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Abstract

Diabetic Retinopathy (DR) is a condition where individuals with diabetes develop a disease in

the inner wall of eye known as retina. DR is a major cause of visual impairments and early

detection can prevent vision loss. Use of automatic systems for DR diagnosis is limited due

to their lower accuracy. As an alternative, reading-centers are becoming popular in real-world

scenarios. Reading center is a facility where retinal images coming from various sources are

stored and trained personals(who might not be experts) analyze them. In this thesis we look at

techniques to increase efficiency of DR image-readers working in reading centers.

The first half of this thesis aims at identifying efficient image-reading technique which is both

fast and accurate. Towards this end we have conducted an eye-tracking study with medical

experts while they were reading images for DR diagnosis. The analysis shows that experts

employ mainly two types of reading strategies: dwelling and tracing. Dwelling strategy appears

to be accurate and faster than tracing strategy. Eye movements of all the experts are combined

in a novel way to extract an optimal image scanning strategy, which can be recommended to

image-readers for efficient diagnosis. In order to increase the efficiency further, we propose

a technique where saliency of lesions can be boosted for better visibility of lesions. This is

named as an Assistive Lesion Emphasis System(ALES) and demonstrated in the second half of

the thesis. ALES is developed as a two stage system: saliency detection and lesion emphasis.

Two biologically inspired saliency models, which mimic human visual system, are designed

using unsupervised and supervised techniques. Unsupervised saliency model is inspired from

human visual system and achieved 10% higher recall than other existing saliency models when

compared with average gazemap of 15 retinal experts. Supervised saliency model developed as

deep learning based implementation of biologically inspired saliency model proposed by Itti-

Koch(Itti, L., Koch, C. and Niebur, E., 1998) and achieves 10% to 20% higher AUC compared

viii



Visual Perception Based Assistance for Fundus Image Readers

to existing saliency model when compared with manual markings. Saliency maps generated by

these models are used to boost the prominence of lesions locally. This is done using two types

of selective enhancement techniques. One technique uses multiscale fusion of saliency map with

original image and other uses spatially varying gamma correction; both increases CNR of lesions

by 30%. One saliency model and one selective-enhancement technique are clubbed together to

illustrate two complete ALESs. DR diagnosis done by analyzing ALES output using optimal

strategy should presumably be faster and accurate.
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Chapter 1

Introduction

“The whole is greater than the sum of it’s parts.”

– Aristotle

An alliance between two individuals, where each benefit from the participation of other, is called

mutualism. An example of mutualism is a symbiotic relationship where two species, who are

susceptible otherwise, form a resilient association. This thesis is based on concept of mutualism

between human reader and computerized diagnosis in a setting called reading-center.

In the past medical experts who examined patients also analyzed images. But the shortage of

highly trained experts necessitates lessening the burden of image analysis from experts. This has

given rise to new type of services called reading-centers[1]. Reading centers are facilities with

computers and large data storage. Medical images coming from various sources are collected

and stored here. These are staffed with readers and some experts. Readers, who acts as pseudo-

experts, are trained only to examine images and write reports whereas experts are medically

trained and hence can also diagnose based on evidence found in images and any available history

of a patient maintained by the facility(e.g. Doheny Image Reading Center (DIRC) [2]). Manual

image reading is a lengthy process. Hence, computerized diagnosis has been investigated in last

three decades. Modern computing power has made computerized diagnosis faster than manual

diagnosis. Yet, it has not achieved human accuracy. In this thesis we advocate a mutual design

where computerized diagnosis, rather than working independently, assists image-reader. This

is called Computer Assisted Diagnosis(CAD) and achieves best of computerized and manual

1



Introduction

diagnosis; it is fast as well as accurate. Hence, as the Aristotle said, “The whole is greater than

the sum of it’s parts.”

Reading center like settings play an important role in screening and triage. Since early detection

is preferred in effective disease management, clinical screening is aimed at identifying individuals

who may be at risk of developing a disease. Breast cancer screening for women in the age group

of 45-54 years is one such example [3]. In resource-constrained settings, screening is done in

camps by a field team and the images are brought/transmitted to reading centers for experts

to analyze and recommend further in-depth examination at a base hospital [4]. Triage on the

other hand is a practice followed by clinics to prioritize patients for experts’ attention. A trained

practitioner orders preliminary tests, a reader (semi-expert) analyzes the images and the report

is used to decide the priority of a patient. This practice helps to make the work-flow efficient

and speed up the diagnostic process. Acute stroke triage is an example of this [5].

This thesis looks at a disease called diabetic retinopathy(DR) and aims to develop diagnostic

strategy and assistive tools for DR image readers. The proposed solutions can be employed in

reading centers to increase throughput of DR screening.

1.1 Diagnosis of Diabetic Retinopathy

Diabetic Retinopathy (DR) is a condition where individuals with diabetes develop a disease in

retina. Individuals in the age group of 20 to 74 years and with Type-I and Type-II diabetes have

higher risk of developing DR [6]. By 2014, approximately 422 million people in whole world

live with diabetes [7], out of which 1/3 people have DR. India alone has 99 million people with

diabetes, out of which 1/4 people have DR; which amounts to nearly 25 million DR patients [8].

Diabetic retinopathy, if left untreated, causes visual impairments and in some cases permanent

blindness. Diabetic retinopathy along with age-related macular degeneration(a type of DR) is

cause of 2% cases of visual impairment and permanent blindness (see Figure 1.1).

Early detection of DR can prevent vision loss. Hence, many countries have started DR screening.

Early Treatment of Diabetic Retinopathy Study(ETDRS)[9] started by U.S. government is one

such example. DR screening is implemented by arranging camps at remote sites or at local

2
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Figure 1.1: Relative contribution of diseases in causing (right) blindness and (left) visual im-
pairment [source:WHO].

hospitals(e.g. Diabetic RetinaScreen [10]). Screening camps invite adults who are at a risk of

developing DR. Trained practitioner at the camp performs dilated eye test on the patients. This

involves dilation of pupil and capturing a photograph of retina using non-invasive fundus camera,

either table mounted or hand-held. A fundus photograph of normal retina is shown in Figure 1.2.

Abnormal Retina has lesions called hemorrhage and hard exudate; hemorrhage is blood leakage

and appears as dark lesion, hard exudate is lipid leakage and appears as bright lesion (see Figure

1.3, right most image). Images captured at camps are brought to reading-centers where readers

analyze these images and recommends appropriate consultation. For timely detection and care,

it is very important that reading centers have high throughput. This is done by developing

efficient diagnostic strategy and assistive tools for DR image readers.

1.2 Diagnostic Strategy

Increasing throughput of reading center is possible if readers have efficient (i.e. fast) and accurate

diagnosis process. This is done by training readers to read images like experts. But, the

relationship between accuracy of diagnosis and expertise has been observed to be very complex

[11]. This indicates that accuracy of diagnosis depends on multiple aspects opposed to just

one, namely expertise. Understanding of these aspects is long overdue. In the first half of this

3
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Figure 1.2: Color fundus photograph. (right) retina of right eye (left) retina of left eye.

thesis, we aim at examining the best practices and strategies used for DR diagnosis from fundus

images. We examine the role of expertise in the diagnosis process and seek to understand its

manifestation if any, at both conscious and subconscious levels. We also aim to develop an

optimal strategy which can be used by fundus readers for efficient diagnosis.

Contributions

An eye tracking study has been conducted while various practitioners were diagnosing DR

from fundus images. Eye movements are later analyzed to understand the strategies used for

diagnosis. Major contributions of this work are as follows.

• Eye-tracking study. A large scale eye tracking study has been conducted with 56 partici-

pants; out of which 44 subjects were medical experts coming from 6 different hospitals and

remaining 12 subjects were engineering students from our institute who served as novices.

Collected eye-tracking data can be used for analyzing diagnosis process.

• Understanding of diagnostic strategy. Eye movements are analyzed to understand the

diagnostic strategies. We have designed new metric called coefficient of scanning(CS).

Based on CS, strategies used by various practitioners are categorized into: dwelling and

tracing. It is found that dwelling leads to faster and more accurate diagnosis than tracing.

4
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• Optimal scanning strategy. Gaze patterns of retinal experts are quantized into nine retinal

zones as suggested by ETDRS [12] and combined using transition matrix. An optimal

scanning strategy is extracted from above analysis. Optimal strategy recommends readers

weightage and sequence in which nine retinal zones should be scanned for fast and accurate

diagnosis.

1.3 Assistive Tools

Image reading is a tedious task yet requires precision as it is critical to diagnosis. Fatigue or

inattention causes readers to miss inconspicuous/subtle lesions leading to under-reporting and

incorrect diagnosis. As a solution, computerized diagnosis methods are developed. But due

to various challenges in automatic image analysis, like artifacts and nonuniform illumination

(see Figure 1.3), accuracy of these methods is low; which is not acceptable. Computer Assisted

Diagnostic (CAD) tools aim at addressing this problem. CAD tools draw readers’ attention to

abnormal regions typically by displaying augmented circles/markers on the abnormal regions

[13]. Augmentation based assistance can potentially clutter an image especially when abnor-

malities are present in abundance and when different types of abnormalities are also proximal

in the image. We propose an alternate solution to draw a reader’s attention by emphasizing

abnormalities locally and making them more prominent while leaving the background tissue un-

altered. This is motivated by the fact that the visual system draws attention to salient locations

characterized by distinctive features like color and orientation [14, 15]. Boosting the contrast of

such salient locations has been shown (in the case of natural scenes) to attract one’s attention

[16, 17, 18]. Lesion-emphasis is both computationally efficient and clutterless. In the second

half of this thesis, we take this alternate reader-centric approach and propose a novel CAD,

which employs saliency of a region to determine the amount of its emphasis.

Contributions

We developed an ‘Assistive Lesion Emphasis System(ALES)’ for better visibility of abnormali-

ties. ALES has two stages, saliency computation and lesion-emphasis. First stage is more import

5
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Figure 1.3: From left to right: Retinal image with DR lesions, dark artifacts, bright artifacts
and varying illumination.

as accuracy of ALES depends on saliency. Two designs of ALES have been demonstrated here,

one with unsupervised and other with supervised saliency models. Both ALESs have different

and interchangeable lesion-emphasis stages.

• ALES-design:1

– Unsupervised saliency model (ALES1). This is inspired from human visual system.

Spatially-varying erosion and dilation(SED) operations are used to mimic Gaussian-

shaped human fixation. Retinal Ganglion cells are mimicked using center-surround

filters. Spatio-topic fusion is done by nonlinear combination of mean and variance

maps.

– Lesion emphasis (ALES1). Saliency maps generated by above model is fused with

original image at multiple scales. This enhances lesions locally. Fusion is governed

by a mixing parameter. A reader can change value of mixing parameter interactively

to control the degree of enhancement.

• ALES-design:2

– Supervised saliency model (ALES2). This is a deep neural network based imple-

mentation of an existing, biologically inspired saliency model by Itti and Koch [15].

Neural network fine-tunes standard filters for DR lesions and also learns new filters.

Training of this network is done using novel loss function, custom-designed to handle

range mismatch problem between output saliency and ground-truth.

– Lesion emphasis (ALES2). Gamma correction, with constant value of gamma, en-

hances image globally by stretching dynamic range of intensity values. Spatially-

varying gamma correction is achieved by defining parameter gamma as a function

6
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of saliency. This modifies dynamic range of local intensities, resulting into selective

enhancement of salient regions.

1.4 Organization of Thesis

Remaining thesis is organized as follows. Chapter 2 describes eye-tracking study and related

analysis. Chapter 3 and 4 discuss ALES with unsupervised and supervised techniques respec-

tively. Conclusions are presented in Chapter 5.
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Chapter 2

Optimal Search Strategy for Readers

An Eye Tracking Study

“Now, the value of an idea has nothing whatsoever to do with the sincerity of

the man who expresses it. Indeed, the probabilities are that the more

insincere the man is, the more purely intellectual will the idea be, as in that

case it will not be coloured by either his wants, his desires, or his prejudices.”
– Oscar Wilde

A popular health care initiative to address DR has been screening via a physical eye examination.

Images captured at screening sites are sent to reading centres where trained readers scrutinize

them and give preliminary diagnosis. This forms the basis for referral to retina experts for more

comprehensive physical eye exam. In order to increase reach of DR screening and scaling up the

number of people who can be screened, readers at reading-centers should be acquainted with

efficient image reading technique. In this chapter we aim to examine the role of expertise in DR

diagnosis process from the fundus image. Further, we also aim to evaluate the best practices

and strategies used for DR diagnosis from fundus image. At the end we extract an optimal

search strategy which can be recommended to readers for efficient diagnosis.

Background

Eye-tracking is a popular technique which is used extensively to investigate visual perception in

a range of tasks. Given that both 2D and 3D images are used in diagnosis, eye tracking studies
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aimed at understanding medical image perception have been reported on CT images [19, 20, 21],

X-ray [22, 23], microscopy [24, 25, 26] and mammography [27, 28]. Visual perception of fundus

images has not been investigated and to the best of our knowledge, this is the first attempt to

investigate visual search for DR lesions in fundus images.

In medical image perception specifically screening process, eye-tracking enables us to evaluate

the conscious and subconscious aspects of perception. Conscious aspect can be understood as

what and where to look. This involves domain knowledge, which directs the search for specific

abnormalities in the specific location(s) while ignoring other normal anatomical structures. Sub-

conscious aspect is understood as how to look. This involves the gaze pattern, dwelling and time

delay which are difficult to teach or learn. Given the importance of evaluation of eye-movement

in the diagnostic process, the current study examined this conscious and subconscious aspects

during screening of diabetic retinopathy.

Retinal anatomy consists of three major structures: Optic Disk, vessel network, and mac-

ula/fovea. First two are irrelevant for DR detection and is ignored by practitioners with a short

training. The macula is responsible for color vision with high acuity and hence is of specific

clinical interest. The location of lesions relative to macula represents severity of the disease

and this knowledge is gained only from medical training. Given the vital role of knowledge in

identifying the possible location and related diagnostic value, it becomes necessary to evaluate

the search strategies as a function of knowledge in DR.

2.1 Eye Tracking Experiment

Stimuli Images

A dataset of 145 abnormal and 50 normal fundus images was obtained from LV Prasad Eye

Insitute, Hyderabad [29]. A balanced (normal cases:abnormal cases ∼ 1) subset of 40 images

was selected by senior retina consultant from this dataset.
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Participants

In order to maintain diversity in the participants, retina experts were invited from 5 different eye

hospitals 1. A total of 44 retina experts accepted the invitation and participated in the study.

Retina experts were classified into 3 categories, namely, consultants, fellows and residents or

optometrist (see Table 2.1). 12 engineering students from our home institute were also included

to fulfill the role of novices. They were given a short training with 10 example fundus images.

Level of expertise Number of
participants

Range of
experience (years)

Consultant 13 7-18
Fellow 17 3-7
Resident/Optometrist 14 1-12
Novices 12 0

Table 2.1: Description of Participants.

Material

Experiments were carried out in dark room with constant environment condition. Tobii X2-30

eye tracker (sampling rate 30Hz) with a 15.6” display screen were used. Stimuli (images) were

down-scaled to fit the display size. An image classification tool was developed in MATLAB 8.2

(see Figure 2.1) and a small tutorial was given to all participants to ensure easy usage of the

software.

Experiment Design

The instruction given to all participants is shown in Figure 2.2. Eye tracking was conducted

during each trial with prior consent from all the participants. A 5-point calibration was per-

formed at an interval of 5 images. The response time, response category and eye position (x, y)

with timestamp were stored for each trial. The session lasted for approximately 20 minutes. Eye

positions were classified into fixation, saccade, and glissade using adaptive algorithm proposed

1LV Prasad Eye Insititute, Hyderabad [29]; Narayana Nethralaya, Bangalore [30]; Neoretina Eyecare Institute,
Hyderabad [31]; Anand Eye Institute, Hyderabad [32]; Medivision Eye Care Centre, Hyderabad [33], Centre for
Sight [34], Hyderabad
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Figure 2.1: Example display from the software tool developed for the experiment.

You will be shown a retinal image on the screen.

Your task is to decide whether the image is normal or abnormal as fast as possible.

The images are deemed to be abnormal if they have hard exudates and/or hemorrhages and/or
cotton wool spots.

You are requested to report your decision by pressing the corresponding buttons: Normal or
Abnormal for a particular image.

Figure 2.2: Instructions given to participants.

by [35]. Eye positions classified as glissade were removed from the data and the remaining data

were registered to actual image size (in pixels).

2.2 Definitions

Lets begin with definitions of some quantities used for analysis of eye tracking data.

Total track length. The Euclidean distance between two consecutive fixations is defined as

track length in pixel unit. The sum of all the track lengths for an image j for an ith participant

is the total track length lij . lij depends on the subjective behavior of the participant as well as

11
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Figure 2.3: Total track length for sample images. Lesion locations are (a)-(b) Gaze-tracks for
two different subjects for an image with a lesion (marked with green circles) in the periphery.
(c) Gaze-track for an image with more centrally located lesion.

the location of the lesion in the image. Figure 2.3 illustrates these points. Figure 2.3 (a)-(b)

show tracks for 2 subjects on one image. It is evident that one subject takes a very long route

whereas other takes direct route to the lesion location indicated by a green circle. Assuming

that the visual search starts from the center, image with lesion(s) in the peripheral region will

have larger li,j than an image with lesion(s) at the center. This is evident from Figure 2.3(b)-(c).

Standardized track length. The effect of location of lesion on lij has to be nullified in order

to capture inter-subject variability. The normalized track length is defined as standardized track

length and computed as follows.

Standardized track length (L) =
lij∑
i lij

(2.1)

L is ratio of total track length and sum of total track length, hence is unitless quantity. It takes

values between 0 and 1.

Total dwell duration. The time spent on each fixation is defined as dwell duration which is

in micro-seconds. The sum of dwell duration for each fixation (including revisits) is considered

as total dwell duration. Total dwell duration of ith participant for jth image is denoted as dij .

dij also depends on the subjective behavior of the participant and the conspicuity of lesions

in the image. Figure2.4 illustrates this point. Figure2.4(a)-(b) shows that dwell pattern of

two different subjects where one subject has fewer fixations than the other and hence lower

total dwell duration. Figure2.4(b)-(c) on the other hand illustrates the dependency of d on

conspicuity. Here, an image with subtle lesions is seen to lead to longer dwell duration per

fixation in a subject than an image with prominent lesions.
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Figure 2.4: Comparison of dwell duration. Dwell duration is proportional to the radius of the
disk representing fixation. Lesion locations are marked with green ovals. (a)-(b) Gaze-track
for two different subjects for an image. Very different dwell pattern shows total dwell duration
depends on subjective behavior. (b)-(c) Gaze-track for two different stimuli images. Gaze-track
for image with subtle(prominent) lesion has more(less) total dwell duration.

Standardized dwell duration. The effect of conspicuity of lesion on dij has to be nullified

in order to capture inter-subject variability. The normalized total dwell duration termed as

standardized dwell duration is defined as follows.

Standardized dwell duration (D) =
dij∑
i dij

(2.2)

standardized dwell duration is also unitless quantity as it is the ratio of total dwell duration and

summation of total dwell duration. It takes on a value between 0 to 1.

Coefficient of scanning. This is defined as the ratio of standard dwell duration and standard

track length.

Coefficient of scanning (CS) =
D

L
(2.3)

Depending on the value of D and L, CS can assume any positive value. Theoretically, CS can

assume value=∞ when L is zero. However, this is possible only if there are less than or equal to

one fixations for an image and this is practically nearly impossible. Hence, practically CS can

assume any large(< ∞) positive value. Coefficient of scanning represents the balance between

track length and dwell duration and thus can provide insights into search strategies of subject

underlying the Normal/Abnormal decision task.

13



Optimal Search Strategy for Readers: An Eye Tracking Study

Figure 2.5: CS values for 2240 responses.

2.3 Dwelling vs Tracing

The responses of the 56 participants for 40 images results in a total of 2240 responses. These were

divided into 4 categories: (i) correct response for abnormal case (True Positive) (ii) incorrect

response for abnormal case (False Negative) (iii) correct response for normal case (True Negative)

(iv) incorrect response for normal case (False Positive). CS was computed for each of these

categories and the results are shown in Table 2.2 and Figure 2.5. CS is seen to be significantly

higher for True positive/negative categories than False positive/negative categories for both

Normal and Abnormal cases. The average CS value for the four groups is 1.5.

Image category: Response CS p-value
Abnormal: Correct 2.1 ± 5.0

8.97× 10−7Abnormal: Incorrect 1.2 ± 1.6
Normal: Correct 1.6 ± 4.5

4.07× 10−4Normal: Incorrect 1.4 ± 1.5

Table 2.2: Average Coefficient of Scanning for various image category and response pair.

This average CS = 1.5 value was used to analyze the responses. Responses with CS <= 1.5

implies D <= 1.5L, i.e. Dwelling is less but the gaze-track is long. Hence, we call this search
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strategy as Tracing. On the other hand, responses with CS > 1.5 has D > 1.5L, i.e. gaze-track

is short but dwelling is more. We call this scanning strategy as dwelling.

Performance Analysis of Dwelling and Tracing strategies

Dwelling always leads to correct response (see Table 2.2). Accuracy achieved by various subject

groups with dwelling strategy is shown in Figure 2.6. Most of the participants have accuracy

> 80%. Achieved accuracy is thus high regardless of the expertise level of the participant (p =

0.5219).

Tracing strategy, on the other hand, leads to lower accuracy and analysis also shows that

expertise affects the performance with this strategy. Specifically, accuracy decreases with levels

of expertise (p-value = 4.8× 10−4) (see Figure 2.7). In order to understand this trend, further

analysis of the gaze pattern was done.

Tracing is characterized by higher standardized track length. Ideally, longer track length should

be a result of greater spatial coverage. However, longer track length can also be due to revisits

to regions scrutinized earlier. Therefore, we computed the correlation coefficient between track

length and number of revisits and found it to be 0.8. This implies, the number of revisits

increases with track length (see Figure 2.8). This can also be seen from the sample case shown

in Figure 2.3(a) where a subject had longer gaze-track only due to revisits. Based on the above

analysis, we can conclude that revisits appears to be beneficial for subjects to make a correct

decision only if they have higher expertise.

Average response time with dwelling and tracing is 4.6s and 5.4s, respectively. Thus, dwelling

appears to be an efficient strategy for accurate and fast decision, regardless of a subject’s

expertise level.

2.4 Discussion

The results indicate that readers use mainly two kinds of strategies while reviewing retinal

images, namely tracing and dwelling. Tracing involves low dwell time for a particular region
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Figure 2.6: Accuracy achieved with dwelling strategy.

Figure 2.7: Accuracy achieved with tracing strategy.
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Figure 2.8: Correlation between track length and revisits.

and leads to a reader reviewing the region over multiple revisits. The net effect in Tracing is

marked by long gaze-track and slow response. However, revisiting a region aids experts more

than semi-experts and novices as indicated by the comparatively lower accuracy of novices or

semi-experts than that of experts when employing tracing as strategies. It can be argued that

revisiting enables experts to gather more evidence to support decision making but might not

help semi experts or novices who lack the ability to gather and assess information in the region.

On the other hand, dwelling strategy involves longer dwell time for a region which is better suited

to gather adequate information for decision making. This is affirmed by the fact that participants

employing dwelling strategy have higher accuracy and response time. The long scrutiny enables

full attention to a region which should be beneficial to a participant in overcoming any lack

of experience and expertise, which might be why the high accuracy of decision is achieved by

all expertise-groups. As dwelling requires scrutinizing regions for a longer time, the decision is

possible with less number of reviews and consequently, the track length and response time is

low. This makes dwelling an accurate and fast strategy.

The result suggests that dwelling has an advantage over tracing strategy. This trend is partic-

ularly evident in the case of novices and semi-experts, whose detection accuracy drops during

tracing strategy. Current results extend previous finding[36] on 3D scanning pattern, which

17



Optimal Search Strategy for Readers: An Eye Tracking Study

Figure 2.9: (a) Retinal zones recommended by ETDRS (b) Dwell map

shows a difference between drilling and scanning strategy. Their results show higher detection

accuracy and smaller saccadic amplitude with drilling vs. scanning strategies.

Next we analyze search patterns and extract an optimal strategy.

2.5 Search Pattern Analysis

The ETDRS standards [12] specifies 9 zones of a fundus image (see Figure 2.9(a)) for review

during diagnosis of diabetic retinopathy. In this section, eye movement patterns for correct re-

sponse are analyzed in terms of the gaze transitions between these zones and zone-wise dwelling.

The purpose of this analysis is to gain insights into best practices (search pattern) that underpin

good performance.
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Figure 2.10: Average transition matrices for different expertise-groups. Top/bottom row: ab-
normal/normal cases. Left to right: consultants, residents, fellows, novices.

2.5.1 Transition Pattern

Transition is defined as the movement of eye-gaze from one zone to another. A matrix with

the number of transitions from zone j to zone i as entry (i, j) is defined as the transition

matrix(TM) [37]. Each retinal zone was assigned a number as shown in Figure 2.9(a). The

transition matrix for abnormal and normal cases were analyzed separately. Computed average

transition matrix for medically trained participants is shown in Figure 2.11. This matrix was not

observed to be significantly different across expertise-groups with medical training (abnormal:

p=0.0804, normal: p=0.2712), whereas, average TM for novices is significantly different from

the other expertise-groups (abnormal: p=0.0022, normal: p=0.0041).

2.5.2 Dwell map

A dwell map showing average time spent on dwelling in a zone was also constructed. This

was done by first summing the dwell duration for fixations falling in particular zone. This sum

is defined to be the zone-wise total dwell duration. Total dwell duration of kth zone for ith
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participant and jth image is denoted by dijk. Next, an average zone-wise total dwell duration

for expertise-group E was computed as follows.

dk(E) =
1

ij

∑
j,i∈Ej

di,j,k (2.4)

Here, Ej is the set of participants who have given correct response for jth image and belong

to expertise-group E. Difference between dk(E) for the four subject groups was not significant

(abnormal: p=0.5726, normal: p=0.9375). Average dwell map for all participants in shown in

Figure 2.9(b).

Zone-level analysis suggests that for correct response, expertise level has no influence on the

dwell time whereas it does have an influence of the transition pattern. This motivates the next

section where we try to extract an optimal transition pattern for scanning the retinal image.

2.6 Recommendation

2.6.1 Optimal Transition Pattern

The analysis was done after excluding the responses from novices. Trials for novices are ignored

to avoid false practices. TM is calculated for each of these trials and averaged separately into

two classes to derive TM(normal) and TM(abnormal) as shown in the Figure2.11(a) and (b).

In order to extract an optimal transition which can be used for both normal and abnormal

images, the transition matrices for these two classes are combined as follows.

TMavg =
TM(normal) + TM(abnormal)

2
(2.5)

Average transition matrix TMavg is shown in Figure 2.11(c).

Entries in (i, j) and (j, i) positions in TMavg shows number of transitions from j to i and from

i to j respectively. Net number of transitions from j to i is (i, j)− (j, i). Net transition matrix

(TMnet) is defined as follows.

TMnet = TMavg − TMT
avg (2.6)
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Figure 2.11: Average transition matrix. Transition matrix (a) for normal cases (b) for ab-
normal cases (c) average transition matrix TMavg (d) net transition matrix TMnet (e) binary
neighborhood matrix NM (e) conditioned net transition matrix TMc.

Where, TMT
avg is transpose of TMavg. TMnet is shown in Figure 2.11(d).

The aim is to extract an optimal transition pattern which can be used for assessing both normal

and abnormal cases. Visual search for abnormal case is terminative as search ends as soon

as a region with an abnormality is located whereas for normal case, search is exhaustive as

it continues until all the regions are reviewed (see Figure 2.12). Weak transitions in TMnet

might have only occurred during exhaustive search and not during terminative search. Optimal

transition pattern should progress from strongest to weakest transition. This ensures that

important transitions happen at the start and as soon as an abnormality is located, search can

be terminated. Also optimal transition pattern should have least number of revisits. In order

to maintain easy and smooth eye movement, transitions between neighboring zones are given a

higher priority.

In order to satisfy the last characteristic, a binary neighborhood matrix NM is designed. As

shown in Figure2.11(e), (i, j) element of NM has value equal to 1 if ith and jth zones share a
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Figure 2.12: Gaze-pattern of one subject for 4 images. (a),(b) visual search for abnormal cases
is terminative (c),(d) visual search for normal cases is exhaustive.

common boundary, else the value is 0. TMnet is multiplied with NM to allow transitions only

between neighboring zones. Also TMnet is anti-symmetric matrix, i.e. (i, j) = −(j, i). To avoid

duplicate transitions all elements with negative values are set to zero. The final constrained

matrix TMc (see Figure2.11(f)) is defined as follows.

TMc = TMnet ◦H(TMnet) ◦NM (2.7)

Where ◦ signifies Hadamard product and H(.) is Heaviside step function.

Optimal transition pattern is extracted from TMc using algorithm 1. First a function Neig(x)

is defined which returns neighbors of zone x as an output. Next a set of unvisited zones Z is

defined. Initially all zones are unvisited. Nine zones can be traversed using eight transitions

without any revisit. So arrays S and D of length=8 are defined which will store source and

destination of the transition respectively. The pair of zones with strongest net transition is

initialized as the first source and destination. A search for remaining transition pattern is

done such that above stated characteristics are achieved. The destination of previous transition

becomes source of next transition. The inner If condition searches for next destination in three

hierarchical levels. The unvisited zone which has highest net transitions from current source is

selected as the destination. Here only neighboring zone will be selected as TMc is constrained

with NM . If such zone is not found than the neighboring unvisited zone which has strong

potential destination is selected. If unvisited neighboring zone is not found than any unvisited

zone with strong potential destination is selected. Once a zone is selected as destination, it is

removed from set Z. At the end of 7th transition only one zone is left unvisited, which is selected

as the last destination. The final S and D traces optimal transition pattern.
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Algorithm 1: Algorithm to extract optimal gaze-track from constrained net transition
matrix TMc

Define Neig(x) = neighbors of zone x;

Define Z = 1 : 9;

Define [S]8×1 and [D]8×1;

Initialize (D(1), S(1)) = argmax(i,j) TMc;
Remove D(1) and S(1) from Z;

for k ∈ 2 : 6 do

S(k) = D(k − 1);

if maxi∈Z TMc(i, S(k)) > 0 then
D(k) = argmaxi∈Z TMc(i, S(k));

else
ZNeig = Neig(S(k)) ∩ Z;
if ∼ isempty{ZNeig} then

D(k) = argmaxj∈ZNeig
{maxi∈Z(TMc(i, j))};

else
D(k) = argmaxj∈Z{maxi∈Z(TMc(i, j))};

end
end
Remove D(k) from Z;

end
S(8) = D(7);
D(8) = Z;

Optimal transition pattern achieved with Algorithm 1 is shown in Figure 2.13(a). Transition

pattern successfully captured human preference for the horizontal over vertical and top over

bottom direction. Transitions are graceful (not abrupt) as conceived while neighborhood con-

straint is introduced. Due to similarities with human bias and gracefulness, optimal transition

pattern is easy to follow by any practitioner. Transitions are spiraling out, visiting the zones

near to macula first and then progressing towards peripheral zones. This allows the search to

be efficient, fast and terminative in nature.

23



Optimal Search Strategy for Readers: An Eye Tracking Study

Figure 2.13: (a) Optimal transition pattern (b) Optimal gaze-track. Scanning strategy is guided
by optimal transition pattern and dwelling by dwell map. The radius of circle represents the
amount of required dwelling.

2.6.2 Optimal dwell map

As the task is to decide the category (normal or abnormal) as soon as possible, the visual search

for abnormal images is terminative in nature. i.e. once a lesion is located in certain zone,

response was made without scrutinizing other zones (see Figure 2.12(a),(b)). In the absence

of lesions, visual search for correctly classified normal cases is more exhaustive in nature (see

Figure 2.12(c),(d)). This is because of the cautiousness to avoid false negatives. In order to

achieve the dwell map which does not depend on the location of lesions, trials for normal cases

where medically trained participants registered correct responses are considered. Novices are

ignored to avoid false practices. Final dwell map(see Figure2.9(b)) is computed as follows.

dk =
1

ij

∑
j∈N,i∈Sj

di,j,k (2.8)

Where, Sj is a set of medical experts who have given correct response for jth image. Figure2.9(b)

shows that dwelling is more in (a) superior zones than inferior zones and (ii) temporal zones than

nasal zones. Fovea/macula is the central dark zone which is responsible for color vision. Presence

of hard exudate in this zone can cause impairments in color vision. So fovea is scrutinized for

longer duration. Parafovea zones are dwelt on less than perifovea zones. This can be due
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to two reasons. First, parafovea zones are near to macula and have dark background which

provides higher contrast for hard exudates and as a result abnormalities pop out prominently.

This phenomenon requires less dwell duration to identify lesions. Second, parafovea zones have

smaller area than perifovea zones. So number of fixations in parafovea zones is less and hence

total dwell duration is less. Optimal transition pattern along with optimal dwell map generates

an optimal gaze-track as shown in Figure 2.13(b). This search pattern is recommended to image

reader for fast and accurate diagnosis of DR.

2.7 Conclusion

An eye tracking study has been conducted with the aim to understand image reading strategies

which lead to good performance in diagnosing retinal images. The analysis of eye-tracking data

indicates that readers use mainly two kinds of strategies while reviewing retinal images, namely

tracing and dwelling. Tracing involves low dwell time for a particular region and leads to a reader

reviewing the region over multiple revisits. As a net effect, Tracing is marked by long gaze-track

and slow response. On the other hand, dwelling strategy involves longer dwell time for a region

which is better suited to gather adequate information for decision making. This is affirmed by

the fact that subjects employing dwelling strategy have higher accuracy and faster response

time. Analysis of dwell-map and transition matrix suggests that scanning strategy used by

medically trained practitioner agrees well, but novices(with no medical training) have different

search pattern. An optimal search pattern is extracted from eye tracking data of medically

trained participants. Optimal search pattern takes various human factors into account, which

makes it efficient and easy to follow. We recommend image readers in reading-centers to use

this search pattern for fast and accurate diagnosis.
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Chapter 3

Assistive Lesion Emphasis System

An Unsupervised Approach

“Everyone believes in the law of errors [Gaussian]: the mathematicians,

because they think it is an experimental fact; and the experimenters, because

they suppose it is a theorem of mathematics.”
– Gabriel Lippmann

Image reading is a tedious task, yet requires high accuracy. Tedium of reader can lead to incor-

rect diagnosis. To address this problem, computerized diagnosis has been explored. But, low

accuracy of computerized diagnosis limits its employability in reading centers. Hence, as men-

tioned in Chapter 1, we advocate a reader-centric approach where computerized diagnosis works

as an assistant to a reader. We propose a design where Computer Assisted Diagnosis(CAD)

detects salient regions and allows a reader to selectively highlight them. A reader can make

decision based on highlighted regions. In this chapter, above mentioned scheme is implemented

to design a CAD for diagnosis of DR. Developed CAD is a two stage system: computation of

saliency and highlighting of salient regions.

Existing computational saliency models have been developed for general (natural) images and

hence may not be suitable for medical images. This is due to the variety of imaging modalities

and the requirement of the models to capture not only normal but also deviations from normal

anatomy. We present a biologically inspired model for colour fundus images. The proposed

model uses spatially-varying morphological operations to amplify lesions locally and combines

an ensemble of resultant maps to generate the saliency map. Detected salient regions can be
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highlighted in many ways. We propose an elegant approach for highlighting, named interactive

selective enhancement(ISE). Computed saliency maps are mixed/fused with original image at

multiple scales to selectively enhance only salient regions without altering the background. A

reader can vary the amount of mixing interactively and can control degree of emphasis. Saliency

model and ISE collectively make ‘Assistive Lesion Emphasis System(ALES)’.

ALES is validated stage-wise. The saliency model is validated against an average Human Gaze

map of 15 experts and found to have 10% higher recall (at 100% precision) than four leading

saliency models proposed for natural images. The F-score for match with manual lesion markings

by 5 experts was 0.4 (as opposed to 0.532 for gaze map) for our model and very poor for existing

models. ISE was found to boost contrast to noise ratio of a lesion by ∼ 30%.

3.1 Saliency Computation

3.1.1 Background

Human attention is attracted by most prominent or visually salient objects in a scene. Saliency

of an object is modulated by the task at hand [38] and we selectively attend to most informative

regions of visual field while ignoring some unimportant regions. Much effort has been made

to understand task-specific visual attention and perception, resulting in cognitive modeling of

visual saliency [39]. Computational modeling of the same has been of interest to computer

vision community for years [40] leading to their use in segmentation [41], object recognition

[42], retrieval [43], image/video compression [44] and context aware image editing [45]. Many

such applications, including ALES, are of interest in medical domain as well.

Medical experts look for specific type of abnormalities often at specific locations, ignoring ir-

relevant areas and artifacts, while reviewing images for diagnosis. Deriving saliency models for

medical images is a difficult task due to the variability in modalities, anatomy, type of diseases

and artifacts. Very little work has been done to devise computational models of saliency for

medical images [46, 47, 48]. Saliency has been used in x-ray image classification[49], segmenta-

tion and registration of MRI [50, 51] and anatomical plane classification from fetal ultrasound

[52].
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Computational models of visual attention are broadly classified into 2 groups: bottom-up and

top-down [40]. Bottom-up models are stimuli driven, whereas top-down models are intention,

task or goal driven and based on prior knowledge. Depending on the medical modality, general

bottom-up models may or may not be successful in explaining how experts review images. Ex-

isting top-down models for general images are inappropriate as the tasks are different. Saliency

models need to be designed for specific modalities and type of lesions. We propose a saliency

model for diabetic retinopthay analysis from colour fundus images of eyes. Our model handles

normal and abnormal images with bright lesions (hard exudates, cotton wool spots) and dark

lesions (hemorrhages, microaneurysms).

Taxonomy of computational saliency models includes ones which are biologically plausible [15] or

based on spectral-analysis [53], information- and decision-theory [54], pattern classification [55],

graphs [56], etc. The proposed model is biologically motivated and is based on morphological

processing. The model has been evaluated against gaze maps of retina specialists as well as

manual lesion markings and compared with four existing bottom up saliency models developed

for natural images.

3.1.2 Method

Motivation

Human fixations follow a Gaussian distribution [57]. Visual information near a gaze-point is

attended to more than those that are away. In terms of visual processing, this implies that

information in a region proximal to a gaze-point is given higher importance than that are not.

The inspection and understanding of the entire visual scene is done gradually as we move our

eyes. For example, given a ‘Where is Waldo?’ puzzle, we first fixate on one specific cartoon.

This creates an image on retina such that projection of fixated cartoon lies on macula, a central

region of retina which has densely packed photo-sensors(cones). As a result, the fixated cartoon

is perceived with higher resolution than other regions of the puzzle. Then we gradually scan

other parts of puzzle by fixating on different cartoons one after another. Every time we fixate

on a cartoon, we analyze it for being a possible ‘Waldo’(see Figure 3.1).
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Figure 3.1: Visual scene analysis. [right image: ’The Waldo Watchers’, source:
http://waldo.wikia.com]

The whole process of visual scene perception can be divided into three processing blocks. First

is a Gaussian shaped fixation which projects visual scene on retina with variable resolution.

Second is sensing of projection image by retinal ganglion cells. Third is spatio-topic combina-

tion of projections sensed after multiple fixations. Use this concept, we propose an approach

to saliency computation for a specific task, namely to detect abnormalities (bright and dark

lesions) in a given image. Here, fixations are mimicked by spatially-varying Gaussian-fashioned

morphological operations, Ganglion cells by center-surround filters and spatio-topic fusion by

non-linear combination of mean and variance maps.

The processing pipeline has 3 stages: (1) Preprocessing (2) Generation of an ensemble of pre-

saliency maps (3) ensemble integration to produce the final saliency map. The details are

presented next.
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Preprocessing

Given a colour fundus image, all processing was restricted to the green channel. Illumination

correction is performed using method shown in [58]. The vessel network and the optic-disk were

detected and inpainted [59]. The fundus was extended to cover the mask region [60].

Pre-saliency map generation

Let us consider a gaze-point p in the image. Our strategy is to boost the prominence of le-

sions or abnormalities in the image based on their proximity to p. Specifically, boosting is

higher for proximal as opposed to distant lesions. Boosting is achieved using spatially varying

morphological processing.

Given an image I and a gaze-point p = (a, b), the origin is shifted to p. Resulting image

Is (x, y) = I(x − a, y − b) which is denoted as Is(r, θ) in polar coordinates. For any given

θ ∈ (−π, π], we denote the 1-D image Iθ(r) = Is(r, θ). Consider a structuring element,

b(ρ) =


0, ρ ∈ Db

−∞, otherwise
(3.1)

where, Db is domain of structuring element b. Grayscale dilation and erosion of Iθ with b is

expressed respectively as,

(Iθ ⊕ b)(r) =max{Iθ(r − ρ) | ρ ∈ Db} (3.2)

(Iθ 	 b)(r) =min{Iθ(r + ρ) | ρ ∈ Db} (3.3)

In order to introduce spatially-varying processing, the domain Db is made to vary with r and

hence the dilation/erosion is defined as follows,

Db(rn) ≡[−f(rn), f(rn)] (3.4)

(Iθ ⊕ b)(rn) =max{Iθ(rn − ρ) | ρ ∈ Db(rn)} (3.5)

(Iθ 	 b)(rn) =min{Iθ(rn + ρ) | ρ ∈ Db(rn)} (3.6)

We have chosen f(r) = λGσ(r), where Gσ(r) is a Gaussian distribution with zero mean and

variance σ2. λ is a free parameter which controls the domain length. Eq. 3.5 and 3.6 can
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Figure 3.2: Window length at different points in the image.

also be interpreted as rank filtering with a filter/window whose length is a function of rn. At

any point rn, a window centred at rn and of length 2λGσ(rn) is used to do ranking operation.

The above 1D operation (dilation/erosion) is performed on Iθ(r), ∀θ ∈ (−π, π]. i.e. in each

direction. Figure 3.2 shows windows of varying length along different directions about a gaze

point P : (r, θ). Windows for Iθ=0(r) are shown to be derived from Gaussian distribution.

Processed images are shifted back to get the final pre-saliency (PS) maps: PSiq(x, y) = Iq(x +

ai, y + bi) where q represents dilation or erosion operation. Dilation (erosion) will boost the

saliency of bright (dark) lesions.

We illustrate this idea with a phantom in Figure 3.3. Here, an image patch is modeled as gray-

scale texture with idealized lesions appearing as dots of appropriate colour: white dot (hard

exudate or HE), white blurred spot (cotton wool spot or CWS) and dark dot (hemorrhage

or HM) (Figure 3.3a). Four gaze-points pi are selected on the three lesions and background

(Figure 3.3b). The PS maps obtained with different pi are dramatically different as seen in

Figure 3.3c-j. Overall, it can be seen that a lesion is spatially extended while the background

remains unchanged, in the PS map. It is noteworthy that when p is on the background (shown
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Figure 3.3: Pre-saliency maps for a phantom image (a) at four gaze-points considered (b).
The maps with dilation - erosion for the red, blue, green and yellow gaze-points are shown in
(c)-(d),(e)-(f),(g)-(h) and (i)-(j) respectively.

in yellow), both dilation and erosion has no effect since the lesions are not proximal enough to p

in any direction. Hence, the original image and PS are almost identical in appearance. Similar

behaviour is shown in real images next.

A sample fundus image patch with a HE and HM is shown in Figure 3.4 along with the PS

maps for dilation/erosion derived with three pj (shown in green, blue and black). In Figure

3.3 and 3.4, the pj were selected on true lesions deliberately to show the effect of the proposed

spatially-varying morphological processing. In reality, the lesion locations are unknown. Hence,

a set of {pj | j = 1, 2, 3, ..., J} at randomly selected locations are used to generate an ensemble

of PS maps. Since both bright and dark lesions are of interest, both erosion and dilation are

applied separately at each pj , to obtain 2J PS maps. A judicious combination of these maps

can help derive the desired saliency map, which is explained next.
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Figure 3.4: Pre-saliency maps for a fundus image patch (a) at three gaze-points (b). The maps
with dilation - erosion for the black, green and blue gaze-points are shown in (c)-(d);(e)-(f) and
(g)-(h) respectively.

Integration

In order to combine the J PS maps, we follow the strategy used in [61]. The J maps are summed

to create a combined map Cq. The variance at every pixel location is also computed to derive

a variance map Vq.

Cq =
J∑
i=1

PSiq (3.7)

Vq = Variance(PSiq); i ∈ [1, 2, 3, ..., J ] (3.8)

These two maps provide evidence for a location to be salient. An explicit Evidence map (Eq) is

computed by exponential weighting of Cq by Vq as,

Eq = Cq × e(τ×Vq), τ ∈ R (3.9)
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Figure 3.5: Proposed model for computing saliency with intermediate results.

Here, τ helps control the contribution of the variance at a pixel to the final evidence. A negative

(positive) value of τ is chosen for bright (dark) lesion. Higher absolute value of τ boosts the

saliency of even less prominent lesions. Separate Eqs, one for dilation and other for erosion, are

extracted.

Saliency map computation

A Center surround (CS) filter is applied to handle the variable conspicuity of lesions. This is

applied to both Eq separately and they are combined to get the Saliency map (S) as,

S = max{Ecsdilation,Ecserosion} (3.10)

where, Ecsq is CS filtered Eq andmax{.} is a pixel-wise max operation. S is finally smoothed with

a Gaussian filter. The proposed pipeline is shown in Figure 3.5 with all intermediate results.

3.2 Interactive Selective Enhancement

3.2.1 Background

In DR reading centres, readers scrutinize images and assign a DR stage to the image using the

ETDRS standard(see Figure 3.6) [9]. Staging is based on the following guidelines: (1) DR grade

(on a scale 1-4) is proportional to the number of dark lesions (b) diabetic macular edema (DME)

grade (scale 1-3) is proportional to the distance between macula and nearest hard exudate(see
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Figure 3.6: ETDRS guideline for grading diabetic retinopathy and diabetic macular edema.

Figure 3.7). The grade determines the type of advice given to a subject being screened with

some requiring immediate referral. Thus, a failure of a reader to attend to all dark lesions or the

bright lesion nearest to the macula, can have serious implications as it leads to an incorrect stage

assignment to the image. The approach taken in ALES therefore is to increase the local contrast

of the lesions and make them more prominent. Contrast-enhanced lesion will successfully draw

a reader’s attention and hopefully reduce the rate of misdiagnoses.

Assistive Lesion Emphasis System(ALES) uses above computed saliency maps to enhance salient

regions. In order to do this, we next consider the problem of selective enhancement of color

fundus images. Existing enhancement techniques include single channel(mostly green channel)

enhancement or color enhancement which uses global information. Such methods alter per-

ceptual quality of an image [62](see Figure 3.8(b)). Such enhanced images may be useful for

35



Assistive Lesion Emphasis System An Unsupervised Approach

Figure 3.7: Original image and GT: (a,b) DR stage 2 (c,d) DR stage 3 (e,f) DME stage 2 (g,h)
DME stage 3.

Figure 3.8: Fundus image enhancement (a) original image (b) global enhancement, which is not
appropriate for ALES (c) selective enhancement, which is desirable for ALES.

computational purposes but unsuitable for visual presentation in real word scenario where a

human image reader is diagnosing images. Fully-automatic enhancement also does not allow a

reader to apply minor adjustment as is often desirable. For example, radiologists routinely vary

the window-center and window-length to adjust brightness and contrast of CT images for better

visibility [63].

We propose a semi-automatic solution with Interactive Selective Enhancement (ISE). ISE en-

hances salient regions locally, with minimum alteration to perceptual quality(see Figure 3.8(c)).

ISE provides interactive control over degree of enhancement i.e. reader can vary parameters to

improve results generated by default parameter settings and can observe changes in real-time.
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ISE however, does not aim to correct non-uniform illumination or blur. Details are provided

next.

3.2.2 Method

Given an image I and evidence maps Ecsdilation and Ecserosion, enhanced image X is computed over

multiple scales and fused as follows,

Xk =
∑
i

{
[(1− α)Ik − α((ak Ecserosion × Ik) ∗Gi)]

+ [(1− β)Ik + β((bk E
cs
dilation × Ik) ∗Gi)]

}
(3.11)

Here, the first and second terms help enhance dark and bright lesions respectively. k is index

of color channel and i is scale. a and b control color shade in the enhanced image. α and β are

mixing parameters which control the degree of enhancement. α, β, a, b are control parameters

which can be varied by the reader. Ecserosion(or E
cs
dilation) masks out all the background and picks

only dark (or bright) lesions from I, which is then mixed with I over multiple scales. Negative

sign in the first term effects a darkening of the salient regions. Similarly, positive sign in the

second term has the effect of brightening the salient regions.

3.3 Results

Assistive Lesion Emphasis System(ALES) is validated stage-wise.

3.3.1 Evaluation of saliency model

The proposed Spatially-varying Erosion and Dilation (or SED) model for saliency was tested

on images collected from a local eye hospital. Along with the images, manual marking (GT)

of lesion regions was collected from 5 retina experts. The model was evaluated in two ways:

i) against gaze maps(GM) derived from eye tracking and ii) GT. An eye tracking experiment

was performed on 15 retina experts while they were reviewing the images exhaustively. To

avoid human fatigue and hence low accuracy of eye tracking data, dataset size was limited to 10
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Figure 3.9: Comparison of saliency models for abnormal fundus image (a) Sample fundus image
(b) Markings from 5 experts (c) GM map(d) SED (Our model) (e) GBVS (f) AIM (g) IK (h)
SR

images, all containing DR lesions. The GM was collected separately for normal images. GMs of

all experts were denoised and averaged to derive an average GM for each image. The proposed

model was also benchmarked against 4 different bottom up models of saliency. The preprocessed

images (section 3.1.2) were taken as input for all the saliency models for a fair comparison. The

models taken for comparison were based on different approaches: SR [53], Itti-Koch (IK) [15],

GBVS [56] and AIM [54]. Of these models, only the AIM model is based on learning (from

patches of a large number of natural images).

A sample abnormal image and its softmap GT are shown in Figure 3.9a-b. The GM and the

computed saliency maps are presented in Figure 3.9c-h. SED and AIM appear to be similar

to both GT as well as GM, though there are some false positive saliency regions as well. The

saliency maps from GBVS, IK and SR are sparse and do not have as much overlap with the

GT and GM. The saliency maps were also computed for images without any abnormalities i.e.
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Figure 3.10: Comparison of saliency models for normal fundus image. (a) Original fundus image
(b) Average gaze map (c) SED (Our model) (d) GBVS (e) AIM (f) IK (g) SR

normal images. These are shown for a sample image for all models in Figure 3.10. The GM for

Figure 3.10a is shown in Figure 3.10b.

Evaluation against Ground truth

In the medical domain, unlike general vision, high level (or top down) knowledge is used during

image scrutiny as the end goal is diagnosis. Hence, we evaluated all the models against GT.

It is quite possible that both overt and covert attentions are used in determining if a region

has abnormalities or not. This may result into occasional fixations on nom-lesion regions and

no fixation on actual lesion regions. Hence, it is of interest to determine the degree of overlap

between the GM and GT maps also. The GT softmap was thresholded at 50% agreement to

generate a binary map. All saliency maps and GMs were thresholded from 0-90% of saliency

in steps of 10% to generate the PR plot and F-score vs %saliency plot presented in Figure
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Figure 3.11: Comparative performance of various saliency models against ground truth (a)
Precision-Recall characteristics (b) F-score for saliency models.

3.11. The plots reveal that SED and GM outperform all saliency models. This underscores the

fact that a saliency model designed for natural images is not appropriate for medical images

especially in helping to detect abnormalities.

Evaluation against Gaze-map

We also compared the saliency maps with GMs. Precision (P ) and recall (R) were computed by

thresholding S in the 0-90% range in steps of 10%. The resultant plots are presented in Figure

3.12(a). It can be observed that for P < 0.2 the R values of existing models show an increasing

trend whereas for P > 0.2 the trend is a decreasing one. In contrast, SED shows an increasing

trend for all R ∈ [0, 1]. At P = 1, SED outperforms the existing methods by 10%. This relative

improvement is also seen in F-score which is presented in Figure 3.12(b).

Figure 3.10(b) reveals that experts scrutinize even normal cases with a set of fixations before

making a diagnosis. The GM also indicates the macula to be the only region with significant

foveation. This is to be expected as macula is responsible for sharp colour vision and is hence

a danger zone; any presence of abnormality here calls for swift intervention. Although GM for
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Figure 3.12: Comparative performance of various saliency models against gaze maps (a)
Precision-Recall characteristics (b) F-score for saliency models.

normal images has greater than zero saliency, it is expected that computed saliency map has

zero value. It can be seen that only SED is able to reject normal regions and generate a very

sparse saliency map as desirable. The scrutiny of normal images is guided by more complex

knowledge about the normal anatomy, danger zones and an expert’s scrutiny style.

3.3.2 Evaluation of Interactive Selective Enhancement

The publicly available DiaretDB1[64] dataset is chosen for validation as it contains both bright

and dark lesions and also provides lesion-level GT. We use 47 abnormal images out of given 89

images for the evaluation. A set of experiments are reported here for different settings of mixing

parameters. a and b are fixed for all the experiments. First, mixing parameter α and β are

varied one at a time while the fixed parameter is set to zero. Varying values of α with β = 0

results in enhancement of only dark lesions. Similarly, varying values of β with α = 0 results

in enhancement of only bright lesions. Figures 3.13 and 3.14 show qualitative results of IES for

dark and bright lesions respectively. An excessive enhancement of dark (bright) lesions is seen

to relatively brighten (darken) the background. If, both α and β are varied simultaneously, this

41



Assistive Lesion Emphasis System An Unsupervised Approach

Figure 3.13: Selective enhancement of dark lesions for different α (β = 0).

Figure 3.14: Selective enhancement of bright lesions for different β (α = 0).
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Figure 3.15: Balanced enhancement of both bright and dark lesions for varying values of α and
β.

results in a balanced enhancement of both dark and bright lesions. Figure 3.15 shows this on a

sample image.

A quantitative evaluation of IES was performed by computing the contrast to noise ratio (CNR)

for varying values of mixing parameters. CNR is defined as

CNR =
|mf −mb|

σb
(3.12)

where, mf and mb are mean intensity of foreground (lesions in our case) and background re-

spectively. σb is the standard deviation of background intensity. Figure 3.16 shows the relation

between CNR and mixing parameter which is strictly increasing. Varying mixing parameter

from 0 to 1 increases CNR by ∼ 30% for both dark and bright lesions (from 4.04 to 5.8 for

bright lesions and from 3.36 to 4.75 for dark lesions).

Figures 3.13, 3.14 and 3.15 suggest that certain range of α and β give the best perceptual quality.

It is possible to dynamically compute the optimum parameters of ISE for a given image and use

it as default settings subject to minor adjustments by reader.
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Figure 3.16: Contrast to noise ratio as a function of mixing parameter: (a) dark lesions (b)
bright lesions.

3.4 Conclusion

We proposed a novel approach where computerized diagnosis assists human reader to reduce

fatigue while DR image analysis. We named it Assistive Lesion Emphasis System(ALES) and is

developed as two-stage system: saliency computation and selective emphasis. Saliency compu-

tation is done with novel spatially-varying erosion & dilation(SED) and lesion emphasis is done

using interactive selective enhancement(ISE). ALES offers an efficient and highly interactive

environment for image readers in reading centres.

Saliency computation has not received much attention in medical imaging. We presented a

saliency model which is biologically inspired and is based on combining results of spatially-

varying morphological processing centred at randomly chosen gaze points. The poor perfor-

mance of saliency models such AIM, GBVS etc., in contrast to the good performance of our

model in predicting gaze points and identifying abnormal regions, underscore the point that

generic saliency models are unsuitable for the medical domain. As opposed to the strategy we

used where the gaze points were chosen randomly, a guided spatial arrangement of gaze-points

would be an interesting variant worth exploring. We also developed interactive and selective

enhancement of regions of abnormalities. The results shows that contrast of lesions can be

boosted significantly with increasing values of mixing parameters. For maximum perceptual

quality, optimization of mixing parameters can be explored.
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Chapter 4

Assistive Lesion Emphasis System

A Supervised Approach

“In other words then, if a machine is expected to be infallible, it cannot also

be intelligent. There are several mathematical theorems which say almost

exactly that. But these theorems say nothing about how much intelligence

may be displayed if a machine makes no pretense at infallibility.”
– Alan Turing

Computer Assisted Diagnosis (CAD) tools are of interest as they enable efficient decision mak-

ing in reading-centers for screening of diabetic retinopathy. We proposed a novel, reader-centric

design named ‘assistive lesion emphasis system (ALES)’ in Chapter 1 and discussed an un-

supervised approach in chapter 3. ALES draws reader’s attention to abnormal regions in a

least-obtrusive yet effective manner, using saliency-based emphasis of abnormalities and with-

out altering appearance of background tissues. In this chapter we demonstrate yet another

approach for development of ALES. Here, lesion-saliency is learnt in supervised manner using

a convolutional neural network (CNN), inspired by the saliency model of Itti and Koch [15].

Training of CNN is done using novel loss function which is designed to handle range mismatch

between intensity values of output saliency and ground truth. Network is designed and trained

to fine-tune standard low-level filters and learn new high-level filters for deriving a lesion-saliency

map. Computed saliency map is then used to perform lesion-emphasis via a spatially-variant

version of gamma correction. This is done by defining parameter gamma as function of saliency.

ALES is validated next in stage-wise fashion, similar to previous chapter. Proposed saliency
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model has been evaluated on public datasets and benchmarked against other saliency models.

Our saliency model was found to outperform other saliency models by 6 to 30% and lesion-

emphasis technique was found to boost contrast to noise ratio of lesions by more than 30%. At

the end of chapter we describe a perception study conducted in order to evaluate effectiveness

of ALES in reading-center-like setting. Results of a perception study proves that ALES is an

effective assistive tool for readers.

4.1 Saliency Computation

4.1.1 Background

Computational modeling of visual saliency has been a subject of research for long. Exist-

ing computational models range from biologically plausible ones [15, 65] to information- and

decision-theoretic [66, 54], graphical [67, 56], spectral-analysis [41, 53], pattern classification

based [55, 68, 69], etc. Out of these models, most of information/decision-theoretic and pattern

classification based models are supervised in nature. However they are developed to compute

saliency for natural images where: (a) there are only few objects of interest (b) the target objects

are mostly in the center and (c) the background is free of clutter/texture. Medical images do not

fit this category. Also, medical image analysis being highly domain specific area, requires sepa-

rate attention to each modality/disease. For example, the model developed to generate saliency

of tumor in brain MRI will not work for the DR lesions in color fundus images. Hence, various

task-specific saliency models have been developed for different applications including medical

image classification and retrieval [49], plane identification from 3D ultrasound [52], registration

of dynamic renal MR images [51], prostate MRI segmentation [50] and saliency modeling for

Glioblastoma multiforme tumor [47].

Our interest lies in developing supervised saliency model for DR lesions which can be used for

lesion-emphasis in ALES. Learning saliency for DR images is a challenging task due to artifacts

and non-uniform illumination (see Figure 1.3 in Chapter 1). A good saliency model has to learn

discriminate artifacts from true lesions and reject the former. Supervised saliency model has

been reported for only hard exudate [48]. Our aim is to develop saliency models for both hard
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exudate and hemorrhage. This is done using a Convolutional Neural Network(CNN) inspired

by the Itti-Koch saliency model [15]. In Itti-Koch’s saliency model, center-surround difference

maps are computed in the color, intensity and orientation dimensions at different scales using

pyramids and a linear combination of these maps is defined as the saliency. The proposed CNN

architecture is derived from this model.

4.1.2 Method

The task specific saliency has been traditionally modeled as a weighted combination of low-level

feature maps, where weights are learned from prior-knowledge [70, 71]. A neural network based

extension of Itti-Koch model has already been shown to be effective in handling normalization

and feature competition with biologically plausible dynamics [72]. Our approach is to use a

CNN to (i) fine-tune standard orientation and center-surround filters (ii) learn new filters and

(iii) learn the weights for combining the feature maps.

CNN is a type of feed forward neural network which is biologically inspired. The important

feature of CNN is local connectivity and weight sharing, i.e. each neuron in the current layer

is locally connected to a small set of neurons from the previous layer. Synaptic weights used

for the local connectivity are same for all the neurons which enables convolution property. The

architecture we propose has three building blocks: a convolutional layer which performs filtering

of activations with weights; maxpooling which downsamples the image by retaining the maxima

in a local neighborhood and an activation function which applies a non-linear transformation

on the intensity values of an image. We use the Rectified Linear Unit (ReLU) as an activation

function [73].

CNN Architecture

The architecture of the proposed model has five stages as shown in Figure 4.1. It is carefully

designed to share similarities with standard Itti-Koch saliency model. Similarities are as follows:

Stage 1 is equivalent to color/intensity pyramid; Stage 2 serves the purpose of orientation pyra-

mid; Stage 3 facilitates further computation by stacking the feature maps of previous layers;

Stage 4 models the center surround difference pyramid and Stage 5 is identical to final normal-
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Figure 4.1: Proposed architecture with stage-wise description of types of layers, filter size,
padding size, stride and activation function.

ization and combination of all the maps. Parallel fine-tunning of Itti-Koch filters and learning

of new filters is carried out at each stage. Model architecture is described below.

An image I of size (288 × 360 × 3) forms the input to stage 1. Stage 1 has one convolutional

layer with 24 filters, each of size (1×1×3) and produces an activation map O1 as output. These

filters learn 24 different color transformations.

O1 =Wcolor ∗ I + bcolor (4.1)

Stage 2 has two parallel convolutional layers, each operating on O1 to produce two independent

output activation maps O21 and O22. Each convolutional layer has 18 filters of size (15×15×24).

The first convolutional layer is initialized with orientation filters and the second one is initialized

with random filters. Weight initialization forWorient is done as follows. Eighteen 2-D orientation

filters of resolution 20◦ were generated. Each filter was repeated and stacked to generateWorient.

O21 and O22 are computed as follows.

O21 =Worient ∗O1 + borient (4.2)

O22 =Wrnd1 ∗O1 + brnd1 (4.3)
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The maps O1, O22 and O21 are stacked in stage 3 and maxpooling in (2 × 2) neighborhood is

applied to generate a feature map O3 of size (144×180×60). Using [·, ·, ·] notation for stacking,

O3 = maxpooling([O1, O21, O22]) (4.4)

Stage 4 also has two parallel convolutional layers which operate on O3 to produce O41 and

O42 as two independent outputs. Both layers have 6 filters of size (10 × 10 × 60). The first

convolutional layer is initialized with center-surround (CS) filters and second with random filters.

Weight initialization for WCS is done using six 2-D center-surround filters which are generated

as follows:

CS1 = ±(G1 −G4) (4.5)

CS2 = ±(G2 −G5) (4.6)

CS3 = ±(G3 −G6) (4.7)

CS4 = ±(G1 −G5) (4.8)

CS5 = ±(G2 −G6) (4.9)

CS6 = ±(G3 −G7) (4.10)

where Gn is a Gaussian filter with mean 0 and variance n. In these equations, positive sign is

used for hard exudate while the negative sign is used for hemorrhage saliency. Each CS filter

was repeated and stacked to make WCS . O41 and O42 are computed as follows.

O41 =WCS ∗O3 + bCS (4.11)

O42 =Wrnd2 ∗O3 + brnd2 (4.12)

Stacking of O41 and O42 generates O4 in stage 5. A convolutional layer with a filter of size

(1 × 1 × 12) operates on the stack O4 to produce a single image O5. This stage learns the

final weighted combination of all feature maps. Finally, a ReLU activation is applied to get the

desired output, which is a final gray scale image O of size (144× 180).

O4 = [O41, O42] (4.13)

O5 =Wcombination ∗O4 + bcombination (4.14)

O = max(0, O5) (4.15)
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The ReLU activation function, unlike sigmoid or tanh, is linear in the positive range thus

ensuring linear mapping (no saturation) for positive saliency while clipping the negative saliency

to zero as desirable.

Loss Function

Training a CNN is an unconstrained optimization problem which aims to minimize a loss function

which compares the system output with ground truth. Conventional loss functions for regression

assume same numeric range for both. However, in the present case, the ReLU activation allows

O ∈ [0,∞), whereas the ground truth (GT) saliency values are in the range [0, 1]. Hence, we

define a new loss function as follows.

L(X,Y ) =
1

N

∑
x∈X,y∈Y

βxe−αy + (1− x)(1− e−αy) (4.16)

Here, the tuple (x, y) denotes the (GT saliency, output) pixel pair; N is the total number of

pixels; β is a weight used to handle class imbalance. α controls the threshold y0 such that, a

low loss is achieved for 2 conditions: (i) low GT saliency value (x ∈ [0, 0.5]) and a sub-threshold

output (ii) a high GT saliency (x ∈ [0.5, 1]) and a supra-threshold output (see Figure 4.2).

The loss function has a saddle point at (x, y) = (0.5, y0). The threshold value y0 is found by

substituting x = 0.5 in L(X,Y ) (or differentiating L(X,Y ) w.r.t. x and equating to 0).

y0 =
1

α
log(β + 1) (4.17)

Ideally, zero GT saliency should correspond to nearly zero output values whereas it suffices to

have high GT saliency (x = 1) correspond to a large range of output values. This is achievable

with the threshold y0 tending to zero or equivalently, very large α.

The proposed CNN was trained for hard exudate and hemorrhage saliency separately. We

denote hard exudate (HE) and hemorrhage (HM) specific saliency models as SHE and SHM

respectively. Data and computational resources used for training of CNN is discussed in the

Material section. Computed saliency maps are used to emphasize lesions locally as described in

the following section.
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Figure 4.2: Loss function in the absence of class-imbalance (β = 1). (top) 3D view of a loss
function. Saddle point is shown in red color. (bottom) 2D view of a loss function. Above surface
is sampled at different values of x. y-projection of saddle point (0.5, y0) is also shown.

4.2 Lesion-Emphasis

4.2.1 Background

Readers in DR reader-centers analyze fundus images by following the guidelines provided by

ETDRS [9]. The staging is done based on location of hard exudate and number of hemorrhages

as described in section 4.2. Hence, ALES is designed to apply local enhancement by increasing

contrast of lesions, which can successfully draw readers’ attention and reduce diagnostic error.

Existing work on enhancement of retinal images are based on illumination/contrast correction

[74, 75, 76, 77, 78], contourlet [79] and histogram equalization and matching [80, 81]. These

methods are primarily aimed as a pre-processing stage for CAD development and none have
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been aimed at readers or experts. Hence, they often introduce textures and colour shifts. These

methods are developed to correct global variations and improve contrast at a global (rather than

local) level. ALES aims to emphasize the lesion locally without altering the global statistics

of the image and do this by using saliency information. Saliency based local enhancement

techniques have been reported for natural images. These include optimization to match object

and target saliency [18], luminance/chrominance adjustment based on saliency [17], iterative

addition of point variation values [82], de-emphasis of background texture [83] and saliency

weighted luminance correction [84]. Most of these techniques are computationally complex.

Since ALES is aimed at readers in screening or triage scenario, the lesion emphasis needs to be

done with a simple, fast and computationally efficient method.

4.2.2 Method

We propose a spatially varying method that achieves lesion-specific emphasis by modifying a

global contrast stretching method. This is done by choosing a parametric, spatially invariant

method and allowing the parameter to be a function of the local saliency. We start with gamma

correction, which is a well known spatially invariant, non-linear, contrast stretching method.

Gamma correction is defined as,

IC(x, y) = IO(x, y)
γ (4.18)

Here IC(x, y) and IO(x, y) (Normalized between 0 and 1) are corresponding pixels from corrected

and original images respectively. γ is the global parameter. This typically is used to match the

dynamic contrast of an image to that of a display device. A choice of γ > 1 pushes intensity

values to lower range which results in darkening of the entire image, while γ < 1 pushes intensity

values to higher range and thus brightening of the image. Gamma correction on the sample

fundus image can be seen in Figure 4.3. It can be observed that global correction fails to

emphasize the lesions locally.

The above operation can be made to be spatially varying by defining gamma as a function of

the saliency at a point as follows.

IC(x, y) = IO(x, y)

(
1−SHE(x,y)

a
+

SHM (x,y)

b

)
(4.19)
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Figure 4.3: Gamma correction. (a) original image (b) corrected image with γ = 2 (d) corrected
image with γ = 0.5.

where, a and b are normalizing parameters. Ideally, the background pixels should have zero

saliency in both SHE and SHM and hence γ = 1 for such pixels which implies no correction.

Pixels from regions containing hemorrhage should have SHE(x, y) = 0 and SHM > 0, so γ > 1

resulting in a darkening of the region. Pixels from regions containing hard exudate will have

SHE(x, y) > 0 and SHM = 0, so γ < 1 should lead to a brightening of the region.

4.3 Material

The publicly available DIARETDB1 [64], DRiDB [85] and DMED [86] datasets were used for

training and testing the proposed saliency computation stage. Pre-processing consisted of illu-

mination correction [58]; fundus extension to remove the black mask region [60]; detection of

vessels [59] and Optic-disk using circular Hough transform. The last two were subsequently in-

painted to reduce false detections. Figure 4.6(b) shows the result of preprocessing on a sample

image Figure 4.6(a). All images were downsampled to size 288 x 360 and normalized to have

zero mean value and unit variance. The size was chosen to minimize both distortion of the

image (aspect ratio) and the computational cost.

The chosen datasets provide different types of lesion markings whereas our CNN training requires

a lesion-level GT. Only DMED provides lesion markings (pixel level). Both DIARETDB1

and DRiDB datasets provide markings as regions around lesion(s) with the former providing

markings of 4 experts as a heatmap (leftmost image in Figure4.4) and the latter providing

53



Assistive Lesion Emphasis System A Supervised Approach

Figure 4.4: Procedure to obtain lesion-level ground truth from regional marking.

marking from one expert as a binary map. In order to derive consistency in GT across the

datasets, the markings were processed as follows (see Figure4.4). The heatmap was thresholded

at 50% agreement to derive a binary mask. This mask was multiplied with the original image

to extract the lesion regions (second image from right in Figure4.4); this was finally thresholded

to derive the final binary, lesion-level GT (rightmost image in Figure4.4). In order to retain

hard exudates (hemorrhages) in the final GT, we retain pixels above (below) a threshold. This

GT was downsampled to 144 × 180 for training. Training for SHE was done directly with the

derived GT whereas for SHM , a Gaussian was convolved with the GT as hemorrhages are more

diffused in appearance.

Table 4.1 presents the details of the datasets used. Since the aim is to derive a saliency model

for abnormalities, only abnormal images were used in training. 122 (of 134) images with hard

exudates and 72 (of 85) images with hemorrhages were used for training. Training and testing

were done on whole images. Given that the dataset size is not large, (i) the training set size was

chosen to be larger to ensure a variety of data for learning and (ii) online data augmentation was

done using a variety of transformations. Random rotation between 0 to 30◦, random vertical

shift between 0 to 57 pixels (20% of height of an image), random horizontal shift between 0

to 72 pixels (20% of width of an image) and occasional horizontal/vertical flips are used for

augmentation. Training was done on NVIDIA GTX 970 GPU, with 4GB of RAM for 10000

epochs by minimizing the loss function in Eq. 4.16 using a stochastic gradient descent optimizer.

We experimented with a number of learning schemes and finally determined the suitable values
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of parameters as given in Table 4.2. Training time was approximately 5 days. Cross-validation

was not performed due to excessive training time.

Datasets DIARETDB1 DRiDB DMED
Total Number of Images 89 50 169
Images containing Hard Exudate 48 32 54
Images containing Hemorrhages 54 31 -

Table 4.1: Dataset description.

Parameters SHE SHM

L2 regularization 0.01 0.01
Learning Rate 0.0005 0.0005
Nesterov momentum 0.7 0.6
Decay 5× 10−8 1× 10−4

β 225 111
α 500 500
Batch size 8 8

Table 4.2: Parameter values used for training.

4.4 Results

Assessment of ALES is done stage-wise for both abnormal and normal cases.

4.4.1 Saliency Computation

Evaluation of Trained Filters

CNN generates output by convolving a set of filters with the input. These filters are key

components for computation of activation maps for saliency. Evolution of filters was assessed

qualitatively over the period of training. It was observed that the orientation filters underwent

very small changes while center-surround filters changed considerably during training (see Figure

4.5(a)(b)). Figure 4.5(b) shows progression in tuning of 3 channels of the center-surround filters
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Figure 4.5: Evolution of the filters during training of hard exudates saliency. (a) 3 channels of
Worient from stage 2 (b) 3 channels of CS3 filters from stage 4 (c) 3 channels of random filters
from stage 2 (d) 3 channels of random filters from stage 4.

of SHE . It can be seen that the pattern of tuned filters are similar to difference of multiple (

> 2) Gaussian filters. Figure 4.5(c-d) shows how 3 filters (single channel only) with random

initialization changes during training in stage 2 and 4. The sample filters from stage 2 can

be expected to give higher response for linear structures, bifurcations and bright spots (with

dark top) respectively. The sample filters from stage 4 are similar to Gaussian filters or blob

detectors.
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Evaluation of Saliency

The performance of the saliency models was evaluated against seven existing computational

saliency models: Itti-Koch [15], SR [53], AIM [54], GBVS [56], Torralba [87], Judd [55] and

Rare [88]. Among these Itti-Koch is biologically plausible, SR is spectral analysis based, AIM

and Torralba are information-theoretic, GBVS is graph based, Judd is pattern classification and

Rare is based on top-down bias. Saliency maps for these existing models were computed using

publicly available codes using default parameter settings.

A sample image, its GT and the computed saliency maps are shown in Figure 4.6 for hard

exudates and Figure 4.7 for hemorrhages. Ideally, a computed saliency map should appear

sparse and similar to the GT as this would be ideal for lesion emphasis in the next stage of

ALES. It can be seen from the computed maps in Figure 4.6, only SHE , SR and Torralba have

either of these desired characteristics. Of these, the map with Torralba is the least sparse. In

general, it is more difficult to differentiate hemorrhages from the background and blood vessel

fragments. This is seen from the fact that, of all the computed maps in Figure 4.7, only those

with ours and SR models have the desired features.

Computational saliency for healthy retina is also important for normal vs abnormal decisions.

Hence, SHE and SHM were tested on normal cases. Sample images and the computed maps are

shown in Figure 4.8. The almost blue maps indicate that both models give virtually-zero saliency

values for the pixels representing healthy tissue. Weak responses in SHE are seen occasionally

near the peripapillary region which is due to the presence of a hyper-reflective region.

Quantitative evaluation was performed on both abnormal and normal images (see Table 4.3).

Normal images were taken from DRiDB [85] and DIARETDB0 [89]. The metrics used for

the evaluation are: receiver operating characteristic curves (ROC), area under the ROC curve

(AUC), false positive rate(FPR) vs saliency and precision vs saliency. The binary lesion-level GT

is used as the reference standard. In case of SHE , GT is already binary hence used directly. In

case of SHM , GT is continuous hence thresholded at 0.5 value to obtain binary GT. Lesion-pixels,

if correctly/incorrectly detected with reference to GT, are considered true positive(TP)/false

negative(FN). Background pixels, if correctly/incorrectly detected with reference to GT, are

considered true negative(TN)/false positive(FP).
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Figure 4.6: Hard exudate saliency. (a) original color fundus image (b) pre-processed image (c)
ground truth. Computed saliency maps of (d) Proposed (e) Itti-Koch (f) SR (g) GBVS (h) AIM
(i) Rare (j) Torralba (k) Judd.
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Figure 4.7: Hemorrhage saliency. (a) original color fundus image (b) pre-processed image (c)
Gaussian convolved ground truth. Computed saliency maps of (d) Proposed (e) Itti-Koch (f)
SR (g) GBVS (h) AIM (i) Rare (j) Torralba (k) Judd.
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Figure 4.8: Predicted saliency for normal cases. (a) Normal color fundus image and saliency
maps for (b) hard exudate (c) hemorrhage.

Type of abnormality Abnormal images Normal images

Hard exudate 12 33
Hemorrhage 13 33

Table 4.3: Number of images in the test set.

ROC is a graphical representation of achieved True Positive Rate (TPR = TP
TP+FN ) vs False

Positive Rate (FPR = FP
FP+TN ) for varying threshold values. The ROC and AUC are presented

in Figure 4.9 and Table 4.4. AUC values are reported for whole test set as well as a balanced

test set (with equal number of normal and abnormal images). The results show that proposed

model outperforms all other models. It can be seen that the Judd saliency model has nearly

same AUC value as SHM . This can be explained as follows. In normal cases (absence of any

hemorrhage), the model successfully rejects background pixels as non-salient regions. Since the

test set is skewed towards normal images, the overall performance is good and almost at par

with SHM . However, this model’s use of multi-scale analysis causes the saliency response to be

spatially extended rather than highly localized as can be seen in Figure 4.7(k). Consequently,

the performance of Judd model is compromised for abnormal images. This can be verified from

analysis of False Positive Rate discussed next. Hence, the AUC value of Judd model on balanced

test set is less than that of whole test set.
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Figure 4.9: Receiver Operating Characteristics(ROC). (a) hard exudate saliency (b) hemorrhage
saliency.

As noted in [90] AUC aids assessment of a model’s ability to assign high saliency values to

lesions, but it fails to give any insight into its handling of non-lesion regions such as background

and artifacts where FP can be created. Low saliency should ideally correspond to non-lesion

regions. The FP Rate (FPR = FP
FP+TN ) for low saliency values may be a better metric for this

purpose. FPR was computed(on whole test set) by thresholding the computed saliency with a

step-size of 1% of the maximum saliency value and comparing with GT (see Figure 4.10). Both

SHE and SHM have a low FPR almost over the entire range of saliency values which indicates

they handle the background(non-lesion) regions well. On the other hand, barring SR, all existing

models have a relatively high FPR for lower saliency range (Wilcoxon signed-rank test: p-value

<< 0.01). In the case of hemorrhages, Torralba and Judd model have higher FPR(in the low

saliency range) than other models which indicates its inability to handle non-lesion regions.

FPR demonstrates how well a saliency model can reject background pixels. Precision ( TP
TP+FP )

on the other hand helps assess how often a model correctly detects lesions. Precision is also

known as Positive Predictive Value in some literature. As saliency increases, the proportion

of correctly detected lesion-pixels among all the detected pixels (and hence precision) can be

expected to increase. The precision vs saliency plots(computed on whole test set) for the two

types of lesions are shown in Figure 4.11. The wide difference in precision levels for SHE and

SHM attest to the fact that detection of hemorrhages is more challenging; the low precision
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Hard Exudate Hemorrhage
whole test set balanced test set whole test set balanced test set

SHE/SHM 0.962 0.959 0.918 0.923
SR 0.799 0.829 0.678 0.622
Torralba 0.853 0.867 0.708 0.683
rare 0.794 0.791 0.621 0.591
Itti-Koch 0.688 0.675 0.526 0.523
AIM 0.723 0.728 0.589 0.575
GBVS 0.667 0.664 0.774 0.677
Judd 0.367 0.383 0.896 0.827

Table 4.4: Comparison of AUC scores.

caused by confusion between vessel fragments (persisting after inpainting) and hemorrhages.

Further, it can also be seen that both SHE and SHM outperform other saliency models (Wilcoxon

signed-rank test: p-value << 0.01).

The two saliency models can be combined to derive a common saliency map for a given image.

Examples of such maps are shown for sample images in Figure 4.12. Here, the salient regions

are color coded with green (hard exudate) and blue (hemorrhages). It can be observed that

by and large, the background and non-lesion regions, including blood vessels, are non-salient.

Some high saliency is seen in the middle of the optic disc where blood vessels converge, which

is erroneous.

4.4.2 Lesion-emphasis

Qualitative results of ALES are shown in Figure 4.13 for sample images. It can be observed

that dark lesions in poorly illuminated regions are not visible in the original images but are

more visible in the processed results which makes counting of dark lesion easier. Hard exudates

which are close to macula as per GT are not clearly visible in the original images but are

prominent after emphasis. It is notable that the image in Figure 4.13(e) contains a dark artifact

near the optic-disk which is not enhanced by ALES as desirable. Vessel regions are emphasized

incorrectly which may be undesirable for fully automatic CAD. A reader using ALES will know

to ignore it.
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Figure 4.10: Flase positive rate vs saliency. (top) hard exudates (bottom) hemorrhages.

Figure 4.11: Positive Predictive Rate/Precision vs saliency. (top) hard exudates (bottom)
hemorrhages.
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Figure 4.12: Combined saliency for hard exudate and hemorrhage. (a,c) Original images with
lesions (b,d) combined saliency maps for hard exudate (green) and hemorrhage (purple) shown
overlaid on the original image.

Quantitative evaluation of ALES was done using contrast-to-noise ratio (CNR) of lesions.

CNR =
|mf −mb|

σb
(4.20)

where, mf and mb are mean intensity of foreground (lesions) and background respectively. σb

is the standard deviation of background intensity. CNR was computed for images from two

datasets containing both hemorrhage and hard exudate. The CNR values are presented in table

4.5. CNR is improved by more than 30% in each case. Lesions with improved local CNR should

attract reader’s attention more than the ones in the original image.

ALES output for a sample normal image is shown in the Figure 4.14. ALES can be seen to

introduce minimal artifacts, as desirable.
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Figure 4.13: ALES output for abnormal images. (a)(e) original images (b)(f) corrected images
(c)(g) hard exudate GT (d)(h) hemorrhage GT.

Figure 4.14: ALES output for normal image. (a) original image (b) corrected image.
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DIARETDB1 DRiDB
HE HM HE HM

Original image 3.97 2.91 2.98 3.05
ALES image 5.67 4.02 4.02 4.63

Table 4.5: Average contrast-to-noise ratio.

4.5 Perception Studies

Two perception studies were conducted to measure the effectiveness of ALES in assisting readers.

The first study was aimed at measuring the effectiveness for global-level decision about an image

which is classification of an image as a normal vs abnormal case. The second study was aimed

at measuring the effectiveness of ALES for local-level decision about an image such as locating

all hemorrhages and a hard exudate in proximity of macula. This task is designed in accordance

with the guidelines given by the ETDRS [9].

4.5.1 Stimuli

Stimuli (images) for both the experiments were selected by a local expert. 30 pairs of (original

and ALES output) images, with equal number of normal and abnormal cases, were used in the

first study. 10 pairs of abnormal images were used in the second experiment. Randomized studies

were conducted in two sessions with a gap of 4 days to ensure least fatigue for participants.

One image from each pair(original and ALES output) was randomly selected and grouped as set

A. The remaining images were grouped as set B. Hence, set A and B are mutually exclusive.

Set A was used for the first session and set B for the second. This was done for both the studies.

4.5.2 Subjects

12 engineering student volunteers were recruited for the studies. They were given a brief intro-

duction to DR using some images prior to the first session.
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4.5.3 Experiment design

For both studies, images were shuffled and displayed on Lenovo monitor of size 1366×768 pixels

and the interval between the response for an image and the display of next image was 2s.

Study 1. Subjects were shown images and asked to press key ‘A’ for abnormal and key ‘N’ for

normal to indicate their decisions about the images.

Study 2. Subjects were shown images of abnormal cases and were instructed to mark (i) all

hemorrhages; (ii) click on the hard exudate which is closest to macula. Hemorrhages are of

interest in detecting DR. Macula is the site of high acuity colour vision and therefore presence

of hard exudates in its proximity is of interest to detect DME.

4.5.4 Results

The results for the first and second studies are shown in Tables 4.6 and 4.7 respectively. The

results in Table 4.6 indicate that ALES is effective as the accuracy of global-level decision is

significantly higher with the ALES output than with original images. ALES is also seen to cause

a significant decrease in the response time.

DME requires immediate referral to a clinic and as per ETDRS standards this is assessed based

on the proximity of hard exudates to macula. We assess DME by computing Accuracy =
TP+TN

Total number of images . TP is defined to be the number of images where a subject’s hard exudate

marking is in the same retinal zone as given by GT and TN is the number of images where

the subject has not marked any hard exudate and the corresponding GT also indicates no sign

of DME. Table 4.7 shows that the accuracy for detection of DME improves significantly with

ALES.

As per ETDRS standards, determining the DR stage based on an image requires localizing and

counting all hemorrhages. Hence, we measure the Sensitivity = TP
TP+FN ; TP is the number of

correctly detected and FN is the number of undetected hemorrhages. Table 4.7 also shows that

ALES is effective for DR detection as the sensitivity has increased significantly with ALES.
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Original image ALES output p-value (Wilcoxon signed-rank test)

Accuracy 71% 78% < 0.05

Response Time 5.00s 4.47s < 0.05

Table 4.6: Average accuracy and response time for abnormal vs normal classification task in
Study 1.

Original image ALES output p-value (Wilcoxon signed-rank test)

Accuracy for DME 70.83% 79.17% < 0.05

Sensitivity for DR 41.56% 49.78% < 0.05

Table 4.7: Performance for local level decision in Study 2.

4.6 Conclusions

We presented supervised approach for designing ALES for DR. The proposed ALES performs

saliency computation followed by lesion-emphasis which was modeled using a spatially varying

gamma correction. Starting with the bottom-up Itti-Koch model, we demonstrated that a CNN-

based saliency model can be built by fine-tuning low-level filters and simultaneously learning

new high-level filters. The proposed saliency model outperformed other state-of-the-art models

for both bright and dark lesions for both abnormal and normal cases.

Assessment results of ALES indicate that it can successfully discriminate artifacts from true

lesions and reject them. ALES is fast, as a given image can be processed in 5 seconds and

produce a result where the background is unaltered and lesions are made prominent (up to 30%

improvement in the CNR). Thus, we conclude that ALES can be an effective and computation-

ally efficient tool employable in reading centers. The results of our perception studies attested

to the effectiveness of ALES. However, a more rigorous evaluation can be done in a clinical

setting.
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Chapter 5

Conclusions

“That’s one small step for a man, one giant leap for mankind.”

– Neil Armstrong

We have looked at specific disease called diabetic retinopathy(DR). DR is a leading cause of

visual impairments and permanent blindness. Mass screening is an important initiative for early

detection and cure of DR. Screening is done by arranging camps and diagnosing adults at risk

of developing DR. In order to increase the reach and throughput of mass screening, a service

called reading-center has come to existence. Image reading-centers are crucial part of screening

diabetic retinopathy. Images coming from various sources are analyzed by readers working in

reading centers and the reports are used to recommend further consultation. Image reading is a

lengthy process which leads to fatigue and subsequently misdiagnoses. we aimed at developing

assistance for DR image readers. First we analyzed diagnostic strategies used by retinal experts

with various level of experience and derived a recommendation for fast and accurate diagnosis.

In order improve performance of DR readers further, we proposed a design where computerized

diagnosis work as an assistant to a reader. The design of computer assisted diagnosis(CAD)

was done using assistive lesion emphasis system or ALES. ALES was developed based on visual

perception and it draws readers’ attention to lesion in least obtrusive way.

In order to understand best practices and derive a recommendation, we conducted an eye track-

ing study with 57 participants while they were diagnosing DR images. We collected their eye

movements and other behavioral data like response time, and analyzed them to understand strat-

egy used for DR diagnosis. A new quantity named coefficient of scanning(CS) was designed and
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based on that diagnostic strategies were classified into two bins, tracing and dwelling. Tracing

refers to the strategy where image-reader scrutinizes all regions by visiting them multiple times;

but with superficial examination in each visit. Tracing strategy leads to slower decision making.

Also, while using tracing strategy diagnostic accuracy of semi-experts and novices suffers more

than experts. Dwelling, on the other hand, refers to the strategy where image-reader scrutinizes

one region thoroughly before moving to next region. This eliminates necessity of revisiting to

same region multiple time, making dwelling a fast strategy. Dwelling also leads to accurate

diagnosis irrespective of the expertise-level of a reader. Hence dwelling can be marked as most

efficient strategy. We also examined gaze-patterns of medically trained participants and found

them very similar. This patterns are combined to extract an optimal search strategy. Opti-

mal search strategy recommends image-readers to scan retinal zones in a particular weighted

sequence. This pattern takes care of visual biases and hence presumed to be easily practica-

ble. Also, the optimal strategy has properties of terminative search, which allows one to stop

scanning the image as soon as an abnormality is located. This can hopefully make diagnosis

faster.

In order to boost the performance of readers further we have developed saliency based lesion

emphasis system called ALES. ALES was developed as two stage system with saliency and

selective-enhancement as two stages. Two designs of ALES were presented. One uses unsuper-

vised saliency model and other supervised saliency model. Both ALES employed different(but

interchangeable) techniques for lesion emphasis. Unsupervised saliency model used spatially-

varying erosion and dilation(SED) operations to mimic human fixation and center-surround

filters to mimic ganglion cells in the retina. SED was validated against an average Gaze-map of

15 experts and found to have 10% higher recall than four leading saliency models proposed for

natural images. Supervised saliency model was a CNN based implementation of existing bio-

logically inspired saliency model and is trained with novel loss function. Computed saliency has

10%(for hemorrhages) and 20%(for hard exudate) higher AUC than existing models. Saliency

maps were used for selective enhancement of lesion. The lesion emphasis was done in two ways,

one with multiscale fusion of saliency map and original image and another with spatially varying

gamma correction. Both ALESs improved CNR of lesions by 30%. A perception study also val-

idated the effectiveness of ALES. We suggest that DR diagnosis done with ALES maps rather
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than original images and scanning them with recommended optimal strategy will prove to be

an efficient practice.

Solutions offered in this thesis are just a starting point of a long journey for developing reader-

centric CAD. Using the findings of this thesis one can also develop an artificially intelligent

reader(AI-reader). For example, a neural network of AI-reader sees an output of ALES and

scan this output in a sequence as recommended by optimal search pattern. As optimal strategy

is terminative in nature, a network can stop scanning image as soon as an abnormality is located.

This can save lot of computation and make the diagnosis faster. The CAD developed this way

will have ability to read images in human-like fashion and might replace human reader with

sufficient training. This can create a big impact on automated diagnosis of future generation.
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