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Abstract

Kernel methods are among the important recent developments in the field of machine learning with
applications in computer vision, speech recognition, bio-informatics, etc. This new class of algorithms
combine the stability and efficiency of linear algorithms with the descriptive power of nonlinear fea-
tures. Kernel methods allow data to be mapped (implicitly) to a different space, which is often very
high dimensional compared to the input space, so that complex patterns in the data become simpler to
detect and learn. Kernel function maps the data implicitly into a different space. Support Vector Ma-
chines (SVMs) are one of the kernel methods which is widely successful for classification task. The
performance of algorithm depends on the choice of the kernel. Sometimes, finding the right kernel is a
complicated task. To overcome this, learning the kernel is the new paradigm which is developed in the
recent years. For this, the kernel is parameterized as a weighted linear combination of base kernels. The
weights of the kernel are jointly optimized with the objective of the task.

Learning both the SVM parameters and the kernel parameters is a Multiple Kernel Learning (MKL)
problem. Many formulations of MKL are presented in literature. However, all these methods restrict
to linear combination of base kernels. In this thesis, we show how the existing optimization techniques
of MKL formulations can be extended to learn non-linear kernel combinations subject to general regu-
larization on the kernel parameters. Although, this leads to non-convex problem, the proposed method
retains all the efficiency of existing large scale optimization algorithms. We name the new MKL for-
mulation as Generalized Multiple Kernel Learning (GMKL). We highlight the advantages of GMKL by
tackling problems like feature selection and learning discriminative parts for object categorization prob-
lem. Here, we show how the proposed formulation can lead to better results not only as compared to
traditional MKL but also as compared to state-of-the-art wrapper and filter methods for feature selection.
In the problem of learning discriminative parts for object categorization, our objective is to determine
minimal sets of pixels and image regions required for the task. We use the Multiple kernel learning to
select the most relevant pixels and regions for classification. We then show how the framework can be
used to enhance our understanding of the object categorization problem at hand, determine the impor-
tance of context and highlight artifacts in the training data. We also tackle the problem of recognizing
characters in images of natural scenes in MKL framework. Traditionally it is not be handled well by
OCR techniques. We assess the performance of various features ( using bag-of-visual-words represen-
tation ) based on nearest neighbor and SVM classification. Besides this, we investigate the appropriate
representation schemes for recognition using MKL.

In short, the contributions of this thesis are:
1. Proposing new MKL formulation that can learn non-linear kernel combinations subject to general

regularization on the kernel parameters.
2. Exploring the utility of multiple kernel learning formulations for feature selection and to the

problem of learning informative parts for object category recognition.
3. Recognition of character images taken in natural scenes using the state of the art object recognition

schemes. And also exploring the appropriate representation schemes for recognition using MKL.
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Chapter 1

Introduction

1.1 Introduction
Pattern recognition, a branch of artificial intelligence, studies the operations and design of systems which
recognizes the patterns in data. This includes subfields, like discriminant analysis, feature extraction,
error estimation, cluster analysis, etc. Most of recognition methods are either about supervised learning
or unsupervised learning with applications in wide range of areas. In general, recognition schemes
consists of learning algorithm where it learns a model based upon a given data ( training data ) and uses
this model to classify unseen data ( testing data ).

Learning algorithms based on kernels have found to be successful in variety of tasks. Classification
algorithms such as support vector machines [15, 16], regression algorithms such as kernel ridge re-
gression, support vector regressions, [17, 18], and general dimensionality reduction algorithms such as
kernel principle component analysis (KPCA) [19], kernel linear discriminant analysis (KLDA) [20]
are based on kernel methods. Many of these methods are widely used in various fields e.g. bio-
informatics [21–25], computer vision [26–28], speech recognition [29–31], data mining [32, 33], in-
formation retrieval [34, 35], pattern recognition [36], etc. This shows that the kernel methods have
established themselves as powerful tools. These algorithms work by embedding the data into a feature
space, and then searching for linear relations among the embedded data points. They employ a so called
kernel function which intuitively computes the similarity between two points in the feature space. This
information is contained in the kernel matrix, a symmetric and positive semidefinite matrix that encodes
the relative positions of all points. Convergence of the training algorithms is ensured as long as the ker-
nel matrix is symmetric and positive semidefinite. Figure 1.1 gives the overview of the kernel method.
More details about kernel methods is discussed in Chapter 2. Note that classical kernel-based methods
listed above are based on a single kernel.

The performance of these learning algorithms depends on the data representation. The kernel actually
defines the similarity between two samples x,y, while defining an appropriate regularization term for
the learning problem. In some situations, more flexible models are required. Recent works, show that
using multiple kernels instead of a single one can enhance the interpretability of the output of algorithm
and seen improved performances. One of the convenient approach which is considered in such situations
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Figure 1.1: Overview of kernel method. Data with M samples is used to compute kernel matrix (M
x M) using kernel function k(x,y). Then, learning algorithm uses this matrix to learn the model and
computes output function.

is representing kernel function k(x,y) as conic combinations of base kernels.

k(x,y) =
K
∑

l=1

dlkl(x,y) with dl ≥ 0 (1.1)

Each base kernel kl may either use the full set of variables describing x or subsets of variables
stemming from different data sources. Otherwise, the kernels kl can simply be classical kernels like
Gaussian kernels (i.e. exp−γ‖x−y‖2), etc with different parameters. Within this framework, the problem
of data representation through the kernel is then transferred to the choice of weights dl.

One of the most widely used kernel method is Support Vector Machines (SVMs) [15]. Support Vector
Machines are basic tools in machine learning which are used for tasks such as classification, regression,
etc. They find applications in diverse areas ranging from vision to bio-informatics to natural-language
processing. The success of SVMs in these areas, is often dependent on the choice of a good kernel
and features – which are typically hand-crafted and fixed in advance. However, hand-tuning kernel
parameters can be difficult as selecting and combining appropriate sets of features. Learning both the
SVM parameters and the weights (dl) in a single optimization problem is a multiple kernel learning
(MKL) problem. For binary classification, the MKL problem was first introduced by [2]. Intuition
behind MKL formulation for classification is discussed in more detail in Section 2.6.

Multiple Kernel Learning (MKL) seeks to address the issue of appropriate data representation by
learning the kernel from training data. In particular, it focuses on how the kernel can be learnt as a linear
combination of given base kernels. Many MKL formulations have been proposed in the literature. In
[4], it was shown that the MKL Block l1 formulation of [3] could be expressed as a Semi-infinite
Linear Program. Column generation methods and existing SVM solvers could then be used for efficient
optimization and to tackle large scale problems involving as many as a million data points. Gradient
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descent can be more efficient than solving a series of linear programs and [5] demonstrated that training
time could be further reduced by nearly an order of magnitude on some standard machine learning
datasets when the number of kernels is large. Simultaneously, MKL based algorithms have achieved
very good results for bio-informatics [37, 38] and computer vision [6, 39] applications. These methods
established the viability of MKL as a tool for tackling challenging real world problems.

1.2 Problem Statement
Learning the kernel is one of the popular paradigm developed for increasing performance and inter-
pretability of the output of algorithm. MKL is a way of learning the kernel for the classification task.
Many MKL formulations are presented in the literature [2–5]. But all the approaches are limited in
that they focus on learning linear combinations of base kernels – corresponding to the concatenation
of individual kernel feature spaces. Far richer representation can be achieved by combining kernels in
other fashions. This raise the fundamental question of what could be other possible representations.
This thesis addresses the problem of how the kernel can be learnt by using non-linear combinations. In
specific, we address the following issues in this thesis i) Generalizing MKL to handle non-linear kernel
combinations. In addition to kernel function, we also generalize the regularization on the kernel pa-
rameters. ii) How multiple kernel learning can be used for feature selection. We also demonstrate how
the non-linear fashion of combining kernels boosts the performance when compared to linear manner
of combining kernels. We demonstrate our results on standard machine learning and computer vision
datasets. We also show how we can learn discriminative parts for object recognition in MKL framework.
We demonstrate this on standard benchmark object recognition datasets. iii) Investigating and demon-
strating the use MKL on the real world problem of character image recognition taken in natural scenes.
Here, we use MKL for combining different features which captures different aspects like texture, edge,
etc. The feature extraction methods we use here are widely used in object recognition literature.

The applications, on which we demonstrate the methods developed in the thesis, are of practical
importance and have received wide attention in the field of machine learning and computer vision.
Feature selection, the technique of selecting a subset of relevant features for building robust learning
models is dealt with in this thesis. We also compare the proposed method with state-of-the-art methods
proposed in literature. More details about the methods are presented in Chapter 5. Besides this, we deal
with the problem of doing object categorization efficiently. For this we explore the use of multiple kernel
learning to select the most relevant pixels and regions for classification. And thus do classification by
using selected pixels or regions. We apply this for the problem of gender identification using minimal
number of pixels. This has applications in video surveillance where efficient classifiers are needed.
In Chapter 6, we deal with new problem of recognizing the character images taken in natural scenes.
Solving this problem has practical applications in image retrieval, etc. The results obtained using the
methods proposed in this thesis indicate learning non-linear ( or generic ) kernel combinations have
greater impact in improving the performance in some cases up to 9%, and increase the understandability
of certain problems.

The following section gives challenges involved in learning the kernel. Section 1.4 gives the details
of various applications of MKL and section 1.5 presents the organization of the thesis.
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(a) Aeroplane (b) Bicycle

(c) Car (d) Cow

(e) Horse (f) Motorbike

Figure 1.2: Results of object detection task using MKL based method proposed in [6] on some of
categories from VOC Challenge dataset.

1.3 Challenges
Extracting useful knowledge from data is not always a trivial task. In the case of MKL, we aim at learn-
ing best generalized guaranteed classifier and simultaneously try to explore and find the best possible
feature space. That is, we simultaneously find a separating hyperplane and the weights on each individ-
ual kernels. The weights are chosen so as to maximize the margin between the two classes. Trying to
optimize both the objectives at a time is difficult as the two components are inter-linked to each other.
In a way this can be framed as chicken-and-egg problem, where you do not know which one to start
with, i.e., find the best classifier or best feature space. Besides this, when you have multiple heteroge-
neous data sources, it is extremely difficult to identify and explore the desired feature space. There is
also necessity to find out which sources are needed to be given importance and which need not to be
given. Extending to much more generic combinations and regularizations can make the formulations
to be non-convex optimization problems. And, finding stable solutions to such types of problems are
difficult.

Other challenges involved is that the optimization of such formulations is not straightforward. Many
of these optimizations have the overhead of computational scalability, statistical stability which lim-
its the applicability of solutions to small or medium scale problems. Scaling the solutions to larger
problems is also one of the major challenges in solving the problem. Also scaling is essential in many
practical situations.
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1.4 Applications
Multiple kernel learning can be applied for wide range of applications in various fields. Fields include
computer vision, machine learning, speech processing, bio-informatics, signal processing, data mining,
etc. These applications use MKL either to increase interpretability of output or to increase prediction.
Essentially these applications exploit one of the following views of multiple kernel learning.

• To Combine the multiple heterogeneous data sources.

• To obtain the optimal weights of different features used for the task.

• To interpret the sparsity after learning the weights of the kernels.

Designing and integrating kernels has proven to be an appealing approach to address several chal-
lenging real world applications. Specifically, problems involving multiple, heterogeneous data sources
in computer vision, bio-informatics, audio processing problems, etc have been tackled successfully. For
e.g. in computer vision it is used [6, 9, 39–41] to combine different features which capture various as-
pects like shape, color, texture, etc for image/object classification or object detection ( see Figure 1.2 ).
In the later chapters of this thesis we will investigate in greater details about their use for visual object
classification in particular. Some applications in speech processing area are speaker verification [42]
and speaker recognition. Some of the signal processing applications can be found in [43]. In the area
of bio-informatics, it is used for various disease prediction and classification [37, 38, 44] tasks. There
are also several other applications in machine learning to interpret the learning model [45, 46]. In this
thesis, we address the problem of feature selection in detail.

1.5 Organization of the Thesis
Chapter 1 provides the broad overview of the thesis. The major contributions of the thesis are introduced.
The challenges involved in tackling the problem and the possible applications where the solutions play
a crucial role are discussed. Chapter 2 gives the background for reading the thesis. This gives detailed
explanation of kernel methods and the multiple kernel learning. This chapter introduce the fundamental
idea behind the kernel trick along with the elementary theory of kernel functions. Popular kernel method,
Support Vector Machine is kernelized as an example to demonstrate the kernel trick. The dependency
of the algorithm on choice of the kernel, popular kernels used in fields like computer vision and the fine
details of MKL are given. Chapter 3 presents the literature survey on Multiple Kernel Learning. Here
we review the development of MKL from initial work to current state-of-the-art methods.

In Chapter 4, we show how the MKL is generalized to learn non-linear kernel combinations sub-
ject to general regularization. This is achieved while retaining all the efficiency of existing large scale
optimization algorithms. We name the new MKL formulation as generalized multiple kernel learning
(GMKL). The theory and details of the formulation are given here. In Chapter 5 we demonstrate the
applications of GMKL. Here we highlight the advantages of GMKL by tackling problems like feature
selection and learning discriminative parts for object categorization problem. For feature selection, we
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use various benchmark computer vision and machine learning datasets. Here we show how the pro-
posed formulation can lead to better results not only as compared to traditional MKL but also compared
to state-of-the-art wrapper and filter methods for feature selection. In the problem of learning discrim-
inative parts for object categorization our objective is to determine minimal sets of pixels and image
regions required for the task. We argue that information present in images can be redundant and, there-
fore, looking at the entire image might not be necessary for performing certain classification tasks. We
use multiple kernel learning to select the most relevant pixels and regions for classification. We then
show how the framework can be used to enhance our understanding of the object categorization problem
at hand, determine the importance of context and highlight artifacts in the training data.

In Chapter 6, we tackle new problem of recognizing characters in images of natural scenes. In
particular, we focus on recognizing characters in situations that would traditionally not be handled well
by OCR techniques. We present results on an annotated database of images containing English and
Kannada characters. The problem is addressed in an object categorization framework based on a bag-
of-visual-words representation. We assess the performance of various features based on nearest neighbor
and SVM classification. Besides this, we investigate the performance of MKL on the problem. Finally
the conclusions of the thesis are given in Chapter 7.

Thus the contributions of thesis are : (i) Proposing new MKL formulation which is generalized to
non-linear kernel combinations subject to general regularization on the kernel parameters ( Chapter
4) . (ii) Exploring the utility of multiple kernel learning formulations for feature selection and to the
problem of learning informative parts for object category recognition ( Chapter 5). (iii) Recognition
of perspectively imaged character images using the state of the art object recognition schemes. Also
exploring the appropriate representation schemes for recognition using MKL (Chapter 6).

1.5.1 Note to the reader

Chapter 2 is written as a tutorial for the introduction to kernel methods and multiple kernel learning. It
is not necessary to read this for understanding the thesis. However it is recommended for readers who
are unfamiliar with kernel methods and have difficulty in understanding the multiple kernel learning
problem. Readers who are familiar with the field may skip the chapter without losing continuity. Sec-
tion 2.1 to Section 2.2 gives the introduction to kernel methods. In Section 2.3, we explain SVM for
classification and how it can be kernelized. Section 2.4, 2.5 gives theory of kernels and some example
kernel functions. And finally Section 2.6 gives the details of multiple kernel learning in detail. Readers
who are familiar with kernel methods and not with multiple kernel learning can skip till Section 2.5 and
can start reading from Section 2.6.
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Chapter 2

Background on Kernel Methods and
SVMs

2.1 Introduction to kernel methods
Over past decade kernel methods have received wide attention and have established themselves to be
powerful tools in numerous domains. These methods are based on the similarities between the objects
or samples they allow, e.g. the prediction of properties of new objects based on the properties of known
ones ( classification, regression ) or identification of common subspaces or subgroups in otherwise
unstructured data collections ( dimensionality reduction, clustering ).

In general, linear algorithms are widely used for many tasks such as dimensionality reduction, clas-
sification, because of its numerical and statistical stability. Linear relationships are easier to detect from
data and most natural estimate of an unknown relationship among several variables. Principal Compo-
nent Analysis [47], Linear Perceptron, Linear Predictive Coding [48] are some of the linear algorithms
used for compression, modeling, prediction, etc. But, these methods are limited to only certain descrip-
tive power. On the other hand non-linear algorithms have much more descriptive power than linear
algorithms. These methods are extremely useful when tasks get complex as linear methods turns out to
perform poor. But these non-linear algorithms are based upon non-linear functions which are difficult
to estimate and has problems with stability ( numerical and statistical ) and convergence. In past, one
of either methods is used depending upon situations as, there are no other class of methods which has
descriptive power as well as numerical and statistical stability. Later on, kernel functions are introduced
to draw the advantage of both the methods.

Kernel functions are first demonstrated in the introduction of Support Vector Machines ( SVMs ) [15]
for the classification problem. These functions have successfully combined the advantages of both the
linear algorithm and nonlinear functions. The method aims at building a linear classifier in a feature
space that is nonlinearly related to the input space. This is done without explicitly accessing the feature
space. The fundamental idea is that a complex relationship in the input data can be simplified by
recoding the data in an appropriate manner. This paradigm is of little use for problems involving high-
dimensional data. However, with the use of kernel function to indirectly access the recoded data via the
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inner product makes estimation of non-linear functions feasible. Ever since the introduction of SVM,
a number of successful linear algorithms such as PCA, LDA are kernelized [19, 20] using the kernel
trick to incorporate the power of nonlinearity. The resulting algorithms are superior to their linear
counterparts in terms of descriptive power, and are stable.

Any kernel function can be used with a kernelized algorithm without effecting the statistical proper-
ties, such as generalization capability of the algorithm (in case of classification algorithms). This allows
domain specific knowledge (or prior) to be incorporated in to the kernel function without changing the
algorithm. This modularity makes the development of powerful and stable algorithms feasible. Several
other advantages of kernel methods will be described in the following sections. The underlying theory
of kernel methods is covered in a number of books [49–51]. In the following section, different mod-
ules of kernel methods and basic methodology of each module is explained in detail. The use of kernel
functions in SVM, how the performance of SVM can be improved by learning the kernel and then how
these kernels are useful in computer vision are explained in later sections.

2.2 Overview of Kernel Methods
In general, kernel methods solution comprises of two parts. Firstly, a module that performs the mapping
into the feature space and secondly, a learning algorithm designed to discover linear patterns in that
space. The two main reasons why this approach is used are, (i) Detecting linear relations has been the
focus of research in statistics and machine learning for decades, and the resulting algorithms are both
well understood and efficient. (ii) There is a computational shortcut which makes it possible to represent
linear patterns efficiently in high-dimensional spaces to ensure adequate representational power. This
shortcut is called kernel trick with the help of kernel function.

The strategy adopted here is to embed the data into a space where the patterns can be discovered
as linear relations. This is done in a modular fashion. Two steps with distinct components discussed
earlier will perform this. The initial mapping component is defined implicitly by a so-called kernel
function. This component will depend on the specific data type and domain knowledge concerning the
patterns that are to be expected in the particular data source. The pattern analysis algorithm component
is general purpose, and robust. Furthermore, it typically comes with a statistical analysis of its stability.
The algorithm is also efficient, requiring an amount of computational resources that is polynomial in the
size and number of data items even when the dimension of the embedding space grows exponentially.

In later section, we will introduce the main ingredients of kernel methods using SVM as example.
Following four key aspects of the approach will be highlighted in the example.

1. Data items are embedded into a vector space called the feature space.

2. Linear relations are sought among the data points in the feature space.

3. The algorithms are implemented in such a way that the coordinates of the embedded points are
not needed, only their pairwise inner products are required.

4. The pairwise inner products can be computed efficiently directly from the original data points
using a kernel function.
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These four observations will imply that, despite restricting ourselves to algorithms that optimize
linear functions, approach will enable the development of a rich toolbox of efficient and well-founded
methods for discovering nonlinear relations in the data. In the following section, linear version of SVM
is first explained then kernel extension of it.

2.3 Support Vector Machines
Classification is a common task in machine learning. Given some data points with information of the
class it belongs to, the goal of classification algorithm is learn the model to predict unseen samples which
class it belongs to. Support vector machines (SVMs) are a set of related supervised learning methods
used for classification and regression. A Support Vector Machine is trained so that the direct decision
function maximizes the generalization ability. Here, a data point is viewed as a m−dimensional vector
(a list of m numbers), and we want to know whether we can separate such points with a m−dimensional
hyperplane. This is called a linear classifier. There are many hyperplanes that might classify the data.
One good choice as the best hyperplane is the one that represents the largest separation, or margin,
between the two classes. SVM chooses the hyperplane, so that the distance from it to the nearest data
point on each side is maximized. If such a hyperplane exists, it is known as the maximum-margin
hyperplane and the linear classifier it defines, is known as a maximum margin classifier .

2.3.1 Primal and Dual Formulation : Separable Case

Consider a two-class classification problem, let M m−dimensional training samples xi(i = 1, · · · , M)

belong to either class 1 or class 2. And yi be the corresponding labels which is 1 for class 1 and −1 for
class 2. Consider problem to be separable and need to learn the decision function wtx + b where w is
m−dimensional vector, b is a bias term. It is greater than zero for yi = 1 and less than zero for yi = −1.
For controlled separability the following inequalities are used

wtxi + b







≥ 1 for yi = 1

≤ −1 for yi = −1
(2.1)

Above Equation can also be rewritten as and equivalent to

yi(w
txi + b) ≥ 1 for i = 1, · · · , M (2.2)

In the hyperplane Equation
wtxi + b = c (2.3)

when c = 0, it is the separating hyperplane which runs in the middle and parallel to the two hyperplanes
with c = 1 and −1. The distance between these two hyperplanes is called the margin. Figure 2.1 shows
the hyperplane formed when c = 0, 1,−1. It can been seen that there are many hyperplanes satisfying
Equation (2.2). However, generalization ability of each the possible hyperplanes varies. Intuitively
the hyperplane which has maximum margin will have more generalization ability and is called as the
optimal separating hyperplane. Margin here is distance between the two hyperplanes wtxi + b = 1

10



Figure 2.1: Maximum margin hyperplane in a two-dimensional data
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and wtxi + b = −1 which is equivalent to 2
‖w‖ . The optimal separating hyperplane can be obtained by

minimizing the following objective function J .

J =
1

2
wtw

subject to yi(w
txi + b) ≥ 1 ∀ i

yi ∈ {−1, 1}

(2.4)

The square in the objective function of above formulation makes it a quadratic programming prob-
lem and feasible solutions exists as long as data is linearly separable. As the above formulation has
quadratic objective functions, there exists non-unique solutions but the value of objective function is
unique. This is one of the advantage of support vector machines over neural networks. The data which
satisfy the equalities in first constraint of formulation given in Equation (2.4) are called support vectors
. In Figure 2.1 the points which are rounded are support vectors.

By solving the formulation of Equation (2.4), w and b are estimated. So, the number of variables to
be solved is the dimension of input vector plus one i.e m + 1 . When the number of input variables are
small above quadratic programming problem can be solved without much difficulty. But as discussed
earlier we map the input space to a high-dimensional feature space, which might go infinite sometimes,
finding the solution might not be feasible. For this, above formulation is converted into an equivalent
dual where number of variables is equal to the number of training samples. This is converted into
following unconstrained problem.

Q(w, b, α) =
1

2
wtw −

M
∑

i=1

αi

[

yi(w
Txi + b)− 1

]

(2.5)

where αi ≥ 0 are the nonnegative Lagrangian multipliers. The optimal solution of Equation (2.5) is
given by saddle point, which is minimized with respect to w , b and maximized with respect to αi(≥ 0),

and it satisfies the following Karush-Kuhn-Tucker (KKT) conditions :

∂J(w, b, α)

∂w
= 0 (2.6)

∂J(w, b, α)

∂b
= 0 (2.7)

αi{yi(w
txi + b)− 1} = 0 ∀ i (2.8)

αi ≥ 0 ∀ i (2.9)

Considering Equations (2.9), (2.8) together either αi = 0 or αi 6= 0 and yi(w
txi + b) = 1 must be

satisfied. The training samples for which αi 6= 0 are called support vectors . Using Equations (2.6),
(2.7) and (2.9) we can deduce

w =
M
∑

i=1

αiyixi (2.10)
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and,
M
∑

i=1

αiyi = 0 (2.11)

Using above two Equations and substituting in Equation (2.5), following dual problem is obtained.
Maximize

Qd(α) =
M
∑

i=1

αi −
1

2

M
∑

i=1

M
∑

j=1

αiαjyiyjx
t
ixj

subject to
M
∑

i=1

αiyi = 0

αi ≥ 0

(2.12)

Above problem is a concave quadratic programming problem and the solution exists as long as data is
separable. The values of the primal J and dual objective Qd(α) functions coincides at optimal solution
and is called the zero duality gap. This is called hard margin support vector machines.

2.3.2 Primal and Dual Formulation : Non-Separable Case

When the data is inseparable, hard-margin support vector machines fails, as they cannot find a feasible
solution. To handle inseparable case soft-margin support vector machines are proposed. Here the above
formulation of a separable problem can be extended to a non separable one easily, by introducing a set
of slack variables ξi i = 1, . . . , l in Equation (2.1) and becomes

wtxi + b ≥ +1− ξi for yi = +1 (2.13)
wtxi + b ≤ −1 + ξi for yi = −1 (2.14)

ξi ≥ 0 ∀ i (2.15)

which can be rewritten as,

yi(w
txi + b) ≥ 1− ξi for i = 1, . . . , M (2.16)

Slack variables ξi in the above Equation acts as penalty for misclassifying that particular sample.
These variables are optimized by adding it to Equation (2.4) and the problem becomes minimizing,

J =
1

2
wtw + C

M
∑

i

ξi

subject to yi(w
txi + b) ≥ 1− ξi ∀i

ξi > 0, yi ∈ {−1, 1} ∀i

(2.17)
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Similar to the linearly separable case, this can be reformulated as minimizing,

Q(w, b, ξ, α, β) =
1

2
wTw + C

M
∑

i=1

ξi −
M
∑

i=1

βiξi −
M
∑

i=1

αi

[

yi(w
Txi + b)− 1 + ξi

]

(2.18)

where αi ≥ 0 and βi ≥ 0 are the nonnegative Lagrangian multipliers. Following KKT conditions are
applied to get optimal solution.

∂Q(w, b, ξ, α, β)

∂w
= 0 (2.19)

∂Q(w, b, ξ, α, β)

∂b
= 0 (2.20)

∂Q(w, b, ξ, α, β)

∂ξ
= 0 (2.21)

αi{yi(w
txi + b)− 1 + ξi} = 0 ∀ i (2.22)

βiξi = 0 ∀ i (2.23)
αi ≥ 0, βi ≥ 0, ξi ≥ 0 ∀ i (2.24)

By substituting Equations (2.19), (2.20), (2.21) in (2.18) leads to following Equations.

w =
M
∑

i=1

αiyixi (2.25)

M
∑

i=1

αiyi = 0 (2.26)

αi + βi = C ∀ i (2.27)

Substituting above three Equations in Equation (2.18) following dual problem is obtained. Maximize

Qd(α) =
M
∑

i

αi −
1

2

M
∑

i=1

M
∑

j=1

αiαjyiyj〈xi,xj〉

subject to
M
∑

i=1

yiαi = 0, ∀ i

C ≥ αi ≥ 0, ∀ i

(2.28)

The only difference between the dual forms of soft-marign support vector machines and hard margin
support vector machines is that αi cannot exceed C. And decision function is given by

f(x) =
M
∑

i=1

αiyi〈xi,x〉+ b (2.29)
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2.3.3 Non - Linear SVM

Kernel Trick : The support vector machines discussed in the previous sections addresses the classi-
fication problem by building a linear classifier. The learnt classifier may not have high generalization
ability though the hyperplanes are determined optimally. This can be solved by introducing nonlinearity
through kernelizing the Support Vector algorithm. As discussed at the beginning of the chapter this can
be done easily, by mapping the input space into a high-dimensional dot-product space called the feature
space.

x ∈ <m 7−→ Φ(x) ∈ F ⊆ <p (2.30)

By using the nonlinear vector function Φ(x) = (Φ1(x), · · · , Φp(x))t which maps the m−dimensional
input vector x into the p−dimensional feature space. This feature space needs to be Hilbert space. The
linear decision function in the feature space becomes,

wtΦ(x) + b (2.31)

Now, w is an p−dimensional vector, as p increases the problem of solving formulation given in
Equation (2.17) becomes difficult. On the other hand, in dual formulation, the algorithm needs the inner
products between data points in the feature space F . It is worth taking the advantage of dual solution
to solve the problem. The complexity of evaluating each inner product is proportional to the dimension
of the feature space. The inner products can, however, sometimes be computed more efficiently as a
direct function of the input features, without explicitly computing the mapping. In other words the
feature-vector representation step can be by-passed. The class of functions which perform this direct
computation are kernel functions.

Definition 1. A kernel is a function k such that for all x,y ∈ X satisfies

k(x,y) = 〈Φ(x), Φ(y)〉,

where Φ is a mapping from X to an inner product feature space F

Φ : x 7−→ Φ(x) ∈ F

The idea of kernel function can be illustrated with the help of following example. Consider the
mapping of a two-dimensional input space X ⊆ <2 with feature map,

x =

(

x1

x2

)

7−→ Φ(x) =







x2
1

x2
2√

2x1x2






∈ F = <3

Here the feature map takes the data from two-dimensional to a three-dimensional space where the
linear relations in feature space corresponds to quadratic relations in the input space. Now, the inner
product in feature space can be evaluated as follows,
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〈Φ(x), Φ(y)〉 = 〈(x2
1, x

2
2,
√

2x1x2), (y
2
1, y

2
2,
√

2y1y2)〉
= x2

1y
2
1 + x2

2y
2
2 + 2x1x2y1y2

= (x1y1 + x2y2)
2

= 〈x,y〉2

Hence, the function

k(x,y) = 〈x,y〉2

is the kernel function with F its corresponding feature space. Now, the inner product can be computed
between the projections of two points into the feature space without explicitly evaluating their coordi-
nates. Can every function be a kernel function and what set of kernel functions can be called as kernel
function is discussed more widely in Section 2.4.

Kernel SVM : Now, kernelizing linear version of support vector machine is straightforward. In
Equation (2.28) instead of accessing the input samples only via the inner product 〈xi,xj〉, can be made
accessed through feature space through kernel function k(xi,xj). The dual problem in feature space is,
maximize

Qd(α) =
M
∑

i

αi −
1

2

M
∑

i

M
∑

j

αiαjyiyjk(xi,xj)

subject to
M
∑

i=1

yiαi = 0, ∀ i

C ≥ αi ≥ 0 ∀ i

(2.32)

In general, k(xi,xj) is precomputed and stored in a matrix called kernel matrix (K). For the inner
product between xi,xj is obtained by accessing Kij instead of computing it on the fly. And the decision
function is

f(x) =
M
∑

i=1

αiyik(xi,x) + b (2.33)

Since the discovery of kernelization, SVMs have been widely used for a number of applications
involving classification and recognition. Note that till now we are solving two-class ( binary ) classifica-
tion problem. This can be easily extended to multi-class classfication problems. Starting with naive
approaches and more advanced formulations/approaches of multi-class classifications can be found
in [52–56].

2.4 Valid Kernels
The kernel trick is to operate in feature space via a kernel function k(, ) The feature space is accessed
indirectly via pairwise inner product. We now discuss the properties of these kernel functions here.
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Definition 2. Let k(x,y) be a real-valued symmetric function with x and y being m-dimensional
vectors. For any set of data x1, · · · ,xM and a = (a1, · · · , aM )t with M being any natural number, if

atKa ≥ 0 (2.34)

is satisfied (i.e., K is a positive semidefinite matrix), we call k(x,y) a positive semi-definite kernel,
where

K =







k(x1,x1) . . . k(x1,xM)

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

k(xM,x1) . . . k(xM,xM)







Therefore, if k is a positive definite kernel then there exists a function Φ(x) that maps x into the
dot-product feature space and x satisfies

k(x,y) = Φ(x)tΦ(y) (2.35)

The condition in Equation (2.34) is called Mercer’s condition and kernel which satisfies this is called
Mercer kernel, in general kernel . Now we see what are the general kernels functions used and how the
new kernels can be designed from the existing set of kernels.

2.4.1 Kernels

Linear Kernels : In the linearly separable case, there is no need to map to high-dimensional space. In
such cases we can use linear kernel,

k(x,y) = xTx (2.36)

Polynomial Kernels : The polynomial kernel with degree d, where d is a natural number is given by,

k(x,y) = (xTx)d (2.37)

This is homogenous form of polynomial kernel, where as non-homogenous version of polynomial
kernel is given by,

k(x,y) = (xTx + 1)d (2.38)

When d = 1 it is linear kernel plus one. By adjusting b in the decision function both kernels produces
same decision function. When d = 2 and m = 2 Equation ( 2.38 ) becomes

k(x,y) = 1 + 2x1y1 + 2x2y2 + 2x1x2y1y2 + x2
1y

2
1 + x2

2y
2
2

= Φ(x)tΦ(y)

where Φ(x) = (1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2)

T . Thus for d = 2 and m = 2 polynomial kernels satisfy
Merecer’s condition. This proof can also be extended easily for any value of d, m.
Radial Basis Function Kernels : The radial basis function (RBF) kernel is given by

k(x,y) = exp(−γ‖x−y‖2) (2.39)
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where γ is a positive parameter for controlling the radius. This is one of the most widely used kernel.
The adjustable parameter γ plays a crucial role in the performance of the kernel, and should be tuned
carefully depending upon the problem. If overestimated, the exponential will behave almost linearly
and the higher-dimensional projection will starts to lose its non-linear power. On the other hand, if
underestimated, the function will lack regularization and the decision boundary will be highly sensitive
to noisy training data.
Hyperbolic Tangent (Sigmoid) Kernel: The Sigmoid Kernel comes from the Neural Networks field,
where the sigmoid function is often used as activation function for artificial neurons.

k(x,y) = tanh(xty + c) (2.40)

SVM model which uses a sigmoid kernel function is equivalent to a two-layer, perceptron neural net-
work.

The above listed kernels are some of the standard kernels which are used widely. There many other
kernels are presented in the literature which are specific to domain [57–67].

2.4.2 Kernel Design

Kernel function plays a key role in the performance of the kernel algorithms. New kernel function can be
constructed from known kernel functions by performing certain operations. We now see the properties
of positive semidefinite kernels that are useful for constructing new positive semidefinite kernels.

Result 1. If
k(x,y) = a, (2.41)

where a > 0, k(x,y) is positive semidefinite

Proof. For any natural number M ,

K = (
√

a, . . . ,
√

a)t(
√

a, . . . ,
√

a) (2.42)

k(x,y) is positive semidefinite.

Result 2. If k1(x,y) and k2(x,y) are positive semidefinite kernels,

k(x,y) = a1k1(x,y) + a2k2(x,y) (2.43)

is also positive semidefinite, where a1 and a2 are positive.

Proof. For any M, ai and xi

atKa = at(a1K1 + a2K2)a

= a1a
tK1a + a2a

tK2a

≥ 0

(2.44)

Therefore, k(x,y) is positive semidefinite.
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Result 3. If k1(x,y) and k2(x,y) are positive semidefinite kernels,

k(x,y) = k1(x,y)k2(x,y) (2.45)

is also positive semidefinite.

Proof. To prove this it is sufficient to show that if M ×M matrices B = {bij} and C = {cij} are
positive semidefinite, aijbij is also positive semidefinite. Since B is positive semidefinite, through
mercer condition we can say that B is expressed by B = F tF , where F is an M ×M matrix. Then
bij = fi

tf , where fj is the jth column vector of F . Thus for any arbitrary (a1, . . . , aM ),

atKa =
M
∑

i,j=1

hihjaijbij

=
M
∑

i,j=1

hihjfi
tfjbij

=
M
∑

i,j=1

(hifi)
t(hjfj)bij

≥ 0

(2.46)

Thus k(x,y) is positive semidefinite.

In the next section we see some of the popular kernels used in specific field computer vision.

2.5 Kernels for computer vision
Over the last years, kernel methods have established themselves as powerful tools for computer vision
researchers as well as for practitioners. All the methods for regression, dimensionality reduction, outlier
detection, clustering, recent methods of non-classical techniques for the prediction of structure data, for
the estimation of statistical dependency, and for learning the kernel function itself are illustrated with
successful examples applications in the recent computer vision research literature.

Images and videos are a data source with a very special characteristic: because each pixel represents
a measurement. Images are typically very high dimensional. Smaller resolution image of 256 x 256 will
contain more than 65k pixels and moving to higher resolution will be of even more high in dimensional.
This is the main reason why kernels methods are widely applicable in the field of computer vision.
Therefore, Computer Vision researchers have given special attention on finding good data representa-
tions and algorithms to tackle problems, such as (i) Optical character recognition: classify images of
handwritten or printed letters or digits [68], (ii) Object classification: classify natural images according
to the object category they contain [39], (iii) Action recognition: classify video sequences based on the
action performed in them [69], (iv) Image segmentation: partition an image into the subregions that
correspond to different image aspects, e.g. background or foreground [70], (v) Content Based Image
retrieval: find images that are most similar to a query image from a collection or database [71]. (vi)
Object Detection: identify the boundary of the object present in the image [6]
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Figure 2.2: Sample images of class elk taken from Caltech 256 [7] dataset. Notice the variations in
color, location, contrast in background. And there are also lots of variation in pose & structure of the
object class.

Kernel methods have proved successful in all of these areas, mainly because of their interpretability
and flexibility. By constructing a kernel function one can integrate knowledge that humans have about
the current problem. And this leads to improved performance compared to pure black-box methods that
do not allow the integration of prior knowledge. There is much research in designing promising kernels
which is specific to the task. Once it is designed it can be re-used in any kernel method not only just
in the context it was originally designed. This gives researchers as well as practitioners a large pool of
established kernel functions to choose from, thereby increasing the chances of finding a well-performing
one. In the following, we introduce some of the existing kernels, the assumptions they were based on,
and their applicability to practical computer vision tasks starting with some basics.

2.5.1 Interest points, Descriptors and Bag-of-Words

In computer vision, visual descriptors or image descriptors are descriptions of the visual features of the
contents in images or videos, which are calculated at certain points called interest points. At these
points, descriptor describe elementary characteristics such as the shape, the color, the texture or the
motion. These descriptors carry the knowledge of the objects and events found in a video, image and
this is used to for further processing.

But advanced computer vision tasks require generalization not only between different views of the
same objects, but also between many different objects that share a semantic aspect, e.g. animals of the
same species. The visual variations within such a class can be very large, and is illustrated with an
example in Figure 2.2. These variations generally occur due to change of pose, truncation or occlusion.
But typical parts are often common for all object instances. Part-based representations of natural images
have been developed to overcome all of these problems. They are based on the idea of treating the image
as collections of many local parts instead of as single object with global properties.

To find relevant parts of the image, in general one applies a set of operators for the detection of interest
points. These operators comprises of low-level differential filters based on differences of Gaussian or
Wavelet coefficients , etc. It is shown in practice that interest points on a regular grid or random locations
and scales [72] work well. Each region of interest defines a small image from which one calculates
an invariant representation, often called a descriptor. The popular SIFT descriptor [72] does this by
combining several ideas. Many other descriptors [73–77] have been developed that follow similar or
some other design. Many of these descriptors are used for problems which are addressed in this thesis
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Figure 2.3: The descriptors which occur in natural images do not lie uniform in the space of all possible
descriptors, but they form clusters. BOW (right) divides the descriptor space into Voronoy cells that
respect the cluster structure but SPK(left) does not do this. Image courtsey [8]

and more details of them are given at appropriate place. After this first preprocessing step, the image is
represented as a set of descriptor vectors, one per region of interest in the image. All descriptors vectors
are of the same length, typically between 20 and 500 dimensions. The number of regions and descriptors
varies depending on the image contents. Depending on the method for interest point detection and the
resolution of image, the number of interest points per image vary.

After interest point detection, each image is abstracted by several local patches. Feature represen-
tation methods deal with representation of patches as numerical vectors. Natural images have inherent
regularities that cause the extracted descriptors vectors to form clusters in the descriptors space. For
example, edges and corners are typically much more frequent than, e.g., checker board-like patterns.
On one hand, a large number of grid cells will stay empty, and on the other hand, existing clusters might
be split apart.

The vector representing patches are represented in the next level using codewords. A codeword can
be considered as a representative of several similar patches. One simple method is performing K-means
clustering over all the vectors [78]. Codewords are then defined as the centers of the learnt clusters.
The number of the clusters is the size of codebook. This is also called as vocabulary size. Thus,
each patch in an image is mapped to a certain codeword through the clustering process. As a simplest
representation, we count for each cluster center, how often it occurs as a nearest neighbor of a descriptor
in x and form the resulting K-bin histogram. This construction is often called bag of visual words, since
it is similar to the bag-of-words concept in natural language processing.

2.5.2 Pyramid Match Kernel

Pyramid match kernel [79] is a fast kernel function (satisfying Mercer’s condition) which has been built
over these descriptors and proven themselves in the tasks like object recognition. The complexity of
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comparing two images in part-based representation can be made linear instead of quadratic by quan-
tizing the space of possible descriptor values. The pyramid match kernel (PMK) [79] does so well by
subdividing the d-dimensional space of image descriptors into a hierarchy of axis parallel cells in a data
dependent way. In the finest layer, each descriptor lies in a cell of its own. Coarser layers are built by
merging neighboring cells in any dimension. This construction is repeated until the coarsest layer has
only one cell containing all descriptors. It is defined as

kPMK(x,y) =

L
∑

l=1

2l
2l−1
∑

j=1

min(hl,j(x), hl,j(y)) (2.47)

where hl,j(x) are histograms of, how many features of x falling into j−th cell of l−th pyramid level.
This kernel has been successfully demonstrated on caltech 101 [14] and ETHZ databases [80]. But
quantization of the descriptor space by a regular grid, as used by the pyramid match kernel, does not
reflect proper clustering, see Figure 2.3.

2.5.3 Kernels for BOW Representations

The representation of images as feature count histograms leaves us with many possibilities which ker-
nel function to apply on them. A direct analogue of the pyramid match kernel Equation (2.47) is the
histogram intersection kernel [67]:

kHI(x,y) =
V
∑

i=1

min(hi, h
′i) (2.48)

where we write h = (h1, . . . , hV ) for the V−bin histogram representation of x and analogously h
′ for

the histogram of y.
For fixed length histograms we can apply all kernels defined for vectors, e.g. linear, polynomial or

Gaussian. If the number of feature points differs between images, it often makes sense to first normalize
the histograms, e.g. by dividing each histogram bin by the total number of feature points. This allows
the use of kernels for empirical probability distributions, e.g. the Bhattacharyya kernel

kbhattacharyya(x,y) =
V
∑

i=1

√

hi, h′i (2.49)

Another popularly used kernel in Computer Vision is χ2-kernel:

kχ2(x,y) = exp

(

−γ

V
∑

i=1

(hi − h
′i)2

hi + h′i

)

(2.50)

which has shown very good performance, in the tasks like object recognition [39], object detection
[81].
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2.5.4 Spatial Pyramid Kernel

The bag of visual words model completely ignores the spatial structure information from the image.
However, in some tasks spatial information can be a valuable source of information, e.g. if one wants
to recognize scene like highway where sky regions tend to occur much more frequently at the top of the
image than at the bottom. Consequently, the idea of local histograms has proved useful in this setup as
well. In the place of global visual word histogram, a number of local histograms are formed, typically
in a pyramid structure from coarse to fine as similar to pyramid match kernel. Each sub-histogram has
V bins and counts how many descriptors with center point in the corresponding pyramid cell have a
specific codebook vector as nearest neighbor. Then, either all local histograms are concatenated into a
single larger histogram , or separate kernel functions are applied for each level and cell, and the resulting
kernel values combined into a single spatial pyramid score, e.g. by a weighted sum [82]:

kSP (x,y) =
L
∑

l=1

dl

2l−1
∑

j=1

k(h(l,j), h
′

(l,j)) (2.51)

where L is the number of levels, dl is a per-level weight factor and h(l,k), h
′

(l,k) are the local histograms
of x, y respectively. The base kernel k is typically chosen from the same selection of histogram kernels
as above, with or without separate histogram normalization.

2.6 Learning the Kernel
Kernel method poses many advantages other than nonlinearity such as modularity, ability to work with
heterogeneous description of data, etc. The major issue in the kernel methods is the choice of kernel
function. The kernel function defines the geometry of space in which an algorithm operates and this is
crucial for the performance of that algorithm in that space. In general kernel methods use a single fixed
kernel function. Different kernel functions induce different feature space embeddings and are therefore
differently well suited for a given problem. Finally, the choice of the kernel is task dependent. The
quality of a kernel is determined by how well the trained kernel method performs in that particular task
at hand, e.g. in the case of a classifier by the accuracy on unseen data points. Although, many estimators
for the generalization error have been developed and used for parameter selection, e.g. cross-validation
and bootstrapping, which work by iterating between training and test procedures on different parts of
the training set.

2.6.1 Kernel Target Alignment

The idea of learning the kernel matrix has originated from [1]. which defines an alignment between a
kernel and a set of labels. The intuition of kernel target alignments (KTA) [1] is that the values of a
good kernel function k should resemble the values of a (hypothetical) ideal kernel l. This ideal kernel
or target kernel is constructed by l(x,y) = yiyj with yi ∈ {−1, +1}. The alignment between kernel
k, l is defined as
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A(k, l) =
〈K,L〉F

√

〈K,K〉F 〈L,L〉F
(2.52)

where K,L is the kernel matrix using kernel k, l in feature space F respectively. This can also be
viewed as the cosine angle between two bi-dimensional vectors K and L. Substituting L = yyt where
y is vector of labels of the training samples, then

A(k, l) =
〈K,yyt〉F

√

〈K,K〉F 〈yyt,yyt〉F

=
〈K,yyt〉F

m
√

〈K,K〉F

(2.53)

To select one kernel function out of a set of alternatives, we choose the kernel function that maxi-
mizes A(k, l). Since this procedure does not require to train and evaluate a classifier, it is in particular
faster than, e.g., multiple cross-validation runs. Another advantage of the kernel alignment score is its
differentiability with respect to the kernel function k. For kernels that depend smoothly on real-valued
parameters, it therefore possible to find locally optimal parameters combination by gradient-descent
optimization.

2.6.2 Multiple Kernel Learning

For many tasks the choice of representation and features depends on the applications. For instance in
computer vision for a problem color, texture, or edge orientation might be the most relevant cue. Most
often, one finds that different aspects are important at the same time, and one would like to find a kernel
function that reflects the aspects of several kernels at the same time.

Kernel methods in general are well suitable for such feature combinations. Constructing Kernel
functions, the sum and product of existing kernels are kernels again, equally reflecting the properties
of all base kernel. However, in situations, where we believe that some kernels are more important
than others, we might prefer a weighted linear combination of kernel instead of their unweighted sum.
Multiple kernel learning (MKL) allows us to find the weights of such linear combinations. The intuition
here is that kernel or combination of kernels gives rise to a margin when used in the training of a support
vector machine, and due to the linear kernel construction, we can find an explicit expression for the size
of the margin. The concept of maximum margin learning tells us to prefer classifiers with a large margin
between the classes. MKL procedure jointly finds the SVM weight vector and the linear combination
weights of the kernel functions that realized the generalized linear classifier of maximal margin. See
Figure 2.4 for an illustration.

Linear kernel combinations : Let k1, · · · , kK be kernel functions, ki : χ× χ with induced Hilbert
spacesHi and feature maps Φi. Now the interest lies in finding the best SVM classifier for kernel

k(x,y) =

K
∑

l=1

dlkl(x,y) (2.54)

with di ≥ 0.
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Figure 2.4: Given two kernels k1, k2 with feature maps Φ1, Φ2 then consider the kernel formed through
linear combination k = αk1 + (1 − α)k2 with induced feature space (

√
αΦ1,

√
1− αΦ2). Plots cor-

responding to α = 0, 1, 0.9, 0.2 can be found in (a),(b),(c),(d) respectively. It is clear that data is not
much separable in the original features space (a), (b) when compared to to feature spaces (c),(d). Image
courtsey [8]
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If d1, . . . , dK are fixed Φ(x) = (
√

d1Φ1(x), . . . ,
√

dKΦK(x))t since this constructs same scalar
product as k:

〈Φ(x), Φ(y)〉 =

K
∑

l=1

dl〈Φl(x), Φl(y)〉

=
K
∑

l=1

dlkl(x,y)

= k(x,y)

(2.55)

Finding the best coefficients enables better construction of feature space. Therefore, to find the best
coefficients for the linear combination kernel kopt =

∑

l dlkl, following objective function is presented
in [39]. Minimize

J =
1

2
wTw + C

M
∑

i

ξi +
K
∑

l

dlσl

subject to yi(w
tΦ(xi) + b) ≥ 1− ξi ∀i

ξi > 0, yi ∈ {−1, 1} ∀i
d ≥ 0,Ad ≥ p

Φ(xi)
tΦ(xj) =

K
∑

l=1

dlΦ(xi)
t
lΦ(xj)l

(2.56)

where d are kernel parameters and A,p are the parameters to include prior knowledge on kernel param-
eter d. The objective function in formulation (2.56) is similar to l1 soft margin SVM formulation (2.17).
Given the misclassification penalty C, it maximizes the margin while minimizing the hinge loss on the
training set. The only addition to it is kernel parameter also optimized along with SVM parameters. In
general most of the weights will be zero depending on the parameters σ which encode prior preferences
for particular kernels. The l1 regularization thus prevents over-fitting as only few kernels are being used
at the end. And there are two additional constraints which are added in comparison with standard SVM.
The first, d ≥ 0, this is to ensure that weights are interpretable and also leads to a much more efficient
optimization problem. The second, Ad ≥ p it to encode prior knowledge about the kernel parameters.
The final condition is just restatement of Equation (2.54).

Similar to the Equation (2.17), above objective function can be reformulated as maximizing

Q(w, b, ξ,d, α, β, γ, δ) =
1

2
wTw + C

M
∑

i=1

ξi +

K
∑

l=1

dlσl −
M
∑

i=1

αi

[

yi(w
TΦ(xi) + b)− 1 + ξi

]

−
M
∑

i=1

βiξi −
K
∑

l=1

γldl −
K
∑

l=1

dlδ
tAl + ptδ (2.57)

1

1Note that δt(Ad − p) is rewritten as
PK

l=1 dlδ
tAl − ptδ
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where αi, βi, γl, δl are the nonnegative Lagrangian multipliers and Al is lth column of the matrix A.
On differentiation with respect to w, b, ξi, dk, we have,

∂Q

∂w
= 0 =⇒ w =

M
∑

i=1

αiyiΦ(xi) (2.58)

∂Q

∂b
= 0 =⇒

M
∑

i=1

αiyi = 0 (2.59)

∂Q

∂ξi
= 0 =⇒ C = αi + βi (2.60)

∂Q

∂dl
= 0 =⇒ σl = γl + δtAl +

M
∑

i=1

αiyi(w
t[01 · · ·Φl(xi) · · ·0K]t)

1

2
√

dl

(2.61)

αi{yi(w
txi + b)− 1 + ξi} = 0 ∀ i (2.62)

βiξi = 0 ∀ i (2.63)
αi ≥ 0, βi ≥ 0, ξi ≥ 0, dl ≥ 0 ∀ i, l (2.64)

γldl = 0 ∀ l (2.65)
δt(Ad− p) = 0 (2.66)

where 0l is a vector containing all zeros of size Φl(xi). Equations from (2.62) to (2.66) are KKT
conditions and substituting Equations from (2.58) to (2.61) in (2.57) we get following dual problem (
for more detailed derivation see Appendix A ). Maximize

Qd = 1tα + ptδ

subject to 0 ≤ αi ≤ C, 0 ≤ δ, 1tYα = 0

1

2
αtYKlYα ≤ σl − δtAl

(2.67)

where the non-zero αi correspond to the support vectors, Y is a diagonal matrix with labels of training
samples on the diagonal. The dual is convex with a unique global optimum. By solving either primal or
dual, one can obtain the both kernel and SVM parameters and thus kernel is learnt.

There are other versions of MKL [5, 83] in the literature. The main difference between all them is
the difference in objective function formulation. One of the extension are infinite kernel learning [84]
which combines the advantages of kernel target alignment and multiple kernel learning , allowing to
learn liner kernel combination, while at the same time adjusting the kernel parameters. In this thesis we
use and extend the above formulation.

2.7 Further challenges in kernel methods
There are many challenges in kernel methods. One of the major limitations in kernel methods is the
complexity of training and testing process. So far we have seen kernel algorithms provide a boost in

27



performance by mapping the input samples to feature and then applying linear algorithm over there.
And this mapping is done efficiently with the help of kernel function. Kernel methods access the feature
space via the input samples and hence kernel algorithms need to store all the relevant input samples.
For instance, testing in case of SVM for a new sample all the support vectors are needed to be stored so
that they can be used to project on the separating hyperplane. The complexity of this testing process is
high, as the size of kernel matrices increase quadratically as the number of SVs increases. So reduction
of such complexities is highly necessary to run a particular set of applications faster. There are number
of attempts to do this [85, 86], but still this is a challenging problem with scope for further research.

Another limitation is the appropriateness of choice of kernels. Unless the data is represented in
appropriate feature space, improvement in performance of method cannot be seen. For this, researchers
have started with designing the kernels and now it is moving towards “learning the kernel”. In this thesis
we work on later part and learn the kernel in nonlinear fashion rather than traditional linear fashion, and
show the improvement in the performances at tasks like feature selection.

Kernel algorithms have brought a significant boost in the performance on the tasks like object recog-
nition, object detection, object localization, etc. Some of kernel designs are seen in the chapter. In the
case of images, the representations is much high dimensional, the limitation on the complexity holds
here. The reduction of such complexities is still an active research area.
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Chapter 3

Literature Survey on Kernel Learning

3.1 Overview
The performance of the learning algorithms for tasks like classification and regression strongly depends
on the data representation. In kernel methods, the data representation is implicitly choosen through the
kernel k(x,y). This kernel actually defines the similarity between two samples x,y, while defining
an appropriate regularization term for the learning problem. In some situations, more flexible models
are required. Recent works, show that using multiple kernels instead of a single one can enhance the
interpretability of the decision function and improved performances.

Some of the earliest work on MKL was developed in [87, 88]. Their focus was on optimizing loss
functions such as kernel target alignment rather than the specific classification or regression problem at
hand. This was addressed in the influential work of [2] which showed how MKL could be formulated
appropriately for a given task and optimized as an Semi-Definite Programming (SDP) or Quadratically
Constrained Quadratic Programming (QCQP) for non-negative kernel weights. Nevertheless, QCQPs
do not scale well to large problems and one of the first practical MKL algorithms was presented in [3].
In [3], the block l1 formulation , in conjunction with M-Y regularization, was developed so that efficient
gradient descent could be performed using the Sequential Minimizing Optimization (SMO) algorithm
while still generating a sparse solution.

The work presented in [4] retained the block l1 regularization and reformulated the problem as a
Semi-Infinite Linear Programming problem (SILP). This made it applicable to large scale problems
and the authors were impressively able to train their algorithm on a million splice data set. Further
efficiency was obtained in [5,39] via gradient descent optimization and [83] opened up the possibility of
training on an exponentially large number of kernels. Other interesting approaches have been proposed
in [89–92] and include Hyper-kernels and multi-class MKL. In the next section the methods proposed
in [2–5,88] are discussed in detail and discuss how the problem has been tackled at the beginning to the
latest methodology used for solving the problem.
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3.2 MKL Approaches

3.2.1 Kernel Target Alignment [1]

This is the one of the initial paper which sought the idea of learning the kernel for improvement in the
performance. It starts with the idea of defining the notion of the alignment between two kernels. This
notion of alignment between two kernels is then extended to the alignment between kernel and labels,
by constructing a “target kernel” t(xi,xj) = yiyj with yi ∈ {−1, +1}. The alignment is defined as

A(k, t) =
〈K,yyt〉F

√

〈K,K〉F 〈yyt,yyt〉F

=
〈K,yyt〉F

m
√

〈K,K〉F

(3.1)

where y is vector of labels of the training samples and m is the number of training samples. Optimal
kernel Kopt is characterized as below equation,

Kopt =
∑

l=1

dlKl (3.2)

where Kl = vlv
t
l and vl is eigen vectors of original kernel matrix K. Now the optimal alignment

becomes

A(Kopt) =
〈Kopt,yyt〉F

m
√

∑

ij didj〈vivt
i , vjvt

j〉F
=

∑

l dl〈vl,y〉2F
m
√

∑

l d
2
l

(3.3)

Maximizing the alignment by adding the constraint
∑

l d
2
l = 1 yields the following Lagrangian

formulation.

max
∑

l

dl〈vl,y〉2F − λ(
∑

l

d2
l − 1) (3.4)

Solving above gives dl ∝ 〈vl,y〉2F . It is shown that learning the kernel has improved the performance
when compared to direct kernel. This has established the use of linear combinations of base kernels.
Although, some generalization bounds have been given, the task is not directly related to classification
and does not easily generalize to other loss functions. This is one of the major drawback of this method.

3.2.2 Learning the Kernel Matrix with SDP [2]

In [2], it is shown that Semi-Definite Programming (SDP) techniques can be applied to learn the kernel
matrix. In specific, this work focuses on loss function for classification problem ( in SVM framework
). It involves joint optimization of kernel matrices and the coefficients in a conic combination of kernel
matrices and the coefficients of a discriminative classifier. Finally, the problem is posed as a QCQP
problem, which is special form of SDP.

30



This work apply the idea to the problem of combining data from multiple sources. Specifically,
assuming that each source is associated with a kernel function, such that a training set yields a set
of kernel matrices. The tools that they developed in their work made it possible to optimize over the
coefficients in a linear combination of such kernel matrices. These coefficients can then be used to
form linear combinations of kernel functions in the overall classifier. Thus, this approach allows us to
combine heterogeneous data sources, making use of the reduction of heterogeneous data types to the
common framework of kernel matrices, and choosing coefficients that emphasize those sources most
useful in the classification decision. This later was named as Multiple Kernel Learning.

Semidefinite programming and Multiple kernel learning

Semidefinite programming deals with the optimization of convex functions over the convex cone of
symmetric, positive semidefinite matrices

P = {X ∈ R
p×p | X = Xt, X � 0} (3.5)

or affine subsets of this cone. With this, given P can be viewed as a search space for possible kernel
matrices. This search space is constrained in order to prevent overfitting and achieve good generalization
on test data. For MKL, a restricted set K of kernels is taken which is a set of positive semidefinite
matrices. And these are bounded with trace that can be expressed as a linear combination of kernel
matrices from the set {K1, · · · ,Kl}. That is, K is the set of matrices K satisfying

K =
∑

l

dlKl, K ≥ 0, trace(K) ≤ c (3.6)

Additionally the parameters dl can be constrained to be non-negative (i.e. dl ≥ 0). By doing so, a
significant computational complexity is reduced. The problem is formulated as following quadratically
constrained quadratic problem.

min
1

2
wtw + C

M
∑

i

ξi

subject to yi(w
tΦd(xi) + b) ≥ 1− ξi, ξi > 0 ∀i

K =
∑

l

dlKl, dl ≥ 0 ∀l

trace(K) = c

(3.7)

where c is a constant. This convex optimization problem, a QCQP more precisely, is a special instance
of an SOCP ( Second-Order Cone Programming problem, which can be solved efficiently), which is in
turn a special form of SDP. Sparse kernel weights are obtained by solving the formulation. This can also
be extended to optimise an appropriate cost function depending on the task at hand. Other possible loss
functions are square hinge, KTA, regression, etc.

Solving the formulation in QCQP is more challenging than a Quadratic Programming (QP) problem,
but in principle it can be solved by general-purpose optimization toolboxes. But QCQP does not scale
well and becomes rapidly intractable as the number of learning examples or kernels become large.
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3.2.3 MKL with Sequential Minimization Optimization Algorithm [3]

The formulation in SDP framework is convex but is a non-smooth minimization problem. This makes
the direct application of simple local descent algorithms such as sequential minimization optimization
infeasible. Therefore, [3] has considered the smoothed version of problem for which they proposed a
SMO-like algorithm that enables to tackle medium-scale problems.

A classification algorithm called support kernel machine (SKM) was introduced in [3]. It is motivated
as a block-based variant of the SVM and related to margin-based classification algorithms. But their
underlying motivation was the fact that the dual of the SKM is exactly the problem (3.7) which they
establish in their work. Here, input sample xi in divided into n blocks and is represented as xi =

(x1i,x2i, · · · ,xni). For kernelization, mapped feature space of input sample is assumed to have n

components Φ(xi) = (Φ1(xi), · · · , Φn(xi)). Thus w also has the same block decomposition w =

(w1, · · · ,wn). SKM is then extended to SMO-like algorithm making use of Moreau-Yosida (MY)
regularization. Finally the formulation is,

min
1

2
(
∑

l

dl||wl||2)2 +
1

2

∑

l

a2
l ||wl||22 + C

∑

i

ξi

subject to yi(
∑

l

wt
lΦl(xi) + b) ≥ 1− ξi, ∀i

ξi ≥ 0, ∀i

(3.8)

where (al) are the MY-regularization parameters. Block l1-regularization ensures sparsity at block level
and makes w to be sparse. This method has successfully enabled to tackle medium scale problems but
not well to large scale data.

3.2.4 Large Scale MKL using SILP [4]

The approach in [4] reformulates the problem as semi-infinite linear program (SILP). This algorithm
solves the problem iteratively solving a classical SVM problem with a single kernel and a linear program
who’s number of constraints increases along with iterations. This is one of major advantage of the
method as there exists a lot of toolboxes to solve SVM with single kernel and thus tackles the problem
with large-scale data. The formulation given in [3] is posed as following SILP program.

max θ

subject to dl ≥ 0,
∑

l

dl = 1

∑

l

dl(
1

2

∑

i,j

αiαjyiyjkl(xi,xj)−
∑

i

αi) ≥ θ ∀α ∈ C

C = {α ∈ R
m| 0 ≤ αi ≤ C,

∑

i

yiαi = 0}

(3.9)

The above formulation is solved efficiently by using cutting plane method [93]. It is an iterative
approach, in which the first step computes the optimal (d, θ) for a restricted subset of constraints. Then
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in the next step another algorithm generates a new, unsatisfied constraint determined by α. These
constraints are added to the set of constraints in the first step and the iterations continue until the creteria
∑

l dl(
1
2

∑

i,j αiαjyiyjkl(xi,xj) −
∑

i αi) ≥ θ is satisfied. First part is Linear Programming (LP)
problem and second step can be solved through SVM. Essentially it is iterative LP-QP solution. In
each iteration LP problems grows more complex as the constraint set increases. This algorithm can be
extended to a large class of convex loss functions.

This solution can now tackle large scale problems and it is shown that it is capable of solving the
problem consisting of 30,000 examples and 20 kernels in reasonable time. But, does not scale well to
the problems which deals with large number of kernels.

3.2.5 Simple MKL [5]

Another algorithm which scales the solution of MKL problem to larger problems is presented in [5].
This method is based upon gradient descent optimization and obtains further efficiency when compared
to SILP in scaling to large problems. The algorithm is fairly simple and uses following alternate opti-
mization algorithm.

min
d

J(d) such that
∑

l=1

dl = 1, dl ≥ 0 (3.10)

where

J(d) =















min 1
2

∑

l
1
dl
||wl||2 + C

∑

i ξi ∀i
s.t. yi(

∑

l wl
tΦl(xi) + b) ≥ 1− ξi

ξi ≥ 0, ∀i
(3.11)

Here, problem ( 3.10 ) is solved by using a simple gradient descent scheme. The objective function
J(d) is actually an optimal SVM objective value. This formulation results in a smooth and convex
optimization problem which is equivalent to other MKL approaches discussed earlier. But the new
objective function is more smoother, which makes descent methods practical.

Similar to the SILP algorithm, final algorithm iterates over two steps until some convergence is met.
One step performs gradient descent to estimate kernel parameters, another step uses simple SVM to
estimate classifier parameters. This is much efficient as the number of steps need for convergence is
less when compared to SILP approach. This is because SILP approach does not use smoothness of the
objective function. Other methods which are similar to this approach is [39, 83, 94, 95], the difference
comes with change in objective function formulation.

3.2.6 Other Approaches

Besides these approaches, some other interesting approaches are infinite-dimensional kernel families
such as hyper-kernels [90, 91] or general convex classes of kernels [89]. Other approaches aims at
studing the regularization for sparsity in kernel selection [95–97]. There are also some approaches on
extending to multi-class [92] and multi-label multiple kernel learning [98].
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3.3 Remarks
All the methods described in the previous section essentially learn linear combinations of base kernels
subject to l1, or sometimes l2 [88, 99], regularization of the kernel parameters. Most formulations are
convex or can be made so by a change of variables. On the other hand, hierarchical multiple kernel
learning [83] considers learning a linear combination of an exponential number of linear kernels, which
is efficiently represented as a product of sums. This method can also be classified as learning a non-
linear combination of kernels but the base kernels are restricted to concatenation kernels.
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Chapter 4

Generalized Multiple Kernel Learning

4.1 Introduction
The success of SVMs at different tasks is often dependent on the choice of a good kernel and features
– ones that are typically hand-crafted and fixed in advance. However, hand-tuning kernel parameters
can be difficult as can selecting and combining appropriate sets of features. Multiple Kernel Learning
(MKL) seeks to address this issue by learning the kernel from training data. In particular, it focuses on
how the kernel can be learnt as a linear combination of given base kernels. Many MKL formulations
have been proposed in the literature.

Nevertheless, MKL approaches are limited in that they focus on learning linear combinations of base
kernels – corresponding to the concatenation of individual kernel feature spaces. Far richer representa-
tions can be achieved by combining kernels in other fashions. For example, taking products of kernels
corresponds to taking a tensor product of their feature spaces. This leads to a much higher dimensional
feature representation as compared to feature concatenation. Furthermore, by focusing mainly on fea-
ture concatenation, MKL approaches do not consider the fundamental question of what are appropriate
feature representations for a given task. This can also be illustrated with an help of example. In the
Figure 4.1, sample 1, 2 ( in red color ) belongs to one class and sample 3, 4 ( in blue color ) belongs to
other class. A classifier which separate these classes cannot be built neither in individual feature spaces
nor in combined kernel space using sum. But, by using kernel space of product of kernels, a classifier
which can seperate both the classes can be built easily.

Here, we observe that it is fairly straight forward to extend traditional MKL formulations to han-
dle generic kernel combinations. Furthermore, the gradient descent optimization developed and used
in [5, 39, 83, 100] can still be applied out of the box. It is therefore possible to learn rich feature repre-
sentations without having to sacrifice any of the advantages of a well developed, large scale optimization
toolkit. In addition to the kernel function, it is also possible to generalize the regularization on the kernel
parameters. This can be used to incorporate prior knowledge about the kernel parameters if available.
However, the price that one has to pay for such generality, is that the new MKL formulation is no longer
convex. Nevertheless, we feel that the ability to explore appropriate feature representation is probably
more important than being able to converge to the global optimum (of an inappropriate representation).
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(a) (b)

(c) (d)

Figure 4.1: In (a), (b) data points are in individual 1-D feature spaces Φ1, Φ2. In (c), (d) data points
are in combined kernel feature spaces, sum and product of kernels respectively. It can been seen that
data points are not seperable in individual feature spaces and sum of kernel feature space. But, they are
seperable in product of kernels space.

This is borne out by our experimental results.
In this chapter we present the details of GMKL in Section 4.2, 4.3 and we extend it for multi-class

problem in Section 4.4 similar to the one proposed in [5] which will be useful for feature selection while
extending to multi-class problems.

4.2 Generalized MKL : Formulation
Our objective is to learn a function of the form f(x) = wtφd(x) + b with the kernel kd(xi,xj) =

φt
d(xi)φd(xj) representing the dot product in feature space φ parameterized by d. The function can be

used directly for regression or the sign of the function can be used for classification. The goal in SVM
learning is to learn the globally optimal values of w and b from training data {(xi, yi)}. In addition,
MKL also estimates the kernel parameters d. We extend the MKL formulation of [39] to

min
w,b,d

1
2w

tw +
∑

i

l(yi, f(xi)) + r(d) (4.1)

subject to d ≥ 0 (4.2)

where both the regularizer r and the kernel can be any general differentiable functions of d with contin-
uous derivative. And l could be one of various loss functions such as l = C max(0, 1 − yif(xi))

p for
classification or ε insensitive loss l = C max(0, |yi−f(xi)|− ε) for regression (see Figure 4.2). In case
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(a) Classification (b) Regression

Figure 4.2: Commonly used (a) classification and (b) regression loss functions. For classification 0/1
loss function penalizes 1 for every misclassification. It is discontinuous and not convex where as hinge
and quadratic are convex. For regression analysis ε insensitive and quadratic loss are used widely. Image
courtsey [9]

of classification when p equals to one it becomes hinge loss and when p equals to two it is quadratic loss
function. For regression other loss functions are quadratic loss l = C(yi − f(xi))

2.
Three things are worth noting about the primal. First, we choose to use a non-convex formulation, as

opposed to the convex
∑

l w
t
lwl/dl [5], since for general kernel combinations, wt

lwl need not tend to
zero when dl tends to zero. Second, we place r(d) in the objective and incorporate a scale parameter
within it rather than having it as an equality constraint (typically

∑

l dl = 1 or
∑

l d
2
l = 1). Third, the

constraint d ≥ 0 can often be relaxed to a more general one which simply requires the learnt kernel to
be positive definite. Conversely, the constraints can also be strengthened if prior knowledge is available.
In either case, if ∇dr exists then the gradient descent based optimization is still applicable. However,
the projection back into the feasible set can get more expensive.

4.3 Generalized MKL : Algorithm
In order to leverage existing large scale optimizers, we follow the standard procedure [100] of reformu-
lating the primal as a nested two step optimization. In the outer loop, the kernel is learnt by optimizing
over d while, in the inner loop, the kernel is held fixed and the SVM parameters are learnt. This can be
achieved by rewriting the primal as follows

Min
d

T (d) subject to d ≥ 0 (4.3)

where T (d) = Min
w,b

1
2w

tw +
∑

i

l(yi, f(xi)) + r(d)

We now need to prove that ∇dT exists, and calculate it efficiently, if we are to utilize gradient
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descent in the outer loop. This can be achieved by moving to the dual formulation of T given by (for
classification and regression respectively)

WC(d) = max
α

1tα− 1
2αtYKdYα + r(d) (4.4)

subject to 1tYα = 0, 0 ≤ α ≤ C (4.5)

and

WR(d) = max
α

1tYα− 1
2αtKdα

+r(d)− ε1t|α| (4.6)
subject to 1tα = 0, 0 ≤ |α| ≤ C (4.7)

where Kd is the kernel matrix for a given d and Y is a diagonal matrix with the labels on the diagonal.
Note that we can write T = r + P and W = r + D with strong duality holding between P and

D. Therefore, T (d) = W (d) for any given value of d, and it is sufficient for us to show that W is
differentiable and calculate ∇dW . Proof of the differentiability of WC and WR comes from Danskin’s
Theorem [101]. Since the feasible set is compact, the gradient can be shown to exist if k, r, ∇dk

and ∇dr are smoothly varying functions of d and if α∗, the value of α that optimizes W , is unique.
Furthermore, a straight forward extension of Lemma 2 in [100] can be used to show that WC and WR

(as well as others obtained from loss functions for novelty detection, ranking, etc.) have derivatives
given by

∂T

∂dl
=

∂W

∂dl
=

∂r

∂dl
− 1

2α∗t ∂H

∂dl
α∗ (4.8)

where H = YKY for classification and H = K for regression. Thus, in order to take a gradient step,
all we need to do is obtain α∗. Note that since WC or WR are equivalent to their corresponding single
kernel SVM duals with kernel matrix Kd, α∗ can be obtained by any SVM optimization package. The
final algorithm is given in Algorithm 1 and we refer to it as Generalized MKL (GMKL). The step size sn

is chosen based on the Armijo rule to guarantee convergence and the projection step, for the constraints
d ≥ 0, is as simple as d ← max(0,d). Note that the algorithm is virtually unchanged from [39]

Algorithm 1 Generalized MKL.
1: n← 0

2: Initialize d0 randomly.
3: repeat
4: K← k(dn)

5: Use an SVM solver of choice to solve the single kernel problem with kernel K and obtain α∗.
6: dn+1

l ← dn
l − sn

(

∂r
∂dl
− 1

2α∗t ∂H
∂dl

α∗
)

7: Project dn+1 onto the feasible set if any constraints are violated.
8: n← n + 1

9: until converged
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(a)

(b) (c)

Figure 4.3: (a) Plot of UCI dataset (Sonar) using first two dimensions. (b) Value of objective function
using sum of kernels. (c) Value of objective function using product of kernels.

apart from the more general form of the kernel k and regularizer r. If a faster rate of convergence
was required, our assumptions could be suitably modified so as to take second order steps rather than
perform gradient descent.

Only very mild restrictions have been placed on the form of the learnt kernel k and regularizer r.
As regards k, the only constraints that have been imposed are that K be strictly positive definite for
all valid d and that ∇dk exists and be continuous. Many kernels can be constructed that satisfy these
properties. One can, of course, learn the standard sum of base kernels. More generally, products of base
kernels, and other combinations which yield positive definite kernels, can also be learnt now. In addition,
one can also tune kernel parameters in general kernels such as kd(xi,xj) = (d0 +

∑

l dlx
t
iAlxj)

n or
kd(xi,xj) = e−

P

l dlx
t
iAlxj . Combined with a sparsity promoting regularizer on d, this can be used for

non-linear dimensionality reduction and feature selection for appropriate choices of A. Note, however,
that such kernels do not lead to convex formulations.

As regards r, we only require that its derivative should exist and be continuous. Since d can be
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restricted to the non-negative orthant, various forms of p-norm regularisers with p ≥ 1 fall in this
category. In particular, l1 regularization with r(d) = σtd or variations of [12] could be used for
learning sparse solutions. Alternatively, l2 regularization of the form r(d) = (d − µ)tΣ−1(d − µ)

can be used when only a small number of relevant kernels are present or if prior knowledge in the
form of µ and Σ is available (for instance, from transfer learning). Finally, for regression, one could
incorporate the term log |Kd| into r so as to obtain a MAP estimate of a probabilistic formulation. The
naı̈ve substitution α = K−1y would then render our formulation near identical to a marginal likelihood
approach in Gaussian Processes.

Toy Example : For toy dataset we took Sonar dataset from UCI repository. From this we picked
two features ( see Figure 4.3a ). Plots of the objective functions corresponding to sum and product of
kernels is given in 4.3b and 4.3c respectively. Although the product of kernels is a non-convex function
the objective function is smooth which enables to do gradient descent search.

4.4 Multi-class extensions
The proposed GMKL for binary classification problem can be extended to tackle multi-class classifica-
tion problems. Multi-class classifiers aims to assign labels to instances using learnt model, where the
labels are drawn from a finite set of several elements. The most common approach is to reduce the single
multi-class problem into multiple binary classification problems. Each of the problems yield a binary
classifier, which produce an output function that gives relatively large values for examples from the
positive class and relatively small values for examples from the negative class. There are two common
methods to build such binary classifiers, where each classifier distinguishes between (i) one of the class
labels to the rest (one-versus-all) or (ii) between every possible pair of classes (one-versus-one).

Consider there are N classes in a multi-class classification problem. Classifiers can be built in one of
the following two approaches :

1. One-versus-All : Here N binary classifiers are built, where ith classifier is trained with the ex-
amples in the ith class as positive labels and others as negative labels. For classifying unseen
samples out of the N classifiers, the classifier with the highest output assigns the class.

2. One-versus-One : Here classifiers are built for every possible pair of classes. So N(N − 1)/2

classifiers are built. For new instances, max-wins voting strategy is used. In which every classifier
assigns the instance to one of the two classes, then the vote for the assigned class is increased by
one vote, and finally the class with maximum votes is assigned to it.

In the two approaches a different set of kernel weights was learnt for each class. Above two ap-
proaches are widely used and performs well in many practical applications.

Other approach than splitting into multi-classifiers is to optimize all the classifiers altogether. We
also adopt the multi-class parameter sharing strategy of [5] and extend our generalized kernel learning
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framework to the following N class primal

Min
wn,bn,d,ξn

l(d) +
N
∑

n=1

1
2w

t
nwn + C1tξn (4.9)

subject to Yn(φt
nwn + bn) ≥ 1− ξn (4.10)

ξn ≥ 0, d ≥ 0 (4.11)

where the subscript n refers to the nth 1-vs-All problem. Applying the standard nested optimization
strategy yields the gradient direction

∂T

∂dl
=

∂W

∂dl
=

∂l

∂dl
− 1

2

N
∑

n=1

α∗t
n Yn

∂Kn

∂dl
Ynα∗

n (4.12)

where α∗
n are the support vector coefficients for the nth 1-vs-All SVM and Yn and Kn are the cor-

responding training label and kernel matrices respectively. In summary, the problem is made tractable
by optimizing all the αs independently, though they are all optimized jointly with d. This particular
formulation will be useful when we do tasks like feature selection. Other multi-class MKL formulations
can be found in [92, 102].

4.5 Summary
We have proposed MKL can be extended to generic kernel combinations subject to general regulariza-
tions on kernel parameters. And we explained how it is done with out compromising with efficiency.
We have shown how it can be applied to multi-class problems. In the next chapter, we show some of the
applications of proposed method.
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Chapter 5

Applications

5.1 Introduction
The GMKL formulation which we presented in the previous chapter is quite general and can be used
for kernel combination, kernel parameter tuning, non-linear feature selection, dimensionality reduction
and other applications which are listed in Chapter 1. In this thesis, we focus on following two applica-
tions (i) Feature Selection and (ii) Learning discriminative parts for object categorization. In both the
applications we exploit the weights learnt during MKL.

Feature selection is an area of pattern recognition which is used to select a subset of relevant features
for building robust learning models. The basic idea of feature selection is to remove most irrelevant
and redundant features from the data, it helps to improve the performance of learning models by (i) En-
hancing generalization capability. (ii) Improves the speed of learning process. (iii) Improving model
interpretability. For our experiments, we employ UCI datasets [103] which are popular for benchmark-
ing machine learning algorithms. In our experiments, we show that for a fixed number of selected
features, standard MKL can lag behind our formulation. Stated in another way, our formulation is
capable of reaching the same classification accuracy as MKL with only a sixth of the features. We
also present comparative results with AdaBoost, OWL-QN [11], LP-SVM [13], Sparse SVM [12] and
BAHSIC [104].

In the second application, our objective is to determine minimal sets of pixels and image regions
required for a given object categorization task. Information present in images can be redundant and,
therefore, looking at the entire image might not be necessary for performing certain classification tasks.
In other cases, some image parts might influence decision making but might not be crucial. Such parts
could potentially be ignored while still keeping classification accuracy above an acceptable threshold.
Selecting discriminative pixels and regions can directly improve efficiency and compression and reduce
data transmission costs. It can also be used to enhance our understanding of the object categorization
problem at hand, determine the importance of context and highlight artifacts in the training data. We
explore the use of multiple kernel learning to select the most relevant pixels and regions for classifica-
tion. Results are presented on benchmark problems such as gender identification and object recognition
on the Caltech-101 [14] and Caltech-256 databases [7].
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In the following section we first discuss some of the popular feature selection methods which we
compare with our method. Then we give details of the other experiments which compare with other other
multiple kernel learning methods. In the section 5.3 we explain the problem of learning discriminative
parts in detail and present related experiments.

5.2 Feature Selection

5.2.1 Popular Methods

As an application we apply Generalized MKL on feature selection problem. We compare our formula-
tion to traditional MKL as well as the following feature selection methods

Boosting : The LPBoost formulation of [105] is similar to that of standard MKL and boosting gen-
eralizes standard MKL’s decision function. Boosting can therefore be used to learn linear combinations
of base kernels. Individual “weak classifier” SVMs are pre-learnt from each of the given base kernels
and combined using AdaBoost. This can be attractive when there are a large number of kernels or
when kernels are made available incrementally. While the computational costs are low, the empirical
results were found to be poor as the learnt kernel weights could not influence the pre-learnt weak clas-
sifiers. Of course, in traditional boosting, the weak classifiers and the weights are learnt together and
we present comparative results to [106] which represents a state-of-the-art boosting method for gender
identification.

OWL-QN [11] : This is a large scale implementation of l1 logistic regression. The method learns a
function of the form f(x) = wtx by minimizing (1/C)||w||1 +

∑

i l(yi, f(xi)) where l is the log loss.
Despite being linear, the method can sometimes outperform boosting. Nevertheless, the overall perfor-
mance is poor as compared to the other linear methods since OWL-QN does not have an explicit bias
term. One could simulate a bias by adding a constant feature but the corresponding weight could be set
to zero due to the l1 regularization. When this doesn’t happen, OWL-QN’s performance is comparable
to LP-SVM and Sparse-SVM.

LP-SVM [13] : This is the standard SVM formulation but with the l2 regularization on w replaced by
l1 regularization. We consider the linear formulation which learns a function of the form f(x) = wtx+b

by minimizing ||w||1 + C
∑

i l(yi, f(xi)) where l is the hinge loss. Seeing that the hinge loss is very
similar to the log loss, the formulation appears to be very similar to OWL-QN. However, due to the
explicit bias term b which is not included in the l1 regularization, LP-SVM can sometimes perform
much better than OWL-QN. Somewhat surprisingly, the performance of the linear LP-SVM could even
be better than that of non-linear MKL (though not GMKL).

Sparse-SVM [12] : This method does not use explicit l1 regularization to enforce sparsity. Instead,
it places a direct cardinality constraint on the hyperplane normal. It learns a function of the form
f(x) = wtx + b by minimizing ||w||2 + C

∑

i l(yi, f(xi)) subject to ||w||0 ≤ r, where l is the hinge
loss. We take the convex QCQP relaxation (QCQP-SSVM) proposed by the authors. Empirically, we
found the performance of Sparse-SVM to be very similar to that of LP-SVM though, being a QCQP, it
took much longer to optimize.
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BAHSIC [104] : This is a leading filter method which runs a backward selection algorithm discarding
features based on their label dependence as measured by the Hilbert-Schmidt independence criterion.
We use an RBF kernel for the data (the same as used by boosting, MKL and GMKL) and a linear kernel
for the labels. BAHSIC outputs a ranked list of features from which a subset of the desired size can be
selected. An SVM with an RBF kernel is then trained using the selected features. In our experiments,
we found backward selection to be computationally very expensive without offering any advantages in
terms of classification accuracy. Given identical kernels, BAHSIC performed substantially worse than
GMKL,

5.2.2 Experiments - UCI Datasets

In this section we evaluate generalized kernel learning on feature selection problems. We investigate
this problem on the UCI datasets. We found out there can be as much as a 6% to 10% difference in
performance between GMKL and MKL. We also demonstrate that GMKL performs better than the
other methods considered.

To generate feature selection results, we can vary the hyper-parameter C in the wrapper methods to
select a desired number of features. However, this strategy does not yield good classification results even
though globally optimal solutions are obtained. Low values of C encouraged greater sparsity but also
permitted more classification errors. We obtained much better results by the theoretically suboptimal
strategy of fixing C to a large value (chosen via cross-validation so as to minimize classification error),
learning the classifier, taking the top ranked components of w (or d) and relearning the classifier using
only the selected features.

This technique was used to generate the results in Tables 5.1 For each dataset, the very last row
summarizes the number of features selected (Ns) by each wrapper method and the resultant classification
accuracy. When the number of desired features (Nd) is less than Ns, the classification accuracy is
determined using the Nd top ranked features. Otherwise, when Nd > Ns, the table entry is left blank
as the classification accuracy either plateaus or decreases as suboptimal features are added. In such a
situation, it is better to choose only Ns features and maintain accuracy.

For experiments on UCI datasets, we follow the standard experimental methodology [5] where 70%
of the points are used for training and the remaining 30% for testing. We use 10% of the training data
for validation. Results are reported over 20 random splits of the data. All datasets are preprocessed
to have zero mean and unit variance. An RBF kernel is assigned to each of the M features in a given
dataset. The M RBF kernels are then combined linearly for standard MKL and by taking their product
for GMKL. The learnt kernels are of the form kd(xi,xj) =

∑M
l=1 dle

−γl(xil−xjl)
2 and kd(xi,xj) =

∏M
l=1 e−dl(xil−xjl)

2 respectively.
Table 5.1 lists the feature selection results. AdaBoost tended to perform the worst and selected only

few features on average. The poor performance was due to the fact that each of the SVMs was learnt
independently. The weak classifier coefficients (i.e. kernel weights) did not influence the individual
SVM parameters. By contrast, there is a very tight coupling between the two in MKL and GMKL and
this ensures better performance.

LP-SVM, Sparse-SVM and OWL-QN perform even better than standard MKL (though not better than
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Nd AdaBoost OWL-QN LP-SVM S-SVM BAHSIC MKL GMKL
5 75.2± 6.9 84.0± 6.0 86.7± 3.1 87.0± 3.1 87.1± 3.6 85.1± 3.2 90.9± 1.9

10 − 87.6± 2.2 90.6± 3.4 90.2± 3.5 90.2± 2.6 87.8± 2.4 93.7± 2.1

15 − 89.1± 1.9 93.0± 2.1 91.9± 2.0 92.6± 3.0 87.7± 2.2 94.1± 2.1

20 − 89.2± 1.8 92.8± 3.0 92.4± 2.5 93.4± 2.6 87.8± 2.8 −
25 − 89.1± 1.9 92.6± 2.7 92.4± 2.7 94.0± 2.2 87.9± 2.7 −
30 − − 92.6± 2.6 92.9± 2.5 94.3± 1.9 − −
34 − − 92.6± 2.6 92.9± 2.5 94.6± 2.0 − −

75.1 (9.8) 89.2 (25.2) 92.6 (34.0) 92.9 (34.0) − 88.1 (29.3) 94.4 (16.9)
(a) Ionosphere, N = 246, M = 34, Uniform MKL = 89.9± 2.5, Uniform GMKL = 94.6± 2.0

Nd AdaBoost OWL-QN LP-SVM S-SVM BAHSIC MKL GMKL
3 79.4± 6.5 81.7± 2.7 76.4± 4.5 76.1± 5.8 85.2± 3.8 83.7± 4.4 86.3± 4.1

7 − 82.6± 3.3 86.2± 2.7 86.1± 4.0 88.5± 3.6 84.7± 5.2 92.6± 2.9

11 − 83.5± 2.8 86.0± 3.5 86.1± 3.1 89.4± 3.6 86.3± 4.3 −
15 − − 87.0± 3.3 86.3± 3.1 89.9± 3.5 − −
22 − − 87.2± 3.2 87.2± 3.0 91.0± 3.5 − −

80.2 (5.2) 83.6 (11.1) 87.2 (22.0) 87.2 (22.0) − 88.3 (14.6) 92.7 (9.0)
(b) Parkinsons, N = 136, M = 22, Uniform MKL = 87.3± 3.9, Uniform GMKL = 91.0± 3.5

Nd AdaBoost OWL-QN LP-SVM S-SVM BAHSIC MKL GMKL
10 64.2± 4.0 72.8± 2.9 69.8± 5.1 72.6± 3.7 76.5± 3.5 80.0± 3.0 81.1± 3.8

20 65.5± 4.1 76.0± 4.4 73.8± 4.9 76.7± 4.1 83.6± 3.3 84.5± 3.4 89.9± 2.3

30 65.4± 4.1 80.8± 2.5 79.0± 2.8 79.4± 3.0 86.7± 2.8 86.2± 3.3 92.6± 1.7

40 − 81.6± 2.9 81.5± 3.2 81.8± 2.8 87.4± 2.8 87.0± 3.2 93.3± 2.0

60 − 83.0± 1.9 83.6± 2.8 83.5± 2.4 90.0± 2.6 87.8± 3.3 −
100 − − 83.4± 2.9 83.3± 2.5 93.6± 1.8 − −
166 − − 83.4± 2.9 83.3± 2.5 93.8± 1.9 − −

65.5 (31.1) 83.5 (86.7) 83.4 (166.0) 83.3 (166.0) − 88.2 (73.2) 93.6 (57.9)
(c) Musk, N = 333, M = 166, Uniform MKL = 90.2± 3.2, Uniform GMKL = 93.8± 1.9

Nd AdaBoost OWL-QN LP-SVM S-SVM BAHSIC MKL GMKL
5 64.6± 6.6 68.9± 5.6 68.0± 7.9 68.4± 6.2 61.1± 6.6 70.4± 4.5 74.4± 5.1

10 67.9± 6.4 68.7± 4.6 71.5± 5.4 70.9± 5.9 73.1± 6.1 74.6± 5.6 80.2± 4.9

15 67.3± 6.4 71.4± 3.6 71.4± 3.3 72.2± 4.5 74.7± 7.7 76.5± 7.0 80.7± 5.5

20 − 73.1± 2.6 73.7± 2.8 74.0± 3.1 77.9± 5.7 79.5± 4.6 82.0± 5.3

25 − 73.5± 2.8 74.1± 3.5 73.6± 3.6 78.6± 5.2 81.1± 4.2 −
30 − 73.9± 3.2 73.4± 3.4 73.8± 3.9 80.8± 4.7 81.4± 4.2 −
40 − − 73.6± 3.8 73.7± 3.8 81.4± 3.9 − −
60 − − 73.6± 3.6 73.5± 4.0 84.6± 4.1 − −

67.38 (18.7) 74.7 (39.3) 73.6 (60.0) 73.5 (60.0) − 81.4 (38.6) 82.3 (20.4)
(d) Sonar, N = 145, M = 60, Uniform MKL = 82.9± 3.4, Uniform GMKL = 84.6± 4.1

Nd AdaBoost OWL-QN LP-SVM S-SVM BAHSIC MKL GMKL
5 76.7± 2.2 74.2± 4.1 75.4± 2.7 75.5± 2.7 76.6± 2.1 67.8± 6.0 76.1± 3.8

10 − 77.2± 5.2 75.9± 4.6 76.5± 3.8 77.3± 2.3 68.7± 3.3 77.8± 3.3

15 − 77.8± 5.5 76.2± 5.1 77.2± 5.0 76.2± 0.0 69.4± 5.1 78.3± 3.6

20 − 78.1± 5.3 78.2± 5.2 77.7± 5.2 77.3± 6.3 70.1± 5.1 −
25 − − 79.1± 6.2 77.8± 5.8 77.4± 6.4 − −
34 − − 79.0± 6.2 78.9± 5.6 77.0± 6.4 − −

76.7 (5.1) 78.3 (20.8) 79.0 (34.0) 78.9 (34.0) − 69.3 (24.8) 80.0 (16.8)
(e) Wpbc, N = 135, M = 34, Uniform MKL = 72.1± 5.4, Uniform GMKL = 77.0± 6.4

Table 5.1: UCI results with datasets having N data points and M features. See text for details.
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Database SimpleMKL GMKL
Sonar 80.6± 5.1 (793) 82.3± 4.8 (60)

Wpbc 76.7± 1.2 (442) 79.0± 3.5 (34)

Ionosphere 91.5± 2.5 (442) 93.0± 2.1 (34)

Liver 65.9± 2.3 (091) 72.7± 4.0 (06)

Pima 76.5± 2.6 (117) 77.2± 2.1 (08)

Table 5.2: Comparison with the results in [5]. GMKL achieves slightly better results but takes far fewer
kernels as input.

Database N M HKL GMKL
Magic04 1024 10 84.4± 0.8 86.2± 1.2

Spambase 1024 57 91.9± 0.7 93.2± 0.8

Mushroom 1024 22 99.9± 0.2 100± 0.0

Table 5.3: Comparison between HKL and GMKL.

GMKL). BAHSIC, which is a non-linear filter method, follows the same trend and its performance is
significantly worse than GMKL with identical kernels. This would suggest that wrapper methods based
on the right feature representation should be preferable to filter methods which do not directly optimize
for classification accuracy. For a fixed number of features, GMKL has the best classification results even
as compared to MKL or BAHSIC (though the variance can be high for all the methods). Furthermore, a
kernel with fixed uniform weights yields ballpark classification accuracies though GMKL can achieve
the same results using far fewer features.

Comparison to SimpleMKL and HMKL

The classification performance of standard MKL can be improved by adding extra base kernels which
are either more informative or help better approximate a desired kernel function. However, this can
lead to a more complex and costlier learning task. We therefore leave aside feature selection for the
moment and compare our results to those reported in [5]. Table 5.2 lists classification performance on
the 5 datasets of [5]. The number of kernels input to each method are reported in brackets. As can
be seen, GMKL can achieve slightly better performance than SimpleMKL while training on far fewer
kernels. Of course, one can reduce the number of kernels input to SimpleMKL but this will result in
reduced accuracy. In the limit that only a single kernel is used per feature, we will get back the results
of Table 5.1 where GMKL does much better than standard MKL.

The results for Liver were obtained using l2 regularization. This lead to a 7% improvement in per-
formance over SimpleMKL as a sparse representation is not suitable for this database (there are only 6
features). Pima also has very few features but l1 and l2 regularization give comparable results.

Finally, we also compare results to Hierarchical MKL [83]. We use a quadratic kernel of the form
kd(xi,xj) = (1 +

∑

l dlxilxjl)
2 as compared to the more powerful kd(xi,xj) =

∏

l(1 + xilxjl)
4

of [83] which decomposes to a linear combination of 5M kernels. Nevertheless, as shown in Table 5.3,
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we achieve slightly better results with less computational cost.

5.3 Learning discriminative parts for object categorization
Our objective is to perform object categorization by focusing on only a subset of the pixels or regions
present in an image. Information present in images can be redundant and looking at the entire image
might not be necessary for performing certain classification tasks. Furthermore, even though some
image parts might influence decision making, they might not be crucial. Such parts could potentially be
ignored while still keeping the classification accuracy above an acceptable threshold.

Selecting discriminative image pixels can benefit many potential applications. It can improve the
efficiency of object recognition algorithms and lead to better image compression. For instance, many
mobile and network camera applications require transmitting images to a server for classification. By
detecting and transmitting only the discriminative image regions one can enhance valuable battery life
or reduce bandwidth consumption while paying only a small performance hit in terms of classification
accuracy. In other areas such as astronomy and medical imaging, there is great interest in designing
specialized cameras which take only a few image measurements rather than capturing the whole scene.
For instance, in MRI [107], one might be willing to slightly sacrifice classification accuracy in order to
gain imaging speed by making as few discriminative image measurements as possible. Selecting dis-
criminative regions can also be used to enhance our understanding of the object categorization problem
at hand, determine the importance of context and highlight artifacts in the training data.

Here, we use Multiple Kernel Learning (MKL) to select the most relevant pixels and regions for
classification. Our goal is to select as few of these regions as possible while minimizing the impact on
classification performance. Three scenarios are investigated depending on the form of the data. First,
when the data is perfectly aligned, a kernel is associated with each pixel in the image and MKL is
used to perform kernel (pixel) selection. Second, when the data has only rough alignment, the image
is partitioned into a grid and a kernel associated with each grid element followed by MKL selection.
Finally, when there can be no alignment, a kernel is associated with each codeword (in a bag of words
framework) and MKL used to learn the most discriminative codebook entries. Only the image regions
corresponding to the selected codewords are then kept. We employ FERET, Caltech 101 and Caltech
256 datasets to demonstrate the three scenarios respectively. Figures 5.2, 5.4 and 5.7 illustrate the three
cases.

5.3.1 Related Work

One can use interest point detectors [108] to select “important” or “informative” regions in an image.
Unfortunately, these regions are not learnt to maximize classification performance on the given task
but are designed to maximize stability and repeatability. The method of [109] does learn object-specific
salient parts for classification. However, it is geared towards object identification from very little positive
training data rather than object categorization. A per image distance function is learnt for retrieval
in [110, 111]. The algorithm learns weights for patch based image features and can be used to identify
the salient image regions. However, our method selects pixels and regions at the category, rather than
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Nd AdaBoost B&R 2007 OWL-QN LP-SVM S-SVM BAHSIC MKL GMKL
10 76.3± 0.9 79.5± 1.9 71.6± 1.4 84.9± 1.9 79.5± 2.6 81.2± 3.2 80.8± 0.2 88.7± 0.8

20 − 82.6± 0.6 80.5± 3.3 87.6± 0.5 85.6± 0.7 86.5± 1.3 83.8± 0.7 93.2± 0.9

30 − 83.4± 0.3 84.8± 0.4 89.3± 1.1 88.6± 0.2 89.4± 2.4 86.3± 1.6 95.1± 0.5

50 − 86.9± 1.0 88.8± 0.4 90.6± 0.6 89.5± 0.2 91.0± 1.3 89.4± 0.9 95.5± 0.7

80 − 88.9± 0.6 90.4± 0.2 − 90.6± 1.1 92.4± 1.4 90.5± 0.2 −
100 − 89.5± 0.2 90.6± 0.3 − 90.5± 0.2 94.1± 1.3 91.3± 1.3 −
150 − 91.3± 0.5 90.3± 0.8 − 90.7± 0.2 94.5± 0.7 − −
252 − 93.1± 0.5 − − 90.8± 0.0 94.3± 0.1 − −

76.3 (12.6) − 91 (221.3) 91 (58.3) 90.8 (252) − 91.6 (146.3) 95.5 (69.6)

Table 5.4: Gender identification results. The final row summarizes the average number of features
selected (in brackets) by each wrapper method and the resultant classification accuracy. See text for
details.

the image, level. These are learnt directly for the classification task at hand. Finally, a lot of work has
been done on image saliency which is related to our work (see [112, 113] and references within).

In the first scenario we use MKL as a feature selection tool for the task. So we compare with the
methods described in section 5.2 and performance of MKL to these methods in Section 5.3.2.

5.3.2 Experiments

In this section we evaluate our generalized kernel learning formulation. To test the case when the
images can be aligned we assess gender identification performance on the benchmark FERET subset of
faces [10]. It is shown that the products of kernels formulation can achieve more than 95% classification
accuracy by sampling as few as 30 pixels in an image. Thus, we can get an eight times compression
factor while sacrificing less than half a percent in classification accuracy. These results are significantly
better than the standard MKL formulation which achieves only 86.32% when restricted to 30 pixels.
Similarly, for the unaligned case in some of the Caltech 256 classes, we can obtain nearly a three times
compression factor while reducing classification accuracy by only 1%. Again, products of kernels are
better than sums of kernels by nearly 10 to 15% for a fixed feature set size. However, for the roughly
aligned case on Caltech 101 sums of kernels yield better results than products of kernels.

Gender Identification

We tackle the binary gender identification problem on the benchmark database of [10]. The database
has images of 1404 male and 711 female faces giving a total of 1755 images in all (figure 5.1 shows
sample images). We follow the experimental setup of [10] and use 1053 images for training and 702 for
testing. Results are reported after averaging over 3 random splits of the training and test sets.

Each image in the database has been pre-processed by [10] to be aligned and has been scaled down
to have dimensions 21 × 12. Thus, each image has 252 pixels and we associate an RBF kernel with
each pixel based on its grey scale intensity directly. For Generalized MKL, the 252 base kernels are
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combined by taking their product to get kd(xi,xj) =
∏252

l=1 e−dl(xil−xjl)
2 where xil and xjl represent

the intensity of the lth pixel in image i and j respectively. For standard MKL, the same 252 base kernels
are combined using the sum representation to get kd(xi,xj) =

∑252
l=1 dle

−γm(xil−xjl)
2 . Both methods

are subject to l1 regularization on d so that only a few kernels are selected. AdaBoost can also be used
to combine the 252 weak classifiers derived from the individual base kernels. The method of [106] can
be considered as a state-of-the-art boosting variant for this problem and operates on pairs of pixels. We
use RBF kernels for BAHSIC as well while the other methods are linear.

Since each image can also be considered as a 252 dimensional feature vector a number of linear
feature selection algorithms become applicable. So, we benchmark a number of other feature selection
methods presented in the previous section besides two MKL formulations. Table 5.4 lists the feature
selection results. Results are presented similarly to the table 5.1 Similar to UCI results, AdaBoost tended
to perform the worst and selected only 12.6 features on average. The poor performance was due to the
fact that each of the 252 SVMs was learnt independently. The weak classifier coefficients (i.e. kernel
weights) did not influence the individual SVM parameters. By contrast, there is a very tight coupling
between the two in MKL and GMKL and this ensures better performance. Of course, other forms of
boosting do not have this limitation and the state-of-the-art boosting method of [106] performs better but
is still significantly inferior to GMKL. Figure 5.2 shows the weight given to each pixel by the different
feature selection algorithms (apart from the method of [106] which does not assign weights to individual
pixels).

The performance of the linear feature selection methods is quite variable. The analysis is similar to
that of UCI datasets except that OWL-QN performs poorly as the implicit bias weight got set to zero due
to the l1 regularization. On the other hand, BAHSIC, LP-SVM and Sparse-SVM perform even better
than standard MKL (though not better than GMKL). The comparison between MKL and GMKL is
even starker. GMKL achieves a classification accuracy of 93.2% using as few as 20 features and 95.1%

using only 30 features. In comparison, standard MKL achieves just 83.8% and 86.3% respectively. This
reinforces the observation that choosing the right kernel representation is much more important than
converging to the globally optimal solution. Finally, the MKL and GMKL results for fixed uniform
weights chosen via cross-validation are 92.6 ± 0.9 and 94.3 ± 0.1 respectively. Note that these results

Figure 5.1: Sample faces from the database of [10].
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(a) Male (b) Selected (c) Female (d) Selected

(e) AdaBoost (f) OWL-QN (g) S-SVM (h) LP-SVM (i) Sum MKL (j) Prod MKL

Figure 5.2: A male and female face are shown in (a) and (c) while (b) and (d) depict the top 30 pixels
selected using the Product MKL formulation. Classification accuracy using these 30 pixels is the same
as that obtained using all the pixels. The pixel weights learnt on the first training testing split for the
various feature selection methods are shown in (e)-(j) with black indicating small weights and white
large weights. The number of pixels selected and classification accuracies are: (e) AdaBoost, 13 pixels
and 76.07%; (f) OWL-QN [11] 51 pixels and 84.61%; (g) Sparse-SVM [12] 55 pixels and 91.31%; (h)
LP-SVM [13] 50 pixels and 91.51%; (i) Sum MKL 146 pixels and 91.02%; and (j) Prod MKL 77 pixels
and 96.43%.

are obtained using all 252 features. GMKL can obtain a similar classification accuracy using as few as
25 features.

In summary, there can be a difference of almost 10% between standard MKL and GMKL for a
fixed small number of features and we can achieve an 8x compression ratio by sacrificing less than
half a percent classification accuracy. This has many practical implications. For mobile and network
applications that need to transmit images for classification, this can significantly prolong battery life
and reduce bandwidth consumption. In other cases, this approach can be used to reduce the size of the
training set. This can even enable the classifier to be loaded into the very limited RAM of the mobile
or network camera. Finally in medical imaging, if an inexpensive preprocessing step can determine the
alignment transformation, then our procedure can be used to significantly speed up the image acquisition
and classification process.
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Caltech 101

We now turn to the situation when the images are not well aligned. It is no longer meaningful to define
kernels on individual pixels since a pixel lies on different parts of an object in different images. Since
the objects are roughly aligned, images can instead be partitioned into a rectangular grid where there is
alignment across grid cells (in a manner similar to a single level in spatial pyramid matching [114]). A
kernel can now be defined over features computed in each grid cell and MKL can be applied to select
kernels (grid cells).

While any feature, or sets of features, could be used we experiment with the Gist features of [115].
Images are partitioned into a grid of 8 × 8 cells and the mean filter responses calculated for each ori-
entation and scale to get a 20 dimensional feature vector in each cell. An RBF kernel is defined over
the feature vector in each cell to get 64 kernels. These are then combined using the standard MKL
and GMKL formulation as in the previous case. Note that the linear feature selection methods tried out
in the case of gender identification are no longer applicable. Boosting was applied in [116] to reduce
the dimensionality of the Gist feature vector at the image level so as to preserve pairwise distances.
However, both our methodology and objective are very different. Furthermore, we need to apply the
multi-class MKL formulation in order to select a common set of image regions across all categories.

We test the GMKL formulation on the Caltech 101 database [14]. It consists of 102 classes of which
101 belongs to object categories and one is background class. Samples of different classes is shown in
Figure 5.3. Even though the categories in the database show a lot of variability there are many classes
which can be said to be roughly aligned in terms of scale, orientation and position. We employ the
standard experimental setup [39] where we test on all 102 categories and use 15 images per category for
training and a different 15 for testing.

We first look at some qualitative results to see which regions are getting selected in specific classes.
This can reveal discriminative parts of objects as well as database artifacts and the role of context. For
these qualitative results alone, the training set was split into disjoint training and validation sets. A
1-vs-All classifier was trained using the standard MKL formulation. This resulted in a short, ranked
list of grid cells according to the learnt kernel weights. We further discarded those grid cells for which
elimination did not result in a decrease in classification accuracy as measured on the validation set. The
results are shown in Figures 5.4 and 5.5.

For the categories shown in Figure 5.4, mostly regions on the object are used to distinguish the
class. For Windsor Chair, only 2 regions are selected. The back of the chair is quite distinctive but
using that region alone causes confusion with a few other images which have a vertical striped texture
in that region. Adding the region on the seat of the chair clears this ambiguity. For Motorbikes, the
most distinguishing regions lie on the wheel. However, since the class is not perfectly aligned, a few
Motorbike images have only their background visible in those regions. Adding the white border region
which is present in most Motorbike images (an artifact of the database) helps classify some of these
images but then other images with a white border start getting misclassified. Adding the region around
the pillion takes care of such images. For Hedgehogs, the textured area on the back is the most important
though the region around the eye is necessary to fully distinguish the category. For Faces Easy, the areas
around the neck and face contour get the highest weight followed by the eye and hair. Dropping any of
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Figure 5.3: 101 classes of Caltech 101 [14] dataset.
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Figure 5.4: Sample images from the categories (from top to bottom) Windsor Chair, Motorbike, Hedge-
hog and Faces Easy and the regions selected by Sum MKL. Mostly regions on the object are being used
for distinguishing the category. 53



Figure 5.5: Sample images from the categories (from top to bottom) Car Side, Faces, Leopards and
Minaret and the regions selected by Sum MKL. Mostly regions not lying on the object are used for
distinguishing the category.
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these regions causes misclassifications.
The categories shown in Figure 5.5 highlight the role of context and show artifacts of the database.

The images in the category Car Side can vary a lot. The appearance of the road is much more stable and
thus gets selected by the algorithm. However, to deal with the cases when the road is shadowed, some
vegetation regions at the top of the image are also selected. The Faces category needs many regions since
the images are not aligned and the algorithm needs to look at many regions to find the face. This also
lets the algorithm look at the background which is necessary for distinguishing Faces from Faces Easy
(which has exactly the same set of images but with the background cropped). For Leopards, the most
distinguishing regions are at the image corners which are mostly sky and grass with a black border. The
texture on the leopard is needed only to pin down a couple of images from other classes which also have
a similar appearance in the corner regions. Finally, the images of minarets have all been pre-processed
to have the same orientation. The rotation artifact provides the most important distinguishing region
for this class. However, since other classes also have rotation artifacts as well as similar looking edges
in that region, the algorithm chooses two extra sky regions to compensate. Some of these examples
highlight that there are categories in the Caltech 101 database which can be recognized without even
looking at the object of interest.
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Figure 5.6: Variation in classification accuracy with number of image regions.

For a more quantitative measure, we apply the multi-class MKL formulation given in Section 4.4 to
select a common set of image regions across all 102 classes. Using 1-vs-1 and 1-vs-all formulations a
different set of kernel weights was learnt for each class. In the present context, this would imply that
each binary 1-vs-1 or 1-vs-All classifier would select different set of features. When many classes are
present this could result in examining whole set of features. Therefore we use other formulation where
the kernel weights are jointly learnt with all the classifiers.

There are 64 kernel corresponding to the 64 grid cells and these are combined using the Sum and
Product formulation. The results are plotted in Figure 5.6. Note that our intention is not to surpass
the state-of-the-art in terms of classification accuracy by combining multiple features and getting even
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With Parameter Sharing Without Parameter Sharing
# Regions MKL GMKL MKL GMKL

17 61.00 ( 12) 65.00 ( 12) 59.00 ( 12) 58.00 ( 12)
34 68.00 ( 24) 69.00 ( 22) 64.00 ( 16) 65.00 ( 24)
54 69.00 ( 38) 79.00 ( 36) 66.00 ( 34) 68.00 ( 35)
79 72.00 ( 58) 85.00 ( 54) 70.00 ( 49) 71.00 ( 49)
102 72.00 ( 74) 87.00 ( 68) 70.00 ( 62) 74.00 ( 62)
172 72.00 (118) 88.00 (116) 73.00 (111) 74.00 (111)
300 72.00 (200) 88.00 (200) 73.00 (200) 74.00 (200)

Table 5.5: The variation in classification performance of Sum and Product MKL, with and without
parameter sharing, as the number of selected regions is varied. The number of selected codewords is
shown in brackets.

more complex representations. On the contrary, we aim to show that given any descriptor (or any set
of descriptors) we can reduce the number of image regions with only a modest drop in classification
performance. For instance, the classification accuracy obtained by standard MKL using all 64 kernels
based on the Gist descriptor is 59.67% (this is comparable to the SVM based performance of leading
individual features such as geometric blur (62.98%) and self similarity (60.83%) [39]). Our objective
is to reduce the number of selected regions as much as possible while keeping classification accuracy
above an acceptable threshold. As it turns out, virtually the same classification accuracy can be reached
using only 40 regions. Using only 20 and 10 regions the classification accuracy drops to 90% and 75%

of the original. The practical implications are similar to the case of gender identification in terms of in-
creasing battery life and imaging speed or reducing bandwidth consumption. Note that the performance
of GMKL is extremely poor in this case. It would appear that, in this case, the right feature representa-
tions is actually obtained by concatenating the individual feature maps rather then by taking their tensor
product.

Caltech 256

In the previous two cases, where the images could be aligned, we could sample discriminative pixels and
regions from a novel image without even looking at it. This is no longer possible if the object can occur
at any orientation, scale and position in the image. Nevertheless, from a compression perspective, we
can still use MKL to select a set of discriminative image regions. We tackle the problem by using MKL
to select the most discriminative codewords in a codebook and by only keeping those image regions
corresponding to the selected codewords. Note that we choose not to learn weights for features or image
regions directly since we wish to avoid any training when determining regions for test images (since
training after deployment is infeasible in most application scenarios).

In more detail, we use Geometric Blur [117] with a radius of 10 pixels to compute 300 features in each
training image. The features are clustered using K-Means to learn 50 visual codewords per category.
These are then aggregated across categories to form the codebook. While we have chosen a standard
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way of generating the codebook, other methods could be used as well [118]. Given a codebook, image
features are then labeled by the codewords via vector quantization to obtain a histogram or bag of visual
words model.

To apply MKL, we associate an exponential χ2 kernel with each codeword and combine them us-
ing the Sum and Product formulation. For Sum MKL, the kernels are combined as kd(xi,xj) =

∑

l dle
−γl

(xil−xjl)
2

xil+xjl where xi and xj represent the histograms of image i and j respectively and the
subscript k runs over the codebook entries (γl is set as in [39]). For Product MKL, we use the represen-

tation kd(xi,xj) =
∏

l e
−dl

(xil−xjl)
2

xil+xjl . Note that both representations can be extended straight forwardly
to the spatial pyramid matching case by defining the kernel for a particular codebook by summing over
grid cells and pyramid levels. Many other methods have also been proposed for selecting codewords
(for a by no means exhaustive list see [118–121] and references within) but these are methods based on
mutual information, or information bottleneck or relative frequency of occurrence whereas we directly
optimize for the classification task at hand. We also report results with and without multi-class param-
eter sharing. When the parameters are shared our method learns a common set of codewords across all
classes. The without sharing case serves as a baseline. In this method we learn individual codeword
rankings for each class using the 1-vs-All MKL formulation. The union of the top ranked codewords
from each class is then taken to form the common set of selected codewords.

The proposed formulation is tested on the following 4 classes from the Caltech 256 [7] database:
Elk, Fire Truck, French Horn and Teddy Bear. We choose 10 images from each class for training and
25 for testing. Since 50 codewords are learnt from each class we obtain a codebook of size 200 and
therefore also have 200 kernels. Table 5.5 gives the results. In this case, GMKL with feature sharing
does significantly better than MKL. This is understandable since products of kernels work in a much
higher dimensional feature space and are more prone to over fitting. Parameter sharing helps overcome
this problem and the results are much better than MKL with or without parameter sharing. For instance,
using all 300 image regions GMKL gets 88% and this goes down by just 1% when using only 102
regions. By contrast, MKL gets only 73% and 72% respectively. Figure 5.7 shows some sample images
and selected regions.

In terms of practical applications, our approach is most useful in mobile and network camera appli-
cations since they have enough computing power to extract features but typically not enough memory to
store a training set. Our approach can be used to minimize the number of image regions transmitted back
for classification or, if sufficient compression can be achieved, to compress training histogram models
to fit in the device’s memory.

5.4 Summary
We tackled the feature selection using GMKL. Proposed method gave good results on various datasets
not only as compared to traditional MKL but also as compared to state-of-art wrapper and filter feature
selection methods. We also tackled the problem of learning discriminative pixels and image regions for
object categorization. Our objective is to reduce image representation size and we demonstrated that
compression factors ranging from 1.5 to 8x can be achieved with less than a 1% drop in classification

57



Figure 5.7: Regions selected by GMKL in the Caltech 256 images.

accuracy. This has significant practical implications for object recognition based on mobile or network
cameras.

We used our formulation to learn products of kernels and showed that this could improve performance
by more than 10% in some cases. However, products of kernels are also more prone to over fitting and
care should be taken to validate that they do lead to an appropriate feature representation for a given
problem before they are applied.
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Chapter 6

Character Recognition in Images

6.1 Introduction
With today’s omnipresence of inexpensive portable convergent devices containing digital cameras and
processors, the range of possible computer vision applications has experienced a fast growth. It is easy to
envisage how PDAs will aid people who are currently unattended by technology. For instance, camera-
phone with character recognition software will help the visually impaired to identify street signs, roads
and shops names, grocery products, etc. This can also be of use for those who can not read text in the
local language.

Automatic recognition of characters from images is a problem that has been approached since the
early stages of computer vision, being an active research field since the mid 1950.s [122]. Under con-
trolled situations this is one of the most successful applications of computer vision, and there are many
solutions available commercially. In these cases, the image is usually acquired by scanning documents
with a relatively high resolution, and usually a small amount of noise and distortion is allowed. Such
methods are not expected to perform well for images obtained from photographs in which characters
present perspective distortion, occlusion, variations in contrast, color, style and motion blur. However
most of the research has focused characters from the Latin alphabet.

We work here towards automatic reading of text in natural scenes. In particular, our focus is on the
recognition of individual characters in such scenes. Figures 6.2, 6.1 and 6.3 highlight why this can
be a deceptively hard task. Even if the problems of clutter and text segmentation were to be ignored
for the moment, the following sources of variability still need to be accounted for: (a) font style and
thickness; (b) background as well as foreground colour and texture; (c) camera position which can
introduce geometric distortions; (d) illumination and (e) image resolution. All these factors combine to
give the problem a flavour of object recognition rather than optical character recognition or handwriting
recognition. In fact, OCR techniques cannot be applied out of the box precisely due to these factors.
Furthermore, viable OCR systems have been developed for only a few languages. and most Indic
languages are still beyond the pale of current OCR techniques.

Many problems need to be solved in order to read text in natural images including text localization,
word and character segmentation, recognition, integration of language models and context, etc. One can
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Figure 6.1: Examples of high visual similarity between samples of different classes caused mainly by
the lack of visual context.

approach the problem performing the above tasks in either top down or bottom up manner. Our focus,
here, is on the basic character recognition aspect of the problem (see Figures 6.1, 6.2 , 6.5 and 6.6).
We use database of images containing English and Kannada text 1 characters covering uppercase and
lowercase of alphabets and numbers. In order to assess the feasibility of posing the problem as an object
recognition task, we benchmark the performance of various features in a bag-of-visual-words (BoV)
representation. Along we also use state of art classifier used for object recognition task, which is based
on Multiple Kernel Learning (MKL). The results indicate that even the isolated character recognition
task is challenging. The number of classes can be moderate (62 for English) or large (657 for Kannada)
with very little inter-class variation as highlighted by Figures 6.1 and 6.2. This problem is particularly
acute for Kannada where two characters in the alphabet can differ just by the placement of a single
dot like structure. Furthermore, While training data is readily available for some characters others
might occur very infrequently in natural scenes. We therefore investigate whether surrogate training
data, either in the form of font generated characters or handwritten characters, can be used to bolster
recognition in such a scenario. We also present baseline recognition results on the font and handwritten
character databases to contrast the difference in performance when reading text in natural images.

6.2 Related Work
The task of character recognition in natural scenes is related to problems considered in camera-based
document analysis and recognition. Most of the work in this field is based on locating and rectifying the
text areas (e.g. [123], [124], [125] and [126]), followed by the application of OCR techniques [127].
Such approaches are therefore limited to scenarios where OCR works well. Furthermore, even the
rectification step is not directly applicable to our problem, as it is based on the detection of printed
document edges or assumes that the image is dominated by text.

Methods for off-line recognition of handwritten characters [128], [129] have successfully tackled the
1Available at http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/.
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Figure 6.2: A small set of Kannada characters, all from different classes. Note that vowels often change
a small portion of the characters, or add disconnected components to the character.

problem of intra-class variation due to differing writing styles. However, such approaches typically con-
sider only a limited number of appearance classes, not dealing with variations in foreground/background
colour and texture.

For natural scenes, some researchers have designed systems that integrate text detection, segmenta-
tion and recognition in a single framework to accommodate contextual relationships. For instance, [130]
used insights from natural language processing and present a Markov chain framework for parsing im-
ages. [131] introduced composition machines for constructing probabilistic hierarchical image models
which accommodate contextual relationships. This approach allows re-usability of parts among mul-
tiple entities and non-Markovian distributions. [132] proposed a method that fuses image features and
language information (such as bi-grams and letter case) in a single model and integrates dissimilarity
information between character images. The idea is that by comparing instances emitted by a source (e.g.
characters from the same sign board), they help ensuring that similar instances are given the same label
and vice-versa.

Simpler recognition pipelines based on classifying raw images have been widely explored for digits
recognition (see [133], [134] and other works on the MNIST and USPS datasets). A more complex and
robust approach is based on modelling this as a shape matching problem (e.g. [73]): several shape de-
scriptors are detected and extracted and point-by-point matching is computed between pairs of images.
In BoV-based methods, instead of matching feature vectors of pairs of images, each image is represented
by unstructured feature counts. This robust representation is used as input to classifiers.

We use the BoV representation which, to the best of our knowledge, has not yet been applied for
character recognition. We assess the suitability of six different feature extractors for our datasets. These
feature extraction methods are state of art method which is widely used in computer vision for object
recognition. For classification, we evaluate nearest neighbour, SVM and the multiple kernel learning
method of [39], which has achieved state-of-the-art results on benchmark object recognition databases.

6.3 Datasets
Our focus is on recognizing characters in images of natural scenes. Towards this end, we compiled
a database of English characters taken from images of street scenes. We also acquired a database of
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hand-drawn characters and another of characters generated by computer fonts.
For English, we treat upper and lower case characters separately and include digits to get a total of

62 classes. Kannada does not differentiate between upper and lower case characters. It has 49 basic
characters in its alphasyllabary, but consonants and vowels can combine to give more than 600 visually
distinct classes.

6.3.1 Natural Images DataSet - Img

A set of 1922 images mostly of sign boards, hoardings and advertisements is collected. It also included
a few images of products in supermarkets and shops. Some of these original images are shown in
Figure 6.3.

Individual characters were manually segmented from these images. We experimented with two types
of segmentations: rectangular bounding boxes and finer polygonal segments as shown in Figure 6.4.
For the types of features investigated here, it turned out that polygonal segmentation masks presented
almost no advantage over bounding boxes. Therefore, all the results presented in Section 6.5 are using
the bounding box segmentations.

Our English dataset has 12503 characters, of which 4798 were labeled as bad images due to excessive
occlusion, low resolution or noise. For our experiments, we used the remaining 7705 character images.
Similarly, for Kannada, a total of 4194 characters were extracted out of which only 3345 were used.
Figures 6.5 and 6.6 show examples of the extracted characters. These datasets will be referred to as the
Img datasets.

6.3.2 Handwritten Dataset - Hnd

The handwritten data set (Hnd) was captured using a tablet PC with the pen thickness set to match the
average thickness found in hand painted information boards. For English, a total of 3410 characters were
generated by 55 volunteers. For Kannada, a total of 16425 characters were generated by 25 volunteers.
Some sample images are shown in Figure 6.7 ,6.8.

6.3.3 Font Dataset - Fnt

This dataset is obtained by synthesizing English characters using 254 different fonts in 4 styles (normal,
bold, italic and bold+italic) to generate a total of 62992 ( 62 x 254 x 4 ) characters. Each images is of
128 x 128, for each character and font type, the font size is adjusted to generate a character that occupies
most of the image; The images are in 256 grey levels, with white background and black foreground. The
intermediate grey levels happen around edges as a result of antialiasing. This dataset will be referred to
as the Fnt dataset.
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Figure 6.3: Sample source images used to extract the characters for our data sets.1922 images were
processed, of which, more than 17000 characters were extracted. 901 FrontalImages or 1352 Images +
FrontalImages From FrontalImages, they extracted 12504 English characters and 5238 Kannada char-
acters.

63



Figure 6.4: Sample characters and their segmentation masks.

Figure 6.5: Sample characters of the English images set. 901 Frontal Images or 1352 Images + Frontal
Images From Frontal Images, they extracted 12504 English characters and 5238 Kannada characters.

6.4 Feature Extraction and Representation

6.4.1 Bag of Words

Bag-of-visual-words is a popular technique for representing image content for object category recog-
nition. The idea is to represent objects as histograms of feature counts. This representation quantizes
the continuous high-dimensional space of image features to a manageable vocabulary of visual words.
This is achieved, for instance, by grouping the low-level features collected from an image corpus into
a specified number of clusters using an unsupervised algorithm such as K-Means (for other methods of
generating the vocabulary see [135]). One can then map each feature extracted from an image onto its
closest visual word and represent the image by a histogram over the vocabulary of visual words.

Most of the BoV-based works use unsupervised construction of the visual vocabularies. It is compu-
tationaly expensive to build such vocabularies, since samples from all classes are used. As an alternative,
we chose the method of [76], which builds one visual vocabulary per class and combines the resulting
representations by concatenation of the vectors. This may lead to richer representations, since the class
labels are taken into account. For all the feature extraction methods, we used a dictionary that consists
of 5 centroids per class. Thus, for the English characters database, each sample is described by a his-
togram of 310 dimensions. The dictionaries were built using K-means with the χ2 statistics to evaluate
the distance between feature vectors.
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Figure 6.6: A random selection of the Kannada images database.

Figure 6.7: Samples hand-drawn characters of the English data sets.

6.4.2 Feature Extraction

We evaluated six different types of local features. Not only did we try out shape and edge based features,
such as Shape Context, Geometric Blur and SIFT, but also features used for represent- ing texture, such
as filter responses, patches and Spin Images, since these were found to work well in [136]. We explored
the most commonly used parameters and feature detection methods employed for each descriptor, with
a little tuning, as described below.

As a pre-processing step, the images are normalize for zero mean and unit variance over the grey
level values. The list below details the parameters chosen for these descriptors. These choices were
based on a number of preliminary experiments.

• Shape Contexts (SC) [73] is a descriptor for point sets and binary images. We sample points
using the Sobel edge detector. The descriptor is a log-polar histogram, which gives a θ×n vector,
where θ is the angular resolution and n is the radial resolution. We used θ = 15 and r = 4,

Figure 6.8: Samples hand-drawn characters of the Kannada data sets.
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inner radius (ri) is set to 1
8 and outer radius (ro) is set to 1. The above parameters result in SC

descriptors of dimension 60. These parameters present a good trade-off between radial resolution
and angular resolution. No rotation invariance was used.

• Geometric Blur (GB) [74] is a feature extractor with a sampling method similar to that of SC, but
instead of histogramming points, the region around an interest point is blurred according to the
distance from this point. For each region, the edge orientations are counted with a different blur
factor. This avoids quantisation problems of SC and allows its application to grey scale images.

• Scale Invariant Feature Transform (SIFT) [72] are extracted on points located by the Harris
Hessian-Laplace detector, which gives affine transform parameters. The feature descriptor is
computed as a set of orientation histograms on (4 × 4) pixel neighborhoods. The orientation
histograms are relative to the keypoint orientation. The contribution of each pixel is weighted
by the gradient magnitude, and by a Gaussian with σ 1.5 times the scale of the keypoint. The
histograms contain 8 bins each, and each descriptor contains a 4 × 4 array of 16 histograms
around the keypoint. This leads to feature vector with 128 elements. In our experiments, the
detector usually located at least 100 keypoints per image, but for some images not enough points
were obtained.

• Spin image [75], [137] is a two-dimensional histogram encoding the distribution of image bright-
ness values in the neighborhood of a particular reference point. The two dimensions of the his-
togram are d, distance from the centre point, and i, the intensity value. Since d and i are invari-
ant under orthogonal transformations of the image neighborhood, Spin images are invariant to
affine-normalised patches. We used 11 bins for distance and 5 for intensity value, resulting in
55-dimensional descriptors. The same interest point locations used for SIFT were used for spin
images.

• Maximum Response of filters (MR8) [76] is a texture descriptor based on a set of 38 filters
but only 8 responses. The filters include a Gaussian and a Laplacian of a Gaussian (LOG) filter
both at scale θ = 10, an edge (first derivative) filter at 6 orientations and 3 scales and a bar
(second derivative) filter at 6 orientations and the same 3 scales (θx, θy) = {(1, 3), (2, 6), (4, 12)}.
The response of the isotropic filters (Gaussian and LOG) are used directly, but the responses of
the oriented filters (bar and edge) are collapsed at each scale by using only the maximum filter
responses across all orientations, there by ensuring rotation invariance. This filter is extracted
densely, (sampled at each 25 × 25 patch), giving a large set of 8D vectors. Weber normalization
is applied to the individual feature vectors and a threshold disregards continuous regions.

• Patch descriptor (PCH) is the simplest dense feature extraction method. For each position,
the raw n × n pixel values are vectorised, generating an n2 descriptor. Weber normalization is
applied to each vector individually. We used 5×5 patches. With a small threshold on the standard
deviation of the pixel values to disregard uniform areas. Images are scaled to 128×128. For each
patch position, the 5×5 pixels are extracted from a 20×20 pixels area by sub-sampling one pixel
for each four pixels per row and column.
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6.5 Experiments
This section describes baseline experiments with three classification schemes: (a) nearest neighbor clas-
sification using χ2 statistics as a metric; (b) support vector machines (SVM); and (c) multiple kernel
learning (MKL). Additionally, on English datasets we show results obtained by the commercial OCR
system ABBYY FineReader 8.0. For an additional benchmark, we provide results obtained with the
dataset of the ICDAR Robust Reading competition 20032. This set contains 11615 images of charac-
ters used in English. The images are more challenging than our English Img dataset and it has some
limitations, such as the fact that only few samples are available for some of the characters.

Most of our experiments were done with our English Img characters dataset. It is demonstrated that
the performance of MKL using only 15 training images is nearly 25% better thatn that of ABBYY
FineReader, a commercial OCR system. Also, when classifying the Img test set, if appropriate features
such as Geometeri Blur, are used, then a NN classifier trained on the synthetic Fnt dataset is a as good
as the NN classiifer trained on an equal number of Img samples. Futher more, since synthetic Fnt data is
easy to generate, an NN classifier trained on a large Fnt data is easy to generate, an NN classifier trained
on a large Fnt training set can perform nearly as well as MKL trained on 15 Img samples per class. This
opens up the possibility of improving classification accuracy without having to acquire expensive Img
training data.

6.5.1 English Datasets

Homogeneous Sets

The six feature extraction methods were evaluated for the three data sets. Here we show results obtained
by training and testing with samples from the same type: Fnt, Hnd and Img. For some classes, the
number of available samples of natural images was just above 30, so we chose to keep the experiment
sets balanced and fix the test set size to 15 samples per class for all the three databases. For the test
sets, we varied the number of training samples. This was repeated with random selections of training
samples. The number of samples available for training (with no intersection with the test set) was 1001,
40 and 15 for Fnt, Hnd and Img, respectively. The number of training splits selected at random and
results are averaged. Table 6.1 shows the results obtained with training sets of 15 samples per class.

The performance of GB and SC is significantly better than all the other features. Also, there can be
more than a 20% drop in perfomance when moving from training and testing on Fnt or Hnd to training
and testing on Img. This indicates how much more difficult recognizing characters in natural images
can be.

The features were also evaluated using SVM with RBF kernel for the Img dataset, leading to the
results shown in table 6.2. The kernel paramter gamma is choosen through cross-validation. As ex-
pected, SVM lead to an increase in performance with most features, except with Patches. The evaluated
implementation was a multi-class SVM with one-vs-all classification scheme.

An additional experiment was performed with the multiple kernel learning method of [39], which
gave state-of-the-art results in the Caltech256 challenge. We combined all the six feature extraction

2http://algoval.essex.ac.uk/icdar
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Feature Fonts Handwritten Images
GB 69.71± 0.64 65.40± 0.58 47.09

SC 64.83± 0.60 67.57± 1.40 34.41

SIFT 46.94± 0.71 44.16± 0.79 20.75

Patches 44.93± 0.65 69.41± 0.72 21.40

SPIN 28.75± 0.76 26.32± 0.42 11.83

MR8 30.71± 0.67 25.33± 0.63 10.43

ABBYY 66.05± 0.00 – 30.77

# train splits 10 5 1

Table 6.1: Nearest neighbour classification results (%) obtained by different feature extractors on the
English data sets. These were obtained with 15 training and 15 testing samples per character class
chosen. For comparison, the results with the commercial software ABBYY are also shown. The bottom
row indicates how many sets of training samples were taken per class to estimate mean and standard
deviation of the classification results.

GB 52.58

SC 35.48

SIFT 21.40

Patches 21.29

SPIN 13.66

MR8 11.18

MKL 55.26

Table 6.2: Classification results (%) obtained with SVM and with MKL (combining all the features)
for the Img set with 15 training samples per class.

methods at kernel level and performed classification experiments using the one-vs-all scheme. Using
such classifiers ensure the optimal combinations of different aspects of data optimally. This resulted on
the accuracy of 55.26% using 15 training samples per class. This represents an improvement of less
than 3% over the result of the best performing feature alone (Geometric Blur).

As can be seen from these experiments, it is possible to surpass the performance of ABBYY, a state-
of-the-art commercial OCR system, using 15 training images even on the synthetic Fnt dataset. For
the more difficult Img dataset the difference in performance between MKL and ABBYY is nearly 25%
indicating that OCR is not suitable for this task. Nevertheless, given that the performance using MKL
is only 55%, there is till tremendous scope for improvement in the object recognition framework.

We also performed experiments with the ICDAR dataset, obtaining the results in Table 6.3. Due to
the limitations of this dataset, we fixed the training set size of 5 samples per class and evaluated it in
comparison to our dataset. As can be seen, the ICDAR results are worse than the Img results indicating
that this might be an even tougher database. If we train on Img and test on ICDAR then the result can
improve as more training data is added (see Table 6.4).
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Ftr. Images ICDAR
GB 36.9± 1.0 27.81

SC 26.1± 1.6 18.32

PCH 13.7± 1.4 9.67

MR8 6.9± 0.7 5.48

Table 6.3: Nearest neighbour results obtained with 5 training samples per class for some of the features.
Here we compare our English Img dataset and with the ICDAR dataset.

Tr. Spls. 15/class all
GB 32.72 40.97
SC 27.90 34.51

Table 6.4: Nearest neighbour results obtained by training with English Img and testing with the ICDAR
dataset – using 15 training samples per class and using the whole Img set for training.

Hybrid Sets

In this subsection we show experiments with hybrid sets, where we train on data from the Fnt and Hnd
datasets and test on the same 15 images per class from the Img test set used in the previous experiments.
The results are shown in Table 6.5 and indicate that for features such as Geometeric Blur, training on
easily available syntheitc fonts is as good as training on original Img data. However, the performance
obtained by training on Hnd is poor.

Feature Training on Fnt Training on Hnd
GB 47.16± 0.82 22.95± 0.64

SC 32.39± 1.39 26.82± 1.67

SIFT 9.86± 0.91 4.02± 0.52

Patches 5.65± 0.69 1.83± 0.44

SPIN 2.88± 0.68 2.71± 0.33

MR8 1.87± 0.60 1.61± 0.11

# test splits 10 5

Table 6.5: Nearest neighbour results with mixed data type: testing the recognition of natural images
using training data from fonts and handwritten sets, both with 15 training samples per class. These
results should be compared with the Img column of Table 6.1.

To aid visualization of the results, Figure 6.9 shows results of the experiments described above,
separating panels for the top three methods: Geometric Blur, Shape Contexts and Patches. There is one
curve for each type of experiment, where FntImg indicates training with Fnt and testing with Img, and
HndImg indicates training with Hnd and testing with Img. The other curves show results by training and
testing with the same kind of set (Fnt, Hnd and Img). Note that, for Geometric Blur, the NN performance
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Figure 6.9: Classification results for the English datasets with the top two feature extraction methods:
Geometric Blur (left), Shape Contexts (centre) and Patches (right). The plots show the mean and STD
(error bars) varying with the size of the training sets. These were taken as sub-sets of the 15-samples-
per-class sets of tables 6.1 and 6.5.
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Figure 6.10: Classification results for the English datasets with the other feature extraction methods:
MR8 filter banks(left), SPIN (centre) and SIFT (right). The plots show the mean and STD (error bars)
varying with the size of the training sets. These were taken as sub-sets of the 15-samples-per-class sets
of tables 6.1 and 6.5.

when trained on Fnt and tested on Img is actually better than NN performance when trained and tested
on Img

In a practical situation, all the available fonts or hand-printed data could be used to classify images.
Table 6.6 shows the results obtained by training with all available samples from Fnt and Hnd and testing
with the same test sets of 15 samples per class described above. Note that for GB and SC, the results
obtained by training with Fnt were better than those obtained by training with Img shown in table 6.1.
This demonstrates the generalisation power of these descriptors and validates the possibility of cheaply
generated large sized synthetic sets and using them for training.

Figure 6.11 shows the confusion matrix obtained for MKL when trained and tested on 15 Img samples
per class.One can notice two patterns of high values in parallel to the diagonal line. These patterns
show that, for many characters, there is a confusion between lower case and upper case. If we classify
characters in a case insensitive manner, the accuracy turns out to be 57.20% (a 10% increase) for GB on
Img and 80.80% (a 11% increase) for GB on Fnt, both using 15 training samples per class.
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Figure 6.11: Top: results with the multiple kernel combination of all the features (MKL, solid black
line), training and testing with English Img. For comparison, this panel also shows the results with the
best individual feature, Geometric Blur (as shown in Figure 6.9-left). Bottom: the confusion matrix of
MKL for this experiment with 15 training samples per class.

6.5.2 Kannada Data Sets

The Img dataset of Kannada characters was annotated per symbol, which includes characters and sylla-
ble, resulting in a set of 990 classes. Since some of these classes occur rarely in our dataset, we did not
perform experiments training and testing with Img. Instead, we only performed experiments on training
with Hnd characters and testing with Img. We selected a subset of 657 classes which coincides with the
classes acquired for the Hnd dataset.

Table 6.7 shows baseline results. For these experiments, random guess would have a 0.15% accuracy.
The low accuracies show how difficult are indic languages , when compared to English.

Feature Training on Fnt Training on Hnd
GB 54.30 24.62
SC 44.84 31.08
SIFT 11.08 3.12
Patches 7.85 1.72
SPIN 3.44 2.47
MR8 1.94 1.51
Training set size 1016 55

Table 6.6: Classification results (%) obtained with the same testing set as in table 6.5, but here the
whole sets of synthetic fonts and handwritten characters are used for training, i.e., 1016 and 55 samples
per class, respectively.
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Ftr. Trn/tst on Hnd Trn on Hnd, tst on Img
GB 17.74 2.77
SC 29.88 3.49
SIFT 7.63 0.30
Patches 22.98 0.12
SPIN 2.37 0.16
MR8 5.12 0.00

Table 6.7: Nearest neighbour results (%) for the Kannada datasets: (i) training with 12 Hnd and testing
with 13 Hnd samples, and (ii) training with all Hnd and testing with all Img samples.

6.6 Summary
In this Chapter, we tackled the problem of recognizing characters in images of natural scenes. We use
a database of images of street scenes taken in Bangalore, India and showed that even commercial OCR
systems are not well suited for reading text in such images. Working in an object categorization frame-
work, we were able to improve character recognition accuracy by 25% over an OCR based system. The
best result on the English Img database was 55.26% and was obtained by the multiple kernel learning
(MKL) method of [39] when trained using 15 Img samples per class. This could be improved further
if we were not to be case sensitive. Nevertheless, significant improvements need to be made before an
acceptable performance level can be reached.

Obtaining and annotating natural images for training purposes can be expensive and time consuming.
We therefore explored the possibility of training on hand-printed and synthetically generated font data.
The results obtained by training on hand-printed characters were not encouraging. This could be due to
the limited variability amongst the writing styles that we were able to capture as well as the relatively
small size of the training set. On the other hand, using synthetically generated fonts, the performance
of nearest neighbor classification based on Geometric Blur features was extremely good. For equivalent
size training sets, training on fonts using a NN classifier could actually be better than training on the
natural images themselves. The performance obtained when training on all the font data was nearly as
good as that obtained using MKL when trained on 15 natural image samples per class. This opens up
the possibility of harvesting synthetically generated data and using it for training.

As regards features, the shape based features, Geometric Blur and Shape Context, consistently out-
performed SIFT as well as the appearance based features. This is not surprising since the appearance of
a character in natural images can vary a lot but the shape remains somewhat consistent.

We also presented preliminary results on recognizing Kannada characters but the problem appears
to be extremely challenging and could perhaps benefit from a compositional or hierarchical approach
given the large number of visually distinct classes.
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Chapter 7

Conclusions & Future work

7.1 Summary and Contributions
We have shown how MKL formulations can be generalized to learn general kernel combinations sub-
ject to general regularization on the kernel parameters. While our focus was on binary classification
our approach can be applied to other loss functions and even other formulations such as Local MKL,
multi-class and multi-label MKL. Generalized kernel learning can be achieved very efficiently based on
gradient descent optimization and existing large scale SVM solvers. As such, it is now possible to learn
much richer feature representations as compared to standard MKL without sacrificing any efficiency in
terms of speed of optimization.

Proposed GMKL formulation based on products of kernels was shown to give good results for various
feature selection problems – not only as compared to traditional MKL but also as compared to leading
wrapper and filter feature selection methods. Of course, taking products of kernels might not always
be the right approach to every problem. In such cases, our formulation can be used to learn other
appropriate representation including sums of kernels. Finally, it should be noted that the classification
accuracy of GMKL with learnt weights tends to be much the same as that obtained using uniform
weights chosen through cross-validation. The advantage in learning would therefore seem to lie in the
fact that GMKL can learn to achieve the same classification accuracy but using far fewer features. We
also tackled the problem of learning discriminative pixels and image regions for object categorization.
Our objective is to reduce image representation size and we demonstrated that compression factors
ranging from 1.5 to 8x can be achieved with less than a 1% drop in classification accuracy. This has
significant practical implications for object recognition based on mobile or network cameras. We tackled
the problem of recognizing characters in images of natural scenes. We show that even commercial OCR
systems are not well suited for reading text such images. Working in an object categorization framework,
we were able to improve character recognition accuracy by 25% over an OCR based system using MKL.

In summary, we proposed GMKL which can learn non-linear kernel combinations. Shown how
effective it is, in tackling feature selection and learning discriminative parts for object categorization.
Shown how the MKL can improve the performance on the problem of recognition of character images
taken in natural scenes. The applications considered in the thesis are of practical importance, and results
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demonstrate that learning much richer combinations of kernels can represent data in more appropriate
manner.

7.2 Future Scope
Although, MKL has become powerful tools for data analysis, finding the appropriate representation
is still an active research area. More experiments and applications towards regression can be done.
Possible extensions of the work includes (i) scaling to large kernel matrix (ii) extending it to other
methods of multi-class classification (iii) solving multi-label multi-class problems. (iv) scaling to larger
number of kernels using some parallel computing techniques.

Not just limiting to classification or regression problems this techniques can be explored towards
dimensionality reduction or clustering algorithms. MKL can also be explored in specific to applications
in different domains like in computer vision to the problems of object detection, visual learning, etc.
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Appendix A

Notation

Symbol Description
SVM Support Vector Machine
MKL Multiple Kernel Learning
GMKL Generalized multiple kernel learning
x,y Input samples in vector form of m− dimensional
k(x,y) Kernel Function
K Kernel Matrix
M Number of training samples
N Number of classes
K Number of kernels
V Vocabulary size
at Transpose of vector a

〈, 〉 Inner product
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Appendix B

Derivation of MKL

To find the best coefficients for the linear combination kernel in MKL kopt =
∑

l dlkl, following objec-
tive function can be used. Minimize

J =
1

2
wTw + C

M
∑

i

ξi +
K
∑

l

dlσl (B.1)

subject to yi(w
tΦ(xi) + b) ≥ 1− ξi ∀i (B.2)

ξi > 0, yi ∈ {−1, 1} ∀i (B.3)
d ≥ 0,Ad ≥ p (B.4)

Φ(xi)
tΦ(xj) =

K
∑

l=1

dlΦ(xi)
t
lΦ(xj)l (B.5)

where d are kernel parameters and A,p are the parameters to include prior knowledge on kernel
parameter d.

Q(w, b, ξ,d, α, β, γ, δ) =
1

2
wTw + C

M
∑

i=1

ξi +
K
∑

l=1

dlσl −
M
∑

i=1

αi

[

yi(w
TΦ(xi) + b)− 1 + ξi

]

−
M
∑

i=1

βiξi −
K
∑

l=1

γldl −
K
∑

l=1

dlδ
tAl + ptδ (B.6)

1

where αi, βi, γl, δl are the non-negative Lagrangian multipliers and Al is lth column of the matrix A.

1Note that δt(Ad − p) is rewritten as
PK

l=1 dlδ
tAl − ptδ
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For the optimal solution following KKT conditions are satisfied,

∂Q

∂w
= 0 =⇒ w =

M
∑

i=1

αiyiΦ(xi) (B.7)

∂Q

∂b
= 0 =⇒

M
∑

i=1

αiyi = 0 (B.8)

∂Q

∂ξi
= 0 =⇒ C = αi + βi (B.9)

∂Q

∂dl
= 0 =⇒ −

M
∑

i=1

αiyi(w
t ∂Φ(xi)

∂dl
) + σl − γl − δtAl = 0

−
M
∑

i=1

αiyi(w
t[01 · · ·Φl(xi) · · ·0K ]t

1

2
√

dl

) + σl − γl − δtAl = 0

( since Φ(xi) = [
√

d1Φ1(xi)...
√

dlΦl(xi)....
√

dKΦK(xi)]
t)

σl = γl + δtAl +
M
∑

i=1

αiyi(w
t[01 · · ·Φl(xi) · · ·0K ]t)

1

2
√

dl

Substituting Equation B.7

σl = γl + δtAl +

M
∑

i=1

αiyi((

M
∑

i=1

αiyiΦ(xi))
t[01 · · ·Φl(xi) · · ·0K ]t)

1

2
√

dl

σl = γl + δtAl +
M
∑

i=1

M
∑

j=1

αiαjyiyj [
√

d1Φ1(xi)...
√

dlΦl(xi)....
√

dKΦK(xi)]
t[01 · · ·Φl(xi) · · ·0K ]t)

1

2
√

dl

σl = γl + δtAl +
1

2

M
∑

i=1

M
∑

j=1

αiαjyiyjΦl(xi)
tΦl(xi) (B.10)

αi{yi(w
txi + b)− 1 + ξi} = 0 ∀ i (B.11)

βiξi = 0 ∀ i (B.12)
αi ≥ 0, βi ≥ 0, ξi ≥ 0, dl ≥ 0 ∀ i, l (B.13)

γldl = 0 ∀ l (B.14)
δt(Ad− p) = 0 (B.15)

where 0l is a vector containing all zeros of size Φl(xi).
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Taking Equation (B.6), i.e.,

Q =
1

2
wTw + C

M
∑

i=1

ξi +
K
∑

l=1

dlσl −
M
∑

i=1

αi

[

yi(w
TΦ(xi) + b)− 1 + ξi

]

−
M
∑

i=1

βiξi −
K
∑

l=1

γldl −
K
∑

l=1

dlδ
tAl + ptδ

and by substituting equation (B.7)

=
1

2
(

M
∑

i=1

αiyiΦ(xi))
t(

M
∑

j=1

αjyjΦ(xj))−
M
∑

i=1

αi(yi((
M
∑

j=1

αjyjΦ(xj))
tΦ(xi) + b)− 1 + ξi)

+C
M
∑

i=1

ξi +
K
∑

l=1

dlσl −
M
∑

i=1

βiξi −
K
∑

l=1

γldl −
K
∑

l=1

dlδ
tAl + ptδ

Simplyfying further,

=
1

2

M
∑

i=1

M
∑

j=1

αiαjyiyjΦ(xi)
tΦ(xj)−

M
∑

i=1

M
∑

j=1

αiαjyiyjΦ(xi)
tΦ(xj)− b

M
∑

i=1

αiyi +
M
∑

i=1

αi

−
M
∑

i=1

αiξi + C
M
∑

i=1

ξi −
M
∑

i=1

βiξi +
K
∑

l=1

dlσl −
K
∑

l=1

γldl −
K
∑

l=1

dlδ
tAl + ptδ

Using equation (B.8)

= −1

2

M
∑

i=1

M
∑

j=1

αiαjyiyjΦ(xi)
tΦ(xj)− 0 +

M
∑

i=1

αi −
M
∑

i=1

(αi + βi − C)ξi +
K
∑

l=1

dlσl

−
K
∑

l=1

γldl −
K
∑

l=1

dlδ
tAl + ptδ

Substituting equation (B.9) and (B.10)

= −1

2

M
∑

i=1

M
∑

j=1

αiαjyiyjΦ(xi)
tΦ(xj) +

M
∑

i=1

αi − 0 +
K
∑

l=1

dl(γl + δtAl +
1

2

M
∑

i=1

M
∑

j=1

αiαjyiyjΦl(xi)
tΦl(xi))

−
K
∑

l=1

γldl −
K
∑

l=1

dlδ
tAl + ptδ

Finally, the dual objective function is

Q =
M
∑

i=1

αi + ptδ (B.16)

= 1tα + ptδ (B.17)
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For the constraints part,
Similar to SVM, from equations (B.9), (B.13) we have

0 ≤ αi ≤ C (B.18)
0 ≤ δl (B.19)

Equation (B.8) is rewritten as,

1tY α = 0 (B.20)

Equation (B.10) is rewritten as,

σl = γl + δtAl +
1

2
αtYKlYα (B.21)

1

2
αtYKlYα + γl = σl − δtAl (B.22)
1

2
αtYKlYα ≤ σl − δtAl (B.23)

So, dual formulation is, maximize

Qd = 1tα + ptδ

subject to 0 ≤ α ≤ C, 0 ≤ δ, 1tYα = 0

1

2
αtYKlYα ≤ σl − δtAl

(B.24)
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