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Abstract

Capturing the shape and texture of large structures such as monuments andstatues at very high

resolution is extremely expensive, both in terms of time as well as storage space. In many cases the inner

details are generated by surface properties of the material, and the appearance is statistically uniform.

In this paper, we present an approach to add surface details to a coarse 3D model of an object based on

two additional information: a set of images of the object and a high resolution model of the material

that the object is made of. The material model that we employ is the Polynomial Texture Map (PTM ),

which captures the appearance of a surface under various illumination conditions. We use the observed

images of the object as constraints to synthesize texture samples for each triangle of the object under

any given illumination.

The primary challenge is to synthesize a polynomial model of the texture, where the constraints

arise in the image domain. We use the knowledge of object illumination to map the texture models

into image space and compute the opti- mal patch. The texture transfer then happens as a complete

3D texturemodel. We also consider the problems of pose, scale, reflectance and smoothness of surface

while carrying out the texture transfer. We synthesize the texture of an object at a per-triangle basis

while carrying out operations such as normalization and blending to take care of discontinuities at the

edges.
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Chapter 1

Introduction

Computer Graphics is a branch of Computer Science that deals with the representation and synthesis

of visual content. It focuses on the mathematical and computational foundations of image generation

and processing. Although the term usually refers to3D computer graphics, it also encompasses two-

dimensional graphics and image processing.

3D computer graphics are graphics that use a three-dimensional representation of geometric data that

is stored in the computer for the purposes of performing calculations and rendering2D images. Such

images may be stored for viewing later or displayed in real-time. A3D graphics system usually consists

of a rendering engine that takes as input a model file, that contains a mathematical representation of any

three-dimensional object, performs a series of calculations and operations on it and generates as output

the2D views of it.

The input3D model usually consists of mathematical description of the surface geometry ofthe

object and the surface color/texture information. The geometrical description consists of location of

points on the surface and the color information usually consists of simple colorvalue or the position of

a corresponding pixel on a texture image. The two most common sources of3D models are those created

on the computer by an artist or engineer using some kind of3D modeling tool, and those scanned into

a computer from real-world objects. They may be created using multiple approaches: use of NURBS

curves to generate accurate and smooth surface patches, polygonal mesh modeling (manipulation of

faceted geometry), or polygonal mesh subdivision. Polygonal mesh models and Dense point models

are widely used representation to model real world objects because of their ability to model complex

geometry and simplicity to work with.

The Core engine performs the task of automatically converting3D wire frame models into2D images

with photo realistic effects on a computer. It consumes data about polygonswith vertices, edges and

faces that constitute the whole model and geometry in the complete3D scene is lit according to the

defined locations of light sources and reflectance and other surface properties and2D view of the model

generated.
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Rendering is the final process of creating the actual2D image or animation from the prepared scene.

This can be compared to taking a photo or filming the scene after the setup is finished in real life.

Several different, and often specialized, rendering methods have been developed. These range from

the distinctly non-realistic wire-frame rendering through polygon-based rendering, to more advanced

techniques such as: scan-line rendering, ray tracing, or radiosity. Rendering may take from fractions

of a second to days for a single image/frame. In general, different methods are better suited for either

photo-realistic rendering, or real-time rendering.

Rendering for interactive media, such as games and simulations, is calculatedand displayed in real

time, at rates of approximately 20 to 120 frames per second. In real-time rendering, the goal is to show

as much information as possible as the eye can process in a fraction of a second. The primary goal

is to achieve an as high as possible degree of photorealism at an acceptable minimum rendering speed

(usually 24 frames per second).

3D rendering is the computer graphics process of automatically converting three dimensional wire

frame models into2D images with photo realistic effects on a computer. Visual-realism of such models

is usually enhanced by careful modeling of the surface shape and colorinformation. Methods have

been proposed that emulate the physical generative process of some ofthe surfaces seen in real world

and assign similar color information to the vertices of a3D mesh model. The resulting model looks

both visually realistic and aesthetic. However, this is a complex, time taking and often a laborious task,

hindering the scope for real-time rendering and viewing of such models. Moreover, mimicking the

generative process is not always possible and limited to a small class of surfaces.

This is where, texture-mapping, a powerful tool for adding the surfacedetail to an object by wrapping

or projecting the color information from a digital image, comes handy. Computerrendering of objects

with surface texture are more interesting and realistic than those without texture. Images are the widely

used source of textures as they ably capture visual and structural information of the real world. They

are also capable of capturing a high level of object properties. This led tothe advent of Image based

modeling (IBMR ) techniques, that rely on a set of two-dimensional images of an object to generate its

three-dimensional model and then render some novel views of the same. View synthesis methods, also

belonging to the class ofIBMR , use multiple two-dimensional images of an object in order to generate

directly novel views, skipping the manual modeling stage. However, when itcomes to modeling of

real-world objects, the leverage in visualization offered by the3D modeling of the object is critical, UN-

parallel and results in an enhanced view. We in this dissertation, underline the significance ofIBMR

methods in generating realistic models of real-world object and their importancein digital heritage.
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1.1 Problem

Given the shape model (polygonal mesh model), a sparse set of views ofa real-world object and

auxillary information describing the material properties, texture the model augmenting the information

from the images as well as the material properties, to generate a realistic model of the object which not

only looks visually pleasing and similar to its real-world counter part, but also dynamically changes its

visual appearance with the changing light conditions.

1.2 Motivation

Realistic rendering of real world objects is an important area of computer graphics. It is used in

a variety of applications, the most prominent of them being movies, games and archival of historical

artifacts. An efficient mechanism that can solve this problem holds the key for Digital Heritage project,

whose objective is to create realistic models of the statues, artifacts etc. thereby conserving the heritage.

1.3 Challenges

Real world objects are characterized by their shape/geometry as well as the surface properties. To

faithfully model a real world object, both the shape and surface properties of the object have to be

correctly captured and then rendered through the graphics pipeline.

However, when dealing with objects of large scale, it is difficult to capture these details at a fine

level as the capture devices have limited resolution while working at large scales. Capturing the shape

and texture of large structures such as monuments and statues at very highresolution is extremely

expensive, both in terms of time as well as storage space. One could handlethis problem using a very

high resolution shape models of the parts of the object and fitting them together.

Recent improvements in laser range-finder technology, together with algorithms developed for com-

bining multiple range and color images, allow one to reliably and accurately digitizethe external shape

and surface characteristics of many physical objects. Examples include machine parts, cultural artifacts,

and design models for the manufacturing, movie making, and video game industries.As an application

of this technology, a team of 30 faculty, staff, and students from Stanford University and the Univer-

sity of Washington spent the 1998-99 academic year in Italy scanning the sculptures and architecture

of Michelangelo. The prominent among them being David Michelangelo’s statue. They initially con-

structed a model of David containing 4 million polygons at a resolution of 1.0 mm. Although this model

looks fairly good, their goal of building was to build a full-resolution (0.29 mm) model that would very

much behave like the original. The final refined model contains about 2 billiontriangles and 7000 color

images. Clean up, align, merge, and processing this much geometric and colordata is a huge and com-

plicated task. Processing data of this scale and rendering in real time is a gigantic task. Such efforts

3



Figure 1.1 On the left is a photograph of Michelangelo’s David. On the right is a computer rendering
made from a geometric model. Notice the absence of shadows in the renderedscene

surpassing the limitations of digital acquisition and rendering are not possibleto replicate in case of

many real world objects. Moreover, such methods are highly time taking and gigantic cost incurring in

nature.

The above mentioned approach unearths 3 different problems: i) A shape model that can capture the

surface details would be extremely large, ii) Assembling a single model from that of a large number of

parts is often labor intensive. iii) The shape and texture by itself is often unable to capture some of the

surface properties of the object such as sub-surface scattering or translucency.

While the problems (i) and (ii) arise only in case of high-resolution models of large objects, (iii) arises

because simple color textures do no model the surface material properties.Modeling the interaction

of surface material with the light conditions that results in dynamic change in visual appearance is

another important dimension in achieving visual-realism. The images that are used for texture mapping

inherently contain a set of light conditions in which they were taken. As a result, these are baked into

the texture model that is obtained by stitching these images on the mesh. Hence, the resultant model

appears good in some light conditions that match those of the image acquisition and contrastingly poor

when viewed under different conditions. Moreover, the appearanceof the model resulting from such

simple color models do not account for visual phenomena such as specularities, sub-surface scattering

and shadows etc and exhibit stale lighting conditions.
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Figure 1.2An artificially-colored model of the statue containing 8 million polygons. Notice theartifacts
across the surface.

1.4 Our Approach

Existing IBMR techniques capture the shape information in mesh models and the finer surface de-

tails are relegated to image textures. We seek mainly two significant changes to the existingIBMR

techniques. First and foremost, we do away with the requirement of a high resolution polygonal model

(with large number of triangles) and instead seek a coarse resolution shape model. We do this mainly to

avoid the physical and technical hurdles posed by the sheer task of acquiring a high resolution geometric

model of a real world object. Existing techniques seek as input, high resolution geometric models with

large number of polygons. This they require so that the final model is refined and exudes finer details of

the surface. However, generation of high-resolution mesh model requires detailed acquisition of every

small portion of the object. The limitations and challenges of geometric alignment and clean up are

aplenty, thus making it a complicated task and such efforts are not possible toreplicate in a generic real

world scenario. On the other hand, low resolution models are easier to synthesize using images taken

from long distance. This strategy, we believe, overcomes the limitation of existing IBMR techniques,

by avoiding the difficulties faced in fine shape modeling of real world objectsespecially large structures

and statues

Secondly, instead of stitching simple color information from the images onto the mesh model, we

adopt a texture transfer mechanism to synthesize a material model that incorporates both color and

material properties. A sample reflectance model of the surface material is synthesized in the laboratory

conditions and sampled all across the mesh model. Simple color textures do not model the interactions of
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the surface material with the light conditions and the dynamic change in visual appearance that results

from it. On the contrary, our texture model infuses in the material reflectance properties as well and

phenomena such as shadows, specularities, sub-surface scattering can be modelled. This enhances the

visual realism of the model so rendered.

Another important observation is that finer details of such large objects areusually generated by

surface material appearance and it is statistically uniform over the surface. Capturing high resolution

images is often easy due to the availability of low cost and high resolution digital cameras. Images of a

small surface sample facilitate generation of high resolution texture maps of thematerial texture and can

be used to synthesize texture on the polygonal mesh models of the object using example based texture

synthesis algorithms.

Guided by the above quoted observations, we present an approach to add surface details to a coarse

3D model of an object based on two additional information: a set of images of the object and a high

resolution model of the material that the object is made of. The material model that we employ is the

Polynomial Texture Map (PTM), which captures the appearance of a surface under various illumination

conditions. We use the observed images of the object as constraints to synthesize texture samples for

each triangle of the object under any given illumination.

The primary challenge is to synthesize a polynomial model of the texture, where the constraints arise

in the image domain. We use the knowledge of object illumination to map the texture models into image

space and compute the optimal texture patch from the sample. The texture transfer then happens as a

complete3D texture model. We also consider the problems of pose, scale, reflectance and smoothness

of surface while carrying out the texture transfer. We synthesize the texture of an object at a per-triangle

basis while carrying out operations such as normalization and blending to take care of discontinuities at

the edges. This essentially establishes a set-up that facilitates realistic rendering of large-scale models

by utilizing a coarse geometric model of the object augmented with surface details that are generated by

employing example-based texture synthesis techniques. In this work, we explore the possibility of using

the appearance captured in the images as well as prior knowledge of surface properties to add realistic

details to a coarse3D mesh model of the object.
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Chapter 2

Texture: Its Analysis and Modeling

2.1 What is texture?

Texture is a visual experience that describes properties of wide varietyof object surfaces such as

grass, animal fur, skin, water, sand, wood etc. It refers to the visual-characteristics of an image seg-

ment which human visual perception identifies as belonging to a particular class like hair, grass and

sponge etc.It is an important cue in human visual perception.Texture images are spatially homogeneous

and consist of repeated patterns, often subject to some randomization in their location, size, color and

orientation.

(a) Brick (b) Leaves (c) sand (d) Painting

Figure 2.1Natural Textures

2.1.1 Texture Mapping

(a) Bunny Mesh-model (b) Textured Bunny

In computer graphics, texture usually refers to

a digital image that is pasted/applied on top of a

polygon or geometric object so as to obtain a re-

alistic rendering of it.Texture mapping is a tech-

nique for adding the appearance of surface detail

by wrapping or projecting a digitized texture im-
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age on to the surface of an object. Computer rendering of objects with surface texture are more inter-

esting and realistic than those with out texture. This can be observed from the pair of images shown

beside. Figure 2.2(a) shows a geometric representation of the standard bunny consisting of triangles.

Figure 2.2(b) shows a textured bunny. As can be observed, the textured model is more realistic and

visually pleasing than a geometric mesh model. Hence texture mapping is an important criteria and

extensively employed in computer graphics where reproducing the visualrealism of the real world is

the objective. Scanned-photographs and hand drawn pictures are themain sources of textures. Hand

drawn pictures though look aesthetic, do no impart the realism that is desiredof texture mapping. Digi-

tal images on the other hand are a rich source of visual information about the real world. Hence they are

usually used to generate realistic models. The real world is abundant with naturally occurring textures

like water, fire, clouds, vegetation etc.

Texture mapping though being a powerful tool, often suffers from two problems namely a)Seams

and Tiling b) Mapping Distortion. Digitized images, being the main source of textures, are not always

of desired size and shape required in the mapping process. If the image is not big enough to cover the

entire object, then the texture is over-stretched and results in distorted visual appearance. Using multiple

copies of the image on the other hand results in tiling and visible seams. Moreover, there is not always

a natural mapping from the texture space to the topology/geometry of the object surface. This results in

distortions as well.

These issues are mainly addressed by texture synthesis, a powerful technique to synthesize textures

of arbitrary size and shape as and when desired. Methods have also been proposed to synthesize the

texture directly on the object surface so as to avoid the need for an explicitmathematical mapping

from texture space to that of topography of the object. These synthesis methods mainly employ texture

analysis and modeling techniques to synthesize large samples of texture froma given input image.Hence

analysis and modeling of a textures is an important aspect of understandingtextures.

2.1.2 Texture Analysis

In image-processing and computer vision, texture can be defined in terms ofinteractions between

pixels which are spatially distributed in an image.The aim of texture analysis is to capture these in-

teractions and model them by fitting a mathematical frame-work. These texture models are the basis

for texture classification/discrimination and synthesis algorithms that are extensively employed in com-

puter vision and graphics. However texture analysis algorithms of computer vision have a different

design criteria compared to those of computer graphics. Computer vision is concerned with learning

accurate models of the texture to be used in texture classification and segmentation where as computer

graphics is aimed at quick and efficient synthesis of textures for texture mapping without explicit need

to model them.

Extensive work on texture analysis and discrimination has also been done as part of a study on

human visual psycho physics research.This involved determining which aspects of a texture are hu-
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mans most perceptible to and the measurements of texture variation that humans are most sensitive to,

when discriminating textures. In accordance with this study, textures are described using five proper-

ties namely 1) coarseness 2) directionality 3) roughness 4) contrast and5) line-likeness. It has been

established that our human visual perception is sensitive to these aspects of a texture. These studies

gave tremendous amounts of input to effectively model textures so as to develop algorithms for texture

classification/discrimination and synthesis based on the human visual perception.

2.1.3 Texture Modeling

(a) Regular (b) Near Regular (c) Irregular (d) Near Stochastic (e) Stochastic

Figure 2.2Spectrum of Natural Textures

Textures have been traditionally classified as a)Stochastic and b) Regularbased on their structural

appearance. Regular textures contain primitives at locations governed by a spatial placement rule. They

have an order and contain noticeable structures which are placed at positions governed by a rule.Tiled

floor, fishing net and checker-board patterns that are usually imprintedon clothes are some of the regular

textures. Opposed to them are the stochastic structures which are randomin distribution of pixels, do

not contain any primitives(texels) of considerable size and obey no placement rule.They are governed

by simple parameters like minimum and maximum intensities and average color. Most of them look

like image noise at a coarser resolution. Textures of sand, water, bark which have no regular structure

or pattern belong to this category. Most of the textures which are found in nature are partly stochastic

and partly regular and only a few textures lie at the two extremes.

Figure 2.2 shows the spectrum of textures that are abundantly found in nature. Lie at the extreme are

the regular and stochastic textures where as the intermediate placed in between. The properties to be

modeled for regular textures are different from those of stochastic textures.Even the synthesis algorithms

that work well on regular structures do not give results on stochastic textures and vice versa. This is due

to the large and diversified set of texture features and not all of them being equally relevant to model

any textures. As a result, the success of a synthesis algorithms depends on the features that are being
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used. Hence a texture model should be generic and able to successfully capture the properties of all of

kinds of textures.

Texture model is a mathematical process which can create or describe a texture. The main goal

of texture modeling is to describe the texture by estimating a set of parameters and secondary goal

is subsequently use those estimated parameters for texture classification. Julesz [16] conjectured that

it suffices to extractkth order statistics to discriminate two textures. He provided the mathematical

definition of texture which gave rise to the term julesz ensemble. Given a set of statisticsh extracted by

human visual perception on a set of observed images of a texture pattern,a julesz ensemble is defined

as the set of all the images that share the same statistics as the observed image.A julesz ensemble

denoted byΩ(h), has an associated probability distributionq(I; h) which is uniform over the images of

the ensemble and has zero probability outside. The set of all texture images can be divided into a set of

equivalence classes based on this calculated measure of statistics.

The primary approach to model textures has been to develop proceduralmodels which emulate the

physical generative process of the textures. Textures such as that of animal fur/skin, sea-shells etc have

been successfully modeled using such methods. These are mainly reaction-diffusion based methods[30]

which model the generative process of the textures. But they are limited in their applicability to a few

textures and emulating the physical generative process is highly complicatedand not always possible.

But in computer vision coming up with a generic model that can accurately modela large class of

textures each having their own set of unique features is really critical fortexture classification, segmen-

tation and the goal is to come up with this common frame work to model a wide variety oftextures.

Many models have been proposed to characterize the underlying properties of textures. Each model has

its underlying assumptions and objectives. Each of them work well on a certain class of textures. These

approaches mainly fall into two categories

a) Filter-based models b) Statistical models.

Filter theory emerged of detail study of the human visual perception of textures and is inspired by the

multi-channel filtering mechanism discovered in neurophysics.This suggests that human vision analyzes

images by decomposing them into a set of bands using a bank of linear filters and by performing some

non-linear operations on top of them. Gabor filter, wavelet coefficients and image pyramid representa-

tions have all evolved as part of it. These methods are mainly employed for texture classification and

segmentation.

Statistical methods try to estimate a concise model of a texture in the form of small set of param-

eters.But the dimensionality of the image space is vast and hence extremely difficult to model unless

some assumptions are made.Locality and stationarity are the usual assumptions made.Locality of a

texture asserts that the characteristics of a texture are specifics of its local spatial neighborhoods and

stationarity make the statistics of a texture to depend only on relative spatial position.Probabilistic mod-

eling techniques of this class have been greatly successful on stochastictextures which lack regular

structure and primitives of comparable size. Regressive models, auto-regressive models, fractal models,
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long-correlation random fields and Markov random fields are some of thestatistical models.However

most of them are capable of modeling higher order information.

Markov Random field methods [5] popularized by Besag(1973) [11] have largely been employed in

image restoration, region segmentation and modeling textures due to their ability to capture the random

nature of stochastic textures as well as the higher order information of regular textures.They consider the

textures as samples drawn from a probability distribution and try to estimate the underlying distribution.

The property ofMRF is that a variableXs on a latticeS = {s = (i, j) : 0 ≤ i, j ≤ N} can have its

valuexs set to any value , but the probability ofXs = xs is conditional upon the valuesxr at its neighbor

sitesr ∈ Gs. A local conditional probability density function (LCPDF) defined over its neighboring

sitesr ∈ Gs determines how the variableXs is set. The neighborhood systemG = {Gs, s ∈ S} and

theLCPDF defined with respect toG and written

P (Xs = xs|Xr = xr, r ∈ Gs) s ∈ S (2.1)

defines theMRF .An image is modeled as anMRF by considering each pixel as a site on the lattice and

its grey scale intensity the values of the site. TheLCPDF that is determined from the image defines the

underlying texture model.

Parametric estimation of theMRF are usually employed for texture classification/segmentation and

non-parametric estimation used for texture synthesis.

The above methods model most of the natural textures but occasionally failon complex textures with

large structures. To model them, these methods are coupled with pyramid based image representation

[1] and the texture is analyzed and modeled across multiple resolutions.The modeling at each level

is usually done using the information at the already modeled lower levels and theoriginal texture is

at the highest resolution. Gaussian, Laplacian pyramids and steerable pyramids are the usual image

representations used.

2.2 3D Textures

Traditional texture mapping is used to give the impression of geometric detail in amodel using an

image. For example, a photograph of a brick wall may be used as a texture mapon a planar surface

to avoid modeling the complex surface detail of the brick. However, if the lighting in the synthetic

environment where the texture map is used is different from the lighting the texture map was captured

under, the resulting rendering will appear incorrect and unrealistic. Worse yet when the texture is

blended with the calculated lighting of a geometric surface then the resulting rendering will look very

flat and smooth to the viewer. Simple color textures ignore the interaction of surface geometry with the

light conditions and do not model the dynamic change in visual appearancethat comes with it. Hence

the modifications in appearance due to surface micro-structure are poorlyapproximated by attenuating

the surface intensity.
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Image-based re-lighting methods [8, 3, 22, 6] provide a solution to this problem. In this approach,

multiple photographs of a surface, person or object are taken under varying lighting conditions and

viewing directions, and a reflectance model characterizing the surface appearance is constructed. Using

this model very realistic renderings of the original can be produced under arbitrary lighting and viewing

conditions. These methods can be directly leveraged for the purposes ofsynthesizing light dependent

textures also called reflectance textures. In addition to the simple color value,the reflectance textures

also contain functional coefficients that control the luminance of a texel in accordance with the light

position and view settings. As they model an additional dimension of spatial variation in surface lumi-

nance as a function of viewing and illumination conditions they are usually referred to as3D textures.

BTF(Bi-Directional Texture Functions ) andUTF( Uni-Directional Texture Functions ) are the two re-

flectance texture functions usually used to model the surface reflectanceproperties of natural materials.

The reflectance properties of a textured opaque material can be exhaustively specified by its Bidi-

rectional Texture Function (BTF) introduced in [6]. TheBTF measures the ratio of radianceL exiting

a surface at direction(φe, θe), to the incidence Ir-radianceI striking the surface in a differential solid

angle from direction(φi, θi).

BTFr,g,b(φi, θi, φe, θe, u, v) =
dL(φe, θe, u, v)

dL(φi, θi, u, v)
(2.2)

Uni-Directional Texture Functions(UTF) are less exhaustive but tractable representation of reflectance

properties and confine themselves to the modeling of visual appearance in relation to the lighting con-

ditions. Unlike theBTF, they do not consider the view point in surface intensity calculation.

UTFr,g,b(φi, θi, u, v) (2.3)

Hence they cannot model view point phenomenon such as specularities. But they are easy to capture

and do not require any camera calibration. They require only a movable light source and a stationary

camera.UTF implicitly models surface normal information. Hence surface normals can be retrieved

and then used to artificially introduce view point phenomena at the time of rendering.

Polynomial Texture Maps(PTM ) [22] belonging to the class ofUTF are a compact representation of

reflectance textures. They model the surface luminance variations as a Bi-quadratic polynomial function

at each pixel of the texture.

In order to synthesize aPTM , a set of images{Ik} of the object surface are obtained under different

light conditions{(luk, lvk)}. These images amply capture the variations in the visual appearance of the

surface and are used to build the reflectance model of the surface. Thebehavior at each texel is modelled

independently with a reflectance function that encodes its behavior with respect to the changing light

conditions. Hence thePTM is parameterized on spatial location(u, v) and lighting position(φ, θ), with

the number of degrees of freedom being4.
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Figure 2.3PTM vs Conventional Texture Map: The upper portions of the images shows the visual appearance of
a PTM while the bottom half shows the conventional Texture map. Note how the former appears realistic while
the later suffers from unrealistic lighting and shadows.

The chromaticity of a pixel fairly remains constant under varying light conditions and it is only the

luminance that varies. Hence, only the luminanceL(u, v) is modelled using the reflectance model. The

variations in luminanceL at each pixel(u, v) is approximated using a Bi-quadratic polynomial given

by

L(u, v; lu, lv) = ao(u, v)l2u + a1(u, v)l2v + a2(u, v)lulv +

a3(u, v)lu + a4(u, v)lv + a5(u, v) (2.4)

whereL is the luminance at pixel(u, v) and (lu, lv) the unit vector corresponding to the projection

of light on the texture co-ordinate system. The luminanceL(u, v) so obtained is modulated with the

normalized color value(Rn(u, v), Gn(u, v), Bn(u, v)) of the pixel to get the actual color.

R(u, v) = L(u, v)Rn(u, v)

G(u, v) = L(u, v)Gn(u, v) (2.5)

B(u, v) = L(u, v)Bn(u, v)

The above representation is calledLRGB PTM and it takes advantage of the redundancy in surface

color. At each texel(u, v) of the texture map, the coefficients(ao, ..., a5)(u, v) of the corresponding bi-

quadratic polynomial along with the normalized color value(Rn(u, v), Gn(u, v), Bn(u, v)) are stored.

The luminance coefficients(ao, ..., a5)(u, v) of each texel are calculated usingSVD method so as to fit

the corresponding pixel data in the images.

Polynomial Texture Maps consisting of these surface luminance coefficients approximately model

the visual behavior of the surface under different lighting conditions. Using thePTM model of an object,

its visual appearance under arbitrary lighting conditions can be estimated and novel views generated.
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Chapter 3

Texture Synthesis

Texture mapping is an important tool in Computer graphics that is used to add realism to the com-

puter rendered images and objects. Textures are important for a wide variety of applications in Computer

graphics and Image processing. Digitized photos are the main sources of textures due to their ability to

efficiently capture the real world information. Texture mapping though is basically a simple procedure,

getting the textures to be used for texture mapping is a difficult task. This is because more often that not,

digitized photos are small to entirely cover a large object and this leads to visibleseams and repetitions.

Moreover, real world models which are3D in nature cannot be texture mapped directly as the surface

parameterization of the object varies from the planar parameterization of thetexture images. These are

the two main short comings of texture mapping. Hence researchers in vision and graphics proposed

texture synthesis to address these limitations of texture mapping and it has gradually evolved as an alter-

native for texture mapping. Using texture synthesis algorithms, textures of arbitrary size and shape can

be synthesized. They can also be employed to synthesis textures directly over a3D surface or generate

solid textures which are3D grid of color values. This avoids the usual problems of texture distortion

that are resulted in texturing3D objects with planar textures. Potential applications of texture synthesis

include foreground removal, image de-noising, occlusion fill-in and realisticrendering in graphics and

texture compression.

3.1 What is Texture Synthesis ?

Texture synthesis refers to the procedure of algorithmically generating animage of large size from

another image such that the characteristics of the synthesized image match thatof the input sample.

Formally, the goal of texture synthesis is to define a mathematical functionF , that analyzes an input

texture sampleIin and generates an output imageIout of user defined size and shape such that it appears

to have been generated by the same underlying stochastic process, yet sufficiently different from the

input sample in a visual manner.

Figure 3.1 shows a sample synthesis in which a small sample was taken as input and a large texture

generated from it. As can be observed, the two images appear to belong to the same texture i.e they
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(a)
Input
Image

(b) Synthesis Result

Figure 3.1Synthesis of a Texture

have the same textural properties, yet visually they are not alike i.e the synthesis result doesn’t appear

to a be obtained by copying the input texture multiple times. In order for a texturesynthesis algorithm

to be successful, maintaining both these properties is very important.

The requirement of synthesis techniques to generate an image with similar textural properties again

brings back the question of understanding what attributes and propertiesof a texture humans are most

sensitive to. This brings the areas of texture analysis, modeling and synthesis more closer and makes

them strongly connected. Hence texture synthesis along with analysis and modeling has evolved as an

important area of research in the last three decades in computer science.This has also led to the advent

of various texture synthesis algorithms. While the objective of all of them is essentially the same, they

differ in their underlying texture models used and the assumptions made.

3.2 Overview of Texture Models For Synthesis

The initial approach to synthesize textures has been to develop methods which emulate the physical

generative process of the textures they are trying to mimic. Sea shells, animalskin and fur are some

of the textures successfully modeled using these procedural methods. Reaction-diffusion and cellular

texturing are usually employed to simulate the biological and chemical formation ofsuch textures. Some

weathering and mineral phenomenon can also be reproduced using simulations. But such procedural

methods are limited in their applicability to a set of few textures as mentioned in the earlier chapter.

Moreover, these methods are governed by parameters that are complex intheir functioning and have to

be repeatedly tuned to get a desired result. Controlling these parameters to affect the synthesis procedure

in a desirable manner is a complicated and un-intuitive procedure. Hence a need for a generic texture

model that is controlled by few parameters in a logical manner and capable ofdescribing a wide variety

of textures emerged.

The first generic texture model was proposed by Julesz [16] in the 1960’s in the form of a conjecture

that the characteristics unique to a texture can be obtained by extracting thekth order statistics. This

led to the concept of Julesz ensemble. Later on two main texture modeling techniques emerged. One is

15



based on Filter theory adopted from research in neuro-physiology andthe other based on probabilistic

modeling. This classification is solely depending on the underlying texture model used and the resultant

synthesis procedure.

Filter theory based synthesis techniques evolved out of research in psycho-physics to understand

the perception of textures and the features of a texture that humans are most sensitive to. Research

in neuro-physics has established that human eye in order to understand avisual image decomposes it

into a set of linear filters and performs some non-linear operations on top ofthem. This has led to the

modeling of textures as a set of features extracted by applying a bank of filters and filter theory based

techniques for texture synthesis emerged. These techniques, given aninput sample, decompose it into

a set of features by applying a bank of filters and collect a set of statisticsabout them. This essentially

gives a distribution of feature statistics in a global space. Then a random noise image of user specified

size is modified in a series of steps by coercing it to have the same the set of feature statistics as the

input sample. The matching of these feature statistics is continued till a convergence is obtained. In

this process of matching the features of input texture with those of the output,the output gets gradually

modified to look texturally similar to the input sample.

These feature based techniques give good results for stochastic structures but are not so effective on

the more regular textures. Computationally these algorithms are efficient than probabilistic techniques,

but usually suffer from lack of features to model higher order texture information. Moreover, the set of

features to be modeled is predefined and no particular set of features works well on a wide variety of

textures. Hence the feature set being not generic, these techniques look only for a specific set of features

and they cannot be applied to model a texture that has a different set of features.

Probabilistic texture synthesis techniques are another class of algorithms that model the textures as

samples drawn from probabilistic distributions. Given an example texture, these techniques model the

interaction between individual pixels in a neighborhood, determine the localconditional distribution

of the original image and synthesize a new texture by sampling from it. As opposed to feature based

techniques from filter theory, they do not model any set of features thatis specific of a particular class of

textures. Hence this modeling of textures is generic and applicable to a wide variety of textures. How-

ever the quality of synthesis solely depends on the ability of the underlying mathematical framework to

model the pixel-pixel interactions of desired order. Initially some regressive , auto-regressive and cor-

relation based methods of this class have been proposed that were mostly linear and bi-linear in nature.

Hence their application was limited to a small set of stochastic textures as they couldn’t model the higher

order information usually found in regular textures. Later on Markov Random Fields (MRF ) proposed

by Besag [11] have emerged as the popular model for textures becauseof their ability to capture the

properties of a wide spectrum of textures. In (MRF ) based methods, the input image sample is analyzed

and its local conditional Probability density function (LCPDF ) estimated. Then the output , which is

initially a random noise image, is iteratively updated pixel by pixel with respectto theLCPDF. This

iterative method of synthesizing an image from anMRF is known as stochastic relaxation (SR). Gibbs
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sampler [11] and Iterative conditional modes (ICM ) are the usual relaxation algorithms employed for

sampling.

Natural textures which are abundantly found in nature are partly stochastic and partly regular in

nature. MRF ably models these natural textures. HenceMRF based sampling techniques are highly

effective in synthesizing a wide variety of textures. However, as these models require a detailed mod-

eling of pixel wise interactions and due to the overwhelmingly large dimensionalityof image space,

estimating the underlying distribution of a texture is computationally demanding and very hard to infer

unless some assumptions about the textural properties are made. Locality and stationarity are the char-

acteristics of a texture that are usually assumed and density model usually restricted to gaussian. The

success of these synthesis techniques depends on the structure of the density estimator employed and

the size of the neighborhood . While stochastic textures can be readily synthesized with small order

neighborhoods, large neighborhoods need to be modelled as the texturesget more and more structured.

Irrespective of this issues,MRFs are widely employed for synthesis because of this ability to model a

large number of textures. The main challenges to these methods are estimating theunderlying stochas-

tic process and efficiently sampling from the estimated model. The only drawback of these techniques

is that they are computationally expensive and with the size of the neighborhood the synthesis time

increases in an exponential manner.

Since the Julesz conjecture , a flurry of synthesis algorithms have been developed that synthesize a

texture based on an input sample. However, none of them work equally well on all types of textures.

Simple probabilistic techniques and feature based techniques work well on stochastic textures and per-

form poorly on highly regular textures. On the other hand,MRF based techniques perform reasonably

on regular textures as well and patch based techniques where the unit ofsynthesis is a patch are highly

successful with regular textures. Based on these notions, texture synthesis techniques can be loosely

categorized as either structural or stochastic depending on the kind of textures they work best on. Struc-

tural techniques tend to work well on regular textures with large structureswhich are distributed across

the texture space according to placement rule. Stochastic techniques workefficiently on textures with

only local variations spread across few pixels. In the next section, we will discuss a few important2D

texture synthesis algorithms that have changed the coarse of the texture synthesis literature and research

and follow it up with another section that extends them to synthesizing textureson arbitrary surfaces.

3.3 2D Texture Synthesis algorithms

While the texture synthesis literature as noted earlier has a flurry of methods built on various models

of texture synthesis , we will give an overview only of a few important algorithms that laid foundation

to our research work. The algorithms that we discuss are example based synthesis algorithms which

synthesis a larger texture based on an example input.

Popat and picard proposed a probabilistic synthesis technique [24] where in the distribution of an

input sample is summarized using a clustering mechanism. The Probability Mass Function (PMF)
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governing the texture is obtained by populating the training data consisting of all the causal conditional

neighborhoods in the input sample and fitting a set of gaussian clusters to it. ThePMF so obtained is

used to synthesize the pixels of the output in a scan-line order. Each pixelof the output texture is given a

value in accordance with thePMF. For better quality of synthesis, the output texture can be synthesized

in a hierarchical fashion. This method really works well on stochastic textures, but performs poorly on

regular textures, where the structure is larger compared to that of the neighborhood. This is expected as

its underlying model is an approximation and as the order of modeling gets higher, the error that comes

with the approximation also increases. Moreover, the synthesis, being causal, can lose its direction if a

few initial pixels generated were too far from those in the input sample.

Heeger and Bergen [13], motivated by research on human visual perception, proposed a technique

for stochastic textures. This method from filter theory captures the texture properties by decomposing

an image into a chosen set of linear filter responses. It starts with an input image and a noise image of

desired size, constructs their Laplacian/steerable pyramids and performshistogram equalization across

various pyramid levels resulting in similar pyramids. The output pyramid is then collapsed to generate

the result texture. The build and collapse operations on pyramids are performed multiple times to

obtain a convergence. However, this model is restricted to second orderstatistics and works well only

on stochastic textures, doesn’t capture all of the perceptual structures of natural textures and performs

poorly on inhomogeneous textures, quasi textures and random mosaic textures.

(a) (b) (c)

(d) (e) (f)

Figure 3.2Synthesis Results of paget and Long-staff’s Algorithm

paget and Long-staff,proposed a synthesis technique based on non-parametricMRF modeling of

textures [23] in which,they addressed the limitations of clustering based approach proposed by Popat

and picard. They came up with a multi-scale top down approach, where the frequency components of

a texture are gradually introduced into a synthetic texture from lower to higher frequencies. Synthesis
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is performed in a Multi Scale fashion, where stochastic relaxation (SR) is employed at a low level and

the information used to constrain the synthesis at higher levels of resolution. They introduced the novel

concept of pixel temperature function which serves the purpose of local annealing, avoids growing of

garbage and helps in achieving global characteristics in less number of iterations. Unlike the earlier

methods, this non-parametric multi-scale synthesis algorithm can successfullymodel and synthesize all

natural textures ranging from stochastic to structured. However, this elaborate modeling incurs high

computational load and the synthesis is slow.

(a) (b) (c)

(d) (e) (f)

Figure 3.3Results of De Bonet’s Algorithm

De Bonet et al. [7] proposed a multi resolution sampling procedure that is avariant of the pyramid

based approach of Heeger and Bergen[] discussed earlier. It improves upon the Heeger and Bergen’s

method by adopting a top-down synthesis approach which is akin to the one used by Paget and Long-

staff [23] and also uses better texture discrimination features,which are a filter bank of first and second

gaussian derivatives and Laplacian, across multiple resolutions. This improvement over the Heeger and

Bergen’s model [13] is capable of capturing the characteristics of a plethora of textures compared to the

former method. Moreover, texture structure is also better handled than in Heeger and Bergen’s method

by further restricting the sampling procedure to pixels that fall within a threshold determined by texture

features. Although De Bonet’s method performed better than Heeger and Bergen’s method for a wider

variety of textures, the tuning of the threshold parameters is not intuitive andthe constraints being local,

the technique cannot model complex visual textures and higher order statistics. Simple addition of more

complex features only over-fits the model and results in tiling.

Zhu et al. [36] combined filter theory , maximum entropy principle andMRF based modeling to

produce a new system calledFRAME model. It draws powerful features from filter theory , uses

maximum entropy principle to find the probability distribution of the texture and uses Gibbs sampling to

synthesize a new texture. Given a set of filters, at each stage , each ofthem is applied separately on both
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the input and to be modified output image and the histograms of the filter responses compared. The filter

responses are used as the marginal estimates of the underlying distribution and the filter whose response

varies the largest from input to the output is selected and used to re-estimatethe probability distribution

of the texture. The resultant distribution is used to modify the output using Gibbs sampler. This process

is continued till a set of selected from the bank of filters models the input texture sufficiently. Unlike

the previous statistical techniques, this model has the ability to capture interactions between pixels that

are farther and has the theoretical framework to work well on a wide variety of textures. However, the

selection of filters is a computationally intensive process , the synthesis veryslow and the choice of

filters cannot always be properly defined. Later, Wu et al. [34] proposed a slightly faster algorithm that

avoids explicit estimation of parameters and synthesis textures directly from the filter responses using a

Markov Chain Monte Carlo (MCMC ) algorithm. This sampling algorithm is an extension of single site

Gibbs sampler, converges fast and produces better results.

Portilla and Simoncelli [25] proposed a universal statistical model for texture synthesis that uses joint

statistics of coefficients in a multi-scale complex wavelet representation. A similartechnique to that

of Heeger and Bergen [13], but where Heeger and Bergen updatedthe complete filter response using

histogram equalization, Simoncelli and Portilla updated each point in the pyramidof filter responses

with respect to the correlations using a method similar to projection onto convex sets (POCS). They

did this by finding an orthogonal projection from the filter response of the synthetic texture to that

of the original. After the projection of all filter responses, the wavelet pyramid is collapsed, further

projection performed, and then the pyramid reconstructed. This iteration continues until a convergence

is obtained. It is an improvement over Heeger and Bergen’s method in that italways does synthesis

by finding an orthogonal projection from output texture to the input and Heeger and Bergen’s method

is limited to a statistical modeling of order two while the number of constraints here are many and

complicated. Hence this gives the present model a capability to model large number of natural textures.

The heuristic strategy to select the desired features is also akin to the greedy approach observed in the

maximum entropy approach by Zhu et al. [36]. The drawbacks of this method are that the choice of

parameters governing the texture model cannot be guaranteed to be unique and it performs poorly on

textures containing large structures.

The above mentioned works more or less established the theoretical platformfor texture modeling

and synthesis. The synthesis techniques that followed later dwelled more onspeed, real-time rendering,

efficiency and robustness with the research taking a shift in orientation from computer vision to graphics.

However these new generation techniques all have their foundations in theage-proven filter theory and

MRF based formulations.

Efros and Leung [10] proposed a non-parametric sampling scheme that avoided explicit parameter-

ization of the texture model and instead synthesized the input texture by employing a nearest neighbor

search mechanism which is an effective approximation. It models the textureas anMRF and grows

output texture, pixel by pixel, outwards from an initial seed. Like in Popat’s work [24], each pixel is

synthesized conditional upon the distribution of pixels in the neighborhood, avoids the problem of es-
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timation of parameters and instead substitutes it with a nearest neighbor approach. At each step, the

neighborhood around a pixel is taken, queried for similar neighborhoods in the input image and the cen-

ter pixel of the most similar neighborhood is copied into the current pixel. Thisalgorithm can also be

used for constrained synthesis where in the existing structure is used to fillthe unknown portion of the

texture. However, the process is computationally intensive due to the exhaustive search that is employed

to synthesize each pixel and has the tendency to occasionally slip into wrongpart of the search space

and start growing garbage or get locked on to some place in the input image and start growing multiple

copies of the same.

(a) (b) (c)

(d) (e) (f)

Figure 3.4Results of Efros and Leung’s Algorithm

Later, Wei and levoy [32] improved upon Efros and Leung’s algorithm by accelerating the search

procedure by adopting a Tree structure vector Quantization (TSVQ) based data structure from data

compression to quicken the neighborhood search. This search technique is similar to the clustering

mechanism adopted by Popat et al. [24] They also stuck to the raster scanorder of synthesis of Popat as

it results in better search results. As you can see in figure 3.5 this algorithm performs as well as Efros

and Leung’s algorithm and importantly runs two orders of magnitude faster than any of the previous

techniques. The two advantages of this method are the quality of the texture generated and the speed

of the synthesis procedure. This multi level synthesis algorithm is capable of synthesizing a wide va-

riety of textures ,but suffers from the garbage growing problem also seen in most sequential synthesis

algorithms.
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(a) (b) (c)

(d) (e) (f)

Figure 3.5Results of Wei and Levoy’s TSVQ Algorithm

The sequential non parametric algorithm of Wei and Levoy [32] and that of Efros and Leung [10]

useL2 norm for neighborhood comparison which is not a suitable measure of texture similarity as few

erratic boundary pixels in a neighborhood can impair the similarity score. Thisresults is growing of

large regions and undesirable smoothing. These deficiencies were addressed by Harrison et al. [12]

who proposed a non-hierarchical procedure for synthesis that adopts a non-sequential prioritized order

of synthesis by using an entropy measure suggestive of interaction between neighboring pixels. They

avoidedL2 norm and instead used Manhattan distance as a measure of neighborhoodsimilarity. This

improved the results and preserved the structural information in the synthesis.

While all the above algorithms are generic in nature and have varied applicability across texture

spectrum, Ashikhmin et al. [2] proposed a technique that is well suited for aspecific class of textures

called natural textures. Flower fields, pebble, grass patches , bark etcare some of the textures on

which this method works really well. This is inspired from the WL algorithm [32] by Wei and Levoy

for fast synthesis. The WL algorithm, though works well on a wide variety of textures, is not suited

to the class of natural textures which contain arrangements of small objects with irregular structure

but familiar shapes and sizes. Moreover theL2 norm used in the WL algorithm tends to blur out the

textures and also results in uncontrolled region growth. Ashikhmin et al. addressed these issues by

modifying the search procedure and limiting the search space at any step to asmall set of candidates

that are appropriately forward-shifted with respect to the pixels of the input already used in synthesis.

Unlike WL, it neither employsTSVQ nor does exhaustive search in the input image, the neighborhood

size required to capture the texture characteristics is also less and requires no multi-level synthesis. As

a result it avoids the complexity of search that is inherent in WL algorithm. These are the two main
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improvements over WL algorithm, though its applicability is limited to a small class of textures. The

utility of the algorithm can also be enhanced by intuitively controlling the output by providing a target

image that outlines the general characteristics of the result. The algorithm is reasonably fast, efficient

and generates good results for the class of natural textures as evidentin figure 3.6.

(a) (b) (c)

(d) (e) (f)

Figure 3.6Results of Ashikhmin’s Algorithm

Hertzmann et al. [15] modelled texture synthesis problem as an application ofimage analogies

framework. Their method combines Wei and Levoy’sTSVQ based algorithm [32] and Ashikhmin’s

algorithm [2] to address the issues inherent in both the methods. Wei and Levoy’s algorithm suffers

from smoothing and growth of unnecessary large areas due to theL2 norm employed for estimating

patch similarity, where as Ashikhmin’s method suffers from discontinuities across locally grown small

regions. Hertzmann et al’s image analogies driven texture synthesis algorithm employs both the exhaus-

tive search of Wei and Levoy’s algorithm and coherent neighborhood search of Ashikhmin’s method and

synthesize a pixel based on the error measure produced by either of themethods. Hence by controlling

the choice carefully at each step, it avoids the artifacts produced by the two parent methods. The results

produced are much better and synthesis can be performed across multiple scales for better results. But it

is computationally intensive and uses only low-level features not harnessing the potential of the image

analogies framework.

The texture synthesis algorithms that have been discussed so far synthesize the output one pixel at

a time. Hence they are called pixel-based synthesis techniques. These techniques are well suited for

stochastic textures where the order of the structural information is local and confined to a few pixels.

However, when the input texture is complex and consists of arrangement of bigger primitives, pixel-
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based synthesis results in artifacts such as smoothing, unnecessary growing of regions with deformed

primitives. Moreover, for most complex textures very few pixels actually have a choice of values that

can be assigned to them and are determined by what has been synthesizedso far. This means that a lot of

time is wasted on pixels which are already determined by the higher order structural constraints. These

are the two main limitations of pixel-based techniques. The key to solve these problems is identifying

the relevant unit of synthesis called texel, which is a textural element and synthesizing the output texel

by texel rather than pixel by pixel. Texels are usually small patches of a texture that capture enough local

information and minimal global information i.e the arrangement of these texels. Hence the techniques

which adopt this strategy of synthesizing a texture in a series of patches are called patch based synthesis

techniques. Determining what are the patches and how they are put together are the two main challenges

to this class of techniques.

Xu et al. [35] proposed a patch-based synthesis technique called Chaos mosaic, where in the input

texture is tiled and random blocks chosen from the resulting texture and re-distributed across to produce

a visually realistic synthetic texture. Chaos mosaic not only preserves localfeatures of the input texture

which is essential for visual similarity, but also provides a visually stochasticand even global distribution

of the features. Unlike the conventional statistical based methods, it doesn’t analyze and model the

input sample, and no constraint is imposed on the result texture to adhere to aprobability distribution.

It is fast and memory efficient and the resulting texture can be succinctly represented in a compact

representation known as visual texture. This gives the ability to render thetexture in a procedural

manner.The main advantages of this algorithm are its ability to synthesize large samples of a texture

quickly in a memory efficient manner and tailor-madeness to be rendered in a procedural fashion. It

has advantage over traditional statistical methods in that it avoids system latency when the texture is

too big to fit in the system memory or when there isn’t enough storage space for it. Chaos Mosaic

works well for all stochastic textures and artifacts appear in cases of structured textures. The problem of

artifacts and seams are addressed to an extent by employing cross-edgefiltering along the boundaries of

the displaced random blocks. However, the mismatch of patches along the boundaries is still a problem

when it comes to synthesizing structured textures.

Later Liang et al. [19] proposed a patch-based sampling technique, thataddressed the problems of

seams and artifacts in Chaos mosaic [35]. Liang et al. improved upon chaosmosaic by incorporating

the notions ofMRF based texture model and employing non-parametric estimation of local conditional

MRF density to sample the patches of the output texture. Hence in every step, a new patch which

best agrees with the output synthesized is introduced. This avoids the mismatch of features across

patch boundaries that is inherent in chaos mosaic. The crux of this algorithm involves searching for

meaningful input texture patches to be pasted in the output. Kd-tree, Quad-Tree pyramid and PCA

analysis are usually employed to speed the search process. Alpha-blending is applied across neighboring

patches and this avoids seams and artifacts. As a result, this method works well on all varieties of

textures ranging from stochastic to structured. It also works well on natural textures where in Efros

and Leung’s [10] and Wei and Levoy’s [32] methods fail. This work also draws comparisons with the
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work on Texture quilting by Efros and Freeman [9]. While Liang et al. consider the issues of speed and

constrained texture synthesis, texture quilting dwells upon the concept of texture transfer.

(a) (b) (c)

(d) (e) (f)

Figure 3.7Results of Liang et al.’s Patch based sampling Algorithm

Efros and Freeman developed image quiting [9], a novel patch based synthesis technique, which is a

concurrent work to Liang et al’s approach [19] and very much similar to it.Like Liang et al’s method, the

synthesis proceeds in a series of steps in each of which a patch is selectedfrom the input and pasted in

the output overlapping with the already pasted neighboring patches. The two approaches however differ

in the way they handle overlap regions. Where Liang et al’s method employs feathering i.e weighed

alpha-blending, image quilting uses minimal error boundary cut to determine a boundary along which

the difference in pixels is minimum. This algorithm can also be extended so as to perform texture

transfer by imposing additional constraints to make the quilting patches agree with a correspondence

target image. This algorithm performs as well as Liang et al’s method. However it suffers from excessive

repetitions and distorted boundaries.

3.4 Surface Texture Synthesis

Computer Graphics applications often use surface textures to give an illusion of fine detail with out

detailed geometric modeling. Algorithms exist for synthesizing a wide variety of textures on the2D

plane from example texture. However these methods cannot be extended totexture arbitrary topological

surfaces due to lack of continuous surface parameterization. One solution is to paste such synthesized

planar textures on to the3D objects. But this results in distortions or discontinuities. An effective ap-

proach to tackle this problem is to synthesize the texture directly over the surface. This works really

well as many natural and man-made surface patterns are created by interactions between texture ele-
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Figure 3.8Results of Efros and Freeman’s Image Quilting Algorithm

ments and surface geometry. Such algorithms which synthesize the texture directly over a polygonal

mesh placed over the surface are called surface synthesis algorithms.

Praun et al. [26]proposed a technique in which the candidate texture patches in the input sample

image are identified and repeatedly pasted on the mesh model of a surface until it is full covered. The

collection of these overlapped texture patches is called lapped textures. This method has been inspired

from chaos-mosaic [35] proposed for quick synthesis of a planar texture from example. Praun et al’s

algorithm identifies small portions on the mesh called surface patches each ofwhich can be locally

mapped on to the2D plane easily and repeatedly pastes texture patches across all of them till themesh is

completely covered. To prevent seams and texture distortion, orientation and scale of the texture patches

are aligned with those of the surface patches and alpha-blending applied across overlapping patches.

The scale and orientation of each of the surface patches is derived from surface tangential vector field,

which is partially obtained through user intervention and then interpolated to find the same across all

the vertices on the mesh during the pre-processing stage. In each paste operation, an un-textured point

on the mesh is identified and a surface patch homeomorphic to a disc grown around it. This surface

patch is parameterized into the texture space by aligning the axis of the texture patch with the tangential

vector field of the surface patch. This parametric-optimization is solved usinga sparse linear system

and the resulting patch-mapping saved. Once the patch placements are computed, the texture model

can be rendered in real-time using compositing operations, either into a textureatlas during pre-process

or directly rendering the surface patches during run time. This method of synthesizing texture on3D

meshes is very practical allowing real-time texturing of3D objects. On the flip side, visible seams are
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produced when the input sample contains low frequency component and also when viewed up-close

in the case of structured textures. Some visual artifacts also appear due topoor field sampling of the

tangential vectors.

(a) (b)

(c) (d)

Figure 3.9Results of Lapped Textures

Turk et al. [31] borrowed ideas from the sample based synthesis techniques employed on rectangular

pixel lattices and proposed a point based sampling technique to synthesize texture on arbitrary polyg-

onal surfaces. It employs hierarchal mesh-model representation which is similar to the gaussian image

pyramid representation performs synthesis from lower to higher resolutionlevels of it. Like lapped

textures [26], it also requires a user-specified surface tangential vector field at a sparse set of points

given which it calculates the values at other points on the mesh. It performssynthesis employing four

operations namely 1)interpolation 2) Low-pass filtering 3)Up-sampling 4) Down-sampling on the mesh

model and these are very much similar to their corresponding versions in image-pyramids in2D. The

points on the mesh are order in accordance with the flow of the vector field in such a way that visiting

them in this order will sweep across the surface from one end to the other.Each point is colored by

examining the colors values of the neighborhood points that have already been textured and identifying

a similar neighborhood in the input sample.This assignment of color is done in a hierarchal fashion from

sparser to dense mesh-levels. This point by point texturing scheme is inspired from the work of Wei and
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levoy [32] on non-parametric sampling technique for2D texture synthesis. The synthesized texture is

transferred on to a texture atlas using a technique proposed by Soucy etal [28]. This technique performs

better than lapped textures [26] over a wide variety of textures over surfaces of arbitrary topologies.

(a) (b)

(c) (d)

(e) (f)

Figure 3.10Results of Wei and Levoy’s Surface Synthesis Algorithm

Concurrently with Turk et al., Wei and Levoy proposed an extension [33] to their TSVQ based

2D synthesis technique [32] to address the challenges of synthesizing textures on arbitrary manifold

surfaces. They introduced two modifications to their existing2D algorithm. First and foremost, the

vertices are processed in a random order instead of the scan-line fashion employed for rectangular

domains. Second, the rectangular parameterization of the output domain is replaced with a surface

tangential vector field, coupled with a scale factor derived from mesh vertex density. Like the earlier

techniques, the surface tangential vector field is obtained with user help orgradually evaluated using a

relaxation procedure. At each vertex, a local parameterization is obtained by flattening the neighboring

triangles and then sampling a rectangular neighborhood from it. This neighborhood is searched for
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matches in the input sample and the color of the vertex obtained. For effective synthesis, the algorithm

builds a mesh hierarchy and carries a two-pass synthesis at each level from lower to higher resolutions.

Though this algorithm was developed in concurrence with Turk et al’s [31] technique and the results of

these techniques being similar, there are differences in the methodologies. Turk’s algorithm creates a

smooth vector field where as Wei and Levoy’s technique employs symmetric and random vector fields.

Turk’s algorithm visits the vertices of the mesh in an sweeping order creatinga parent-child relationship,

where as Wei and Levoy’s technique visits the vertices randomly. There isalso a difference in the ways

neighborhoods are created in both the methods. Turk’s algorithm uses surface matching where as the

current algorithm employs flattening and resampling.

3.4.1 Short-comings of Simple Color Textures And Need For Better Models

All the above discussed example based synthesis algorithms synthesize simplecolor information on

the surface of an object. These values are static and do not imbibe material information of the object.

Hence they do not model the interactions between material surface and light conditions that results in

sub-surface scattering phenomena such as shadows, inter-reflections, self-occlusions and specularities,

which affect the visual appearance of an object. Moreover, the imagesthat are texture mapped imbibe

the lighting conditions under which they have been captured. Hence the texture model so obtained

looks good in lighting conditions that match those of the input image, but very poor when viewed under

different lighting conditions. Due to these limitations, simple color texturing and synthesis falls short of

accomplishing the task of realistic modeling and rendering real world objects.

3.5 Synthesis algorithms for Reflectance Textures

The synthesis of reflectance textures from examples is conceptually different from the2D texture

synthesis. A collection of images of a particular surface acquired under various lighting conditions

cannot be treated as an independent collection of2D textures. There are strong correlations between the

sampled images, as all of them are instances of a unique underlying physical surface. These correlations

have to be maintained while synthesizing a novel reflectance texture.

Liu et al. [20] presented a novel approach to synthetically generate bidirectional texture functions

(BTFs) of real-world surfaces in which they used a texture’s height-field along with an albedo map as

an intermediate representation forBTF. This representation is reconstructed from the texture examples,

using shape-from-shading techniques. Then, a synthesis scheme is applied directly to the height-field,

using non-parametric sampling , resulting in a representation of a novel texture from which a newBTF

is derived.

Leung and Malik [17] suggest using the3D texton map as a basis for generating a novel3D tex-

ture. This approach is similar in spirit to [20] where a texton map is used as an intermediate compact
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representation. The texture’sBTF can be derived from this representation similarly to the height-field

map.

Buoyed by the above works, Tong et al. [29] presented a method that uses the texton map represen-

tation as a basis forBTF synthesis directly on a3D object. This algorithm takes as input aBTF sample

and a polygonal mesh and synthesizesBTF on the mesh such that the resultant model is perceptually

similar to the input sample and exhibits a consistent meso structure across the view and light spaces.

The inputBTF sample is first analyzed and a vocabulary of3D textons generated. This vocabulary is

later used to generate a texton maptin of the input sample and then a texton spaces generated. The

texton maptin is treated as a texture sample and a surface texton maptout generated by incrementally

assigning each mesh vertexv a texton labelt and a texture co-ordinate(a, b). The color of the surface

textons is evaluated at run time and rendered. This work is very much similar to Turk et al. [31] and

Wei-Levoy’s [33] and can be considered as their extension for reflectance texture maps.

Figure 3.11Sponge, Popcorn Kernels and Peas textured Teapots illuminated in different light conditions

Later, Hel-Or et al. [14] proposed an approach for synthesizing Polynomial Texture maps (PTM )

on arbitrary manifold surfaces. This is an extension of the block-based texture synthesis methods from

working on images containing color values, to images of reflectance functions. They viewed thePTM

as a texture of functions rather than a texture of values and regarded it as a realization of a Markovian

process in the spatial domain. The stochastic process of synthesis is performed over functions rather

than over values. This same approach allows any texture synthesis method that compares pixel colors

to be extended in the analogous manner to support the synthesis of reflectance function textures.
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Chapter 4

Realistic Rendering of Real World Objects

Realistic rendering of real world objects is an important area of computer graphics. It is used in

a variety of applications, the most prominent of them being movies, games and archival of historical

artifacts. Real world objects are characterized by their shape/geometry as well as the surface properties.

To faithfully model a real world object, both the shape and surface properties of the object have to be

correctly captured and then rendered through the graphics pipeline. Inthis chapter, we will outline our

approach for realistic rendering of large scale objects.

Figure 4.1 On the left is a photograph of Michelangelo’s David. On the right is a computer rendering
made from a geometric model
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When dealing with objects of large scale, it is difficult to capture these details at a fine level as the

capture devices have limited resolution while working at large scales. One could handle this problem

using a very high resolution shape models of the parts of the object and fittingthem together [18].

However, this approach has a number of shortcomings: i) A shape model that can capture the surface

details would be extremely large, ii) Assembling a single model from that of a large number of parts is

often labor intensive.

On the other hand, capturing high resolution images is often easy due to the availability of low cost

and high resolution digital cameras. Hence Image based modeling techniques, which facilitate rendering

of large scale models of an object by augmenting the surface texture with retrieved shape information,

evolved as an effective manner to accomplish this otherwise complex task.

4.1 Image Based Modeling of 3D Objects

Images are the most abundant source of visual and structural information of the real world. They

are capable of capturing high level object properties effectively. Hence, image based modeling tech-

niques [28, 27, 4] have emerged as an effective approach for realistic rendering of3D objects, where

multi-view geometry is utilized in directly synthesizing an unseen view of an objectfrom nearby views

without explicit surface reconstruction. Multi view modeling methods on the other hand use a set of

images of the object, register them and recover the 3D locations of points. A standard mesh model is

derived from the point cloud, which is then texture mapped using the images that were used to derive

the shape. Both approaches combine the pictorial details obtained from the individual photographs cap-

tured, to the shape information of the object inferred from the collection. While the first approach often

leads to realistic rendering of unseen views, it lacks the flexibility of3D model based visualization.

We notice that the traditional object models capture the shape information in the polygonal mesh

representation, while the reflectance and surface properties are relegated to the texture. Hence the

method of pasting surface texture information on the coarse mesh model of anobject is an effective

procedure to accomplish this task of representation and rendering of real world objects. Many texture

synthesis algorithms [24, 13, 7, 25, 10, 32, 2, 19, 9] have been developed to generate large samples of

texture from scanned photographs. These methods are effective andmake the texture mapping process

more efficient and robust by facilitating the generation of textures of any required size. These have been

later extended to synthesize texture directly over3D models and arbitrary manifold surfaces [26, 31, 33].

However, unlike traditional texture synthesis, where the goal is to generate a new texture patch that

retains simple color distribution of the original, the objective here is to capture the surface properties far

more faithfully, including the effects of small scale height variations on the surface and generate a new

texture patch that retains the characteristics of the surface material.
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4.2 Reflectance Properties of Natural Materials

(a) (b)

(c) (d)

Figure 4.2 Images of a rough plaster surface obtained under varying light conditions. Note the change
in surface appearance in each of (a), (b), (c) and (d)

The visual characteristics of natural surfaces arise from the variationof two properties across its

surface: i) the variation in normals, and ii) reflectance. These cause effects such as shadows, self

occlusions, inter-reflections, and specularity, which affect the visualappearance of the surface. As a

result, a surface looks considerably different under different lighting and viewing conditions. These

effects are observed in all natural surface reliefs that are abundant in real world.

Simple color texture models ignore these two properties of the natural textures. Hence they can-

not model these variations in visual appearance caused under varyingillumination/viewing conditions.

Moreover, the images that are texture mapped on to the mesh models inherently contain the lighting

conditions under which they have been captured. Hence the texture modelso obtained looks good in

lighting conditions similar to that of the available images, but very poor when viewed under different
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lighting conditions. Hence simple color texture mapping of mesh models is insufficient and falls short

of accomplishing the task of realistically modeling and rendering real world objects.

The characterization of surface reflectance properties is essential to achieve realistic rendering. The

reflectance properties of a surface affect its appearance under theinfluence of changing light and view-

ing conditions. This led to the study of relation between surface appearance and illumination/viewing

conditions of natural material surfaces. The concept of illumination dependent texture, anologous to the

concept of3D texture, was introduced. This led to further investigation into the problem of represen-

tation, recognition, synthesis of natural materials and their rendering under arbitrary viewing/lighting

conditions [17]. Image based re-lighting techniques [22, 6, 3] have been used to model the surface

reflectance properties of natural materials. In these techniques, multiple images of the object/surface

are captured under different lighting/view point conditions and then the variations in visual appearance

modelled as Reflectance Texture Maps as discussed in chapter 3.

4.3 Synthesis of Reflectance Texture Maps

Techniques to synthesize2D textures on arbitrary shaped objects [26, 31, 21, 33] have also been

extended to synthesis reflectance texture maps on the same [29]. In these techniques, the synthesis

starts from an arbitrary patch and then it grows on till all the mesh-model is covered. The only constraint

imposed on the synthesis process is that a patch to be synthesized agrees with the already synthesized

neighboring patches. This constraint makes sure that no visible seams appear on the textured model.

Using this approache,PTMs have been efficiently synthesized over3D models and rendered [14].

4.3.1 Relevance to Realistic Rendering

The above mentioned3D texturing algorithms when coupled with image based modeling techniques

provide an effective platform for realistic modeling of real world objects.Pictorial information of an

object can be obtained in a small set of images and later used to constrain the procedure of texture

synthesis, which is otherwise unconstrained (except for inter-patch consistency), on its mesh model.

This hybrid approach provides an effective way to synthesize the texture model of an object based on

its real world appearance. We use the above notions of coupling image based modeling methods and

texture synthesis techniques to pose the task of realistic modeling and rendering of 3D objects as image

constrained texture synthesis problem.
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4.4 Our Work: Image Based PTM synthesis

We want to address this problem of constrained3D texturing of mesh-models to make them more

realistic and near to their real world counter-parts. Our goal is to capturea small set of images of the

object under known lighting conditions, and use these to systematically synthesize a reflectance model

of the object from a samplePTM of the object’s material. These sparse set of images decide the sub-

samples of the input samplePTMin that are stitched across the mesh model so that the resultant model

would behave more similar to its real world counterpart.

This work is inspired from two works, one being that of Efros et al. [9] for effective Texture transfer

and the other that of Yacov Hel-Or et al. [14] for synthesizingPTM models of3D objects. We present a

method to effectively synthesize the reflectance model of a real world object from a samplePTM of its

material, using a small set of images captured of the object under differentknown lighting conditions

as constraints, so as to make the texture model appear realistic and behave similar to the original. The

PTM model so generated can be efficiently rendered under arbitrary lighting conditions to generate

novel views of the object.

4.4.1 Constrained PTM synthesis

Given aPTM sample and a triangular mesh model of an object, small patches extracted fromthe

sample can be seamlessly stitched across the mesh model and aPTM model of the object synthesized.

ThePTM model so synthesized behaves like a real world object in terms of its visual appearance under

varying light conditions. These patch based texture synthesis algorithms, when coupled with image

based modelling techniques, provide an effective approach to synthesize the3D texture models of real

world objects. A set of images of the object captured under varying light and viewpoints decide the set

of texture patches that are stitched across the mesh model. Hence the texturemodel so obtained not only

looks realistic but also similar to its real world counter part.

Our work essentially builds on the work by Efros et al. [9] for Texture Transfer and the work by

Yacov Hel-or et al. [14] forPTM modelling of3D objects. We suggest an approach to generate the

reflectance texture model of a real world object from aPTM sample of the object material and a set of

images of the object. We extended the patch basedPTM synthesis algorithm to also include the image

based information in influencing the selection of the texture patches so as to make the resultant texture

model more similar to the object. ThePTM model so obtained can be used to generate novel views of

an object.

In the next section, we detail our method forPTM modeling of planar rectangular surfaces and

discuss the algorithm for3D seperately in the next chapter as it differs considerably from the algorithm

for planar objects and also due to the increasing number of challenges posed by the task.
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Figure 4.3 Blocks from Input sample are checked for Image Based and Overlapping Constraints and
the best ones pasted into the Output

4.4.2 Image constrained PTM synthesis for Planar Rectangular Surfaces

In this section, we explain in detail our hybrid approach, that couples the Patch Based2D texture

synthesis algorithm [19, 9] and thePTM synthesis algorithm by Yacov Hel-or et.al [14], to synthesize

the texture model of a planar rectangular surface from a samplePTM of the surface material and a set

of images of the surface taken under various known lighting conditions.

The synthesis algorithm takes as input, a sample texturePTMin, a sparse set of images{In} of the

object as constraints and generates the reflectance modelPTMout of the same. It uses patches taken

from the input samplePTMin as the building blocks to synthesize the output texturePTMout. At

each stepk, a candidate blockBk is taken fromPTMin and stitched intoPTMout with an overlapWe

between neighboring blocks and then blended in the overlapping region. The texture map so obtained

can be used to generate novel views of the object under arbitrary lightingconditions.

The selection strategy of candidate blockBk, that is stitched in to the output texturePTMout at every

stepk, is the core of our algorithm. The output texturePTMout is traversed in a raster scan fashion

from left to right starting at the lower left corner and moving upwards. Ateach stepk, a candidate block

Bk is selected fromPTMin and pasted at the next position(x, y). The selection of the patchBk is

governed by two constraints namely

1 Image based constraints

2 Overlapping constraints
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4.4.2.1 Image Based Constraints

The set of images{In} which are captured under light positions(lun, lvn) decide the candidate

patches which together make up the output texture. At each stepk, the texture blockBk from PTMin,

which is selected to go into the next position(x, y) in PTMout, should agree with the set of image

blocks{b(In, x, y)} that are located at position(x, y) in image set{In}. Let thePTM evaluation func-

tion be denoted byf(P, (lu, lv)), whereP is aPTM patch and(lu, lv) the projection of unit light vector

onto the texture co-ordinate system. This function returns as output the imageobtained by evaluat-

ing the input sample with the given light vector. The patchBk when evaluated with the light vector

(lun, lvn) corresponding to the imageIn, should result in an image patchf(Bk, (lun, lvn)) that matches

the blockb(In, x, y). Hence each imageIn of the set{In} imposes constraint on the selection of the

texture patches{Bk} that together build the outputPTMout. These together constitute the Image based

constraints involved in the synthesis. At each stepk, the texture blocks{B} from the input sample

PTMin are ranked according to a scoring measureS which is given as follows:

S(B) =
N∑

n=1

‖f(B, (lun, lvn)) − b(In, x, y)‖2 (4.1)

The blocks from the input samplePTMin are ranked according to the scoring mechanismS and a

top few of them selected as candidate blocks for the next stage of selection.

4.4.2.2 Overlapping Constraints

At every stepk of the synthesis procedure, the patchBk that is selected to go into the output texture

PTMout should also agree with the patches{B0, B1, ...., Bk−1} that have so far been pasted in the pre-

vious steps. The candidate blockBk which is currently being pasted should agree with its neighboring

patches in the overlapping region. This constitutes the overlapping constraint and is a must for seamless

stitching of input blocks.

The set of candidates which are selected based on image based constraints in step(1) are again ranked

based on their overlapping measure.L2 norm is calculated over the difference of luminance coefficients

in the overlapping region betweenPTMout that has been synthesized so far and eachB of the candidate

blocks picked by step(1). The norm is calculated with the coefficients of bothPTMout and blockB in

the overlapping region transformed to a orthogonal space so that the distance between functions is same

as that between function coefficients. The blockBk with minimal error measure is introduced into the

outputPTMout.
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4.4.2.3

The complete algorithm is outlined as follows:

Algorithm 1 : The Constrained PTM Synthesis Algorithm

TraversePTMout in a raster-scan order block by block starting at lower-left corner.;1

At every new position(x, y), select a small sets of candidate blocks fromPTMin2

using the image based constraints.;

Pick the best blockBk among the sets which best fits the overlapping constraint.;3

Paste the blockBk at the location(x, y) in the output texturePTMout and blend it in4

the overlapping region.;

Alpha-blending is usually employed to blend the texture coefficients in the overlapping regions. The

texture coefficients are transformed to an orthogonal space before blending is employed.After blending

the coefficients are transformed back by applying an inverse transformation.

The above approach generates aPTM model of the given surface that behaves not only realistic but

similar to the planar object being modeled and it can be used to generate novelviews of the object.

In Figure 4.4, we showed the results of our2D Synthesis algorithm on three different surfaces. Sam-

plePTMs of variants of plaster surface were created from their high resolution images. Images 1(a),2(a)

and 3(a) show the high resolution images used in the creation of their corresponding samplePTMs. For

each object, a sparse set of its low resolution images and samplePTM were used to synthesize its tex-

ture model and the model shown at the coarser resolution at which the object was captured, as well as

at a higher resolution. The material information present at high resolution affirms our synthesis proce-

dure.Images 1(b), 2(b) and 3(b) are the objects’ views captured at lowresolution and 1(c), 2(c) and 3(c)

represent the corresponding views of their texture models generated using our method. Notice the vi-

sual likeness between the object views and the generated views of the texture models. Images 1(d),2(d)

ad 3(d) are the higher resolution views of 1(c), 2(c) and 3(c) respectively and 1(e), 2(e) and 3(e) were

obtained by scaling images 1(b), 2(b) and 3(b) respectively. The higher resolution views ( 1(d),2(d) ad

3(d) )of the texture models exude more material information, less blur and lossin detail compared to the

scaled versions ( 1(e), 2(e) and 3(e) ) of the objects’ views.

In figure 4.5, we demonstrate the superiority of our method over the unconstrained synthesis tech-

nique by comparing the views generated by both with the original views of the object. It can be observed

that our results in the middle row bear more resemblance to the object views thanthose in the last row

generated by relighting the model that is obtained by employing unconstrainedsynthesis technique.
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4.5 Conclusion

The above results demonstrate the potential of our hybrid approach whichcouples image-based mod-

eling and texture synthesis techniques to synthesize high resolution reflectance models of planar surfaces

which behave not only realistic but more similar to their real-world counterparts. Our Method consider-

ably differs from the modeling techniques which solely map color information onto a mesh model of the

object using image registration in two aspects namely 1) Our method in addition to modeling the color

information , also incorporates the dynamic change in visual appearance which is caused by interaction

between the surface material and light conditions where as image-based methods suffer from unrealistic

shadows and color changes.

2) Our method generates a high resolution reflectance map where as the image-based techniques are

limited by the resolution of images captured of the object.

In the next chapter, we discuss our algorithm forPTM modeling of3D objects and rendering effi-

ciently.
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1(a)

1(b) 1(c)

1(d)

1(e)

2(a)

2(b) 2(c)

2(d)

2(e)

3(a)

3(b) 3(c)

3(d)

3(e)

Figure 4.4Demonstration of Our 2D Synthesis Algorithm for Natural Material Surfaces:Images 1(a), 2(a), 3(a)
show high resolution texture patches of rough plaster surface,medium to smooth plaster surface and a directional
plaster surface.Images 1(b), 2(b) and 3(b) are low resolution images of rectangular objects made of the above
mentioned materials and 1(c), 2(c) and 3(c) represent the views generated from their correspondingPTMs .Images
1(d), 2(d) and 3(d) are the higher resolution views of the models .The final row of images 1(e), 2(e) and 3(e) are
the ones obtained by zooming in 1(b), 2(b), 3(b) respectively.
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(a) Object Views

(d) Our Results

(g) Unconstrained Synthesis Re-
sults

Figure 4.5Constrained Synthesis vs Unconstrained Synthesis
The top row shows view of a planar surface, the middle row shows the corresponding views generated by our
model and the last row shows the same generated by relightingthe model obtained from unconstrained synthesis
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Chapter 5

Image Constrained PTM Synthesis for Real world Objects

Patch-based2D Texture Synthesis algorithms [9, 19] use square patches as the quilting blocks be-

cause of their simplicity to work with. The same cannot be said about synthesisfor real world objects

which are3D in nature. The3D objects are usually represented with standard triangular mesh models.

Triangle is the basic primitive for rendering3D models. Hence its much more apt to consider triangle

as the quilting block and texture map triangles rather than the usual square patches. But the triangles of

the mesh model are of different sizes and shapes unlike the square patches used in the previous section

which are all of uniform size. It becomes only difficult that all the triangleshaving various texture

orientations.

Considering all the above mentioned issues, we devised an approach to synthesize image basedPTM

models of real world objects.Given a set of images{In} of the object captured under known light and

camera positions{(lun, lvn), Cn} and a texture samplePTMin of the object material, we synthesize a

texture model of the object by pasting triangular subsamples taken fromPTMin all across the triangular

mesh model of the object.Like the earlier approach for planar surfaces, this approach also considers the

image-based constraints and overlapping constraints in selection of triangular patches for the texture

model.

We outline the basic steps of our synthesis algorithm followed by a detailed description of each of

them.

Algorithm 2 : PTM Synthesis of Real world Objects

Assign each triangleT of the mesh model, an imageIk ∈ {In} in which it is best1

visible and calculate its mappingt in Ik.;

Generate the normal viewtn from t, find its best matching triangular texture patchp in2

PTMin and extract a rectangular patchB containingp.;

Perform Alpha-blending across every edge of the mesh model, update thetexture3

patches{Bi} with blended values.;

Extract the minimal bounding boxbi contained insideBi of each triangular texture4

patchpi, and pack all suchbi into a number of texture atlases.;
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5.0.0.4 Step1

The object is imaged multiples times from different known light and view-point conditions{(lun, lvn), Cn}

to obtain a set of images{In}. Each triangleT of the mesh model is then mapped to an imageIk ∈ {In}

in which it is best visible. The images in which the triangleT is completely visible are picked and then

an imageIk among them in which it is best visible is taken. The criteria for visibility is the angle made

by the normaln of the triangleT with the directional vector of the cameraC from its center. We rely on

the assumption that each triangleT of the mesh model is completely visible in at least one image.The

camera matrixMk corresponding to the imageIk is calculated and then used to obtain the mappingt of

triangleT in the imageIk.

5.0.0.5 Step2

After step 1, eachT is mapped to its best-viewt in an ImageIk. Now based on the angleθ between

the normaln of T and the direction of the camera centerC, the lengths of sides of the triangle in the

normal viewtn are obtained using the following formula

lin = li/ cos θ, (5.1)

whereli is the length ofith side oft in the imageIk.

The geometry oftn is is determined by these sides{lin} and anglesA, B, C of the original triangle

T . For simplicity, the side connecting the first 2 vertices oftn is made parallel to X-axis. The color

information fromt to tn is transfered using a re-sampling algorithm.

Calculate the local light vectorlT with respect to a co-ordinate system placed at the centroid ofT .

The X-axis of this co-ordinate system aligns with the side connecting the firsttwo vertices ofT , Z-axis

along the normal ofT and Y-axis decided by the former two. Evaluate the input samplePTMin using

lT and search the resultant image for a set of patches{t′} which best agree withtn. This constitutes the

image based constraints.Eacht′ corresponds to a triangular texture patchp′ in the input texture sample

PTMin.

Now pick the best texture patchp ∈ {p′} which best agrees with the texture patches of already

processed neighboring triangles{Tj} of T . This constitutes the overlapping constraint imposed on the

synthesis. In order to impose overlapping constraints, at least one of thethree neighbors of the current

triangleT should have been already processed. Hence random processing oftriangles of the mesh

model might result in occasional weakening of the selection strategy and thequality of texture model so

obtained.

To prevent this, the triangles of the mesh model are processed in a Breadth-First-Search(BFS) order.

By doing so, overlapping constraints are imposed in the selection of texture patchp for every triangleT

of the mesh model except for the first one.
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T1

T2T2

T2

1T

b1 b2

T2

1B 2B

We We

1 2Red region inside T  gets blended with Blue region of T

Figure 5.1Blending of Neighboring Triangles Red region of T1 blends with blue regionof T2 and vice
versa

For each triangleTi, a minimal bounding boxbi surround its triangular texture patchpi is identified

and a bigger rectangular patchBi containingbi surrounded by a extra texel strip(5 to 10 texels) all

around is extracted from the texture samplePTMin. The extra strip of texels is used for blending with

texture patches of neighboring triangles.

5.0.0.6 Step3

Each of the above mentioned boxesBi include an extra strip ofWe on all the 4 sides of the corre-

sponding minimal bounding boxbi. This strip is essentially used for alpha-blending across edges.The

extra texel padding around the actual triangular texture is blended with the border information of neigh-

boring triangle as shown in the Figure 5.1. The alpha-blended information is written back to the set of

boxes{Bi}

5.0.0.7 Step4

Minimal bounding boxes{bi} are extracted from{Bi} by cutting off the extra strip of texels present

around. These{bi} are then packed in to a number of atlas maps of desired dimensionsW andH using

any of the standard bin-packing algorithms. The texture mapping co-ordinates of all the trianglesTi

are updated all along the procedure and the final mapping co-ordinates with respect to the PTM atlases

{Pj} are stored.

The above process of PTM synthesis for a real world object is an off-line process. Hence we limit

ourselves to only the synthesis procedure and not wade in to the details of timecomplexity, techniques

to speed it, etc.
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5.0.1 Rendering of the PTM Model

The PTM model of the object obtained can be efficiently rendered at run time to generate novel

views of the real world object under different lighting conditions. In this procedure, each triangleT is

considered separately and the position of light with respect to it calculated.The unit vector(luT , lvT )

so obtained is used to evaluate its PTM patchp to generate an image patch.Hence we get image atlases

corresponding to the set ofPTM atlases. These image atlases are used as texture objects, loaded and

the textured model rendered.

5.0.2 Experimental Results

We demonstrate our3D synthesis algorithm on a set of rough surface models created using displace-

ment mapping. Synthetic3D textures and object models are used so that the same texture model can

be used to generate surface textures for the mesh model. We generated a height map and applied it

individually on the plane surface, a smooth sphere and a cylinder using displacement mapping to create

rough objects. A samplePTM is then created using a set of images of the rough planar surface. A

small set of images of the rough sphere and cylinder were taken to providethe image based constraints.

These images and the samplePTM were used to construct thePTM models of the rough sphere and

the cylinder. In Figure 5.2, the images (a), (b) and (c) show three views of a rough plain and these are

used to construct the texture sample employed in synthesis. Images (d) and (g) show a rough sphere

and a cylinder created using displacement mapping. Images (e) and (f) show two arbitrary views of

the constructedPTM model of the rugged sphere and images (h) and (i) show the same for the rugged

cylinder.

As we note, the synthesized model is able to capture the surface properties, as the lighting directions

change, which would be impossible in the case of 2D textures. Moreover, as seen from synthesis of the

planar object, the synthesized 3D texture generates images resemble the observed images of the original

object. However, there are primarily two issues that still remain to achieve photo-realistic rendering of

3D mesh models: i) The PTM model itself does not handle shadows and specularities in the texture well

as it creates an overly smooth approximation of the transition from light to shadows with change in light

direction, ii) Variations in appearance with lighting direction is accentuated at the triangle boundaries.

Currently we are working on developing improved models of the PTM to handlethe first issue, and with

synthesis techniques that directly create smooth transitions over triangle boundaries.
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(a) View1 of a Rugged Planar Sur-
face

(b) View2 (c) View3

(d) Rugged Sphere (e) View1 of Textured Spherical
Mesh Model

(f) View2

(g) Rugged Cylinder (h) View1 of Textured Cylindrical
Mesh Model

(i) View2

Figure 5.2 Synthesis Results for 3D object:Images (a), (b) and (c) show arbitrary views of rugged planar
surface.Image(d) shows a rugged sphere and (e),(f) show twoviews of the texture model generated model gener-
ated.Likewise images (g),(e) and (f) show the same for a rugged Cylinder.
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Chapter 6

Conclusions

We demonstrated an image based texture synthesis technique to effectively synthesize reflectance

textures for material surfaces and objects. We developed the idea of transfering texture on to the mesh

models of real world objects to realistically reproduce the natural visual appearance, perception and

their interaction with the lighting environment. While the synthesis algorithm for planar surfaces is

robust and efficient, the 3D synthesis algorithm offers challenges and scope for improvements both

in synthesis and rendering aspects. The main challenges were the blendingof reflectance functions

across the edges of triangles which is a non-trivial task, the artifacts caused by lack of smoothness or

continuity in directionality of texture across triangular patches and the inability tomodel the view point

phenomena.

The synthesis algorithms that synthesize texture on mesh models [26, 31, 33]rely on specification or

computation of surface tangential vector field across the surface of the mesh models. Traversing along

the flow of the vector field ensures the orderly sweeping of points/polygons on the mesh model just like

a scan-line order visit of pixels on an image ensures the same. The vector field not only determines the

order of processing of triangles but also the scale and rotational parameters of the synthesized triangular

patches if the material is isotropic in nature.

We have assumed the anisitropic nature of the synthesis material as our experiments were mostly

confined to the surfaces like granite, concrete etc which lacked directionality. Contrary to the orderly

processing of triangles suggested by the conventional texture synthesisalgorithms mentioned above,

we adopted a region-growing policy that starts with a randomly chosen polygon as the seed and then

proceeds to its immediate neighbors and so on, growing a region outwards. This alone we believe

ensures orderly processing of polygons so as to impose proper overlapping constraints on the patch

selection procedure. However, this doesn’t hold good in the case of iso-tropic textures which also have

a directionality to their surface and surface tangential vector field cannotbe ignored in such a scenario.

Inspite of texture blending that is applied across the border of triangular textures patches in the func-

tional space, artifacts caused by dis-oriented texture patches of neighboring triangles is still a cause for
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concern as the blending doesn’t consider the dimensions of scale and orientation. We noticed some arti-

facts presicely caused by this reason even while synthesizing some anisotropic materials. Hence,we feel

that introducing the step of estimation of surface tangential vector field holdsthe key for a significant

improvement not only because it brings into consideration two more aspects of a texture, but also im-

pacts the blending procedure by correcting for the scale and orientation when blending is applied across

neighboring triangles.

Another important challenge is the task of blending reflectance function coefficients across every

edge of the mesh models. In contrast to the alpha-blending that is applied in thecase of simple color

textures, the blending of reflectance functional coefficients is a tricky challenge. The conventional alpha-

blending is applied in the color space where as our task requires an efficient blending technique that can

blend multiple aspects of texture namely color,normal information, reflectance properties. Polynomial

texture maps implicitly contain the surface normal information. Approximate surface normal informa-

tion can be obtained at every texel from its functional coefficients. The goal is to obtain a blending

mechanism that operates in the functional space so as to ensure smoothness of color, normal and re-

flectance across a triangle edge. We have employed alpha-blending directly on the coefficients in a

transformed orthogonal space. From the results, we found that this alone won’t suffice as this approach

won’t necessarily interpolate the normal information across the surface of the mesh model. Exploring

the methodologies to smoothen the normals by operating in the functional space isa potential direc-

tion of work that we hope holds the key for enhancing the aspect of realism by reducing the scope

for artifacts. Investigating the idea of manipulation of luminance coefficients ininfluencing the visual

perception of shape information of the object surface is also an wider direction to carry out the present

work.

As Polynomial Texture Maps do not model the view-point phenomena, our present scheme doesn’t

model the effects such as specularities. However, as mentioned above, the functional coefficients can

be used to obtain approximate surface normal information. The so obtained normals can be used to

artificially introduce view-point phenomena at the time of rendering. Introducing them will further

enhance the realism and is definitely another potential direction of work.

One of the most critical piece of information that we have assumed all along is that the shape infor-

mation of the object to be modeled is available as a triangulated mesh. In the case of large monuments

and statues, obtaining this information is in itself another challenge. However,with a large set of images

of the object, this process can be automated and made robust. It suffices even if these are low resolution

images as the clarity of the model is enhance by maintain the textural attributes which is taken care of

by our high-resolution synthesis mechanism.
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