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Abstract

Capturing the shape and texture of large structures such as monumerdtatmed at very high
resolution is extremely expensive, both in terms of time as well as storage $pawcany cases the inner
details are generated by surface properties of the material, and theappess statistically uniform.
In this paper, we present an approach to add surface details to @ 8@amsodel of an object based on
two additional information: a set of images of the object and a high resolutiatehod the material
that the object is made of. The material model that we employ is the Polynomiairéédap PTM),
which captures the appearance of a surface under various illuminatiditioos. We use the observed
images of the object as constraints to synthesize texture samples for eagletdathe object under
any given illumination.

The primary challenge is to synthesize a polynomial model of the textureevtherconstraints
arise in the image domain. We use the knowledge of object illumination to map theetemtuels
into image space and compute the opti- mal patch. The texture transfer theenkags a complete
3D texturemodel. We also consider the problems of pose, scale, reflectesheenaothness of surface
while carrying out the texture transfer. We synthesize the texture of gttodt a per-triangle basis
while carrying out operations such as normalization and blending to takeo€aliscontinuities at the
edges.
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Chapter 1

Introduction

Computer Graphics is a branch of Computer Science that deals with theeatation and synthesis
of visual content. It focuses on the mathematical and computational foangaf image generation
and processing. Although the term usually refer8Bbcomputer graphics, it also encompasses two-
dimensional graphics and image processing.

3D computer graphics are graphics that use a three-dimensional rejpteseaf geometric data that
is stored in the computer for the purposes of performing calculations adénaeg2D images. Such
images may be stored for viewing later or displayed in real-tim8DAyraphics system usually consists
of a rendering engine that takes as input a model file, that contains a méttedmegpresentation of any
three-dimensional object, performs a series of calculations and operatidhand generates as output
the 2D views of it.

The input3D model usually consists of mathematical description of the surface geometting of
object and the surface color/texture information. The geometrical déseriponsists of location of
points on the surface and the color information usually consists of simplealloz or the position of
a corresponding pixel on a texture image. The two most common sourgBswbdels are those created
on the computer by an artist or engineer using some kirgDofnodeling tool, and those scanned into
a computer from real-world objects. They may be created using multiple agpes: use of NURBS
curves to generate accurate and smooth surface patches, polygatahrodeling (manipulation of
faceted geometry), or polygonal mesh subdivision. Polygonal meshisnadé Dense point models
are widely used representation to model real world objects becauseioélbildy to model complex
geometry and simplicity to work with.

The Core engine performs the task of automatically convegihgire frame models int@D images
with photo realistic effects on a computer. It consumes data about polygtmsertices, edges and
faces that constitute the whole model and geometry in the compItgcene is lit according to the
defined locations of light sources and reflectance and other surfagerties an@D view of the model
generated.



Rendering is the final process of creating the ac2isimage or animation from the prepared scene.
This can be compared to taking a photo or filming the scene after the setup lediriis real life.
Several different, and often specialized, rendering methods havedeseloped. These range from
the distinctly non-realistic wire-frame rendering through polygon-basedaring, to more advanced
techniques such as: scan-line rendering, ray tracing, or radiositydéRiag may take from fractions
of a second to days for a single image/frame. In general, different metredbetter suited for either
photo-realistic rendering, or real-time rendering.

Rendering for interactive media, such as games and simulations, is calcanatelisplayed in real
time, at rates of approximately 20 to 120 frames per second. In real-timeriegdthe goal is to show
as much information as possible as the eye can process in a fraction afralsebhe primary goal
is to achieve an as high as possible degree of photorealism at an ateepitsiinum rendering speed
(usually 24 frames per second).

3D rendering is the computer graphics process of automatically convertirgy dimensional wire
frame models int@D images with photo realistic effects on a computer. Visual-realism of such models
is usually enhanced by careful modeling of the surface shape andinfamation. Methods have
been proposed that emulate the physical generative process of stheesofffaces seen in real world
and assign similar color information to the vertices @@ mesh model. The resulting model looks
both visually realistic and aesthetic. However, this is a complex, time taking sew afaborious task,
hindering the scope for real-time rendering and viewing of such models.eder, mimicking the
generative process is not always possible and limited to a small clasSaxdesur

This is where, texture-mapping, a powerful tool for adding the sudatail to an object by wrapping
or projecting the color information from a digital image, comes handy. Compemelering of objects
with surface texture are more interesting and realistic than those withoutdeknages are the widely
used source of textures as they ably capture visual and structurahition of the real world. They
are also capable of capturing a high level of object properties. This l#tktadvent of Image based
modeling (BMR ) techniques, that rely on a set of two-dimensional images of an objech&raje its
three-dimensional model and then render some novel views of the samesWithesis methods, also
belonging to the class ¢BMR , use multiple two-dimensional images of an object in order to generate
directly novel views, skipping the manual modeling stage. However, wheonites to modeling of
real-world objects, the leverage in visualization offered by3benodeling of the object is critical, UN-
parallel and results in an enhanced view. We in this dissertation, underérgghificance ofBMR
methods in generating realistic models of real-world object and their imporianigital heritage.



1.1 Problem

Given the shape model (polygonal mesh model), a sparse set of vieavseaf-world object and
auxillary information describing the material properties, texture the modehanting the information
from the images as well as the material properties, to generate a realistic rduebbject which not
only looks visually pleasing and similar to its real-world counter part, but afsamhically changes its
visual appearance with the changing light conditions.

1.2 Motivation

Realistic rendering of real world objects is an important area of compuaghgrs. It is used in
a variety of applications, the most prominent of them being movies, gamesramda of historical
artifacts. An efficient mechanism that can solve this problem holds theokdyidital Heritage project,
whose objective is to create realistic models of the statues, artifacts etcbytmyrserving the heritage.

1.3 Challenges

Real world objects are characterized by their shape/geometry as weé# aarthce properties. To
faithfully model a real world object, both the shape and surface propesti¢he object have to be
correctly captured and then rendered through the graphics pipeline.

However, when dealing with objects of large scale, it is difficult to captuesdidetails at a fine
level as the capture devices have limited resolution while working at lardgessd@aapturing the shape
and texture of large structures such as monuments and statues at vemgsodjition is extremely
expensive, both in terms of time as well as storage space. One could ki#Esgdeoblem using a very
high resolution shape models of the parts of the object and fitting them together

Recent improvements in laser range-finder technology, together withtalgsrdeveloped for com-
bining multiple range and color images, allow one to reliably and accurately digigzexternal shape
and surface characteristics of many physical objects. Examples includémagarts, cultural artifacts,
and design models for the manufacturing, movie making, and video game iedustran application
of this technology, a team of 30 faculty, staff, and students from Staidoiversity and the Univer-
sity of Washington spent the 1998-99 academic year in Italy scanning tigses and architecture
of Michelangelo. The prominent among them being David Michelangelo’sestdthey initially con-
structed a model of David containing 4 million polygons at a resolution of 1.0 mmo#dth this model
looks fairly good, their goal of building was to build a full-resolution (0.29 mmYeidhat would very
much behave like the original. The final refined model contains about 2 bitienmgles and 7000 color
images. Clean up, align, merge, and processing this much geometric andatalés a huge and com-
plicated task. Processing data of this scale and rendering in real time isrdigigak. Such efforts



Figure 1.1 0On the left is a photograph of Michelangelo’s David. On the right is a compatalering
made from a geometric model. Notice the absence of shadows in the resdersd

surpassing the limitations of digital acquisition and rendering are not podsibéplicate in case of
many real world objects. Moreover, such methods are highly time takingigadtg cost incurring in
nature.

The above mentioned approach unearths 3 different problems: i) A shagel that can capture the
surface details would be extremely large, ii) Assembling a single model franotla@arge number of
parts is often labor intensive. iii) The shape and texture by itself is oftebleita capture some of the
surface properties of the object such as sub-surface scatterirapsiucency.

While the problems (i) and (i) arise only in case of high-resolution models gélabjects, (iii) arises
because simple color textures do no model the surface material propévibeteling the interaction
of surface material with the light conditions that results in dynamic change iralvappearance is
another important dimension in achieving visual-realism. The images thateddardexture mapping
inherently contain a set of light conditions in which they were taken. Asutrébese are baked into
the texture model that is obtained by stitching these images on the mesh. Henoesuhant model
appears good in some light conditions that match those of the image acquisiicor@nastingly poor
when viewed under different conditions. Moreover, the appearahtiee model resulting from such
simple color models do not account for visual phenomena such as spgesiagub-surface scattering
and shadows etc and exhibit stale lighting conditions.



Figure 1.2 An artificially-colored model of the statue containing 8 million polygons. Noticeatiiéacts
across the surface.

1.4 Our Approach

ExistingIBMR techniques capture the shape information in mesh models and the fineesigfac
tails are relegated to image textures. We seek mainly two significant changes égistingIBMR
techniques. First and foremost, we do away with the requirement of a ésgiution polygonal model
(with large number of triangles) and instead seek a coarse resolutioa stoa®l. We do this mainly to
avoid the physical and technical hurdles posed by the sheer taskuiffiag@ high resolution geometric
model of a real world object. Existing techniques seek as input, high tesolgeometric models with
large number of polygons. This they require so that the final model iseceéind exudes finer details of
the surface. However, generation of high-resolution mesh model esgdétailed acquisition of every
small portion of the object. The limitations and challenges of geometric alignmentlaean up are
aplenty, thus making it a complicated task and such efforts are not possiblditmte in a generic real
world scenario. On the other hand, low resolution models are easier teesizgtusing images taken
from long distance. This strategy, we believe, overcomes the limitation of exi&@WR techniques,
by avoiding the difficulties faced in fine shape modeling of real world obgspecially large structures
and statues

Secondly, instead of stitching simple color information from the images onto thie medel, we
adopt a texture transfer mechanism to synthesize a material model thgtdretes both color and
material properties. A sample reflectance model of the surface materiatisesized in the laboratory
conditions and sampled all across the mesh model. Simple color textures dodethedinteractions of



the surface material with the light conditions and the dynamic change in vispabeance that results
from it. On the contrary, our texture model infuses in the material refleetpnaperties as well and
phenomena such as shadows, specularities, sub-surface scatéering modelled. This enhances the
visual realism of the model so rendered.

Another important observation is that finer details of such large objectasauraly generated by
surface material appearance and it is statistically uniform over the sur@apturing high resolution
images is often easy due to the availability of low cost and high resolution digita¢@as. Images of a
small surface sample facilitate generation of high resolution texture mapsroftiegial texture and can
be used to synthesize texture on the polygonal mesh models of the objerexample based texture
synthesis algorithms.

Guided by the above quoted observations, we present an approadih $ardace details to a coarse
3D model of an object based on two additional information: a set of images oftjeetaand a high
resolution model of the material that the object is made of. The material modei¢hamploy is the
Polynomial Texture Map (PTM), which captures the appearance ofaceunder various illumination
conditions. We use the observed images of the object as constraints tesyattexture samples for
each triangle of the object under any given illumination.

The primary challenge is to synthesize a polynomial model of the textureewieconstraints arise
in the image domain. We use the knowledge of object illumination to map the texturésmutdemage
space and compute the optimal texture patch from the sample. The textufertthes happens as a
complete3D texture model. We also consider the problems of pose, scale, reflectatheenaothness
of surface while carrying out the texture transfer. We synthesize thgréeaf an object at a per-triangle
basis while carrying out operations such as normalization and blendingetodad of discontinuities at
the edges. This essentially establishes a set-up that facilitates realisticmgrafdarge-scale models
by utilizing a coarse geometric model of the object augmented with surfadesdietd are generated by
employing example-based texture synthesis techniques. In this work plarehe possibility of using
the appearance captured in the images as well as prior knowledge afesproperties to add realistic
details to a coars8D mesh model of the object.



Chapter 2

Texture: Its Analysis and Modeling

2.1 What is texture?

Texture is a visual experience that describes properties of wide varfietljject surfaces such as
grass, animal fur, skin, water, sand, wood etc. It refers to the vishalacteristics of an image seg-
ment which human visual perception identifies as belonging to a particular ldtashair, grass and
sponge etc.ltis an important cue in human visual perception. Texture imaggsadially homogeneous
and consist of repeated patterns, often subject to some randomizatiotir ilo¢agon, size, color and
orientation.

(a) Brick (b) Leaves (c) sand (d) Painting
Figure 2.1 Natural Textures

2.1.1 Texture Mapping

In computer graphics, texture usually refers to
a digital image that is pasted/applied on top of a
polygon or geometric object so as to obtain a re-
alistic rendering of it. Texture mapping is a tech-
nique for adding the appearance of surface detail
by wrapping or projecting a digitized texture im-

(a) Bunny Mesh-model (b) Textured Bunny



age on to the surface of an object. Computer rendering of objects withcsuidxture are more inter-
esting and realistic than those with out texture. This can be observed feopathof images shown
beside. Figure 2.2(a) shows a geometric representation of the standwaryl dbnsisting of triangles.
Figure 2.2(b) shows a textured bunny. As can be observed, the t@xhodel is more realistic and
visually pleasing than a geometric mesh model. Hence texture mapping is an impoitena and
extensively employed in computer graphics where reproducing the visalidm of the real world is
the objective. Scanned-photographs and hand drawn pictures amathesources of textures. Hand
drawn pictures though look aesthetic, do no impart the realism that is de$irexture mapping. Digi-
tal images on the other hand are a rich source of visual information ateorgahworld. Hence they are
usually used to generate realistic models. The real world is abundant witfaliypoccurring textures
like water, fire, clouds, vegetation etc.

Texture mapping though being a powerful tool, often suffers from tvablems namely a)Seams
and Tiling b) Mapping Distortion. Digitized images, being the main source of tegfare not always
of desired size and shape required in the mapping process. If the imagfebig enough to cover the
entire object, then the texture is over-stretched and results in distortetlapggarance. Using multiple
copies of the image on the other hand results in tiling and visible seams. Martmre is not always
a natural mapping from the texture space to the topology/geometry of the sbjéace. This results in
distortions as well.

These issues are mainly addressed by texture synthesis, a powdrhigtexto synthesize textures
of arbitrary size and shape as and when desired. Methods have als@imposed to synthesize the
texture directly on the object surface so as to avoid the need for an explititematical mapping
from texture space to that of topography of the object. These synthetfisdsemainly employ texture
analysis and modeling techniques to synthesize large samples of texture dieem input image.Hence
analysis and modeling of a textures is an important aspect of understdexings.

2.1.2 Texture Analysis

In image-processing and computer vision, texture can be defined in termeaictions between
pixels which are spatially distributed in an image.The aim of texture analysis igptareahese in-
teractions and model them by fitting a mathematical frame-work. These textutelsrare the basis
for texture classification/discrimination and synthesis algorithms that aresestgnemployed in com-
puter vision and graphics. However texture analysis algorithms of compisien\have a different
design criteria compared to those of computer graphics. Computer visiondéeroed with learning
accurate models of the texture to be used in texture classification and setjomentsere as computer
graphics is aimed at quick and efficient synthesis of textures for textuppintawithout explicit need
to model them.

Extensive work on texture analysis and discrimination has also been dopartaof a study on
human visual psycho physics research.This involved determining whpdtsof a texture are hu-



mans most perceptible to and the measurements of texture variation that humarssasensitive to,
when discriminating textures. In accordance with this study, textures areilded using five proper-
ties namely 1) coarseness 2) directionality 3) roughness 4) contrasl)dimg-likeness. It has been
established that our human visual perception is sensitive to these aspadisxture. These studies
gave tremendous amounts of input to effectively model textures so asetodeatlgorithms for texture
classification/discrimination and synthesis based on the human visual fi@ncep

2.1.3 Texture Modeling

g oot
(LA he

(a) Regular (b) Near Regular (c) Irregular (d) Near Stochastic (e) Stochastic
Figure 2.2 Spectrum of Natural Textures

Textures have been traditionally classified as a)Stochastic and b) Regskat on their structural
appearance. Regular textures contain primitives at locations goveyreegdatial placement rule. They
have an order and contain noticeable structures which are placeditanmgoverned by a rule.Tiled
floor, fishing net and checker-board patterns that are usually impontetbthes are some of the regular
textures. Opposed to them are the stochastic structures which are ramdastribution of pixels, do
not contain any primitives(texels) of considerable size and obey nompkterule. They are governed
by simple parameters like minimum and maximum intensities and average color. Mbsiholook
like image noise at a coarser resolution. Textures of sand, water, léeck Wave no regular structure
or pattern belong to this category. Most of the textures which are foundtureare partly stochastic
and partly regular and only a few textures lie at the two extremes.

Figure 2.2 shows the spectrum of textures that are abundantly fountlirenhie at the extreme are
the regular and stochastic textures where as the intermediate placed inrbeleeproperties to be
modeled for regular textures are different from those of stochastiatextven the synthesis algorithms
that work well on regular structures do not give results on stochastieréexand vice versa. This is due
to the large and diversified set of texture features and not all of thémg legually relevant to model
any textures. As a result, the success of a synthesis algorithms depetidsfeatures that are being



used. Hence a texture model should be generic and able to successfillyecthe properties of all of
kinds of textures.

Texture model is a mathematical process which can create or describe i@.teXhe main goal
of texture modeling is to describe the texture by estimating a set of parameteseaondary goal
is subsequently use those estimated parameters for texture classificatesz [16] conjectured that
it suffices to extracky, order statistics to discriminate two textures. He provided the mathematical
definition of texture which gave rise to the term julesz ensemble. Given & s&ttisticsh extracted by
human visual perception on a set of observed images of a texture patjatesz ensemble is defined
as the set of all the images that share the same statistics as the observed Amalgsz ensemble
denoted by2(h), has an associated probability distributigid’; ) which is uniform over the images of
the ensemble and has zero probability outside. The set of all texture imagéee divided into a set of
equivalence classes based on this calculated measure of statistics.

The primary approach to model textures has been to develop procedhoals which emulate the
physical generative process of the textures. Textures such ad #rdtr@l fur/skin, sea-shells etc have
been successfully modeled using such methods. These are mainly radifftieron based methods[30]
which model the generative process of the textures. But they are limitediiragiicability to a few
textures and emulating the physical generative process is highly complexadieniot always possible.
But in computer vision coming up with a generic model that can accurately nsoliebe class of
textures each having their own set of unique features is really criticékture classification, segmen-
tation and the goal is to come up with this common frame work to model a wide variegxtofes.
Many models have been proposed to characterize the underlying pespdrtextures. Each model has
its underlying assumptions and objectives. Each of them work well onairetass of textures. These
approaches mainly fall into two categories
a) Filter-based models b) Statistical models.

Filter theory emerged of detail study of the human visual perception of ttud is inspired by the
multi-channel filtering mechanism discovered in neurophysics.This stegpas human vision analyzes
images by decomposing them into a set of bands using a bank of linear filtkls/aerforming some
non-linear operations on top of them. Gabor filter, wavelet coefficierdsraage pyramid representa-
tions have all evolved as part of it. These methods are mainly employed fardestassification and
segmentation.

Statistical methods try to estimate a concise model of a texture in the form of smnafl g&ram-
eters.But the dimensionality of the image space is vast and hence extremelyitdiffimodel unless
some assumptions are made.Locality and stationarity are the usual assumptimkaraity of a
texture asserts that the characteristics of a texture are specifics of itspatial neighborhoods and
stationarity make the statistics of a texture to depend only on relative spatitdpdzrobabilistic mod-
eling techniques of this class have been greatly successful on stodieasties which lack regular
structure and primitives of comparable size. Regressive models, ayresse/e models, fractal models,
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long-correlation random fields and Markov random fields are some ddtttiistical models.However
most of them are capable of modeling higher order information.

Markov Random field methods [5] popularized by Besag(1973) [11¢ argely been employed in
image restoration, region segmentation and modeling textures due to their abiligyttwecthe random
nature of stochastic textures as well as the higher order informationdéragxtures.They consider the
textures as samples drawn from a probability distribution and try to estimatedieelying distribution.

The property oMREF is that a variableX; on a latticeS = {s = (4,7) : 0 < 7,5 < N} can have its
valuex; setto any value , but the probability &f, = x, is conditional upon the values at its neighbor
sitesr € G,. A local conditional probability density functionnCPDF) defined over its neighboring
sitesr € G determines how the variablg; is set. The neighborhood systet= {G,,s € S} and
the LCPDF defined with respect t&' and written

P(Xs=u5|X, =2p,mr€Gs) s€S (2.1)

defines theMIRF .An image is modeled as aMRF by considering each pixel as a site on the lattice and
its grey scale intensity the values of the site. TP DF that is determined from the image defines the
underlying texture model.

Parametric estimation of tHdRF are usually employed for texture classification/segmentation and
non-parametric estimation used for texture synthesis.

The above methods model most of the natural textures but occasionatip famplex textures with
large structures. To model them, these methods are coupled with pyramdlibesge representation
[1] and the texture is analyzed and modeled across multiple resolutions.Thredimgodt each level
is usually done using the information at the already modeled lower levels aratitheal texture is
at the highest resolution. Gaussian, Laplacian pyramids and steerahbteigly are the usual image
representations used.

2.2 3D Textures

Traditional texture mapping is used to give the impression of geometric detaihioda! using an
image. For example, a photograph of a brick wall may be used as a texturenreplanar surface
to avoid modeling the complex surface detail of the brick. However, if the lightinthe synthetic
environment where the texture map is used is different from the lighting theréesap was captured
under, the resulting rendering will appear incorrect and unrealisticrs&\Vget when the texture is
blended with the calculated lighting of a geometric surface then the resultidgnieg will look very
flat and smooth to the viewer. Simple color textures ignore the interactionfatsugeometry with the
light conditions and do not model the dynamic change in visual appeatiaaiceomes with it. Hence
the modifications in appearance due to surface micro-structure are po@igximated by attenuating
the surface intensity.
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Image-based re-lighting methods [8, 3, 22, 6] provide a solution to thidgroldn this approach,
multiple photographs of a surface, person or object are taken undgngdighting conditions and
viewing directions, and a reflectance model characterizing the sug@eaeance is constructed. Using
this model very realistic renderings of the original can be producedrantgrary lighting and viewing
conditions. These methods can be directly leveraged for the purposgatbgsizing light dependent
textures also called reflectance textures. In addition to the simple color ¥h&ueeflectance textures
also contain functional coefficients that control the luminance of a texatdénrdance with the light
position and view settings. As they model an additional dimension of spatiatiearin surface lumi-
nance as a function of viewing and illumination conditions they are usuallyregfeo as3D textures.
BTF(Bi-Directional Texture Functions ) andTF( Uni-Directional Texture Functions ) are the two re-
flectance texture functions usually used to model the surface refleqieoperties of natural materials.

The reflectance properties of a textured opaque material can be gxbguspecified by its Bidi-
rectional Texture FunctiorB(TF) introduced in [6]. ThdBTF measures the ratio of radianfeexiting
a surface at directioy,, 6. ), to the incidence Ir-radianckstriking the surface in a differential solid
angle from directior{¢;, 6;).

dL(¢e, 0, u,v)
BTF, s 0 6 =—"° 2.2
r,g,b(¢z; zv(bea e,u,v) dL(¢i79i,U,U) ( )
Uni-Directional Texture Functions(TF) are less exhaustive but tractable representation of reflectance
properties and confine themselves to the modeling of visual appeararadatiarr to the lighting con-

ditions. Unlike theBTF, they do not consider the view point in surface intensity calculation.

UTFW’b(@-,Q,-,u,v) (23)

Hence they cannot model view point phenomenon such as specularitiethel are easy to capture
and do not require any camera calibration. They require only a movablesligince and a stationary
camera.UTF implicitly models surface normal information. Hence surface normals cantbevesl
and then used to artificially introduce view point phenomena at the time ofriegde

Polynomial Texture Map&{TM) [22] belonging to the class &I TF are a compact representation of
reflectance textures. They model the surface luminance variations agua@iatic polynomial function
at each pixel of the texture.

In order to synthesizeRTM, a set of image$/; } of the object surface are obtained under different
light conditions{ (luy, lvg) }. These images amply capture the variations in the visual appearance of the
surface and are used to build the reflectance model of the surfaceehbeior at each texel is modelled
independently with a reflectance function that encodes its behavior witlege® the changing light
conditions. Hence thBTM is parameterized on spatial locati@n v) and lighting positior{¢, #), with
the number of degrees of freedom beihg
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Figure 2.3PTM vs Conventional Texture Map: The upper portions of thages shows the visual appearance of
aPTM while the bottom half shows the conventional Texture mapteNmw the former appears realistic while
the later suffers from unrealistic lighting and shadows.

The chromaticity of a pixel fairly remains constant under varying light dats and it is only the
luminance that varies. Hence, only the luminaice, v) is modelled using the reflectance model. The
variations in luminancd. at each pixelu, v) is approximated using a Bi-quadratic polynomial given

by

L(“) U3 lu> lv) = ao(uv v)lg +a1 (’LL, U)l?; + ag(u, U)lulv +
a3(u7 U)lu + a4(u7 U)lv + a5(u7 U) (24)
where L is the luminance at pixelu, v) and(l,,l,) the unit vector corresponding to the projection

of light on the texture co-ordinate system. The luminafge, v) so obtained is modulated with the
normalized color valuéR,, (u,v), G, (u,v), By (u,v)) of the pixel to get the actual color.

=
s
S
I
=
RS
<
N
3
s
S

(2.5)

The above representation is callel@GB PTM and it takes advantage of the redundancy in surface
color. At each texe{u, v) of the texture map, the coefficientso, ..., a5)(u, v) of the corresponding bi-
quadratic polynomial along with the normalized color valii&, (u, v), Gy (u,v), Byn(u,v)) are stored.
The luminance coefficientgio, ..., a5)(u, v) of each texel are calculated usi8YD method so as to fit
the corresponding pixel data in the images.

Polynomial Texture Maps consisting of these surface luminance coefficg@proximately model
the visual behavior of the surface under different lighting conditiorsingJthePTM model of an object,
its visual appearance under arbitrary lighting conditions can be estimadetbaal views generated.
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Chapter 3

Texture Synthesis

Texture mapping is an important tool in Computer graphics that is used to alilshré¢o the com-
puter rendered images and objects. Textures are important for a widgadrapplications in Computer
graphics and Image processing. Digitized photos are the main sourcetuoésedue to their ability to
efficiently capture the real world information. Texture mapping though ikhtga simple procedure,
getting the textures to be used for texture mapping is a difficult task. This@becenore often that not,
digitized photos are small to entirely cover a large object and this leads to \@sites and repetitions.
Moreover, real world models which aB® in nature cannot be texture mapped directly as the surface
parameterization of the object varies from the planar parameterization te}fuee images. These are
the two main short comings of texture mapping. Hence researchers in visibgraphics proposed
texture synthesis to address these limitations of texture mapping and it haslfyr&dolved as an alter-
native for texture mapping. Using texture synthesis algorithms, texturebitfaay size and shape can
be synthesized. They can also be employed to synthesis textures diremtly3iy surface or generate
solid textures which ar8D grid of color values. This avoids the usual problems of texture distortion
that are resulted in texturir®D objects with planar textures. Potential applications of texture synthesis
include foreground removal, image de-noising, occlusion fill-in and reatistidering in graphics and
texture compression.

3.1 What is Texture Synthesis ?

Texture synthesis refers to the procedure of algorithmically generatingage of large size from
another image such that the characteristics of the synthesized image matohtti@input sample.
Formally, the goal of texture synthesis is to define a mathematical funétjahat analyzes an input
texture sampld;,, and generates an output imafyg; of user defined size and shape such that it appears
to have been generated by the same underlying stochastic processffigegrgly different from the
input sample in a visual manner.

Figure 3.1 shows a sample synthesis in which a small sample was taken asiapubage texture
generated from it. As can be observed, the two images appear to beloreydartie texture i.e they
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Figure 3.1 Synthesis of a Texture

have the same textural properties, yet visually they are not alike i.e theesystiesult doesn’t appear
to a be obtained by copying the input texture multiple times. In order for a tegyunthesis algorithm
to be successful, maintaining both these properties is very important.

The requirement of synthesis techniques to generate an image with similaatgxtperties again
brings back the question of understanding what attributes and propafraetexture humans are most
sensitive to. This brings the areas of texture analysis, modeling and simthere closer and makes
them strongly connected. Hence texture synthesis along with analysis atealimgohas evolved as an
important area of research in the last three decades in computer séibihas also led to the advent
of various texture synthesis algorithms. While the objective of all of themsergmlly the same, they
differ in their underlying texture models used and the assumptions made.

3.2 Overview of Texture Models For Synthesis

The initial approach to synthesize textures has been to develop methodiseminitate the physical
generative process of the textures they are trying to mimic. Sea shells, akimand fur are some
of the textures successfully modeled using these procedural methodstidRediffusion and cellular
texturing are usually employed to simulate the biological and chemical formatguchftextures. Some
weathering and mineral phenomenon can also be reproduced using simaila®iot such procedural
methods are limited in their applicability to a set of few textures as mentioned in ther edwapter.
Moreover, these methods are governed by parameters that are comgieir fanctioning and have to
be repeatedly tuned to get a desired result. Controlling these parametestthe synthesis procedure
in a desirable manner is a complicated and un-intuitive procedure. Hermedaor a generic texture
model that is controlled by few parameters in a logical manner and capatdsafibing a wide variety
of textures emerged.

The first generic texture model was proposed by Julesz [16] in thesldabie form of a conjecture
that the characteristics unique to a texture can be obtained by extractiktf theder statistics. This
led to the concept of Julesz ensemble. Later on two main texture modeling teebriqerged. One is
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based on Filter theory adopted from research in neuro-physiologyhanother based on probabilistic
modeling. This classification is solely depending on the underlying texturelmselé and the resultant
synthesis procedure.

Filter theory based synthesis technigues evolved out of research ¢h@ghysics to understand
the perception of textures and the features of a texture that humans areansgive to. Research
in neuro-physics has established that human eye in order to underst@éswhbimage decomposes it
into a set of linear filters and performs some non-linear operations on tiyeiwf. This has led to the
modeling of textures as a set of features extracted by applying a barteos ind filter theory based
techniques for texture synthesis emerged. These techniques, giugouaisample, decompose it into
a set of features by applying a bank of filters and collect a set of statiimst them. This essentially
gives a distribution of feature statistics in a global space. Then a rand@® image of user specified
size is modified in a series of steps by coercing it to have the same the satwkfstatistics as the
input sample. The matching of these feature statistics is continued till a cemoerds obtained. In
this process of matching the features of input texture with those of the othipuiutput gets gradually
modified to look texturally similar to the input sample.

These feature based techniques give good results for stochastiaistsuout are not so effective on
the more regular textures. Computationally these algorithms are efficient hlaalgilistic techniques,
but usually suffer from lack of features to model higher order textuiaimation. Moreover, the set of
features to be modeled is predefined and no particular set of featurks well on a wide variety of
textures. Hence the feature set being not generic, these technigkeslgdor a specific set of features
and they cannot be applied to model a texture that has a different ssttafés.

Probabilistic texture synthesis techniques are another class of algorithinmsdtial the textures as
samples drawn from probabilistic distributions. Given an example texturge teehniques model the
interaction between individual pixels in a neighborhood, determine the tmralitional distribution
of the original image and synthesize a new texture by sampling from it. Assegpm feature based
techniques from filter theory, they do not model any set of featuresstBpecific of a particular class of
textures. Hence this modeling of textures is generic and applicable to a widgy\af textures. How-
ever the quality of synthesis solely depends on the ability of the underlyingematical framework to
model the pixel-pixel interactions of desired order. Initially some regressauto-regressive and cor-
relation based methods of this class have been proposed that were moatiahidebi-linear in nature.
Hence their application was limited to a small set of stochastic textures as tHdp'tawdel the higher
order information usually found in regular textures. Later on Markovd®amFields MRF) proposed
by Besag [11] have emerged as the popular model for textures bechtissr ability to capture the
properties of a wide spectrum of textures. MRF) based methods, the input image sample is analyzed
and its local conditional Probability density functiddGPDF ) estimated. Then the output , which is
initially a random noise image, is iteratively updated pixel by pixel with resmetite LCPDF. This
iterative method of synthesizing an image fromMRF is known as stochastic relaxatio8F). Gibbs
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sampler [11] and Iterative conditional moddé€N ) are the usual relaxation algorithms employed for
sampling.

Natural textures which are abundantly found in nature are partly stocteasl partly regular in
nature. MRF ably models these natural textures. HeMIeF based sampling techniques are highly
effective in synthesizing a wide variety of textures. However, as theskifioequire a detailed mod-
eling of pixel wise interactions and due to the overwhelmingly large dimensiorilityage space,
estimating the underlying distribution of a texture is computationally demandingeagduard to infer
unless some assumptions about the textural properties are made. Lochktgtonarity are the char-
acteristics of a texture that are usually assumed and density model uss#ligted to gaussian. The
success of these synthesis techniques depends on the structure ehsitg dstimator employed and
the size of the neighborhood . While stochastic textures can be readilyesyzet with small order
neighborhoods, large neighborhoods need to be modelled as the tedtresre and more structured.
Irrespective of this issuedRFs are widely employed for synthesis because of this ability to model a
large number of textures. The main challenges to these methods are estimatingehging stochas-
tic process and efficiently sampling from the estimated model. The only dravabdlcese techniques
is that they are computationally expensive and with the size of the neighdmbthe synthesis time
increases in an exponential manner.

Since the Julesz conjecture , a flurry of synthesis algorithms have beeloged that synthesize a
texture based on an input sample. However, none of them work equdllpnvell types of textures.
Simple probabilistic techniques and feature based techniques work wet@rastic textures and per-
form poorly on highly regular textures. On the other haWiiRF based techniques perform reasonably
on regular textures as well and patch based techniques where the syiiitlésis is a patch are highly
successful with regular textures. Based on these notions, textureesimtbchniques can be loosely
categorized as either structural or stochastic depending on the kindwexhey work best on. Struc-
tural techniques tend to work well on regular textures with large structinesh are distributed across
the texture space according to placement rule. Stochastic techniquegfficidntly on textures with
only local variations spread across few pixels. In the next section, ildiscuss a few importan2D
texture synthesis algorithms that have changed the coarse of the texitiressy literature and research
and follow it up with another section that extends them to synthesizing texdarasbitrary surfaces.

3.3 2D Texture Synthesis algorithms

While the texture synthesis literature as noted earlier has a flurry of methidsrvarious models
of texture synthesis , we will give an overview only of a few important athors that laid foundation
to our research work. The algorithms that we discuss are example basedss algorithms which
synthesis a larger texture based on an example input.

Popat and picard proposed a probabilistic synthesis technique [24gWwhéhe distribution of an
input sample is summarized using a clustering mechanism. The Probability Mass8oRUPMF)
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governing the texture is obtained by populating the training data consistiiitloé @ausal conditional
neighborhoods in the input sample and fitting a set of gaussian clusters teeiPMF so obtained is
used to synthesize the pixels of the output in a scan-line order. Eacloptkel output texture is given a
value in accordance with tHeMF. For better quality of synthesis, the output texture can be synthesized
in a hierarchical fashion. This method really works well on stochastic tesfiout performs poorly on
regular textures, where the structure is larger compared to that of tHebeeigod. This is expected as

its underlying model is an approximation and as the order of modeling getshtigberror that comes
with the approximation also increases. Moreover, the synthesis, beisglcaan lose its direction if a
few initial pixels generated were too far from those in the input sample.

Heeger and Bergen [13], motivated by research on human visuagi&ne, proposed a technique
for stochastic textures. This method from filter theory captures the textapegies by decomposing
an image into a chosen set of linear filter responses. It starts with an inpye iamal a noise image of
desired size, constructs their Laplacian/steerable pyramids and peffistogram equalization across
various pyramid levels resulting in similar pyramids. The output pyramid is thigpsed to generate
the result texture. The build and collapse operations on pyramids amrmed multiple times to
obtain a convergence. However, this model is restricted to secondsiadistics and works well only
on stochastic textures, doesn’t capture all of the perceptual straatfiratural textures and performs
poorly on inhomogeneous textures, quasi textures and random mogaresex

(b)

(d) O]

Figure 3.2 Synthesis Results of paget and Long-staff’s Algorithm

paget and Long-staff,proposed a synthesis technique based graremetricMRF modeling of
textures [23] in which,they addressed the limitations of clustering basedagpproposed by Popat
and picard. They came up with a multi-scale top down approach, whereetipgefnicy components of
a texture are gradually introduced into a synthetic texture from lower to highguencies. Synthesis
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is performed in a Multi Scale fashion, where stochastic relaxa8®®) (s employed at a low level and
the information used to constrain the synthesis at higher levels of resolutiey.ifitroduced the novel
concept of pixel temperature function which serves the purpose dfdnceealing, avoids growing of
garbage and helps in achieving global characteristics in less numberaifobex. Unlike the earlier
methods, this non-parametric multi-scale synthesis algorithm can successflgt and synthesize all
natural textures ranging from stochastic to structured. However, thi®mte modeling incurs high
computational load and the synthesis is slow.

Figure 3.3Results of De Bonet's Algorithm

De Bonet et al. [7] proposed a multi resolution sampling procedure thatasiant of the pyramid
based approach of Heeger and Bergen[] discussed earlier. Itvegupon the Heeger and Bergen’s
method by adopting a top-down synthesis approach which is akin to the edédoysPaget and Long-
staff [23] and also uses better texture discrimination features,which dteradfink of first and second
gaussian derivatives and Laplacian, across multiple resolutions. Thievement over the Heeger and
Bergen’s model [13] is capable of capturing the characteristics of agubetf textures compared to the
former method. Moreover, texture structure is also better handled thareigeiHand Bergen’s method
by further restricting the sampling procedure to pixels that fall within a tluleistetermined by texture
features. Although De Bonet's method performed better than Heegereméms method for a wider
variety of textures, the tuning of the threshold parameters is not intuitivéeh@nbnstraints being local,
the technique cannot model complex visual textures and higher ordeticsat&mple addition of more
complex features only over-fits the model and results in tiling.

Zhu et al. [36] combined filter theory , maximum entropy principle &&F based modeling to
produce a new system callé6RAME model. It draws powerful features from filter theory , uses
maximum entropy principle to find the probability distribution of the texture and Gdlebs sampling to
synthesize a new texture. Given a set of filters, at each stage , etldnois applied separately on both
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the input and to be modified output image and the histograms of the filter respom®pared. The filter
responses are used as the marginal estimates of the underlying distrilmatithedilter whose response
varies the largest from input to the output is selected and used to re-edfiragi@bability distribution
of the texture. The resultant distribution is used to modify the output usingsGimpler. This process
is continued till a set of selected from the bank of filters models the input eesuificiently. Unlike
the previous statistical techniques, this model has the ability to capture intesabBtween pixels that
are farther and has the theoretical framework to work well on a widetyasfdextures. However, the
selection of filters is a computationally intensive process , the synthesishkmvryand the choice of
filters cannot always be properly defined. Later, Wu et al. [34] pseg a slightly faster algorithm that
avoids explicit estimation of parameters and synthesis textures directly feofiltéin responses using a
Markov Chain Monte CarloMICMC ) algorithm. This sampling algorithm is an extension of single site
Gibbs sampler, converges fast and produces better results.

Portilla and Simoncelli [25] proposed a universal statistical model for texdynthesis that uses joint
statistics of coefficients in a multi-scale complex wavelet representation. A simdanique to that
of Heeger and Bergen [13], but where Heeger and Bergen uptieetbmplete filter response using
histogram equalization, Simoncelli and Portilla updated each point in the pyiahfiiter responses
with respect to the correlations using a method similar to projection onto coreXPOCS). They
did this by finding an orthogonal projection from the filter response of yimthetic texture to that
of the original. After the projection of all filter responses, the waveleapyd is collapsed, further
projection performed, and then the pyramid reconstructed. This iteratidimaes until a convergence
is obtained. It is an improvement over Heeger and Bergen’s method in talatdys does synthesis
by finding an orthogonal projection from output texture to the input anegdeand Bergen’s method
is limited to a statistical modeling of order two while the number of constraints herenany and
complicated. Hence this gives the present model a capability to model langgenwf natural textures.
The heuristic strategy to select the desired features is also akin to they gqg@wach observed in the
maximum entropy approach by Zhu et al. [36]. The drawbacks of this rdeih® that the choice of
parameters governing the texture model cannot be guaranteed to be andjit performs poorly on
textures containing large structures.

The above mentioned works more or less established the theoretical pl&tiotexture modeling
and synthesis. The synthesis techniques that followed later dwelled mepeed, real-time rendering,
efficiency and robustness with the research taking a shift in orientatondomputer vision to graphics.
However these new generation techniques all have their foundationsagéhproven filter theory and
MRF based formulations.

Efros and Leung [10] proposed a non-parametric sampling schemevthided explicit parameter-
ization of the texture model and instead synthesized the input texture by engplboypearest neighbor
search mechanism which is an effective approximation. It models the teagumeMRF and grows
output texture, pixel by pixel, outwards from an initial seed. Like in Papatrk [24], each pixel is
synthesized conditional upon the distribution of pixels in the neighborhamidsthe problem of es-
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timation of parameters and instead substitutes it with a nearest neighboaelpprt each step, the
neighborhood around a pixel is taken, queried for similar neighboshimathe input image and the cen-
ter pixel of the most similar neighborhood is copied into the current pixel. dlgisrithm can also be
used for constrained synthesis where in the existing structure is usedte filhknown portion of the
texture. However, the process is computationally intensive due to thestkieasearch that is employed
to synthesize each pixel and has the tendency to occasionally slip into waonhgf the search space
and start growing garbage or get locked on to some place in the input imdggeaat growing multiple
copies of the same.
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Figure 3.4 Results of Efros and Leung’s Algorithm

Later, Wei and levoy [32] improved upon Efros and Leung’s algorithymabcelerating the search
procedure by adopting a Tree structure vector Quantizali@V(Q) based data structure from data
compression to quicken the neighborhood search. This search teehisigimilar to the clustering
mechanism adopted by Popat et al. [24] They also stuck to the rastevrstmarof synthesis of Popat as
it results in better search results. As you can see in figure 3.5 this algorétforps as well as Efros
and Leung’s algorithm and importantly runs two orders of magnitude fasierahy of the previous
techniques. The two advantages of this method are the quality of the texhemtge and the speed
of the synthesis procedure. This multi level synthesis algorithm is capébigthesizing a wide va-
riety of textures ,but suffers from the garbage growing problem alsn Bemost sequential synthesis
algorithms.
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Figure 3.5Results of Wei and Levoy’s TSVQ Algorithm

The sequential non parametric algorithm of Wei and Levoy [32] and th&fros and Leung [10]
useLs norm for neighborhood comparison which is not a suitable measure oféesituilarity as few
erratic boundary pixels in a neighborhood can impair the similarity score. réhidts is growing of
large regions and undesirable smoothing. These deficiencies weressedrby Harrison et al. [12]
who proposed a non-hierarchical procedure for synthesis that@dmon-sequential prioritized order
of synthesis by using an entropy measure suggestive of interactiondretvegghboring pixels. They
avoidedL, norm and instead used Manhattan distance as a measure of neighbsirhdardty. This
improved the results and preserved the structural information in the sigithes

While all the above algorithms are generic in nature and have varied aplifjcabross texture
spectrum, Ashikhmin et al. [2] proposed a technique that is well suited $peaific class of textures
called natural textures. Flower fields, pebble, grass patches , badteewome of the textures on
which this method works really well. This is inspired from the WL algorithm [32Mdei and Levoy
for fast synthesis. The WL algorithm, though works well on a wide varié¢tiextures, is not suited
to the class of natural textures which contain arrangements of small objébtérnegular structure
but familiar shapes and sizes. Moreover fhienorm used in the WL algorithm tends to blur out the
textures and also results in uncontrolled region growth. Ashikhmin et alreased these issues by
modifying the search procedure and limiting the search space at any steymallaset of candidates
that are appropriately forward-shifted with respect to the pixels of thetiappeady used in synthesis.
Unlike WL, it neither employ§ SVQ nor does exhaustive search in the input image, the neighborhood
size required to capture the texture characteristics is also less and saguingulti-level synthesis. As
a result it avoids the complexity of search that is inherent in WL algorithm.s@lzee the two main
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improvements over WL algorithm, though its applicability is limited to a small class of &xturhe

utility of the algorithm can also be enhanced by intuitively controlling the outgyirbviding a target
image that outlines the general characteristics of the result. The algoritleasenably fast, efficient
and generates good results for the class of natural textures as awifigate 3.6.

Figure 3.6 Results of Ashikhmin’s Algorithm

Hertzmann et al. [15] modelled texture synthesis problem as an applicationage analogies
framework. Their method combines Wei and LevoySVQ based algorithm [32] and Ashikhmin’s
algorithm [2] to address the issues inherent in both the methods. Wei atog’s@lgorithm suffers
from smoothing and growth of unnecessary large areas due tbstm®rm employed for estimating
patch similarity, where as Ashikhmin’s method suffers from discontinuitiessadocally grown small
regions. Hertzmann et al’'s image analogies driven texture synthesiglatg@mploys both the exhaus-
tive search of Wei and Levoy’s algorithm and coherent neighbatlsearch of Ashikhmin’s method and
synthesize a pixel based on the error measure produced by eithemoétheds. Hence by controlling
the choice carefully at each step, it avoids the artifacts produced by theargnt methods. The results
produced are much better and synthesis can be performed across ma#tiptefer better results. But it
is computationally intensive and uses only low-level features not hangetbe potential of the image
analogies framework.

The texture synthesis algorithms that have been discussed so far mtihesoutput one pixel at
a time. Hence they are called pixel-based synthesis techniques. Thesigueshare well suited for
stochastic textures where the order of the structural information is lodat@mfined to a few pixels.
However, when the input texture is complex and consists of arrangerhéigger primitives, pixel-
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based synthesis results in artifacts such as smoothing, unnecessairyggob regions with deformed
primitives. Moreover, for most complex textures very few pixels actuallyehachoice of values that
can be assigned to them and are determined by what has been synthedaed his means that a lot of
time is wasted on pixels which are already determined by the higher ordetusédumonstraints. These
are the two main limitations of pixel-based techniques. The key to solve theskempis identifying
the relevant unit of synthesis called texel, which is a textural element arbesjzing the output texel
by texel rather than pixel by pixel. Texels are usually small patches ofarésthat capture enough local
information and minimal global information i.e the arrangement of these texelsceHbe techniques
which adopt this strategy of synthesizing a texture in a series of patahealbed patch based synthesis
techniques. Determining what are the patches and how they are put togyettige two main challenges
to this class of techniques.

Xu et al. [35] proposed a patch-based synthesis technique called Giasaic, where in the input
texture is tiled and random blocks chosen from the resulting texture adidtrésuted across to produce
a visually realistic synthetic texture. Chaos mosaic not only preservedéatates of the input texture
which is essential for visual similarity, but also provides a visually stochasti@ven global distribution
of the features. Unlike the conventional statistical based methods, it 'daestyze and model the
input sample, and no constraint is imposed on the result texture to adhepedbadbility distribution.
It is fast and memory efficient and the resulting texture can be succingfgsented in a compact
representation known as visual texture. This gives the ability to rendeiextere in a procedural
manner.The main advantages of this algorithm are its ability to synthesize langeseof a texture
quickly in a memory efficient manner and tailor-madeness to be renderedrotedoral fashion. It
has advantage over traditional statistical methods in that it avoids systeraylatben the texture is
too big to fit in the system memory or when there isn’'t enough storage spade fChaos Mosaic
works well for all stochastic textures and artifacts appear in casesuiofusted textures. The problem of
artifacts and seams are addressed to an extent by employing croddtedgg along the boundaries of
the displaced random blocks. However, the mismatch of patches alonguhdasies is still a problem
when it comes to synthesizing structured textures.

Later Liang et al. [19] proposed a patch-based sampling techniqueadbegssed the problems of
seams and artifacts in Chaos mosaic [35]. Liang et al. improved upon of@szEc by incorporating
the notions oMRF based texture model and employing non-parametric estimation of local comdlition
MRF density to sample the patches of the output texture. Hence in every stew, pateh which
best agrees with the output synthesized is introduced. This avoids the niisofdtatures across
patch boundaries that is inherent in chaos mosaic. The crux of this algaritmlves searching for
meaningful input texture patches to be pasted in the output. Kd-tree, Qeadpyramid and PCA
analysis are usually employed to speed the search process. Alph@bglerapplied across neighboring
patches and this avoids seams and artifacts. As a result, this method wdirks1vadl varieties of
textures ranging from stochastic to structured. It also works well orralatextures where in Efros
and Leung’s [10] and Wei and Levoy’s [32] methods fail. This worloadsaws comparisons with the
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work on Texture quilting by Efros and Freeman [9]. While Liang et al. @tershe issues of speed and
constrained texture synthesis, texture quilting dwells upon the concepttofadransfer.

Figure 3.7 Results of Liang et al.’s Patch based sampling Algorithm

Efros and Freeman developed image quiting [9], a novel patch bastwsigtechnique, which is a
concurrent work to Liang et al's approach [19] and very much similar tdke Liang et al's method, the
synthesis proceeds in a series of steps in each of which a patch is sélenidtle input and pasted in
the output overlapping with the already pasted neighboring patches. dtapproaches however differ
in the way they handle overlap regions. Where Liang et al's method empayisefring i.e weighed
alpha-blending, image quilting uses minimal error boundary cut to determinaradary along which
the difference in pixels is minimum. This algorithm can also be extended so asftonpdexture
transfer by imposing additional constraints to make the quilting patches agftea worrespondence
targetimage. This algorithm performs as well as Liang et al’s method. Henitesuffers from excessive
repetitions and distorted boundaries.

3.4 Surface Texture Synthesis

Computer Graphics applications often use surface textures to give anrilloisime detail with out
detailed geometric modeling. Algorithms exist for synthesizing a wide varietyxtdires on the2D
plane from example texture. However these methods cannot be extertdgrtilite arbitrary topological
surfaces due to lack of continuous surface parameterization. One sdkitm paste such synthesized
planar textures on to th&D objects. But this results in distortions or discontinuities. An effective ap-
proach to tackle this problem is to synthesize the texture directly over thaceurihis works really
well as many natural and man-made surface patterns are created bygtioterdbetween texture ele-
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Figure 3.8 Results of Efros and Freeman’s Image Quilting Algorithm

ments and surface geometry. Such algorithms which synthesize the texeotydiver a polygonal
mesh placed over the surface are called surface synthesis algorithms.

Praun et al. [26]proposed a technique in which the candidate textureesaitt the input sample
image are identified and repeatedly pasted on the mesh model of a surfihiteisifull covered. The
collection of these overlapped texture patches is called lapped textuisan&thod has been inspired
from chaos-mosaic [35] proposed for quick synthesis of a planarreeftom example. Praun et al’s
algorithm identifies small portions on the mesh called surface patches eadmiabf can be locally
mapped on to theD plane easily and repeatedly pastes texture patches across all of thenmtidghes
completely covered. To prevent seams and texture distortion, orientati@tale of the texture patches
are aligned with those of the surface patches and alpha-blending appi@ss averlapping patches.
The scale and orientation of each of the surface patches is derivedstndace tangential vector field,
which is partially obtained through user intervention and then interpolatedddHasame across all
the vertices on the mesh during the pre-processing stage. In each pattdan, an un-textured point
on the mesh is identified and a surface patch homeomorphic to a disc growndato This surface
patch is parameterized into the texture space by aligning the axis of the teatahesith the tangential
vector field of the surface patch. This parametric-optimization is solved @ssgarse linear system
and the resulting patch-mapping saved. Once the patch placements araeamhntipel texture model
can be rendered in real-time using compositing operations, either into a takageluring pre-process
or directly rendering the surface patches during run time. This methodntiiessizing texture o8D
meshes is very practical allowing real-time texturing3@f objects. On the flip side, visible seams are
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produced when the input sample contains low frequency componentismaviaen viewed up-close
in the case of structured textures. Some visual artifacts also appear gaertéield sampling of the
tangential vectors.

(@) (b)

() (d)

Figure 3.9 Results of Lapped Textures

Turk et al. [31] borrowed ideas from the sample based synthesis tedsémnployed on rectangular
pixel lattices and proposed a point based sampling technique to synthegime t&n arbitrary polyg-
onal surfaces. It employs hierarchal mesh-model representatioih vghéimilar to the gaussian image
pyramid representation performs synthesis from lower to higher resoligvefs of it. Like lapped
textures [26], it also requires a user-specified surface tangentitdrviield at a sparse set of points
given which it calculates the values at other points on the mesh. It perfymtsesis employing four
operations namely 1)interpolation 2) Low-pass filtering 3)Up-sampling 4yridsampling on the mesh
model and these are very much similar to their corresponding versions in-pyagids in2D. The
points on the mesh are order in accordance with the flow of the vector fieldmaway that visiting
them in this order will sweep across the surface from one end to the dilaeh point is colored by
examining the colors values of the neighborhood points that have alreadytéxtured and identifying
a similar neighborhood in the input sample.This assignment of color is donegneadhal fashion from
sparser to dense mesh-levels. This point by point texturing scheme isishém the work of Wei and
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levoy [32] on non-parametric sampling technique 2@r texture synthesis. The synthesized texture is
transferred on to a texture atlas using a technique proposed by Sai¢2&t This technique performs
better than lapped textures [26] over a wide variety of textures oveacmsfof arbitrary topologies.

Figure 3.10Results of Wei and Levoy’s Surface Synthesis Algorithm

Concurrently with Turk et al., Wei and Levoy proposed an extensioh f83heir TSVQ based
2D synthesis technique [32] to address the challenges of synthesizingetexturarbitrary manifold
surfaces. They introduced two modifications to their exis@iigalgorithm. First and foremost, the
vertices are processed in a random order instead of the scan-linenfashployed for rectangular
domains. Second, the rectangular parameterization of the output domaplasea: with a surface
tangential vector field, coupled with a scale factor derived from medieweensity. Like the earlier
techniques, the surface tangential vector field is obtained with user hghadually evaluated using a
relaxation procedure. At each vertex, a local parameterization is obthiniattening the neighboring
triangles and then sampling a rectangular neighborhood from it. This rarighdd is searched for

28



matches in the input sample and the color of the vertex obtained. For effsgtivhesis, the algorithm
builds a mesh hierarchy and carries a two-pass synthesis at eachrdevdbiver to higher resolutions.
Though this algorithm was developed in concurrence with Turk et alstEhnique and the results of
these techniques being similar, there are differences in the methodologiddss dlgorithm creates a
smooth vector field where as Wei and Levoy’s technique employs symmetri@aadom vector fields.
Turk’s algorithm visits the vertices of the mesh in an sweeping order creapagent-child relationship,
where as Wei and Levoy’s technique visits the vertices randomly. Thatsdsa difference in the ways
neighborhoods are created in both the methods. Turk’s algorithm udasesmatching where as the
current algorithm employs flattening and resampling.

3.4.1 Short-comings of Simple Color Textures And Need For B&tr Models

All the above discussed example based synthesis algorithms synthesize®itopiaeformation on
the surface of an object. These values are static and do not imbibe mateniadation of the object.
Hence they do not model the interactions between material surface anddigtitions that results in
sub-surface scattering phenomena such as shadows, inter-refiestirocclusions and specularities,
which affect the visual appearance of an object. Moreover, the intageare texture mapped imbibe
the lighting conditions under which they have been captured. Hence theetentdel so obtained
looks good in lighting conditions that match those of the input image, but venywloen viewed under
different lighting conditions. Due to these limitations, simple color texturing anthegis falls short of
accomplishing the task of realistic modeling and rendering real world objects.

3.5 Synthesis algorithms for Reflectance Textures

The synthesis of reflectance textures from examples is conceptuallyediffsom the2D texture
synthesis. A collection of images of a particular surface acquired uratéus lighting conditions
cannot be treated as an independent collectidiDaextures. There are strong correlations between the
sampled images, as all of them are instances of a unique underlying plsysfeae. These correlations
have to be maintained while synthesizing a novel reflectance texture.

Liu et al. [20] presented a novel approach to synthetically generatestiidinal texture functions
(BTFs) of real-world surfaces in which they used a texture’s height-&ikong with an albedo map as
an intermediate representation ®FF. This representation is reconstructed from the texture examples,
using shape-from-shading techniques. Then, a synthesis schemédiésl alqectly to the height-field,
using non-parametric sampling , resulting in a representation of a novetddsxim which a newBTF
is derived.

Leung and Malik [17] suggest using ti3® texton map as a basis for generating a n@RItex-
ture. This approach is similar in spirit to [20] where a texton map is used asermigdiate compact
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representation. The texturd®TF can be derived from this representation similarly to the height-field
map.

Buoyed by the above works, Tong et al. [29] presented a method thsitlus texton map represen-
tation as a basis f@TF synthesis directly on @D object. This algorithm takes as inpuBd F sample
and a polygonal mesh and synthesiBdd- on the mesh such that the resultant model is perceptually
similar to the input sample and exhibits a consistent meso structure acrossvihanddight spaces.
The inputBTF sample is first analyzed and a vocabulanBbftextons generated. This vocabulary is
later used to generate a texton mgpof the input sample and then a texton spaaggenerated. The
texton mapt;, is treated as a texture sample and a surface textonigpagenerated by incrementally
assigning each mesh vertexa texton labet and a texture co-ordinate, b). The color of the surface
textons is evaluated at run time and rendered. This work is very much similarioeTal. [31] and
Wei-Levoy's [33] and can be considered as their extension for tafiee texture maps.

Figure 3.11Sponge, Popcorn Kernels and Peas textured Teapots illuminated inmlifighe conditions

Later, Hel-Or et al. [14] proposed an approach for synthesizingridotyal Texture mapsRTM)
on arbitrary manifold surfaces. This is an extension of the block-bagaggesynthesis methods from
working on images containing color values, to images of reflectance fuscfidrey viewed th&TM
as a texture of functions rather than a texture of values and regarded itealization of a Markovian
process in the spatial domain. The stochastic process of synthesisaspexifover functions rather
than over values. This same approach allows any texture synthesis medhadrtipares pixel colors
to be extended in the analogous manner to support the synthesis of reftefttaction textures.
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Chapter 4

Realistic Rendering of Real World Objects

Realistic rendering of real world objects is an important area of compudghgs. It is used in
a variety of applications, the most prominent of them being movies, gamesramda of historical
artifacts. Real world objects are characterized by their shape/georsetmsilaas the surface properties.
To faithfully model a real world object, both the shape and surface piiepef the object have to be
correctly captured and then rendered through the graphics pipelitieis lohapter, we will outline our
approach for realistic rendering of large scale objects.

Figure 4.1 0On the left is a photograph of Michelangelo’s David. On the right is a compatalering
made from a geometric model
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When dealing with objects of large scale, it is difficult to capture these detailsiae level as the
capture devices have limited resolution while working at large scales. Qiié kandle this problem
using a very high resolution shape models of the parts of the object and flting together [18].
However, this approach has a number of shortcomings: i) A shape madealah capture the surface
details would be extremely large, ii) Assembling a single model from that of a laugnber of parts is
often labor intensive.

On the other hand, capturing high resolution images is often easy due tcailebdity of low cost
and high resolution digital cameras. Hence Image based modeling technitpiesfacilitate rendering
of large scale models of an object by augmenting the surface texture withveetishape information,
evolved as an effective manner to accomplish this otherwise complex task.

4.1 Image Based Modeling of 3D Objects

Images are the most abundant source of visual and structural infomuwidtibe real world. They
are capable of capturing high level object properties effectively. celeimage based modeling tech-
niques [28, 27, 4] have emerged as an effective approach fortreaéadering of3D objects, where
multi-view geometry is utilized in directly synthesizing an unseen view of an objett nearby views
without explicit surface reconstruction. Multi view modeling methods on therdtland use a set of
images of the object, register them and recover the 3D locations of pointendasd mesh model is
derived from the point cloud, which is then texture mapped using the imagesd¢ha used to derive
the shape. Both approaches combine the pictorial details obtained frondividiral photographs cap-
tured, to the shape information of the object inferred from the collectioriléatie first approach often
leads to realistic rendering of unseen views, it lacks the flexibility@fmodel based visualization.

We notice that the traditional object models capture the shape information irolygopal mesh
representation, while the reflectance and surface properties aratezley the texture. Hence the
method of pasting surface texture information on the coarse mesh modelafijent is an effective
procedure to accomplish this task of representation and renderingl efodd objects. Many texture
synthesis algorithms [24, 13, 7, 25, 10, 32, 2, 19, 9] have been gmaklo generate large samples of
texture from scanned photographs. These methods are effectiveal@dthe texture mapping process
more efficient and robust by facilitating the generation of textures of @myired size. These have been
later extended to synthesize texture directly @@models and arbitrary manifold surfaces [26, 31, 33].
However, unlike traditional texture synthesis, where the goal is to genaraew texture patch that
retains simple color distribution of the original, the objective here is to captarsutiace properties far
more faithfully, including the effects of small scale height variations on thiase and generate a new
texture patch that retains the characteristics of the surface material.
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4.2 Reflectance Properties of Natural Materials
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Figure 4.2 Images of a rough plaster surface obtained under varying light conglitdote the change
in surface appearance in each of (a), (b), (c) and (d)

The visual characteristics of natural surfaces arise from the variafitwo properties across its
surface: i) the variation in normals, and ii) reflectance. These causetefuch as shadows, self
occlusions, inter-reflections, and specularity, which affect the vigppkarance of the surface. As a
result, a surface looks considerably different under different ligh&ind viewing conditions. These
effects are observed in all natural surface reliefs that are abtimdeeal world.

Simple color texture models ignore these two properties of the natural textdessce they can-
not model these variations in visual appearance caused under vilymigation/viewing conditions.
Moreover, the images that are texture mapped on to the mesh models inheosrtdin ¢he lighting
conditions under which they have been captured. Hence the texture swdbtained looks good in
lighting conditions similar to that of the available images, but very poor whenedamder different
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lighting conditions. Hence simple color texture mapping of mesh models is insoftfenel falls short
of accomplishing the task of realistically modeling and rendering real wojketts

The characterization of surface reflectance properties is essentdlieva realistic rendering. The
reflectance properties of a surface affect its appearance undefitlence of changing light and view-
ing conditions. This led to the study of relation between surface appeaeamtillumination/viewing
conditions of natural material surfaces. The concept of illumination digrgnexture, anologous to the
concept of3D texture, was introduced. This led to further investigation into the problerepresen-
tation, recognition, synthesis of natural materials and their rendering ambig¢rary viewing/lighting
conditions [17]. Image based re-lighting techniques [22, 6, 3] hava bheed to model the surface
reflectance properties of natural materials. In these techniques, multiplesrofghe object/surface
are captured under different lighting/view point conditions and then thati@ns in visual appearance
modelled as Reflectance Texture Maps as discussed in chapter 3.

4.3 Synthesis of Reflectance Texture Maps

Techniques to synthesiZD textures on arbitrary shaped objects [26, 31, 21, 33] have also been
extended to synthesis reflectance texture maps on the same [29]. In ttiesigues, the synthesis
starts from an arbitrary patch and then it grows on till all the mesh-modeVvered. The only constraint
imposed on the synthesis process is that a patch to be synthesized aitinabe @&lready synthesized
neighboring patches. This constraint makes sure that no visible seawar appthe textured model.
Using this approach&®TMs have been efficiently synthesized 08&rmodels and rendered [14].

4.3.1 Relevance to Realistic Rendering

The above mentione8D texturing algorithms when coupled with image based modeling techniques
provide an effective platform for realistic modeling of real world objedctorial information of an
object can be obtained in a small set of images and later used to constrairotieelye of texture
synthesis, which is otherwise unconstrained (except for inter-patesistency), on its mesh model.
This hybrid approach provides an effective way to synthesize the &ertodel of an object based on
its real world appearance. We use the above notions of coupling imagd baxieling methods and
texture synthesis techniques to pose the task of realistic modeling andingnafe8D objects as image
constrained texture synthesis problem.
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4.4 Our Work: Image Based PTM synthesis

We want to address this problem of constraid&ltexturing of mesh-models to make them more
realistic and near to their real world counter-parts. Our goal is to captareall set of images of the
object under known lighting conditions, and use these to systematically sizelereflectance model
of the object from a sampleTM of the object’s material. These sparse set of images decide the sub-
samples of the input sampleT’ M;,, that are stitched across the mesh model so that the resultant model
would behave more similar to its real world counterpart.

This work is inspired from two works, one being that of Efros et al. {#]dffective Texture transfer
and the other that of Yacov Hel-Or et al. [14] for synthesiZz#igV models of3D objects. We present a
method to effectively synthesize the reflectance model of a real worldtdbjen a samplé>TM of its
material, using a small set of images captured of the object under diffienentn lighting conditions
as constraints, so as to make the texture model appear realistic and biahikarets the original. The
PTM model so generated can be efficiently rendered under arbitrary lightimgjtmms to generate
novel views of the object.

4.4.1 Constrained PTM synthesis

Given aPTM sample and a triangular mesh model of an object, small patches extracteth&om
sample can be seamlessly stitched across the mesh modePard anodel of the object synthesized.
ThePTM model so synthesized behaves like a real world object in terms of its vispaheance under
varying light conditions. These patch based texture synthesis algorithines) eoupled with image
based modelling techniques, provide an effective approach to syrdghiibe2D texture models of real
world objects. A set of images of the object captured under varying ligtht/éewpoints decide the set
of texture patches that are stitched across the mesh model. Hence therdgteso obtained not only
looks realistic but also similar to its real world counter part.

Our work essentially builds on the work by Efros et al. [9] for Texturangfer and the work by
Yacov Hel-or et al. [14] foPTM modelling of 3D objects. We suggest an approach to generate the
reflectance texture model of a real world object frolTeM sample of the object material and a set of
images of the object. We extended the patch b&Ed synthesis algorithm to also include the image
based information in influencing the selection of the texture patches so as ¢otheatesultant texture
model more similar to the object. THRIM model so obtained can be used to generate novel views of
an object.

In the next section, we detail our method TM modeling of planar rectangular surfaces and
discuss the algorithm f@D seperately in the next chapter as it differs considerably from the algorith
for planar objects and also due to the increasing number of challenged ppshe task.
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Image Based Constraints
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Figure 4.3 Blocks from Input sample are checked for Image Based and Overgmonstraints and
the best ones pasted into the Output

4.4.2 Image constrained PTM synthesis for Planar RectanguisSurfaces

In this section, we explain in detail our hybrid approach, that couplesdtehMBase®D texture
synthesis algorithm [19, 9] and tH&TM synthesis algorithm by Yacov Hel-or et.al [14], to synthesize
the texture model of a planar rectangular surface from a saRifl¢ of the surface material and a set
of images of the surface taken under various known lighting conditions.

The synthesis algorithm takes as input, a sample textira/;,,, a sparse set of imag¢$, } of the
object as constraints and generates the reflectance midel,,; of the same. It uses patches taken
from the input sample”T M;,, as the building blocks to synthesize the output textBieM,,;. At
each stek, a candidate blocBy, is taken fromPT M;,, and stitched intd?T'M,,,; with an overlapiV/,
between neighboring blocks and then blended in the overlapping reglmteXture map so obtained
can be used to generate novel views of the object under arbitrary lighaimdjtions.

The selection strategy of candidate bldgk, that is stitched in to the output textuRd" M,,,,; at every
stepk, is the core of our algorithm. The output textuPd M,,; is traversed in a raster scan fashion
from left to right starting at the lower left corner and moving upwardsedth stef:, a candidate block
By, is selected fromPT M;,, and pasted at the next positién, y). The selection of the patcBy is
governed by two constraints namely

1 Image based constraints

2 Overlapping constraints

36



4.4.2.1 Image Based Constraints

The set of imageg/,,} which are captured under light positiofs,,, l,,) decide the candidate
patches which together make up the output texture. At eachkstbp texture blockB, from PT M;,,
which is selected to go into the next position y) in PT'M,,, should agree with the set of image
blocks{b(I,,x,y)} that are located at positiqa, ) in image sef I,,}. Let thePTM evaluation func-
tion be denoted by (P, (1., 1)), whereP is aPTM patch and!,, [,)) the projection of unit light vector
onto the texture co-ordinate system. This function returns as output the iodgieed by evaluat-
ing the input sample with the given light vector. The pafgh when evaluated with the light vector
(lun, lun) corresponding to the imagde, should result in an image pat¢li By, (lun, L)) that matches
the blockb(7,,, z,y). Hence each imagg, of the set{I,, } imposes constraint on the selection of the
texture patche§ By} that together build the outpirT M,,,;. These together constitute the Image based
constraints involved in the synthesis. At each stephe texture blockd B} from the input sample
PT M, are ranked according to a scoring meastirghich is given as follows:

N
S(B) = D (B, (lunslon)) = b(In, 2, 9)|2 (4.1)
n=1

The blocks from the input sampléT M;,, are ranked according to the scoring mechanisand a
top few of them selected as candidate blocks for the next stage of selection

4.4.2.2 Overlapping Constraints

At every stepk of the synthesis procedure, the pat¢hthat is selected to go into the output texture
PT M,,; should also agree with the patchd3, B1, ...., Bx_1 } that have so far been pasted in the pre-
vious steps. The candidate blogl which is currently being pasted should agree with its neighboring
patches in the overlapping region. This constitutes the overlapping consind is a must for seamless
stitching of input blocks.

The set of candidates which are selected based on image based ctsstiste1) are again ranked
based on their overlapping measuf2.norm is calculated over the difference of luminance coefficients
in the overlapping region betwedtl"M,,; that has been synthesized so far and dadfithe candidate
blocks picked by stefd). The norm is calculated with the coefficients of bétfi' A/, and blockB in
the overlapping region transformed to a orthogonal space so that thecgistatween functions is same
as that between function coefficients. The bldg¢kwith minimal error measure is introduced into the
OUtpUt PT' M e
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4.4.2.3

The complete algorithm is outlined as follows:

Algorithm 1: The Constrained PTM Synthesis Algorithm
1 TraversePT M,,; in a raster-scan order block by block starting at lower-left corner.;
2 At every new positior{x, y), select a small setof candidate blocks fron®7T M,
using the image based constraints.;
3 Pick the best block3, among the set which best fits the overlapping constraint.;
4 Paste the bloclBy, at the location(x, y) in the output texturé®T M,,,, and blend it in
the overlapping region.;

Alpha-blending is usually employed to blend the texture coefficients in théapgéng regions. The
texture coefficients are transformed to an orthogonal space beforditgeis employed.After blending
the coefficients are transformed back by applying an inverse trandiorma

The above approach generate®TM model of the given surface that behaves not only realistic but
similar to the planar object being modeled and it can be used to generatesisovebf the object.

In Figure 4.4, we showed the results of @ Synthesis algorithm on three different surfaces. Sam-
ple PTMs of variants of plaster surface were created from their high resolutiageisndamages 1(a),2(a)
and 3(a) show the high resolution images used in the creation of theirgondiag sampl®TMs. For
each object, a sparse set of its low resolution images and s@&plewere used to synthesize its tex-
ture model and the model shown at the coarser resolution at which the wlajecaptured, as well as
at a higher resolution. The material information present at high resolufioms&our synthesis proce-
dure.Images 1(b), 2(b) and 3(b) are the objects’ views captured aekmiution and 1(c), 2(c) and 3(c)
represent the corresponding views of their texture models generategdaws method. Notice the vi-
sual likeness between the object views and the generated views of the texidels. Images 1(d),2(d)
ad 3(d) are the higher resolution views of 1(c), 2(c) and 3(c) re¢sadcand 1(e), 2(e) and 3(e) were
obtained by scaling images 1(b), 2(b) and 3(b) respectively. The thighelution views ( 1(d),2(d) ad
3(d) )of the texture models exude more material information, less blur anahldegail compared to the
scaled versions ( 1(e), 2(e) and 3(e) ) of the objects’ views.

In figure 4.5, we demonstrate the superiority of our method over the umaoresi synthesis tech-
nique by comparing the views generated by both with the original views ofdjee It can be observed
that our results in the middle row bear more resemblance to the object viewthtsnin the last row
generated by relighting the model that is obtained by employing unconstnétesis technique.
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4.5 Conclusion

The above results demonstrate the potential of our hybrid approach edughes image-based mod-
eling and texture synthesis techniques to synthesize high resolution nefieatadels of planar surfaces
which behave not only realistic but more similar to their real-world countesp@ur Method consider-
ably differs from the modeling techniques which solely map color informatido amesh model of the
object using image registration in two aspects namely 1) Our method in addition &ingpthe color
information , also incorporates the dynamic change in visual appeardrick iw caused by interaction
between the surface material and light conditions where as image-basestimstiffer from unrealistic
shadows and color changes.

2) Our method generates a high resolution reflectance map where as thebiasagktechniques are
limited by the resolution of images captured of the object.

In the next chapter, we discuss our algorithm FdrM modeling of3D objects and rendering effi-
ciently.
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1(e) 2(e)
Figure 4.4 Demonstration of Our 2D Synthesis Algorithm for Natural Elédl Surfaces:images 1(a), 2(a), 3(a)
show high resolution texture patches of rough plaster sanfaedium to smooth plaster surface and a directional
plaster surface.lmages 1(b), 2(b) and 3(b) are low reswiutnages of rectangular objects made of the above
mentioned materials and 1(c), 2(c) and 3(c) represent gvesvjenerated from their correspondi®ibM s .Images
1(d), 2(d) and 3(d) are the higher resolution views of the ef®drhe final row of images 1(e), 2(e) and 3(e) are
the ones obtained by zooming in 1(b), 2(b), 3(b) respegtivel
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(g) Unconstrained Synthesis Re-
sults

Figure 4.5 Constrained Synthesis vs Unconstrained Synthesis
The top row shows view of a planar surface, the middle row shthe corresponding views generated by our
model and the last row shows the same generated by relightngodel obtained from unconstrained synthesis
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Chapter 5

Image Constrained PTM Synthesis for Real world Objects

Patch-base@D Texture Synthesis algorithms [9, 19] use square patches as the quiltirg hec
cause of their simplicity to work with. The same cannot be said about syntoeseal world objects
which are3D in nature. The8D objects are usually represented with standard triangular mesh models.

Triangle is the basic primitive for renderi®p models. Hence its much more apt to consider triangle
as the quilting block and texture map triangles rather than the usual squelnesaBut the triangles of
the mesh model are of different sizes and shapes unlike the squaregasg in the previous section

which are all of uniform size. It becomes only difficult that all the triandtesing various texture
orientations.

Considering all the above mentioned issues, we devised an approacititesye image bas&iM
models of real world objects.Given a set of imadés} of the object captured under known light and
camera position$ (.., lvn), Cr } and a texture samplB1"M;,, of the object material, we synthesize a
texture model of the object by pasting triangular subsamples taken/BiT;,, all across the triangular
mesh model of the object.Like the earlier approach for planar surfadiespibroach also considers the
image-based constraints and overlapping constraints in selection of {dampgtches for the texture
model.

We outline the basic steps of our synthesis algorithm followed by a detailedigtésn of each of
them.

Algorithm 2 : PTM Synthesis of Real world Objects

1 Assign each triangl&' of the mesh model, an imadg € {I,,} in which it is best
visible and calculate its mappirign Iy.;

2 Generate the normal viety, from ¢, find its best matching triangular texture pagcim
PTM,;, and extract a rectangular patéhcontainingp.;

3 Perform Alpha-blending across every edge of the mesh model, upddexthee
patched B;} with blended values.;

4 Extract the minimal bounding bax contained insideé3; of each triangular texture
patchp;, and pack all such; into a number of texture atlases.;
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5.0.0.4 Stepl

The object is imaged multiples times from different known light and view-pantitions{ (., lyn), Cr }
to obtain a set of imaged,, }. Each trianglé” of the mesh model is then mapped to an image {I,,}
in which it is best visible. The images in which the trian@lés completely visible are picked and then
an imagel;, among them in which it is best visible is taken. The criteria for visibility is the angléema
by the normak of the triangl€T” with the directional vector of the camefafrom its center. We rely on
the assumption that each triandleof the mesh model is completely visible in at least one image.The
camera matrix\/;, corresponding to the imagdg is calculated and then used to obtain the mappioig
triangleT in the imagel.

5.0.0.5 Step2

After step 1, eacll” is mapped to its best-viewin an Imagel;,. Now based on the angtebetween
the normaln of T" and the direction of the camera cenf@rthe lengths of sides of the triangle in the
normal viewt,, are obtained using the following formula

lin, = 1;/ cos b, (5.1)

wherel; is the length ofth side oft in the imagel;,.

The geometry of,, is is determined by these sidés, } and anglesA, B, C of the original triangle
T. For simplicity, the side connecting the first 2 verticeg,pis made parallel to X-axis. The color
information fromt to ¢,, is transfered using a re-sampling algorithm.

Calculate the local light vectdr with respect to a co-ordinate system placed at the centraid of
The X-axis of this co-ordinate system aligns with the side connecting théwiostertices ofl’, Z-axis
along the normal of" and Y-axis decided by the former two. Evaluate the input sarfflé/;,, using

7 and search the resultant image for a set of pat¢hésvhich best agree with,. This constitutes the
image based constraints.Eaeltorresponds to a triangular texture pagelin the input texture sample
PTM;,.

Now pick the best texture patgh € {p/} which best agrees with the texture patches of already
processed neighboring triangl€$; } of T'. This constitutes the overlapping constraint imposed on the
synthesis. In order to impose overlapping constraints, at least one thfrdeeneighbors of the current
triangle T" should have been already processed. Hence random processnngfes of the mesh
model might result in occasional weakening of the selection strategy ad ity of texture model so
obtained.

To prevent this, the triangles of the mesh model are processed in a BiéegttSearcHgFS) order.
By doing so, overlapping constraints are imposed in the selection of texdtaiepfor every trianglel’
of the mesh model except for the first one.
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Red region inside Ty gets blended with Blue region of B

Figure 5.1Blending of Neighboring Triangles Red region of T1 blends with blue regfdr2 and vice
versa

For each triangld;, a minimal bounding bok; surround its triangular texture patphis identified
and a bigger rectangular patdh containingb; surrounded by a extra texel strip(5 to 10 texels) all
around is extracted from the texture sampl€M;,,. The extra strip of texels is used for blending with
texture patches of neighboring triangles.

5.0.0.6 Step3

Each of the above mentioned boxBsinclude an extra strip of/, on all the 4 sides of the corre-
sponding minimal bounding bak. This strip is essentially used for alpha-blending across edges.The
extra texel padding around the actual triangular texture is blended witlotdehinformation of neigh-
boring triangle as shown in the Figure 5.1. The alpha-blended informationtiemback to the set of
boxes{B;}

5.0.0.7 Step4

Minimal bounding boxeg$b; } are extracted froniB;} by cutting off the extra strip of texels present
around. Theséb;} are then packed in to a number of atlas maps of desired dimeridicarsd H using
any of the standard bin-packing algorithms. The texture mapping co-tediod all the triangle§’;
are updated all along the procedure and the final mapping co-ordinglesespect to the PTM atlases
{P;} are stored.

The above process of PTM synthesis for a real world object is alinefferocess. Hence we limit
ourselves to only the synthesis procedure and not wade in to the details aftimmexity, techniques
to speed it, etc.
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5.0.1 Rendering of the PTM Model

The PTM model of the object obtained can be efficiently rendered at run time to gfeneovel
views of the real world object under different lighting conditions. In thisgedure, each trianglg is
considered separately and the position of light with respect to it calcul&teslunit vector(lur, lvr)
so obtained is used to evaluate its PTM paidh generate an image patch.Hence we get image atlases
corresponding to the set &fTM atlases. These image atlases are used as texture objects, loaded and
the textured model rendered.

5.0.2 Experimental Results

We demonstrate oD synthesis algorithm on a set of rough surface models created using displac
ment mapping. Syntheti8D textures and object models are used so that the same texture model can
be used to generate surface textures for the mesh model. We generatigghtanip and applied it
individually on the plane surface, a smooth sphere and a cylinder usiplgcisnent mapping to create
rough objects. A samplBTM is then created using a set of images of the rough planar surface. A
small set of images of the rough sphere and cylinder were taken to pribxé@dimage based constraints.
These images and the sampl&€M were used to construct tH&TM models of the rough sphere and
the cylinder. In Figure 5.2, the images (a), (b) and (c) show three vieasaugh plain and these are
used to construct the texture sample employed in synthesis. Images (d))asttby a rough sphere
and a cylinder created using displacement mapping. Images (e) andf)telo arbitrary views of
the constructe@TM model of the rugged sphere and images (h) and (i) show the same foigtjedru
cylinder.

As we note, the synthesized model is able to capture the surface propestibe lighting directions
change, which would be impossible in the case of 2D textures. Morea/seem from synthesis of the
planar object, the synthesized 3D texture generates images resemblegitvedlimages of the original
object. However, there are primarily two issues that still remain to achievepbalistic rendering of
3D mesh models: i) The PTM model itself does not handle shadows andaitiesiin the texture well
as it creates an overly smooth approximation of the transition from light tasfsdith change in light
direction, ii) Variations in appearance with lighting direction is accentuatededritmgle boundaries.
Currently we are working on developing improved models of the PTM to hahdlfirst issue, and with
synthesis techniques that directly create smooth transitions over triangiddris.
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(a) Viewl of a Rugged Planar Sur- (b) View2 (c) View3
face

(d) Rugged Sphere (e) Viewl of Textured Spherical (f) View2
Mesh Model

(9) Rugged Cylinder (h) Viewl of Textured Cylindrical (i) View2
Mesh Model

Figure 5.2 Synthesis Results for 3D objelthages (a), (b) and (c) show arbitrary views of rugged planar
surface.lmage(d) shows a rugged sphere and (e),(f) showiems of the texture model generated model gener-
ated.Likewise images (g),(e) and (f) show the same for agd@ylinder.
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Chapter 6

Conclusions

We demonstrated an image based texture synthesis technique to effectivitigsize reflectance
textures for material surfaces and objects. We developed the idea sfietiiag texture on to the mesh
models of real world objects to realistically reproduce the natural visysg¢aance, perception and
their interaction with the lighting environment. While the synthesis algorithm forgplaarfaces is
robust and efficient, the 3D synthesis algorithm offers challenges @k sor improvements both
in synthesis and rendering aspects. The main challenges were the blehdéftpctance functions
across the edges of triangles which is a non-trivial task, the artifacteddwy lack of smoothness or
continuity in directionality of texture across triangular patches and the inabilityoiel the view point
phenomena.

The synthesis algorithms that synthesize texture on mesh models [26, 3&ly3&) specification or
computation of surface tangential vector field across the surface of thie medels. Traversing along
the flow of the vector field ensures the orderly sweeping of points/pofygorthe mesh model just like
a scan-line order visit of pixels on an image ensures the same. The vetdordt only determines the
order of processing of triangles but also the scale and rotational pemaoéthe synthesized triangular
patches if the material is isotropic in nature.

We have assumed the anisitropic nature of the synthesis material as otimexys were mostly
confined to the surfaces like granite, concrete etc which lacked direfityor@ontrary to the orderly
processing of triangles suggested by the conventional texture syn#igsighms mentioned above,
we adopted a region-growing policy that starts with a randomly chosen qolgg the seed and then
proceeds to its immediate neighbors and so on, growing a region outwalds.aldbne we believe
ensures orderly processing of polygons so as to impose proper gpi@daconstraints on the patch
selection procedure. However, this doesn’'t hold good in the case-trioigit textures which also have
a directionality to their surface and surface tangential vector field cdraiginored in such a scenario.

Inspite of texture blending that is applied across the border of trianguarés patches in the func-
tional space, artifacts caused by dis-oriented texture patches of peiggpkriangles is still a cause for
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concern as the blending doesn’t consider the dimensions of scaleianthtion. We noticed some arti-
facts presicely caused by this reason even while synthesizing some apisotaterials. Hence,we feel
that introducing the step of estimation of surface tangential vector field tloédikey for a significant
improvement not only because it brings into consideration two more asgezt®xture, but also im-
pacts the blending procedure by correcting for the scale and orientatiem ending is applied across
neighboring triangles.

Another important challenge is the task of blending reflectance functioificierts across every
edge of the mesh models. In contrast to the alpha-blending that is applieddagbef simple color
textures, the blending of reflectance functional coefficients is a trickljeatge. The conventional alpha-
blending is applied in the color space where as our task requires anrgffi@ading technique that can
blend multiple aspects of texture namely color,normal information, reflectaopeies. Polynomial
texture maps implicitly contain the surface normal information. Approximate cirfiarmal informa-
tion can be obtained at every texel from its functional coefficients. Td# ig to obtain a blending
mechanism that operates in the functional space so as to ensure smeathoe®r, normal and re-
flectance across a triangle edge. We have employed alpha-blendintlydine¢he coefficients in a
transformed orthogonal space. From the results, we found that this aiom’t suffice as this approach
won't necessarily interpolate the normal information across the surfaite anesh model. Exploring
the methodologies to smoothen the normals by operating in the functional spag®iential direc-
tion of work that we hope holds the key for enhancing the aspect of mediisreducing the scope
for artifacts. Investigating the idea of manipulation of luminance coefficientsfimencing the visual
perception of shape information of the object surface is also an widatidineto carry out the present
work.

As Polynomial Texture Maps do not model the view-point phenomena, resept scheme doesn’t
model the effects such as specularities. However, as mentioned abeventtional coefficients can
be used to obtain approximate surface normal information. The so obtaimethlsccan be used to
artificially introduce view-point phenomena at the time of rendering. Inwoduthem will further
enhance the realism and is definitely another potential direction of work.

One of the most critical piece of information that we have assumed all alongtithéhshape infor-
mation of the object to be modeled is available as a triangulated mesh. In thef targe anonuments
and statues, obtaining this information is in itself another challenge. Howeitieia large set of images
of the object, this process can be automated and made robust. It suficei$ these are low resolution
images as the clarity of the model is enhance by maintain the textural attributds iz/te&en care of
by our high-resolution synthesis mechanism.
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