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Abstract

Kernel methods are among the important recent developments in the field of machine learning with
applications in computer vision, speech recognition, bio-informatics, etc. This new class of algorithms
combine the stability and efficiency of linear algorithms with the descriptive power of nonlinear fea-
tures. Kernel methods allow data to be mapped (implicitly) to a different space, which is often very
high dimensional compared to the input space, so that complex patterns in the data become simpler to
detect and learn. Kernel function maps the data implicitly into a different space. Support Vector Ma-
chines (SVMs) are one of the kernel methods which is widely successful for classification task. The
performance of algorithm depends on the choice of the kernel. Sometimes, finding the right kernel is a
complicated task. To overcome this, learning the kernel is the new paradigm which is developed in the
recent years. For this, the kernel is parameterized as a weighted linear combination of base kernels. The
weights of the kernel are jointly optimized with the objective of the task.

Learning both the SVM parameters and the kernel parameters is a Multiple Kernel Learning (MKL)
problem. Many formulations of MKL are presented in literature. However, all these methods restrict
to linear combination of base kernels. In this thesis, we show how the existing optimization techniques
of MKL formulations can be extended to learn non-linear kernel combinations subject to general regu-
larization on the kernel parameters. Although, this leads to non-convex problem, the proposed method
retains all the efficiency of existing large scale optimization algorithms. We name the new MKL for-
mulation as Generalized Multiple Kernel Learning (GMKL). We highlight the advantages of GMKL by
tackling problems like feature selection and learning discriminative parts for object categorization prob-
lem. Here, we show how the proposed formulation can lead to better results not only as compared to
traditional MKL but also as compared to state-of-the-art wrapper and filter methods for feature selection.
In the problem of learning discriminative parts for object categorization, our objective is to determine
minimal sets of pixels and image regions required for the task. We use the Multiple kernel learning to
select the most relevant pixels and regions for classification. We then show how the framework can be
used to enhance our understanding of the object categorization problem at hand, determine the impor-
tance of context and highlight artifacts in the training data. We also tackle the problem of recognizing
characters in images of natural scenes in MKL framework. Traditionally it is not be handled well by
OCR techniques. We assess the performance of various features ( using bag-of-visual-words represen-
tation ) based on nearest neighbor and SVM classification. Besides this, we investigate the appropriate
representation schemes for recognition using MKL.

In short, the contributions of this thesis are:

1. Proposing new MKL formulation that can learn non-linear kernel combinations subject to general
regularization on the kernel parameters.

2. Exploring the utility of multiple kernel learning formulations for feature selection and to the

problem of learning informative parts for object category recognition.

3. Recognition of character images taken in natural scenes using the state of the art object recognition

schemes. And also exploring the appropriate representation schemes for recognition using MKL.
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Chapter 1

Introduction

1.1 Introduction

Pattern recognition, a branch of artificial intelligence, studies the operations and design of systems which
recognizes the patterns in data. This includes subfields, like discriminant analysis, feature extraction,
error estimation, cluster analysis, etc. Most of recognition methods are either about supervised learning
or unsupervised learning with applications in wide range of areas. In general, recognition schemes
consists of learning algorithm where it learns a model based upon a given data ( training data ) and uses
this model to classify unseen data ( testing data ).

Learning algorithms based on kernels have found to be successful in variety of tasks. Classification
algorithms such as support vector machines [15, 16], regression algorithms such as kernel ridge re-
gression, support vector regressions, [17, 18], and general dimensionality reduction algorithms such as
kernel principle component analysis (KPCA) [19], kernel linear discriminant analysis (KLDA) [20]
are based on kernel methods. Many of these methods are widely used in various fields e.g. bio-
informatics [21-25], computer vision [26-28], speech recognition [29-31], data mining [32, 33], in-
formation retrieval [34, 35], pattern recognition [36], etc. This shows that the kernel methods have
established themselves as powerful tools. These algorithms work by embedding the data into a feature
space, and then searching for linear relations among the embedded data points. They employ a so called
kernel function which intuitively computes the similarity between two points in the feature space. This
information is contained in the kernel matrix, a symmetric and positive semidefinite matrix that encodes
the relative positions of all points. Convergence of the training algorithms is ensured as long as the ker-
nel matrix is symmetric and positive semidefinite. Figure 1.1 gives the overview of the kernel method.
More details about kernel methods is discussed in Chapter 2. Note that classical kernel-based methods
listed above are based on a single kernel.

The performance of these learning algorithms depends on the data representation. The kernel actually
defines the similarity between two samples x,y, while defining an appropriate regularization term for
the learning problem. In some situations, more flexible models are required. Recent works, show that
using multiple kernels instead of a single one can enhance the interpretability of the output of algorithm
and seen improved performances. One of the convenient approach which is considered in such situations



f(x) =2 ak(x;,x)

Data Kernel Function Kernel Matrix Algorithm  Output Function

Figure 1.1: Overview of kernel method. Data with M samples is used to compute kernel matrix (M
x M) using kernel function k(x,y). Then, learning algorithm uses this matrix to learn the model and
computes output function.

is representing kernel function k(x,y) as conic combinations of base kernels.

K
k(x,y) =Y diki(x,y) with d; > 0 (1.1)
=1

Each base kernel k; may either use the full set of variables describing x or subsets of variables
stemming from different data sources. Otherwise, the kernels k; can simply be classical kernels like
Gaussian kernels (i.e. exp””x*y“z), etc with different parameters. Within this framework, the problem
of data representation through the kernel is then transferred to the choice of weights dj.

One of the most widely used kernel method is Support Vector Machines (SVMs) [15]. Support Vector
Machines are basic tools in machine learning which are used for tasks such as classification, regression,
etc. They find applications in diverse areas ranging from vision to bio-informatics to natural-language
processing. The success of SVMs in these areas, is often dependent on the choice of a good kernel
and features — which are typically hand-crafted and fixed in advance. However, hand-tuning kernel
parameters can be difficult as selecting and combining appropriate sets of features. Learning both the
SVM parameters and the weights (d;) in a single optimization problem is a multiple kernel learning
(MKL) problem. For binary classification, the MKL problem was first introduced by [2]. Intuition
behind MKL formulation for classification is discussed in more detail in Section 2.6.

Multiple Kernel Learning (MKL) seeks to address the issue of appropriate data representation by
learning the kernel from training data. In particular, it focuses on how the kernel can be learnt as a linear
combination of given base kernels. Many MKL formulations have been proposed in the literature. In
[4], it was shown that the MKL Block [/; formulation of [3] could be expressed as a Semi-infinite
Linear Program. Column generation methods and existing SVM solvers could then be used for efficient
optimization and to tackle large scale problems involving as many as a million data points. Gradient



descent can be more efficient than solving a series of linear programs and [5] demonstrated that training
time could be further reduced by nearly an order of magnitude on some standard machine learning
datasets when the number of kernels is large. Simultaneously, MKL based algorithms have achieved
very good results for bio-informatics [37,38] and computer vision [6,39] applications. These methods
established the viability of MKL as a tool for tackling challenging real world problems.

1.2 Problem Statement

Learning the kernel is one of the popular paradigm developed for increasing performance and inter-
pretability of the output of algorithm. MKL is a way of learning the kernel for the classification task.
Many MKL formulations are presented in the literature [2-5]. But all the approaches are limited in
that they focus on learning linear combinations of base kernels — corresponding to the concatenation
of individual kernel feature spaces. Far richer representation can be achieved by combining kernels in
other fashions. This raise the fundamental question of what could be other possible representations.
This thesis addresses the problem of how the kernel can be learnt by using non-linear combinations. In
specific, we address the following issues in this thesis i) Generalizing MKL to handle non-linear kernel
combinations. In addition to kernel function, we also generalize the regularization on the kernel pa-
rameters. ii) How multiple kernel learning can be used for feature selection. We also demonstrate how
the non-linear fashion of combining kernels boosts the performance when compared to linear manner
of combining kernels. We demonstrate our results on standard machine learning and computer vision
datasets. We also show how we can learn discriminative parts for object recognition in MKL framework.
We demonstrate this on standard benchmark object recognition datasets. iii) Investigating and demon-
strating the use MKL on the real world problem of character image recognition taken in natural scenes.
Here, we use MKL for combining different features which captures different aspects like texture, edge,
etc. The feature extraction methods we use here are widely used in object recognition literature.

The applications, on which we demonstrate the methods developed in the thesis, are of practical
importance and have received wide attention in the field of machine learning and computer vision.
Feature selection, the technique of selecting a subset of relevant features for building robust learning
models is dealt with in this thesis. We also compare the proposed method with state-of-the-art methods
proposed in literature. More details about the methods are presented in Chapter 5. Besides this, we deal
with the problem of doing object categorization efficiently. For this we explore the use of multiple kernel
learning to select the most relevant pixels and regions for classification. And thus do classification by
using selected pixels or regions. We apply this for the problem of gender identification using minimal
number of pixels. This has applications in video surveillance where efficient classifiers are needed.
In Chapter 6, we deal with new problem of recognizing the character images taken in natural scenes.
Solving this problem has practical applications in image retrieval, etc. The results obtained using the
methods proposed in this thesis indicate learning non-linear ( or generic ) kernel combinations have
greater impact in improving the performance in some cases up to 9%, and increase the understandability
of certain problems.

The following section gives challenges involved in learning the kernel. Section 1.4 gives the details
of various applications of MKL and section 1.5 presents the organization of the thesis.
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Figure 1.2: Results of object detection task using MKL based method proposed in [6] on some of
categories from VOC Challenge dataset.

1.3 Challenges

Extracting useful knowledge from data is not always a trivial task. In the case of MKL, we aim at learn-
ing best generalized guaranteed classifier and simultaneously try to explore and find the best possible
feature space. That is, we simultaneously find a separating hyperplane and the weights on each individ-
ual kernels. The weights are chosen so as to maximize the margin between the two classes. Trying to
optimize both the objectives at a time is difficult as the two components are inter-linked to each other.
In a way this can be framed as chicken-and-egg problem, where you do not know which one to start
with, i.e., find the best classifier or best feature space. Besides this, when you have multiple heteroge-
neous data sources, it is extremely difficult to identify and explore the desired feature space. There is
also necessity to find out which sources are needed to be given importance and which need not to be
given. Extending to much more generic combinations and regularizations can make the formulations
to be non-convex optimization problems. And, finding stable solutions to such types of problems are
difficult.

Other challenges involved is that the optimization of such formulations is not straightforward. Many
of these optimizations have the overhead of computational scalability, statistical stability which lim-
its the applicability of solutions to small or medium scale problems. Scaling the solutions to larger
problems is also one of the major challenges in solving the problem. Also scaling is essential in many
practical situations.



1.4 Applications

Multiple kernel learning can be applied for wide range of applications in various fields. Fields include
computer vision, machine learning, speech processing, bio-informatics, signal processing, data mining,
etc. These applications use MKL either to increase interpretability of output or to increase prediction.
Essentially these applications exploit one of the following views of multiple kernel learning.

e To Combine the multiple heterogeneous data sources.
e To obtain the optimal weights of different features used for the task.

o To interpret the sparsity after learning the weights of the kernels.

Designing and integrating kernels has proven to be an appealing approach to address several chal-
lenging real world applications. Specifically, problems involving multiple, heterogeneous data sources
in computer vision, bio-informatics, audio processing problems, etc have been tackled successfully. For
e.g. in computer vision it is used [6,9,39-41] to combine different features which capture various as-
pects like shape, color, texture, etc for image/object classification or object detection ( see Figure 1.2 ).
In the later chapters of this thesis we will investigate in greater details about their use for visual object
classification in particular. Some applications in speech processing area are speaker verification [42]
and speaker recognition. Some of the signal processing applications can be found in [43]. In the area
of bio-informatics, it is used for various disease prediction and classification [37, 38, 44] tasks. There
are also several other applications in machine learning to interpret the learning model [45, 46]. In this
thesis, we address the problem of feature selection in detail.

1.5 Organization of the Thesis

Chapter 1 provides the broad overview of the thesis. The major contributions of the thesis are introduced.
The challenges involved in tackling the problem and the possible applications where the solutions play
a crucial role are discussed. Chapter 2 gives the background for reading the thesis. This gives detailed
explanation of kernel methods and the multiple kernel learning. This chapter introduce the fundamental
idea behind the kernel trick along with the elementary theory of kernel functions. Popular kernel method,
Support Vector Machine is kernelized as an example to demonstrate the kernel trick. The dependency
of the algorithm on choice of the kernel, popular kernels used in fields like computer vision and the fine
details of MKL are given. Chapter 3 presents the literature survey on Multiple Kernel Learning. Here
we review the development of MKL from initial work to current state-of-the-art methods.

In Chapter 4, we show how the MKL is generalized to learn non-linear kernel combinations sub-
ject to general regularization. This is achieved while retaining all the efficiency of existing large scale
optimization algorithms. We name the new MKL formulation as generalized multiple kernel learning
(GMKL). The theory and details of the formulation are given here. In Chapter 5 we demonstrate the
applications of GMKL. Here we highlight the advantages of GMKL by tackling problems like feature
selection and learning discriminative parts for object categorization problem. For feature selection, we



use various benchmark computer vision and machine learning datasets. Here we show how the pro-
posed formulation can lead to better results not only as compared to traditional MKL but also compared
to state-of-the-art wrapper and filter methods for feature selection. In the problem of learning discrim-
inative parts for object categorization our objective is to determine minimal sets of pixels and image
regions required for the task. We argue that information present in images can be redundant and, there-
fore, looking at the entire image might not be necessary for performing certain classification tasks. We
use multiple kernel learning to select the most relevant pixels and regions for classification. We then
show how the framework can be used to enhance our understanding of the object categorization problem
at hand, determine the importance of context and highlight artifacts in the training data.

In Chapter 6, we tackle new problem of recognizing characters in images of natural scenes. In
particular, we focus on recognizing characters in situations that would traditionally not be handled well
by OCR techniques. We present results on an annotated database of images containing English and
Kannada characters. The problem is addressed in an object categorization framework based on a bag-
of-visual-words representation. We assess the performance of various features based on nearest neighbor
and SVM classification. Besides this, we investigate the performance of MKL on the problem. Finally
the conclusions of the thesis are given in Chapter 7.

Thus the contributions of thesis are : (i) Proposing new MKL formulation which is generalized to
non-linear kernel combinations subject to general regularization on the kernel parameters ( Chapter
4) . (ii) Exploring the utility of multiple kernel learning formulations for feature selection and to the
problem of learning informative parts for object category recognition ( Chapter 5). (iii) Recognition
of perspectively imaged character images using the state of the art object recognition schemes. Also
exploring the appropriate representation schemes for recognition using MKL (Chapter 6).

1.5.1 Note to the reader

Chapter 2 is written as a tutorial for the introduction to kernel methods and multiple kernel learning. It
is not necessary to read this for understanding the thesis. However it is recommended for readers who
are unfamiliar with kernel methods and have difficulty in understanding the multiple kernel learning
problem. Readers who are familiar with the field may skip the chapter without losing continuity. Sec-
tion 2.1 to Section 2.2 gives the introduction to kernel methods. In Section 2.3, we explain SVM for
classification and how it can be kernelized. Section 2.4, 2.5 gives theory of kernels and some example
kernel functions. And finally Section 2.6 gives the details of multiple kernel learning in detail. Readers
who are familiar with kernel methods and not with multiple kernel learning can skip till Section 2.5 and
can start reading from Section 2.6.



Chapter 2

Background on Kernel Methods and
SVMs

2.1 Introduction to kernel methods

Over past decade kernel methods have received wide attention and have established themselves to be
powerful tools in numerous domains. These methods are based on the similarities between the objects
or samples they allow, e.g. the prediction of properties of new objects based on the properties of known
ones ( classification, regression ) or identification of common subspaces or subgroups in otherwise
unstructured data collections ( dimensionality reduction, clustering ).

In general, linear algorithms are widely used for many tasks such as dimensionality reduction, clas-
sification, because of its numerical and statistical stability. Linear relationships are easier to detect from
data and most natural estimate of an unknown relationship among several variables. Principal Compo-
nent Analysis [47], Linear Perceptron, Linear Predictive Coding [48] are some of the linear algorithms
used for compression, modeling, prediction, etc. But, these methods are limited to only certain descrip-
tive power. On the other hand non-linear algorithms have much more descriptive power than linear
algorithms. These methods are extremely useful when tasks get complex as linear methods turns out to
perform poor. But these non-linear algorithms are based upon non-linear functions which are difficult
to estimate and has problems with stability ( numerical and statistical ) and convergence. In past, one
of either methods is used depending upon situations as, there are no other class of methods which has
descriptive power as well as numerical and statistical stability. Later on, kernel functions are introduced
to draw the advantage of both the methods.

Kernel functions are first demonstrated in the introduction of Support Vector Machines ( SVMs ) [15]
for the classification problem. These functions have successfully combined the advantages of both the
linear algorithm and nonlinear functions. The method aims at building a linear classifier in a feature
space that is nonlinearly related to the input space. This is done without explicitly accessing the feature
space. The fundamental idea is that a complex relationship in the input data can be simplified by
recoding the data in an appropriate manner. This paradigm is of little use for problems involving high-
dimensional data. However, with the use of kernel function to indirectly access the recoded data via the



inner product makes estimation of non-linear functions feasible. Ever since the introduction of SVM,
a number of successful linear algorithms such as PCA, LDA are kernelized [19, 20] using the kernel
trick to incorporate the power of nonlinearity. The resulting algorithms are superior to their linear
counterparts in terms of descriptive power, and are stable.

Any kernel function can be used with a kernelized algorithm without effecting the statistical proper-
ties, such as generalization capability of the algorithm (in case of classification algorithms). This allows
domain specific knowledge (or prior) to be incorporated in to the kernel function without changing the
algorithm. This modularity makes the development of powerful and stable algorithms feasible. Several
other advantages of kernel methods will be described in the following sections. The underlying theory
of kernel methods is covered in a number of books [49-51]. In the following section, different mod-
ules of kernel methods and basic methodology of each module is explained in detail. The use of kernel
functions in SVM, how the performance of SVM can be improved by learning the kernel and then how
these kernels are useful in computer vision are explained in later sections.

2.2  Overview of Kernel Methods

In general, kernel methods solution comprises of two parts. Firstly, a module that performs the mapping
into the feature space and secondly, a learning algorithm designed to discover linear patterns in that
space. The two main reasons why this approach is used are, (i) Detecting linear relations has been the
focus of research in statistics and machine learning for decades, and the resulting algorithms are both
well understood and efficient. (ii) There is a computational shortcut which makes it possible to represent
linear patterns efficiently in high-dimensional spaces to ensure adequate representational power. This
shortcut is called kernel trick with the help of kernel function.

The strategy adopted here is to embed the data into a space where the patterns can be discovered
as linear relations. This is done in a modular fashion. Two steps with distinct components discussed
earlier will perform this. The initial mapping component is defined implicitly by a so-called kernel
function. This component will depend on the specific data type and domain knowledge concerning the
patterns that are to be expected in the particular data source. The pattern analysis algorithm component
is general purpose, and robust. Furthermore, it typically comes with a statistical analysis of its stability.
The algorithm is also efficient, requiring an amount of computational resources that is polynomial in the
size and number of data items even when the dimension of the embedding space grows exponentially.

In later section, we will introduce the main ingredients of kernel methods using SVM as example.
Following four key aspects of the approach will be highlighted in the example.

1. Data items are embedded into a vector space called the feature space.
2. Linear relations are sought among the data points in the feature space.

3. The algorithms are implemented in such a way that the coordinates of the embedded points are
not needed, only their pairwise inner products are required.

4. The pairwise inner products can be computed efficiently directly from the original data points
using a kernel function.



These four observations will imply that, despite restricting ourselves to algorithms that optimize
linear functions, approach will enable the development of a rich toolbox of efficient and well-founded
methods for discovering nonlinear relations in the data. In the following section, linear version of SVM
is first explained then kernel extension of it.

2.3 Support Vector Machines

Classification is a common task in machine learning. Given some data points with information of the
class it belongs to, the goal of classification algorithm is learn the model to predict unseen samples which
class it belongs to. Support vector machines (SVMs) are a set of related supervised learning methods
used for classification and regression. A Support Vector Machine is trained so that the direct decision
function maximizes the generalization ability. Here, a data point is viewed as a m—dimensional vector
(a list of m numbers), and we want to know whether we can separate such points with a m—dimensional
hyperplane. This is called a linear classifier. There are many hyperplanes that might classify the data.
One good choice as the best hyperplane is the one that represents the largest separation, or margin,
between the two classes. SVM chooses the hyperplane, so that the distance from it to the nearest data
point on each side is maximized. If such a hyperplane exists, it is known as the maximum-margin
hyperplane and the linear classifier it defines, is known as a maximum margin classifier .

2.3.1 Primal and Dual Formulation : Separable Case

Consider a two-class classification problem, let M m—dimensional training samples x;(i = 1,--- , M)
belong to either class 1 or class 2. And y; be the corresponding labels which is 1 for class 1 and —1 for
class 2. Consider problem to be separable and need to learn the decision function w'x + b where w is
m—dimensional vector, b is a bias term. It is greater than zero for y; = 1 and less than zero for y; = —1.
For controlled separability the following inequalities are used

. >1 fory; =1
w'x; + b 2.1
< -1 fory, =-1

Above Equation can also be rewritten as and equivalent to
yi(wi'x; +b) > 1fori=1,--- , M (2.2)

In the hyperplane Equation
wix;+b=c (2.3)

when ¢ =0, it is the separating hyperplane which runs in the middle and parallel to the two hyperplanes
with ¢ = 1 and —1. The distance between these two hyperplanes is called the margin. Figure 2.1 shows
the hyperplane formed when ¢ = 0,1, —1. It can been seen that there are many hyperplanes satisfying
Equation (2.2). However, generalization ability of each the possible hyperplanes varies. Intuitively
the hyperplane which has maximum margin will have more generalization ability and is called as the
optimal separating hyperplane. Margin here is distance between the two hyperplanes wix; +b = 1
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Figure 2.1: Maximum margin hyperplane in a two-dimensional data
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and w'x; + b = —1 which is equivalent to ﬁ The optimal separating hyperplane can be obtained by
minimizing the following objective function J.

J = §wtw
subjectto  yi(w'x;+b) > 1 Vi (2.4)
Yi € {_17 1}

The square in the objective function of above formulation makes it a quadratic programming prob-
lem and feasible solutions exists as long as data is linearly separable. As the above formulation has
quadratic objective functions, there exists non-unique solutions but the value of objective function is
unique. This is one of the advantage of support vector machines over neural networks. The data which
satisfy the equalities in first constraint of formulation given in Equation (2.4) are called support vectors
. In Figure 2.1 the points which are rounded are support vectors.

By solving the formulation of Equation (2.4), w and b are estimated. So, the number of variables to
be solved is the dimension of input vector plus one i.e m + 1 . When the number of input variables are
small above quadratic programming problem can be solved without much difficulty. But as discussed
earlier we map the input space to a high-dimensional feature space, which might go infinite sometimes,
finding the solution might not be feasible. For this, above formulation is converted into an equivalent
dual where number of variables is equal to the number of training samples. This is converted into
following unconstrained problem.

M
Q(w,b,a) = %wtw - Z oy [y,-(wai +b) — 1} (2.5)

i=1
where «; > 0 are the nonnegative Lagrangian multipliers. The optimal solution of Equation (2.5) is
given by saddle point, which is minimized with respect to w , b and maximized with respect to «; (> 0),
and it satisfies the following Karush-Kuhn-Tucker (KKT) conditions :

0J(w, b, a) _ 0 (2.6)
ow
0J(w,b,a)
o 0 2.7
ai{yi(wix;+b) -1} =0 Vi (2.8)
a; >0 Vi (2.9)

Considering Equations (2.9), (2.8) together either ov; = 0 or ; # 0 and yi(wtxi + b) = 1 must be
satisfied. The training samples for which «; # 0 are called support vectors . Using Equations (2.6),
(2.7) and (2.9) we can deduce

M
w = Z QiYiX (2.10)
i=1
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and,
M
> aiyi =0 2.11)
=1

Using above two Equations and substituting in Equation (2.5), following dual problem is obtained.
Maximize

M MM
Qale) = D i — 3 ) ciajyiyxixg
i=1 i=1 j=1
M (2.12)
subject to Z a;y; =0
i=1
(671 2 0

Above problem is a concave quadratic programming problem and the solution exists as long as data is
separable. The values of the primal J and dual objective @ 4(«) functions coincides at optimal solution
and is called the zero duality gap. This is called hard margin support vector machines.

2.3.2 Primal and Dual Formulation : Non-Separable Case

When the data is inseparable, hard-margin support vector machines fails, as they cannot find a feasible
solution. To handle inseparable case soft-margin support vector machines are proposed. Here the above
formulation of a separable problem can be extended to a non separable one easily, by introducing a set

of slack variables &; ¢ = 1, ..., [ in Equation (2.1) and becomes
wixi+b>+1-& for gy =+1 (2.13)
wixi+b< —1+¢& for gy =-—1 (2.14)
&>0 Vi (2.15)

which can be rewritten as,
yi(wix; +0)>1-& for i=1,...,M (2.16)

Slack variables &; in the above Equation acts as penalty for misclassifying that particular sample.
These variables are optimized by adding it to Equation (2.4) and the problem becomes minimizing,

1 M
J = §WtW+CZ€7L

2.17)
subjectto ;(Wix;j+b) >1—-¢& Vi

& >0,y € {-1,1} Vi
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Similar to the linearly separable case, this can be reformulated as minimizing,

) M M M
Qw,b,&0,8) = swiw+CD &> Bi&i— > ai [yi(wxi +b) — 1+&] (2.18)

2 ‘ , -
=1 =1 =1

where «; > 0 and 3; > 0 are the nonnegative Lagrangian multipliers. Following KKT conditions are
applied to get optimal solution.

ow
0Q(w,b,&,a,8)
o =0 (2.20)
0Q(w,b,&§,a, )
9 =0 (2.21)
aif{yi(wix;+b) —1+&=0 Vi (2.22)
Bi& =0 Vi (2.23)

By substituting Equations (2.19), (2.20), (2.21) in (2.18) leads to following Equations.

M
W= oy (2.25)
=1
M
S awi=0 (2.26)
=1
a4+ Bi=C Vi (2.27)

Substituting above three Equations in Equation (2.18) following dual problem is obtained. Maximize

M M

M
1
Qq(a) = Z @i =5 Z Z Q0G5 (X, X)
i i=1 j=1
M (2.28)
subject to Z yioy =0, Vi
i=1

C>wq; >0, Vi

The only difference between the dual forms of soft-marign support vector machines and hard margin
support vector machines is that «; cannot exceed C'. And decision function is given by

M
Fx) =" auyi(xi,x) +b (2.29)
=1
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2.3.3 Non - Linear SVM

Kernel Trick : The support vector machines discussed in the previous sections addresses the classi-
fication problem by building a linear classifier. The learnt classifier may not have high generalization
ability though the hyperplanes are determined optimally. This can be solved by introducing nonlinearity
through kernelizing the Support Vector algorithm. As discussed at the beginning of the chapter this can
be done easily, by mapping the input space into a high-dimensional dot-product space called the feature
space.

x e RN — O(x) e FCRP (2.30)

By using the nonlinear vector function ®(x) = (®1(x), - - , ®,(x))’ which maps the m—dimensional
input vector x into the p—dimensional feature space. This feature space needs to be Hilbert space. The
linear decision function in the feature space becomes,

wi®(x) + b (2.31)

Now, w is an p—dimensional vector, as p increases the problem of solving formulation given in
Equation (2.17) becomes difficult. On the other hand, in dual formulation, the algorithm needs the inner
products between data points in the feature space F. It is worth taking the advantage of dual solution
to solve the problem. The complexity of evaluating each inner product is proportional to the dimension
of the feature space. The inner products can, however, sometimes be computed more efficiently as a
direct function of the input features, without explicitly computing the mapping. In other words the
feature-vector representation step can be by-passed. The class of functions which perform this direct
computation are kernel functions.

Definition 1. A kernel is a function k such that for all X,y € X satisfies

k(x,y) = (2(x), 2(y)),
where ® is a mapping from X to an inner product feature space F
:x+— P(x) € F

The idea of kernel function can be illustrated with the help of following example. Consider the
mapping of a two-dimensional input space X C R? with feature map,

ot

1 2 3

X = — B(x) = x5 eEF=%x

x
2 V21112

Here the feature map takes the data from two-dimensional to a three-dimensional space where the

linear relations in feature space corresponds to quadratic relations in the input space. Now, the inner
product in feature space can be evaluated as follows,
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(.’L’%, l‘%, \/5'%1‘%'2)7 (yfv y%, ﬁyly?»

235 + 23Y5 + 221220192

(®(x),2(y))

r1Y1 + 9623/2)2
x,y)?

= (
=
Hence, the function

k(x,y) = (x,y)?

is the kernel function with F' its corresponding feature space. Now, the inner product can be computed
between the projections of two points into the feature space without explicitly evaluating their coordi-
nates. Can every function be a kernel function and what set of kernel functions can be called as kernel
function is discussed more widely in Section 2.4.

Kernel SVM : Now, kernelizing linear version of support vector machine is straightforward. In
Equation (2.28) instead of accessing the input samples only via the inner product (x;, x;), can be made
accessed through feature space through kernel function k(x;, x;). The dual problem in feature space is,

maximize
M 1 M M
Qu(a) = Z =g Z Z aiogyy;k(xi, X;)
i (]

M (2.32)
subject to Z yia; =0, Vi
i=1

CZC%ZO Vi

In general, k(x;,x;) is precomputed and stored in a matrix called kernel matrix (K). For the inner
product between X;, X; is obtained by accessing K;; instead of computing it on the fly. And the decision
function is

M
Fx) =" aiyik(xi,x) +b (2.33)
i=1

Since the discovery of kernelization, SVMs have been widely used for a number of applications
involving classification and recognition. Note that till now we are solving two-class ( binary ) classifica-
tion problem. This can be easily extended to multi-class classfication problems. Starting with naive
approaches and more advanced formulations/approaches of multi-class classifications can be found
in [52-56].

2.4 Valid Kernels

The kernel trick is to operate in feature space via a kernel function k(, ) The feature space is accessed
indirectly via pairwise inner product. We now discuss the properties of these kernel functions here.
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Definition 2. Let k(x,y) be a real-valued symmetric function with X and 'y being m-dimensional
vectors. For any set of data x1,-++ ,xy and a = (ay, -+ ,ap)t with M being any natural number, if

a'Ka>0 (2.34)

is satisfied (i.e., K is a positive semidefinite matrix), we call k(x,y) a positive semi-definite kernel,
where

k’(XM, Xl) . k(XM, XM>

Therefore, if k is a positive definite kernel then there exists a function ®(x) that maps x into the
dot-product feature space and x satisfies

k(x,y) = ®(x)'®(y) (2.35)

The condition in Equation (2.34) is called Mercer’s condition and kernel which satisfies this is called
Mercer kernel, in general kernel . Now we see what are the general kernels functions used and how the
new kernels can be designed from the existing set of kernels.

2.4.1 Kernels

Linear Kernels : In the linearly separable case, there is no need to map to high-dimensional space. In
such cases we can use linear kernel,
k(x,y) =xTx (2.36)

Polynomial Kernels : The polynomial kernel with degree d, where d is a natural number is given by,
k(x,y) = (xTx)? (2.37)
This is homogenous form of polynomial kernel, where as non-homogenous version of polynomial
kernel is given by,
k(x,y) = (xTx + 1)4 (2.38)

When d = 1 it is linear kernel plus one. By adjusting b in the decision function both kernels produces
same decision function. When d = 2 and m = 2 Equation ( 2.38 ) becomes

k(x,y) = 1+ 2z1y1 + 220y2 + 221 20y1Y2 + 395 + 235Y3
= O(x)'0(y)

where ®(x) = (1,v/2z1, V212, V22129, 23, 23)T. Thus for d = 2 and m = 2 polynomial kernels satisfy
Merecer’s condition. This proof can also be extended easily for any value of d, m.
Radial Basis Function Kernels : The radial basis function (RBF) kernel is given by

k(x,y) = expyIP) (2.39)
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where < is a positive parameter for controlling the radius. This is one of the most widely used kernel.
The adjustable parameter ~ plays a crucial role in the performance of the kernel, and should be tuned
carefully depending upon the problem. If overestimated, the exponential will behave almost linearly
and the higher-dimensional projection will starts to lose its non-linear power. On the other hand, if
underestimated, the function will lack regularization and the decision boundary will be highly sensitive
to noisy training data.

Hyperbolic Tangent (Sigmoid) Kernel: The Sigmoid Kernel comes from the Neural Networks field,
where the sigmoid function is often used as activation function for artificial neurons.

k(x,y) = tanh(x'y + c) (2.40)

SVM model which uses a sigmoid kernel function is equivalent to a two-layer, perceptron neural net-
work.

The above listed kernels are some of the standard kernels which are used widely. There many other
kernels are presented in the literature which are specific to domain [57-67].

24.2 Kernel Design

Kernel function plays a key role in the performance of the kernel algorithms. New kernel function can be
constructed from known kernel functions by performing certain operations. We now see the properties
of positive semidefinite kernels that are useful for constructing new positive semidefinite kernels.

Result 1. If
k(x,y) = a, (2.41)

where a > 0, k(x,y) is positive semidefinite
Proof. For any natural number M,

K= (Va,...,v/a)(Va,...,Va) (2.42)
k(x,y) is positive semidefinite. O
Result 2. If k1 (x,y) and ka(x,y) are positive semidefinite kernels,

k(x,y) = a1ki(x,y) + a2ka(x,y) (2.43)
is also positive semidefinite, where a1 and agy are positive.
Proof. For any M, a; and x;

a'Ka = a' (a1 K; + asKz)a
=g a'Kia + aza'Koa (2.44)
>0

Therefore, k(x,y) is positive semidefinite. O

18



Result 3. If k1(x,y) and kao(x,y) are positive semidefinite kernels,

k(x,y) = ki(x,y)ka(x,y) (2.45)

is also positive semidefinite.

Proof. To prove this it is sufficient to show that if M x M matrices B = {b;;} and C = {cij} are
positive semidefinite, a;;b;; is also positive semidefinite. Since B is positive semidefinite, through
mercer condition we can say that B is expressed by B = F'F, where F' is an M x M matrix. Then
bij = f;'f, where f; is the jth column vector of F'. Thus for any arbitrary (a1, ..., anr),

M
atKa = Z hihjaijbij
ij=1

M

=) hihyfi by
i,j=1
M

= Z(hz‘fi)t(hjfj)bij
i,j=1

>0

(2.46)

Thus k(x,y) is positive semidefinite. O

In the next section we see some of the popular kernels used in specific field computer vision.

2.5 Kaernels for computer vision

Over the last years, kernel methods have established themselves as powerful tools for computer vision
researchers as well as for practitioners. All the methods for regression, dimensionality reduction, outlier
detection, clustering, recent methods of non-classical techniques for the prediction of structure data, for
the estimation of statistical dependency, and for learning the kernel function itself are illustrated with
successful examples applications in the recent computer vision research literature.

Images and videos are a data source with a very special characteristic: because each pixel represents
a measurement. Images are typically very high dimensional. Smaller resolution image of 256 x 256 will
contain more than 65k pixels and moving to higher resolution will be of even more high in dimensional.
This is the main reason why kernels methods are widely applicable in the field of computer vision.
Therefore, Computer Vision researchers have given special attention on finding good data representa-
tions and algorithms to tackle problems, such as (i) Optical character recognition: classify images of
handwritten or printed letters or digits [68], (ii) Object classification: classify natural images according
to the object category they contain [39], (iii) Action recognition: classify video sequences based on the
action performed in them [69], (iv) Image segmentation: partition an image into the subregions that
correspond to different image aspects, e.g. background or foreground [70], (v) Content Based Image
retrieval: find images that are most similar to a query image from a collection or database [71]. (vi)
Object Detection: identify the boundary of the object present in the image [6]
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Figure 2.2: Sample images of class elk taken from Caltech 256 [7] dataset. Notice the variations in
color, location, contrast in background. And there are also lots of variation in pose & structure of the
object class.

Kernel methods have proved successful in all of these areas, mainly because of their interpretability
and flexibility. By constructing a kernel function one can integrate knowledge that humans have about
the current problem. And this leads to improved performance compared to pure black-box methods that
do not allow the integration of prior knowledge. There is much research in designing promising kernels
which is specific to the task. Once it is designed it can be re-used in any kernel method not only just
in the context it was originally designed. This gives researchers as well as practitioners a large pool of
established kernel functions to choose from, thereby increasing the chances of finding a well-performing
one. In the following, we introduce some of the existing kernels, the assumptions they were based on,
and their applicability to practical computer vision tasks starting with some basics.

2.5.1 Interest points, Descriptors and Bag-of-Words

In computer vision, visual descriptors or image descriptors are descriptions of the visual features of the
contents in images or videos, which are calculated at certain points called inferest points. At these
points, descriptor describe elementary characteristics such as the shape, the color, the texture or the
motion. These descriptors carry the knowledge of the objects and events found in a video, image and
this is used to for further processing.

But advanced computer vision tasks require generalization not only between different views of the
same objects, but also between many different objects that share a semantic aspect, e.g. animals of the
same species. The visual variations within such a class can be very large, and is illustrated with an
example in Figure 2.2. These variations generally occur due to change of pose, truncation or occlusion.
But typical parts are often common for all object instances. Part-based representations of natural images
have been developed to overcome all of these problems. They are based on the idea of treating the image
as collections of many local parts instead of as single object with global properties.

To find relevant parts of the image, in general one applies a set of operators for the detection of interest
points. These operators comprises of low-level differential filters based on differences of Gaussian or
Wavelet coefficients , etc. It is shown in practice that interest points on a regular grid or random locations
and scales [72] work well. Each region of interest defines a small image from which one calculates
an invariant representation, often called a descriptor. The popular SIFT descriptor [72] does this by
combining several ideas. Many other descriptors [73—77] have been developed that follow similar or
some other design. Many of these descriptors are used for problems which are addressed in this thesis
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Figure 2.3: The descriptors which occur in natural images do not lie uniform in the space of all possible
descriptors, but they form clusters. BOW (right) divides the descriptor space into Voronoy cells that
respect the cluster structure but SPK(left) does not do this. Image courtsey [8]

and more details of them are given at appropriate place. After this first preprocessing step, the image is
represented as a set of descriptor vectors, one per region of interest in the image. All descriptors vectors
are of the same length, typically between 20 and 500 dimensions. The number of regions and descriptors
varies depending on the image contents. Depending on the method for interest point detection and the
resolution of image, the number of interest points per image vary.

After interest point detection, each image is abstracted by several local patches. Feature represen-
tation methods deal with representation of patches as numerical vectors. Natural images have inherent
regularities that cause the extracted descriptors vectors to form clusters in the descriptors space. For
example, edges and corners are typically much more frequent than, e.g., checker board-like patterns.
On one hand, a large number of grid cells will stay empty, and on the other hand, existing clusters might
be split apart.

The vector representing patches are represented in the next level using codewords. A codeword can
be considered as a representative of several similar patches. One simple method is performing K-means
clustering over all the vectors [78]. Codewords are then defined as the centers of the learnt clusters.
The number of the clusters is the size of codebook. This is also called as vocabulary size. Thus,
each patch in an image is mapped to a certain codeword through the clustering process. As a simplest
representation, we count for each cluster center, how often it occurs as a nearest neighbor of a descriptor
in x and form the resulting K-bin histogram. This construction is often called bag of visual words, since
it is similar to the bag-of-words concept in natural language processing.

2.5.2 Pyramid Match Kernel

Pyramid match kernel [79] is a fast kernel function (satisfying Mercer’s condition) which has been built
over these descriptors and proven themselves in the tasks like object recognition. The complexity of
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comparing two images in part-based representation can be made linear instead of quadratic by quan-
tizing the space of possible descriptor values. The pyramid match kernel (PMK) [79] does so well by
subdividing the d-dimensional space of image descriptors into a hierarchy of axis parallel cells in a data
dependent way. In the finest layer, each descriptor lies in a cell of its own. Coarser layers are built by
merging neighboring cells in any dimension. This construction is repeated until the coarsest layer has
only one cell containing all descriptors. It is defined as

ol—1
kpyk(X,y) ZQZ Zmln (1 (x), M (y)) (2.47)
j=

where h!J(x) are histograms of, how many features of x falling into j—th cell of [—th pyramid level.
This kernel has been successfully demonstrated on caltech 101 [14] and ETHZ databases [80]. But
quantization of the descriptor space by a regular grid, as used by the pyramid match kernel, does not
reflect proper clustering, see Figure 2.3.

2.5.3 Kernels for BOW Representations

The representation of images as feature count histograms leaves us with many possibilities which ker-
nel function to apply on them. A direct analogue of the pyramid match kernel Equation (2.47) is the
histogram intersection kernel [67]:

kmr(x,y) me hi, h li (2.48)

where we write h = (h',..., h") for the V —bin histogram representation of x and analogously h' for
the histogram of y.

For fixed length histograms we can apply all kernels defined for vectors, e.g. linear, polynomial or
Gaussian. If the number of feature points differs between images, it often makes sense to first normalize
the histograms, e.g. by dividing each histogram bin by the total number of feature points. This allows
the use of kernels for empirical probability distributions, e.g. the Bhattacharyya kernel

1%
kbhattacharyya (X, Y) = Z hiv h/i (249)

i=1
Another popularly used kernel in Computer Vision is x2-kernel:
Vv . /-
ht — Rt 2
k2 (X, y) = exp <—7 Z (h+h)> (2.50)
i=1

which has shown very good performance, in the tasks like object recognition [39], object detection
[81].
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2.5.4 Spatial Pyramid Kernel

The bag of visual words model completely ignores the spatial structure information from the image.
However, in some tasks spatial information can be a valuable source of information, e.g. if one wants
to recognize scene like highway where sky regions tend to occur much more frequently at the top of the
image than at the bottom. Consequently, the idea of local histograms has proved useful in this setup as
well. In the place of global visual word histogram, a number of local histograms are formed, typically
in a pyramid structure from coarse to fine as similar to pyramid match kernel. Each sub-histogram has
V bins and counts how many descriptors with center point in the corresponding pyramid cell have a
specific codebook vector as nearest neighbor. Then, either all local histograms are concatenated into a
single larger histogram , or separate kernel functions are applied for each level and cell, and the resulting
kernel values combined into a single spatial pyramid score, e.g. by a weighted sum [82]:

2l—1

L
ksp(x,y) = di > k(b h ) (2.51)
=1 =1

where L is the number of levels, d; is a per-level weight factor and h; 1), h/(z ) are the local histograms
of x, y respectively. The base kernel k is typically chosen from the same selection of histogram kernels
as above, with or without separate histogram normalization.

2.6 Learning the Kernel

Kernel method poses many advantages other than nonlinearity such as modularity, ability to work with
heterogeneous description of data, etc. The major issue in the kernel methods is the choice of kernel
function. The kernel function defines the geometry of space in which an algorithm operates and this is
crucial for the performance of that algorithm in that space. In general kernel methods use a single fixed
kernel function. Different kernel functions induce different feature space embeddings and are therefore
differently well suited for a given problem. Finally, the choice of the kernel is task dependent. The
quality of a kernel is determined by how well the trained kernel method performs in that particular task
at hand, e.g. in the case of a classifier by the accuracy on unseen data points. Although, many estimators
for the generalization error have been developed and used for parameter selection, e.g. cross-validation
and bootstrapping, which work by iterating between training and test procedures on different parts of
the training set.

2.6.1 Kernel Target Alignment

The idea of learning the kernel matrix has originated from [1]. which defines an alignment between a
kernel and a set of labels. The intuition of kernel target alignments (KTA) [1] is that the values of a
good kernel function & should resemble the values of a (hypothetical) ideal kernel /. This ideal kernel
or target kernel is constructed by I(x,y) = y;y; with y; € {—1,+1}. The alignment between kernel
k, 1 is defined as
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<K7 L>F
VK, K)r(L L)
where K, L is the kernel matrix using kernel k,[ in feature space F' respectively. This can also be

Alk,1) = (2.52)

viewed as the cosine angle between two bi-dimensional vectors K and L. Substituting L = yy* where
y is vector of labels of the training samples, then

(K,yy')r
VEK) p(yy', yyh) s
(K,yy')r
m\/ (K, K)r

(2.53)

To select one kernel function out of a set of alternatives, we choose the kernel function that maxi-
mizes A(k,l). Since this procedure does not require to train and evaluate a classifier, it is in particular
faster than, e.g., multiple cross-validation runs. Another advantage of the kernel alignment score is its
differentiability with respect to the kernel function k. For kernels that depend smoothly on real-valued
parameters, it therefore possible to find locally optimal parameters combination by gradient-descent
optimization.

2.6.2 Multiple Kernel Learning

For many tasks the choice of representation and features depends on the applications. For instance in
computer vision for a problem color, texture, or edge orientation might be the most relevant cue. Most
often, one finds that different aspects are important at the same time, and one would like to find a kernel
function that reflects the aspects of several kernels at the same time.

Kernel methods in general are well suitable for such feature combinations. Constructing Kernel
functions, the sum and product of existing kernels are kernels again, equally reflecting the properties
of all base kernel. However, in situations, where we believe that some kernels are more important
than others, we might prefer a weighted linear combination of kernel instead of their unweighted sum.
Multiple kernel learning (MKL) allows us to find the weights of such linear combinations. The intuition
here is that kernel or combination of kernels gives rise to a margin when used in the training of a support
vector machine, and due to the linear kernel construction, we can find an explicit expression for the size
of the margin. The concept of maximum margin learning tells us to prefer classifiers with a large margin
between the classes. MKL procedure jointly finds the SVM weight vector and the linear combination
weights of the kernel functions that realized the generalized linear classifier of maximal margin. See
Figure 2.4 for an illustration.

Linear kernel combinations : Let k1, - - - , kg be kernel functions, k; : x x x with induced Hilbert
spaces ‘H; and feature maps ®;. Now the interest lies in finding the best SVM classifier for kernel

K
k(x,y) = diki(x,y) (2.54)
=1
with d; > 0.
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Figure 2.4: Given two kernels k1, ko with feature maps @1, ®, then consider the kernel formed through
linear combination & = aky + (1 — ko with induced feature space (y/a®1, /1 — a®s). Plots cor-
responding to o = 0,1,0.9,0.2 can be found in (a),(b),(c),(d) respectively. It is clear that data is not
much separable in the original features space (a), (b) when compared to to feature spaces (c),(d). Image

courtsey [8]

25



If di,...,dg are fixed ®(x) = (vVd1P1(x),...,VdxPk(x))! since this constructs same scalar
product as k:

K
(B(x), (y)) = Y di{®i(x), Di(y))
=1

K (2.55)
= diki(x,y)
=1

= k(x,y)

Finding the best coefficients enables better construction of feature space. Therefore, to find the best
coefficients for the linear combination kernel ko, = > ; d;k;, following objective function is presented
in [39]. Minimize

1 . M K
J:§W W+C;§i+;dm’l

subjectto 3 (W'®(x;) +b) >1—-& Vi
& >0,y € {—-1,1} Vi (2.56)
d>0,Ad>p

K
O(x:)'B(x5) = > di®(x;)]D(x;),
=1

where d are kernel parameters and A, p are the parameters to include prior knowledge on kernel param-
eter d. The objective function in formulation (2.56) is similar to /; soft margin SVM formulation (2.17).
Given the misclassification penalty C, it maximizes the margin while minimizing the hinge loss on the
training set. The only addition to it is kernel parameter also optimized along with SVM parameters. In
general most of the weights will be zero depending on the parameters o which encode prior preferences
for particular kernels. The [ regularization thus prevents over-fitting as only few kernels are being used
at the end. And there are two additional constraints which are added in comparison with standard SVM.
The first, d > 0, this is to ensure that weights are interpretable and also leads to a much more efficient
optimization problem. The second, Ad > p it to encode prior knowledge about the kernel parameters.
The final condition is just restatement of Equation (2.54).
Similar to the Equation (2.17), above objective function can be reformulated as maximizing

M K M

1

Qw.b,6,d, 0, 3,7,0) = swiw+CY &+ dor =) o [yi(wh @(xi) +b) = 1+&]
i=1 =1 =1

M K K
=D Bi& =Y wdi— Y dis'Ar+pts (257)
=1 =1

=1 =

'Note that §*(Ad — p) is rewritten as Zfil di6*Ay — pts
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where o, 3;, v, 6; are the nonnegative Lagrangian multipliers and A is /th column of the matrix A.
On differentiation with respect to w, b, &;, di, we have,

8Q M
Sy =0= W= ;aiyitb(xi) (2.58)
0Q <
% =0 = ;alyz =0 (2.59)
9&;
a0 M 1
_— — t -2 t e . “ e t J—
8dl 0— g Y + 0 A] + ; azyz(w [01 @I(XI) OK] )2\/(T1
(2.61)
ai{yi(wix;+b) =1+ & =0 Vi (2.62)
Bi&i=0 Vi (2.63)
@;>0,3>0,§>0,d >0 Vil (2.64)
yd; =0 VI (2.65)
0%(Ad-p)=0 (2.66)

where 0; is a vector containing all zeros of size ®;(x;). Equations from (2.62) to (2.66) are KKT
conditions and substituting Equations from (2.58) to (2.61) in (2.57) we get following dual problem (
for more detailed derivation see Appendix A ). Maximize

Qi=1'a+p's
subjectto 0<a; <C, 0<4, 1'Ya=0 (2.67)

1
5atYKlYa <o —8tA

where the non-zero «; correspond to the support vectors, Y is a diagonal matrix with labels of training
samples on the diagonal. The dual is convex with a unique global optimum. By solving either primal or
dual, one can obtain the both kernel and SVM parameters and thus kernel is learnt.

There are other versions of MKL [5, 83] in the literature. The main difference between all them is
the difference in objective function formulation. One of the extension are infinite kernel learning [84]
which combines the advantages of kernel target alignment and multiple kernel learning , allowing to
learn liner kernel combination, while at the same time adjusting the kernel parameters. In this thesis we
use and extend the above formulation.

2.7 Further challenges in kernel methods

There are many challenges in kernel methods. One of the major limitations in kernel methods is the
complexity of training and testing process. So far we have seen kernel algorithms provide a boost in
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performance by mapping the input samples to feature and then applying linear algorithm over there.
And this mapping is done efficiently with the help of kernel function. Kernel methods access the feature
space via the input samples and hence kernel algorithms need to store all the relevant input samples.
For instance, testing in case of SVM for a new sample all the support vectors are needed to be stored so
that they can be used to project on the separating hyperplane. The complexity of this testing process is
high, as the size of kernel matrices increase quadratically as the number of SVs increases. So reduction
of such complexities is highly necessary to run a particular set of applications faster. There are number
of attempts to do this [85,86], but still this is a challenging problem with scope for further research.

Another limitation is the appropriateness of choice of kernels. Unless the data is represented in
appropriate feature space, improvement in performance of method cannot be seen. For this, researchers
have started with designing the kernels and now it is moving towards “learning the kernel”. In this thesis
we work on later part and learn the kernel in nonlinear fashion rather than traditional linear fashion, and
show the improvement in the performances at tasks like feature selection.

Kernel algorithms have brought a significant boost in the performance on the tasks like object recog-
nition, object detection, object localization, etc. Some of kernel designs are seen in the chapter. In the
case of images, the representations is much high dimensional, the limitation on the complexity holds
here. The reduction of such complexities is still an active research area.
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Chapter 3

Literature Survey on Kernel Learning

3.1 Overview

The performance of the learning algorithms for tasks like classification and regression strongly depends
on the data representation. In kernel methods, the data representation is implicitly choosen through the
kernel k(x,y). This kernel actually defines the similarity between two samples x,y, while defining
an appropriate regularization term for the learning problem. In some situations, more flexible models
are required. Recent works, show that using multiple kernels instead of a single one can enhance the
interpretability of the decision function and improved performances.

Some of the earliest work on MKL was developed in [87, 88]. Their focus was on optimizing loss
functions such as kernel target alignment rather than the specific classification or regression problem at
hand. This was addressed in the influential work of [2] which showed how MKL could be formulated
appropriately for a given task and optimized as an Semi-Definite Programming (SDP) or Quadratically
Constrained Quadratic Programming (QCQP) for non-negative kernel weights. Nevertheless, QCQPs
do not scale well to large problems and one of the first practical MKL algorithms was presented in [3].
In [3], the block [; formulation , in conjunction with M-Y regularization, was developed so that efficient
gradient descent could be performed using the Sequential Minimizing Optimization (SMO) algorithm
while still generating a sparse solution.

The work presented in [4] retained the block /; regularization and reformulated the problem as a
Semi-Infinite Linear Programming problem (SILP). This made it applicable to large scale problems
and the authors were impressively able to train their algorithm on a million splice data set. Further
efficiency was obtained in [5,39] via gradient descent optimization and [83] opened up the possibility of
training on an exponentially large number of kernels. Other interesting approaches have been proposed
in [89-92] and include Hyper-kernels and multi-class MKL. In the next section the methods proposed
in [2-5,88] are discussed in detail and discuss how the problem has been tackled at the beginning to the
latest methodology used for solving the problem.
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3.2 MKL Approaches

3.2.1 Kernel Target Alignment [1]

This is the one of the initial paper which sought the idea of learning the kernel for improvement in the
performance. It starts with the idea of defining the notion of the alignment between two kernels. This
notion of alignment between two kernels is then extended to the alignment between kernel and labels,
by constructing a “target kernel” t(x;, x;) = v;y; with y; € {—1, +1}. The alignment is defined as

(K,yy')r
VEK) p(yy', yyh)r
_ _(Kyy')r

m\/ (K, K)p

Ak, t) =

3.1

where y is vector of labels of the training samples and m is the number of training samples. Optimal
kernel Kqp¢ is characterized as below equation,

Kopt = ) _ diK (3:2)
=1

where K; = vlvlt and v; is eigen vectors of original kernel matrix K. Now the optimal alignment
becomes

<Kopt;yyt>F _ Zz dl<UZ7Y>%7

m\/zm did; (v, Ujv§>p my/ >, d?

Maximizing the alignment by adding the constraint ), d12 = 1 yields the following Lagrangian

AKopt) = (3.3)

formulation.

max > di{o,y)g — A _di — 1) (3.4)
l l

Solving above gives d; o (v, yﬁ; It is shown that learning the kernel has improved the performance
when compared to direct kernel. This has established the use of linear combinations of base kernels.
Although, some generalization bounds have been given, the task is not directly related to classification
and does not easily generalize to other loss functions. This is one of the major drawback of this method.

3.2.2 Learning the Kernel Matrix with SDP [2]

In [2], it is shown that Semi-Definite Programming (SDP) techniques can be applied to learn the kernel
matrix. In specific, this work focuses on loss function for classification problem ( in SVM framework
). It involves joint optimization of kernel matrices and the coefficients in a conic combination of kernel
matrices and the coefficients of a discriminative classifier. Finally, the problem is posed as a QCQP
problem, which is special form of SDP.
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This work apply the idea to the problem of combining data from multiple sources. Specifically,
assuming that each source is associated with a kernel function, such that a training set yields a set
of kernel matrices. The tools that they developed in their work made it possible to optimize over the
coefficients in a linear combination of such kernel matrices. These coefficients can then be used to
form linear combinations of kernel functions in the overall classifier. Thus, this approach allows us to
combine heterogeneous data sources, making use of the reduction of heterogeneous data types to the
common framework of kernel matrices, and choosing coefficients that emphasize those sources most
useful in the classification decision. This later was named as Multiple Kernel Learning.

Semidefinite programming and Multiple kernel learning

Semidefinite programming deals with the optimization of convex functions over the convex cone of
symmetric, positive semidefinite matrices

P={XecR?| X =X" X0} (3.5)

or affine subsets of this cone. With this, given P can be viewed as a search space for possible kernel
matrices. This search space is constrained in order to prevent overfitting and achieve good generalization
on test data. For MKL, a restricted set X of kernels is taken which is a set of positive semidefinite
matrices. And these are bounded with trace that can be expressed as a linear combination of kernel
matrices from the set {K;,--- ,K;}. That is, K is the set of matrices K satisfying

K=> dK;, K2>0, trace(K)<c (3.6)
l
Additionally the parameters d; can be constrained to be non-negative (i.e. d; > 0). By doing so, a
significant computational complexity is reduced. The problem is formulated as following quadratically
constrained quadratic problem.

1 M
min iwtw +C Z&-
(2

subject to (W '®g(x3) +b) > 1 - 6,6 >0 Vi 3.7)
K = ZdlKZ, >0 W
]

trace(K) = ¢

where c is a constant. This convex optimization problem, a QCQP more precisely, is a special instance
of an SOCP ( Second-Order Cone Programming problem, which can be solved efficiently), which is in
turn a special form of SDP. Sparse kernel weights are obtained by solving the formulation. This can also
be extended to optimise an appropriate cost function depending on the task at hand. Other possible loss
functions are square hinge, KTA, regression, etc.

Solving the formulation in QCQP is more challenging than a Quadratic Programming (QP) problem,
but in principle it can be solved by general-purpose optimization toolboxes. But QCQP does not scale
well and becomes rapidly intractable as the number of learning examples or kernels become large.
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3.2.3 MKL with Sequential Minimization Optimization Algorithm [3]

The formulation in SDP framework is convex but is a non-smooth minimization problem. This makes
the direct application of simple local descent algorithms such as sequential minimization optimization
infeasible. Therefore, [3] has considered the smoothed version of problem for which they proposed a
SMO-like algorithm that enables to tackle medium-scale problems.

A classification algorithm called support kernel machine (SKM) was introduced in [3]. It is motivated
as a block-based variant of the SVM and related to margin-based classification algorithms. But their
underlying motivation was the fact that the dual of the SKM is exactly the problem (3.7) which they
establish in their work. Here, input sample x; in divided into n blocks and is represented as x; =
(x1i, X2i, ** ,Xni). For kernelization, mapped feature space of input sample is assumed to have n
components ®(x;) = (P1(x;j), -+, Pp(x3)). Thus w also has the same block decomposition w =
(W1, ,wp). SKM is then extended to SMO-like algorithm making use of Moreau-Yosida (MY)
regularization. Finally the formulation is,

1 1
min Q(EIIdZHWIHg)z + 22130,12HW1\§ +0Y G
K3

subject to yz(z wid(x;) +b0) > 1—&, Vi (3.8)
l

where (a;) are the MY-regularization parameters. Block [ -regularization ensures sparsity at block level
and makes w to be sparse. This method has successfully enabled to tackle medium scale problems but
not well to large scale data.

3.2.4 Large Scale MKL using SILP [4]

The approach in [4] reformulates the problem as semi-infinite linear program (SILP). This algorithm
solves the problem iteratively solving a classical SVM problem with a single kernel and a linear program
who’s number of constraints increases along with iterations. This is one of major advantage of the
method as there exists a lot of toolboxes to solve SVM with single kernel and thus tackles the problem
with large-scale data. The formulation given in [3] is posed as following SILP program.

max 6

subjectto d; > 0, Zdl =1

1
1 (3.9)
Zl:dl(Q Zaiajyiyjkl(xiaxj) — Z a;) >0 YaelC
2%}

i

C={aeR"|0<a; <C, Zyiaizo}

The above formulation is solved efficiently by using cutting plane method [93]. It is an iterative
approach, in which the first step computes the optimal (d, @) for a restricted subset of constraints. Then
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in the next step another algorithm generates a new, unsatisfied constraint determined by c. These
constraints are added to the set of constraints in the first step and the iterations continue until the creteria
S di(3 > i Qiogyiyiki(Xi, X5) — Y2, ;) > 6 is satisfied. First part is Linear Programming (LP)
problem and second step can be solved through SVM. Essentially it is iterative LP-QP solution. In
each iteration LP problems grows more complex as the constraint set increases. This algorithm can be
extended to a large class of convex loss functions.

This solution can now tackle large scale problems and it is shown that it is capable of solving the
problem consisting of 30,000 examples and 20 kernels in reasonable time. But, does not scale well to
the problems which deals with large number of kernels.

3.2.5 Simple MKL [5]

Another algorithm which scales the solution of MKL problem to larger problems is presented in [5].
This method is based upon gradient descent optimization and obtains further efficiency when compared
to SILP in scaling to large problems. The algorithm is fairly simple and uses following alternate opti-
mization algorithm.

i d h that d=1,d > 3.10
mdan() suc alZ;l , d; >0 (3.10)
where
min %Zld%ﬂwlﬂz—&-czi{i Vi
J(d) = { S.t. yl(zl W]tq)l(xi) + b) >1-— fz (3.11)

Here, problem ( 3.10 ) is solved by using a simple gradient descent scheme. The objective function
J(d) is actually an optimal SVM objective value. This formulation results in a smooth and convex
optimization problem which is equivalent to other MKL approaches discussed earlier. But the new
objective function is more smoother, which makes descent methods practical.

Similar to the SILP algorithm, final algorithm iterates over two steps until some convergence is met.
One step performs gradient descent to estimate kernel parameters, another step uses simple SVM to
estimate classifier parameters. This is much efficient as the number of steps need for convergence is
less when compared to SILP approach. This is because SILP approach does not use smoothness of the
objective function. Other methods which are similar to this approach is [39, 83, 94,95], the difference
comes with change in objective function formulation.

3.2.6 Other Approaches

Besides these approaches, some other interesting approaches are infinite-dimensional kernel families
such as hyper-kernels [90, 91] or general convex classes of kernels [89]. Other approaches aims at
studing the regularization for sparsity in kernel selection [95-97]. There are also some approaches on
extending to multi-class [92] and multi-label multiple kernel learning [98].
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3.3 Remarks

All the methods described in the previous section essentially learn linear combinations of base kernels
subject to /1, or sometimes I [88,99], regularization of the kernel parameters. Most formulations are
convex or can be made so by a change of variables. On the other hand, hierarchical multiple kernel
learning [83] considers learning a linear combination of an exponential number of linear kernels, which
is efficiently represented as a product of sums. This method can also be classified as learning a non-
linear combination of kernels but the base kernels are restricted to concatenation kernels.
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Chapter 4

Generalized Multiple Kernel Learning

4.1 Introduction

The success of SVMs at different tasks is often dependent on the choice of a good kernel and features
— ones that are typically hand-crafted and fixed in advance. However, hand-tuning kernel parameters
can be difficult as can selecting and combining appropriate sets of features. Multiple Kernel Learning
(MKL) seeks to address this issue by learning the kernel from training data. In particular, it focuses on
how the kernel can be learnt as a linear combination of given base kernels. Many MKL formulations
have been proposed in the literature.

Nevertheless, MKL approaches are limited in that they focus on learning linear combinations of base
kernels — corresponding to the concatenation of individual kernel feature spaces. Far richer representa-
tions can be achieved by combining kernels in other fashions. For example, taking products of kernels
corresponds to taking a tensor product of their feature spaces. This leads to a much higher dimensional
feature representation as compared to feature concatenation. Furthermore, by focusing mainly on fea-
ture concatenation, MKL approaches do not consider the fundamental question of what are appropriate
feature representations for a given task. This can also be illustrated with an help of example. In the
Figure 4.1, sample 1, 2 (in red color ) belongs to one class and sample 3, 4 (in blue color ) belongs to
other class. A classifier which separate these classes cannot be built neither in individual feature spaces
nor in combined kernel space using sum. But, by using kernel space of product of kernels, a classifier
which can seperate both the classes can be built easily.

Here, we observe that it is fairly straight forward to extend traditional MKL formulations to han-
dle generic kernel combinations. Furthermore, the gradient descent optimization developed and used
in [5,39, 83, 100] can still be applied out of the box. It is therefore possible to learn rich feature repre-
sentations without having to sacrifice any of the advantages of a well developed, large scale optimization
toolkit. In addition to the kernel function, it is also possible to generalize the regularization on the kernel
parameters. This can be used to incorporate prior knowledge about the kernel parameters if available.
However, the price that one has to pay for such generality, is that the new MKL formulation is no longer
convex. Nevertheless, we feel that the ability to explore appropriate feature representation is probably
more important than being able to converge to the global optimum (of an inappropriate representation).
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Figure 4.1: In (a), (b) data points are in individual 1-D feature spaces ®;, ®5. In (c), (d) data points
are in combined kernel feature spaces, sum and product of kernels respectively. It can been seen that
data points are not seperable in individual feature spaces and sum of kernel feature space. But, they are
seperable in product of kernels space.

This is borne out by our experimental results.

In this chapter we present the details of GMKL in Section 4.2, 4.3 and we extend it for multi-class
problem in Section 4.4 similar to the one proposed in [5] which will be useful for feature selection while
extending to multi-class problems.

4.2 Generalized MKL : Formulation

Our objective is to learn a function of the form f(x) = w'¢q(x) + b with the kernel kq(x;,x;) =
¢!, (x;)pa(x;) representing the dot product in feature space ¢ parameterized by d. The function can be
used directly for regression or the sign of the function can be used for classification. The goal in SVM
learning is to learn the globally optimal values of w and b from training data {(x;,y;)}. In addition,
MKL also estimates the kernel parameters d. We extend the MKL formulation of [39] to

vrs}}g% %Wtw + zl: Wy, f(xi)) +7r(d) (4.1)

subject to d>0 4.2)

where both the regularizer r and the kernel can be any general differentiable functions of d with contin-
uous derivative. And [ could be one of various loss functions such as | = C max(0,1 — y; f(x;))? for
classification or € insensitive loss I = C' max(0, |y; — f(x;)| — €) for regression (see Figure 4.2). In case
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Figure 4.2: Commonly used (a) classification and (b) regression loss functions. For classification 0/1
loss function penalizes 1 for every misclassification. It is discontinuous and not convex where as hinge
and quadratic are convex. For regression analysis € insensitive and quadratic loss are used widely. Image
courtsey [9]

of classification when p equals to one it becomes hinge loss and when p equals to two it is quadratic loss
function. For regression other loss functions are quadratic loss | = C'(y; — f(x;))?.

Three things are worth noting about the primal. First, we choose to use a non-convex formulation, as
opposed to the convex Zl wfwl /d; [5], since for general kernel combinations, wfwl need not tend to
zero when d; tends to zero. Second, we place r(d) in the objective and incorporate a scale parameter
within it rather than having it as an equality constraint (typically Y, d; = 1 or >, d? = 1). Third, the
constraint d > 0 can often be relaxed to a more general one which simply requires the learnt kernel to
be positive definite. Conversely, the constraints can also be strengthened if prior knowledge is available.
In either case, if V47 exists then the gradient descent based optimization is still applicable. However,

the projection back into the feasible set can get more expensive.

4.3 Generalized MKL : Algorithm

In order to leverage existing large scale optimizers, we follow the standard procedure [100] of reformu-
lating the primal as a nested two step optimization. In the outer loop, the kernel is learnt by optimizing
over d while, in the inner loop, the kernel is held fixed and the SVM parameters are learnt. This can be
achieved by rewriting the primal as follows

l\/gn T(d) subjectto d >0 (4.3)

where  T(d) = %1151 twlw + Z Uy, f(x;)) +r(d)

(2

We now need to prove that V4T’ exists, and calculate it efficiently, if we are to utilize gradient
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descent in the outer loop. This can be achieved by moving to the dual formulation of T' given by (for
classification and regression respectively)

We(d) =max  T'a—3a'YKqYa +r(d) 4.4)
(a3
subjectto  1'Ya =0, 0<a<C 4.5)

and

Wgr(d) =max 1'Yoa - ja'Kqa
«
+r(d) — elt|af (4.6)
subjectto  1'a =0, 0<|a| < C 4.7

where K is the kernel matrix for a given d and Y is a diagonal matrix with the labels on the diagonal.

Note that we can write 7" = r + P and W = r + D with strong duality holding between P and
D. Therefore, T'(d) = W(d) for any given value of d, and it is sufficient for us to show that W is
differentiable and calculate VqW. Proof of the differentiability of W and Wg comes from Danskin’s
Theorem [101]. Since the feasible set is compact, the gradient can be shown to exist if k, r, Vak
and V4r are smoothly varying functions of d and if a*, the value of « that optimizes W, is unique.
Furthermore, a straight forward extension of Lemma 2 in [100] can be used to show that W and Wg
(as well as others obtained from loss functions for novelty detection, ranking, efc.) have derivatives
given by

or ow  or «+ OH

o0 = od —od %a ta—dla* (4.8)
where H = YK for classification and H = K for regression. Thus, in order to take a gradient step,
all we