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Abstract

Information about blood flow in the brain is of interest to detect the presence of blockages and rup-
tures in the vessel network. A standard way of gathering this information is to inject a bolus of contrast
agent into the blood stream and imaging over a period of time. The imaging is generally done over
an extended period of time (tens of minutes) during which a patient can move which in turn results in
corruption of the acquired time series of volumes. This problem is often observed in dynamic magnetic
resonance (MR) imaging. Correction for motion after scanning is a highly time-intensive process since
it involves registering each volume to a reference volume. Moreover, the injected contrast alters the
signal intensity as a function of time and often confounds traditional motion correction algorithms. In
this thesis, we present a fast and efficient solution for motion correction in 3D dynamic susceptibility
contrast (DSC) MR images. We present a robust, multi-stage system based on a divide and conquer
strategy consisting of the following steps: i) subdivision of the time series data into bolus and non-bolus
phases depending on the status of bolus in the brain, ii) 2D block-wise phase correlation for detecting
motion between adjacent volumes and categorizing the corruption into four categories: none, minimal,
mild and severe depending on the degree of motion and iii) a 2-pass, 3D registration consisting of intra-
set and inter-set registrations to align the motion corrupted volumes. The subdivision of time-series
into distinct sets is achieved using Gamma variate function (GVF) fitting. The dynamic non-uniform
variation in signal intensity due to the injected bolus is handled by employing a clustering-based identi-
fication of bolus-affected pixels followed by correction of their intensity using the above GVF fitting.

The proposed system was evaluated on a real DSC MR sequence by introducing motion of varying
degrees. The experimental results show that the entropy of the derived motion fields is a good metric for
detecting and categorizing the motion. The evaluation of motion correction using the dice coefficient
measure shows that the system is able to remove motion accurately and efficiently. The efficiency is
contributed to by the proposed detection as well as the correction strategy. Including the detection prior
to existing correction methods achieved a savings of 37% in computation time. Whereas, when the
detection is combined with the proposed correction stage, the savings increase to 63%. Notably, the
above performance was found to be had with no trade-off between accuracy and computation cost.
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Chapter 1

Introduction

1.1 Stroke

Stroke is a rapid loss in brain function due to disturbance in blood supply to the brain. Disturbance is
either in the form of an interruption to blood supply to a part of brain or a blood vessel rupture resulting
in spilling of blood in nearby brain cells. In both scenarios, the brain cells do not receive the oxygen and
nutrients travelling through blood and eventually die. When stroke is due to inadequate blood supply, it
is termed as ischemic stroke which leads to infarction. It may occur either due to formation of a blood
clot in a narrow artery (referred to as thrombotic stroke) or due to breaking of blood clot from some
part of the body and travelling to the brain (referred to as embolic stroke). When stroke occurs due to
bleeding into or around the brain, it is referred to as haemorrhagic stroke. People having defects e.g.
aneurysm or arteriovenous malformation in blood vessels of the brain are prone to this kind of stroke.
Figure 1.1 shows the two types of strokes and their effects on the human brain. The risk factor for
stroke include high blood pressure, diabetes, family history of stroke, increasing age. The symptoms
of stroke depend on the part of the brain that has been damaged. These symptoms include headache,
unconsciousness, coma, changes in taste or hearing, loss of memory, difficulty in reading or writing etc.

1.2 Diagnosis of stroke

Usually there is a delay from the onset of symptoms to permanent tissue damage. When the blood
flow to brain is interrupted, some of the brain cells die immediately while the other cells are at a risk
of death. These type of cells make up the ischemic penumbra region [6] as shown in Figure 1.2. With
timely diagnosis and treatment these cells at risk can be salvaged. Hence, an early diagnosis can help
reduce mortality and morbidity of patients. This idea has led to advancements of new and effective
methods for early diagnosis and treatment of stroke.
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Figure 1.1 Effects of ischemic and hemorrhagic strokes in human brain [4].

Figure 1.2 Penumbra region in a stroke [1].

1.2.1 Computed Tomography (CT)

CT (computed tomography) scan uses X-rays to create three-dimensional image of the internal or-
gans of human body including soft tissues, bones and blood vessels. CT produces a volume of data that
is created from a large series of two-dimensional X-ray images of slices(cross-section) taken around a
single axis of rotation. CT scan is most commonly used for diagnosis of acute stroke. It often shows
the size and location of tumours, clots etc. CT scans are the basic methods of determining whether the
stroke is ischemic (thrombotic or embolic) or haemorrhagic. If the stroke is haemorrhagic, the symp-
toms of bleeding into brain can be seen almost immediately using CT scan. The benefits of CT scan
is that it is readily available at all centres and it is fast due to a short scan-time. There maybe several
reasons for a stroke to not appear on a CT scan. In many cases, the the abnormality does not appear
for the first several hours after the onset of stroke. Also, if the size of stroke region is very small or it
is located in a region (cerebellum or brain stem) not imaged well by CT, it may not appear on the scan.
Figure 1.3(a) shows an example of a CT image containing stroke.
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(a) CT scan with stroke. (b) MRI scan with stroke

Figure 1.3 Slices taken from CT and MRI scans of brain affected by ischemic (thrombotic) stroke.

1.2.2 Magentic resonance imaging (MRI)

Magnetic resonance imaging(MRI) is an imaging method based upon the properties of water molecules
which constitutes upto 70% ∼ 90% of most tissues. The amount of water and its properties can change
due to abnormalities which makes MRI very important for diagnosis purpose. It is able to detect very
small changes in the magnetization of nucleus of atoms. MRI takes advantage of the fact that protons
contained in water get aligned to a magnetic field. When a subject is inside a MRI scanner, the mag-
netic moments of the protons are aligned in the direction of the powerful magnetic field applied by the
scanner(in range 0.2 ∼ 3 Tesla). A radio frequency (RF) current is then turned on for a short period of
time producing a varying electromagnetic field. This field has resonance frequency that can change the
spins of the protons in the external magnetic field causing them to alter their alignment with respect to
the field. When the electromagnetic field is turned off, the spins of the protons restores to an equilibrium
and the magnetization aligns with the applied magnetic field. During this relaxation period, the nuclei
lose energy and emit a radio frequency signal known as free induction decay (FID) response signal.
This signal is measured using receiver coils. The measurement is processed or reconstructed to obtain
greyscale MR images.

MR consists of two characteristic times called spin-lattice relaxation time (T1) and spin-spin relax-
ation time (T2). Spin-spin relaxation is the mechanism by which the transverse component of mag-
netization vector decays to its equilibrium value of 0. In spin-lattice mechanism, the z-component of
the magnetization vector comes in equilibrium with its surroundings. These relaxation rates depend on
the type of tissue. The relation between various tissue types, their T1 and T2 values and their appear-
ance in corresponding MR scans is shown in Table 1.1. Fluids have long T1, water based tissues have
a moderate value and fat-based tissues have short T1. For a given tissue, T2 is shorter than T1. The
contrast in MRI images depend on T1 and T2. In T1-weighted MR images, tissues with the longest T1

give the weakest signal, hence the bright pixels belong to tissues with short T1. On the other hand, in
T2-weighted MR images, tissues with longest T2 give strongest signal intensity. There are two types

3



Figure 1.4 CT and diffusion MR images of a patient suffering from stroke. [1].

Table 1.1 T1 and T2 values of different types of tissues and their appearance in corresponding MR scans.
Tissue T1 value Appearance T2 value Appearance
Matter in T1 scan in T2 scan
Fluids High Dark High Bright
Water Medium Mid-grey Medium Mid-grey

Fat-based Low Bright Low Mid-grey

of pulse sequences associated with MRI, called spin echo (SE) and gradient echo (GE). SE sequences
use two RF pulses to create echo which measures the signal intensity [11]. They produce high quality
images but take a relatively large amount of time - several minutes. GE sequences use single RF pulse
followed by a gradient pulse for measuring signal intensity. They have shorter scan times as compared
to SE sequences. However, they are affected by the applied magnetic field which affects T2. This is
referred to as T ∗2 .

CT scans are currently the standard test used for diagnosis of stroke. However, it has been found that
MR scans are better at detecting acute ischemic stroke as compared to CT scans [15]. An example of
this is diffusion MR scan. Diffusion MRI is considered more useful as compared to CT for diagnosis
of ischemic stroke within 12 hours of onset. Diffusion MRI measures water flow in tissues. In a stroke
affected region, diffusion of water molecules is restricted. Hence, the affected region gets identified
easily. Some specific MRI scans show the severity of stroke. They are also able to detect the stroke
earlier as compared to CT. Figure 1.4 shows the difference between CT and diffusion MR images of
a patient affected by ischemic stroke. From the figure, it can be seen that using diffusion images, the
infarction can be detected easily. This is why, diffusion images are often referred to as stroke sequence.
Hence MRI is a better choice as compared to CT from stroke diagnosis. On the other hand, MRI is not
readily available at all centres and the scan time for MRI is longer than CT. Hence, MRI cannot be used
if it causes a significant amount of delay in the diagnosis. Figure 1.3(b) shows an example of a MRI
scan containing stroke.

4



V1 Vn Vm VN 

1 N m n 

Figure 1.5 An example of a perfusion time-series with volumes acquired at discrete time-points in range
[1, N]. Each slice is of dimension 128×128. Stack of slices constitute a volume. Each volume is a matrix
of dimension 128×128×20. In a typical perfusion time-series, no. of volumes acquired ranges from
25-50.

(a) Normal slice (b) Bolus affected slice

Figure 1.6 Two slices taken from a 3D perfusion MRI time-series. Notice the change in image intensity
in localised manner in (b) due to presence of bolus.

1.3 Perfusion MRI

Advancements in MRI has led to diffusion and perfusion MRI for diagnosis of acute ischemic stroke.
In the context of MRI, diffusion refers to the motion of water molecules while perfusion refers to the
observation of blood flow through an organ [55][19]. In perfusion MRI, an exogenous paramagnetic
contrast agent (bolus) is injected into the blood stream of patient and it is tracked in the brain by acquir-
ing 3D time series MRI [21][40]. Hence, perfusion MRI is often termed as bolus tracking. Once the
time-varying data is obtained, it is parametrized at a voxel-by-voxel basis using various physiological
models to obtain various hemodynamic indices, like relative cerebral blood flow(rCBF), relative cere-
bral blood volume(rCBV), relative mean transit time (rMTT). These indices help profile the blood flow
characteristics in different tissues which is needed in detection of various disease states and deciding
treatment options. Perfusion measurements with MRI is also used in other areas like tumour charac-
terization and progression, determining salvageable tissues in stroke post acute ischemic event in brain,
inflammation and infectious diseases.
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1.4 Data corruption due to subject motion in perfusion MRI

A disadvantage associated with MRI in comparison to other imaging modalities, e.g. X-rays, CT is
the relatively large image acquisition time. A single MRI scan takes 1 ∼ 10 minutes. In perfusion MRI,
a 3D time-series is acquired as shown in Figure 1.5. Thus, depending on the number of repeated scans,
the total scan-time of a perfusion series can lie in the range 20 ∼ 60 minutes. Due to such a large image
acquisition time, it becomes difficult for patients to remain still for the entire scan period. If the patient
moves during scanning, the image quality is degraded. This kind of problem arises especially when
MRI scans are conducted for young children or the patient is claustrophobic or the patient is suffering
from mental illness. Sedation can minimize the risk of patient motion during image acquisition but it is
not feasible in all cases, e.g. patient with medical condition due to sedation or due to the risks involved
with sedation. Different mechanical attempts have been made to limit patient motion such as placing
padding around subject’s head but these methods are not fail-safe.

In perfusion MRI, accurate measurement of perfusion parameters relies on tracking the signal in a
particular voxel which is compromised due to patient motion. This motion causes intervolume mis-
alignments and mixing of signals from neighbourhood tissues. Consequently, the perfusion parameters
generated from this data become inaccurate. Thus the problem of data corruption due to patient motion
in perfusion MRI is severe in nature.

Traditional approach to solve the data corruption problem in perfusion MRI is via 3D registration on
acquired MR images. However, in perfusion MRI, the problem is compounded by the localised changes
in intensity of acquired MR scans due to injected bolus as shown in Figure 1.6. Blood is delivered to
different regions in brain through blood vessels, hence the effect of bolus present in blood is seen in
those regions. This phenomenon brings out a local change in image intensity in different regions in a
MR image. The concentration of bolus present in brain region also changes with time. Consequently,
the localised change in image intensity (which depends on the concentration of bolus) takes place in a
non-uniform manner with respect to time. Thus, the problem of data corruption becomes three-fold due
the following transformations present in acquired perfusion MR images:

• global transformation (due to patient motion).

• a local change in image intensity (due to injected bolus).

• non-uniform nature of intensity variation (due to varying concentration of bolus in brain region).

A simultaneous occurrence of all the above three phenomena in perfusion MRI affects the traditional
image analysis methods and cause them to perform poorly.
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1.5 Problem statement and contributions

This thesis documents a method aimed at solving the problem of data corruption due to patient
motion in perfusion MR scans. A fast and efficient multi-stage motion correction system based on
divide and conquer strategy has been proposed. This thesis documents the following contributions:

• A fast method for detection of motion among perfusion MR scans has been proposed. The method
reduces the number of volumes needed to be corrected for motion. Consequently, this reduces the
overall time required for motion correction. Depending on the degree of patient motion, the
acquired scans are characterized into one of the four motion categories: no, minimal, medium
and severe motion categories.

• An efficient two-pass motion correction strategy for alignment of motion corrupted volumes has
been proposed. Depending on the status of bolus in brain, the time-series is divided into distinct
sets. In the first pass, intra-set alignments are performed. In the second pass, inter-set alignments
are performed to correct for motion in the entire perfusion time-series.

1.6 Organisation

Introduction to the problem of data corruption in perfusion MRI and objective of the thesis is ex-
plained in Chapter 1. In Chapter 2, different perfusion parameters and the effect of patient motion on
these parameters is discussed. In Chapter 3, we discuss existing approaches to motion correction in
perfusion MRI. Later, we propose a divide and conquer strategy based system that is able to overcome
the shortcomings of existing methods. In Chapter 4, we discuss the various stages in a perfusion MRI
time-series depending on the status of bolus and also propose a method to divide the time-series into
these stages. The detection of motion corrupted volumes and their characterization, are discussed in
Chapter 5. We also show the experiments conducted, motion detection and characterization results.
Chapter 6 talks about the correction of motion corrupted volumes and shows motion correction results.
The application of the proposed system, its pros and cons and future prospects for the current system
are discussed in Chapter 7.
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Chapter 2

Patient motion analysis in Dynamic Susceptibility Contrast (DSC) MRI

MRI has become an important tool to for the study of human brain anatomy. Advancements in MRI
has helped in evaluation and assessment of numerous metabolic and functional parameters that assist
in diagnosis of diseases. Cerebral perfusion is one of these parameters that describes the blood flow
through brain’s vascular network. Cerebral perfusion MRI is commonly studied using T ∗2 -weighted
dynamic susceptibility contrast (DSC) imaging or T1-weighted dynamic contrast enhancement (DCE)
imaging. In this thesis, a system for motion correction in DSC-MRI is presented. The data acquired is
a 3D DSC-MRI time-series. The images acquired in MRI are in form of slices. These slices are stacked
on top of one another to form a 3D volume. The basic unit of a volume is called voxel that is analogous
to a pixel in an 2D image. The volumes are acquired across a period of time to obtain a DSC-MRI
time-series. Once the data is acquired, it is analysed at a voxel-by-voxel basis by the physicians and
different perfusion parameters are obtained that help decide the status of disease in a patient. If there
is relative motion among acquired volumes, the tracking of a voxel across time-points will be difficult.
The perfusion parameters obtained from such a data will be inaccurate and result in a wrong diagnosis
of the patient. In this chapter, we first explain the theory behind DSC-MRI. Later, we explain different
perfusion parameters associated with DSC-MRI, the estimation of these parameters and then discuss the
effect of patient motion on some of these parameters.

2.1 Dynamic Susceptibility Contrast (DSC) MRI

DSC-MRI aids non-invasive invivo diagnosis of a subject. It is based on the usage of susceptibility
contrast induced by gadolinium based contrast agents [55] which helps in measurement of parameters
during the first-pass of contrast agents in brain [7][46][45][47]. Paramagnetic substances in the bolus
distort the magnetic field due to the presence of large magnetic moments and dipole-dipole interactions.
These affect the T1 and T2 relaxation times of magnetisation. The change in tissue contrast due to
increase in T2 relaxation time is called susceptibility contrast. The contrast agents that are commonly
used are gadolinium or dysprosium applied to a ligand molecule like diethylenetriaminepentaacetic acid
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(DTPA).

In cerebral perfusion, hemodynamic parameters for different tissue regions are derived from MR
images. These parameters (as we will see further) depend on the concentration of contrast agent present
in the tissue regions. Thus, for a given MR image sequence, the relationship between observed signal
intensity and contrast agent concentration must be understood. The relationship between contrast agent
concentration and relaxation rates(T2/T ∗2 ) of magnetization has been found to be approximately linear
and is given by [40]:

∆R2(t) ∝ Ct(t) (2.1)

where, R2 is the relaxation rate change and Ct(t) refers to the contrast agent concentration. After the
contrast agent has been administered, the signal intensity change has been found to be dependent on
transverse and longitudinal relaxation rates ∆R2 and ∆R1 and is given by [40]:

S(t) = S(t0)(1− expTR.∆R1(t)).expTE.∆R2(t) (2.2)

where, S(t0) is the baseline signal intensity, TR and TE are repetition and echo times respectively. On
combining Eq.2.1 and Eq.2.2, the relation between concentration of contrast agent and signal intensity
is found as:

Ct(t) = −k.log S(t)

S(t0)
/TE (2.3)

where k is proportionality constant which depends on tissue, the contrast agent, the magnetic field
strength, and pulse sequence parameters. Using Equation 2.3, the concentration of contrast agent in
various tissue regions can be estimated from acquired DSC-MRI time-series. Since the contrast agent
concentration represents the amount of blood flow in various tissue compartments, this helps the doctors
to know whether a tissue region is healthy or affected.

In DSC-MRI, as the contrast agent passes through a region, it induces susceptibility changes due to
its paramagnetic properties. This results in shorter T ∗2 values and a significant signal loss. This signal
loss causes a reduction in the intensity giving a darker appearance to regions affected by contrast agent.
The concentration of contrast agent that induces signal loss is proportional to the amount of blood flow
in that region. Hence, if an area is affected by infarct, there will be no blood flow and consequently no
drop in MR signal will be observed.

Figure 2.1(a) shows an example of a typical DSC-MRI time-series data. The corresponding mean-
intensity profile (µ(n)) is shown in Figure 2.1(b).

µ(n) =
1

XY Z

X∑
i=1

Y∑
j=1

Z∑
k=1

Fn(i, j, k)

where, Fn denotes the nth volume (resolution X×Y ×Z) in the time-series. From Figure 2.1(b), it can
be seen that as the contrast agent washes into the brain region (at time-point n=10), a net drop in signal
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(a) a normal DSC-MRI time-series.
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(b) Mean intensity profile.

Figure 2.1 Central slices of volumes in a DSC-MRI time series with mean intensity profile µ(n). (Mean-
intensity refers to the mean-intensity of a volume.)

intensity is observed (called the first-pass of contrast agent). The susceptibility effect of the contrast
agent is observed now. A non-uniform variation in signal intensity is observed after time-point n=10
due to change in contrast agent concentration in the brain region. From the moment of the entrance
of bolus in brain region (wash-in of bolus), the concentration of bolus first increases upto a maximum
value and then starts decreasing (wash-out of bolus). The mean signal intensity of the volumes varies
with the concentration of bolus accordingly.

After the data has been acquired, different perfusion maps relating to the amount of blood flow in
various regions are generated. These maps aid in making decision if the brain is affected. In the next
section, we discuss important perfusion parameters.

2.2 Important perfusion parameters and their estimation

2.2.1 Cerebral Blood Volume (CBV)

When perfusion studies started, cerebral blood volume (CBV) became the first parameter used in
studying blood flow in a region. CBV maps are derived by kinetic analysis of concentration time curves
[47]. CBV indicates the amount of contrast agent (hence blood) that has passed through a region,
assuming all of the contrast agent has passed through this region. Therefore, this parameter is used to
identify the core region in infarcted tissue. The curve between change in concentration of contrast agent
with time indicates the amount of concentration agent that has passed through the region. Since the
contrast agent is contained in blood, the parameter indicates the amount of blood delivered to a region
of interest in brain. Hence, CBV can be found by calculating the area under the concentration time
curve. It is defined as the ratio of the areas under the curves corresponding to concentration of contrast
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Figure 2.2 An overview of estimation of various perfusion parameters using obtained signal-time curves
and derived concentration-time curves[42].

agent in tissues and arteries [36]:

CBV =

∫ ∞
−∞

Ct(τ)dτ∫ ∞
−∞

Ca(τ)dτ

where, Ct(τ) is the tissue concentration and Ca(τ) is the arterial concentration of contrast agent. It is
measured in terms of volume of blood flowing through a region in millilitres per 100 grams of brain
tissue (ml/100gm).

2.2.2 Cerebral blood flow (CBF)

The amount of perfusion in a tissue is often studied using another parameter called cerebral blood
flow (CBF). This parameter is used to identify the penumbra region in a stroke. It refers to the amount
of contrast agent, hence the blood supplied to a region of interest in a given time. In an adult, this value
is ∼50 millilitres of blood per 100 grams of brain tissue per minute. The calculation of CBF requires
knowledge of arterial input function (AIF) of contrast agent. Ideally, the AIF is an impulse function -

11



all the contrast agent should appear at a region of interest at a time-point and then disappear. Since it
takes time to inject the contrast agent, and mixing of contrast agent with blood, the AIF is usually a
bell-shaped function. The tissue concentration of contrast agent can be described by an arterial input
function (AIF), R(t). The tissue concentration (Ct(t)) is given by:

Ct(t) = CBF.Ca(t) ∗R(t)

where, Ca is the arterial concentration of contrast agent and * denotes convolution. Using deconvolution
methods, CBF can be estimated from the above equation. An estimate of CBF gives a measure of the
amount of blood flow in a tissue. Since CBF value remains constant for a tissue type, an abnormal value
of CBF shows that the region is affected.

2.2.3 Mean Transit Time (MTT)

Mean transit time (MTT) is the average time taken by blood or the contrast agent to reach a region
of interest in brain. By the central volume theorem[50]:

MTT =
CBV

CBF

It is measured in minutes. Similar to CBF, this parameter is used to identify the penumbra region in a
stroke.

2.2.4 Time to Peak (TTP)

The concentration of contrast agent in a region varies non-uniformly. It increases from wash-in time-
point until it attains a maximum and then reduces until it washes-out of the brain region. Time to peak
(TTP) is the time-point in the concentration-time curve at which the concentration of the contrast agent
in the tissue becomes maximum in the region of interest. It is measured in seconds.

Figure 2.2 gives an overview of the method by which different perfusion parameters are calculated
using the obtained time-signal curve. The time-signal curve is converted to tissue concentration curve.
The convolution of AIF and concentration-time curve is used to estimate these parameters.

Patient motion affects the accurate estimation of perfusion parameters which could lead to incorrect
diagnosis. In the following section, we illustrate the effect of patient motion on perfusion parameters.

2.3 Error analysis of perfusion parameters with degree of motion

We illustrate the effect of subject motion on perfusion parameters by estimating various perfusion
parameters on a given DSC-MRI dataset. Perfusion weighted MR imaging is rarely done in Indian hos-
pitals, as it requires specialized expensive accessories. Hence, getting real patient-motion perfusion MR
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(b) CBV (c) CBF (c) TTP (c) MTT

Figure 2.3 Different perfusion maps estimated from DSC-MRI data.

data was impossible. The data we used was obtained from KIMS as part of a research project done ear-
lier for a tumour study. In our experiments, simulated motion was applied to this real perfusion data. For
validating the proposed method, a set of experiments were performed. Known amount of 3D-rotation
was added to the volumes to simulate actual patient motion during DSC-MRI scan, in consultation with
a neuro-radiologist. A number of consecutive volumes at repeated intervals in the time-series were ro-
tated by the same amount, which simulates a typical patient behaviour (sudden head rotation followed
by remaining in that position for a period of time) inside the scanner. The rotations were kept in the
range [0◦, 15◦] in the transverse direction (Rz).

We estimate perfusion parameters for DSC-MRI time-series using the perfusion mismatch analyser
(PMA) tool [28]. PMA is free software used for CT and MR perfusion analysis, particularly for study-
ing perfusion-diffusion mismatch. It calculates the basic maps like TTP, arrival time (AT) of contrast
agent etc. Other quantitative maps like CBF, CBV and MTT are estimated using the basic maps via
deconvolution 1. Figure 2.3 shows various perfusion parameters maps obtained by using PMA tool on a
typical DSC-MRI dataset.

We illustrate the effect of motion on two perfusion parameters: TTP and CBV. Patient motion causes
misalignments of volumes in DSC-MRI time-series, which results in mixing of signal intensities of
adjacent tissues in brain. This results in a partial volume effect (PVE). It has been shown that PVE
affects the TTP maps [29]. The intermixing of signals from adjacent tissues affects the cerebral blood
volume (CBV) parameter as well. To further analyse the effect of motion on these maps, we estimate
perfusion parameters for a manually selected ROI for different degrees of motion. Figure 2.4 and Table
2.1 demonstrate the effect of patient motion on perfusion parameters TTP and cerebral blood volume
(CBV) depending on the degree of motion. From these plots, it is seen that with an increase in the

1In signal processing, deconvolution is the process used to recover a signal. If h is the recorded signal, f is the signal to
be recovered, but has been convolved with some other signal g, then the aim of deconvolution is to find the solution to the
following convolution equation:

f ∗ g = h

Different methods are used to estimate f, depending on whether g is known or unknown.
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(a) TTP Plot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5

10

15

20

25

30

35

40

Angle of rotation(degrees)

E
rr

o
r 

in
 C

B
V

 e
s

ti
m

a
ti

o
n

(%
)

(b) CBV Plot

Figure 2.4 Variation in estimation of parameters - TTP and CBV with different degrees of rotation.

degree of motion, the parameter estimation error increases with the error percentage exceeding 50% for
TTP while it remains under 40% for CBV.

2.4 Summary

In this chapter, we introduced the concept of DSC-MRI which is used to study cerebral perfusion.
We also discussed the different types of perfusion parameters associated with a perfusion (DSC/DCE
MRI) studies. The objective of the chapter was to establish the effect of motion on perfusion parameters.
The accuracy of estimation of perfusion parameters is based on a voxel-by-voxel tracking across time-
points in the perfusion time-series. Patient motion during the scan results in intermixing of signals from
adjacent regions like cerebro-spinal fluid (CSF) and white matter (WM) inside brain. This makes the
estimation process inaccurate and can result in an erroneous diagnosis of the illness. The studies showed
that the error in estimation of perfusion parameters can be as high as 40% for CBV and 50% for TTP
for head rotation in the range [0◦, 15◦] which is quite severe. Thus an accurate, reliable correction of the
motion corrupted perfusion MRI data becomes necessary before it is further used for stroke diagnosis.
The correction will give an accurate voxel-by-voxel analysis of different tissues inside brain and can
prove helpful in treatment options. In the next chapter, we discuss the methods of motion correction in
perfusion MRI used in the past. We also explain our proposed motion correction system that is able to
overcome the shortcomings of existing methods.
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Table 2.1 Clinical parameters - Time to peak (TTP) and CBV for a ROI for 16 datasets with different
degrees of motion (Aθ denotes parameter A estimated at angle of rotation θ◦.)

Angle of Difference Difference
rotation, Rz TTP from normal CBV from normal
(in degrees) (sec) (TTPθ −TTP0) (cm3/100gm) (CBVθ −CBV0)

0 24.07 0 24.46 0
1 25.63 1.56 22.56 1.90
2 28.53 4.46 20.54 3.92
3 31.13 7.06 19.06 5.40
4 32.74 8.67 19.79 4.67
5 34.53 10.46 19.37 5.09
6 35.06 10.99 18.98 5.48
7 34.90 10.83 19.88 4.58
8 35.41 11.34 18.92 5.54
9 37.08 13.01 18.79 5.67

10 36.74 12.67 19.71 4.75
11 37.53 13.46 18.19 6.27
12 36.88 12.81 17.24 7.22
13 37.23 13.16 16.82 7.64
14 38.39 14.32 16.68 7.78
15 38.73 14.66 15.74 8.72
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Chapter 3

Background, related work and proposed system

The volumes acquired in perfusion MRI time-series are spatially aligned with each other if the patient
remains still for the entire acquisition period. Due to patient motion during acquisition of DSC-MRI
data, the volumes get misaligned with respect to one another. Since, perfusion studies involve track-
ing a voxel across time-points, the misalignment of volumes results in losing track of a voxel with
time. Formally, the voxel at location (x, y, z, t) in the first volume (V1) would be located at location
(x′, y′, z′, t + 1) in V2, at (x′′, y′′, z′′, t + 2) in V3 and so on. In a scenario where motion is absent, the
voxel at (x, y, z, t) in V1 can be tracked at location (x, y, z, t+ 1) in V2, at (x, y, z, t+ 2) in V3 and so
on. There is a need to restore the motion corrupted perfusion time-series to a motion free series before
it can be of any use in diagnosis. We can see that solving the problem of patient motion in DSC-MRI
can be viewed as aligning the volumes in the time-series to one another. This is achieved by image
registration. In this chapter, we explain the image registration technique that will help understand the
motion correction process. Later, we discuss the methods used in the past to solve the motion corruption
problem. We will find that majority of the methods use the image registration technique. Finally, we
will propose our motion correction system that is able to overcome the shortcomings of the existing
methods. We begin our discussion by introducing image registration as a method to align images.

3.1 Image Registration

Image registration is a process of geometrically aligning two images of the same object taken at
different view-points, times or by different image acquisition techniques. It aligns the moving/sensed
image to a reference image [61]. Basically, it finds the spatial transformation that maps the points in
one image to its corresponding points in the other image. It is used in different areas like computer
vision, medical imaging, remote sensing etc. In the medical domain, registration proves to be helpful
in many applications such as abnormality detection, population studies etc. [24] [33] [13] [14] The
image registration also helps to find the small changes that have occurred over time by removing the
artefacts that can appear due to patient motion. Images of the same subject are acquired more than
once and a single acquisition takes place over period of time. Figure 3.1 shows a framework for image
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Figure 3.1 Block diagram of an image registration framework [59].

registration. Two input images, fixed (F(x)) and moving (M(x)) are provided as input. The aim of the
registration is to find a spatial mapping to align the moving image to the fixed image. The transform
(T(p)) is the transformation containing p parameters. We require a function that measures how well the
images are registered. Similarity metrics such as squared difference and mutual information are popular.

Similarity

S(p|F,M,T) is the similarity metric that determines the degree of alignment between the images.
It provides the quantitative measure of how well F(x) and M(x) are aligned to each other. The metric
can be thought of as a function of set of parameters for a given fixed image, moving image and type of
transformation. Usually, the measure is computed by sampling points in the fixed image. For a given
point x in F(x), we find the corresponding moving point x′ = T(x|p) using the transformation (T). The
measure is then computed between these points. During registration, the moving image M(x), is itera-
tively transformed and the similarity metric is calculated. The choice of similarity metric depends on the
application. Some metrics are applicable only when the images to be registered are from same modality,
e.g. two MR images. In cases when the two images are from different modalities, e.g. a CT and MR im-
age of same anatomy of a patient, other similarity metrics are needed. Two similarity measures used are:

Sum of squared difference (SSD)

The SSD measure was proposed by [22]. When the images to be registered are from the same
modality, we use SSD metric. It is based on the assumption that corresponding points in images of same
modalities must have similar intensities. Hence, this metric is commonly used in the field of computer
vision. In the field medical imaging, it used when the images are of same modality, e.g. registration of
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two T1 MR images. The SSD measure is given by:

S(p|F,M, T ) =
1

N

N∑
i

[F (xi)−M(T (xi, p))]
2 (3.1)

where, xi is the ith pixel of F(x), N is the number of voxels in the overlapping region of two images.
This measure is fast and can be used when both the images are of same modality. For different image
modalities such as CT and MRI, the measure fails to work due to different intensities of same tissue in
the two images.

Mutual Information (MI)

The concept of feature space as a measure to study alignment of images was proposed by [25]. Here,
the feature space used was the 2D histogram of image intensities or other features constructed from the
voxels where there is a correspondence or spatial overlap between the two images. Mutual information
(MI) is a term used in the information theory which examines the statistical dependence of two random
variables on one other, i.e. the amount of information one variable contains about the other. MI was
proposed a measure for registration by [56][18] relating the entropies of two images with their joint
entropy. The mutual information can be defined as:

I(F,M) = H(F ) +H(M)−H(F,M) (3.2)

where H(F) denotes the entropy of F, H(A) is the Shannon entropy of an image A. For a random variable
X, the Shannon entropy is defined as:

H = −
∑
i

p(xi)logp(xi) (3.3)

where, p(xi) is the probability mass function of outcome xi.
This measure is optimized by the optimizer over the search space defined by transformation param-

eters. In our work, we use limited memory Broyden-Fletcher-Goldfarb-Shanno method(l-BFGS) for
optimization[23].

The transformations found in images can be of different types, rigid, non-rigid, affine etc. However,
we limit our discussion to rigid transformations since we are studying MRI of brain that undergoes only
rigid transformations due to patient motion. In the following section, we discuss rigid transformation
model.

Rigid Transformation

The transformation T(p) is a defined by a set of parameters, p. A point x in fixed image F is mapped
to point x’ in moving image by[59]:

x′ = T (x|p) (3.4)
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The image is mapped as:
T : Rn 7→ Rm, F (T (x)) = M (3.5)

where n and m are dimensions of fixed and moving image respectively. Rigid transformations are
the geometric transformations that preserve all the distances, straightness of lines and angles between
them. This kind of problem of estimating rigid transformations is called rigid registration. A rigid
transformation consists of two components, translation and rotation. For 2D, this transformation is
defined by three parameters p = (tx, ty, θ), where (tx, ty) are translation in 2D space and θ is the
rotation. For a given point x in fixed image F, its corresponding homologous point X’ can be found in
moving image M as:

X ′ =

x
′

y′

z′

 =

cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 .
xy
z

+

txty
tz

 (3.6)

hence, x’ = T(x|p) = T(x, y|tx, ty, θ). The challenge in registration lies with choosing the correct
combination of optimization algorithm together with the similarity measure and transformation model
that solve the required problem.

3.2 Related Work

Next, we discuss various methods used in past to solve the problem of motion correction in perfusion
MRI. The standard approach to motion correction of 4D perfusion MRI data is via an alignment of all
the motion corrupted volumes in the time-series to a chosen reference volume or the mean volume of
the entire time-series data[26]. Due to the presence of contrast agent which causes non-uniform local
variation in intensity of MR volumes, the traditional method of image registration cannot be used as
such. Various developments in image registration techniques have attempted to solve the problem of
dynamic contrast. To account for dynamic changes due to injected contrast agent, different motion
correction methods have been used in the past. These can be broadly divided into following categories:

• Dynamic contrast independent image registration.

• Registration based on modelling dynamic change in contrast.

3.2.1 Dynamic contrast independent image registration

The methods used for motion correction in this category either ignore the change in contrast due
to injected bolus or are invariant to dynamic change in contrast. [29] employs registration using six-
parameter affine rigid body registration model with least squares minimization and fourth-degree B-
spline interpolation for motion correction in DCE-MRI. The third volume in the time-series is used here
as the reference volume. CBF maps estimated after motion correction were more accurate as compared
to maps obtained for corrupted data. This method ignored the change in contrast due to bolus to achieve
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a relatively simple method with lower processing time.

Multi-modal registration, methods that are independent of the variation in intensity between images
have also been used. The different similarity measures associated with multi-modal registration tech-
nique account for the changes in contrast due to bolus. Similarity measures like mutual information [35]
[57] and correlation ratio [43] are independent of change in contrast. However, the dynamic contrast due
to injected bolus creates new features like pronounced edges of different tissue boundaries that cause
these traditional techniques to fail.

[20] uses a motion correction model for global and local motion of kidney for DCE-MRI. This
method uses normalized cross-correlation similarity measure which is invariant to changes in intensity.
The perfusion curves of segmented kidneys derived before motion correction were found to be noisy.
After applying motion correction, the curve displayed a typical behaviour of signal-time curve in DCE-
MRI.

[54] uses a non-rigid B-spline image registration method that has been used for motion correction of
2D DCE-MRI solitary pulmonary nodules (SPNs). The similarity measure used here is mutual informa-
tion. The contrast agent kinetic model estimated after correction helped in distinguishing the benign and
malignant SPNs. This method requires human intervention: the region of interest is manually cropped
and the reference image for registration is chosen manually.

[27] employs a feature based, group wise rigid registration in DCE-MRI images of diagnosis for
breast cancer. The post-contrast images are registered to a group mean image, since there is very less
contrast variation among these images. Subsequently, the group mean post-contrast image is registered
to pre-contrast images. A contrast invariant image descriptor based on local steering kernel [48] is used
for second registration.

[37] uses a progressive principal component registration method for registration of DCE-MRI im-
ages of liver. The principal components analysis (PCA) of the time-series data helps to avoid usage of
costly physiological models used for modelling contrast agent intake. The method assumes that the sig-
nal containing enhancement will be found in the earlier eigen vectors of the PCA. With this assumption,
the method iteratively generates motion free-synthetic time-series. The non-rigid registration method
uses a cross-correlation based cost function.

[62] uses multi-modal image registration for motion correction. It is a two stage approach for motion
correction in DCE-MRI of kidney. A 3D rigid registration is carried out in the first stage for removal
of global motion due to movement of subject. The second stage consists of 3D non-rigid registration to
remove artefacts due to local motion of the kidney. The similarity measure used here is mutual informa-
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tion. The multi-modal registration technique proved invariant to the presence of injected contrast agent.

[60] propose a registration method based on a novel image similarity measure called robust estima-
tion function. It is able to handle the intensity variation in DCE-MRI.

3.2.2 Registration based on modelling dynamic change in contrast

In this section, we discuss the methods proposed for motion correction that include the change in
intensity due to injected bolus. Unlike methods discussed in the previous section, we will find that these
methods are intensity dependent. These methods either model the intensity change or correct for inten-
sity before the registration process is carried out.

[58] proposed a method that achieves simultaneous segmentation and registration of breast in DCE-
MRI. A model for injected contrast agent is included here that accounts for dynamic variation in contrast.
By estimating the relative signal change at every pixel in the image, the model can be fit to DCE-MRI
time-series. The model then provides a mathematical model for signal-time variation in DCE-MRI. This
provides a quantitative measurement of tissue characteristics in an image.

[12] proposed an iterative registration algorithm where synthetic data is generated from original data
using pharmacokinetic modelling. The dynamic change in contrast is handled in the synthetic data
which is then used in registration. Since the process is iterative in nature, the registered data is again
used to generate synthetic data for the next iteration. The method has been used for tracking tumour
motion. The tumour motion is limited to 3D translations only. The kinetic parameters can be estimated
accurately after motion correction although the core of tumour region could not be estimated correctly.
The iterative nature of the method and modelling the tracer kinetics makes it more costly. A similar
approach has been used in [2].

[32] uses an intensity correction model to handle contrast variation in DCE-MRI. To further remove
the variation in intensity, the registration of intensity corrected volumes is done using a floating scheme.
First, two adjacent volumes, Vn−1 and Vn+1 in the time-series are registered to a chosen reference vol-
ume (Vn). Next, Vn−2 is registered to Vn−1 and Vn+1 to Vn+2. This process is continued until the
complete time-series is registered to Vn. The registration method failed to remove motion occurring in
the volumes when the intensity correction was not used. With intensity correction prior to correction,
bulk of the motion gets eliminated.

The two classes of methods discussed so far for motion correction in perfusion MRI either ignore
the dynamic change in contrast, use multi-modal image registration methods or use a dynamic contrast
change model to account for changes occurring in MR volumes due to presence of bolus. Ignoring the
dynamic changes in intensity gives inaccurate results that can affect the diagnosis of the disease. Also,
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Figure 3.2 Framework for motion correction in perfusion weighted MRI. nwin and nwout denote the
wash-in and wash-out time-points of bolus respectively, Vi denote the volumes in the time-series, Vsi and
Vmi denote stationary (motion free) and moving (motion corrupted) volumes respectively, V F

i denotes
volume Vi aligned to global reference volume V F .

in each of these methods, every volume in the time-series is aligned to a chosen reference volume using
3D registration. Hence, the methods discussed above are computationally intensive. Since time is of the
essence in disease diagnosis, there is a need for a fast and efficient system of motion correction. In the
following section, we propose such a system for motion correction in DSC-MRI time-series.

3.3 Our proposed system

The problem of motion corruption is a combination of a local and global phenomena. The presence
of bolus in the region of interest within wash-in and wash-out time-points results in a local non-uniform
contrast variation in the volumes acquired during that time-period. On the other hand, the patient mo-
tion during the complete duration of time-series acquisition results in a rigid transformation at the entire
volume level. In general, motion correction has been found to be a time-limiting step (∼90% of pro-
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cessing time) in perfusion analysis [51]. Majority of the motion correction methods in perfusion MRI
include aligning the volumes in the time-series to a reference volume via 3D registration. Since 3D reg-
istration is computationally intensive [49], it would be more efficient if only a subset of volumes need
to be aligned instead of every volume in the entire time-series data. In general, if a time-series has N
phases (or volumes), all the phases are not corrupted by motion. Hence, it is worthwhile to first detect
the subset ≤ N volumes that is affected by motion and subsequently correct this subset. On the basis
of this strategy, we propose a three stage system for motion correction in perfusion MRI as shown in
Figure 3.2:

• Division of perfusion time-series

• Motion detection and characterization

• Motion correction

3.3.1 Division of perfusion time-series

This is the first stage of the three-stage motion correction system. In a perfusion time-series, two
distinct time-points can be easily identified. These are the wash-in and the wash-out time-points. The
volumes acquired prior to wash-in time-point and after wash-out time-point show no dynamic variation
in image contrast due to absence of bolus. The volumes acquired between these two time-points are
affected by bolus and thus depict slightly different behaviour than the rest. Keeping this in mind, we
divide the time-series into three sets of volumes - set-1: pre-wash-in, set-2: transit and set-3: post-wash-
out set. The perfusion time-series is divided by estimating the wash-in time-point (nwin) and wash-out
time-point (nwout) via curve fitting.

3.3.2 Motion detection and characterization

Once the time-series is divided into the three sets, we detect and characterize the motion present
between volumes in the second stage. The motion detection is carried out in each of these sets indepen-
dently. Since the volumes in set-2 in the time-series are affected by bolus, it is appropriate to choose
a different method for motion detection in that set. Depending on the degree of motion occurring in a
volume, we characterize the volumes into different motion categories - none, minimal, mild and severe
motion.

3.3.3 Motion correction

This is the third and final stage of the system. Here, we align all the volumes in the time-series to
a global reference volume in an intelligent manner. The motion correction in performed in two passes.
In the first pass, the volumes in each of the sets are aligned to their respective reference volumes. After
this pass, each volume in a set is aligned to its respective reference volume. In the second pass, we
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align the reference volumes in each set to the global reference volume. In this way, we estimate the
transformations required to align every volume in the time-series to global reference volume. Hence,
we correct the volumes corrupted due to patient motion. The analysis of the system (discussed later)
shows that it is fast and accurate thereby making the process of motion correction in perfusion time-
series less costly.

3.4 Summary

In this chapter, we first introduced the concept of image registration which is the heart of algorithms
used to correct for patient motion in perfusion MRI. Then, we discussed the methods used in the past to
solve this problem. We classified these methods into two categories based on the manner in which they
dealt with the dynamic change in contrast due to injected bolus. Finally, we proposed an efficient motion
correction system built on a divide and conquer strategy that is able to overcome the shortcomings of
existing methods. We present details of the proposed system in the forthcoming chapters. In the next
chapter, we explain the first step of out motion correction system, i.e. division of perfusion time-series
into different sets depending on the status of bolus.
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Chapter 4

Division of perfusion time-series

The perfusion time-series is a union of three kinds of volumes: volumes acquired before the wash-in,
volumes acquired between the wash-in and wash-out time-points and volumes acquired after the wash-
out of contrast agent. The passage of bolus causes non-uniform contrast variation in the perfusion
time-series. The problem in assessing the time-series as a single unit can create problems. Many
motion detection or correction algorithms assume that the features in given two images remain the same.
This assumption is violated in perfusion MRI. An example of this is the appearance of boundaries of
affected regions in post-wash-in images as compared to pre-wash-in images. Hence, the accuracy of
these algorithms maybe compromised if the complete time-series is analysed based on structure or
information content. One can suggest including a dynamic contrast model in these algorithms [12], but
in such cases it can prove to be costly. To overcome these problems, we propose a methodology wherein
we divide the perfusion time-series into 3 disjoint sets depending on the status of bolus in brain. The
division of time-series will help reduce the magnitude and cost of the problem of motion detection and
correction as we will show further. In this chapter, we present a method to divide a perfusion time-series
into above mentioned sets. We begin with discussion on the gamma-variate-function fitting on perfusion
curves. This forms the basis of division of a perfusion time-series into disjoint sets.

4.1 Background: Gamma-variate-function fitting on perfusion curves

DSC-MRI consists of injecting a bolus of a paramagnetic contrast agent in a subject’s blood stream
and tracking it over time. This provides a signal-time curve of the region of interest (here brain). These
signal-time curves can be converted to transverse relaxation rate change curves ( ∆R2(t) or ∆R∗2(t)).
These relaxation rate changes depend directly on the contrast agent injected. Thus, with the help of
these curves, we can estimate different perfusion parameters[7]. It is clear that an incorrect transverse
relaxation curve will result in a wrong estimation of perfusion parameters which can prove to be fatal in
terms of diagnosis[41]. The correct estimation of parameters can be achieved by modelling a suitable
function to the passage of contrast agent in blood across time. The gamma-variate function [34] [16]
models the transverse relaxation rate change-time curves, ∆R2(t) or ∆R∗2(t), with the first-pass(at
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wash-in time) of the bolus. This function is given as:

∆R∗2(t) = A(t− t0)αe−(t−t0)/β, t > t0 (4.1)

where, ∆R∗2(t) is the transverse relaxation rate of the magnetic field, t0 is the wash-in time point of the
bolus, and A, α and β are parameters that decide the shape of function. From Equation 2.2, the signal
intensity S(t) is given by:

S(t) = S(t0)(1− eTR.∆R1(t)).eTE.∆R
∗
2(t)

Hence, an accurate fitting of ∆R∗2 curve gives an accurate change in signal intensity S(t).
The parameters A, α, β can be estimated using above equations [16]. Let us denote ∆R∗2(t) by y(t).
Hence, from Equation 4.1, we have:

y(t) = A(t− t0)αe−(t−t0)/β, t > t0 (4.2)

Since, t0 can be estimated easily, the above equation becomes:

y(t) = Atαe−t/β (4.3)

When bolus peaks at time t = tmax, ∆R∗2(t) (or y(t)) becomes maximum. Hence y’(tmax) will be 0. To
estimate β, we take the first derivative of above equation:

y′(tmax) = Atα−1
maxe

−tmax/β(α− tmax
β

)

=⇒ β =
tmax
α

Substituting β in Equation 4.3 at t=tmax gives:

ymax = y(tmax) = Atαmaxe
− tmax
tmax/α

=⇒ A = ymax

(
e

tmax

)α
Thus, Equation 4.2 can be written as:

y(t′) = ymaxt
′αeα(1−t′)

where, t′ = t/tmax. Taking log, we get:

ln(y(t′)) = ln(ymax) + α(1 + lnt′ − t′)

The above equation can be solved for α, β and other parameters using least squares fitting. With this, we
will be able to write a suitable gamma-function that fits the DSC-MRI data. In the following section, we
use the above gamma-variate-function fitting method to divide the perfusion time-series volumes into
disjoint sets.
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4.2 Division of time-series into various sets

The given PWI time series of volumes {Fn;n = 1..N} is divided into 3 distinct sets based on the
status of the bolus in the brain. The method begins with the extraction of the mean intensity of each
volume. This results in a curve µa(n). The gamma-variate function (GVF) in Equation 4.1 is next fit to
µa(n) which results in GVF-fit-mean-intensity curve (µg(n)). The wash-in (nwin) and wash-out (nwout)
time points are then determined using this curve as points of steep negative and positive transitions. It
should be noted that estimating these points without the GVF fitting, while possible, will yield only
rough estimates. These points help divide the given 4D dataset into three sets of volumes: Set 1 of
pre-wash-in, Set 2 of transit and Set 3 of post-washout stage of the bolus passage. Figure 4.1 shows the
central slices taken from volumes in each of these sets and also displays the mean-intensity profile for
each set.

4.2.1 Pre-wash-in set

This set consists of the volumes acquired before the wash-in time-point. Since the bolus has not
arrived by this time-point in brain, the set of volumes in this set are typical T ∗2 -weighted MRI volumes.
This set is referred to as Set 1. Figure 4.1 (a) show the central slices of a series of volumes taken from
this set. The corresponding mean-intensity profile is shown in (b). As we can see from the figure, the
mean-intensity of the volumes depicts a typical behaviour of T ∗2 -weighted MRI time-series.

4.2.2 Transit set

The volumes in this set are acquired between the wash-in and wash-out time-points of bolus. As
such, a localised non-uniform variation in contrast is observed in different regions of acquired volumes.
This set is referred to as Set 2. Figure 4.1 (c) shows central slices extracted from volumes in this set. The
variation of mean-intensity of these volumes shown in Figure 4.1 (d) describes the typical behaviour of
T ∗2 weighted DSC-MRI series.

4.2.3 Post-wash-out set

These volumes are acquired after the bolus has washed-out of the brain. Since the bolus does not
affect these volumes, the contrast variation present in Set 2 volumes is not found here. This set is
referred to as Set 3. Figure 4.1 (e) shows the central slices taken from volumes in this set. As we can
see from the figure, the central slices are visibly similar. The mean-intensity profile shown in Figure 4.1
(f) describes this behaviour.
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(a) Pre-wash-in set. (b) Mean Intensity Profile

(c) Transit Set (d) Mean Intensity Profile

(e) Post-wash-out set (f) Mean Intensity Profile

Figure 4.1 Central slices taken from volumes from each of the sets in a DSC-MRI time-series

4.3 Results

Figure 4.2 shows an example of GVF-fitting on the mean-intensity curve of a perfusion series of 40
time-points. GVF-fitting here models the normal behaviour of first pass of contrast agent when passing
through vasculature. The abrupt dip in GVF-fit-mean-intensity curve at time-point, n=10 represents the
wash-in time-point of the contrast agent. GVF fitting is only applicable after the wash-in time-points,
we can see from the figure that the behaviour of mean-intensity and GVF-fit-mean-intensity curves
remain same before the wash-in time-point. However, the behaviour of the two curves differs in the
transit region, where the GVF-fit-mean-intensity models the normal behaviour of contrast agent against
the mean-intensity curve. Thus, the GVF-fit-mean-intensity curve provides a more accurate variation
of intensity of regions that are affected by bolus across time-points. Once, the bolus has washed-out,
which is represented by the flattening of the curve, here at time-point n=20, the behaviour of both the
curves remains same owing to the fact that GVF-fitting models only the first-pass (wash-in) behaviour
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Figure 4.2 Gamma-variate-function fitting on the mean intensity curve of a DSC-MRI series.

of contrast agent. In the post-wash-out set, however, the GVF-fit-mean-intensity curve incorrectly lies
above the mean-intensity curve. Hence GVF-fitting is not applicable in post-wash-out set.

4.4 Summary

In this chapter, we explained the first stage of the proposed motion correction, i.e. division of perfu-
sion time-series into different sets, depending on the status of bolus in brain. The task was performed by
fitting an appropriate gamma-variate-function (GVF) on the mean-intensity perfusion curve and iden-
tifying the time-points of steep negative and positive transitions in the GVF-fit-mean-intensity. Using
these time-points, we divide the time-series into three distinct sets. This was the divide stage of a divide
and conquer strategy. As we know that dividing a problem into sub-problems and solving them is easier
than to take the problem in one go, we will see in the following chapters that this strategy forms the
basis of proposed motion correction system. In the next chapter, we explain the second stage of motion
correction system, i.e, detecting the presence of motion in volumes and quantifying them on the basis
of the degree of motion to which these volumes get corrupted.

29



Chapter 5

Motion Detection and Characterization

Perfusion Time-Series

?
Motion Detection

�
��	
@
@@R

Normal Volumes Corrupted volumes

? ?
No correction needed Motion Correction

Figure 5.1 Utility of a motion detection stage in a motion correction framework. The introduction of a
motion detection stage reduces the amount of work to be done.

Motion correction has been found to be a time-limiting step (∼90% of processing time) in a PWI
analysis pipeline [51]. Since 3D registration is computationally intensive [49] it would be more efficient
if only a subset of volumes need to be aligned instead of every volume in the entire time-series data. In
general, if a time-series has N phases (or volumes), all the phases are not corrupted by motion. Hence, it
is worthwhile to first detect the subset ≤ N volumes that is affected by motion and subsequently correct
this subset. An example of such a motion correction framework is shown in Figure 5.1. As we can
see from the figure, such an approach reduces the amount of work to be done in motion correction by
rejecting a subset of volumes from the time-series. The second stage in the proposed motion correction,
i.e. the motion detection stage performs this task. In this chapter, we will discuss the motion detection
method used to reject the stationary volumes in the time-series. The computational overhead for such a
task cannot be more than the time consumed in aligning stationary volumes as it will defeat the purpose.
We propose a fast motion detection technique to find the presence of motion in volumes in a DSC-MRI
time-series. Based on the degree of motion present between volumes, we also assign the volumes into
different motion categories.
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Figure 5.2 Motion Detection Scheme for a DSC-MRI time-series.

5.1 Motion detection framework

Figure 5.2 shows the block diagram for the proposed motion detection technique. In the first stage,
the time-series is divided into 3 sets based on the status of bolus in brain, using GVF fitting. Next, motion
is detected in each of these sets. The motion detection method for sets 1 and 3 (which correspond to
pre-wash-in and post-wash-out) differs slightly from that of set 2 (between-wash-in-and-wash-out) due
to the presence of bolus in set 2. In the following section, we explain the motion detection technique for
PWI time-series in detail.

5.2 Motion Detection

Given a PWI time series, we aim to identify the volumes that are corrupted by motion. Since the
scan time for a volume in DSC-MRI series is quite short (∼ 2-3 seconds), it is fair to assume that there
is no intra-volume subject motion present in the time-series. Consequently, every slice of a volume
will be corrupted by the same degree of motion as the entire volume. Hence, we detect motion in the
time-series between adjacent volumes using the central slices in every volume as shown in Figure 5.3.
Our motion detection method is based on intensity correction and block-wise phase correlation. In the
following section, we describe the traditional phase correlation technique.
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Figure 5.3 Motion Detection between two volumes in a time-series.

5.2.1 Background: Phase Correlation

Phase correlation is a technique that has been used for image alignment[10]. Phase correlation
provides an estimation of rigid translational motion present between two images[31]. It is based on the
Fourier shift theorem which states that a shift in the spatial domain of a signal corresponds to a linear
phase shift in the Fourier domain.

Let ga(x) : R→ R and gb(x) : R→ R be two functions that are related as follows:

gb(x) = ga(x− x0) (5.1)

Then, according to the Fourier shift theorem,

F{ga(x− x0)} = Ga(ω)e−j(ωx0) (5.2)

where Gb(ω) denotes F{gb(x)}, the Fourier transform of gb(x). Hence,

Gb(ω) = Ga(ω)e−j(ωx0) (5.3)

The normalized cross-power spectrum (Sab(ω)) is

Sab(ω) =
GaG

∗
b

|Ga||G∗b |
= ej(ωx0) (5.4)

The inverse Fourier transform of this function is an impulse which gives the shift.

r(x, y) = F−1{Sab(ω)}
= δ(x− x0)

(5.5)
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Phase correlation thus enables determining the degree of translation between two images. A rotation
between a pair of images can be visualized as a translation of pixels from location (x,y) in the first
image to a new location (x-∆x, y-∆y) on the second image. Hence, the above approach can be used to
determine the degree of motion. In the following section, we describe our approach to determine motion
between adjacent volumes in DSC-MRI time-series data.

5.2.2 Proposed block-wise phase correlation

Given a pair of adjacent volumes (Fn, Fn+1) in a set, we consider only their central slices (In, In+1)
and compute the motion field (Un, Vn) between them. In the absence of any motion between the vol-
umes, this field will be uniformly zero. The motion field is computed by considering a block of pixels
b(i, j) around every pixel at location (i, j) in the slice pair and performing a phase correlation. To handle
the inter-slice intensity variation that is characteristic of DSC-MRI, the blocks are normalised first by
shifting the mean pixel value of every block to zero. These normalised blocks are b̃n = bn− b̄n where b̄
denotes the mean pixel value in the block. Phase correlation is applied to the pair (b̃n(i, j), b̃n+1(i, j))
and the desired flow vector (u(i, j), v(i, j)) is found from the locations of maxima of the cross power
spectrum S

b̃nb̃n+1
. The flow maps Un = u(i, j) and Vn = v(i, j) describing the motion between In

and In+1 are given by:

(u, v) = argmax(i, j)εbi,j

(
F−1

{
S
b̃nb̃n+1

})
(5.6)

where, S
b̃nb̃n+1

=
B̃nB̃

∗
n+1

|B̃n||B̃∗n+1|
and B̃ = F{b̃}.

5.2.3 Motion detection for normal volumes

As the bolus is not present in sets 1 and 3, intensity correction is not required in these sets and motion
can be detected in the volumes of these sets using block-wise phase correlation technique as explained
above. In the following section, we explain the motion detection method for volumes that are affected
due to bolus.

5.2.4 Motion detection for bolus affected volumes

In DSC-MRI, as the contrast agent passes through some regions in the brain, it results in signal
attenuation only in those regions. This leads to a non-uniform intensity change within the volume.
Applying motion detection to these volumes directly can result in an inaccurate estimation of motion
present among these volumes. To overcome the problem of contrast variation, an intensity correction to
the volumes in this set is needed prior to motion detection. Our intensity correction method is based on
the fact that the bolus affects certain regions in brain and as such the contrast changes are found to be
present in those regions only. Keeping this fact in mind, we devise a strategy to segment a given brain
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volume into two regions: normal and bolus affected. The intensity correction is then applied to bolus
affected regions and finally the mutually exclusive regions are combined to form an intensity corrected
volume. This intensity corrected volume is then used for motion detection. In the following section, we
explain the fuzzy c-means (FCM) clustering method used to segment a PWI volume.

5.2.4.1 FCM clustering based segmentation of volumes

Fuzzy c-means clustering is one of the methods in weighted clustering algorithms [39]. Fuzzy clus-
tering is based on the fuzzy logic which is a form or probabilistic logic [8]. The reasoning behind fuzzy
logic is that a particular phenomenon is approximate rather than exact or fixed. In fuzzy c-means clus-
tering, every point in a given dataset has degree of belonging to a number of clusters instead of a single
cluster [39].

The fuzzy c-means objective function for partitioning a set of points {xn;n = 1..N} into c clusters
is given by [9]:

J =

c∑
i=1

N∑
j=1

upij ||xj − ri||
2 (5.7)

where, {rm;m = 1..c} are the representatives for each clusters and [pij ] = P is a partition matrix,

P ε Φ, Φ

{
pijε[0 1]

∣∣∣∣ c∑
i=1

pij = 1, ∀j and 0 ≤
N∑
j=1

pij ≤ N ∀ i
}

.

FCM clustering technique has been used for segmentation in images. A modified FCM clustering
has been used for various purposes including bias field estimation and segmentation in MRI data [3],
using spatial information for image segmentation [17], as a pre-processing step in brain MR images
corrupt by RF-inhomogeneity [5]. We identify the bolus-affected regions using a fuzzy c-means (FCM)
clustering method. This technique aids in segmenting a DSC-MRI volume F into normal (Fnormal) and
bolus affected (Fbolus) regions. After segmenting the volume into these two regions, we apply intensity
correction as explained in the following section.

5.2.4.2 GVF-fitting based intensity correction

To account for changes in image intensity across time points, we use the previously explained GVF
fitting on the mean-intensity perfusion curve (µg(n)), to obtain the intensity change across time points.
The intensity correction is then applied to only bolus affected regions. The intensity corrected volume
is generated as follows. For convenience, the volume F at time point n is now denoted as F (n):

F cbolus(n+ 1) = Fbolus(n+ 1)
µg(n)

µg(n+ 1)

F c(n+ 1) = Fnormal(n+ 1) ∪ F cbolus(n+ 1)
(5.8)

where the superscript c denotes the corrected result. Figure 5.4 shows an example of intensity correction
on a pair of slices with no motion between them. As compared to Figure 5.4(c), Figure 5.4(e) shows

34



(a) In (b) Im (d) Ic
m (c) |In − Im| (e)|In − Ic

m|

Figure 5.4 Example of intensity correction for original (non-motion-corrupt) DSC-MRI data. Two
central slices In and Im extracted from volumes Fn and Fm are shown in (a) and (b) respectively. (c)
is the intensity corrected image of (b). Notice that there is a reduction in absolute intensity difference in
(e) as compared to (d). Ideally, the absolute difference in (e) should be zero.

a reduction in absolute difference in image intensity after intensity correction, which should ideally be
zero. Nevertheless, the attenuation effect of bolus is minimised and this aids the correct estimation of
motion between volumes.

5.2.4.3 Motion Detection

After intensity correction, we consider the central slices (In, Icn+1) of volumes (Fn, F cn+1) and carry
out motion detection using block-wise phase correlation method as explained previously. The only
difference here is that we use intensity corrected slices instead of raw DSC-MRI slices.

In our implementation, initially, a block size of 32×32 was used for motion detection in a slice of
size 128×128. In an attempt to speed up computations, various downsampling factors of the central
slice with a corresponding reduction in block size were also tested. The maximum downsampling factor
achieved was 4 to obtain slice of size 32×32 and the block size was reduced to 8×8.

5.3 Motion Characterization

The flow maps Un and Vn describe the orthogonal components of the flow field relating two rep-
resentative slices (In and In+1) of the bolus-phase volumes of the time-series containing N volumes.
In the absence of any motion, these flow maps, when viewed as images, will be uniformly smooth
(all pixel values are equal). Presence of motion will introduce a disturbance in this map which can be
characterized in terms of entropy in the each of these flow maps.

To ensure that noise related changes outside the brain tissue did not affect the motion metrics, a mask
for the brain region was determined for each slice using a phase-field based segmentation of the bolus-
time-slice [53]. A mask was generated individually for In and In+1. The union of the two masks was
taken to ensure that entire span of motion in the two slices was captured by the mask. An entropy-based
metric was used to quantify the degree of motion as follows: For a given time series {Fn;n = 1..N},
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Table 5.1 Different motion categories and their range of angles of rotation
Motion Angle of Rotation

Category (degrees)
no motion 0

minimal motion [1, 5]
mild motion [6, 10]

severe motion [11, 15]

0 3 5 7 10 12 1516 20 25 27 30 32 35 40
0

1

n

F
(n
)

Figure 5.5 A plot showing the range of volumes(n) that are corrupted by motion in the time-series.

the flow fields (Un, Vn) are computed first and the peak entropy Hpeak of the flow fields is next found
as

Hn = HUn +HVn

Hpeak = max(Hn), 1 ≤ n ≤ N − 1
(5.9)

where HA denotes the Shannon entropy of A.

5.4 Experiments and Results

5.4.1 Dataset

A DSC-MRI dataset was acquired from a 1.5T GE MRI scanner with number of volumes = 40(1
second/phase), number of slices = 20, slice thickness = 5 mm, slice size = 128×128. All the compu-
tations were performed on Intel(R) Core(TM) i7-2600 CPU (3.40GHz) with 16GB RAM in MATLAB
software.
In our experiments, simulated motion was applied to real perfusion data as real motion corrupted data

was unavailable. For validating the proposed method, a set of experiments were performed. Known
amount of 3D-rotation was added to the volumes to simulate actual patient motion during DSC-MRI
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(a)No motion case (b)Medium Motion case (c) Severe motion case

Figure 5.6 Top row shows 3 sample slice pairs for different degrees of motion. Corresponding Un and
Vn flow maps are shown in the bottom row.

scan, in consultation with a neuro-radiologist. A number of consecutive volumes at repeated intervals in
the time-series were rotated by the same amount, which simulates a typical patient behaviour (sudden
head rotation followed by remaining in that position for a period of time) inside the scanner. For the
DSC-MRI dataset of N=40 volumes, motion was added to N1 = 16 volumes in m=3 blocks of contigu-
ous volumes:{volumes at time-points in ranges [3, 7],[12, 16] and [27, 32] as shown in Figure 5.5}. The
rotations were kept in the range [0◦, 15◦] in the transverse direction (Rz) and in the range [0◦, 10◦] in
the coronal direction(Rx). For convenience in analysis, the motion corrupted volumes were categorized
into different motion categories - none, minimal, medium and severe corrupted on the basis of angle of
rotation. Table 5.1 shows different motion categories and their range of angles of rotation. This serves
as ground truth for our experiments. All the results have been validated against this ground truth.

5.4.2 Results

We first present qualitative results (derived flow maps) for a pair of slices followed by quantitative
results derived for the acquired dataset. Figure 5.6 demonstrates the phase-correlation based flow maps
for different motion categories. As seen in Figure 5.6(a) (a no motion case), despite changes in the
signal intensities, the flow maps are almost uniform, indicating that the proposed approach is mostly
immune to bolus-contrast based signal changes. Further, as seen in Figure 5.6(b), the rotational motion
creates disturbance in otherwise uniform flow maps even though there is no change in signal between
two adjacent slices. The rotation of the bolus slice in Figure 5.6(c) (a severe motion case) creates a
disturbance in the flow maps in areas which experience motion. Notice that despite changes in contrast
(visible in areas around ventricles, Figure 5.6), the flow maps are uniform, indicating that the motion
detection scheme is robust to contrast agent-related gradual signal changes.

Figure 5.7 demonstrates the variation of the net entropy metric (Hn) depending on the degree of
motion between the slices for an entire time series (shown on the left). This information can be gleaned
from the corresponding entropy profile per slice pair (shown on the right) which varies rapidly. It can be
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(a)DSC-MRI Time series
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(b)Net-Entropy plot

Figure 5.7 Net-entropy(Hn) profile for a severe motion case. DSC perfusion data slices are shown
across bolus-phases for n= 1 to 40 from left to right and top to bottom. First point in graph is the net
entropy between slice 1 and slice 2 and so on.)

observed that for slice pairs between which there is minimal motion, the net entropy is zero, while for
others, the entropy reflects the degree of motion. A more detailed picture of the entropy variation across
bolus-phases for 16 different datasets is presented in Table 5.2. Here, the first column is the ground truth
information. When the ground truth motion categories are compared with the peak entropy values, it is
apparent that there is a mapping between them. Hence, it is possible to classify the data into different
motion categories using the peak entropy (Hpeak).

As indicated in Table 5.2 and Figure 5.8, the technique detects all categories of motion although for
very small rotations (below 3◦), it is difficult to distinguish it from no-motion case as the amount of
entropy is mostly zero, resulting in poor sensitivity for this kind of motion. The sensitivity to detection
is dependent on the image resolution and block size used for computations. In our experiments, the
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sensitivity to minimal motion was found to be improve when the slice size was restored to the original
size of 128×128. The sensitivity also increased when the block size was reduced from 32×32 to 16×16
for slice resolution 128×128. These were confirmed by visual inspection of the motion affected time-
points. The increased sensitivity however, incurs an additional computational cost. Table 5.4 shows a
detailed picture of time-taken for motion detection at different slice resolutions and block sizes. The
average computation time per bolus-volume pair was 0.20 sec for a slice of size 32×32 (0.01 sec for
down-sampling, 0.19 sec for deriving flow maps Un and Vn) which increased to 3.48 sec for a slice of
size 128×128. Thus, the overhead in computation is ∼17× for a 4× change in resolution and block
size.

5.5 Evaluation

Since motion was added to volumes at time-points in intervals [3, 7],[12, 16] and [27, 32], the value
of net-entropy (Hn) should be non-zero at the boundaries of these intervals. From Figure 5.7 (b), it can
be seen that net-entropy (Hn) has a non-zero values at these boundaries. Hence, net-entropy metric can
be used for motion detection.

Table 5.2 shows the entropy values for different degrees of motion. It can be seen that as the degree
of motion increases, the entropy values increase. Peak entropy metric (Hpeak) denotes the maximum
net entropy value found in the time-series. Hence, Hpeak can be used to categorize a time-series into
different motion categories. Table 5.3 shows the upper and lower bounds of peak-entropies for different
motion categories. Using these values, we can classify a time-series into one of the for motion cate-
gories. However, these values are not universal and are applicable to this dataset only.

Figure 5.9 illustrates the effect of intensity correction on motion detection using the net-entropy (Hn)
plot for time series of 40 volumes with mild motion. To recall, the bolus phase is where the intensity
correction is done. In the plot, the bolus stage is between n = 9 to 20. Two things can be observed from
this plot: With no intensity correction, the net entropy value is i) higher in some of motion-affected
volumes across the time series and ii) it is non-zero in adjacent stationary volumes only during the
bolus phase. This is due to the fact traditional 2D block-wise phase correlation recognizes the variation
in signal intensity as motion and gives a false positive result. On employing intensity correction, the
net-entropy values for adjacent stationary volumes become zero as expected.

5.6 Summary

In this chapter, we discussed a method to detect motion between consecutive volumes using block
based phase correlation in DSC-MRI perfusion data. The obtained flow maps describe the motion be-
tween slices. The net entropy in the flow maps was shown to help distinguish between varying degrees
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Table 5.2 Entropy values for different motion categories for image resolution at 32x32 and block size
at 8x8.

Angle of Peak Total Total Total
Motion Category rotation Entropy Entropy in U Entropy in V Entropy

(ground truth) (in degrees) (Hpeak) (UT =
∑

HUn) (VT =
∑

HVn) (ET = UT + VT)
none 0 0.00 0.00 0.00 0.00

minimal 1 0.00 0.00 0.00 0.00
minimal 2 0.00 0.00 0.00 0.00
minimal 3 0.04 0.00 0.04 0.04
minimal 4 0.08 0.00 0.23 0.23
minimal 5 0.20 0.00 0.76 0.76

mild 6 0.25 0.00 1.29 1.29
mild 7 0.40 0.00 2.04 2.04
mild 8 0.52 0.00 2.67 2.67
mild 9 0.61 0.00 3.25 3.25
mild 10 0.75 0.08 3.78 3.86

severe 11 1.05 0.32 4.33 4.65
severe 12 1.15 0.48 5.14 5.62
severe 13 1.31 0.59 5.75 6.34
severe 14 1.37 0.85 6.21 7.06
severe 15 1.51 0.97 6.88 7.85

Table 5.3 Upper and lower bounds of peak entropy values for different motion categories.

Peak Entropy (Hpeak) 0 0 < Hpeak <= 0.25 0.25 < Hpeak <= 1 Hpeak > 1

Motion Category None Minimal Mild Severe

of motion corrupted data. The main goal of this approach is to reduce the time for the motion correction
process by removing the stationary volumes from the set of volumes to be registered and speed up the
final (corrected) data acquisition process. The detection method can be made to be fast however the
sensitivity to minimal motions may be compromised.

The emphasis here is on an effective motion detection technique which is immune to changes in
signal intensity due to injected contrast. The utility of this work in retrospective motion analysis is to
improve the time required for motion correction schemes with dynamic perfusion imaging data which
currently accounts for as high as 90% of the data acquisition time.

Once motion detection has been performed, only a subset of volumes needs to be corrected for
motion. In the next chapter, we discuss the third and final stage of our system that performs this task.
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Figure 5.8 Peak Entropy metric for different motion categories on N = 16 datasets.

Table 5.4 Time analysis for motion detection at different slice resolutions and block sizes. Mean time
per slice pair is the sum of time taken for downsampling and deriving Un and Vn flow maps.

Slice Block Mean Time Total
Resolution Size per Slice Pair(sec) Time(sec)
128×128 32×32 0.00 + 3.48 = 3.48 132.21
128×128 16×16 0.00 + 3.99 = 3.99 151.69
128×128 8×8 0.00 + 4.34 = 4.34 164.84

64×64 16×16 0.01 + 0.77 = 0.78 29.71
64×64 8×8 0.01 + 0.97 = 0.98 37.38
32×32 8×8 0.01 + 0.19 = 0.20 7.68
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Figure 5.9 Net entropy(Hn) profile for motion detection with and without using intensity correction.
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Chapter 6

Motion Correction

Motion correction of volumes in DSC-MRI time-series is the process of aligning the motion cor-
rupted (moving) volumes in the time-series to a stationary (reference) volume. The core of such a task
is 3D registration. In image registration, our aim is to estimate the transformation (T) such that apply-
ing such a transformation on moving image will align it to reference image. If every image in a series
of N images undergoes a different transformation, then registration will be required for each of them.
Since image registration is computationally intensive, our aim should be to reduce the number of trans-
formations to be estimated to bare minimum. In perfusion MRI time-series, the patient motion is not
randomized. Thus, every volume does not undergo a different type of transformation due to patient mo-
tion. We take advantage of this fact and estimate only the required number of transformations thereby
making the entire process efficient. In this chapter, we explain the last stage of proposed motion cor-
rection system where we align all the volumes in a DSC-MRI time-series to a global reference volume
in an intelligent manner. We begin with the divide and conquer strategy, the heart of motion correction
stage in the proposed system.

6.1 Divide and Conquer strategy for motion correction

Figure 6.1 shows the complete block diagram for the proposed divide and conquer strategy for mo-
tion correction in DSC-MRI. The first step in motion correction is to divide the given PWI time series
into 3 distinct sets based on the status of the bolus in the brain. Next we detect the presence of motion in
volumes in the time-series. Prior to this stage, the DSC-MRI time-series has already been divided into 3
sets of volumes: pre-wash-in, transit and post-wash-out stages using the gamma-variate-function fitting
and we have detected the motion corrupted volumes in the time-series in the motion detection stage.
Having performed both these tasks, we have divided the problem of motion correction of time-series
into three similar sub-problems for each of the three sets. As in a divide and conquer strategy, we first
solve the sub-problems and then use their result to solve the original problem. We employ a similar
approach here.
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Figure 6.1 Block diagram for motion correction. {.} denotes a set of volumes.

Motion correction is first carried out in each of these sets independently followed by a final registra-
tion step. A 2-pass process is designed for this purpose with the first pass aimed at intra-set alignment
while the second pass aimed at inter-set alignment. In the intra-set alignment, we align the motion cor-
rupted volumes in each of these sets to their respective reference volumes. The alignment process in
each set is independent of each other. In the second pass, we align the reference volumes in each sets to
a global reference volume. By a 2-pass registration scheme, individual transformations required to align
every volume in the time-series to global reference volume can be estimated efficiently. The alignment
of volumes in the time-series is done via 3D image registration. All pairwise alignments were done
with sum of squared difference (SSD) based rigid registration using limited memory Broyden-Fletcher-
Goldfarb-Shanno method(l-BFGS) for optimization[23]. This optimization technique has been shown
to work well with large datasets[38]. In the following section, we explain the first pass of the proposed
2-pass alignment scheme.

6.2 Intra-set Alignment of volumes

The intra-set motion correction is the first pass of a 2-pass motion correction scheme. In the first
pass, the motion corrupted (moving) volumes in each of the three sets are aligned to their respective
reference(fixed) volumes via registration. These reference volumes are created using the contiguous
stationary volumes found during the motion detection stage. The process of alignment of volumes in set
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(b) Reference−R1 (a) Moving −T1(i) (c) Registered−T1r(i)

Figure 6.2 Alignment of a motion corrupted volume in set-1 to R1.

2(transit stage) differs from the process used for set 1(pre-wash-in stage) and set 3(post-wash-out stage)
due to the presence of bolus in transit stage. First, we explain the process of creation of these reference
volumes.

6.2.1 Creation of reference volumes

In the construction of reference volume for registration, the fact that the subject motion (during
acquisition) is transient in nature, i.e. stationary for a set of contiguous time-points followed by an
irregular motion for short period of time can be exploited. In the motion detection stage, we detect
motion between adjacent volumes in the time-series. Using entropy metric, we were able to categorize
volumes into different motion categories. The entropy value is zero for adjacent pairs where there is
no motion. This helps to identify the contiguous set of volumes for which the subject has remained
stationary. Hence, the reference volume Rm for each stage of the bolus (before, during and after the
passage) is constructed as:

Rm =

n2∑
n=n1

Sm(n)

(n2 − n1 + 1)
, mε{1, 2, 3} (6.1)

where, Sm(n) is a stationary volume,(n2 − n1) is the longest time interval of contiguous stationary
volumes in the mth set. After creation of reference volumes, we align the motion corrupted volumes
via registration. In the following section, we explain the alignment of set-1 and set-3 volumes to their
reference volumes.

6.2.2 Alignment of volumes in pre-wash-in and posh-wash-out stage

The bolus does not affect the volumes acquired in these two stages, hence the volumes in these two
stages are aligned to their respective reference volumes created by Equation 6.1 by 3D registration.
Figure 6.2 and Figure A.1 show the result of intra-set alignment of corrupted volumes taken from each
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(a) R3 (b) T3(k) (c) T3r(k)

Figure 6.3 Alignment of a motion corrupted volume in set-3 to R3.

of these two sets. The intra-set alignment of the volumes acquired during the transit stage is explained
in the following section.

6.2.3 Alignment of volumes in transit stage

The presence of bolus in transit stage creates difficulties in alignment of the motion corrupted vol-
umes. The localised non-uniform change in intensity due to bolus causes the intensity based registration
method to fail. To overcome this problem, first we apply an intensity correction to the volumes in
this set. The intensity correction volumes are aligned to set-2 reference volume subsequently. In the
following section, we explain the intensity correction method.

6.2.3.1 Intensity correction of volumes

In DSC-MRI, there is a signal loss or decrease in the image intensity, only in regions where the
bolus is present. This leads to a non-uniform intensity change within the volume. We identify the
bolus-affected regions using a Fuzzy c-means clustering method. This aids in segmenting the moving
volume (F) into normal (Fnormal) and bolus affected (Fbolus) regions. To account for changes in image
intensity across time points, we use the gamma-variate function fitting on the mean-intensity perfusion
curve (µg(n)), to obtain the intensity change across time points. The intensity correction is then applied
to only bolus affected regions. The intensity corrected moving volume F c(n) is generated by:

F cbolus(n) = Fbolus(n)
µg(nR2)

µg(n)

F c(n) = Fnormal(n) ∪ F cbolus(n)

(6.2)

where, nR2 is the centre of time-points used for constructing reference volume R2. This results in
a reduction of the contribution of bolus in intensity difference and makes the similarity measure in
registration more accurate. The alignment of volumes in set-2 to their reference volume is explained in
the following section.
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(a) R2 (b) T2(k) (c) T2r(j)

Figure 6.4 Alignment of a motion corrupted volume in set-2 to R2.

6.2.3.2 3D registration of intensity corrected volumes

The aim of the intensity correction was to remove the effect of change in contrast due to bolus.
Hence, once the volumes in the transit stage are corrected for intensity with respect to their reference
volume, the intensity based registration method can be used for alignment of motion corrupted volumes.
Thus, the moving volumes in set-2 are aligned to the reference volume R2 by 3D registration method.
Figure 6.4 shows the result of alignment of a moving volume in set-2 to reference volume R2.

At the end of intra-set alignment, we have required transformations to align the moving volumes in
each set to their reference volumes. Let Y1i, Y2j and Y3k be the transformations relating (R1,T1(i)),
(R2,T2(j)) and (R3,T3(k)) respectively where Tm(n) denotes nth moving volume in mth set. These
can be used to align the corrupted volumes in Sets 2 and 3 to R1 as follows:

T1(i)
Y1i−−→ T1r(i); iε[1, n1]

T2(j)
Y2i−−→ T2r(j); jε[1, n2]

T3(j)
Y3i−−→ T3r(k); kε[1, n3]

(6.3)

where, nm denote the number of corrupted volumes in mth set. After the intra-set alignment, we
align the reference volumes in each of the sets to a global reference volume. This is done in the second
pass, i.e. the inter-set alignment step. In the following section, we explain the inter-set alignment
method.

6.3 Inter-set Alignment

The reference volume created for the first set (R1) is taken to be the global fixed reference (Rfinal)for
the entire DSC-MRI time-series. In the second pass of alignment, i.e. the inter-set alignment, we align
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(a) Rfinal (b) R3 (c) Rf3

Figure 6.5 Alignment of reference volume R3 to Rfinal.

the reference volumes of transit (R2) and post-wash-out (R3) stages to the global reference volume
(Rfinal). In the following section, we explain the registration of R3 to Rfinal.

6.3.1 Alignment of reference volume R3 to Rfinal

Since the bolus has not affected the volumes in these time-points, hence the reference volumes cre-
ated in these stages are not affected by bolus too. We align the reference volume R3 to global reference
volume Rfinal via 3D registration method. Figure 6.5 shows the result of alignment of R3 to Rfinal. In
the following section, we explain the inter-set alignment of R2 and Rfinal.

6.3.2 Alignment of reference volume R2 to Rfinal

The alignment of reference volumeR2 toRfinal is done in two steps. Since the bolus affects volumes
in set-2, the reference volume R2 is also affected by bolus. Thus, first we apply an intensity correction
on R2 and then the intensity corrected reference volume is aligned to global reference volume Rfinal.
In the following section, we explain the intensity correction method.

6.3.2.1 Intensity correction for R2

Since the bolus is present in the volumes in second set or the transit set, the reference volume R2

needs to be corrected for intensity before it is aligned to final reference volume R1. We identify the
bolus-affected regions using a Fuzzy c-means clustering method as explained previously. This aids in
segmenting the reference volume (R2) into normal (R2normal) and bolus affected (R2bolus) regions. To
account for changes in image intensity across time points, we use the gamma-variate function fitting
on the mean-intensity perfusion curve (µg(n)), to obtain the intensity change across time points. The
intensity correction is then applied to only bolus affected regions. The intensity corrected reference
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(a) Rfinal (b) R2 (c) Rf2

Figure 6.6 Alignment of reference volume R2 to Rfinal.

volume Rc2 is generated by:

Rc2bolus = R2bolus

µa(nR1)

µg(nR2)

Rc2 = R2normal ∪Rc2bolus
(6.4)

where nR1 and nR2 are the centre of time-points used for constructing reference volumes R1 and R2.
This results in a reduction of the contribution of bolus in intensity difference and makes the distance
measure in registration more accurate. Please note that in the above equation, we have used µa(nR1)

instead of µg(nR1) for intensity correction ofR2 with respect toR1. Since GVF fitting is applicable only
for volumes that are acquired after bolus has washed in, the usage GVF-fit-mean-intensity (µg(nR1))
for intensity correction would be incorrect here.
Once the reference volume R2 has been corrected for intensity, it is aligned to the global reference
volume Rfinal as explained in the next section.

6.3.2.2 3D registration of intensity corrected reference volume Rc
2 to Rfinal

After the reference volumeR2 has been intensity corrected to createRc2 with respect to final reference
volume R1, the intensity based registration method can be applied to align the Rc2 to Rfinal. Thus, we
align Rc2 to Rfinal using 3D registration method. The estimated transformation relating Rc2 to Rfinal
is used to align R2 to Rfinal. Figure 6.6 shows the result of alignment of R2 to Rfinal. Despite the
changes in contrast, R2 is correctly registered to Rfinal to produce the registered output (Rf2).
The aim of motion correction is to align all the volumes in the time-series to a reference volume. After
the completion of inter-set alignment, we align the entire time-series to reference volume Rfinal as
explained in the next section.
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6.4 Alignment of the entire DSC-MRI time-series

At the end of inter-class alignment we have all required transformations to align the complete time
series. LetXf2 andXf3 be the transformations relating (Rfinal,R2) and (Rfinal,R3) respectively. These
can be used to align the corrupted volumes in Sets 2 and 3 to Rfinal as follows:

T2(j)
Y2i−−→ T2r(j)

Xf2−−→ Tf2r(j); jε[1, n2]

T3(j)
Y3i−−→ T3r(k)

Xf3−−→ Tf3r(j); kε[1, n3]
(6.5)

6.5 Experiments and Results

6.5.1 Dataset

A DSC-MRI dataset was acquired from a 1.5T GE MRI scanner with number of volumes = 40(1s/phase),
number of slices = 20, slice thickness = 5 mm, matrix size = 128×128. For validating the proposed
method, a set of experiments were performed. All the computations were performed on 64-bit Intel(R)
Core(TM)2 Duo processors(2.20 GHz) with 2GB RAM and MATLAB v7.12.0.

In our experiments, known amount of 3D rotation were added in the volumes to simulate patient
motion during DSC-MRI. Transient nature of motion was reflected by adding motion to volumes at a
random interval of time-points. The rotation angles were generated randomly in the range [-20◦ 20◦] in
transverse direction(Rz) and [0◦ 10◦] in coronal direction(Rx). The randomness in generation of angles
captures the worst case scenario of motion where the subject is highly agitated. Translation motion
inside the scanner is found absent in most of the cases. These ranges were chosen on the advice of a
neuroradiologist as depicting typical patient motion.

6.5.2 Results

We first present qualitative results of registration with our approach. Figure 6.7 shows the entire
aligned time-series with our approach. Despite changes in the contrast in bolus phases, the entire perfu-
sion series gets aligned to global reference volume (Rfinal). The alignment was quantitatively assessed
using the dice coefficient of segmented brain masks. The dice coefficient (DC) measures the degree of
overlap between two regions. For two sets A and B, the measure is given by:

DC = 2
A ∩B
A ∪B

(6.6)

A DC value of 1 indicates perfect alignment. With R1 as the reference volume, the DC values are
presented in Table 6.1 for all the registered volumes in the time-series. After registration, the degree of
overlap between the volumes increases which is verified by the DC values before and after registration.
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Figure 6.7 Central slices of volumes after alignment of entire-time series. DSC perfusion data slices
are shown from left to right and top to bottom. First slice is taken from the global reference volume
(Rfinal).

Table 6.1 Dice Coefficient(DC) values before and after motion correction
Rotation in Rotation in DC before DC after
Rz(degrees) Rx(degrees) Registration Registration

[0 10] [-10 10] 0.88 0.93
[0 10] [-15 15] 0.86 0.92
[0 10] [-20 20] 0.87 0.93

A second type of evaluation was done to study the effect of registration on mean-intensity of a manually
selected volume of interest (VOI) before and after registration. The results are shown in Figure 6.8.
Prior to registration, subject motion causes a shift in VOI and intensity-time curve does not depict a
typical behaviour of DSC-MRI. After registration, the VOI remains stationary across time-points and a
typical DSC-MRI intensity-time curve is obtained. A detailed picture of mean-intensity curves before
and after motion correction for different degrees of motion is given in appendix.

6.6 Evaluation

The performance of our approach was also compared with traditional registration techniques reported
in literature where the whole time-series is registered to a mean volume [26]. The evaluation metric
chosen for this purpose was the RMS difference of the residual difference (erms)[44] defined as:

erms =

√
1

N

∑
xεΩ

(U−1
a (x)− Uo(x))2; x = [x, y, z]T (6.7)

where, Ua is the applied transformation and Uo is the obtained transformation, N is the number of voxels
in object Ω. Table 6.2 provides a detailed comparison of performance of our approach and an MI based
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Figure 6.8 Mean-Intensity Plot of a volumetric region in a DSC-MRI time-series.

Table 6.2 Evaluation of our approach in terms of registration error and computation cost.
Total No. of Rotation Rotation Registration No. of Corrupt Regn. Time
no. of corrupt in Rx in Rz Method Volumes Error Taken

Volumes Volumes (degrees) (degrees) Detected (erms) (min)

39 25 [0 10] [-10 10]
MI based NA 0.28 26.83

Our approach 21 0.22 13.64

39 25 [0 10] [-15 15]
MI based NA 0.60 30.17

Our approach 24 0.37 17.62

39 25 [0 10] [-20 20]
MI based NA 0.54 27.58

Our approach 22 0.34 14.90

registration method[30] for different degrees of rotation. A number of points can be noted from the
tabulated results. Firstly, the motion detection step applied prior to motion correction helps reject the
stationary volumes from the time-series. Thus, only a subset of volumes is corrected in our approach
as compared to traditional approaches that register all the volumes in the time-series to a mean volume.
The success in detecting motion-corrupted volumes was generally found to be lower for small rotation
angles. This is primarily due to the block size chosen in the phase correlation. The randomness in
generation of rotation angles meant that even for large range of motion ([-20◦ 20◦]), the actual angle of
rotation added to a volume could be small, thus resulting in a lower number of correct detection. Second,
the registration error (erms) in our approach is consistently lower than that for the MI based approach.
An increase in amount of rotation in Rz direction results in an increase in error for both methods but
the increase is less for our method. Lastly, the time taken for correction of entire time-series with our
approach is less. This is both due to MI based methods being computationally intensive and that the
number of volumes being corrected is also higher. The time taken (for detection and correction) can be
reduced further by using a multicore architecture built in C++.
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6.7 Summary

We present an efficient 2-pass registration for alignment of motion-corrupt volumes in brain DSC-
MRI. Some features e.g. edges that appear after wash-in of contrast agent in brain are absent before the
wash-in period. Hence, any correction algorithm based on those features is likely to fail as it assumes
that the features remain same across the time-points. We are able to overcome this obstacle by dividing
the entire time-series into three classes of before, during and after passage of bolus through brain. This
ensures that the features in the same set remain similar. Thus, an intra-set registration in the first pass of
registration makes the approach more accurate. The inter-set registration which is the final registration
of reference volumes between two sets results in a reduction of the overhead in the number of transfor-
mations that are required to be estimated.
One can argue that after applying GVF fitting to volumes after wash-in period, the corrupted volumes
can be registered to a pre-wash-in volume via intensity correction. Though this would result in esti-
mating less number of transformations, we avoided the approach since it could result in a decrease in
accuracy of registration. GVF fitting provides an approximate model of intensity variation after the
wash-in period. Thus, the error in registration due to intensity correction with GVF fitting would in-
crease with an increase in the number of corrupted volumes after wash-in period.
The computational time for the algorithm can be reduced significantly by implementing the algorithm
on a multicore architecture [51] using C++.
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Chapter 7

Discussion and Conclusion

Patient motion corrupts the acquired MR scans. The problem becomes more emphatic in perfusion
MR scans due to their longer acquisition times. We aimed at solving the problem of motion corruption
due to patient motion in DSC-MRI in an efficient manner. It is important that the motion is removed
first so that the acquired images can be used later for diagnostic purposes. Existing techniques of motion
correction consist of aligning all the volumes in the time-series to a reference volume via 3D registra-
tion. 3D registration is a computationally intensive task. Employing such a method on all the volumes
proves to be costly. In this thesis, we presented a fast and efficient system for motion correction in 3D
DSC-MRI time-series of brain.

To overcome the problems faced by existing methods, we developed a multi-stage motion correction
system based on divide and conquer strategy. Depending on the status of bolus in brain, we divided the
DSC-MRI times-series into different sets using gamma-variate-function fitting. Next, we detected the
presence of motion in volumes using a method based on block-wise phase correlation and also catego-
rized the volumes into different categories depending on the degrees of motion. Finally, we removed the
motion present in volumes using a two-pass registration scheme. The motion detection and correction
stages employed an intensity correction technique to mitigate the effects of variation in contrast due to
injected bolus.

In the previous chapters, we demonstrated the accuracies of our motion detection and motion correc-
tion methods. In this chapter, we evaluate the system in terms of computation time required for motion
correction. First, we show the reduction in computational time achieved by our motion detection method
by applying it prior to existing motion correction methods. Next, we will show the overall reduction in
time achieved by our system.

Existing techniques do not use a motion detection strategy in the correction pipeline for perfusion
weighted MRI. However, we argue that motion detection prior to correction can lighten the load for
the correction stage. We demonstrate this by estimating the reduction in time that can be achieved by
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Table 7.1 Effect of motion detection on computation time when applied prior to existing motion detec-
tion algorithms.

Motion Time taken Mean Time Time taken Reduction
Correction to correct (N-1) per volume registration to correct Nmd in time Percentage

Method volumes tm = told/(N− 1) volumes told − tnew Time Reduction
(told (sec)) (sec) (sec) (sec) (%)

[29] 640.39 16.42 397.42 242.97 37.94
[51] 636.38 16.32 395.74 240.64 37.81
[52] 1018.20 26.11 668.78 349.42 34.32

including our detection as a front end to existing motion correction algorithms. Motion correction via
3D image registration methods is a standard approach followed by existing methods. This serves to
align volumes in the given time-series to a chosen reference volume [29][51][52]. For the purpose of
our study, the volume at time-point n=2 is chosen as the reference volume (FR). All the remaining
volumes in the time-series are registered to this reference volume. Table 7.1 shows the time taken by
some existing methods of motion correction algorithms for perfusion weighted MRI. In our DSC-MRI
time-series data of N = 40 volumes, motion was added to N1 = 16 volumes. However, this was done
only to m = 3 blocks of contiguous volumes (please refer to Figure 5.5 in Chapter 5).

Initially, all the remaining N − 1 = 39 volumes are registered to reference volume FR. With motion
detection, the number of volumes that need to be registered reduces to Nmd = 23 ((N − 1)−N1 +m)

thereby reducing the time taken for motion correction. Since the volumes in each of these m = 3 inter-
vals undergo same degree of motion, only one volume in each interval needs to be aligned. This results
in a reduction in time taken for motion correction. From the results, it can be seen that a considerable
reduction in time is achieved with percentage as high as 37.94%. In Table 7.1, time taken for motion
correction with motion detection (tnew) is reported for motion correction stage only since the time taken
for motion detection (7.68 sec) is negligible compared to the time required for registration.
Table 7.2 shows time taken by our system for correcting motion in a DSC-MRI time-series. From the
results, it can be seen that a considerable reduction in the meantime is achieved by our system as com-
pared to existing methods which is as high as 73.22%.

The analysis of the system shows that it can detect the presence of motion in the time-series, ac-
curately correct the time-series corrupted by different degrees of motion and achieve a reduction in
computation time that is as high as 73.22%. We can see that there is no trade-off between the accuracy
and computation time of our system. Hence, the analysis of the system shows that it is fast and efficient.
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Table 7.2 Comparison of our motion correction system with existing motion correction methods in
terms of computation time.

Motion Correction Time for Time for Total Time Mean Time Percentage
Method motion detection (sec) motion correction(sec) (sec) (sec) Time reduction (%)

[29] NA 640.39 640.39 16.42 57.43
[51] NA 636.38 636.38 16.31 57.14
[52] NA 1018.20 1018.20 26.10 73.22

Our Approach 7.68 264.59 272.97 6.99 -

7.1 Issues faced

• Perfusion MR scan is not a common practice in medical centres. Hence, acquiring perfusion MR
data proved to be a difficult task in this framework.

• Motion corrupted perfusion MRI dataset was not available. Hence, the patient motion was simu-
lated in the dataset by applying rigid transformations to the original dataset.

• Choosing a suitable slice resolution and block size during motion detection was difficult. On
decreasing the resolution, small amounts of motion were overlooked by the algorithm. For a
particular resolution, choosing a large block size resulted in a complete miss of the patient motion.
These parameters were chosen empirically.

• It is assumed that the motion found in the central slice represents the motion for entire volume.
This assumption is valid for cases where image acquisition is fast.

In spite of these problems, the proposed motion correction system shows promising results. The advan-
tage of a fast motion detection system in the data acquisition pipeline is that feedback can be provided
to the scanner console operator on presence so that appropriate action can be taken. In the absence of an
online motion detection stage, once the data has been acquired, it can be corrected for motion using the
presented system. The advantage of such a system is that it does not required human intervention and is
completely automated.

In this thesis, we looked at a problem that lurks in the data acquisition stage of a big pipeline. By
acquiring knowledge about the field and using image analysis methods, solutions to handle this problem
have been proposed over the years, each one taking advantage of the research and developments made
during that period. Overall, it can be concluded that advancements in clinical research along with the
developments of new methods and technologies not only help in diagnosis and treatment of diseases but
also pave path for new and better solutions to these problems.

7.2 Future Work

Future work in the area can be aimed at solving the above mentioned problems.
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• A hierarchical automated method for choosing a suitable slice resolution and block size for fast
motion detection can solve the problem of selecting these parameters empirically, although this
will increase the time used in motion detection.

• Methods alternate to block-wise phase correlation can be used for detecting motion between vol-
umes keeping in mind the boundaries of motion.

• The motion detection method is based on assumption that the central slice represents the motion
for the entire volume. This is true, since the acquisition time for a single volume is very low.
Clearly, a method for detecting motion that is independent of this assumption would be a better
choice.

• After categorizing the motion into different categories, the presented system deploys same method
for motion correction irrespective of the degree to which the time-series is corrupted. Different
motion correction methods can be employed for correcting motion in these categories.

• The proposed system has been evaluated on real data with simulated motion. Even though we have
kept the limits to model a real scenario, it would be interesting to see how the system performs in
a real scenario of motion corruption.
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Appendix A

Appendix
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Figure A.1 Mean Intensity plot of a manually selected volumetric region before and after motion cor-
rection for various degrees of motion. The angle of rotation increases from left to right and top to bottom
in the range [0◦, 15◦] in transverse direction (Rz).
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[62] F. Zöllner, R. Sance, P. Rogelj, M. Ledesma-Carbayo, J. Rørvik, A. Santos, and A. Lundervold. Assessment

of 3d dce-mri of the kidneys using non-rigid image registration and segmentation of voxel time courses.

Computerized Medical Imaging and Graphics, 33(3):171–181, 2009.

65


