Area of the Plane. Occlusion of a plane can be detected by measuring
the gradient of the plane area dA. If the area of the planar region decreases
drastically, then it indicates a possible occlusion of this plane in the near
future. Thus the λi’s are to be set inversely proportional to the value of dA.
More precisely, the weight λdA

i is set using a one-sided Normal distribution
N(dAthres, σdA) where dAthres is the minimum acceptable gradient.

These weights are normalized and summed together to obtain the resultant
weight λi. The final expression for Hres is calculated as

Hres =
4∑

i=1

λiHi, where
∑

i

λi = 1.

Hence a judicious assignment of weights using the above constraints helps in
deducing a ‘virtual’ homography with the desirable characteristics. A change of
bases might be required in case one of the Hi degenerate. However, the degener-
ate homography would automatically procure a low λ value and its replacement
does not affect the stability of the system. This approach is applicable even if
the scene consists of less than four planar regions. In such a case, the unavail-
able homographies in (3) acquire zero weight. It must be emphasized that the
method utilizes additional homographies to obtain a reliable homography es-
timate rather than computing the optimal estimate. The parameters obtained
from decomposition of Hres are used in the modified control law to compute the
camera trajectory.

4 Modified Control Design

Given the stable estimate of the motion and structure parameters, our focus is
to design a robust control that not only produces a decoupled camera trajec-
tory but also guarantees feature visibility. Classical approaches such as the 3D
control algorithms compute an optimal camera trajectory but very often violate
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the visibility criteria. 2D controls ensure the features to remain in the camera
field of view, although they suffer from non-optimal trajectory, computational
complexity of calculating the Jacobian pseudo-inverse and the demand for 3D
depth estimates. Note that providing the contradictory requirements of either
controls poses a daunting challenge in the design of an optimum control scheme.
Though a few attempts in this direction have been made [5,6,14], the devised
controls do not satisfy all the above requirements.

Much of the information that is required for performing the positioning task is
readily available from the homography transformation. The presence of multiple
planes in the scene further compliments this fact. We exploit this result to fulfill
the requirements of the desired optimal control.

Proposed Control. We first introduce the Cartesian (3D) control law and
then proceed to derive the robust control. Given the parameters obtained from
homography decomposition, the translational velocity to go directly to the goal
is determined as −λv( t

d ) d, where λv is a gain factor and d is the distance to the
plane (See Fig. 2). The rotational velocity is computed as −λωuθ, where λω is
again a gain factor and u, θ denote the rotation axis and angle that are obtained
using the Rodriguez formula for the rotation matrix R as θ = arccos(1

2 (tr(R)−1))
and [u]× = R−RT

2 sinc(θ) [4].
However, a direct control in the Cartesian space might result in the features

leaving the camera field of view. To enforce the visibility constraint, we use a
single image point to control two axes of rotation (around x and y) and the final
axis of rotation is controlled directly using the rotation matrix. This is done as
follows: We know from the image-based visual servoing control [2]

[
u − u∗

v − v∗

]

2×1

=
[ − 1

Z 0 u
Z

0 − 1
Z

v
Z︸ ︷︷ ︸

Lν

uv −(1 + u2)
1 + v2 −uv
︸ ︷︷ ︸

Lωxy

v
−u
︸︷︷︸
Lωz

]

2×6

[
ν3×1

ω3×1

]

6×1

, (4)

where p = [u v 1]T = [x 1]T , p∗ = [u∗ v∗ 1]T = [x∗ 1]T , Z = Z(P ) (See
Fig. 2) and [ν ω]T denotes the camera velocity. Equation (4) relates the motion
of image features i.e., x − x∗ to the camera motion using the 2 × 6 Jacobian
matrix L. It can be rewritten as x − x∗ = [Lν Lωxy Lωz ][ν ωxy ωz]T . Observe
that a simple rearrangement of terms yields

ωxy = L−1
ωxy

[(x − x∗) − Lνν − Lωzωz], (5)

where ν = ( t
d)d̂ and ωz = uzθ. In (5), the rotational motion ωxy is controlled not

only to minimize the differences between the current and the goal image features
but also to compensate the effects caused by translation on the image. This
ensures a straight-line feature trajectory in the image and thereby guarantees
object visibility. Estimates of the values Z and d are required in (4) that can be
obtained as follows: Firstly, observe that

det(H) = det(R +
tnT

d
) = det(R +

t(n∗T R)
d

) (6)
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= det(I +
tn∗T

d
)det(R) =

d + n∗T t

d
(7)

where (6) uses the fact that n∗ = Rn (See Fig. 2). Equation (7) can be further
simplified using the result d∗ − d = n∗T P ∗ − nT P = n∗T (P ∗ − RP ) = n∗T t.
Hence we have d̂ = d̂∗

det(H) . Using (7), Z can be calculated as

Z

d∗
=

Z

d∗
d

nT P
=

1
nT p

1
det(H)

. (8)

Thus we have Ẑ = d̂∗
nT p

1
det(H) , where d̂∗ is an estimate of the constant distance

to the plane in the desired camera frame. In general, this quantity is considered
as a gain ratio [6] and a coarse estimate obtained from a simple stereo technique
is adequate. Consequently, all the parameters required for the control are now
available directly from the homography decomposition.

In summary, the resultant expression for the velocity v is given as

v=

[−λvI3×3 03×2 03×1

02×3 −λωxyI2×2 02×1

01×3 01×2 −λωzI1×1

][
ν

ωxy

ωz

]⎛

⎝=

⎡

⎣
( t

d
) d̂

L−1
ωxy

[(x − x∗) − Lνν − Lωz ωz]

uzθ

⎤

⎦

⎞

⎠

(9)
Equation (9) has only one singularity that occurs at Z = 0 (See expression for
Lν). However, as discussed in the earlier section, this degenerate configuration
is avoided by the reliable homography computation algorithm. Thus by incor-
porating image features into the 3D control, an efficient control offering the
complimentary features of object visibility and decoupled trajectory has been
developed.

5 Experimental Results

In our experiments, we constructed an arbitrary configuration of planes as shown
in Fig. 4(a). The projection of points belonging to these planar regions onto the
image were considered as features. A perspective camera projection model was
assumed. The basic implementation of the proposed algorithm given below was
used to perform the positioning task.

1. Extract features from the current image and partition them into piecewise
planar regions

2. Compute homography Hi induced by each region
3. Select four independent homographies induced by the regions that have the

largest areas and best visibility (Only the selected regions need to be tracked
in the successive iterations)

4. Determine the weights using the geometric constraints and compute the
normalized weight λi for the selected homographies (Sect. 3.1)

5. Determine the robust homography Hres using (3)
6. Decompose Hres to obtain the motion and structure parameters (Resolve

ambiguity using an additional homography)
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7. Use the control law to obtain the velocity instruction v (See (9))
8. Repeat above steps until convergence

We analyzed the performance of our algorithm by generating several random
initial camera configurations and then moving the camera to a fixed desired
pose in a multi-plane scenario as shown in Fig. 4(a). Observe that a camera
can frequently encounter degenerate cases during the positioning task in such a
scene. However, in almost all the cases, the proposed algorithm was uninfluenced
by degeneracies. In Fig. 4(c), the velocity command generated by the proposed
approach for the particular scenario as tested in Fig. 3(a) is shown. Fig. 4(b)
shows the variation in weights corresponding to the homographies. Observe that
the weight corresponding to degenerate H tends towards the minimum value as
the camera approaches the degeneracy. The smooth velocity screw in Fig. 4(c)
demonstrates the stable behavior of the algorithm unlike in Fig. 3(b). Fig. 4(d)
displays the camera trajectory. Note that the expression for Z in (8) requires at
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Fig. 4. (a) Non-Planar scene considered in the experiments. (b) Normalized weight
values (c) Velocity Screw and (d) Camera Trajectory obtained for the scenario described
in Fig. 3(a) . Smooth convergence even in presence of degeneracies confirms the stable
behavior of the proposed approach.

least one feature p belonging to the planar region. However as a virtual homog-
raphy is being used in our case, it might not correspond to any physical plane
in the scene. In our method, we obtained this feature by finding the intersection
of the plane inducing the virtual homography Hres with other scene planes as
described in [15].

Analysis of the Control Law. The performance of the control law was an-
alyzed in simulation. Fig. 5 shows the velocity screw and the image feature
trajectory obtained during a positioning task using the proposed, 3D and the
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Fig. 5. Analysis of proposed control: Fig.(a),(b),(c) show the velocity screw obtained
in case of proposed, 3D and 21/2D controls respectively while (d),(e),(f) display the
feature trajectory. Similarity of velocity screws in (a) and (b) confirms the optimal
trajectory behavior of the proposed control while near straight-line image feature tra-
jectory in (d) ascertains the feature visibility.

(a) (b)

Fig. 6. Planar scene reconstruction using inter-image homographies: (a) A sample
frame along with the detected interest regions on the scene planes (b) Reconstruc-
tion result

21/2D [6] controls respectively. The velocity screw obtained using the proposed
control is very similar to the one obtained using the 3D control. Further, the fea-
ture trajectory almost follows a straight line. These two observations ascertain
our claims of decoupled (straight-line) camera trajectory and object visibility
using the proposed control. Inter-image homographies are an interesting tool
for reconstruction of planar surfaces. The decomposition of homographies pro-
vide the 3D plane parameters required to reconstruct the scene. By considering
a common feature belonging to two planes ni and n, a relationship could be
derived between their distances using (8) as

Z =
di

nT
i p

1
det(H)

=
d

nT p

1
det(H)

i.e., di =
nT

i p

nT p
d, (10)
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where p denotes the common image feature. Thus given the plane normals ni,
the 3D scene could be reconstructed up to a scale factor d (See Fig. 6(b)). Given
an estimate of d, the exact scene can be reconstructed.

6 Conclusion

A novel homography-based control capable of positioning a camera even in pres-
ence of non-planar objects has been developed for the first time in this paper.
A robust homography estimate was efficiently computed using multiple homo-
graphies by employing geometric and subspace constraints. This homography
estimate was used in a modified control law to compute the optimal camera
trajectory. The method performed better in comparison to existing servoing al-
gorithms and avoided their critical drawbacks. In future, we plan to investigate
further the utility of multi-plane homography-based formulations for efficiently
solving other classical computer vision problems.
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