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Abstract

Sensors for 3D data are common today. These include multicamera systems, laser range scan-
ners, etc. Some of them are suitable for the real-time capture of the shape and appearance of
dynamic events. The 2 1

2D model of aligned depth map and image, called a Depth Image, has been
popular for Image Based Modeling and Rendering (IBMR). Capturing the 2 1

2D geometric structure
and photometric appearance of dynamic scenes is possible today. Time varying depth and image
sequences, called Depth Movies, can extend IBMR to dynamic events. The captured event con-
tains aligned sequences of depth maps and textures and are often streamed to a distant location
for immersive viewing. The applications of such systems include virtual-space tele-conferencing,
remote 3D immersion, 3D entertainment, etc. We study a client-server model for tele-immersion
where captured or stored depth movies from a server is sent to multiple, remote clients on demand.
Depth movies consist of dynamic depth maps and texture maps. Multiview image compression and
video compression have been studied earlier, but there has been no study about dynamic depth
map compression. This thesis contributes towards dynamic depth map compression for efficient
transmission in a server-client 3D teleimmersive environment. The dynamic depth maps data is
heavy and need efficient compression schemes. Immersive applications requires time-varying se-
quences of depth images from multiple cameras to be encoded and transmitted. At the remote site
of the system, the 3D scene is generated back by rendering the whole scene. Thus, depth movies of
a generic 3D scene from multiple cameras become very heavy to be sent over network considering
the available bandwidth. This thesis presents a scheme to compress depth movies of human actors
using a parametric proxy model for the underlying action. We use a generic articulated human
model as the proxy to represent the human in action and the various joint angles of the model to
parametrize the proxy for each time instant. The proxy represents a common prediction of the scene
structure. The difference between the captured depth and the depth of the proxy is called as the
residue and is used to represent the scene exploiting the spatial coherence. A few variations of this
algorithm are presented in this thesis. We experimented with bit-wise compression of the residues
and analyzed the quality of the generated 3D scene. Differences in residues across time are used to
exploit temporal coherence. Intra-frame coded frames and difference-coded frames provide random
access and high compression. We show results on several synthetic and real actions to demonstrate
the compression ratio and resulting quality using a depth-based rendering of the decoded scene.
The performance achieved is quite impressive. We present the articulation fitting tool, the com-
pression module with different algorithms and the server-client system with several variants for
the user. The thesis first explains the concepts about 3D reconstruction by image based rendering
and modeling, compressing such 3D representations, teleconferencing, later we proceed towards the
concept of depth images and movies, followed by the main algorithms, examples, experiments and
results.
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Chapter 1

Introduction

Sensors for 3D scenes and objects are common today. These include multi-camera systems, laser
range scanners, etc. Some of them are suitable for the real-time capture of the shape and appearance
of dynamic events. A simple method for capturing 3D structure of a scene is as depth measurements
taken from a point, called a depth map. A depth map is a two-dimensional array where the x and
y distance information corresponds to the rows and columns of the array as in an ordinary image,
and the corresponding depth readings (z values) are stored in the array’s elements (pixels). Time
varying captured sequence of depth maps from a camera is called a depth movie. Depth Movies
captured from multiple views can help visualizing the 3D aspect of a typical scene.

The views captured from different viewpoints find potential applications in Image Based Ren-
dering (IBR). IBR aims at capturing 3D environments using a number of cameras that recover the
geometric and photometric structure from the scene. IBR renders novel views using the captured
views, to give the impression of a 3D scene with only a few acquired views around the scene. These
views can be transmitted to a remote location for tele-immersive environments.

Tele-immersion is a new medium of human interaction that creates the illusion that a user is
in the same physical space of the other participants, although in reality other participants may
be miles away. This technology combines the concepts of scene capture and virtual reality with
collaboration technology using the different media.

1.1 Image Based Rendering

Image based rendering methods take a set of 2D images of a scene and generate its novel views
from different camera positions. IBR tends to derive a representation from the captured 2D streams
and uses this for rendering. The principal advantage of IBR is that the representation need not
be as comprehensive as a graphics model. To be able to look into various directions in a 3D
scene using IBR, we do not need to take photographs of the scene from all directions and produce
a panorama. To reduce the number of images necessary for novel views, IBR aims at deriving
geometric representations of the scene through image correspondence, interactive photogrammetry,
or active sensing, and then render this geometry from the desired novel viewpoint with colors
projected on from the original photographs. Image based rendering techniques fall into two main
categories: geometry based and light field based. Light field techniques do not necessarily need
geometry information. They think of the scene as a space of rays, a portion of which are recorded
by cameras. By re-sampling the recorded rays according to the geometry of the virtual camera
we can reconstruct the image. Geometry information helps to improve the quality of the image,
although it requires considerable preprocessing. Geometry based approaches transfer input images
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Figure 1.1: A view of Blue-C capture system, [31]

to the virtual camera through the use of scene geometry, which can be in the form of per-pixel
depth or polygonal models.

Depth or disparity is powerful information that can be used like geometry for image-based
rendering. Depth is calculated from stereo vision or using other sensors like range-finders or sonars
and then combined with color information provided by images to form an image-based model.
Depth image based rendering (DIBR) can produce novel views from different (new) viewpoints,
based on a single two-dimensional (2D) image and its corresponding depth map. DIBR and IBR
can effectively be used to render the scene structure at remote locations, a popularly known concept
of tele-immersion.

1.2 Capturing a dynamic scene

With the growing need for capturing, transmitting and rendering dynamic scenes, 3D visualization
and tele-immersion systems, different camera-hardware setups have been built by various labs in
recent past. In order to capture dynamic scenes and visualize them at the remote location, we need
to capture multiple views of the scene from different cameras around the space. Issues that relate
to multicamera systems are the calibration and the synchronization of the cameras. Typically,
multicamera calibration is based on solving the correspondence problem for multiple cameras to
estimate their parameters. For example, Blue-C [31], an immersive display system, also acquires
2D streams of a scene in a similar manner as shown in Figure 1.1.

1.3 Depth Images as Scene Structure

The depth map is a two-dimensional array of depth values, with location (i, j) storing the depth
or normal distance to the point that projects to pixel (i, j) in the image. So, depth maps contain
distances to points organized on a regular, 2D sampling grid. Each depth map can be considered as
an image. The corresponding location (i, j) of the image stores the color from that ray. Both image
and its corresponding depth map are acquired from the same point of view of a camera. Computer
vision provides various methods to compute such structure of points visible in a view, called the
21

2D structure, using different clues from images. Motion, shading, focus, inter-reflections, etc.,
have been used to this end, but stereo has been most popular. Traditional stereo tries to locate
points in multiple views that are projections of the same world point. Triangulation gives the 3D
structure of a point after identifying it in more than one view. Volumetric methods map each world
voxel to the views in which it is visible. Visual consistency across these cameras establishes the
voxel as part of a visible, opaque surface. Recovering such geometric structure of the scene from
multiple cameras can be done reliably today using stereo. Range scanners using lasers, structured
lighting, etc., can also be used to detect structure. Figure 1.2 and 1.3 shows images and depth
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maps from different viewpoints, with the points that are closer shown brighter than the farther
ones.

The depth map gives the Z-coordinates for a regularly sampled X-Y grid coinciding with pixel
grid of the camera. Combined with camera calibration parameters, this represents the 3D structure
of all points visible from the camera location as a point cloud. Grouping of points into higher level
structures such as polygons and objects is not available and doesn’t have to be inferred.

To capture depth from various viewpoints, a setup of m cameras around the scene can be
used, in a similar fashion as discussed in section 1.2. The depth and texture from one viewpoint
represent local, partial structure of the scene, i.e., parts visible from a point in space with a limited
view volume. The entire scene space can be captured using multiple, distributed depth maps and
textures. It is possible to merge these partial models into a single global structure using methods
like, mesh stitching volumetric merging etc.

1.4 Depth Movies

Time varying sequences of the Depth Images are called Depth Movies. Real-time capture of Depth
Movies is possible today. Depth movies are feasible scene representation for capturing and streaming
data for true 3D teleconferencing.

A depth movie is a sequence of aligned combination of depth map and image. Each pair corre-
sponds to a time-instant and the sequence progresses across time. Depth movies can be thought of
as having 3 channels:

1. D Channel: Consists of a depth map sequence Dt with Dk[i, j] giving the depth or distance
at pixel (i, j) at time instant k.

2. I Channel: Consists of an image sequence It with Ik[i, j] giving the colour at pixel (i, j) at
time instant k.

3. C Channel: Consisting of a sequence Ct of time varying calibration parameters of the
scanner or the camera. Ck gives the 3 × 4 matrix that maps a world points P to an image
point p using p ≈ CkP. In practice, the sampling of Ct along the time axis is sparse as the
calibration parameters typically change slowly, if at all.

Optionally, the Ct and Dt channels can be combined into a P Channel of 3D point sequence St

with St[i, j] giving the 3D coordinates (x, y, z) of the points projecting to the pixel position (i, j).
We use the explicit notation using D, I, and C channels for its brevity. The C channel can be
compressed considerably as the calibration parameters of a camera is likely to change very slowly,
if at all, as noted above. The calibration parameters carry the information about the geometry of
depth-capture which could be useful for the applications that use the depth maps.

The depth movie datasets have depth images for each of the frame in the sequence captured
from multiple views. Since the multi-stream depth images are huge in size, they need a compressed
representation for 3D teleconferencing systems.

1.5 Tele-immersion

Tele-immersive environments are now emerging as the next generation of communication medium
to allow distributed users more effective interaction and collaboration in joint activities. A basic
scheme for Tele-immersion is as shown in Figure 1.5. Tele-immersion systems can have one of the two
basic approaches. The first approach considers that tele-immersion is three dimensional, avatar-like
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Texture

Depth

Figure 1.2: Texture (top) and depth map (bottom) of a scene at different time instant and from
different viewpoint. [102]

Frame 1

Frame 2

Frame 3

Frame 4

Figure 1.3: Frames of a Depth Movie, showing texture movie along with it.
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Figure 1.4: Conceptual and actual Dome to capture dynamic events from Virtualized Reality,
[39, 64]

model using graphical representation of the participants as animations. The second approach treats
tele-immersion as a representation of virtualized reality based on 3D reconstruction of real people
and the rest of the scene. The second approach is less restrictive and is widely being researched by
various research groups.

The three major components of a tele-immersion system are scene acquisition, 3D reconstruction,
transmission, and rendering. Figure 1.5 shows a block diagram of these components to each other
and the overall system. For effective interactive operation, these three components must accomplish
their tasks in real-time. Accordingly, a tele-immersive environment requires several basic compo-
nents, including a 3D camera array and sound system, a communication network, and a rendering
system. Recently, several researchers have developed and experimented with individual components
or tele-immersive environments with partially integrated components. We have concentrated our
thesis on the use of depth movies, their efficient compression for a real-time transmission through
network and reconstructing it back at the client’s remote site.

1.6 The Problem

Depth maps are bulky as they store high precision depth values. As a result, multistream depth
movies require effective representations and compression methods for transmission and 3D playback
at the remote site. The server at the capture site is linked over a network to a client at the rendering
site. Video compression is suitable for texture images. Compression of multistream depth movies of
human actors is the focus of this thesis. The D channel of the depth movie is a video of depth values
and it may appear that compression schemes like MPEG would work well. MPEG compression is
psycho-visually motivated and gives less emphasis to the high frequency components. However, the
high frequency regions of depth images represent occlusion boundaries which are critical for depth
maps, especially as it has to be rendered at the remote client. Lossy compression of depth movies is
at the cost of either changing distance or shape of the scene components. Thus, developing methods
for lossless compression and effective transmission of these becomes the key challenge. We present
algorithms to compress depth movies involving human actors using a common parametric proxy
model.

5



Figure 1.5: Components of a Tele-immersion system showing the communication link between two
remote sites. [44]

1.6.1 Varying depth maps Proxy Based Compression

A general world scene can be assumed to comprise of moving humans, rigid static and dynamic
objects, non-rigid objects, non-rigid dynamic objects, etc. We consider scenes with humans as the
main subjects for this thesis. m cameras are set around the scene for capturing these scenes. Depth
movies of n frames are generated from each view. For each of the n frames we have m depth-maps
and m textured-images for the m camera views. We use a generic articulated human model as a
proxy and its various joint angles as parameters for each frame representing the common prediction
of that scene at that instant. The time varying parameters approximate the underlying geometric
structure of the action such that it is independent of the viewpoint. The proxy depth map is
captured by projecting the depth on the m cameras. The difference between the captured depth
map and the proxy depth map, known as “residue”, exploits the inter-view spatial coherence.
Differences in residues across time are used to exploit temporal coherence. Intra-frame bitwise
coded frames and difference coded frames provide high compression and facilitate random access
in a depth codec, on the same lines as a MPEG codec.

1.6.2 Server-Client System

Figure 1.6 presents the overview of compressing a scene using parametric proxies. The input to the
system is a 3D scene comprising multistream depth maps and texture maps of a human performing
some action. A standard articulated human model is used as the parametric proxy. The first
task is to fit a proxy to the point cloud for each frame. This proxy is known as the prediction of
the human in the scene. The depth maps of the fitted proxy for each frame are captured. The
prediction error between the original and the fitted proxy model is calculated by subtracting the
predicted proxy from the input depth maps. These “residues” are encoded and sent to the client.
At the client’s side, the parameters are applied on the articulated human to capture the proxy
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Figure 1.6: Basic scheme for our procedure

depth maps. Residues are added to these depth maps to get the real depth for rendering.
A compressed packet is sent to the client as per the demands of compression factor and quality,

and the available network bandwidth. At the client’s end, the original 2 1
2D representation is

recovered from the proxy parameters and is applied on the common proxy available at the client’s
site. The residues are decoded and the 2 1

2D representation is used for rendering the 3D scene in
real-time. Thus, client controllable compression can be adopted by the system and rendering be
done in real-time at the client. This makes the technique ideal for 3D teleconferencing and remote
immersion systems.

We used three variations of the experimental datasets: Real data, MOCAP data with meaningful
actions, and synthetic action. Different strategies and implementations have been done to carry
out these variations of the datasets. The second and third datasets are produced using POSER to
give an animated human feel.

1.7 Applications

Our compression scheme is useful to a server-client based tele-immersion. Tele-immersive environ-
ments have potential to significantly change educational, scientific, corporate and manufacturing
standards. Some of the possible applications can be remote education, long distance corporate
meetings, virtual experiment labs, surveillance, etc. Tele-immersion can promote the concept of
virtual classrooms. Where students can sit miles away from the professors but still get the feel
of the class and grasp concepts while asking doubts in real-time. A good example of such a sys-
tem is “Electronic Books for Tele-immersion Age” lead by Brown University and University of
North Carolina, that provides surgeons to train for different surgeries and operations remotely.
Tele-immersion can improve the everyday graphical display environments, and 3D tele-immersion
capabilities that allow distant people to feel as though they are together in a shared office space.
One such work can be the “Office of the Future” project being worked on at University of North
Carolina (Chapel Hill) [71] .

7



Figure 1.7: A systematic diagram of a teleconferencing system developed at UIUC.

The concept can also be used in research labs where extensive research is carried on by different
research groups that are miles apart but can together work on experiments and derive new analogies
by sharing a virtual research space. This way more idea and research brains can be put to a better
use for innovations required in daily life. Also, an improved remote surveillance concept can be
achieved using tele-immersion and 3D tele-conferencing. An example of tele-immersive system as
used by UIUC is shown in Figure 1.7.

1.8 Contributions

This thesis contributes towards efficient representation and compression of depth movies or time-
varying depth maps, using a parametric proxy, which has not been studied much. This thesis
extends the idea proxy-based compression of multiple depth maps to multiple time-varying depth
maps. We also analyze the different options for compression of such data and show results on
real and synthetic data. We achieve impressive compression at acceptable quality levels on many
synthetic and real data.

1.9 Organization of the thesis

The main focus of the thesis is efficient compression of depth movies. We have proposed a parametric
proxy based compression method for compressing depth movies. Different experiments, analysis
and variants of the parametric proxy compression has been presented in the following chapters.

• Chapter 2 presents a detailed review of the previous work. A review of different works
on image based modeling and rendering using depth images has been presented. We also
present the various methods initiated by different researchers on compressing depth images
and multiview reconstruction of such scenes. A number of concepts relating parametrization
of a 3D scene and human model for the articulation for the parametric model have also been
discussed.
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• In chapter 3, we give a brief review of the methods used for compressing depth images with
proxy-based compression.

• In chapter 4, we introduce the concept of depth movies and their capture process. We present
our experimental work for compressing such depth movies using the pre-existing methods
like JPEG, MPEG, quadtrees, etc. We draw different analogies to promote the need and
requirement for the parametric proxy compression to be discussed in the next chapter.

• In chapter 5, we define and discuss our proxy based compression method for depth movies.
We have defined the parametrized articulated proxy model along with the fitting tool to get
the proxy for each frame of the depth movie. We have drawn a server client model using the
various compression algorithms for encoding the multiview depth movies.

• In chapter 6, the experimental setup is explained in detail. The results on these datasets are
presented through graphs and tables. For MOCAP datasets, results are included by varying
noise levels and proxy details. Finally, we analyze our results for the real-time tele-immersion.

• In chapter 7, we draw a conclusion from the work and give application specifications of the
work.
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Chapter 2

Related Work

2.1 Image Based Rendering

Image-based modeling and rendering techniques have gained much attention as an alternative
to traditional geometry-based techniques for image synthesis. Instead of geometric primitives, a
collection of sample images are used to render novel views. Shum et. al [77] reviewed earlier work
on image-based rendering (IBR) which reveals a continuum of image-based representations [46]
based on the trade off between the number of images needed and information of scene geometry.
The various rendering techniques (and their associated representations) can be vaguely categorized
into those with no geometry and those with implicit geometry.

On one end of the rendering spectrum, traditional texture mapping relies on very accurate
geometric models but only a few images. In a general IBR system with depth maps, such as 3D
warping [54], layered-depth images (LDI) [76], LDI tree [18], etc., the model consists of a set of
images of a scene and their associated depth maps. When depth is available for every point in an
image, the image can be rendered from any nearby point of view by projecting the pixels of the
image to their proper 3D locations and re-projecting them onto a new view. Unlike for synthetic
environments, estimating the depth information from real images has had limited success even for
the state-of-art computer vision algorithms.

Some image-based rendering systems do not require explicit geometric models and instead require
feature (such as points) correspondence between images. For example, Chen et. al [19] introduced
View Interpolation that generates novel views by interpolating optical flow between corresponding
points. On the other hand, View Morphing by Sietz et. al [75] generates in-between camera matri-
ces along the line of two original camera centers, based on point correspondences. Computer vision
techniques are usually used for generating such correspondences. At the other extreme, lightfield
rendering uses many images but does not require any geometric information or correspondence.
Levoy et. al [48] introduced Lightfield Rendering that generates a new image of a scene by appro-
priately filtering and interpolating a pre-acquired set of samples. Lumigraph by Gortler et.al [28] is
similar to lightfield rendering but uses approximate geometry to compensate for non-uniform sam-
pling in order to improve rendering performance. Shum et. al [78] devised the concentric mosaics
representation which reduces the amount of data by capturing a sequence of images along a circular
path. Lightfield rendering, however, tends to oversample to counter aliasing effects. Oversampling
means more intensive data acquisition, more storage, and more redundancy. The optimal number
of images required for unaliased rendering is critical to all IBR systems. Finding a solution to this
problem is difficult as it involves unraveling the relationship among three elements: the depth and
texture information of the scene, the number of sample images, and the rendering resolution. The
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Figure 2.1: 3DTV :: Left: Array of 16 cameras and projectors. Middle: Rear-projection 3D display
with double-lenticular screen. Right: Front-projection 3D display with single-lenticular screen.

solution should provide design principles for image based rendering systems in terms of trade-off
between the images and the geometry information needed.

2.2 3D Capturing Systems

Various labs have used variants of camera arrangements for capturing 3D. Since 1995, CMU has
a 3D room for capturing 3D information of any subject in the scene as shown in Figure 2.2. Also
as shown in Figure 1.4, the “3D room” is a facility for 4D digitization i.e., capturing and mod-
eling a real time-varying 3D event, into a computer. On the walls and the ceiling of the room
49 cameras are mounted, all of which are synchronized with a common signal. A PC-cluster of
17 computer systems digitizes all the video signals from the cameras simultaneously in real time
as uncompressed and no loss full frame images with color. Narayanan et. al [64] designed the
system that was initially based on multi-baseline dense depth map computation. Its recent version
by Cheung et. al [20] is based on visual hull computation using silhouette carving and has been
commercialized by Billinghurst et. al [10].

Some of the recent significant multicamera systems that relate to 3DTV, 3D reconstruction,
telepresence and teleconferencing, acquire 3D scene sequences and send them over network, as
these applications intrinsically require live video feeds. Examples are CMUs new 3D room [20], the
view-dependent visual hull system at MIT [55], the multicamera systems at the Keck laboratory
at the University of Maryland [9] (Figure 2.4 )and the Argus system at Duke University. Kauff et.
al [40] designed a teleconferencing system that captures a scene with four cameras mounted around
a display. There are a few other hardwares setup for multiview captures. Like, Free-viewpoint video
(FVV) captures using the notion of 3DVO (3D Video Objects), as shown in Figure 2.5, where a
3D Video object is captured in a relatively sparse dome view configuration. Similarly, 3D video
recorder [95], where 2D video streams are recorded from several synchronized digital video cameras
and are stored as pre-processed images to the disk. Blue-C [31], an immersive display system, also
acquires 2D streams of a scene in a much similar manner as shown in Figure 1.1.

The Stanford multi-camera array [91] is an architecture specialized for facilitating the lightfield
rendering. Mulligan et. al [61] introduced a system (Figure 2.3) which first pioneered the use of a
large number of video streams to provide a real-time multiview reconstruction. In 2004, Matusik
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Figure 2.2: 3DRoom at CMU.

Figure 2.3: Different configurations of camera arrays setup at Stanford University, [92]

et. al developed a system of an array of 16 cameras and projectors as shown in Figure 2.1.
This 3DTV [56] system allowed real-time acquisition, transmission, and 3D display of dynamic
scenes. The system consists of an array of cameras, clusters of network-connected PCs, and a
multi-projector 3D display with a lenticular screen. The display provides stereoscopic color images
from multiple view points without glasses. Instead of designing perfect display optics, cameras are
used for the automatic adjustment of the 3D display. In 2005, Baker et. al [8] (Figure 2.6) produced
synthetic views using 5 streams based on the visual hull method.

2.3 Depth Map Based Representation

The fundamental representation of a single point in 3D space uses a vector of three dimensions (or
four dimensions in homogeneous coordinates). The camera distances (depth) of the scene point,
whose projections give the pixel locations on the image, are essential to render an arbitrary view
of the scene. Therefore, it is better to examine, not a single point, but a regular dense-depth
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Figure 2.4: Camera setup in rectangular room and a dome-shaped room. [9]

Figure 2.5: Capturing hardware for 3D Video objects.

Figure 2.6: View of User in Coliseum space from 5 cameras, [8]
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representation of a scene. The distances of the points in a 3D scene from the camera are stored in
a matrix defined by the reference image of the scene and is denoted as a depth map. The depth
map is considered a 2 1

2D representation of a 3D scene from a camera view.

2.3.1 Depth Representation

Shade et al. proposed the concept of layered depth images (LDI) [76], in which a 3D object (or a
scene) is represented by a number of views with associated depth maps. Using appropriate scaling
and information from camera calibration, it is possible to render virtual intermediate views. The
quality of the rendered views and the possible range of navigation depend on the number of original
views and camera settings. In case of simple camera configurations (such as a conventional stereo-
rig or a multi-baseline video system), LDI can even be utilized for fully automatic real-time depth
reconstruction in 3D video or 3DTV applications, which could be denoted as depth image-based
rendering [23, 24].

LDI represents an efficient and attractive alternative to 3D mesh representations of scenes. A
rendering format for LDI is included in the recent computer graphics extension of MPEG-4, Ani-
mation Framework eXtension (AFX) [13]. Using AFX, Smolic et. al [81] made it easy to use LDI
in a standardized way. The 3DAV group of MPEG is investigating LDI as a standard format for
3DTV applications [99].

The representation of a 3D scene by dense depth map(s) will face a bandwidth problem in 3D
teleimmersion system when delivered over limited bandwidth channels. Hence, this information
should be optimally represented and compressed by minimizing both its rate and distortion to-
gether. The conventional strategies encode the available depth by lossy image or video compression
methods [81].

The multiview dense depth maps can efficiently produce 3D replica of real scenes. They represent
the whole scene with point samples, making no distinction between separate objects. Hence, they
are easy to construct and space-efficient but incapable of modeling the scene semantics. Graphical
realism, progressive modeling, level of detail scalability and animation are fundamental functional-
ities which are hard to achieve using dense depth representations.

2.4 Depth Image Based Rendering

Depth Image-Based Rendering (DIBR) is the process of synthesizing novel views of a scene from
still or moving color images and associated per-pixel depth information [57, 53]. Conceptually, this
novel view generation can be understood as a two-step process: First, the original image points
are reprojected into the 3D world, utilizing the respective depth data. Thereafter, these 3D space
points are projected onto the image plane of a camera, which is located at the required viewing
position. The concatenation of re-projection (2D-to-3D) and subsequent projection (3D- to-2D) is
usually called 3D image warping in the Computer Graphics literature.

McMillan and Bishop [58] proposed a method to render a scene from new viewpoints by warping
the depth image (i.e., an image with color and depth information). One major problem with this
method is dis-occlusion artifacts caused when a portion of the scene not visible in the depth image is
visible from the new viewpoint. Using multiple depth images from multiple viewpoints can reduce
these dis-occlusion artifacts. Layered Depth Images (LDI) merge multiple depth images into a
single depth image by keeping multiple depth values per pixel [76]. However, the fixed resolution
of an LDI imposes limits on sampling multiple depth images. An LDI tree, an octree with a single
LDI in each node, can be used to overcome this limitation [18]. Grossman and Dally [32] create
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multiple depth images to model an arbitrary synthetic object. The depth images are divided into
8 × 8 blocks and redundant blocks are removed. QSplat, used by Rusinkiewicz et. al [72] uses a
bounding sphere hierarchy to group 3D scanned points for real-time progressive rendering of large
models. Pfister et. al [68] used Surfels that represent objects using a tree of three orthogonal LDIs
called a Layered Depth Cube (LDC) tree.

2.5 Real-Time Depth Image Based Rendering using GPUs

The process of rendering depth images is summarized below. Depth images can be rendered using
splatting or implied triangulation. Splatting treats each depth/color combination as a 3D point
with a certain size in the world or the image. Implied triangulation imposes a triangle-grid structure
on the raster-ordered depth or color pairs and draws them using standard graphics hardware. The
triangles on the depth discontinuities have a large difference in depth along some of their edges and
are not drawn. Depth discontinuities can result in holes in the rendered views. These can be filled
by rendering using another depth image which sees that part of the scene. When multiple DIs are
rendered, they should be blended when representing the same scene region. Thus, a representation
consisting of multiple depth images can provide a complete representation that can use standard
graphics algorithms for view generation.

The algorithm to render and blend the set of DIs is given below [63]. The optical axis of the new
view is given by n and that of DIi is given by ni.

for each depth image DIi do

1. If (n · ni ≤ 0) skip i.

2. Generate the new view using Di and Ii.

3. Read back image to I′
i
and the depth buffer to Z′

i
.

end for
for each pixel p in the new view do

4. Compare the Z′

i
(p) values ∀i.

5. Keep the views within a threshold ∆z of the nearest z value.

6. Compute the angle θi at the 3D point of p between the ray from DI i and the novel view.
Compute the weight wi(p) = f(θi) as a function of the angle.

7. Assign
∑

i
wiI

′

i
(p) as the colour of the novel view pixel p.

End for

It should be noted that a different combination of DIs are blended for each pixel of the new view,
based on the visibility and angle of each DI at that point [63]. The algorithm involves reading
the depth and image buffers back and performing the blending on the CPU. These are expensive
operations and hence real-time rendering was not achieved. The algorithm was able to render a
frame every 2-3 seconds on an AMD64 machine with 1GB RAM and an nVidia 6600GT graphics
card with 128MB of video RAM. The synthetic scene used for the performance figures, similar to
those given in Figure 2.9, was represented using 20 depth images with ten each located on a circle
at two different heights and pointed inwards towards the scene.

The weighting function f ensures that the effect of a particular DI falls smoothly with novel view
position. This avoids abrupt changes in color values that can result if multiple DIs have different
gains and offsets for their images. Weighting functions like cosk θ or e−kθ work for values of k of 2
or 3.
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Figure 2.7: Rendered images from D using depth images C1 and C2 are blended based on the
angles t1 and t2

2.5.1 GPU Rendering of Depth Images

The read back of the frame-buffer is the time consuming operation in the above algorithm. The
modern GPUs have a huge memory and computation power. If the read back is avoided and the
blending is done in the GPU, the frame rate can possibly reach interactive rates.

Verlani et. al [90] devised a 2-pass algorithm to render multiple DIs with per-pixel blending. The
first pass determines which views need to be blended for each pixel and the second pass actually
blends them. The property of each pixel blending a different set of DIs is maintained by the new
algorithm. The overview of the algorithm is given in Figure 2.8.

Pass 1:

1. Enable z-buffering, disable lights, shading.

2. Clear depths.

3. for each Depth Image DIi do

(a) If (n · ni ≤ 0) skip i.
(b) Render Di. Offset each point by ∆z away from the novel view camera

end for

Pass 2:

4. Enable lighting, shading, z-test. Disable z modification.

5. Clear color buffers RGBA.

6. for each Depth Image DIi do

(a) If (n · ni ≤ 0) skip i.
(b) Render Di and Ii to new view normally.
(c) At each frame-buffer pixel p, compute the angle θi between DIi and novel view and the

weight w = f(θi).
(d) Set color c(p) at p to (A(p)c(p) + wI ′

i
(p))/(A(p) + w) where I ′

i
(p) is the color from

rendering the DI i.
(e) A(p) = A(p) + w
(f) Leave the image in the buffer for next DI.

end for
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Figure 2.8: Block diagram of the GPU-based rendering algorithm

The first pass leaves zm, the closest z value, in the Z-buffer for each pixel. The value is offset by
∆z so that all pixels with depth less than zm + ∆z will succeed the depth test in the second pass
and will be blended. The offsetting in eye space is done using a suitable vertex shader program.
Lighting, shading and updating of the color buffers are disabled in the first pass to speedup the
computations.

The second pass performs the blending using a pixel shader that runs on the GPU. For each
pixel, the shader accesses the novel view and DI parameters and the results of previous rendering
using a Frame Buffer Object (FBO). Depending on which DIs had values near the minimum z for
each pixel, a different combination of DIs can be blended at each pixel. The color values and alpha
values are kept always correct. Hence, there is no post-processing step that depends on the number
of DIs blended. The algorithm also ensures that there will be no exceeding of the maximum range
of color values that is possible if the summing is done in the loop followed by a division at the end.

The GPU algorithm used Vertex Buffer Objects and vertex arrays to store the DIs as triangulated
models. The above algorithm was able to achieve a frame rate of 40 fps for the scene involving
10 DIs on a Nvidia 6600GT graphics card. The depth images had a resolution of 512 × 512. The
frame-rate increased to 90 fps when the resolution was changed to 256× 256 by dropping alternate
rows and columns of the depth map. The video memory on the GPU was saturating and affecting
the performance. The frame rate on a 20 DI scene was 10 and 35 for the higher and lower resolutions
respectively. Typically, 4− 5 DIs were blended for each new viewpoint.

The image based rendering using depth maps to provide novel views in real time can efficiently
be used to render 3D scenes at remote locations. Compression of depth maps of 3D scenes has
to be efficient enough to transfer the depth maps to the remote site. Such remote transmission is
conceptually termed as 3D tele-immersion or 3D tele-presence.
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Figure 2.9: Top row: Depth Image pair for a synthetic view. Bottom row: New views generated
using them.

2.6 Real-Time 3D Transmission

The topic of 3D tele-immersion incorporates knowledge from multiple disciplines, such as image-
based rendering, video coding, optics, stereoscopic displays, multi-projector displays, computer
vision, virtual reality, and psychology. Some of the work may not be widely known across disciplines.
There are some good overview books on 3DTV [66, 37]. Geometric structure of real-life scenes can
be captured using multicamera setups, range scanners, etc. Several systems have been built for
this purpose over the past decade [64, 95, 56, 15, 98, 31, 102]. They attempt to capture dense or
sparse 3D structure of the scene using cameras as time-varying depth and texture maps or depth
movies.

2.6.1 Model-Based Systems

Typical scene models are per-pixel depth maps [24, 102], the visual hull [55], or a prior model
of the acquired objects, such as human body shapes [15]. It has been shown that even coarse
scene models improve the image quality during view synthesis [28]. It is possible to achieve very
high image quality with a two-layer image representation that includes automatically extracted
boundary mattes near depth discontinuities [102]. One of the earliest and largest 3D video studios
is the virtualized reality system by Kanade et. al [39] with 51 cameras arranged in a geodesic dome,
which was later enhanced to a much larger room [38]. The Blue-C system at ETH-Zurich developed
by Gross et. al consists of a room-sized environment with real-time capture and spatially-immersive
display [31]. Javidi et. al [37] worked on the Argus research project of the Air Force that uses 64
cameras arranged in a large semi-circle. Many other, similar systems have been constructed. All
3D video systems provide the ability to interactively control the viewpoint, a feature that has been
termed free-viewpoint video by the MPEG Ad-Hoc Group on 3D Audio and Video (3DAV) [82].
During rendering, the multiview video can be projected onto the model to generate more realistic
view-dependent surface appearance [55, 15]. Some systems also display low-resolution stereo-pair
of views of the scene in real-time. Real-time acquisition of scene models for general real-world
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scenes is very difficult and is a subject of ongoing research. Many systems do not provide real-time
end-to-end performance, and if they do they are limited to simple scenes with only a handful of
objects.

Theobalt et. al [87] described a system developed at MPI to capture human motion at interactive
frame rates without the use of markers or scene-intruding devices. A person is recorded by multiple
synchronized cameras as shown in Figure 2.10, and a multilayer hierarchical kinematic skeleton is
fitted to each frame in a two-stage process.

Figure 2.10: Camera Studio at MPI Germany, used by Theobalt et. al [87] with calibration pattern
on the floor, 4 cameras marked as circle.

A dense lightfield representation was also used that does not require a scene model, although it
was able to benefit from it [28, 14]. On the other hand, dense lightfields require more storage and
transmission bandwidth.

2.6.2 Lightfield Systems

Levoy et. al [48] termed a lightfield as representing radiance as a function of position and direction
in regions of space free of occlusions. The ultimate goal, which was called the hyper display [60], is
to capture a time-varying lightfield passing through a surface and emitting the same (directional)
lightfield through another surface with minimal delay. Early work in image-based graphics and 3D
displays has dealt with static lightfields [48, 28]. Acquisition of dense, dynamic lightfields has only
recently become feasible. Some systems use a bundle of optical fibers in front of a high-definition
camera to capture multiple views simultaneously [37] . The problem with single-camera systems is
that the limited resolution of the camera greatly reduces the number and resolution of the acquired
views.

Now-a-days, most systems use a dense array of synchronized cameras to acquire high-resolution
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lightfields. Typically, the cameras are connected to a cluster of PCs [73, 62, 97]. Wilburn et. al [4]
devised the Stanford multi-camera array, which consists of up to 128 cameras and special purpose
hardware to compress and store all the video data in real-time. Most lightfield cameras allow in-
teractive navigation and manipulation (such as freeze frame effects) of the dynamic scene. Some
systems also acquire [62] or compute [73] per-pixel depth maps to improve the results of lightfield
rendering.

2.6.3 Multiview Video Compression and Transmission

Multiview video compression has mostly focused on static lightfields [52, 70]. There has been
relatively little research on how to compress and transmit multiview video of dynamic scenes in
real-time. A notable exception is the work by Yang et al. [97]. They achieve real-time display from
an 8× 8 lightfield camera by transmitting only the rays that are necessary for view interpolation.
However, it is impossible to anticipate all the viewpoints in a TV broadcast setting. They transmit
all acquired video streams and use a similar strategy on the receiver side to route the videos to the
appropriate projectors for display.

Most systems compress the multiview video offline and focus on providing interactive decoding
and display. An overview of some early online compression approaches can be found in [37]. Motion
compensation in the time domain provides temporal encoding, and disparity prediction between
cameras gives spatial encoding as defined by Tanimoto et. al [84]. The Blue-C system converts the
multiview video into 3D video fragments that are then compressed and transmitted [45]. However,
most current systems use a centralized processor for compression, which limits their scalability in
the number of compressed views.

Another approach to multiview video compression, promoted by Fehn et. al in the European
ATTEST project [24], is to reduce the data to a single view with per-pixel depth map. This data
can be compressed in real-time and broadcast as an MPEG-2 enhancement layer. On the receiver
side, stereo or multiview images are generated using image-based rendering. The core for ATTEST
is a flexible and scalable syntax for image-based 3D data representation, which opens for different
display types and viewing conditions, as shown in Figure 2.11.

However, as seen in Chen et. al [19], it may be difficult to generate high-quality output because
of occlusions or high disparity in the scene. Moreover, a single view cannot capture view-dependent
appearance effects, such as reflections and specular highlights. High-quality 3D TV broadcasting
requires that all the views are transmitted to multiple users simultaneously. Smolic et. al, the
MPEG 3DAV group [82] have been investigating compression approaches based on simultaneous
temporal and spatial encoding.

2.7 Compression of Depth Images

Since 3D data is massive in size, it needs efficient compression for representation and transmission.
The standard image compression methods like JPEG give a maximum perceived visual quality.
These algorithms are psycho-visually motivated and hence may not be the best for depth images,
especially for the depth-maps which carry the geometric information.

Several methods have been reported for this. Levoy et al. [48] described the lightfield compression
technique using vector quantization. Later, they [51] compressed lightfield using disparity compen-
sation techniques. Girod et al. [17] and Tong et al. [88] have described disparity compensation
techniques for compressing multiple images. Ihm et al. [35] and Girod et al. [17] used wavelet
tranforms for compression. Wilson et al. [93] proposed an incremental representation exploiting
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Figure 2.11: The layered coding syntax provides backward compatibility to conventional 2D digital
TV and allows to adapt the view synthesis to a wide range of different 2D and 3D displays.

spatial coherence. Ahuja et al. [36] proposed a compression algorithm based on the use of Wyner-
Ziv codes, which satisfies the key constraints for IBR streaming, namely those of random access for
interactivity and pre-compression. These techniques are used to compress the images alone without
using any geometry.

Magnor et al. [50] showed the enhancement in prediction accuracy using geometry such as depth
maps and 3D models. Figure 2.12 shows the prediction of images using the geometry. Gotz et
al. [29] proposed spatially encoded video, which uses spatial coherence to encode sample images
using model-based depth information. All these techniques look for compression of lightfield or
multiview images.

Geometry proxy is an approximated geometric model. Performance of rendering of novel views
can be increased by using geometry proxies [14, 28, 101, 55, 79]. Geometry proxies are also used to
increase appearance prediction by depth correction. All these techniques used geometry proxies for
increasing the quality of rendering views. Here, we use geometry proxy for compressing multiple
depth maps.

Krishnamurthy et al. [42] used Region of Interest (ROI) coding and reshaping of dynamic range
where the accuracy of depth is crucial for compressing depth maps. They showed that JPEG
compression on depth maps causes loss of depth information. The idea of having a compact
representation of 3D objects with depth images instead of polygon meshes to represent a scene was
introduced by Levkovich et. al [47]. They generated depth and treated it as a gray map. They
gave texture compression methods like simple textures, point textures and octree images.

Magnor et. al [50] used block-based disparity compensation for encoding multi-view image data,
mainly emphasizing on reducing the texture efficiently. They dealt with texture compressions and
had less to do with depth compression. Towles et. al [89] developed a system to transport and
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Figure 2.12: Geometry Proxy introduced by Girod et al.

render 3D Tele-Immersion data. The temporal and spatial coherence between the depth streams
was exploited to compress the depth maps efficiently.

For dynamic scenes, texture has been compressed by finding video objects (VOs) and video
object planes (VOPs) by Wu et. al [94] but depth maps were considered as simple gray maps as
shown in Figure 2.13. Depth movie compression can be efficient for 3D scenes, by exploiting the
temporal and spatial coherence of depth streams from various cameras. Kum et. al [43] attempted
to compress multiple depth streams of a scene, where they encode color and depth streams using
separate motion vectors. They concluded that for encoding a depth stream with high quality, using
separate motion vectors to encode color and depth performs better than using a single motion
vector.

Penta et. al [67] used parametric geometric proxies for defining 3D representation of depth maps.
They defined geometry proxy as an approximate description of the scene that is used to model the
common, position-independent, scene structure. The geometry proxy P can be a parametric model
or an approximate triangulated model. The proxy is assumed to represent the geometric structure
of the scene adequately. The depth value of each grid point is replaced by the difference of the
input depth map from the distance along the same direction to the proxy. The difference at each
grid point between the predicted and the actual depth values is stored as residues. The residues
are small in range everywhere if the proxy is a good approximation of the scene geometry.

The geometry proxy could be a parametric object like a bounding box, a best-fit ellipsoid, or an
approximate polygon-based model of the scene. Such proxies can be created from the input depth
maps themselves. Figure 2.15 shows how the residue images Ri are computed by projecting the
proxy to each depth image. These residues were bit-wise encoded to get the compressed forms. To
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Figure 2.13: Texture coding of an IBR object in the plenoptic video as shown by Wu et al.[94].

get the accurate representation back from the residues, penta et. al added an encoded bit to the
3D model and each time the generated 3D model got more closer in details with the input model.

2.8 Human Body Representation in Scene

Dynamic events involving humans is of special interest to telepresence. Therefore, the 3D repre-
sentation of the human body merit special attention in different scene representation technologies
for 3DTV.

Modelling the skeleton and body appearance Several articulated 3D representations and
procedural formulations have been proposed to model the structure and movement of the human
body. A human body model can be represented as a chain of rigid bodies, called links, intercon-
nected to one another by joints. Links are generally represented by sticks [3], polyhedrons [96],
generalized cylinders [34] or superquadrics [26]. A joint connects two links by means of rotational
motions around their axes. The number of independent rotation parameters defines the degrees
of freedom (DOF) associated with a given joint. Development of a highly realistic human body
model is a computationally expensive task, involving a problem of high dimensionality. In computer
vision, where models need to be only moderately precise, articulated structures with low DOF are
generally adequate [26, 21]. But, the stick forms of Aubel et. al [3] are considered to be highly
accurate representations consisting of more than 50 DOF and are usually desired. The models
proposed for the body appearance can be classified into four categories: stick figure models, surface
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Figure 2.14: Body Parts as shown by Balder et al. [7]

models, volume models, and multilayer models. Stick figure models as represented by Badler et.
al [7], are built using a hierarchical set of rigid segments, connected by joints; they allow for easy
control of movement, but realism is limited. They also gave a crude representation for the division
of human bodies in order to parametrize the body, as shown in Figure 2.14.

Surface models are based on two layers: a skeleton, which is the backbone of the character ani-
mation, and a skin. The skin can use different types of primitives: points and lines, polygons [85],
curved surface patches [49, 41], and subdivision surfaces [22]. In volumetric models, simple vol-
umetric primitives, such as ellipsoids, spheres and cylinders as shown by Yoshimoto et. al [100]
or implicit surfaces [85, 12] are used to construct the shape of the body. They perform better
than surface models but it is difficult to control a large number of volumetric primitives during
animation. Multilayer models consist of three layers: skeleton, muscle and skin. Complex motions
are produced easily by building up the animation in different layers. Chadwick et al. were the
first to use a muscle layer [16]. Nedel and Thalmann simulated muscles by a mass-spring system
composed of angular springs [65].

Motion of the Skeleton: There are a number of ways to procedurally model an articulated
human body using the kinematics and dynamics approaches. A mathematical model that describes
the parameters of the links and the constraints associated with each joint is called a kinematics
model and it can only describe the possible static states of a system [16, 6, 27]. In a dynamic model,
the state vector includes positions, linear and angular velocities, accelerations, and the underlying
forces and torques that act on this model [27, 5]. Dynamic model-based approaches are used to re-
alistically animate walking models. However, dynamic model-based techniques are computationally
more expensive than kinematics-based techniques. Determining the motion parameters explicitly
at each frame, even for a simple motion, is non-trivial. Hanrahan et. al [33] gave the solution
of specifying a series of key-frame poses and interpolate the joint parameters between those key-
frames. Linear interpolation is the simplest method of generating the intermediate poses, but it
produces a robotic motion due to discontinuous first derivatives in the interpolated joint angles.
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Obtaining smooth velocity and acceleration requires higher order interpolation methods, such as
piecewise splines by Steketee et. al [83].

Since dynamics simulation cannot solve all animation problems, motion capture techniques have
been introduced to animate virtual characters from real human motion data. Motion capture
methods are mainly used in the film and computer-game industries. The motion of a real actor is
captured by tracking the 3D positions and orientations of points located on him, using mechanical,
electro magnetic or optical technologies [80, 59]. This method produces realistic and highly detailed
motion in a short time. Gavrilla et. al [25] have also investigated marker-free optical methods,
as many application scenarios require no visual intrusion into the scene. Human body model
can be described in various ways but for human body models to be interchangeable, a standard
for animation is required. The Web 3D H-anim [1] standards for human representation and the
MPEG-4 representations for facial and body animation have been developed to meet this need [69].

Body Modelling: There are various methods to acquire 3D human body models. Some com-
mercial systems require special hardware, but they are expensive and can not be used in certain
cases. Using video frames rather than using special hardware is preferable. A number of techniques
using video frames have been proposed [30, 11, 3, 96, 3, 26, 21, 7, 85]. Gavrila et. al [26] simplified
the acquisition of the shape parameters with known poses. Figure 2.16 shows models used by them.

First of all, different views of the subject are obtained from different calibrated cameras or
one moving camera. From each view, the 2D silhouette of the subject is extracted. Then using
volume intersection, different views of the subject are intersected and a volumetric description of
the subject is defined. Finally, a model of the human body is fitted to the volumetric description
of the subject. Sticks, ellipses, cylinders, super-quadrics can be used for the predefined model. In
some methods [34, 11, 26] the subject needs to perform some initial movements in order to obtain
the model more accurately.

Body Motion Tracking: The initial position and posture of the person are assumed to be
known. Prior to human body motion estimation, the segmentation of human silhouette from the
background should be made. Then the feature extraction and tracking follows. The prediction of
movement is also used to solve the occlusion problem. Some tracking techniques try to determine
the precise movements of each body part as mentioned by Thalmann et. al [49], while other methods
focus on tracking the human body completely [41, 100]. Tracking techniques may also be classified
as 2D and 3D. Using a 2D approach, the motion in the image plane is analyzed either by exploration
of low-level image features or by using a 2D human body model. 3D tracking tries to obtain the
parameters that describe body motion in three dimensions. 3D tracking allows 3D pose recovery,
position estimation of the body parts in 3D space and orientation estimation of the body relative
to the camera. The 3D pose parameters are commonly estimated by iteratively matching a set of
image features extracted from the current frame with the projection of the model on the image
plane. The overview of existing human motion analysis techniques can be found in [12, 16, 65, 6].

Body Motion Recognition: Human motion recognition may be achieved by analyzing the
extracted 3D pose parameters. Girad et. al [27], instead of obtaining the exact position of a human
body, defined human motion recognition to identify the action performed by a moving person.
Most of the known techniques focus on identifying actions belonging to the same category (e.g.
specific sport movements, sitting down, standing up, walking, running, etc.) [27, 5]. Some of the
techniques recognize and identify several persons and their interactions [33, 83, 80]. Some of them
are developed to work in special environments and try to use prior knowledge about the layout of
the room, as defined by Menache et. al [59].
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Figure 2.15: The geometry proxy P (an ellipsoid in this case) represents common structure. It
is projected to every depth image. The difference in depth between the proxy and the scene is
encoded as the residue at each grid point of each depth map.[67].

Figure 2.16: 3-D human models “ELLEN” and “DARIU” using tapered superquadrics, [26]
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2.9 Summary

In this chapter, we reviewed earlier work done in representation of 3D scene, depth images, com-
pressing depth images and its applications to 3D Tele-immersion. We saw that major works that
has been done in past for 3D dynamic scene representation does not consider the difference be-
tween texture compression and depth compression. The D channel of dynamic scenes has been
left uncompressed or inefficiently compressed. This inefficiency incorporates for non-usability of an
important 3D scene representation, depth movies, for 3D tele-immersion. In the following chapters,
we present our work on proxy based compression and 3D scene representation using Depth Movies.
We will present our method of parametric proxy based compression of Depth Movies where we
have concentrated on depth movie compression exploiting both the temporal and spatial coherence
of depth movies. As human motion is regarded as the most complex of motions with a very high
degree of freedom, we have considered the example of scenes with complex human motions. Our
method involves parameterizing the human motions in a dynamic scene with the concepts high-
lighted by Section 2.8. We have represented these parameterized scenes with depth movies and
compressed them using proxy-based compression schemes in the following chapters. Next chapter
presents proxy-based compression of depth images in detail and also explains the preliminary ex-
periments to compress depth movies. Later we present the parameterized proxy-based compression
of depth movies.
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Chapter 3

Depth Map Compression

Depth images are viable representations that can be computed from the real world using cameras or
other scanning devices. The depth map provides 2- 1

2D structure of the scene. A set of depth images
can provide hole-free rendering of the scene. Multiple views of the scenes need to be blended to
provide smooth hole-free rendering, however. Such a representation of the scene is bulky and needs
good algorithms for real-time rendering and efficient representation. In this chapter, we present a
discussion on the depth image representation and provide a proxy-based compression scheme for
depth images.

3.1 Representation, Rendering and Compression of Depth Images

1. Representation: As depth images do not carry photometric information, they need to be
handled differently from the textured images. The depth images contain real numbers whose
range depends on the resolution of the rendering algorithm. As images with 16 bits per pixel
can represent depths upto 65 meters with a 1 millimeter resolution, bit reduction can be
applied as preprocessing to the depth maps before rendering.

2. Rendering: A depth map can be considered as a cluster of 3D points. These 3D points from
each depth image are rendered using splatting or triangulation. Since, a single depth map
lacks the full information about the scene structure, holes or gaps corresponding to the part
of the occluded scene being seen from the novel view. Multiple depth maps are rendered in
the vicinity of the view to fill these holes. The parts of the occluded seen are visible to the
multiple cameras nearby and blending such views gets the new scene without holes.

3. Compression: The image representation of the depth map may not lend itself nicely to stan-
dard image compression techniques like JPEG, which are psychovisually motivated. Since,
depth maps contain common information between the near-by views, spatial coherency can
be exploited to compress well after removing the redundant information. Thus, epipolar
constraint, disparity, multi-linear tensors, etc. can be exploited for compression of Depth
Images.
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Figure 3.1: An overview of a few models - texture and corresponding depth images.

3.1.1 Method: Description of the Models

The 3D models used for the experimentation are standard models like Armadillo, Happy Buddha,
Buddha, Dragon. We also used a few CyberWare models like Male, Female, Ganesh and Indi-
anGodess. The 3D models used in the experimentation were obtained from Georgia Institute of
Technology’s Large Geometric Models Archive, Tupperware, Cyberware and Konstanz 3D Model
Repository. Figure 3.1 shows a few of the models used and Table 3.1 gives the description of the
various models used. We also experimented with Stanford Bunny, horse, some small models like
hand. A brief overview of the method described below is shown diagrammatically in Figure 5.3.

3.1.2 Generating the Proxy Models

For each 3D model we generate the corresponding proxies. We consider, a proxy model as the
approximation of the original model with reduced number of triangles and the size of the file.
We reduced the Level of Detail(LOD) of the models using the GLOD, which is a lightweight tool
to generate geometric level of detail. GLOD performs simplification on objects as a collection of
patches. For each model, we generated five different LODs of Proxy models, ranging from few
hundreds to half the original triangles. The main aim is to get a proxy model with size with out
much of the detail of the model. The only parameter used while reducing the level of detail is
the number of the triangles. For example, one of our model initially had 8,71,414 triangles. We
generated the proxies with 400K, 200K, 50K, 10K and 1K triangles.
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Table 3.1: Model Descriptions
Model Name Repository Name Number of Triangles

Armadillo Georgia Tech 345944

Shakyamuni Konstanz 499996

Buddha Georgia Tech 1087716

Dragon Georgia Tech 871414

Ganesh Cyberware 413236

IndianGoddess Cyberware 274822

Male Cyberware 605902

Male WB Cyberware 296272

Female Cyberware 605086

Female WB Cyberware 243442

3.1.3 Setup

After proxy models are generated for each and every model, these models along with their proxies
are subjected to scaling. The cameras are placed in a circle round the Y-axis in a plane parallel
to XZ-plane. We placed 20 cameras in 2 planes with different angles of elevations, usually θ, 2*θ,
circling the model with ten cameras in each plane. We store the camera positions as the 3 matrices,
calibration matrix (K), rotation matrix (R) and translation matrix (T).

3.1.4 Depth Maps and Masking

The crucial part is generation of the depth map for each. The depth maps are represented using
16-bit values in an uncompressed format. This helps in capturing of 65535 different depth values
which is sufficient for any real practical situation. For each model, one depth map and a mask
corresponding to each view is stored. The mask is a bitmap which stores 1 for the background and
0 for the foreground, as a binary image. This mask is used later while calculation of the residues
and encoding or decoding the residues. We also calculated depth maps for all the proxy models.

3.1.5 Residues

Residue is the difference between the depth map and its corresponding depth map of the proxy
model from the same view. We can store the difference of all pixels, or only the difference of the
pixels that are in the foreground of the original model,i.e we store the difference of only those pixels
that are 1 in the mask. The mask is available while reconstructing the depth map back so we are
not loosing the position of the pixel in the original image. We store sign bit of these in a separate
bitmap, 0 and 1 representing the positive and negative sign of the residue.

In order to have a better compression of the residues, we need the variation of the difference in
depths to vary smoothly because it helps in encoding the residues with less number of bits and these
can be compressed well with standard methods like ZIP, LZW etc. We calculated the maximum
number of bits per pixel in the residue for all the data. A significant number of pixels need around
15 bits to represent the residue when depths are 16-bits long. This is not efficient, as the residue
needs a similar number of bits. A typical geometry proxy is as shown in Figure 3.3.

In order to reduce the big numbers at the fringes we assumed that there is a infinite plane present
at the depth equal to the average depth of proxy. This helps in shifting these large numbers to
smaller numbers and the maximum number of bits for the residues using this method is around 11
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Figure 3.2: A Flowchart overview of the proxy based compression strategy for Depth Images.

bits, only few pixels need more than 8 bits. The following Table 3.2 explains how we handle the
foreground and background situations.

We can easily calculate the mean depth of the proxy while reconstructing. The main aim of this
average plane at average depth is to reduce the maximum number of bits per pixel for the residue.

3.1.6 Encoding of Residues

We encode the 16-bit residues by using only the information in the foreground with the help of
mask and reduced the maximum number of bits required to around 11 bits instead of 16. So, we
try to encode these residues with various number of bits and compared the compression rates and
mean square error. We encoded the residues by three methods - most significant bit (MSB), least
significant bit (LSB), most frequent bit (MFU). We tried the bitrates from 0-8, at 8 bits the error
values were less.

• Most Significant Bits - MSB While encoding the depth maps with various bits we consider
the most significant bits first. Suppose we have the depth map with maximum bits of 12 then
we never store 0-4 least significant bits in any of the bitrate. Suppose the bitrate is 4 then
we consider only 12th, 11th, 10th and 9th bits in store. We then calculate the compression
rates and the mean square error. MSB mechanism has good compression ratios with less
mean-square-error compared to the LSB/MFU which will be discussed below.

• Most Frequently Used - MFU The one problem we observed in the MSB mechanism is that
a lot of pixels, nearly 30-40% or even more depending on the view/proxy model, has their
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Figure 3.3: A general triangulated geometric proxy and residue computation.

Table 3.2: ForeGround Background
Original Proxy Model Value Stored in Residue

ForeGround ForeGround absolute difference of both the
depths

ForeGround BackGround absolute difference of the orig-
inal depth and the average
depth of the proxy model

BackGround ForeGround / BackGround Nothing is stored. We store
the difference only when it is
the foreground of the original
image

residue values in the first 3-4 least significant bits or 4-8 bit positions from LSB side. Hence,
we try to send the bit positions with more number of pixel information. After analyzing the
bit planes of the pixels we store the more frequently occurring plane of bits first and so on.
This has compression rates comparable to MSB method but the mean-square-error is high.
We need a good error measure to compare MSB and MFU because mean-square-error can
vary a lot if we have one pixel with large pixel value as a error compared to that of the small
value.

• Least Significant Bits - LSB we also tried to encode the residue using the LSB but the results
are not encouraging. Both compression ratios and mean-square-error are not good. so we
discard this mechanism. Among the above three mechanisms MSB and MFU out performs
LSB method. MSB is good compared to that of MFU. It has high compression rates and low
MSE compared to other mechanisms.
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Figure 3.4: Figure shows original texture and depth map of male model, the depth map of a proxy
model, residue depth map and the reconstructed depth maps at 1 and 8 bits with MFU and MSB
methods used for coding

.

3.1.7 Decoding and Reconstruction of Depth Maps

For reconstruction of the depth maps, first we need to decode the residues. For decoding we
need the mask,average depth,sign Bit. Depending on whether it is background or foreground, we
add/subtract the residue values to the average depth or normal depth based on the mask. Figure
3.4 shows such reconstructed depth maps.

3.2 Results

The Table 3.3 shows the results for the 3 datasets with varying proxies. Among the datasets that
we used, Armadillo is the most dense dataset with 3,390,515 points and about 7,500,000 triangles.
The model was created using 114 scans and then VRIP was used to arrange all the scans together.

The analysis of the experiments was done as to how the trend between MSE, compression ratio
(CR), number of bits, proxy levels, sampling rate (SR) and other parameters varies. We observed
that CR decreases with the increase in the number of bits taken for the residues. This is justified
because, as the number of bits for storage increase the compression ratio also reduces. On the other
hand, CR increases with the sampling rate (SR) as less number of triangles are used to store the
same model. If we lower the number of triangles in the proxy of the model, more sudden is the
change in CR (steeper is the curve) when the number of bits to represent the residue decreases.

For different proxies of a model, MSE values increase if the number of bits to represent the
residues decreases. As the number of triangles to represent the proxy reduces, MSE increases
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Table 3.3: Compression ratios for Armadillo, Buddha and Dragon datasets with varying proxies
and 8 bit compression

Compression Ratios and MSE for 3 Models

Dataset triangles CR/SR=1 CR/SR=2 CR/SR=3 MSE/SR=1 MSE/SR=2

Armadillo

100K 9 28 52 2 6.0e+06
50K 8 25 48 3 5.5e+06
1K 4 12 23 13 6.0e+06

Buddha

100K 8 27 49 0.9 5.0e+06
50K 7 24 44 1.7 5.0e+06
1K 4 13 25 7 5.1e+06

Dragon

100K 9 29 51 0.5 5.0e+06
50K 9 30 53 0.7 4.5e+06
1K 4 15 28 5 4.0e+06
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Figure 3.5: Graphs for Buddha model showing trends of compression ratios with SR, bits, camera
views for two different proxies of 100000 and 300000 triangles.

since the reconstructed model drifts more and more from the original model without compression
and a representation with all the triangles. MFU gives higher MSE in comparison to MSB. MSE
increases drastically if sampling rate (SR) increases, also with SR=2,3,4, since the resolution of
the reconstructed model reduces. For higher sampling rates (values not equal to 1), MSE remains
almost same for all the proxies, as the values are in 107. CR values decrease with the increment in
the JPEG Quality factor, since with the JPEG quality factor the size of the textured images also
increases. By compressing textures(using JPEG directly), we find that there is a gradual change
in CR with the proxy change, increment in sampling rate (SR) and decrement in number of bits to
represent the residues. In comparison to without texture compression, CR values decreases in the
compression with textures.

The graphs in the Figures 3.5, 3.6 show the variation of varies trends in different models.
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3.3 Summary

In this chapter, we have presented a proxy based depth image compression method using different
3D real models. This chapter has given us deep insight in a general proxy based compression of
depth images from multiple views. The triangulated proxy used here is a specific example of a
general common proxy.
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Figure 3.6: Graphs for dragon and female models showing trends of compression ratios and MSE
with SR, bits, camera views and proxies
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Chapter 4

Depth Movie Compression:

Preliminary Work

In this chapter, we explore some elementary ideas on compressing multiple depth movies. We study
the use of standard image and video compression methods on depth movies primarily.

4.1 Depth Movie

A depth movie, as described in the previous chapters, consists of 3 channels as described below in
brief.

• I Channel The I channel contains a conventional video and can be represented as one. Tradi-
tional motion-compensated representations such as MPEG can work well with this channel.
However, the images of I channel are meant to be used for generating new views using the
depth maps.

The standard video-compression algorithms use perceptually motivated compression schemes
based on DCT, DWT or its variants. They result in a softening of sharp variations in colour
and intensity. Colour would seem to bleed across a boundary between two sharply different
colours. The boundaries in colour are also likely to be boundaries in depth. A boundary
in the depth map is very likely to also correspond to a boundary in the image. Bleeding of
colours across a depth boundary is distracting and will be noticed quickly as the viewpoint
varies. Thus, the compression for the I channel should be performed with this in mind.

• D Channel

The D channel can be thought of as a video of depth values. It may appear that video
compression schemes (like MPEG) can be applied to them. There are very critical differences
that make this tricky and undesirable.

1. The depth values are typically floating point numbers, unlike images which are unsigned
integers or bytes. They need to be normalized. This can cause artifacts such as the loss
of precision.

2. Colour constancy of a region is an implicit assumption in motion compensation. With
depth maps, the depth values represent z-coordinates and not colours. The values un-
dergo a transformation as per the 3D motion of the objects. The region is moved and
the values are affected in a coordinated manner.
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Terrain Scene Castle Scene House Scene  Monkey Scene Box−Ball Scene Road Scene
(4 dynamic objects)(5 dynamic objects)(6 dynamic objects)(4 dynamic objects)(6 dynamic objects)(4 dynamic objects)

Figure 4.1: Images and Depth Images of all the scenes used for Experiments

• C Channel

The C channel gives the calibration parameters across time. They can be specified in terms
of a 3 × 4 matrix of real numbers or as explicit representation in terms of the position,
orientation, focal length, etc. In either case, only a few numbers are needed to specify one
set of calibration parameters. They are likely to change infrequently or not at all since the
camera is not likely to make rapid motions. Thus, no special representation or compression
is necessary for the C channel.

4.2 Compression of the D Channel

The D channel encodes time-varying depth values and is similar to a video channel. The depth
values can in practice be converted into integers by selecting an appropriate scale for depth rep-
resentation. Using 16-bit unsigned integer values, 64K different depths can be represented. This
provides sufficient precision as well as range in most practical situations. For example, a space of
65 meters can be described by this scheme with a precision of one millimeter. Thus, standard video
compression schemes can be used to compress the D Channel, after converting it to integer values.

Lossless compression schemes are designed to reconstruct the data exactly. They produce lower
compression ratios but the quality of the D Channel after compression and decompression is perfect.
Lossy compression schemes potentially throw away data but in such a way that the unimportant
data is discarded first. This results in the uncompressed image to be different. The impact of the
discarded data needs to be analyzed. Since we are interested in using depth maps and texture for
image-based rendering, we use the original and compressed depth maps for new view generation
using the rendering algorithm reported in [90]. The corresponding PSNR values are then reported.

4.2.1 Full Frame Compression

We first look at the compression strategies that treat each depth frame as a whole, in contrast to
the differential schemes which work on the frame-to-frame differences in depth values. The depth
values are encoded using 16-bit integer values. The full range of depths may not be used in many
situations in some depth maps. The entropy-based compression schemes may be able to exploit
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Figure 4.2: CR and PSNR of Monkey scene for 16 and 8 bit depth values with no noise,5% noise
and 20% noise

this automatically. We, however, explore the performance of the representations when the range is
transformed from 16 bits to 8 bits.

• LZW Compression: Entropy-based lossless compression schemes such as Huffman encoding
produce optimal compression, but require the probability distribution of the symbols used. A
standard symbol table with associated probabilities can be built for a domain such as depth
maps after examining sufficient standard documents. Adequate performance can be obtained
by other algorithms such as the LZW which does not need such a table a priori. The encoding
algorithm builds a table of substrings as the input is scanned. The table does not need to be
stored along with the compressed data and can be built at the decoder, though the table is
tuned to the data being compressed. We explore the amount of data redundancy present in
the depth image sequence. We use the LZW compression as implemented by the zip package
for this. The depth values are stored as 16-bit numbers in the raw format into files, one
for each time instant. These files are compressed together using the zip package on Linux
and the resulting compressed file size is compared with the total storage requirements of the
input files to determine the compression ratio. The above process compresses each frame
independently and the inter-frame similarities may not be exploited to the fullest. We modify
the experiment by storing the entire depth sequence as a single binary file with the frame
(i + 1) immediately following the frame i.

The simple compression scheme exploits the redundancy adequately. The compression per-
formance increases with the length of the sequence as the commonality increases.

• Quadtree Representation and Compression: A quad-tree representation of an image can com-
press it if the image has sufficient spatial redundancy. We compress each frame of the depth
sequence by first representing it using a quadtree as in [74] followed by a compression of the
tree data using the gz algorithm.

• Quadtree Differences: The quadtrees of successive frames is highly correlated. We can then
encode the first quadtree in full and the subsequent ones using the difference with the previous
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ones. For this, the tree is scanned from the root. The tree nodes that are same are encoded
as a single symbol. If a node differs in the later frame, that fact is recorded and the entire
subtree is stored. The assembled difference data structure is later compressed using gz to get
rid of the data redundancy.

• JPEG Encoding: We can encode each depth frame using JPEG, treating it like an image.
This can introduce artifacts as JPEG is perceptually motivated and those assumptions may
not hold for depth values.

• MPEG Encoding: The depth sequence can be treated like a video and compressed using a
standard compression scheme like MPEG.

• Depth Difference Coding: The depth values at corresponding locations of successive frames
are likely to be highly correlated and hence change slowly with time. A differential encoding
scheme can exploit this. We explore several options for this. The range of depth differences
is even lower than that of the individual depth values. We explore the representations when
the differences are encoded using 16 and 8 bits per value.

• LZW Compression of Differences: The depth sequence can be encoded using a standard
differential coding technique. In this, the pixel-wise difference between successive frames
is computed as a difference map, which is compressed using a lossless scheme like zip to
eliminate data redundancy.

• Quadtree Encoding of Differences: The difference map between frames can be encoded using
a quadtree. If the subsequent frames are highly correlated, the difference map will contain
small and uniform values.

• JPEG Encoding of Frames: We can encode each depth frame using JPEG, treating it like an
image. This can introduce artifacts as JPEG is perceptually motivated and those assumptions
may not hold for depth values.

• MPEG Encoding of Movie: The depth sequence can be treated like a video and compressed
using a standard compression scheme like MPEG.

4.3 Experimental Results

We conducted our experiments on 6 different dynamic scenes as shown in Figure 4.1. All had either
1,2 or 3 cameras.The number of objects moving in the scenes varied from 4 to 6. Figure 4.3.1
and Figure 4.3.2 show compression ratios for all 6 scenes using 16-bit and 8-bit depth values.
Figure 4.3.3 and Figure 4.3.4 show PSNRs for the corresponding cases. When we add noise to the
depth maps, the CRs and PSNRs show a varying trend as shown in Figure 4.2 and Figure 4.2 and
these trends are explained in section 4.4.

4.4 Discussions and Conclusions

For an application that uses depth maps, it needs to analyze the trends of depth image compression
and the factors that effect the compression ratios (CRs) and PSNRs. Looking at the graphs in the
Section 4.3, we see that for data without noise, the best compression ratio is achieved by MPEG,
which is in agreement with the fact that it works on B and P frames and stores the motion vectors
only as a result the CR is exceptionally high, though the PSNR suffers.
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Figure 4.3: Results for all all 6 scenes where ; 1st bar graph shows CR with 16-bit frames; 2nd bar
graph shows PSNR for 16-bit frames; 3rd bar graph shows CR with 8-bit frames; 4th bar graph
shows PSNR for 8-bit frames
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The next best CR is achieved by JPEG with 40% quality, but at the same time the PSNR falls
sharply. This trend can be attributed to the fact that JPEG compression is in itself lossy so JPEG
at 40% quality will be more lossy than 60% or 100% quality compressions. Zip compressions being
lossless have PSNRs as infinity as there is no loss; however, CRs are significant values. On the
other hand, Quadtree methods being lossless have lower CRs but at the same time high PSNR
values. Differential Quadtree method has better compression ratio. We are storing lesser amount
of redundant data so the CRs for each of the above mentioned methods with 8-bit depth values are
better than those for 16-bit depth values. PSNR values show a reverse trend from that of CR. Also,
when we add noise to the data sets, the compression ratios go down in all the cases as shown in
Figure 4.2. Figure 4.2 shows that PSNR values for all the cases decrease as the noise level increase
in the frames of the depth movies.

4.5 Summary

We experimented on compressing depth movies using the already existing methods for movie com-
pression. We analyzed the results and found that these methods are generic methods for any movie
and we need to exploit the properties of depth movies, keeping the integrity of depth values in the
depth movies. In the next chapter, we introduce the concept of Parametric Proxy-based compression
of Depth Movies.
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Chapter 5

Parametric Proxy Based Compression

of Depth Movies

A generic real-life scene can consist of moving or static humans and objects. They can be widely
divided as rigid/non-rigid, dynamic/static with time in shape/position. The common example of
such a scene is a moving human subject. Therefore, we concentrated our study of representing
and compressing scenes with human subjects performing various actions, like dancing, playing,
exercising, running, etc, as shown in Figure 5.2, represented using multiview depth movies. We
use 16-bit integer depth values for the depth maps. This gives a compact and exact representation
than using floating point, without compromising on the range of values in practice. A generic basic
scheme of compression is as given in Figure 5.1.

Rendering

Network

Request from Client

Compression
Representation

for
Depth Movies

Reconstructing
Depth Movies

Input 3D scene
(Multiview Depth Movies)

Figure 5.1: Basic scheme for compression.

In this chapter, we focus on the algorithms to compress such scenes using a parametric proxy
representation for the scene.

5.1 Algorithm Overview

Parametric proxy as explained before, is a way of representing an object using a set of parameters
and a standard model. We extend proxy-based compression to dynamic scenes or depth movies.
Figure 5.3 presents the overview of compressing a generic 3D scene using a parametric proxy. The
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Figure 5.2: Figure Shows three humans in different poses from 20 cameras.

input to the system is a 3D scene comprising of multiview depth and texture maps of a human
performing some action. A standard articulated human model is used as the parametric proxy.
The first task is to fit a proxy to the point cloud for each frame. Figure 5.4 shows the depth maps
from one of the cameras, the point cloud representation obtained by projecting depth estimates
from all the cameras to a common reference frame and the fitted articulated human model. Details
of our fitting tool are given in section 5.2.3. The depth maps of the proxy model for each frame
serve as a prediction of the input depth maps. The prediction error between the original and the
proxy depths is calculated by subtracting the proxy depth from the input depth. These residues
are encoded and sent to the client along with the parameters of the proxy. At the client’s side,
the parameters are applied on the articulated human to generate the proxy model and its depth.
Residues are added to these depth maps to get the real depth for rendering.

5.2 Proxy-Based Compression of Depth Movies

A proxy is a common prediction of a generic model. In this scheme, we assume that the scene consists
of human subjects in different poses and performing different actions. The generic articulated model
defines the proxy for the subject with changing bone parameters for every new frame. Angles of
the bones are the parameters that define the proxy for each frame. First, this proxy is fitted to the
input and then the parameters are computed and recorded. The residues are then processed using
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Figure 5.3: Overview of 3D Depth Movie compression and transmission

different schemes and algorithms to compress and send to the client.

5.2.1 Camera Setup

A setup of cameras is used as shown in Figure 5.5, with m cameras set in a room to capture
a human in different poses. The calibration parameters of the cameras are also included in the
representation so that the 2D sampling grid and the imaging rays of the depth image can be known
in 3D space. The combination of a depth map and an image describes the local structure from one
viewpoint and can be used to reconstruct the views of the scene from other viewpoints.

We use synthetic cameras to generate the depth movies. We also use datasets that are publicly
available.

5.2.2 Parametric Proxy for Human Models

The parameters of a common articulated parameterized model are joint angles that change from
one frame to another through the movie, but are same for all the cameras. The articulated model
we use has 18 vertices as joints. The joint angles are the free variables of the model and serve as
the parameters using which any position of the actor can be represented. The parameters change
over time, but are same for all views at any time instant. Each bone position needs 3 parameters
for the angles as heading (h), pitch (p) and roll (r). Thus, for each frame, a total of 18 × 3 = 54
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Figure 5.4: Articulated model fitting: Top row shows the depth maps for 5 frames, middle row
shows the corresponding point clouds for each frame and the bottom row shows the corresponding
fitted articulated model

parameters are needed. We use a single size parameter to scale the base model uniformly. The
basic model is skeletal. A triangulated skinned model is used to generate the realistic articulated
human model. We assume the skeletal and skinned model to be available to both the encoder and
the decoder. This way, for each unique pose of human, only a few bytes are needed to represent
the parameters.

The proxy model we used is a graphical model developed in AC3d and attached to it is a texture
storing the information for the vertices and the colors related to it. Figure 5.8 and 5.9 show the
hierarchy of the model, its 3D coordinates and the texture coordinates. This model is used for
computing the parameters in our fitting tool.

5.2.3 Computing the Proxy Model

The input depth movie consists of mn depth maps and texture images for n frames from m cameras.
We unproject the depth maps from each camera to get a point cloud for each frame and fit an
articulated model to this representation. This can be achieved either automatically or manually.
At present, we use a semi-automated tool to fit a skinned model for each frame to the point cloud.
After getting the point cloud for each frame, the proxy model is aligned with it for the first frame.
The next point cloud representation is progressively fit by changing a few parameters from the
previous frame. The problem of fitting an articulated model from images and from depths has
been studied in the past [2, 26, 86]. The fitting can be performed by optimizing the error between
the skinned model and the point cloud as shown in Figure 5.6. Fitting subsequent frames is easier
as the parameters change slowly. Since the model fitting is not our main focus, we fit the model
interactively using a semi-automatic tool built for the purpose. We can fit the first frame of a
sequence in less than 60 seconds and the subsequent frames in less than 15 second per frame, on

47



	
		
		
		
	�
��
��
��
�

�
�
��
�
��
�
��
�
�
�
�
�








�
��
��
��
��
��
��
��
�

�
�
��
�
��
�
��
�
��
��
��
��
�

"n" Frames and "m" cameras

Figure 5.5: Setting of 20 cameras around the scene.

Figure 5.6: The primitive design of our Fitting Procedure.

an average. In the end, the parameters of the articulated model for each frame represent the scene
parametrically as a proxy.

Our fitting tool is developed over the opensource pLib library. It provides a user interface for the
user to fix the angle parameters of the proxy as per the input human subject. User can visualize
the 3D point cloud and fit the 3D articulated model to it. For each unique pose of human, only a
few bytes are needed for the parameters. These parameters are stored in a bone file and the depth
maps of the proxy are captured from m cameras set in the tool.

5.2.4 Residue Computation

The fitted proxy model consisting of the generic skinned model and the bone-angle parameters, can
be projected to each view to get its depth map and a mask bit. The mask has a 1 for every pixel
part of the original depth map and helps identify the true projection of the subject so that the
computation can be restricted to it. For each residue map, a foreground mask bit identifies pixels
belonging to the actor in each view. The mask is obtained by thresholding the input depth values.

The difference between the actual input depth map and the proxy depth map is stored as the
residue or the prediction error for each frame. The residue values are represented using a sign-
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Figure 5.7: Overview of 3D Depth Movie compression and transmission using simple residue en-
coding.

Figure 5.8: Generating a 3D graphical proxy model in AC3d.
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Figure 5.9: Fixing the texture coordinates to the proxy model.

magnitude format to facilitate bit-plane encoding of residues. The sign bit and the magnitude bits
of the residue are stored separately. Thus, we have mn residues, mask and sign images for each
frame and view. Figure 5.13 shows the input depth map, the fitted depth map and the difference
between the two as the residue map and the sign image.

Algorithm 1 Direct Encoding At the Server Side for n frames from m cameras.

Input : n depth maps from each of m cameras, k-bit for encoding.
Output : mn residues, n parameter files ( Bone-File).

1: Fit the parameters of the proxy for the input point cloud. Recover bones angles from each
frame.

2: Project the depth of fitted proxy to each camera, to get the proxy depth maps.
3: Compute the residue R by subtracting proxy depth from input depth.
4: Compute mask images.
5: Encode R for the given bit rate as R

′

, using mask.
6: Do a Run-Length Encoding (RLE) on Mask images.

5.3 Direct Encoding and Decoding of the Residues

The encoding at the server side is done as per Algorithm 1. The residues are small in range if
the proxy model fits the original model well. Residues are more correlated across time since the
difference of proxy and original varies very smoothly from one frame to another. Hence, residue
movies compress better than the depth movies. We compress the residues either using MPEG or
bit-plane encoding.

• MPEG Compression:
The basic idea behind MPEG video compression is to remove spatial redundancy within a
video frame and temporal redundancy between video frames. Motion-compensation is used
to exploit temporal redundancy. The images in a video stream usually do not change much
within small time intervals. The idea of motion-compensation is to encode a video frame
based on other video frames temporally close to it. DCT-based (Discrete Cosine Transform)
compression is used to reduce spatial redundancy. We encode all the frames from each of the
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m cameras as a MPEG movie, to get m residue movies. This however could lose quality of
the depths. MPEG can incur high reconstruction costs also.

• Bit-Plane Encoding:
We break up an image into bit planes and apply run length coding to each plane. We combine
the most significant bits for each pixel into one bit plane, the next most significant bits into
another bit plane, and so on. This scheme allows for the use of a reduced number of bits for
the residues, something that MPEG cannot. Thus, the residue can be encoded incrementally.
This is important in a server-client setup. As more bandwidth is made available, more bits
can be sent to increase the quality.

The bit-plane coding scheme compresses the residues to as many bits as client asks for, by
using the most significant bits. This is shown in Figure 5.7. The most significant k-bits are
taken to represent a residue.

5.3.1 Compressed Representation

The representation to be sent to the rendering client includes the following. (a) The bone-angle
parameters for each frame, (b) the mask bits for each view and each frame, (c) the sign bits for
each frame and view, (d) m MPEG streams for the residue values when using MPEG or (d) the
bit-plane encoded residues for each frame and each view when using bit-plane encoding. All data
is zipped together at the end as a simple entropy-encoding method. This information is sent to the
rendering client, which decodes the depths back. Figure 5.7 shows the server-client system thats
used for the proxy based parametric compression of depth movies.

5.3.2 Decoding

Decoding at the client is done as given in Algorithm 2. First the encoded residues are extracted
along with the bone parameters. These parameters are used to generate the proxy depth maps of
the articulated model. The residues are then added to these depth maps to generate the depth
maps of the subject at the client side. This can be used for immersive rendering of the scene along
with its appearance. Figure 5.13 shows the decoded depth maps after adding 3-bits and 8-bits of
depth maps generated using bone parameters at the client side

Algorithm 2 Decoding at the Client Side for i = 1,2, · · · ,n frames

Input :mn residues, mn Masks and n bone parameter files.
Output :n depth maps from each of m cameras.

1: Get the bone parameters file for the frame.
2: Capture the proxy depth maps, D using the bone angles for articulated proxy model.
3: Do RLE Decoding to get the masks.
4: Get bit encoded residue R.
5: D + R → D

′

, use D
′

to render the 3D scene.

5.4 Difference Residue Encoding and Decoding

By compressing residues using bit-planes, we were able to exploit the spatial coherence of Depth
movies. Compression of one depth map frame is totally incoherent with the next frame or any other
frame in the movie. In this section, we propose another method to exploit the coherence between
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the two consecutive frames in a depth movie. The key idea is to compute the difference of residues
between successive frames to exploit the temporal coherence.

Algorithm 3 Encoding depth maps for n frames from m views/cameras using Difference Residues

Input: n depth maps from each of m cameras, k for encoding.
Output: mn Residues Differences, n parameter values (one per frame)

1: Fit the proxy model to the point cloud for each frame and recover the bone-angle parameters.
2: Compute the mask image for each frame of each view.
3: Project the fitted proxy to each view and compute the proxy depth maps.
4: Compute the residue R by subtracting proxy depth from input depth.
5: Identify the key frames, and the block sizes between consecutive key frames.
6: Compute the residue difference D for the frames in a block by subtracting R(i+1) from Ri.
7: Encode residues R with K-bits and residue differences D with k-bits.
8: JBIG encode on mask images.

As discussed before, we exploit temporal correlation by computing residue differences as Di =
Ri − Ri−1, where Ri is the residue for frame i, as shown diagrammatically in Figure 5.11. This
exploits the temporal relation between frames of the residues and uses it to compress the data.
The residue differences are compressed as bit-planes which significantly reduces the space for data
storage.

We encode the residue map as blocks of frames that contain one residue map or R frame of
residue values and several D frames of residue differences. A block is a random-access unit and its
length is determined by the requirements for random access. We have experimented with various
lengths of the blocks.
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Figure 5.12: The structure of a block with R frames, D frames and optional I frames.

The R frames are linking key frames and are encoded with K most-significant bits of the residues.
The D frames with k most-significant bits. K and k bits are specified as per the quality, network
bandwidth and compression requirements.

Mask and sign images are bi-level maps with 0 and 1 values only. We compress these with JBIG
encoding. JBIG is a lossless image compression standard from the Joint Bi-level Image Experts
Group, standardized as ISO/IEC standard 11544 and as ITU-T recommendation T.82. JBIG was
designed for compression of binary images, particularly for faxes, but can also be used on other
images. JBIG uses a form of arithmetic coding patented by IBM known as the Q-coder. It bases
the probabilities of each bit on the previous bits and the previous lines of the picture. In order to
allow compressing and decompressing images in scanning order, it does not reference future bits.
JBIG also supports progressive transmission with small (around 5%) overheads.

Different quality points can be obtained by varying K and k, which can be varied in a real-time
client-server setup. We also use an incremental representation to exploit any additional available
bandwidth. We send the next i.e., (K + 1)th bit-plane of the residue as an incremental frame or I
frame when the resolution has to be increased. The value received is added to the current R frame,
thus improving the quality of all frames till the end of the block. As shown in Figure 5.12, an extra
bit at I frame provides the increment in the bit representation for the following frames, thus there
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on increasing the quality of the movie.

Ri = R0 + D1 + D2 + · · ·+ Di−1 (5.1)

R
′

i = R
′

0 + D1 + D2 + · · ·+ Di−1 (5.2)

(5.3)

Equation 5.1 shows R0 encoded with K bits and subsequent D frames encoded with k bits. When
1 extra bit is added to the R frame as shown in Equation 5.2, R0 → R

′

0, and the subsequent Ri

frames also get better representation. Thus, the quality of R
′

i
gets more than Ri.

The compression using difference residues can be summarized as following steps:

1. Exploit temporal correlation by computing residue differences as Di = Ri − Ri−1, where Ri

is the residue for frame i.

2. Encode the residue map as blocks that contain one R frame of residue values and several D
frames of residue differences. A block is a random-access unit and its length is determined
by the requirements for random access.

3. Encode R frames with K most-significant bits of the residues and the D frames with k
most-significant bits of the residue difference.

4. Encode mask bits using the JBIG algorithm.

5.4.1 Compressed Representation

The data to be sent to the rendering client includes the following. (a) The bone-angle parameters
for each frame, (b) the mask bits for each view and each frame, (c) the sign bits for each frame and
view, (d) m MPEG streams for the residue/difference residue, R/D, values when using MPEG or
(d) the bit-plane encoded residues/difference residues, R/D, for each frame and each view when
using bit-plane encoding.

The articulated model and the skinning triangles are available at both ends and need not be
transmitted. The model parameters (bone-angles) take only a few bytes per frame. The mask and
sign images contain only 0 and 1 values. They are compressed using JBIG compression scheme as
discussed before. We also tried run-length encoding and other such schemes to compress bit-maps,
but JBIG gave the best performance in all cases as its based on probability analysis and is lossless
too. When we used MPEG for coding R and D frames, we encoded the data using the ffmpeg

library with the given bit-rate as asked by clients. Otherwise, when we used bit-plane encoding,
the R and D frames are compressed into a long sequence of bits and then entropy coded using zip.

The frames of each view are also independent, with some using residues and others using residue
differences. All data is zipped together at the end. This packed information is sent to the rendering
client, which decodes the depths back. The final representation contains one parameter file per
frame, one mask, one sign bit, and an R or D plane per frame per view. The data for a whole
block (between two R frames for bit-plane coding or between two I frames for MPEG) needs to be
together logically and can be treated like a package to be sent to the client.

5.4.2 Decoding

The decoding process is shown Figure 5.11 and is described in Algorithm 4. Each block of data
is treated independently by the client. The bone-angle parameters are applied to the articulated
model. The resulting model projected to the camera of each depth stream, giving the proxy depth
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Figure 5.13: Results showing input depth, residues, residue differences, sign and reconstructed
depth.

Algorithm 4 Decoding at the client side for i = 1,2, · · · ,n frames

Input: mn residues differences, mn masks and n bone-angle parameters
Output: mn depth maps for each view/frame for rendering

1: Get the bone-angle parameters for the frame from the input stream.
2: Capture the proxy depth maps D using the parametric proxy model for each frame and view.
3: Decode the sign bit and mask bit.
4: Compute the residue difference RD for each frame and view.
5: Use equation 5.2 to get R.
6: D′ ← D + R. Use D′ to render the 3D scene.
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maps. The residue maps are recovered from the R frames of the packet. The residue maps are
added to the proxy depth map to get the decoded depth map for that view and frame. For D
frames, the residue differences recovered from the packet are added to the current residue map R i

to get the next residue map Ri+1, which is added to the proxy depth map for that frame to get the
decoded depth values as given in Equation 5.2. The foreground mask is needed to keep track of
the changing silhouette of the actor. The depth map of frame i+1 may include pixels not in frame
i. If frame i + 1 is a D frame, the current average residue value is used as the reference for the
residue difference. If the incremental frame arrives, the bit-plane for it is assembled and added to
the current running residue R′

i
. Improved quality results till the end of the current block. Figure

5.13 shows the effect of the algorithm on a given depth map sequence from one of the cameras.

5.5 Summary

In this chapter, we discussed the proxy-based compression schemes for multiview depth movies of
a scene involving dynamic human action. We showed that for sending such huge 3D information
with accurate and most useful data, parametric proxy method can be good along with the residue
encoding algorithm and difference residue encoding. A summary of the system with depth difference
residue encoding and decoding scheme is summarized in Figure ??. We used a simple articulated
model as the proxy and joint angles as the parameters that approximate the model for a particular
frame. The schemes explained in this chapter provide good compression ratios at acceptable quality
levels, as shown in the next chapter. The proxy-based schemes provide several controls on the
amount of data to be sent. This makes it ideal for sending the captured data for applications like
3D teleconferencing. In the next chapter, we give details about our datasets, the experiments we
did on them and an analysis report.
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Chapter 6

Experimental Results

6.1 Datasets

The Proxy based compression method for depth movies was experimented on synthetic and real
datasets. We used two kinds of datasets, synthetic (simulated using real MOCAP datasets on
synthetic human models) and real (real motions of a real human being).

6.1.1 Synthetic Datasets

We created synthetic datasets with many simulated real life MOCAP (Motion capture) datasets in
POSER. Random datasets with POSER act as preliminary datasets to analyze depth movies with
no significant real actions. We were able to simulate real life actions using MOCAP in POSER.
We used CMU’s MOCAP repository in achieving long sequences of significant actions like running,
dancing, etc.

A standard POSER human model was animated using the MOCAP parameters and 16-bit depth
maps were captured from 20 viewpoints. 16-bit depthmaps help in capturing depth to 65535 meters.
The joint-angle parameters for compression are very similar to the MOCAP files. We, however,
added noise to the joint angles to simulate bad fitting of the model to real data. We also added
slow-varying noise to the depth values to simulate errors of the depth-recovery process. The depth
noise has a small random component at each pixel which rides on top of a larger component that
varies slowly over the whole depth map.

6.1.2 Real Dataset

Real Datasets for depth movies are hard to find. We have shown our experiments on a Doo-Young
karate sequence from ETH-Z as shown in Figure 7.1. The dataset consists of frame sequences
rendered from 15 different camera views located in a hemisphere around the scene, background
images, segmentation masks, depth images, and camera parameters. The recorded scene contains
human performing punches of a Kung-Fu fighter. The camera setup and the further information
about the dataset has been given in appendix-2.

6.2 Experimental Setup

Fitting procedure is simple with minimal human involvement. We can fit the first frame of a
sequence in less than 60 seconds and the subsequent frames in less than 15 seconds, on an average.
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Figure 6.1: Doo-Young Dataset Depth movie from ETH-Z.

6.2.1 Synthetic Data Unit

As we show in Figure 6.3, the synthetic data that we get from POSER is processed in the ADU to
generate the input depthmaps and textures for each N frames from M cameras. When we get the
data from the Poser we get the additional information of the 3D Model representing the initial frame
and α the initial bone angles for each pose of the human subject. This the major difference between
real and the synthetic data and to make our experiments of the final compression rich we plan to
exploit this difference, by creating a varied scenarios of experiments. In the second step from ADU
the information of M + α

′

is given to the Residue Unit. In RU we generate the difference residue
between the input model and the present frame bone configuration α

′

and we also give the new
approximate representation of the scene represented as M + α. This approximate representation
of the scene is known as the Proxy for the human subject. Residue is represented as the difference
between the original model and the proxy model. We store this residue as a representation for the
spatial aspect of the compression. The temporal effect of the dynamic data can be compressed
either using MPEG compression or using Difference encoding. Difference encoding scheme stores
the difference along the temporal line. The decompression is done after adding the differences to
the initial frames. Thus residue, R can be represented as the difference between X (original M +
α

′

) and A ( proxy as M + α ). This residue is compressed using varied number of bits (1 to 8) as
the representation for the residues. This is then encoded using difference encoding or MPEG for a
motion vector representation of the same. In the decompression unit, the encoded bit representation
is decoded back to give the depthmaps for each M cameras in N frames. This is the used for PSNR
computation. After decoding, the residue bits are added to the proxy M + α

′

, and hence quality is
governed by the number of bits added to get to the original depthmaps. If the original depthmap
of nthframe and from mth camera is represented as X, then after DU we get ( X - A ) + R

′

, as the
decompressed depth map. Thus the difference between X and ( X - A ) + R

′

is majorly reflected
in the PSNR computation.
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Figure 6.2: Double-gaussian noise insertion method for the depth maps.

α in the Figure 6.3 is denoted as the bone parameters for each nth frame. α
′

represents the noisy
version of α obtained from the input data. Here noise represents the slight variations in the bone
angle parameters for the bones of the human subject/ model/ proxy.

Different experiments and their variations/ combinations to be conducted in such a scenario of
synthetic data can be listed as -

1. Keeping Same M for input and the proxy, but changing the α values, i.e., representing the M
by 18 bones or 28 bones(as specified by POSER).

2. Keeping the same number bone structure but varying the proxy model and the input model.

3. Changing both model M and number of bone elements in α.

4. Input Depth map with different amount noise variations. The noise that we refer here is a
kind of gaussian noise that varies locally and very smoothly. Basically, the mask of 8x8 blocks
is created on the depth map and each of these blocks have a gaussian of their own with a σ
and µ specified.

5. Compression factors can be varied by either doing an MPEG compression or by difference
encoding.

6.2.2 Noise Generation

Since, real data of depth movies isn’t available freely, we experiment with MOCAP datasets simu-
lated as real data by adding two noise. We induces two kinds of noise to the MOCAP data. First,
the bone noise is added to the bone angles. Stereo noise is a very general noise occurring in real
life depth maps, so for the second noise, we induce a localized but correlated noise to the mn depth
maps. Generated sigma is chosen to govern the gaussian over the whole depth map, which makes
the noise correlated. In the next step, the localized noise with the mean as the value from previous
common gaussian is applied as a localized gaussian over some k × k mask in the image. Thus,
512/k × 512/k blocks get a localized but centrally correlated noise that signifies stereo noise.

We induce preprocessing noise in order to have the depth maps and bone files from input and the
Parametric Proxy Generation Tool (PPGT), different in values, as is expected to be in case of real
data. We see that Depth Noise hasn’t been a simple noise. We take proper care to introduce the
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Algorithm 5 Preprocessing step for MOCAP datasets.

Require: ∃ MOCAP file
1: repeat
2: for i = 1 to n do
3: Get the bone parameters file, B-File.
4: Use B-FILE to generate the proxy depth maps from m cameras in the MOCAP file.
5: Induce Bone Noise
6: for b = 1 to 18x3, where , 18=number of bones, 3=h,p,r angles do
7: Convert b⇒ b

′

, where b
′

= b± (rand) x factor, where factor = 0.2, 0.3, 0.4.
8: end for
9: Induce Depth Noise

10: Divide image into 8x8 blocks of pixels.
11: Compute a Gaussian mask of µ = 0, and σ = 2 and (512/8)x(512/8) size.
12: Use each pixel value of this mask to be the σ for each 8x8 block created before, to create

the Gaussian noise with µ = 0.
13: end for
14: until All the Frames are done.

depth noise because, if depth gets random noise, then the 3D subjects in the scene get deformed.
So, by our method, depth values get a local deformation and thus the shapes remain intact.

1. Calculate the Bone parameters from the MOCAP file and make the bone file, B-FILE com-
patible with the PPGT.

2. Use B-FILE to render the depth maps in PPGT for each frame in the MOCAP file.

3. Induce Bone Noise
for each bone value b in 18 x 3 space
where, 18=number of bones, 3=h,p,r angles
Convert b to b

′

, where b
′

= b± (rand) x factor, where factor = 0.2, 0.3, 0.4.

4. Induce Depth Noise ( our image size is 512x512)

• Divide image into 8x8 blocks of pixels.

• Compute a Gaussian mask of µ = 0, and σ = 2 and (512/8)x(512/8) size.

• Use each pixel value of this mask to be the σ for each 8x8 block created before, to create
the Gaussian noise with µ = 0.

6.2.3 Real Data Unit

We have real data from MSR, the ”breakdance” seqeunce and the ”Ballet dance” sequence and
from ETH-Z, the ”taekwando” sequence. MSR data has N=100 frames from M=8 cameras. ETH-Z
data has N=100 frames and M=3 cameras. As we can see in the Figure 6.4, the major difference
between the processing of the synthetic and the real data is that as we don’t have the original input
model with us, we have no prior knowledge of M and α. Thus, RDU in contrast with ADU doesn’t
generate the depthmaps and textures for each frame, instead it is provided as the dataset. Now, in
the second step, as we don’t have a prior information for M + α, we approximately fit the real data
using our human proxy fitting tool for each frame in FU. This tool comes in handy for guessing the
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Figure 6.3: A schematic diagram to show the steps to be followed for experimenting the proxy
based dynamic depth compression strategy with synthetic MOCAP data

approximate bone angles for each frame and also it gives the depthmaps for the proxy with that α
configuration from M cameras. Thus, using this fitting tool M(proxy) + α is obtained with a noise
in alpha itself. The rest of the units, RU, CU and DU are same as before.

Different experiments and their variations/ combinations to be conducted in such a scenario of
real data can be listed as -

1. Input Depth map with different amount noise variations. The noise that we refer here is a
kind of gaussian noise that varies locally and very smoothly. Basically, the mask of 8x8 blocks
is created on the depth map and each of these blocks have a gaussian of their own with a σ
and µ specified.

2. Compression factors can be varied by either doing an MPEG compression or by difference
encoding.

6.3 Results of Residue Encoding

The MOCAP data and the bone angle parameters are the same, except for the bone noise. The
proxy model is articulated using the noisy bone angles to generate the depth maps. Residues are
generated by subtracting the fitted proxy depth maps from the input depth maps, which uses the
MOCAP data without noise. These residues are compressed using both schemes and with varying
number of bits.

For decoding, bone parameters are given to the proxy model available to the client to get the
proxy depth maps. The decoded residues are added to approximate the original depth maps as
shown in Figure 6.3. The quality of the reconstruction is governed by the quality of the residues.
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Figure 6.4: A schematic diagram to show the steps to be followed for experimenting the proxy
based dynamic depth compression strategy with Real Data

If residues are encoded losslessly, the original depth maps can be reconstructed. Lossy encoding
using MPEG on the residues or fewer number of bits will distort the model. For comparison, we
also encode the original depth maps directly using MPEG and compare the reconstruction results
for all three options.

Results on a few synthetic datasets are shown in Table 6.1. We experimented on 5 datasets
with 100 to 300 frames. The compression ratio is with respect to the original, uncompressed
depth maps. The PSNR is calculated by comparing the reconstructed depth maps with the input
depth maps. MPEG compression exploits the spatial and temporal redundancy in the data so
sometimes it improves over the proxy based compression scheme. The bit-plane scheme provides
high compression and moderate quality at low number of bits and good compression and excellent
quality at higher number of bits. It provides totally random access of the depths of individual
frames. Most interestingly, the option of using 0 bits of residue provides a very low bit-rate
approximation of the input scene. The error of such approximation is somewhat high as the
reconstructed shape at the client will be that of the articulated model. Figure 6.5 plots the PSNR
and the compression ratio against the number of bits used to encode the residues for one dataset.
It can be seen that the PSNR varies slowly with the number of bits, but the compression ratio of
bit-plane encoding is very good. The MPEG compression of depth and residues (MPEG-R and
MPEG-D in Table 6.1) provides decent compression and quality, but the bit-plane encoding scheme
provides more size to quality tradeoffs to suit any situation.
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#bits Throw Spin Kick Break dance Dance FootBall
used (100 frames) (100 fr.) (120 fr.) (230 fr.) (300 fr.)

0 10584/10.11 19859/10.59 12563/9.35 11309/10.33 14391/12.34

1 4927/24.56 9354/25.56 5397/23.31 6371/22.60 6927/26.07

2 4839/25.03 9247/26.85 5036/24.56 6005/23.91 6543/28.11

3 4737/25.41 9218/28.31 4821/25.91 5941/24.35 6307/29.67

4 4650/25.52 9137/29.92 4598/26.74 5803/25.69 6251/30.93

5 4542/26.82 9116/31.53 4512/28.34 5749/26.78 6201/31.16

6 4458/28.93 9069/32.63 4439/29.16 5710/28.54 6149/33.32

7 4386/30.91 9032/34.17 4387/29.55 5673/29.01 6111/34.51

8 4257/32.57 8959/35.09 4297/29.97 5592/29.36 6021/36.93

MPEG-R 4239/26.49 9129/29.43 4353/26.84 5549/25.81 5945/29.91

MPEG-D 4154/24.58 8938/28.23 4155/25.35 5302/25.96 5713/27.82

Table 6.1: Compression ratios and PSNR for different datasets with varying bit-wise compression,
MPEG encoding of the residues (MPEG-R) and MPEG encoding of the input depth maps (MPEG-
D). The first number is the compression ratio and the second the PSNR.
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Figure 6.5: Results for 1-8 bit-wise encoding on Spinkick dataset with 100 frames

6.4 Results of Difference Residue Encoding

The following results are using Difference Encoding with various combinations of bit encoding,
noise values, block size, etc., on 3 MOCAP generated datasets and one real dataset.

Results on a few synthetic datasets are shown in graphs of Figure 6.8. We experimented on
three MOCAP sequences, Indian dance, Ballet and Exercise, each with around 300-400 frames
each. The compression ratio is with respect to the original, uncompressed depth maps. The PSNR
is calculated by comparing the reconstructed depth maps with the input depth maps. The residue
compression exploits the spatial redundancy but we do residue difference encoding scheme that
exploits both the temporal and spatial aspects of Depth movies. The bit-plane scheme provides
high compression and moderate quality at low number of bits and good compression and excellent
quality at higher number of bits. As we increase the number of bits in encoding, the compression
ratio, as expected, decreases with increase in the quality factor. Also, it provides totally random
access of the depths of individual frames. Most interestingly, the option of using 0 bits of residue
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Figure 6.6: Compression ratio and PSNR for Doo-Young real dynamic depth movie dataset.

provides a very low bit-rate approximation of the input scene.
Other than joint angle noise and depth noise, we varied the block sizes for coding the depth movies

to get nice compression figures with good quality. We observed that as the block size increases, the
average compression ratio increases and the PSNR decreases. Thus, higher blocks are preferable
for coding as encoding with K bits is lesser than k bits for D-Frames, where K > k. Keeping
the block size constant, with increasing the joint noise the compression ratio reduces as higher
bits are needed to fully represent the residues. Figure 6.25 plots the PSNR and the compression
ratio against the number of bits used to encode the residues, K and number of bits used to encode
residue differences, k, for one dataset. It can be seen that the PSNR varies slowly with the number
of bits, but the compression ratio of bit-plane encoding is good.

We compared our method with the present state of Art, MPEG. The MPEG compression of
depth and residues (MPEG-R and MPEG-D in graphs of Figure 6.8) provides decent compression
and quality, but the bit-plane encoding scheme provides more size to quality trade-offs to suit any
situation.

With real dataset we carried out the same experiments. Doo-Young dataset consists of 8-bit
images. The results for compression ratios and quality are as shown in Figure 6.6. The point cloud,
is fitted in the same manner as in the MOCAP dataset. Here, we do not have any noise levels since
no simulation of noise is required as it being a real dataset. We observed that the trade-offs are
much similar to the MOCAP simulated real dataset.

We observed from graphs in Figures 6.8, 6.6, if the remote client asks for a particular range
of compression ratios and quality, he has a set of choices among various combinations of K-bits,
k-bits and block sizes. This makes the system effective for a remote-server-client teleimmersion
environment with user compatible service options.

6.5 Conclusions

We presented results of a proxy-based compression scheme for multiple depth movies of a scene
involving dynamic human action. The scheme provides good compression ratios at acceptable
quality levels. The proxy-based scheme provides several controls like number of bits, block sizes,
etc. for the client to control the amount of data to be sent. We have shown results on three
synthetic datasets, “Indiandance”, “Exercise” and “Ballet”. These are real world Motion Capture
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(MOCAP) sequences applied on graphical synthetic models. The proxies of these MOCAP datasets
are simulated to behave as real sequences by inducing bone noise and depth noise for all the frames.

Table 6.2 shows the results on three synthetic datasets with bone noise of 3 degrees and table
6.3 shows the same results with bone angle noise of 5 degrees. Both the tables show compression
ration and PSNR (CR/PSNR) values for varying k-bits and K-bits. The plots show the stats for
compression ratio and PSNR with varying k, K bits for encoding.

We have noticed that increasing the bone noise factor, as the difference between actual depth and
the proxy depth increase, more is the residue generated. Hence maximum bit for full representation
increases and thus more bits are required to handle the 3D scene with quality at the client side.
As shown in graphs of Figure 6.8, for the same block size, decreasing the K-bits increases the
compression ratio but reduces the quality of the scene. Compression ratio increases as the number
of bits sent to client decreases, and quality (PSNR) of the scene decreases as the number of bits
to represent the scene reduces. Since, compression ratio is inversely proportional to quality of the
scene achieved at the client side, there exists a trade-off for optimal bits to be sent through the
network.

Also, from the same Figure 6.8, we notice that increasing the block size increase the compression
factor as the number of data sent as difference residue increases. Since, difference residue are
represented as k-bits where k < K bits, the data to be sent reduces. Thus, at the receiver end,
client can decide on the number of bits and block sizes on the deciding factors like bandwidth
available and the quality required.

6.6 Plots for the results

 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

Compression Ratio for IndianDance data with block size=25

 0 1 2 3 4 5 6 7 8 9 10 11 12 K-bits

 0

 1

 2

 3

 4

k-bits

 1800
 2000
 2200
 2400
 2600
 2800
 3000
 3200
 3400
 3600
 3800
 4000
 4200
 4400
 4600

CR

 35
 36
 37
 38
 39
 40
 41
 42

Peak Signal to Noise Ratio for IndianDance data with block size=25

 0 1 2 3 4 5 6 7 8 9 10 11 12 K-bits

 0

 1

 2

 3

 4

k-bits

 35.2
 36

 36.8
 37.6
 38.4
 39.2

 40
 40.8
 41.6

PSNR

Figure 6.7: Results for IndianDance Dataset with block size=25, bone noise=3, and K=0,5-14,
k=0-4

66



 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 0  1  2  3  4

C
om

pr
es

si
on

 R
at

io
s

k-bits

CR Vs k-bits, varying K-bits and Block Size (K, B), for "Ballet" with Noise level=3

MPEG-R
MPEG-D

0,50
0,25
5,50

0,100
5,100
9,100

12,100
9,50

12,50
5,25
9,25

12,25

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 0  1  2  3  4

P
SN

R

k-bits

PSNR Vs k-bits, varying K-bits and Block Size (K, B), for "Ballet" with Noise level=3

MPEG-R
MPEG-D

12,100
12,50
9,100
9,50

12,25
9,25

0,100
5,100
5,25
0,25
5,50
0,50

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 0  1  2  3  4

C
om

pr
es

si
on

 R
at

io
s

k-bits

CR Vs k-bits, varying K-bits and Block Size (K, B), for "Exercise" with Noise level=5

MPEG-R
MPEG-D

0,25
0,50

0,100
5,50

5,100
9,100

12,100
9,50

12,50
5,25
9,25

12,25

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 0  1  2  3  4

P
SN

R

k-bits

PSNR Vs k-bits, varying K-bits and Block Size (K, B), for "Exercise" with Noise level=5

MPEG-R
MPEG-D

12,100
9,100
12,25
9,25

12,50
9,50
5,50
5,25
0,50
0,25

5,100
0,100

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 0  1  2  3  4

C
om

pr
es

si
on

 R
at

io
s

k-bits

CR Vs k-bits, varying K-bits and Block Size (K, B), for "Indian Dance" with Noise level=3

MPEG-R
MPEG-D

0,25
0,100
0,50

5,100
5,50

9,100
12,100

9,50
12,50
5,25
9,25

12,25

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 0  1  2  3  4  5

P
SN

R

k-bits

PSNR Vs k-bits, varying K-bits and Block Size (K, B), for "Indian Dance" with Noise level=3

MPEG-R
MPEG-D

12,25
9,25

12,50
9,50

9,100
12,100

5,25
5,100
0,50
0,25

0,100
5,50

Figure 6.8: Compression Ratio and PSNR results for Ballet, Exercise and IndianDance Dataset
with block size=25/50/100 and varying joint angle noise levels, K=0,5,9,12, plotted against k
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#bits IndianDance Exercise Ballet

K k B = 25 B = 50 B = 100 B = 25 B = 50 B = 100 B = 25 B = 50 B = 100

0

0 4598/35.3 4410/35.7 4454/35.1 3295/36.2 3214/36.2 3141/35.3 3226/35.9 3289/35.2 3150/36.3
1 4205/35.8 4077/36.1 4099/35.3 3173/36.5 3081/36.6 3018/36.7 3081/36.3 3149/35.9 3020/37.1
2 3686/36.5 3533/36.7 3481/36.2 2919/37.1 2806/38.0 2750/37.2 2810/37.8 2882/37.5 2740/37.8
3 3128/36.9 2999/37.1 2946/36.9 2583/37.8 2433/38.4 2390/37.4 2464/38.4 2510/37.9 2375/38.9
4 2604/37.1 2533/37.8 2495/37.6 2227/38.0 2043/39.2 1996/38.8 2078/39.1 2096/38.9 1985/39.0

5

0 3803/36.8 4208/34.8 4348/36.2 2895/36.9 3098/36.2 3084/36.4 2795/36.2 3189/35.6 3103/36.2
1 3511/37.2 3895/34.9 4001/36.6 2789/36.8 2969/37.0 2962/37.1 2677/37.0 3052/37.2 2973/36.9
2 3129/37.9 3385/35.3 3407/37.2 2583/37.7 2708/38.4 2700/38.1 2460/38.2 2797/38.7 2699/37.9
3 2710/37.9 2895/36.2 2894/37.9 2312/38.0 2356/38.7 2350/38.9 2185/39.0 2442/39.1 2343/38.5
4 2297/38.1 2457/37.0 2457/38.3 2011/38.2 1986/38.9 1967/39.2 1867/39.3 2047/39.3 1962/39.3

7

0 2991/37.5 3923/36.3 4189/36.4 2401/37.1 2928/38.3 2998/36.5 2344/36.9 3029/36.3 3025/36.7
1 2796/37.9 3644/37.0 3859/37.2 2323/38.6 2809/38.5 2880/37.0 2258/38.0 2902/36.8 2900/37.0
2 2533/38.2 3183/38.2 3300/38.7 2165/39.5 2562/38.9 2624/38.2 2089/39.0 2658/37.2 2629/37.6
3 2235/38.5 2747/38.5 2817/38.9 1956/40.2 2243/39.4 2288/39.5 1873/39.4 2334/38.6 2288/38.8
4 1948/39.0 2351/39.1 2401/39.0 1741/41.1 1903/39.9 1923/39.9 1639/39.7 1970/39.7 1923/39.9

9

0 2789/38.9 3827/37.8 4130/37.3 2231/36.9 2849/37.8 2956/38.2 2211/37.1 2950/38.2 2986/38.2
1 2602/39.4 3556/38.4 3801/38.5 2156/37.9 2735/38.6 2835/39.1 2128/38.8 2827/39.1 2857/39.3
2 2367/39.8 3118/38.7 3261/38.9 2013/39.9 2494/39.5 2585/39.8 1969/39.6 2589/39.4 2594/40.2
3 2100/41.2 2696/39.5 2789/39.1 1833/40.6 2187/39.6 2257/40.6 1779/40.6 2281/40.1 2260/40.9
4 1845/41.6 2317/40.2 2381/39.3 1640/41.9 1862/39.9 1901/40.8 1564/40.9 1930/40.6 1902/41.6

12

0 2870/38.9 3878/37.9 4158/37.2 2292/36.9 2887/37.9 2976/38.3 2263/37.3 2973/38.3 2997/38.3
1 2688/39.3 3598/38.3 3827/38.2 2216/37.9 2769/38.5 2852/38.4 2175/38.2 2847/38.9 2866/39.5
2 2446/40.0 3154/38.7 3282/38.9 2075/40.0 2526/39.5 2604/39.8 2023/39.7 2609/39.4 2606/40.3
3 2165/41.1 2720/39.6 2805/39.1 1885/40.9 2210/39.8 2273/40.2 1824/40.1 2295/39.9 2270/41.1
4 1906/41.7 2336/40.2 2392/39.3 1681/41.9 1882/40.0 1912/40.9 1597/40.7 1941/40.4 1910/41.7

M-D 2019/37.4 2177/37.2 2184/37.2 2038/36.1 2238/37.2 2287/36.6 1996/36.3 2166/35.7 2350/37.8

M-R 1110/37.6 1165/35.6 1202/36.1 1009/38.9 1093/38.8 1174/37.4 1147/37.1 1218/36.9 1275/36.1

Table 6.2: Compression ratios and PSNR for 3 different datasets with varying bit-wise compression of key frame residues R , residue
differences D,varying block sizes=25/50/100, bone noise=3, MPEG encoding of the residues (M-R) and MPEG encoding of the input
depth maps (M-D). The first number is the compression ratio and the second the PSNR.
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Figure 6.9: Results for IndianDance Dataset with block size=50, bone noise=3, and K=0,5-14,
k=0-4
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Figure 6.10: Results for IndianDance Dataset with block size=100, bone noise=3, and K=0,5-14,
k=0-4
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Figure 6.11: Results for IndianDance Dataset with block size=25, bone noise=5, and K=0,5-14,
k=0-4
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Figure 6.12: Results for IndianDance Dataset with block size=50, bone noise=5, and K=0,5-14,
k=0-4
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Figure 6.13: Results for IndianDance Dataset with block size=100, bone noise=5, and K=0,5-14,
k=0-4
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Figure 6.14: Results for Exercise Dataset with block size=25, bone noise=3, and K=0,5-14, k=0-4
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Figure 6.15: Results for Exercise Dataset with block size=50, bone noise=3, and K=0,5-14, k=0-4
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Figure 6.16: Results for Exercise Dataset with block size=100, bone noise=3, and K=0,5-14, k=0-4
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Figure 6.17: Results for Exercise Dataset with block size=25, bone noise=5, and K=0,5-14, k=0-4
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Figure 6.18: Results for Exercise Dataset with block size=50, bone noise=5, and K=0,5-14, k=0-4
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Figure 6.19: Results for Exercise Dataset with block size=100, bone noise=5, and K=0,5-14, k=0-4
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#bits IndianDance Exercise Ballet

K k B = 25 B = 50 B = 100 B = 25 B = 50 B = 100 B = 25 B = 50 B = 100

0

0 3561/35.1 4919/35.0 3472/36.1 3583/36.4 3489/36.4 3392/35.4 3463/36.1 3560/35.2 3438/36.0
1 3280/35.9 4607/35.8 3321/37.0 3432/36.7 3336/37.0 3243/36.1 3283/36.8 3386/36.2 3268/36.8
2 2690/36.5 3959/36.3 2954/37.5 3088/36.9 2969/38.2 2885/37.2 2959/37.7 3035/37.1 2876/37.1
3 1981/37.2 3058/36.9 2416/37.9 2583/37.3 2430/38.2 2373/37.9 2468/38.1 2486/38.0 2332/37.9
4 1381/37.9 2241/37.4 1875/38.1 2059/37.9 1910/38.4 1870/38.1 1962/38.3 1952/38.6 1817/38.9

5

0 2870/36.2 4589/36.9 3385/36.8 2956/36.7 3322/36.8 3310/36.2 2870/36.3 3407/36.5 3365/36.0
1 2671/36.8 4302/37.5 3237/37.3 2840/37.0 3177/37.5 3164/37.2 2735/37.1 3241/37.2 3197/36.9
2 2241/37.2 3719/37.9 2882/37.5 2591/37.5 2830/38.5 2816/38.5 2496/37.9 2911/38.3 2813/37.4
3 1720/37.9 2908/38.1 2366/38.0 2205/38.5 2335/38.9 2324/39.0 2119/38.0 2398/38.9 2291/38.0
4 1243/38.9 2154/38.1 1842/38.7 1810/39.9 1847/39.4 1838/39.6 1733/38.8 1893/39.4 1790/38.8

7

0 2338/37.5 4231/37.7 3283/37.1 2426/38.2 3124/38.2 3209/38.2 2359/36.8 3195/37.3 3257/36.4
1 2198/38.0 3982/38.0 3141/38.1 2344/39.0 2991/38.4 3069/38.5 2264/37.5 3044/38.0 3097/36.9
2 1883/38.7 3453/38.3 2796/38.5 2154/39.7 2669/38.8 2729/38.6 2079/38.2 2735/38.7 2726/37.9
3 1487/39.3 2736/38.9 2304/39.0 1873/40.0 2215/38.9 2261/39.0 1803/38.7 2272/38.9 2226/38.7
4 1117/39.8 2057/39.1 1803/39.4 1575/40.2 1772/39.3 1798/39.2 1512/39.1 1814/39.0 1751/39.9

9

0 2223/38.2 4122/37.1 3250/37.1 2220/39.5 3017/39.2 3152/39.8 2229/36.4 3104/36.7 3209/37.2
1 2088/38.3 3882/37.8 3108/38.0 2140/40.1 2891/38.8 3007/39.0 2128/37.0 2960/38.0 3045/38.3
2 1809/38.4 3372/38.2 2767/38.7 1978/40.7 2580/38.5 2679/38.5 1964/38.7 2660/39.3 2686/39.8
3 1436/39.3 2678/38.9 2281/38.9 1740/40.0 2149/38.9 2222/39.0 1719/39.2 2215/40.0 2197/40.1
4 1087/40.3 2026/39.6 1789/39.1 1475/41.4 1728/39.4 1774/39.9 1449/39.9 1778/40.6 1733/40.5

12

0 2317/38.3 4186/37.1 3269/37.2 2324/39.5 3076/39.2 3184/40.0 2308/36.4 3154/36.8 3236/37.3
1 2172/38.3 3937/37.8 3121/38.1 2243/40.2 2944/38.8 3036/39.0 2209/37.1 3004/38.1 3069/38.4
2 1873/38.5 3418/38.3 2785/38.7 2074/40.8 2631/38.5 2708/38.5 2043/38.7 2700/39.4 2710/39.9
3 1486/39.3 2704/38.9 2294/39.1 1813/40.1 2185/39.1 2245/39.3 1778/39.2 2244/39.0 2214/39.4
4 1115/40.4 2047/39.6 1800/39.2 1531/41.5 1755/39.5 1788/40.0 1495/40.0 1800/40.6 1744/40.6

M-D 2011/37.2 2148/37.1 2148/37.1 2028/36.7 2229/38.1 2335/36.7 1936/36.3 2149/35.1 2339/37.7

M-R 1007/36.1 1103/36.6 1178/36.8 1097/39.1 1148/38.0 1216/37.1 1043/37.9 1129/36.3 1214/36.1

Table 6.3: Compression ratios and PSNR for 3 different datasets with varying bit-wise compression of key frame residues R , residue
differences D,varying block sizes=25/50/100, bone noise=5, MPEG encoding of the residues (M-R) and MPEG encoding of the input
depth maps (M-D). The first number is the compression ratio and the second the PSNR.
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Figure 6.20: Results for Ballet Dataset with block size=25, bone noise=3, and K=0,5-14, k=0-4
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Figure 6.21: Results for Ballet Dataset with block size=50, bone noise=3, and K=0,5-14, k=0-4
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Figure 6.22: Results for Ballet Dataset with block size=100, bone noise=3, and K=0,5-14, k=0-4
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Figure 6.23: Results for Ballet Dataset with block size=25, bone noise=5, and K=0,5-14, k=0-4
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Figure 6.24: Results for Ballet Dataset with block size=50, bone noise=5, and K=0,5-14, k=0-4
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Figure 6.25: Results for Ballet Dataset with block size=50, bone noise=5, and K=0,5-14, k=0-4
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Chapter 7

Conclusions and Future Work

In this thesis, we presented various algorithms for compression of time-varying multiview depth
movies. Time varying depth and image sequences, called Depth Movies, can extend Image based
rendering and modelling (IBMR) to dynamic events. Depth movies capture time varying geometry
of a dynamic scene and are often streamed to a distant location for immersive viewing. The
applications of such systems include virtual-space tele-conferencing, remote 3D immersion, 3D
entertainment, etc. Immersive display applications and transmission of depth images for each
frame requires time-varying sequences of depth images from multiple cameras in order to get the
21

2D information of the scene. Multiview image compression and video compression have been well
studied earlier, but there has been no study about dynamic depth map compression. The dynamic
depth map data is heavy and need efficient compression schemes. Our thesis contributes towards
developing dynamic depth map compression algorithms for efficient transmission in a server-client
3D teleimmersive environment.

Our work explored the compression of depth movies of human actors using a parametric proxy model
for the underlying action. We use a generic articulated human model as the proxy to represent
the common human model in action and the various joint angles of the model to parametrize the
proxy for each time instant. The proxy represents a common prediction of the scene structure. The
difference or residue between the captured depth and the depth of the proxy represents the scene
prediction error, which is encoded to exploit spatial and temporal coherence. We experimented with
bit-wise compression of the residues and analyzed the quality of the generated 3D scene. Differences
in residues across time, difference-coded frames, are used to exploit temporal coherence. Also, intra-
frame coded frames and difference-coded frames provide random access and high compression. We
presented results on several synthetic and real actions to demonstrate the compression ratio and
resulting quality using a depth-based rendering of the decoded scene. In summary, we simulated a
3D tele-immersive or teleconferencing system using depth Movies, representing them with a simple
proxy, compressing it using residues and reconstructed it at the client side. Our compression scheme
resulted in a compression ratio of 4919/3058/2735/1800 at PSNR levels of 35.0/36.9/38.7/40.6. Our
scheme also provides trade-off in bitrate and quality.

Today, 3D tele-presence and teleimmersive environments are designed to overcome disadvantages
of desktop videoconferencing, that gives and artificial presence of the remote location, and to
establish a life-like conference sessions that bring people at the remote locations together as if face-
to-face. In most basic terms, it transmits a life-size 3D image of an environment to the remote client,
creating the perception of the client’s presence in the room by transmitting and reconstructing both
the environment and the voice at the remote site. Our system represents the dynamic 3D presence
as multiview depth movies, captures them, efficiently compresses them taking care of compression
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ratios and qualities for a real-time transmission and then renders them back at the remote site with
real-time depth image based rendering algorithms. Thus, the most basic application of our system
is 3D teleimmersion.

3D Tele-immersion systems are these days being used remote educational institutions, remote
surgical operational training, corporate remote meetings, research labs, etc. Our application can
eventually be effectively used in the same manner.

We started with an idea of representing any generic dynamic scene with rigid/ non-rigid, dy-
namic/ static object(s) using a common proxy model(s). In our thesis, we have concentrated on the
most difficult thing to represent in a scene, i.e., a human being, but as future work, we would like to
increase the scope of the work to animals like dogs, cows, etc. The work differs only at generating
a different hierarchical proxy model. Also as future work, we can include different number and
different kinds of objects in a scene. Thus, the idea that we have presented, can easily be taken
as the further work to enhance the scope, by including animals, and similar non-rigid objects to
capture the essence of a true tele-conferencing system. Extending it to non-human generic scenes.
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Appendix 1

The work done during my masters has been disseminated to the following conferences:

1. Pooja Verlani, Aditi Goswami, P. J. Narayanan, Shekhar Dwivedi, Sashi Kumar Penta Depth
Images: Representations and Real-Time Rendering. Proceedings of Third Interna-
tional Symposium on 3D Data Processing, Visualization and Transmission (3DPVT 2006),
14-16 June 2006, Chapel Hill, North Carolina, USA, 962-969.

2. Pooja Verlani, P. J. Narayanan Parametric Proxy-Based Compression of Multiple
Depth Movies of Humans. Proceedings of Data Compression Conference 2008, 25-27
March 2008, Snowbird, UT, USA, P:550.

3. Pooja Verlani, P. J. Narayanan Proxy-Based Compression of 2 1
2D Structure of Dy-

namic Events for 3D teleconferencing. Proceedings of Fourth International Symposium
on 3D Data Processing, Visualization and Transmission (3DPVT 2008), 18-20 June 2008,
Georgia Institute of Technology, Atlanta, GA, USA.
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Appendix 2

We would like to thank Michael Waschbusch from ETH-Z for providing the Doo-Young sequence
for real depth movies as shown in 7.1 The data was captured from 15 cameras for 250 frames as
shown in Figure 7.2.
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Figure 7.1: Doo-Young Dataset Depth Movie from ETH-Z.

Figure 7.2: Camera Setup for Doo-Young Dataset.

For further details please visit: http://graphics.ethz.ch/research/3dvideo/main.php?Menu=7&Submenu=0
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