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Abstract

The automation of activities in all areas, including business, engineedigmcg, and government,
produces an ever-increasing stream of data. Especially, the amoumiliihedia content produced
and made available on the Internet, both in professional and persdretioms is growing rapidly.
Equally increasing are the needs in terms of efficient and effective twaysinage it. And why is that
s0? Because, people believe that data collected contains valuable infornBattpextracting any such
information/patterns is however an extremely difficult task. This has led tea gmount of research
into content based retrieval and visual recognition.

The most recent retrieval systems available extract low-level image ésaad conceptualize them
into clusters. A conventional sequential scan on those image featurés approximately take about a
few hours to search in a set of hundreds of images. Hence, clusteingdexing forms the very crux
of the solution. The state of the art uses the 128-dimensional SIFT as leldescriptors. Indexing
even a moderate collection involves several millions of such vectors. Hnehsperformance depends
on the quality of indexing and there is often a need to interactively tune tlregsdor better accuracy.
In this thesis, we propose a visualization-based framework and a todhateres to the it to tune the
indexing process for images and videos. We use a feature selectiaraappo improve the clustering
of SIFT vectors. Users can visualize the quality of clusters and inteehctiontrol the importance of
individual or groups of feature dimensions easily. The results of theggscan be visualized quickly
and the process can be repeated. The user can use a filter or ammaqoet in our tool. We use input
sampling, GPU-based processing, and visual tools to analyze corrslatignovide interactivity. We
present results of tuning the indexing for a few standard datasets. Aifémg iterations resulted in an
improvement of over 5% in the final classification performance, which isfaignt.
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Chapter 1

Introduction

The amount of digital data created worldwide is accelerating at an urgaetss, virtually incom-
prehensible rate. A study conducted by Hilbert et al. [33] documents thedge in global digital data
between1986 and2007. They estimate that the current global storage capacity for digital informatio
totals aroun@95 exabytes (an exabyte equals one billion gigabytes). The study suggestertiputing
storage capacity is growing at arousgipercent annually and the ability for enterprises to capture, col-
late and analyze organizational data is becoming simultaneously more impaodatiffecult to manage
as observed in Figure 1.5.

The automation of activities in all areas, including business, engineedigycg, and government,
produces an ever-increasing stream of data. The data is collected ilang databases because people
believe that it contains valuable information. Extracting the valuable informatmmever, is a difficult
task. When researchers have to analyze a new observational détegéitst try to learn what the data
set looks like using descriptive modeling. Even with the most advanced daligses systems, finding
the right pieces of information in a very large database with millions of data itemaine a difficult
and time-consuming process. Hence, search is the only plausible way teafurable information.
But without an index, the search engine would scan every item in the £avpich would require
considerable time and computing power.

A traditional sequential scan would approximately take about a few howesaieh a set of tens of
thousands of text documents. The additional storage required to stareléxe as well as the increase
in the time required for an update to take place, are traded off for the time slavag information
retrieval. Search engine technology has had to scale dramatically to keéfhupe growth of the web.
One of the first web search engines WWWW (World Wide Web Worm) [5d]dmaindex of 110,000
web accessible documents in 1994. As of 1997, the number of indexeddots rose to 100 million.
By the end of 2003, Google [1] claimed to have indexed about 4 billion wehments. As of 2011,
the indexed web contains atleast 14.6 billion pages [6]. In order to prtsedech results’ in real time
on such huge amounts of data, indexing is a must. Several datastrucuedsden used so far to meet
the requirements of a particular search engine architecture. Some of tbleieisuffix trees, inverted
index, document-term matrix, Ngram, etc.



But with the advent of social media websites like Flickr, Youtube and Picasatextual information
like images and videos have seen an exponential growth over the ladedét&eptember 2010, Flickr
reported to be hosting more than five billion images. Youtube approximatelyvsrgravith 20 hours
of new video content per minute. These statistics are huge in comparision witbxtinal documents.
With power comes responsibility. The power of sharing any video/image omvéltegives rise to
many concerns. Privacy of an individual can be easily compromisedtr@ersial and many a times
objectionable content, like photos which contain nudity, videos which emotiopatlyoke a group
of people can be uploaded anonymously. Copyrighted images could easiubed. Its necessary
to identify and censor images with skin-tones and shapes that could indieapeetbence of nudity,
with controversial results. Images/Videos are quickly becoming a wideagpreedium for serving
entertainment, education, communication, etc. Hence, there is an increasiagdi to find suitable
features to generate quick results for content based queries.

Lets roll back to data analysis. The process of finding right patternsotde fully automated since
it involves human intelligence and creativity which are unmatchable by congpiatgay. Humans will
therefore continue to play an important role in searching and analyzingathe Among other analysis
methods for descriptive modeling, cluster analysis is most widely used tdlokefite entire data set by
suggesting natural groups in the data set. Even though clustering algopththsce useful clustering
results, the cognitive understanding of the result is often not goodgénouguide discovery since the
result is statically represented in most cases, as is common in data mining apmdicatidealing with
such analysis, however, humans need to be adequately supporteddoyribeter. One important way
of supporting the human is visualisation of the data. Cognition of the clustersudis can be amplified
by dynamic queries and interactive visual representation methods, dedstemding of the clustering
results is transformed to another important data mining task - exploratory algsis. Interactive
information visualization techniques enable users to effectively exploséeting results and help them
find the informative clusters that lead to insights.

Besides having a good descriptive model of multidimensional data setseanb#ilenging task is to
identify important features or patterns hidden in the multidimensional spacas&\ae term, “feature”
in a broader sense. What we mean by a “feature” is not only a dimensienvariable) but also any
interesting characteristics (e.g. clusters, gaps, outliers, and relatisrsdtipeen dimensions) of the
data set. Dealing with multidimensionality has been challenging to researcherayrdimeiplines due
to sparse nature of data and the difficulty in comprehending more than time@gions to discover
relationships, outliers, clusters, and gaps. This difficulty is so well rd@zed that its called “the curse
of dimensionality”.

One of the commonly used methods to handle multidimensionality is the use of low-domeinso-
jections. Since human eyes and minds are effective in understandirgjroaasional (1D) histograms,
two-dimensional (2D) scatterplots, and three-dimensional (3D) scatterpiese representations are
often used as a starting point. Users can begin by understanding the neéaach dimension (since
names can help dramatically, they should be readily accessible) and by ex@thmrange and distri-
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Figure 1.1 Curse of dimensionality illustrated with 256dimensional points from a [0,1] uniform
distribution withd = 2, 4 and 32 respectively. The top row shows the results of the 2D Principal
Components Analysis (PCA). The bottom row displays how similarity (as a mpiwalty decreasing
function of Euclidean distance) is distributed. Asncreases, projections approach Gaussian distribu-
tions. An average pair of points’ similarity decreases rapidly and similaritiesrbe approximately
equal for most pairs with increasing

bution (normal, uniform, erratic, etc.) of values in a histogram. Then expeggbanalysts can suggest
applying an orderly process to note exceptional features such as sujkgrs, or clusters.

Next, users can explore two-dimensional relationships by studying 2izguats and again use an
orderly process to note exceptional features. Since computer dispéalygransically two-dimensional,
collections of 2D projections have been widely used as representatitms afiginal multidimensional
data. This is imperfect since some features may be hidden, but at leestasainderstand what they
are seeing and come away with some insights.

Since the natural world is three dimensional, advocates of 3D scatterpjasthaat users can readily
grasp 3D representations. However, there is substantial empiricaheeidleat for multidimensional
ordinal data (rather than 3D real objects such as chairs or skeletmes$, struggle with occlusion and
the cognitive burden of navigation as they try to find desired viewpointshédigdimensional displays
have demonstrated attractive possibilities, but their display strategies adiffatililt to grasp for most
users.

The field of information visualization has found its utility in several areas likafiaial data analysis,
digital libraries [53], manufacturing production control [15], crime magdiBil], etc. Constant efforts
are made to create highly generic visualizations. But for domain specifidgong, they often fail due
to lack of sufficient focus. Treinish [75] proposes a task specificalization design with application
to weather forecasting. Stasko et al. [71] introduce a methodology faviatiadesigners to visualize or
showcase the concurrency exhibited by parallel programs. Sevbgalapplication specific visualiza-
tion methods are proposed in the areas of medical imaging and computatiahdl/fiamics. However
task specific those methods might be, they often tend to struggle if data exptodellions of high
dimensional vectors. We look to address this scenario by designing afmaiehich allows a user to
generate high quality clusters in as less time as possible. We take a subypodientent Based Image



Retrieval (CBIR) which clearly lacks necessary visual tools for interaciser feedback, to explain the
framework. This led us to design and implement an interactive visualization tool.

There is an increasing interest in Content Based Image Retrieval ovgraitfew years, since
metadata-based systems are inherently limited. Textual information about io@ages easily searched
using existing technology, but requires humans to personally descebgiavage in the database. This
is impractical for very large databases, or for images that are genenat@mnatically. It is also possible
to miss images that use different synonyms in their descriptions.

By now, we must have had a glimpse of what CBIR is all about. It is the psoofretrieving desired
images from a large collection based on image features and its uses camdérfo

e Medical diagnosis

e Crime prevention

e Photograph archives

e The military

o Intellectual property

e Art collections

¢ Retail catalogs

e Architectural and engineering design

e Geographical information and remote sensing systems

Recent advancements in computer vision has introduced several imagedsda describe an image
which can be roughly categorized into color, texture, local featureslaagoe. In the context of matching
and recognition, one needs a right combination of invariant region deteatal descriptors. Several
region detectors like harris points, harris-laplace regions have bepoged. Various descriptors like
SIFT [54], GLOH [59], shape-context [12], PCA SIFT [40] , spin iges [50], steerable filters [25] have
come into existence each with its own set of descriptions. Scale InvariatirEelransform (SIFT) is
one such local image features which made possible to achieve significatsran image retrieval
and classification. These image features have many properties that makettitable for matching
differing images of an object or scene. The features are invariant to iswdi@g and rotation, and
partially invariant to change in illumination and 3D camera viewpoint. They aiied pretty well
in both the spatial and frequency domains, reducing the probability ofadisruby occlusion, clutter,
or noise. Large numbers of features can be extracted from typical swatje efficient algorithms. In
addition, the features are highly distinctive, which allows a single feature tmirectly matched with
high probability against a large database of features, providing a loagibject and scene recognition.
Following are the major stages of computation used to generate the set of isatiges$.



e Scale-space extrema detectiorthe first stage of computation searches over all scales and image
locations. It is implemented efficiently by using a difference-of-Gausgiaction to identify
potential interest points that are invariant to scale and orientation.

e Keypoint localization: At each candidate location, a detailed model is fit to determine location
and scale. Keypoints are selected based on measures of their stability.

e Orientation assignment: One or more orientations are assigned to each keypoint location based
on local image gradient directions. All future operations are perfornmeishage data that has
been transformed relative to the assigned orientation, scale, and loeatiarch feature, thereby
providing invariance to these transformations.

e Keypoint descriptor: The local image gradients are measured at the selected scale in the region
around each keypoint. These are transformed into a representatioslltves for significant
levels of local shape distortion and change in illumination.
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Figure 1.2 A keypoint descriptor is created by first computing the gradient magnitode@agentation
at each image sample point in a region around the keypoint location, as shothe left. These are
weighted by a Gaussian window, indicated by the overlaid circle. Thesdesame then accumulated
into orientation histograms summarizing the contents over 4x4 subregiorfgywas en the right, with
the length of each arrow corresponding to the sum of the gradient magsitar that direction within
the region. This figure shows a 2x2 descriptor array computed fronx8rs@& of samples, whereas
current system computes 4x4 descriptors computed from a 16x16 samgye a

An important aspect of this approach is that it generates large numbiesttofes that densely cover
the image over the full range of scales and locations. A typical image of 8xe3®0 pixels will give
rise to about 1000 stable features (although this number depends on bgthdorgent and choices for
various parameters). The quantity of features is extremely important jectalecognition. The ability



to detect small objects in cluttered backgrounds requires that at leastudefe be correctly matched
from each object for reliable identification. Hence, for a reasonabgdsipllection of a few thousands

of images, the volume of data points explodes to a few million. For image matchingeanghnition,

SIFT features are first extracted from a set of reference imageg aithieterest points [55] or in a
uniform grid [21] in a128- dimensional space. and stored in a database. A new image is matched by
individually comparing each feature from the new image to this previous asg¢adnd finding candidate
matching features based on Euclidean distance of their feature vectors.

Airplane American
take off

Newsanchor  News subject Qutdoor Overayed fext

‘Vegetation Weather news

Figure 1.3 A few Image classification categories

To maximize the performance of object recognition for small or highly ocdwdgects, we wish to
identify objects with the fewest possible number of feature matches. Thisieev@BIR draws parallel
with text search techniques. In document retrieval, each documentresesped by a vector using a
bag of words representation. A document vector is nothing but a histogfavords with each bin
denoting a word'’s frequency in that document, disregarding grammawartorder. Analogous to this
approach, for CBIR, each image is described by an image vector whidhssogram ofvisual words
Since each SIFT descriptor is a low-level feature, the entire set ofigess extracted from the image
collection is divided into a fixed number of clusters with each cluster centeotibg a visual word
(For detailed explanation, refer to [70]). SIFT descriptors in eacherase similar in some sense of
objectivity. To improve the retrieval accuracy using image vectors, LI.gb3] incorporate learning
methods like Support Vector Machine [74]

Significant results have been achieved so far on some datasets butfdieenveell on practical image
collections. Relevance feedback based systems were developed twmeisuch hurdles. However,
retrieved results might not always convey the information required totheaming parameters. In
such a case, there is a need to fall back on information already availathleo aarganize it better.



This motivated us in using CBIR as a sub-problem to design a framewordtuUsier analysis of large
multidimensional datasets.

Feature Extraction

Salient
point

Global Ex%ractin/ \ocal extraction

Summarize, e.g., clustering

; |
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‘ Color
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Image Signature
Learnin
Mathematical formulation Adaptivity 9
Vaciors Static / Prior knowledge
Discrete Image-wise Adaptive ] / Training
Distritati - i A -
it Continuous User—wise Adaptive r’ f‘
P
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Figure 1.4 An Overview of CBIR process, by Datta et al. [23]

In this thesis, we redefine the CBIR process by incorporating a visaiaefivork to generate user-
favoured clusters of low-level image features like SIFT extracted frach ef the images. We propose a
visualization-based framework and a tool to help tune the clustering graggsreference to indexing
systems for CBIR. Generating qualitative clusters is possible if the usetifiderthe behaviour of
underlying data points and controls the entire process interactively. ¥\ femture selection approach
to improve the quality of clustering of SIFT vectors by weighing each dimerdiiterently. Weights
can be set interactively with automatic suggestions. We use a ranking s@mhassign uniform
weights to dimensional subset produced. The tool however suppdhdilber and wrapper model of
clustering. For better exploration of unsupervised, multi-dimensional @atprovide one-dimensional
projections, as well as two-dimensional projections where pair-wise nesdtijps can be identified. We
build on the idea of bin map and perform refinements to display the struct@-ofdescriptors. The
tool also provides an interactive interface to analyze the clusters folweding a graph visualization
scheme for the cluster centres as well as the vectors in each clustere Waalslean Minimal Spanning
Tree (EMST) proposed by Stuetzle [72]. This skeleton forms the baswulagpresentation of the
data. Relative cluster validity techniques are implemented and visualized aschdiri¢o assist a user
to understand the quality of clusters formed. We use a statistical samplingsprimcwhich a sampled
subset of points from every image are used to tune the weights of eachsiimeemi-automatically.



To make the process interactive, a GPU is used for fast clustering assvédl compute the graph
layout. We further provide the user an automatic weight suggestion schéiok proves handy in
manual weight assignments. There are different ways of suggestighteeased on partition obtained
from the clustering method and hence is used only as a supportive praebserve a classification
accuracy of 57.6% overall using our tool for UIUC dataset [2] cdimgisl5 different categories. Our
main contribution is the combination of interactive visualization techniques to irapriaster quality
for indexing problems. Thus, though the tool is specifically tuned for $1&3ed indexing, it can be
used for many learning-based problems that use high dimensional vectors
An outline of our contributions in this thesis are as follows

e Proposed a visualization based framework for improving the procedsisiEdng which forms
the base of indexing huge datasets.

e Developed an interactive tool adhering to this framework and achieuégt pesults in compari-
sion to automatic methods.

This thesis has the following structure

e Chapter 2 provides the background required for our work. It widkggtswith multi-dimensional
visualization technigues like parallel coordinate plots and types of dimetisjorealuction. We
then focus mainly on cluster comparision schemas and graph drawing. Mégne€ UDA since
it immensely helps us to speed up the process so that the tool is interactive.

e Chapter 3 describes the framework which is designed for cluster analjgisliscuss the fun-
damental one-dimensional and two-dimensional analysis methods for gdfiekiture space. We
later provide interactive means for cluster analysis and automatic weiglmneendation schemas
to guide the process.

e Chapter 4 explains the environment in which a particular set of experimentooaducted and
provide some insights which were previously not known. We numericallwghat this frame-
work has indeed resulted in better cluster quality there by leading to imprdassification ac-
curacy.

e Chapter 5 closes with insights and future work.



THE WORLD'S CAPACITY TO STORE INFORMATION

This chart shows the world's growth in storage capacity for both
analog data (books, newspapers, videotapes, ete.) and digital
(CDs, DVDs, computer hard drives, smartphone drives, ete.)

In gigabytes or estimated equivalent

2000
1986 1993
ANALOG
2.62 billion
ANALOG STORAGE
DIGITAL
0.02 hillion
COMPUTING POWER
In 1986, pocket calculators accounted for much
of the world's data-processing power.
Percentage of available processing power by device:
Personal Video game Servers,
Packet calculators computers  consoles  mainframes
|
1986 41% 33% 9% 17%
2007 66% 25% 36

|
Mobile phones,  Supercomputers

PDAs 0.3%

Figure 1.5World’s capacity to store information. (image courtesy: Washington Post.).
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Chapter 2

Background and Related Work

We have so far discussed the rise of search engines and visual ititorpand the need to address
the issue of content based image queries for several real world appika A lot of research has
gone into the problem of image querying using mathematical models and in maes; catg user
feedback. Never has there been any attempt on incorporating visualizatibniques to manually
affect the underlying models generated, using human observational sRilisvisualizing data is a
task in itself and there is a vast amount of literature available. In our woekattempt to generate
better clusters of high dimensional SIFT vectors computed from sampled iseagen this chapter,
we will take a look into the work that has previously gone into computing local éfagtures, multi
dimensional visualization techniques, dimensionality reduction, graph dyawinster comparisions
and the more recent, Compute Unified Device Architecture (CUDA).

2.1 Image Representation

Many techniques have been used to represent the content of an inlageade classification and
content based retrieval systems require an appropriate represerftios input images. One can
represent an image globally or locally. Global appearance representati@ problems with partial
occlusions and background clutter. Local appearance represestatiothe other hand, are at the heart
of many highly efficient object recognition systems. Local features@mgated around interest points
or on aregular grid. Regular grid (dense representation) allows éstinibe computed at each sampled
region on a dense grid. Dense representations can be used oger@pas because regions with uniform
texture, which usually are not returned by interest point detectors, avikpresented equally well. But
there is no general rule stating clearly the advantages of dense vpasas 2presentations. We choose
to use sparse representation to reduce the amount of feature datadxeémgtgd. This method requires
that right image patches are chosen and described. It is in genarataaut in two steps

e detecting interest points

e extracting feature descriptor from each interest region
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A detailed comparision and overview of well known interest point detectansbe found in [58]. In
our work, we use the Difference of Gaussians (DoG).

2.1.1 Difference-of-Gaussians

This involves convolving the image with a Gaussian at several scalesingr@aso called scale
space pyramid of convolved images. Interest points are now detecteddayiisg points in the image,
which are stable across scales. For Difference-of-Gaussians) @ugBoach, the convolved images at
subsequent scales are subtracted from each other. The DoG @p@oafact simply an approximation
of the Laplacian. Stable points are searched in these DoG images by detgrlogaihmaxima, which
appear at the same pixel across scales.

In this work, the initial step is to compute SIFT feature descriptors at edttedfiterest points in an
image. However, that is not the final step. We look to combine the entire sethbffeature vectors to
form a bag of words model.

2.1.2 Bag of Words model

In the last few years, bag of visual words have been commonly useddot@bcognition, object or
texture classification, scene classification, image retrieval and relatex tedkectly relates to the bag
of words model (BOW) originally used in text retrieval [9]. It has beetndduced into the computer
vision community by Sivic and Zisserman [70], who apply it to object retrievaldeos.

The BOW model is usually based on interest points and correspondingdaBescriptions. It uses a
clustering/vector-quantisation method to quantize the feature descript@stually each interest point
is represented by an ID indexing into a visual-codebook or visual-wdaghb Visual vocabularies are
typically obtained by clustering the feature descriptors in high dimensionébvepace. The dataset
(or a subset of dataset) is clustered ihteepresentative clusters, where each cluster stands for a visual
word. The resulting clusters can be more or less compact, thus repregsietivariability of similarity
for individual feature matches. The valuelotlepends on the application, ranging from a few hundred
or thousand entities for object class recognition applications up to one milliaetideval of specific
objects from large databases. For clustering, most often k-Meansds lusteother methods are also
used. Size of vocabulary is chosen according to how much variability iseddn the individual visual
words. In object class recognition, the individual instances of a clas$iave large variations, while in
retrieval for specific objects very similar features have to be found.

After vocabulary building, an image is then modelled as a bag of those so eelled-words. It can
thus be described by a vector (or histogram) that stores the distributidirestmyned codebook IDs or
visual words. Note that this discards the spatial distribution of the imageésatihe complete process
for encoding an image with a visual vocabulary is summarized in Figure 2.1

We can observe that SIFT vectors are very high dimensional and rditredhsions can be equally
interesting (curse of dimensionality). Hence we look to identify distributionsignar two dimensional
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Figure 2.1 Bag of Words: Features are extracted from image dataset and clustegetl visual vo-
cabulary/visual words collection. Using this vocabulary, each image earfresented as a set of
frequencies of visual words.

space to take a more informed decision on choosing dimensions over wisbéririg can be performed.
This takes us to the literature behind multi-dimensional visualization methods.

2.2 Multi-Dimensional Visualization Techniques

Several techniques exist for displaying multi-dimensional data. Thesedm8uoatterplot Matrices,
Parallel Coordinate Plots, Pixel-Oriented displays, and Glyphs. We giwwverview of each of these
methods below.

2.2.1 Scatterplot Matrices

Scatterplots are simple plots used to compare two dimensional data by plotting oiatsy-
Cartesian plane. Three dimensional data can be compared using a thresidimakscatterplot which
would use theryz-Cartesian space instead. For data that has more than three dimensisagltite
must be expanded to a matrix. A scatterplot matrix ¢ a N matrix that has all the rows and columns
labeled by theV dimensions (see Figure 4.4). Each ¢ellj) in the matrix is a scatterplot with thiéh
dimension on thg-axis and thegith dimension on the-axis. Because this matrix has alldimensions
on the rows and columns, it is symmetric across the diagonal. This means trelltig ) is the
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Figure 2.2 An example scatterplot matrix comparing variables corresponding to cadsrfoalm Xmd-
vTool [80]

same scatterplot g3, j) except which of the two axes the dimensions are on. This technique was firs
presented in [36].

Scatterplot matrices work well for comparing a large number of recordslBmensions. However,
these matrices only provides information about how two dimensions relate. &@mmthree dimensions
requires an understanding about how each of the three dimensiondodlageother two dimensions.

2.2.2 Parallel Coordinate Plots

For scientists and others studying multi-variate relations or datasets, tamndkng the underlying
geometry can provide crucial insights into what is possible and what is rlais need to augment
our perception, limited as it is by the experience of our three-dimensioftiatian, has attracted
considerable attention into developing new visualization methods. Paralledi@ate Plots is one such
technique which supports to analyze the geometry of the data provideallePeoordinates creates a
new coordinate system to representlimensional objects [35]. This is done by placing each of the
n-dimensions parallel to thg-axis (or thez-axis for horizontal axes) and evenly spacing them along
thez-axis as shown in Figure 2.3 (or theaxis if using horizontal axes). This creates a new coordinate
system in thery-plane that has axes perpendicular to the x-axis. Each axjsis a dimension in
the n-dimensional space. In other words, A vector V with valy&s, V4, ...V,,) is visualized as a

13



polyline connecting point§Us, Us..., U,,) on n vertical axes. A number of extensions to PCPs exist,

x1 2 x3 x4 xh b xF
i165.20 #3310 il 48.65 245.50 B6.70 162.65 0.3z

94.80 366.90 24.35 80.50 -2.70 16,35 0.20

Figure 2.3 A sample Parallel Coordinate Plot analyzing correlations between vatimels market vari-
ables using XmdvTool [80]

like multiresolution and hierarchical [28] methods, 3D PCPs [38] and cortibigaof clustering,
binning [8] and other features like outlier detection [39] to reduce vislgler there by supporting
large datasets.

2.2.3 Pixel-Oriented

Pixel-Oriented visualizations represent each record in the data set ixgla Pue to the limited
rendering area, this type of visualization has a limit on the size of the dataisgt\isualized. Because
of this limitation, these visualizations attempt to use the maximum number of pixels whilerstill
senting an understandable picture. The techniques may be divided impindependent techniques
that directly visualize the data (or a certain portion of it) and query depgnmdethods that visualize
the data in the context of a specific query. Examples for the class of quaggendent techniques are
screen filling curve and recursive pattern methods. The screen fillingooetre based on Morton and
Peano-Hilbert curve algorithms [20] and recursive patterns [41§das generic recursive scheme,
which generalises a wide range of pixel-oriented arrangements foliziagdarge datasets. A sample
pixel oriented display using recursive patterns is shown in Figure 2.4.
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Figure 2.4 A sample recursive pattern based pixel oriented display showing htaizamangement
(from [42])

2.2.4 Glyphs

Glyphs are icons that represent one record of the data set. Each dimensmapped to one feature
and the value determines some aspect of the feature. Two commonly used ghgpChernoff Faces
[19] and Star Glyphs [51] (Figure 2.5). Like Pixel-Oriented visualizatiahgphs suffer from a lack
of space to display all the records.

4
y & & B
R v P =

Figure 2.5 Star glyphs for Iris data points available with Xmdv tool [80]

Chernoff Facesuse the human’s ability to recognize small differences in faces to creatgeafpbd
visualization. Each dimension is mapped to a part of the face, such as thentge eyes, and the
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shape or size is determined by the value of that dimension. Records theitrélise would look the
same, thus allowing for a simple and quick way to recognize clusters. It imaised that analysis is
done in parallel, which facilitates the efficient recognition of patterns [51].

Star Glyphs are based on whisker plots which have a central pointalines, or whiskers, eminat-
ing from the central point. Each line represents one dimension of the datdngse value determines
the length. The difference between whisker plots and star glyphs is thahtiseof adjacent lines are
connected to each other [51]. Recognizing clusters is simple with star ghyptes they will all have
similar shapes.

2.3 Dimensionality Reduction

Techniques for clustering high dimensional data have used both feaednsfarmation and feature
selection methods. Feature transformation techniques attempt to summarizeed isafewer dimen-
sions by creating combinations of the original attributes. These techniggiesrg successful in uncov-
ering latent structures in datasets. However, since they preservdatigerdistances between objects,
they are less effective when there are large numbers of irrelevantgsithat hide the clusters in a sea
of noise. Also, the new features are combinations of the originals and ndiffibalt to interpret in the
context of the domain. On the other hand, feature selection methods sdiettiemost relevant of the
dimensions from a dataset to reveal groups of objects that are similatya smbset of their attributes.

2.3.1 Feature Transformation

Feature transformations are commonly used on high dimensional datasete mbthods include
techniques such as principal component analysis (PCA) (Figure a&imagular value decomposition
(SVD). The transformations generally preserve the original, relativarties between objects. In this
way, they summarize the dataset by creating linear combinations of the attrémddspefully, uncover
latent structure. Feature transformation is often a preprocessing kbepng the clustering algorithm
to use just a few of the newly created features. Some clustering methaglineavporated the use of
such transformations to identify important features and to iteratively impreveltistering [76]. While
often very useful, these techniques do not actually remove any of thearagtributes from considera-
tion. Thus, information from irrelevant dimensions is preserved, makirggttechniques ineffective at
revealing clusters when there are large numbers of irrelevant attribatesiésk the clusters. Another
disadvantage of using combinations of attributes is that they are difficult tpiete often making the
clustering results less useful. Because of this, feature transformatmbgst suited to datasets where
most of the dimensions are relevant to the clustering task, but many are highdjated or redundant.
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Figure 2.6 An example for Principal Component Analysis in two dimensional space

2.3.2 Feature Selection

Feature selection attempts to discover the attributes of a dataset that arelexesttrto the data
mining task at hand. It is a commonly used and powerful technique focregluhe dimensionality
of a problem to more manageable levels. Feature selection involves seattuttingh various feature
subsets and evaluating each of these subsets using appropriate cf2efifg9] [82]. The most popular
search strategies are greedy sequential searches through the fgmtoe, either forward or backward.
The evaluation criteria follow one of two basic modédiiers andwrappers [13].

The filter approaches evaluate the relevance of each feature (sukisgtlhe data set alone, regard-
less of the subsequent learning algorithm. RELIEF [45] and its enhamtej#8] are representatives
of this class, where the basic idea is to assign feature weights based am#igtency of the feature
value in thek nearest neighbors of every data point. Information theoretic methodslssreised to
evaluate features: the mutual information between a relevant featureeanldsis labels should be high
[11]. Nonparametric methods can be used to compute mutual information iny@eitinuous features
[49].

On the other hand, wrapper approaches [46] invoke the learningthlgdio evaluate the quality of
each feature (subset). Specifically, a learning algorithm (e.g., a heaigbbor classifier, a decision
tree, a naive Bayes method) is run on a feature subset and the fadisetis assessed by some estimate
of the classification accuracy. Wrappers are usually more computatiomaiigrtting, but they can be
superior in accuracy when compared to filters, which ignore the propeitiae learning task at hand.

Both approaches, filters and wrappers, usually involve combinatoaatises through the space of
possible feature subsets; for this task, different types of heuristich,as floating search, beam search,
bidirectional search, and genetic search have been suggested4g]7][§5], [82] . Itis also possible
to construct a set of weak (in the boosting sense [26]) classifiers, adtih@ne using only one feature,
and then apply boosting, which effectively performs feature selecti@). [7has also been proposed
to approach feature selection using rough set theory [47].
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All of the approaches mentioned above are concerned with featurgiseliecthe presence of class
labels. Comparatively, not much work has been done for feature seléctimsupervised learning. Of
course, any method conceived for supervised learning that doesadhe class labels could be used
for unsupervised learning; it is the case for methods that measuredeatitarity to detect redundant
features, using, for example, mutual information [68] or a maximum informationpression index
[60]. Different feature subsets and numbers of clusters, for multinoméalel-based clustering, are
evaluated using marginal likelihood and cross-validated likelihood in [7Tie dlgorithm described
in [67] uses automatic relevance determination priors to select featuresthdre are two clusters. In
[22], the clustering tendency of each feature is assessed by anyemd®x. A genetic algorithm is
used in [44] for feature selection in k-means clustering. In [73], feasetection for symbolic data is
addressed by assuming that irrelevant features are uncorrelatedevithetant features. Devaney et al.
[24] describe the notion of “category utility” for feature selection in a @ptoal clustering task. The
CLIQUE algorithm [7] is popular in the data mining community and it finds hypetargular shaped
clusters using a subset of attributes for a large database.

The methods referred above “hard” feature selection (a feature is sihexted or not). There are
also algorithms that assign weights to different features to indicate their sarik. For example,
the method described by Pena et al. [63] can be classified as learningefeaights for conditional
Gaussian networks. An EM algorithm based on Bayesian shrinking i@pedy Carbonetto et al. [16]
for unsupervised learning.

2.4 Graph Drawing

Graph drawing or Graph layout, as a branch of graph theory, applmdogy and geometry to
derive two-dimensional representations of graphs. A drawing of phgisbasically a pictorial rep-
resentation of an embedding of the graph in the plane, usually aimed at engemivvisualization of
certain properties of the graph in question or of the object modeled by dipé gvery different layouts
can correspond to the same graph. In the abstract, all that matters is veliites are connected to
which others by how many edges. In the concrete, however, the amaamg of these vertices and edges
impacts understandability, usability, fabrication cost, and aesthetics. @&iffgraph layout algorithms
have been proposed so far which can be broadly classified into fasegllf [27] for example), spectral,
orthogonal, symmetric, tree, hierarchical layouts. Early work on automeghdayout and drawing is
scattered through the computer science literature (for example [61], [B%3 first book devoted solely
to graph drawing, by Battista et. al. [10], summarizes large areas of theTieddGraph Drawing con-
ference series beginning in 1994 has resulted in proceedings thatreogat work in both systems and
theory. The focus of part of this thesis is to provide a layout only, soaugod concentrate on the wealth
of theoretical proofs about upper and lower algorithmic bounds: suffito say that most interesting
computations on general graphs are NP-hard [14].
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Washington, D.C.
Metrorail

Figure 2.7 A graph layout of Washington D.C metro. (Image courtesy: Washingtonddelitan Area
Transit Authority)

2.5 Evaluating Clustering Quality

The procedure of evaluating the results of a clustering algorithm is knewleruhe term cluster
validity. In general terms, there are three approaches to investigaterclaktiity [31]. The first is
based on external criteria. This implies that we evaluate the results of arcigsttgorithm based on
a pre-specified structure, which is imposed on a data set and refledtgwition about the clustering
structure of the data set. The second approach is based on interrmé ctitehis case, the clustering
results are evaluated in terms of quantities that involve the vectors of the etatiaemselves (e.g.
proximity matrix). The third approach of clustering validity is based on relatiiteria. Here the basic
idea is the evaluation of a clustering structure by comparing it to other clugtssiremes, resulting by
the same algorithm but with different input parameter values. The two prebaches are based on
statistical tests and their major drawback is their high computational cost. Mardle indices related
to these approaches aim at measuring the degree to which a data setnesaafixa-priori specified
scheme. On the other hand, the third approach aims at finding the besticfyistdheme that a clustering
algorithm can define under certain assumptions and parameters. Foretalgah internal and external
indices, refer to [31], [32].
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2.5.1 Relative Indices

The fundamental idea of this approach is to choose the best clusteriegiedf a set of defined
schemes according to a pre-specified criterion. More specifically, tidgm can be stated as follows.

Let P be the set of parameters associated with a specific clustering alg¢eitpmthe number of
clustersn.). Among the clustering schemésg, i=1,2,..n, defined by a specific algorithm, for different
values of the parameters of P, choose the one that best fits the data set.

Then, we consider the following cases of the problem:

e P does not contain the number of clustersas a parameter.
e P containg:. as a parameter.

In our current work, we do focus on crisp clustering, meaning thatmizitd belongs only to a single
cluster. So, we discuss validity indices suitable for crisp clustering.

2.5.1.1 The modified Hubert T-statistic

The definition of the modified Hubert T statistic is given by the equation

1N—l N
T:MZ
iz

Pr(i, j).Q(i, )
=i+1
where N is the number of objects in a datagét,= N(N — 1)/2. Pr is the proximity matrix of the
dataset and) is aN x N matrix whos€(i, j) element is equal to the distance between the representative
points(V,;, V¢;) of the clusters where the objecks and.X; belong.

2.5.1.2 The Davies-Bouldin (DB) index

A similarity measure;; between the clusters; andC; is defined based on a measure of dispersion
s;0f a clusterC; and a dissimilarity measure between two clustgrs The R;; index is defined to
satisfy the following set of conditions:
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These conditions state th&j; is non-negative and symmetric. A simple choice Ry that satisfies
the above conditions is:

(Si + Sj)
Ry = 2%
J d”

Then the DB index is defined as

R, = max Ry
i=1,2...nc,i#j

It is clear from the above definition thalB,,_ is the average similarity between each cluste(for
1=1,2.n.) and its most similar one. Itis desirable for clusters to have the minimum posisitilergy to
each other; therefore we seek clusterings that minimize DB index.JiBg. index exhibits no trends
with respect to number of clusters and thus we seek the minimum vall¥d3gf in its plot versus the
number of clusters.

Other validity indices have been proposed in [32]. The implementation of nidkese indices
is computationally very expensive, especially when the number of clustdrslgects in the data set
grows very large. Indices like RMSSTD and RS can be computed to evalusters. The idea here
is to run the algorithm a number of times for different set of parameterseardisfor a “knee” in the
corresponding graph plot.

> i ?:1 ZZZl (zk — Tj)Q

RMSSTD = - >
22‘:61 j:l(nij —1)
88, 88, — S8,
RS = SS; Sy
N
55=Y"(X; - X)*

where SS means sum of squareg|s a data pointn,; is the number of data points of dimension j in
cluster i,z; is mean of data points in dimension j and

e S5, refers to the sum of squares between groups
e S5, refers to the sum of squares within group

e SS; refers to the total sum of squares, of the whole dataset
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2.6 GPU and Compute Unified Device Architecture

Graphics Processing Units have massively parallel processors astaiparallel architecture. The
graphics pipeline is well suited to rendering process as it allows a GPUdtidaras a stream processor.
Nvidia 8 series and later GPUs with CUDA programming model provide an atedP| for non-
graphics applications. CUDA is a programming interface which tries to expmipnallel architecture
of GPUs for general purpose programming. It provides a set of liftarctions as extensions of C
language. The CPU sees a CUDA device as a multicore co-processate$ign does not restricts the
memory usage as was in the GPGPU case. This enhanced memory model adigiasnmer to better

exploit the inherent parallel power of GPU for general purpose ceatipns.

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Instruction
Unit

Figure 2.8 CUDA hardware model

At the hardware level, GPU is a collection of SIMD multiprocessors with s¢ygpcessors in each
as shown in Figure 2.8. For example, Nvidia 8 series has eight prosdsseach multiprocessor.
Each multiprocessor contains a data parallel cache or shared memory, izltsbared by all of its
processors. It has texture cache and read-only constant caclie thared by all processors. A set of
local 32 bit registers are available per processor. Each procesaonittiprocessor executes the same
instruction in every cycle. The multiprocessors communicate through devig®lmal memory. The
processing elements of a multiprocessor can synchronize with one grimihénere exists no direct
synchronization mechanism between multiprocessors.
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Figure 2.9 CUDA programming model

At the software level, for a programmer, CUDA model is a collection of trseadning in parallel.

A warp is a collection of threads that are scheduled for execution simulialyeon a multiprocessor.
The warp size is fixed for a specific GPU. The programmer can selectutidar of threads to be
executed. If the number of threads is more than the warp size, they areharedsnternally on the
multiprocessor. A collection of threads run on a multiprocessor at a givenithieh is called a block.
Multiple blocks can be assigned to a single multiprocessor for time sharedtiexecThey also divide
the common resources like registers and shared memory equally among thérglefegecution on a
device generates a number of blocks. The collection of all blocks in a siglzution is called a grid.
Each thread and block is given a unigue ID that can be accessed withhrélael during its execution.
All threads of the grid execute a single program called the kernel.
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Chapter 3

Framework and VisTool

Few attempts have been made to incorporate more user subjectivity into the szatioaof low-
level features. One of the key contributions of this thesis is the redefinifi@BtR process by incor-
porating a visual framework to generate user-favoured clusters efelesl features like SIFT extracted
from each of the images (Figure 3.1). A learning based CBIR system oglitb®e quality of image vec-
tors and relevance feedback provided by the user to train the clas$ifievisual words should be of
high quality. Generating qualitative clusters is possible if the user identifidsetieviour of underlying
data points and controls the entire process interactively.

Visualization of large amounts of high dimensional data has been an ad®arch area in infor-
mation visualization. Keim [43] gives a good overview and categorizatiorelelant visualization
techniques. Many of these methods aim at the identification of interestingtionsan the data, such
as linear correlations. However, to analyze SIFT descriptors extractzd collection of images, these
do not apply directly. Thus, we aim at presenting a visualization baseuk¥ark with an implemented
tool to tune the entire process of indexing SIFT.

Interactive analysis of such huge abstract datasets is not possibieindividual traditional meth-
ods. We sample the entire dataset to a manageable size using a stratified samefiog. We follow a
feature selection approach and incorporate a rank-by-featurenadioadentify subspaces. Distribution
along each of the dimensions can be analyzed by its corresponding histagid box-plot. We use a
Parallel Coordinate Plot widget to enable a user to identify two-dimensionadlations. Once dimen-
sions are analyzed, suitable weights are chosen to generate visual warthe framework suggests,
a user is free to choose either a filter or a wrapper model of clusterindhvehic be incorporated as
a plugin in the tool. Whatever might be the method used to compute visual woisi$)dtessary to
analyze the cluster structure formed. Graph layout provides an excelésams of analyzing such high
dimensional structures. Since it is an unsupervised clustering prasess,must be able to evaluate the
resulting clusters formed using some qualitative measure. Relative indeximegdsrm an excellent
choice. User can interactively re-assign weights to each feature Jgased on his observation of a
clustering process. Some automatic methods of suggesting weights haveetsimtéluded to aid the
choice. The procedural framework after we sample a dataset is degastfollows.
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Figure 3.1 Framework: Overview of the procedure

3.1 Feature Selection and Weight Assignment

We integrate four ranking criteria into our tool, since they are common arghfuantal measures
for distribution analysis.

e Entropy of the distribution (0 teo)

o Normality of the distribution (0 tec)
e Number of potential outliers (0 to N)
e Number of unique values (0 to N)

We use an entropy measure to compute uniformity. Givdains in a histograntd, its entropyE is
defined as

k
E(H) = - _ P;log,(P;) (3.1)
=1
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where P, is the probability that an item belongs idh bin. We chosemnibus moments tekir nor-
mality from several statistical tests available. Several outlier detection algarittave been proposed
in the field of data mining [64]. We select an item of vaki® be an outlier ifd > (Q3 + 1.5*IQR)
ord < (Q1 - 1.5*IQR) where IQR is the interquartile range (defined as the differdmtween the first
quartile (1) and the third quartile@s)).

We can however notice that any filter model based feature selection medhdoecincorporated
instead of a ranking schema and assign uniform weights to the subsatpthd

3.1.1 One-dimensional Distribution Analysis

Users may begin their exploratory analysis by scrutinizing each dimensiobyoonee. A mere
look into the distribution of values of a dimension gives useful insights. Tolepi@videshistograms
andboxplotsfor graphical display of 1D data as shown in Fig. 3.2. Histograms graphicaigal the
skewness and scale of the data. Boxplots provide a quick way of examinagr more sets of data
graphically by showing a five-number summary

the minimum:smallest observation of the sample

the first quartile:cuts off lowest 25% of data = 25th percentile

the mediancuts data set in half = 50th percentile

the third quartile: cuts off highest 25% of data, or lowest 75% = 75th percentile and

the maximumhighest observation of the sample

These numbers provide an informative summary of dimension’s centempaaadsand thus help in
selecting dimensions for deriving a model.

The sub-interface consists of four coordinated parts: the rank bexalte view, the order view and
the histogram view. Users can select a ranking criterion from the raxkwitch is a combo box, and
then see the overview of scores for all dimensions in the table view (FigBra&:ording to the ranking
schema selected. All dimensions in the data table are sorted in decreasia@fvattores on default.
The table view consists of three columns. The first column denotes the dimemsie, second denotes
the score of that dimension according to ranking schema, and the third cldh@table view displays
weight assigned to it by user. (discussed in clustering framework).

The order view is a bar chart, where in the length of the bar denotes tkeofdahat dimension.
All dimensions are aligned from top to bottom in the original order and eachrdiime is color coded
by corresponding weight-value (third column in the table view). Weight isctlirgoroportional to
the color scale which is displayed below the order view. Its mapping can tagned by a simple
mouse hover over the display bar (Fig. 3.4). A mouse hover over a bae iortler view displays the
corresponding dimensiofl in a tooltip window. Thus, user can preattentively identify dimensions of
highest and lowest rank and observe the overall pattern. The us@vigigd an option to interchange
the parameters in the order view such that color of each bar denotesthamd length, its weight.
The histogram view is a combination of one-dimensional histogram plot axgbliob to display 1D
projections.
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Figure 3.2 Sift-visualizer: tool adhering to the framework

The mouseclick event in the rank view or a cell activate event in the tableigi@wstantaneously
relayed to other views. The corresponding item is highlighted in the rankrenthble view, and its
histogram and box plot is rendered in the histogram view. In other wardbange of dimension in
focus in one of the rank or table view leads to instantaneous change ofgondn focus in other
component views.

3.1.2 Identifying Correlations

For better exploration of unsupervised, multi-dimensional data, aftetigizing one-dimensional
projections, it is natural to move on to two-dimensional projections wherenpsé relationships can be
identified. Based on our discussion in section 2, we build on the idea of bimnthperform refinements
to display the structure of SIFT descriptors.

Parallel Coordinate Plots have little to gain from high precision floating popresentation of data.
When data values are rounded to a lower precision representation, threumagrroneous displacement
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Dim Scr Weight

3 49 7.26405 |1
4 81 7.26495 1
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Figure 3.3 table view: Ranked dimensions are displayed in decreasing ordecarecomputed by the
ranking criterion.

. .

0.296875

Figure 3.4 Colormap: Left most color represents lowest value and right most, the highest value

that a line in a plot will have is directly related to the rounding error. The ak&CP currently are less
than 127 pixels. Hence, a quantizationStdit values will yield a maximum displacement of a single
pixel which doesn’t show any effect in the current scenario. This meduces the data from 4 bytes to
a single byte per point per attribute, greatly reducing the necessargastora

A PCP without any selections can be quickly generated solely from the jmittighams of the data.
We make use of binning approach proposed by Artero et. al. [8]. Onlyothehistogram between
each pair of neighbouring axes is needed to build the parallel coordilzatesing this technique. Fast
exploration of data is made possible by computing joint histograms over allgfaar®es. ForV axes,
we getw histograms for all pairs. We adopt the rendering approach of Philipp.ef62] where
histogram bins form a direct basis for drawing the primitives. Insteadweihly to draw a line for each
data point, only a single primitive is drawn for each histogram bin. We usiéaldlending to combine
all drawn primitives. We use a square-root intensity scale, as to prevensaturation of high-density
areas in the plot, while keeping a good visual contrast in low intensity areas.

A value change event in the weight column in the table view is instantaneoualedeto PCP
display. If a weightiW” (>0) is assigned to a dimension by the user, the corresponding joint histogram
is rendered in order of precedence of selection. For example, froord=Rj2, say dimension 113 is
assigned a weight, then a joint histogram between 81 and 113 is rendéegt].when dimension 17
is given some weight, a bi-histogram between 113 and 17 is loaded into membrgradered in PCP
display.
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Figure 3.5 Rank View: The Length of a bar denotes its corresponding rank according to the sco
obtained from ranking schema. Color represents its current weight.

Thus, we provide a user with the power to analyze multivariate structurdeséstingdimensions
in 1D projections. User might find 1D projection of a dimension to be intereskingjt might not
have any correlation with other dimensions of significant interest. In swase, user can revert back
to remaining dimensions by deselecting the uncorrelated dimension. De-sglecimension can be
performed simply by reassigning its corresponding welghto zero in the table view.

3.1.3 Weight Assignment Using Glyphs

Since we consider scale invariant feature transform descriptorsuthber of dimensions present
are 128. If we observe how SIFT is computed, we notice that each infeois (which is computed
using some interest point detector like DoG [58]) is divided into-a4 matrix where cell size depends
on the scale computed by interest point detector. Eight orientation anglehasen describing the
infomation in each cell. Following a similar approach, we display-a4 matrix of glyphs where each
glyph is further divided into eight orientations as shown in Figure Faltenis et. al. use glyphs to
display information about k-dimensional data [79].

A Mouseclick event in the glyph view generates a zoomed-in version ofdfresponding cell in
which mouseclick event occured. User can visually assign weights bemesghbouring dimensions
as shown in Figure 3.6. This mode of assigning weights is very useful if eighbouring dimensions
are of sufficent interest and user can visually approximate priorities.ftAneuseclick event in the
orientation view assigns a weight to each of the corresponding adjaireanhsions with respect to
the angle selected. A right mouseclick deselects previously assignedtsvigighe cell. The updated
weights are relayed to the table view on either of the events.
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3.2 Data Clustering

After potentially identifying a weighted sub-space, user clusters the datapoints. Since different
users might be interested in different clustering methods, it is desirable Yo @adlers to customize the
available set of clustering schemas. However, we have chosen tharstandeans [37] as a starting
point and implemented it on the GPU using CUDA [3] to achieve significantdsppe A modified
Euclidean distance schema is incorporated into computing distance betwstm nieans and points.
Distance between a cluster meBrand a data poinf) is computed using the formula

128
Dpg) = J > Wi (P — Qi)?, where(0 < W; < 1) (3.2)
=1

denotes weight assigned to dimensidn the table view. After every iteration, we update cluster means
as in the standard procedure.

30



3.3 Visualization for Cluster Analysis

Clustering large amounts of data though reduces the information overdEastates new points in
feature space which need to be analyzed. Usual mathematical protgsihfinding out the quality
of points generated but cannot give an overview of how they are delateach other. Visualization of
such points might help in providing better insights into the cluster quality. Herdand an interactive
graph layout interface for visual analysis.

3.3.1 Graph Layout

Often, clustering algorithms go hand in hand with graph drawing method&prgimportant means
of dealing with increasingly large datasets. A good layout effectivelweysmthe key features of a
complex structure or system to a wide range of users. The primary gtasd types of methods is to
optimize the arrangement of nodes such that strongly connected nqukss @fpse to each other.

The user is presented with a two-dimensional representation of multi-dimeahsdiata, that is easy
to understand and can be further investigated. We make use of EuclideémaliSpanning Tree
(EMST) proposed by Stuetzle [72]. This skeleton forms the basic lagmuésentation of the data. In
order to compute the EMST, we need the high-dimensional point cloud in aripace spanned by
the entire set of attributes. Hence, for each position in the data set, antattrédmior that consists of
individual multi-variate values is computed. A spanning tree connects aligioimttribute space with
line segments such that the resultant graph is connected and has no Egclegraph witt, nodes, we
end up withn — 1 edges in the spanning tree. A spanning tree is an EMST if the sum of theearclid
distances between connected points is minimum. Since our graph layout falldrsdown approach,
each graph contains only a few thousands to tens of thousands of. ndeapply Prim’s algorithm
[18] to compute the minimal spanning tree. For a graph \Mthodes,N(]\;_l) edges are chosen where
each edge is given a weight by finding the euclidean distance betweeaith@ points. Our current
approach is based on graph drawing, where the EMST is first projezd by assigning each node
an arbitrary position. Afterwards, the graph is laid out to achieve apiateedge lengths and few edge
intersections.

We choose the Fast Multipole Multilevel Method (FM3) method since it proslpéeasing layouts
and is relatively fast [30]. The basic approach of this algorithm tries sosem recursively an input
graphG, to produce a series of smaller graphs...GGy, until the size of coarsened graph falls below
some threshold. We use the GPU implementation of a modified version of this ahydmtiGodiyal
et. al. [29]. Only the multipole expansion coefficients are considered ahthe local expansion
coefficients to approximate repulsive forces. These coefficients al@nsufficient to produce a high
quality layout. Figure 3.7 give a perspective of the current algorithm.
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(a) (b)

Figure 3.7 (a) Modified FM3 layout of EMST, (b) Randomly initialized EMST

3.3.2 Cluster Validity

Since we use an unsupervised approach of clustering, its often agcéesgjuantitatively evaluate
the final partition. Cluster validity approaches based on relative criteriatdinmding the best clustering
scheme that a clustering algorithm can define under certain assumptioparanteters. Here the basic
idea is the evaluation of a clustering structure by comparing it to other clugtschremes which were
produced by the same algorithm using different weight assignments. finahiework, we provide user
an option of choosing from three indices. Namely,

e Davies-Bouldin index
e R-squared index
e SD validity index

Davies-Bouldin index: A similarity measureR?;;between the clusterS; andCj is defined based
on a measure of dispersion of a clustgrand a dissimilarity measure between two clust&fs The
index satifies the following conditions

e Rij >0

* Rij = Rji

if s; =0 ande =0 thenRij =0

if s; > s andd;; = d;, thenR;; > Ry,

if s;, = s anddij < d;p thenRij > R
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where s; is the measure of dispersion of clustéy and d;; the dissimilarity measure between two
clusters. We choose

Rij = (si + s5)/dij (3.3)
and hence the index is defined as
1 <
DB, = — R; 3.4
—r ; (3.4)
Ri = max Rij,l' = 1,2, e Me (35)
i=1,..nc,i#]

We can notice thaD B,,, is the average similarity between each clusieand its most similar one.
We seek clusterings that minimize DB index as its desirable for clusters to ertiitbihum possible
similarity to each other. This index exhibits no trends with respect to numbédustiecs and thus we
seek to minimize its value in its plot versus number of clusters.

R-squared index: It is quite possible that hierarchical algorithms might be used to cluster the
datasets. In such a case, this index proves to be much helpful in decidingadlity of clusters (note
that this index can also be used for nonhierarchical algorithms like k-me&¥s run the clustering
algorithm for different number of clusters each time and plot corresgpgnailidity indices for these
clusterings. We search for a “knee” in this graph. The number of clistewhich this “knee” is
observed indicates a statistically optimal clustering for the dataset. The validiy takes the form

SS; — 5SSy,
RS = —— 3.6
where SS mearnSum of Squareand refers to
N
SS =) (X;—X)? (3.7)

i=1

and
e 5SS, refers to sum of squares within group
e 5SSy refers to sum of squares between group
e 55, refers to total sum of squares, of entire dataset

RS of the new cluster is the ratio 6fS, over SS;. SS; is a measure of difference between groups.
SinceSS; = S5, + 5SSy, the greater thé'S;, the smaller theS'S,, and vise versa. As a result, the greater
the differences between groups are the more homogenous each gesupvise versa. Thus, RS may
be considered as a measure of dissimilarity between clusters. Furthermoeasures the degree of
homogeneity between groups. The values of RS range between 0 andakel that the value of RS is
zero (0) indicates that no difference exists among groups. On the ahdr Wwhen RS equals 1 there is
an indication of significant difference among groups.
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SD validity index: Its definition is based on the concepts of average scattering for clustbtetal
seperation between clusters. Average scattering for clusters is dafined

1~ o)l

Scatt(ne) = — (3.8)
ne = o (X))
and total seperation between clusters is
D Ne  Ne -1
Dis(ne) = Dm?ff > ook —va)| (3.9)
T k=1 2=1

whereD,,q, = maz(||v; —v;||)Vi, j € 1,2, ..n. is the maximum distance between cluster centers. and
Dyin = min(||v; — vj||)Vi, j € 1,2,..n. is the minimum distance. SD index can now be defined as,

SD(n.) = a.Scatt(n.) + Dis(n.) (3.10)

where a is a weighing factor equal to Oi%{,,.) whereC,, . is the maximum number of input clusters.

For in-depth description of other possible indices, please refer to f&lihese indices are relative,
we plot each of them as a line graph. Based on the index chosen, asenefor an optimum value
denoting the best quality of clusters achieved over the process. FigueBotes a plot of Davies-
Bouldin index obtained for one of the experimental setups.

3.7

Figure 3.8Davies-Bouldin index: With each iteration, the value decreases meaningdiester quality
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3.3.3 Interaction for Cluster Analysis

A zoom user interface allows user to change the scale of the viewertdodding the right mouse
button down, a mouse left and a right makes the graphical display zooendwoom in respectively.
This helps user pin down to a point of his/her interest.

User can rotate the display on either of the spatial axes (X, Y or Z) to ehtrggview point. This
is achieved by holding down the left mouse button and moving in any directiaer thn translate
the canvas by pressing middle mouse button and making a move in any diredtismpravides great
flexibility to analyse the structure of the graph layout and pin down to the #itarea.

User can move the cursor over any valid data to browse through the defhiksis a drill-down
approach where visual words are displayed initially according to a degmut algorithm. User can
point the cursor over any node (each node represents a visual aratatlick on it to generate a graph
layout of underlying SIFT vectors assigned to that particular visuatlwéinother click on any node
denoting a sift descriptor displays its interest region in an image as shovigurer3.9.

Figure 3.9 Drill-down to a sift descriptor in a cluster. The interest region is denoted tgck colored
rectangle and the selected node is highlighted with a wired mesh enclosing it.

3.4 Automatic Weight Recommendation

It might often be tedious for a user to re-assign weights to each dimenssed ba cluster analysis.
An automatic weight suggestion scheme proves handy in manual weightrassits. There are differ-
ent ways of suggesting weights based on partition obtained from the ahgsteethod. One way is to
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choose
0 If Dj =0
1 .
S 27
Wherew; is the attribute weight of-th dimensions < 0 or 8 > 1, h is the number of variables
whereD; # 0 and

wj; =

kK n
Dy =" uid(wiz, 21,5
=1 =1
wg =1 i wld(wig, ) < Y5 wifd( g, 2,)
for1<t<k
u;; =0 fort=#1

Z={7Z,7Z,,...Z;} is a set ofk vectors representing the centroids of thdusters, X ={ X1, Xo, ... X, }
is a set ofn objects, each objecX; = (x;1,;2, ..., %im) iS characterized by a set of dimensions,
Uis an x k partition matrix,u;; is a binary variable and;; = 1 indicates that objectis allocated to
clusterl, d(z; ;, 2 ;) is the distance or dissimilarity measure between objectd centroid of clusterr
on thej-th variable. This method of suggesting weights is a modified version frofw3dre they aim
to minimize an objective function

k n m

PU,ZW) =33 wywld(zi g, z;)

=1 i=1 j=1

It is only a support process and the final decision to choose weightsafiir dimension is left to the
user.
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Chapter 4

Experiments

We show an application example of the framework with a collection of image ctzdgifi cate-
gories. This dataset contains 4485 images with 15 different classeshdwaifith UIUC [2]. We apply
SIFT feature detector on all images using Vedaldi's implementation [5]. Wenotitzse to 1.1 million
SIFT vectors for this collection. We implemented the current tool using QtnSpeneGraph [4] and
OpenCV. All computations are performed on a commadity pc whose major cdatiign details are
2.4Ghz quad core processor, 2.5GB RAM and a Nvidia GTX 280 graphits

We use intersection kernel based Support Vector Machine (SVM) to budkhssifier and a fast
intersection kernel for testing [56]. However, the CPU computations wernpe are not multi-threaded.
We sample 60 SIFT descriptors from each image resulting in a total sampld 8iz6anillion vectors
approximately. We experiment with this framework based tool on individuakekas well as entire
collection and the results are follows. After a series of iterations of wegghssignment and clustering
in tandem over sampled data with manual intervention, we observe that slimtered are relatively
stable, backed by a cluster validity index (for example, figure 3.8). Usimgliserved weights, we run
a weighted kmeans on the entire class or dataset with respéctbhester centers.

4.1 Individual classes

There are approximately 250-270 images in each of the classes and domangoind 16 thousand
SIFT vectors. First, we assign weights based on 1D and 2D distributiorectodd the dimensions.
More uniformity means less weightage since there is less chance of findstgrslin the respective
dimensions. We run weighted k-means on the sampled set using a pre-deteotoister size with 25
iterations. Once clustering is performed, we have a graphical look dectu®rmed. Clusters which are
similar must be closer to each other and vice-versa. A random sampledibgaivrough the minimum
spanning tree of the clustering gives us a fair idea about the “visuaténbmside. If we are satisfied
with the clustering process (either visually or by cluster validity index), wepraceed to use those
weights to cluster the entire collection. Else, we re-assign weights to eacke dirttensions either
by intuition or by mathematically suggested values based on data distributioneda éxperiments,
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we repeat this process from 3 to 10 times. Initial centers were the samadbratuster size (for
comparision). The results for a few of the randomly picked classes dénd@ss.

No. of clusters Wit.h uniform By_ interagtively

weights adjusted weights
400 51.1 52.7
500 51.4 53.0
600 52.2 52.9
700 52.6 53.9
800 53.5 54.6
900 53.8 55.1
1000 54.8 55.9

Table 4.1Results for ‘Mountain’

No. of clusters Wit.h uniform By_ interagtively

weights adjusted weights
400 48.7 50.9
500 51.5 53.3
600 51.1 53.3
700 52.3 54.1
800 52.8 53.6
900 53.6 53.9
1000 54.4 55.6

Table 4.2Results for ‘Kitchen’

4.2 Sampled collection of all classes

As mentioned before, we end up with a total sample size of 0.26 million vectorexapyately for
entire collection of 15 different classes. We perform the same operatsinghe previous experiments.
We can notice that in figure 4.1, non-similar looking patches are clusterethimt®ame visual word
when given uniform weights.

The experimental results are as follows.

After using our tool, we could notice that similar looking patches did fall into #meesvisual words
as shown in figure 4.2, 4.3
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No. of clusters Wit.h uniform By_ interagtively

weights adjusted weights
400 51.7 55.3
500 52.5 55.2
600 53.1 54.9
700 53.7 55.3
800 54.2 55.6
900 54.1 55.8
1000 54.4 56.1

Table 4.3Results for ‘Highway’

No. of clusters Wit.h uniform By_ interagtively

weights adjusted weights
400 51.7 53.7
500 51.5 53.0
600 52.1 54.1
700 52.6 54.3
800 53.1 54.6
900 52.8 53.9
1000 534 55.2

Table 4.4Results for ‘All classes’

Over several experiments, we observe that dimensions, especiallybiélosging to the corner cells
and corresponding to orientatioh85°,215°, 270 ° are assigned low weights by automatic suggestion
schemas. Since we observe lower suggestive weights for a few dimgnsitime previous iterative
process, we redo the entire process once again. But this time, we déssataf dimension®, = {4,

12, 22, 43, 44, 54, 55, 71, 78, 79, 83, 84, 110, Lidsulting around 11% decrement in data size. The
observed overall classification accuracy in terms of percentage isxshdable 1.

Our CUDA based k-means algorithm takes half a second for an iteraticatbfare sampled data.
k-means is run upto convergence or 25 iterations, which ever is the gattiese by consuming just
over 12 seconds in a user interaction loop. Initial weight to each of the diomenis assigned based
on the behaviour observed in the histogram and PCP views. Once clastecemputed in a user
interaction loop, automatic weights are suggested With 7 which takes less than half a second using
a CUDA based implementation of method described in section 3.4. We consumeaabuonute to
analyze the cluster quality and interactively adjust weights and proceed teext round of clustering.

In the above experiments, we loop over weight re-adjustment and clyusfmocess eight times after
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Figure 4.1 A few examples of SIFT descriptors in interest point regions denoteddnk bectangular
patches. All the current regions are grouped into the same visual word.

which a considerable drop in Davies-Bouldin index was not observéiér we conclude with a set of
corresponding weights based on the sample data, our weighted k-mears! risetiin over the entire
dataset as an offline process. In order to avoid inconsistency, wegaerb random sample sets and
notify the mean classification accuracy obtained for entire dataset. Li ategbrt a classification
accuracy of 52.5% for SIFT with DoG [52] for the same dataset.
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Figure 4.2 SIFT descriptors in interest point regions denoted by red rectangatahgs. They are
encircled with blue sketch to highlight their presence. We can observeitaly similar patches are
closer after performing a weighted clustering.

Figure 4.3 A few examples of SIFT descriptors in interest point regions denotedtyactangular
patches. They are encircled with blue markings to highlight their preseftoe number of correctly
mapped visually similar regions has increased after performing a usdrafgletlased clustering.
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(a)

(b)

(c)

Figure 4.4 1D histogram corresponding to dimensions (a)84, (b) 110, (c) 124

Number of clus- Inte_ractive Intt_aractivg
Weights(all weights(discarded

ters dimensions) dimensions)

400 53.7 55.1

500 53.0 54.7

600 54.1 55.7

700 54.3 56.6

800 54.6 56.9

900 53.9 56.3

1000 55.2 57.6

Table 4.5Classificaton accuracy comparision.
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Chapter 5

Conclusions

In this thesis, we consider very high dimensional data which is not spatialiglated and accounts
for large storage space. Traditional techniques do not scale well wiste tkieds of datasets. Our
attempt in the current case is to come up with a framework to improve the protesslysis and
clustering of such datasets. Better clusters will result in generatingtrivtolises thus leading to better
results in accuracy. We provide a visualization based interactive toaj tisenproposed framework
to guide the process of generating better clusters in the context of CBiRb#érved that distribution
along 0 degree orientations is uniform and spread over a large rang@/fral datasets. Though it takes
considerable amount of time to analyze clusters, we can randomly samplefaaseas in the graph
layout and observe the results which gives an overall view about thentyprocess.

We notice that though this tool has been designed for analyzing SIFTrgdoton a given set of
images, we can extend it to any high-dimensional dataset which requilester@nalysis scheme. We
use SIFT descriptors with DoG to generate interest point descriptavsult be interesting to see how
it performs when SIFT is computed on a grid. The drawback is that it gée®a lot of redundant data
and so does the entire vector set. We have built the tool in such a way thasancan customize it
using plugins. User has a new ranking scheme for his data or a new rlgstesthod or another graph
drawing method, he can incorporate it into this tool without any difficulty. Paeallel Coordinate Plots
are rigid. We plan to make it interactive by providing a brush for subsetpemision. User must be
able to shift those vertical lines from one end of the display to the other@mesponding plot should
be updated in near real-time. We like to explore the possibility of using othelediug methods to
generate visual words and compare the performances. The grapimgliraethod which we use is a
force based one. We look to incorporate other methods for analysisadtbmatic weight suggestion
method which we use is based on uniformity of data along a dimension. We logkltore other ways
of suggesting weights in case user is not satisfied with the results. Withragaog results and many
possibilities to improve upon the current framework/tool, we hope to come upanliiter analysis
technique which incorporates human feedback at the core of clusteragiem.
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