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Abstract

The automation of activities in all areas, including business, engineering, science, and government,

produces an ever-increasing stream of data. Especially, the amount ofmultimedia content produced

and made available on the Internet, both in professional and personal collections is growing rapidly.

Equally increasing are the needs in terms of efficient and effective waysto manage it. And why is that

so? Because, people believe that data collected contains valuable information. But, extracting any such

information/patterns is however an extremely difficult task. This has led to a great amount of research

into content based retrieval and visual recognition.

The most recent retrieval systems available extract low-level image features and conceptualize them

into clusters. A conventional sequential scan on those image features would approximately take about a

few hours to search in a set of hundreds of images. Hence, clustering and indexing forms the very crux

of the solution. The state of the art uses the 128-dimensional SIFT as low level descriptors. Indexing

even a moderate collection involves several millions of such vectors. The search performance depends

on the quality of indexing and there is often a need to interactively tune the process for better accuracy.

In this thesis, we propose a visualization-based framework and a tool which adheres to the it to tune the

indexing process for images and videos. We use a feature selection approach to improve the clustering

of SIFT vectors. Users can visualize the quality of clusters and interactively control the importance of

individual or groups of feature dimensions easily. The results of the process can be visualized quickly

and the process can be repeated. The user can use a filter or a wrapper model in our tool. We use input

sampling, GPU-based processing, and visual tools to analyze correlations to provide interactivity. We

present results of tuning the indexing for a few standard datasets. A fewtuning iterations resulted in an

improvement of over 5% in the final classification performance, which is significant.
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Chapter 1

Introduction

The amount of digital data created worldwide is accelerating at an unprecedented, virtually incom-

prehensible rate. A study conducted by Hilbert et al. [33] documents the increase in global digital data

between1986 and2007. They estimate that the current global storage capacity for digital information

totals around295 exabytes (an exabyte equals one billion gigabytes). The study suggests that computing

storage capacity is growing at around58 percent annually and the ability for enterprises to capture, col-

late and analyze organizational data is becoming simultaneously more important and difficult to manage

as observed in Figure 1.5.

The automation of activities in all areas, including business, engineering, science, and government,

produces an ever-increasing stream of data. The data is collected in very large databases because people

believe that it contains valuable information. Extracting the valuable information, however, is a difficult

task. When researchers have to analyze a new observational data set,they first try to learn what the data

set looks like using descriptive modeling. Even with the most advanced data analysis systems, finding

the right pieces of information in a very large database with millions of data items remains a difficult

and time-consuming process. Hence, search is the only plausible way to findvaluable information.

But without an index, the search engine would scan every item in the corpus which would require

considerable time and computing power.

A traditional sequential scan would approximately take about a few hours tosearch a set of tens of

thousands of text documents. The additional storage required to store theindex, as well as the increase

in the time required for an update to take place, are traded off for the time saved during information

retrieval. Search engine technology has had to scale dramatically to keep upwith the growth of the web.

One of the first web search engines WWWW (World Wide Web Worm) [57] had an index of 110,000

web accessible documents in 1994. As of 1997, the number of indexed documents rose to 100 million.

By the end of 2003, Google [1] claimed to have indexed about 4 billion web documents. As of 2011,

the indexed web contains atleast 14.6 billion pages [6]. In order to provide‘search results’ in real time

on such huge amounts of data, indexing is a must. Several datastructures have been used so far to meet

the requirements of a particular search engine architecture. Some of them include suffix trees, inverted

index, document-term matrix, Ngram, etc.
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But with the advent of social media websites like Flickr, Youtube and Picasa,non-textual information

like images and videos have seen an exponential growth over the last decade. In September 2010, Flickr

reported to be hosting more than five billion images. Youtube approximately is growing with 20 hours

of new video content per minute. These statistics are huge in comparision with the textual documents.

With power comes responsibility. The power of sharing any video/image on theweb gives rise to

many concerns. Privacy of an individual can be easily compromised. Controversial and many a times

objectionable content, like photos which contain nudity, videos which emotionallyprovoke a group

of people can be uploaded anonymously. Copyrighted images could easily be reused. Its necessary

to identify and censor images with skin-tones and shapes that could indicate the presence of nudity,

with controversial results. Images/Videos are quickly becoming a wide spread medium for serving

entertainment, education, communication, etc. Hence, there is an increasing demand to find suitable

features to generate quick results for content based queries.

Lets roll back to data analysis. The process of finding right patterns cannot be fully automated since

it involves human intelligence and creativity which are unmatchable by computers today. Humans will

therefore continue to play an important role in searching and analyzing the data. Among other analysis

methods for descriptive modeling, cluster analysis is most widely used to describe the entire data set by

suggesting natural groups in the data set. Even though clustering algorithmsproduce useful clustering

results, the cognitive understanding of the result is often not good enough to guide discovery since the

result is statically represented in most cases, as is common in data mining applications. In dealing with

such analysis, however, humans need to be adequately supported by thecomputer. One important way

of supporting the human is visualisation of the data. Cognition of the clustering results can be amplified

by dynamic queries and interactive visual representation methods, and understanding of the clustering

results is transformed to another important data mining task - exploratory data analysis. Interactive

information visualization techniques enable users to effectively explore clustering results and help them

find the informative clusters that lead to insights.

Besides having a good descriptive model of multidimensional data sets, another challenging task is to

identify important features or patterns hidden in the multidimensional space. Weuse the term, “feature”

in a broader sense. What we mean by a “feature” is not only a dimension (or a variable) but also any

interesting characteristics (e.g. clusters, gaps, outliers, and relationships between dimensions) of the

data set. Dealing with multidimensionality has been challenging to researchers in many disciplines due

to sparse nature of data and the difficulty in comprehending more than three dimensions to discover

relationships, outliers, clusters, and gaps. This difficulty is so well recognized that its called “the curse

of dimensionality”.

One of the commonly used methods to handle multidimensionality is the use of low-dimensional pro-

jections. Since human eyes and minds are effective in understanding one-dimensional (1D) histograms,

two-dimensional (2D) scatterplots, and three-dimensional (3D) scatterplots, these representations are

often used as a starting point. Users can begin by understanding the meaning of each dimension (since

names can help dramatically, they should be readily accessible) and by examining the range and distri-
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Figure 1.1 Curse of dimensionality illustrated with 256d-dimensional points from a [0,1] uniform
distribution withd = 2 , 4 and32 respectively. The top row shows the results of the 2D Principal
Components Analysis (PCA). The bottom row displays how similarity (as a monotonically decreasing
function of Euclidean distance) is distributed. Asd increases, projections approach Gaussian distribu-
tions. An average pair of points’ similarity decreases rapidly and similarities become approximately
equal for most pairs with increasingd.

bution (normal, uniform, erratic, etc.) of values in a histogram. Then experienced analysts can suggest

applying an orderly process to note exceptional features such as outliers, gaps, or clusters.

Next, users can explore two-dimensional relationships by studying 2D scatterplots and again use an

orderly process to note exceptional features. Since computer displays are intrinsically two-dimensional,

collections of 2D projections have been widely used as representations ofthe original multidimensional

data. This is imperfect since some features may be hidden, but at least users can understand what they

are seeing and come away with some insights.

Since the natural world is three dimensional, advocates of 3D scatterplots argue that users can readily

grasp 3D representations. However, there is substantial empirical evidence that for multidimensional

ordinal data (rather than 3D real objects such as chairs or skeletons),users struggle with occlusion and

the cognitive burden of navigation as they try to find desired viewpoints. Higher dimensional displays

have demonstrated attractive possibilities, but their display strategies are stilldifficult to grasp for most

users.

The field of information visualization has found its utility in several areas like financial data analysis,

digital libraries [53], manufacturing production control [15], crime mapping [81], etc. Constant efforts

are made to create highly generic visualizations. But for domain specific problems, they often fail due

to lack of sufficient focus. Treinish [75] proposes a task specific visualization design with application

to weather forecasting. Stasko et al. [71] introduce a methodology for allowing designers to visualize or

showcase the concurrency exhibited by parallel programs. Several other application specific visualiza-

tion methods are proposed in the areas of medical imaging and computational fluid dynamics. However

task specific those methods might be, they often tend to struggle if data explodes to millions of high

dimensional vectors. We look to address this scenario by designing a framework which allows a user to

generate high quality clusters in as less time as possible. We take a sub-problem of Content Based Image
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Retrieval (CBIR) which clearly lacks necessary visual tools for interactive user feedback, to explain the

framework. This led us to design and implement an interactive visualization tool.

There is an increasing interest in Content Based Image Retrieval over thepast few years, since

metadata-based systems are inherently limited. Textual information about imagescan be easily searched

using existing technology, but requires humans to personally describe every image in the database. This

is impractical for very large databases, or for images that are generatedautomatically. It is also possible

to miss images that use different synonyms in their descriptions.

By now, we must have had a glimpse of what CBIR is all about. It is the process of retrieving desired

images from a large collection based on image features and its uses can be found in

• Medical diagnosis

• Crime prevention

• Photograph archives

• The military

• Intellectual property

• Art collections

• Retail catalogs

• Architectural and engineering design

• Geographical information and remote sensing systems

Recent advancements in computer vision has introduced several image features to describe an image

which can be roughly categorized into color, texture, local features andshape. In the context of matching

and recognition, one needs a right combination of invariant region detectors and descriptors. Several

region detectors like harris points, harris-laplace regions have been proposed. Various descriptors like

SIFT [54], GLOH [59], shape-context [12], PCA SIFT [40] , spin images [50], steerable filters [25] have

come into existence each with its own set of descriptions. Scale Invariant Feature Transform (SIFT) is

one such local image features which made possible to achieve significant results in image retrieval

and classification. These image features have many properties that make them suitable for matching

differing images of an object or scene. The features are invariant to imagescaling and rotation, and

partially invariant to change in illumination and 3D camera viewpoint. They are localized pretty well

in both the spatial and frequency domains, reducing the probability of disruption by occlusion, clutter,

or noise. Large numbers of features can be extracted from typical images with efficient algorithms. In

addition, the features are highly distinctive, which allows a single feature to be correctly matched with

high probability against a large database of features, providing a basis for object and scene recognition.

Following are the major stages of computation used to generate the set of image features.

4



• Scale-space extrema detection:The first stage of computation searches over all scales and image

locations. It is implemented efficiently by using a difference-of-Gaussian function to identify

potential interest points that are invariant to scale and orientation.

• Keypoint localization: At each candidate location, a detailed model is fit to determine location

and scale. Keypoints are selected based on measures of their stability.

• Orientation assignment: One or more orientations are assigned to each keypoint location based

on local image gradient directions. All future operations are performed on image data that has

been transformed relative to the assigned orientation, scale, and location for each feature, thereby

providing invariance to these transformations.

• Keypoint descriptor: The local image gradients are measured at the selected scale in the region

around each keypoint. These are transformed into a representation thatallows for significant

levels of local shape distortion and change in illumination.

Figure 1.2 A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
current system computes 4x4 descriptors computed from a 16x16 sample array.

An important aspect of this approach is that it generates large numbers offeatures that densely cover

the image over the full range of scales and locations. A typical image of size 500×500 pixels will give

rise to about 1000 stable features (although this number depends on both image content and choices for

various parameters). The quantity of features is extremely important for object recognition. The ability
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to detect small objects in cluttered backgrounds requires that at least 3 features be correctly matched

from each object for reliable identification. Hence, for a reasonably sized collection of a few thousands

of images, the volume of data points explodes to a few million. For image matching andrecognition,

SIFT features are first extracted from a set of reference images either at interest points [55] or in a

uniform grid [21] in a128- dimensional space. and stored in a database. A new image is matched by

individually comparing each feature from the new image to this previous database and finding candidate

matching features based on Euclidean distance of their feature vectors.

Figure 1.3A few Image classification categories

To maximize the performance of object recognition for small or highly occluded objects, we wish to

identify objects with the fewest possible number of feature matches. This is where CBIR draws parallel

with text search techniques. In document retrieval, each document is represented by a vector using a

bag of words representation. A document vector is nothing but a histogram of words with each bin

denoting a word’s frequency in that document, disregarding grammar andword order. Analogous to this

approach, for CBIR, each image is described by an image vector which is ahistogram ofvisual words.

Since each SIFT descriptor is a low-level feature, the entire set of descriptors extracted from the image

collection is divided into a fixed number of clusters with each cluster center denoting a visual word

(For detailed explanation, refer to [70]). SIFT descriptors in each cluster are similar in some sense of

objectivity. To improve the retrieval accuracy using image vectors, Li et al. [52] incorporate learning

methods like Support Vector Machine [74]

Significant results have been achieved so far on some datasets but do not fare well on practical image

collections. Relevance feedback based systems were developed to overcome such hurdles. However,

retrieved results might not always convey the information required to boost learning parameters. In

such a case, there is a need to fall back on information already available and to organize it better.
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This motivated us in using CBIR as a sub-problem to design a framework forcluster analysis of large

multidimensional datasets.

Figure 1.4An Overview of CBIR process, by Datta et al. [23]

In this thesis, we redefine the CBIR process by incorporating a visual framework to generate user-

favoured clusters of low-level image features like SIFT extracted from each of the images. We propose a

visualization-based framework and a tool to help tune the clustering process with reference to indexing

systems for CBIR. Generating qualitative clusters is possible if the user identifies the behaviour of

underlying data points and controls the entire process interactively. We use a feature selection approach

to improve the quality of clustering of SIFT vectors by weighing each dimensiondifferently. Weights

can be set interactively with automatic suggestions. We use a ranking schemaand assign uniform

weights to dimensional subset produced. The tool however supports both filter and wrapper model of

clustering. For better exploration of unsupervised, multi-dimensional data,we provide one-dimensional

projections, as well as two-dimensional projections where pair-wise relationships can be identified. We

build on the idea of bin map and perform refinements to display the structure ofSIFT descriptors. The

tool also provides an interactive interface to analyze the clusters formed,by using a graph visualization

scheme for the cluster centres as well as the vectors in each cluster. We use Euclidean Minimal Spanning

Tree (EMST) proposed by Stuetzle [72]. This skeleton forms the basic layout representation of the

data. Relative cluster validity techniques are implemented and visualized as a linechart to assist a user

to understand the quality of clusters formed. We use a statistical sampling process in which a sampled

subset of points from every image are used to tune the weights of each dimension semi-automatically.
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To make the process interactive, a GPU is used for fast clustering as wellas to compute the graph

layout. We further provide the user an automatic weight suggestion scheme which proves handy in

manual weight assignments. There are different ways of suggesting weights based on partition obtained

from the clustering method and hence is used only as a supportive process. We observe a classification

accuracy of 57.6% overall using our tool for UIUC dataset [2] consisting 15 different categories. Our

main contribution is the combination of interactive visualization techniques to improve cluster quality

for indexing problems. Thus, though the tool is specifically tuned for SIFTbased indexing, it can be

used for many learning-based problems that use high dimensional vectors.

An outline of our contributions in this thesis are as follows

• Proposed a visualization based framework for improving the process of clustering which forms

the base of indexing huge datasets.

• Developed an interactive tool adhering to this framework and achieved better results in compari-

sion to automatic methods.

This thesis has the following structure

• Chapter 2 provides the background required for our work. It widely starts with multi-dimensional

visualization techniques like parallel coordinate plots and types of dimensionality reduction. We

then focus mainly on cluster comparision schemas and graph drawing. We explain CUDA since

it immensely helps us to speed up the process so that the tool is interactive.

• Chapter 3 describes the framework which is designed for cluster analysis. We discuss the fun-

damental one-dimensional and two-dimensional analysis methods for ranking feature space. We

later provide interactive means for cluster analysis and automatic weight recommendation schemas

to guide the process.

• Chapter 4 explains the environment in which a particular set of experiments are conducted and

provide some insights which were previously not known. We numerically show that this frame-

work has indeed resulted in better cluster quality there by leading to improved classification ac-

curacy.

• Chapter 5 closes with insights and future work.
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Figure 1.5World’s capacity to store information. (image courtesy: Washington Post.).
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Chapter 2

Background and Related Work

We have so far discussed the rise of search engines and visual information, and the need to address

the issue of content based image queries for several real world applications. A lot of research has

gone into the problem of image querying using mathematical models and in many cases, using user

feedback. Never has there been any attempt on incorporating visualization techniques to manually

affect the underlying models generated, using human observational skills. But visualizing data is a

task in itself and there is a vast amount of literature available. In our work, we attempt to generate

better clusters of high dimensional SIFT vectors computed from sampled imageset. In this chapter,

we will take a look into the work that has previously gone into computing local image features, multi

dimensional visualization techniques, dimensionality reduction, graph drawing, cluster comparisions

and the more recent, Compute Unified Device Architecture (CUDA).

2.1 Image Representation

Many techniques have been used to represent the content of an image. All image classification and

content based retrieval systems require an appropriate representationof the input images. One can

represent an image globally or locally. Global appearance representation have problems with partial

occlusions and background clutter. Local appearance representations, on the other hand, are at the heart

of many highly efficient object recognition systems. Local features are computed around interest points

or on a regular grid. Regular grid (dense representation) allows features to be computed at each sampled

region on a dense grid. Dense representations can be used over sparse ones because regions with uniform

texture, which usually are not returned by interest point detectors, will be represented equally well. But

there is no general rule stating clearly the advantages of dense versus sparse representations. We choose

to use sparse representation to reduce the amount of feature data being generated. This method requires

that right image patches are chosen and described. It is in general carried out in two steps

• detecting interest points

• extracting feature descriptor from each interest region
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A detailed comparision and overview of well known interest point detectorscan be found in [58]. In

our work, we use the Difference of Gaussians (DoG).

2.1.1 Difference-of-Gaussians

This involves convolving the image with a Gaussian at several scales, creating a so called scale

space pyramid of convolved images. Interest points are now detected by selecting points in the image,

which are stable across scales. For Difference-of-Gaussians (DoG) approach, the convolved images at

subsequent scales are subtracted from each other. The DoG approach is in fact simply an approximation

of the Laplacian. Stable points are searched in these DoG images by determining local maxima, which

appear at the same pixel across scales.

In this work, the initial step is to compute SIFT feature descriptors at each ofthe interest points in an

image. However, that is not the final step. We look to combine the entire set ofsuch feature vectors to

form a bag of words model.

2.1.2 Bag of Words model

In the last few years, bag of visual words have been commonly used in object recognition, object or

texture classification, scene classification, image retrieval and related tasks. It directly relates to the bag

of words model (BOW) originally used in text retrieval [9]. It has been introduced into the computer

vision community by Sivic and Zisserman [70], who apply it to object retrievalin videos.

The BOW model is usually based on interest points and corresponding feature descriptions. It uses a

clustering/vector-quantisation method to quantize the feature descriptors. Eventually each interest point

is represented by an ID indexing into a visual-codebook or visual-vocabulary. Visual vocabularies are

typically obtained by clustering the feature descriptors in high dimensional vector space. The dataset

(or a subset of dataset) is clustered intok representative clusters, where each cluster stands for a visual

word. The resulting clusters can be more or less compact, thus representing the variability of similarity

for individual feature matches. The value ofk depends on the application, ranging from a few hundred

or thousand entities for object class recognition applications up to one million for retrieval of specific

objects from large databases. For clustering, most often k-Means is used, but other methods are also

used. Size of vocabulary is chosen according to how much variability is desired in the individual visual

words. In object class recognition, the individual instances of a class can have large variations, while in

retrieval for specific objects very similar features have to be found.

After vocabulary building, an image is then modelled as a bag of those so calledvisual-words. It can

thus be described by a vector (or histogram) that stores the distribution of all assigned codebook IDs or

visual words. Note that this discards the spatial distribution of the image features. The complete process

for encoding an image with a visual vocabulary is summarized in Figure 2.1

We can observe that SIFT vectors are very high dimensional and not alldimensions can be equally

interesting (curse of dimensionality). Hence we look to identify distributions in one or two dimensional
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Figure 2.1 Bag of Words: Features are extracted from image dataset and clusteredto get visual vo-
cabulary/visual words collection. Using this vocabulary, each image can be represented as a set of
frequencies of visual words.

space to take a more informed decision on choosing dimensions over which clustering can be performed.

This takes us to the literature behind multi-dimensional visualization methods.

2.2 Multi-Dimensional Visualization Techniques

Several techniques exist for displaying multi-dimensional data. These include Scatterplot Matrices,

Parallel Coordinate Plots, Pixel-Oriented displays, and Glyphs. We give an overview of each of these

methods below.

2.2.1 Scatterplot Matrices

Scatterplots are simple plots used to compare two dimensional data by plotting pointson axy-

Cartesian plane. Three dimensional data can be compared using a three dimensional scatterplot which

would use thexyz-Cartesian space instead. For data that has more than three dimensions, these plots

must be expanded to a matrix. A scatterplot matrix is aN ×N matrix that has all the rows and columns

labeled by theN dimensions (see Figure 4.4). Each cell(i, j) in the matrix is a scatterplot with theith

dimension on they-axis and thejth dimension on thex-axis. Because this matrix has allN dimensions

on the rows and columns, it is symmetric across the diagonal. This means that thecell (j, i) is the
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Figure 2.2An example scatterplot matrix comparing variables corresponding to car models from Xmd-
vTool [80]

same scatterplot as(i, j) except which of the two axes the dimensions are on. This technique was first

presented in [36].

Scatterplot matrices work well for comparing a large number of records and dimensions. However,

these matrices only provides information about how two dimensions relate. Comparing three dimensions

requires an understanding about how each of the three dimensions relateto the other two dimensions.

2.2.2 Parallel Coordinate Plots

For scientists and others studying multi-variate relations or datasets, understanding the underlying

geometry can provide crucial insights into what is possible and what is not. This need to augment

our perception, limited as it is by the experience of our three-dimensional habitation, has attracted

considerable attention into developing new visualization methods. Parallel Coordinate Plots is one such

technique which supports to analyze the geometry of the data provided. Parallel coordinates creates a

new coordinate system to representn-dimensional objects [35]. This is done by placing each of the

n-dimensions parallel to they-axis (or thex-axis for horizontal axes) and evenly spacing them along

thex-axis as shown in Figure 2.3 (or they-axis if using horizontal axes). This creates a new coordinate

system in thexy-plane that hasn axes perpendicular to the x-axis. Each axisxi is a dimension in

the n-dimensional space. In other words, A vector V with values(V1, V2, ...Vn) is visualized as a
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polyline connecting points(U1, U2..., Un) on n vertical axes. A number of extensions to PCPs exist,

Figure 2.3A sample Parallel Coordinate Plot analyzing correlations between various stock-market vari-
ables using XmdvTool [80]

like multiresolution and hierarchical [28] methods, 3D PCPs [38] and combinations of clustering,

binning [8] and other features like outlier detection [39] to reduce visual clutter there by supporting

large datasets.

2.2.3 Pixel-Oriented

Pixel-Oriented visualizations represent each record in the data set by a pixel. Due to the limited

rendering area, this type of visualization has a limit on the size of the data set being visualized. Because

of this limitation, these visualizations attempt to use the maximum number of pixels while stillpre-

senting an understandable picture. The techniques may be divided into query independent techniques

that directly visualize the data (or a certain portion of it) and query dependent methods that visualize

the data in the context of a specific query. Examples for the class of queryindependent techniques are

screen filling curve and recursive pattern methods. The screen filling methods are based on Morton and

Peano-Hilbert curve algorithms [20] and recursive patterns [41] based on generic recursive scheme,

which generalises a wide range of pixel-oriented arrangements for visualizing large datasets. A sample

pixel oriented display using recursive patterns is shown in Figure 2.4.
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Figure 2.4 A sample recursive pattern based pixel oriented display showing horizontal arrangement
(from [42])

2.2.4 Glyphs

Glyphs are icons that represent one record of the data set. Each dimension is mapped to one feature

and the value determines some aspect of the feature. Two commonly used glyphs are Chernoff Faces

[19] and Star Glyphs [51] (Figure 2.5). Like Pixel-Oriented visualizations, glyphs suffer from a lack

of space to display all the records.

Figure 2.5Star glyphs for Iris data points available with Xmdv tool [80]

Chernoff Facesuse the human’s ability to recognize small differences in faces to create a powerful

visualization. Each dimension is mapped to a part of the face, such as the nose or the eyes, and the
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shape or size is determined by the value of that dimension. Records that aresimilar would look the

same, thus allowing for a simple and quick way to recognize clusters. It is alsoargued that analysis is

done in parallel, which facilitates the efficient recognition of patterns [51].

Star Glyphs are based on whisker plots which have a central point andn lines, or whiskers, eminat-

ing from the central point. Each line represents one dimension of the data set whose value determines

the length. The difference between whisker plots and star glyphs is that theends of adjacent lines are

connected to each other [51]. Recognizing clusters is simple with star glyphssince they will all have

similar shapes.

2.3 Dimensionality Reduction

Techniques for clustering high dimensional data have used both feature transformation and feature

selection methods. Feature transformation techniques attempt to summarize a dataset in fewer dimen-

sions by creating combinations of the original attributes. These techniques are very successful in uncov-

ering latent structures in datasets. However, since they preserve the relative distances between objects,

they are less effective when there are large numbers of irrelevant attributes that hide the clusters in a sea

of noise. Also, the new features are combinations of the originals and may bedifficult to interpret in the

context of the domain. On the other hand, feature selection methods select only the most relevant of the

dimensions from a dataset to reveal groups of objects that are similar on only a subset of their attributes.

2.3.1 Feature Transformation

Feature transformations are commonly used on high dimensional datasets. These methods include

techniques such as principal component analysis (PCA) (Figure 2.7) and singular value decomposition

(SVD). The transformations generally preserve the original, relative distances between objects. In this

way, they summarize the dataset by creating linear combinations of the attributes, and hopefully, uncover

latent structure. Feature transformation is often a preprocessing step, allowing the clustering algorithm

to use just a few of the newly created features. Some clustering methods have incorporated the use of

such transformations to identify important features and to iteratively improve the clustering [76]. While

often very useful, these techniques do not actually remove any of the original attributes from considera-

tion. Thus, information from irrelevant dimensions is preserved, making these techniques ineffective at

revealing clusters when there are large numbers of irrelevant attributes that mask the clusters. Another

disadvantage of using combinations of attributes is that they are difficult to interpret, often making the

clustering results less useful. Because of this, feature transformations are best suited to datasets where

most of the dimensions are relevant to the clustering task, but many are highly correlated or redundant.
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Figure 2.6An example for Principal Component Analysis in two dimensional space

2.3.2 Feature Selection

Feature selection attempts to discover the attributes of a dataset that are most relevant to the data

mining task at hand. It is a commonly used and powerful technique for reducing the dimensionality

of a problem to more manageable levels. Feature selection involves searching through various feature

subsets and evaluating each of these subsets using appropriate criterion[22] [69] [82]. The most popular

search strategies are greedy sequential searches through the feature space, either forward or backward.

The evaluation criteria follow one of two basic models:filtersandwrappers [13].

The filter approaches evaluate the relevance of each feature (subset)using the data set alone, regard-

less of the subsequent learning algorithm. RELIEF [45] and its enhancement [48] are representatives

of this class, where the basic idea is to assign feature weights based on the consistency of the feature

value in thek nearest neighbors of every data point. Information theoretic methods arealso used to

evaluate features: the mutual information between a relevant feature and the class labels should be high

[11]. Nonparametric methods can be used to compute mutual information involving continuous features

[49].

On the other hand, wrapper approaches [46] invoke the learning algorithm to evaluate the quality of

each feature (subset). Specifically, a learning algorithm (e.g., a nearest neighbor classifier, a decision

tree, a naive Bayes method) is run on a feature subset and the feature subset is assessed by some estimate

of the classification accuracy. Wrappers are usually more computationally demanding, but they can be

superior in accuracy when compared to filters, which ignore the properties of the learning task at hand.

Both approaches, filters and wrappers, usually involve combinatorial searches through the space of

possible feature subsets; for this task, different types of heuristics, such as floating search, beam search,

bidirectional search, and genetic search have been suggested [17] [46], [65], [82] . It is also possible

to construct a set of weak (in the boosting sense [26]) classifiers, with each one using only one feature,

and then apply boosting, which effectively performs feature selection [78]. It has also been proposed

to approach feature selection using rough set theory [47].
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All of the approaches mentioned above are concerned with feature selection in the presence of class

labels. Comparatively, not much work has been done for feature selection in unsupervised learning. Of

course, any method conceived for supervised learning that does notuse the class labels could be used

for unsupervised learning; it is the case for methods that measure feature similarity to detect redundant

features, using, for example, mutual information [68] or a maximum informationcompression index

[60]. Different feature subsets and numbers of clusters, for multinomialmodel-based clustering, are

evaluated using marginal likelihood and cross-validated likelihood in [77]. The algorithm described

in [67] uses automatic relevance determination priors to select features when there are two clusters. In

[22], the clustering tendency of each feature is assessed by an entropy index. A genetic algorithm is

used in [44] for feature selection in k-means clustering. In [73], feature selection for symbolic data is

addressed by assuming that irrelevant features are uncorrelated with the relevant features. Devaney et al.

[24] describe the notion of “category utility” for feature selection in a conceptual clustering task. The

CLIQUE algorithm [7] is popular in the data mining community and it finds hyper-rectangular shaped

clusters using a subset of attributes for a large database.

The methods referred above “hard” feature selection (a feature is either selected or not). There are

also algorithms that assign weights to different features to indicate their significance. For example,

the method described by Pena et al. [63] can be classified as learning feature weights for conditional

Gaussian networks. An EM algorithm based on Bayesian shrinking is proposed by Carbonetto et al. [16]

for unsupervised learning.

2.4 Graph Drawing

Graph drawing or Graph layout, as a branch of graph theory, applies topology and geometry to

derive two-dimensional representations of graphs. A drawing of a graph is basically a pictorial rep-

resentation of an embedding of the graph in the plane, usually aimed at a convenient visualization of

certain properties of the graph in question or of the object modeled by the graph. Very different layouts

can correspond to the same graph. In the abstract, all that matters is which vertices are connected to

which others by how many edges. In the concrete, however, the arrangement of these vertices and edges

impacts understandability, usability, fabrication cost, and aesthetics. Different graph layout algorithms

have been proposed so far which can be broadly classified into force based ( [27] for example), spectral,

orthogonal, symmetric, tree, hierarchical layouts. Early work on automatic graph layout and drawing is

scattered through the computer science literature (for example [61], [66]). The first book devoted solely

to graph drawing, by Battista et. al. [10], summarizes large areas of the field. The Graph Drawing con-

ference series beginning in 1994 has resulted in proceedings that cover recent work in both systems and

theory. The focus of part of this thesis is to provide a layout only, so we do not concentrate on the wealth

of theoretical proofs about upper and lower algorithmic bounds: suffice it to say that most interesting

computations on general graphs are NP-hard [14].
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Figure 2.7A graph layout of Washington D.C metro. (Image courtesy: Washington Metropolitan Area
Transit Authority)

2.5 Evaluating Clustering Quality

The procedure of evaluating the results of a clustering algorithm is known under the term cluster

validity. In general terms, there are three approaches to investigate cluster validity [31]. The first is

based on external criteria. This implies that we evaluate the results of a clustering algorithm based on

a pre-specified structure, which is imposed on a data set and reflects ourintuition about the clustering

structure of the data set. The second approach is based on internal criteria. In this case, the clustering

results are evaluated in terms of quantities that involve the vectors of the data set themselves (e.g.

proximity matrix). The third approach of clustering validity is based on relativecriteria. Here the basic

idea is the evaluation of a clustering structure by comparing it to other clustering schemes, resulting by

the same algorithm but with different input parameter values. The two first approaches are based on

statistical tests and their major drawback is their high computational cost. Moreover, the indices related

to these approaches aim at measuring the degree to which a data set confixms an a-priori specified

scheme. On the other hand, the third approach aims at finding the best clustering scheme that a clustering

algorithm can define under certain assumptions and parameters. For more details on internal and external

indices, refer to [31], [32].
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2.5.1 Relative Indices

The fundamental idea of this approach is to choose the best clustering scheme of a set of defined

schemes according to a pre-specified criterion. More specifically, the problem can be stated as follows.

Let P be the set of parameters associated with a specific clustering algorithm(e.g. the number of

clustersnc). Among the clustering schemesCi, i=1,2,..n, defined by a specific algorithm, for different

values of the parameters of P, choose the one that best fits the data set.

Then, we consider the following cases of the problem:

• P does not contain the number of clustersnc, as a parameter.

• P containsnc as a parameter.

In our current work, we do focus on crisp clustering, meaning that datapoint belongs only to a single

cluster. So, we discuss validity indices suitable for crisp clustering.

2.5.1.1 The modified Hubert T-statistic

The definition of the modified Hubert T statistic is given by the equation

T =
1

M

N−1
∑

i=1

N
∑

j=i+1

Pr(i, j).Q(i, j)

where N is the number of objects in a dataset,M = N(N − 1)/2. Pr is the proximity matrix of the

dataset andQ is aN x N matrix whose(i, j) element is equal to the distance between the representative

points(Vci, Vcj) of the clusters where the objectsXi andXj belong.

2.5.1.2 The Davies-Bouldin (DB) index

A similarity measureRij between the clustersCi andCj is defined based on a measure of dispersion

siof a clusterCi and a dissimilarity measure between two clustersdij . TheRij index is defined to

satisfy the following set of conditions:

• Rij ≥ 0

• Rij = Rji

• If si = 0 andsj = 0 thenRij = 0

• If sj > sk anddij = dik thenRij > Rik

• If sj = sk anddij < dik thenRij > Rik
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These conditions state thatRij is non-negative and symmetric. A simple choice forRij that satisfies

the above conditions is:

Rij =
(si + sj)

dij

Then the DB index is defined as

DBnc =
1

nc

nc
∑

i=1

Ri

Ri = max
i=1,2...nc,i 6=j

Rij

It is clear from the above definition thatDBnc is the average similarity between each clusterci, (for

i=1,2..nc) and its most similar one. It is desirable for clusters to have the minimum possible similarity to

each other; therefore we seek clusterings that minimize DB index. TheDBnc index exhibits no trends

with respect to number of clusters and thus we seek the minimum value ofDBnc in its plot versus the

number of clusters.

Other validity indices have been proposed in [32]. The implementation of most of these indices

is computationally very expensive, especially when the number of clusters and objects in the data set

grows very large. Indices like RMSSTD and RS can be computed to evaluateclusters. The idea here

is to run the algorithm a number of times for different set of parameters and search for a “knee” in the

corresponding graph plot.

RMSSTD =

∑nc

i=1

∑v
j=1

∑nij

k=1 (xk − xj)
2

∑nc

i=1

∑v
j=1(nij − 1)

RS =
SSb

SSt

=
SSt − SSw

SSt

SS =
N
∑

i=1

(Xi −X)
2

where SS means sum of squares,xk is a data point ,nij is the number of data points of dimension j in

cluster i,xj is mean of data points in dimension j and

• SSb refers to the sum of squares between groups

• SSb refers to the sum of squares within group

• SSt refers to the total sum of squares, of the whole dataset
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2.6 GPU and Compute Unified Device Architecture

Graphics Processing Units have massively parallel processors set upas a parallel architecture. The

graphics pipeline is well suited to rendering process as it allows a GPU to function as a stream processor.

Nvidia 8 series and later GPUs with CUDA programming model provide an adequate API for non-

graphics applications. CUDA is a programming interface which tries to exploit the parallel architecture

of GPUs for general purpose programming. It provides a set of library functions as extensions of C

language. The CPU sees a CUDA device as a multicore co-processor. The design does not restricts the

memory usage as was in the GPGPU case. This enhanced memory model allows programmer to better

exploit the inherent parallel power of GPU for general purpose computations.

Figure 2.8CUDA hardware model

At the hardware level, GPU is a collection of SIMD multiprocessors with several processors in each

as shown in Figure 2.8. For example, Nvidia 8 series has eight processors in each multiprocessor.

Each multiprocessor contains a data parallel cache or shared memory, which is shared by all of its

processors. It has texture cache and read-only constant cache that is shared by all processors. A set of

local 32 bit registers are available per processor. Each processor ina multiprocessor executes the same

instruction in every cycle. The multiprocessors communicate through device or global memory. The

processing elements of a multiprocessor can synchronize with one another, but there exists no direct

synchronization mechanism between multiprocessors.
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Figure 2.9CUDA programming model

At the software level, for a programmer, CUDA model is a collection of threads running in parallel.

A warp is a collection of threads that are scheduled for execution simultaneously on a multiprocessor.

The warp size is fixed for a specific GPU. The programmer can select the number of threads to be

executed. If the number of threads is more than the warp size, they are time-shared internally on the

multiprocessor. A collection of threads run on a multiprocessor at a given timewhich is called a block.

Multiple blocks can be assigned to a single multiprocessor for time shared execution. They also divide

the common resources like registers and shared memory equally among them. A single execution on a

device generates a number of blocks. The collection of all blocks in a singleexecution is called a grid.

Each thread and block is given a unique ID that can be accessed within thethread during its execution.

All threads of the grid execute a single program called the kernel.
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Chapter 3

Framework and VisTool

Few attempts have been made to incorporate more user subjectivity into the summarization of low-

level features. One of the key contributions of this thesis is the redefinition of CBIR process by incor-

porating a visual framework to generate user-favoured clusters of low-level features like SIFT extracted

from each of the images (Figure 3.1). A learning based CBIR system relieson the quality of image vec-

tors and relevance feedback provided by the user to train the classifier.The visual words should be of

high quality. Generating qualitative clusters is possible if the user identifies thebehaviour of underlying

data points and controls the entire process interactively.

Visualization of large amounts of high dimensional data has been an active research area in infor-

mation visualization. Keim [43] gives a good overview and categorization ofrelevant visualization

techniques. Many of these methods aim at the identification of interesting formations in the data, such

as linear correlations. However, to analyze SIFT descriptors extractedover a collection of images, these

do not apply directly. Thus, we aim at presenting a visualization based framework with an implemented

tool to tune the entire process of indexing SIFT.

Interactive analysis of such huge abstract datasets is not possible using individual traditional meth-

ods. We sample the entire dataset to a manageable size using a stratified samplingmethod. We follow a

feature selection approach and incorporate a rank-by-feature schema to identify subspaces. Distribution

along each of the dimensions can be analyzed by its corresponding histogram and box-plot. We use a

Parallel Coordinate Plot widget to enable a user to identify two-dimensional correlations. Once dimen-

sions are analyzed, suitable weights are chosen to generate visual words. As the framework suggests,

a user is free to choose either a filter or a wrapper model of clustering which can be incorporated as

a plugin in the tool. Whatever might be the method used to compute visual words, itis necessary to

analyze the cluster structure formed. Graph layout provides an excellent means of analyzing such high

dimensional structures. Since it is an unsupervised clustering process,users must be able to evaluate the

resulting clusters formed using some qualitative measure. Relative index measures form an excellent

choice. User can interactively re-assign weights to each feature vectorbased on his observation of a

clustering process. Some automatic methods of suggesting weights have also been included to aid the

choice. The procedural framework after we sample a dataset is described as follows.
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Figure 3.1 Framework: Overview of the procedure

3.1 Feature Selection and Weight Assignment

We integrate four ranking criteria into our tool, since they are common and fundamental measures

for distribution analysis.

• Entropy of the distribution (0 to∞)

• Normality of the distribution (0 to∞)

• Number of potential outliers (0 to N)

• Number of unique values (0 to N)

We use an entropy measure to compute uniformity. Givenk bins in a histogramH, its entropyE is

defined as

E(H) = −
k

∑

i=1

Pi log2(Pi) (3.1)
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wherePi is the probability that an item belongs toi-th bin. We choseomnibus moments testfor nor-

mality from several statistical tests available. Several outlier detection algorithms have been proposed

in the field of data mining [64]. We select an item of valued to be an outlier if,d > (Q3 + 1.5*IQR)

or d < (Q1 - 1.5*IQR) where IQR is the interquartile range (defined as the difference between the first

quartile (Q1) and the third quartile (Q3)).

We can however notice that any filter model based feature selection method can be incorporated

instead of a ranking schema and assign uniform weights to the subset produced.

3.1.1 One-dimensional Distribution Analysis

Users may begin their exploratory analysis by scrutinizing each dimension oneby one. A mere

look into the distribution of values of a dimension gives useful insights. The tool provideshistograms

andboxplotsfor graphical display of 1D data as shown in Fig. 3.2. Histograms graphicallyreveal the

skewness and scale of the data. Boxplots provide a quick way of examiningone or more sets of data

graphically by showing a five-number summary

the minimum:smallest observation of the sample

the first quartile:cuts off lowest 25% of data = 25th percentile

the median:cuts data set in half = 50th percentile

the third quartile:cuts off highest 25% of data, or lowest 75% = 75th percentile and

the maximum:highest observation of the sample

These numbers provide an informative summary of dimension’s center and spread and thus help in

selecting dimensions for deriving a model.

The sub-interface consists of four coordinated parts: the rank box, the table view, the order view and

the histogram view. Users can select a ranking criterion from the rank box, which is a combo box, and

then see the overview of scores for all dimensions in the table view (Figure 3.3) according to the ranking

schema selected. All dimensions in the data table are sorted in decreasing value of scores on default.

The table view consists of three columns. The first column denotes the dimension name, second denotes

the score of that dimension according to ranking schema, and the third columnin the table view displays

weight assigned to it by user. (discussed in clustering framework).

The order view is a bar chart, where in the length of the bar denotes the rank of that dimension.

All dimensions are aligned from top to bottom in the original order and each dimension is color coded

by corresponding weight-value (third column in the table view). Weight is directly proportional to

the color scale which is displayed below the order view. Its mapping can be obtained by a simple

mouse hover over the display bar (Fig. 3.4). A mouse hover over a bar in the order view displays the

corresponding dimensionid in a tooltip window. Thus, user can preattentively identify dimensions of

highest and lowest rank and observe the overall pattern. The user is provided an option to interchange

the parameters in the order view such that color of each bar denotes the rank and length, its weight.

The histogram view is a combination of one-dimensional histogram plot and box-plot to display 1D

projections.
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Figure 3.2Sift-visualizer: tool adhering to the framework

The mouseclick event in the rank view or a cell activate event in the table viewis instantaneously

relayed to other views. The corresponding item is highlighted in the rank andthe table view, and its

histogram and box plot is rendered in the histogram view. In other words,a change of dimension in

focus in one of the rank or table view leads to instantaneous change of dimension in focus in other

component views.

3.1.2 Identifying Correlations

For better exploration of unsupervised, multi-dimensional data, after scrutinizing one-dimensional

projections, it is natural to move on to two-dimensional projections where pair-wise relationships can be

identified. Based on our discussion in section 2, we build on the idea of bin mapand perform refinements

to display the structure of SIFT descriptors.

Parallel Coordinate Plots have little to gain from high precision floating point representation of data.

When data values are rounded to a lower precision representation, the maximum erroneous displacement
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Figure 3.3 table view:Ranked dimensions are displayed in decreasing order ofscorecomputed by the
ranking criterion.

Figure 3.4 Colormap: Left most color represents lowest value and right most, the highest value.

that a line in a plot will have is directly related to the rounding error. The axesof PCP currently are less

than 127 pixels. Hence, a quantization to8-bit values will yield a maximum displacement of a single

pixel which doesn’t show any effect in the current scenario. This step reduces the data from 4 bytes to

a single byte per point per attribute, greatly reducing the necessary storage.

A PCP without any selections can be quickly generated solely from the joint-histograms of the data.

We make use of binning approach proposed by Artero et. al. [8]. Only thejoint histogram between

each pair of neighbouring axes is needed to build the parallel coordinate plot using this technique. Fast

exploration of data is made possible by computing joint histograms over all pairsof axes. ForN axes,

we getN(N−1)
2 histograms for all pairs. We adopt the rendering approach of Philipp et. al. [62] where

histogram bins form a direct basis for drawing the primitives. Instead of having to draw a line for each

data point, only a single primitive is drawn for each histogram bin. We use additive blending to combine

all drawn primitives. We use a square-root intensity scale, as to preventover-saturation of high-density

areas in the plot, while keeping a good visual contrast in low intensity areas.

A value change event in the weight column in the table view is instantaneously relayed to PCP

display. If a weightW (>0) is assigned to a dimension by the user, the corresponding joint histogram

is rendered in order of precedence of selection. For example, from Figure 3.2, say dimension 113 is

assigned a weight, then a joint histogram between 81 and 113 is rendered.Next, when dimension 17

is given some weight, a bi-histogram between 113 and 17 is loaded into memory and rendered in PCP

display.
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Figure 3.5 Rank View: The Length of a bar denotes its corresponding rank according to the score
obtained from ranking schema. Color represents its current weight.

Thus, we provide a user with the power to analyze multivariate structure ofinterestingdimensions

in 1D projections. User might find 1D projection of a dimension to be interesting,but it might not

have any correlation with other dimensions of significant interest. In such acase, user can revert back

to remaining dimensions by deselecting the uncorrelated dimension. De-selecting a dimension can be

performed simply by reassigning its corresponding weightW to zero in the table view.

3.1.3 Weight Assignment Using Glyphs

Since we consider scale invariant feature transform descriptors, the number of dimensions present

are 128. If we observe how SIFT is computed, we notice that each interest point (which is computed

using some interest point detector like DoG [58]) is divided into a4× 4 matrix where cell size depends

on the scale computed by interest point detector. Eight orientation angles are chosen describing the

infomation in each cell. Following a similar approach, we display a4× 4 matrix of glyphs where each

glyph is further divided into eight orientations as shown in Figure 3.2.Šaltenis et. al. use glyphs to

display information about k-dimensional data [79].

A Mouseclick event in the glyph view generates a zoomed-in version of the corresponding cell in

which mouseclick event occured. User can visually assign weights between neighbouring dimensions

as shown in Figure 3.6. This mode of assigning weights is very useful if two neighbouring dimensions

are of sufficent interest and user can visually approximate priorities. A left mouseclick event in the

orientation view assigns a weight to each of the corresponding adjacent dimensions with respect to

the angle selected. A right mouseclick deselects previously assigned weights in the cell. The updated

weights are relayed to the table view on either of the events.
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Figure 3.6 Orientation view: Visually assigning weights to adjacent dimensions. Greater the inclina-
tion, more the weight given to an orientation.

3.2 Data Clustering

After potentially identifying a weighted sub-space, user clusters the set ofdata points. Since different

users might be interested in different clustering methods, it is desirable to allow users to customize the

available set of clustering schemas. However, we have chosen the standardk-means [37] as a starting

point and implemented it on the GPU using CUDA [3] to achieve significant speed up. A modified

Euclidean distance schema is incorporated into computing distance between cluster means and points.

Distance between a cluster meanP and a data pointQ is computed using the formula

D(pq) =

√

√

√

√

128
∑

i=1

Wi ∗ (Pi −Qi)2, where(0 ≤ Wi ≤ 1) (3.2)

denotes weight assigned to dimensioni in the table view. After every iteration, we update cluster means

as in the standard procedure.
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3.3 Visualization for Cluster Analysis

Clustering large amounts of data though reduces the information overhead,generates new points in

feature space which need to be analyzed. Usual mathematical process helps in finding out the quality

of points generated but cannot give an overview of how they are related to each other. Visualization of

such points might help in providing better insights into the cluster quality. Hence we build an interactive

graph layout interface for visual analysis.

3.3.1 Graph Layout

Often, clustering algorithms go hand in hand with graph drawing methods providing important means

of dealing with increasingly large datasets. A good layout effectively conveys the key features of a

complex structure or system to a wide range of users. The primary goal ofthese types of methods is to

optimize the arrangement of nodes such that strongly connected nodes appear close to each other.

The user is presented with a two-dimensional representation of multi-dimensional data, that is easy

to understand and can be further investigated. We make use of Euclidean Minimal Spanning Tree

(EMST) proposed by Stuetzle [72]. This skeleton forms the basic layout representation of the data. In

order to compute the EMST, we need the high-dimensional point cloud in attribute space spanned by

the entire set of attributes. Hence, for each position in the data set, an attribute vector that consists of

individual multi-variate values is computed. A spanning tree connects all points in attribute space with

line segments such that the resultant graph is connected and has no cycles. For a graph withn nodes, we

end up withn − 1 edges in the spanning tree. A spanning tree is an EMST if the sum of the euclidean

distances between connected points is minimum. Since our graph layout followsa drill-down approach,

each graph contains only a few thousands to tens of thousands of nodes. We apply Prim’s algorithm

[18] to compute the minimal spanning tree. For a graph withN nodes,N(N−1)
2 edges are chosen where

each edge is given a weight by finding the euclidean distance between the pair of points. Our current

approach is based on graph drawing, where the EMST is first projectedto 2D by assigning each node

an arbitrary position. Afterwards, the graph is laid out to achieve appropriate edge lengths and few edge

intersections.

We choose the Fast Multipole Multilevel Method (FM3) method since it produces pleasing layouts

and is relatively fast [30]. The basic approach of this algorithm tries to coarsen recursively an input

graphG0 to produce a series of smaller graphsG1...Gk, until the size of coarsened graph falls below

some threshold. We use the GPU implementation of a modified version of this algorithm by Godiyal

et. al. [29]. Only the multipole expansion coefficients are considered and not the local expansion

coefficients to approximate repulsive forces. These coefficients aloneare sufficient to produce a high

quality layout. Figure 3.7 give a perspective of the current algorithm.
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Figure 3.7 (a) Modified FM3 layout of EMST, (b) Randomly initialized EMST

3.3.2 Cluster Validity

Since we use an unsupervised approach of clustering, its often necessary to quantitatively evaluate

the final partition. Cluster validity approaches based on relative criteria aimat finding the best clustering

scheme that a clustering algorithm can define under certain assumptions andparameters. Here the basic

idea is the evaluation of a clustering structure by comparing it to other clustering schemes which were

produced by the same algorithm using different weight assignments. In thisframework, we provide user

an option of choosing from three indices. Namely,

• Davies-Bouldin index

• R-squared index

• SD validity index

Davies-Bouldin index: A similarity measureRijbetween the clustersCi andCj is defined based

on a measure of dispersion of a clusterCi and a dissimilarity measure between two clustersdij . The

index satifies the following conditions

• Rij ≥ 0

• Rij = Rji

• if si = 0 andsj = 0 thenRij = 0

• if si > sk anddij = dik thenRij > Rik

• if si = sk anddij < dik thenRij > Rik
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wheresi is the measure of dispersion of clusterCi and dij the dissimilarity measure between two

clusters. We choose

Rij = (si + sj)/dij (3.3)

and hence the index is defined as

DBnc =
1

nc

nc
∑

i=1

Ri (3.4)

Ri = max
i=1,...nc,i 6=j

Rij , i = 1, 2, ....nc (3.5)

We can notice thatDBnc is the average similarity between each clusterci and its most similar one.

We seek clusterings that minimize DB index as its desirable for clusters to exhibitminimum possible

similarity to each other. This index exhibits no trends with respect to number of clusters and thus we

seek to minimize its value in its plot versus number of clusters.

R-squared index: It is quite possible that hierarchical algorithms might be used to cluster the

datasets. In such a case, this index proves to be much helpful in deciding the quality of clusters (note

that this index can also be used for nonhierarchical algorithms like k-means). We run the clustering

algorithm for different number of clusters each time and plot corresponding validity indices for these

clusterings. We search for a “knee” in this graph. The number of clusters at which this “knee” is

observed indicates a statistically optimal clustering for the dataset. The validity index takes the form

RS =
SSt − SSw

SSt

(3.6)

where SS meansSum of Squaresand refers to

SS =
N
∑

i=1

(Xi − X̄)2 (3.7)

and

• SSw refers to sum of squares within group

• SSb refers to sum of squares between group

• SSt refers to total sum of squares, of entire dataset

RS of the new cluster is the ratio ofSSb overSSt. SSb is a measure of difference between groups.

SinceSSt = SSb+SSw, the greater theSSb the smaller theSSw and vise versa. As a result, the greater

the differences between groups are the more homogenous each group isand vise versa. Thus, RS may

be considered as a measure of dissimilarity between clusters. Furthermore,it measures the degree of

homogeneity between groups. The values of RS range between 0 and 1. In case that the value of RS is

zero (0) indicates that no difference exists among groups. On the other hand, when RS equals 1 there is

an indication of significant difference among groups.
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SD validity index: Its definition is based on the concepts of average scattering for clusters and total

seperation between clusters. Average scattering for clusters is definedas

Scatt(nc) =
1

nc

nc
∑

i=1

‖σ(vi)‖

‖σ(X)‖
(3.8)

and total seperation between clusters is

Dis(nc) =
Dmax

Dmin

nc
∑

k=1

nc
∑

z=1

‖σ(vk − vz)‖

−1

(3.9)

whereDmax = max(‖vi − vj‖)∀i, j ∈ 1, 2, ..nc is the maximum distance between cluster centers. and

Dmin = min(‖vi − vj‖)∀i, j ∈ 1, 2, ..nc is the minimum distance. SD index can now be defined as,

SD(nc) = a.Scatt(nc) +Dis(nc) (3.10)

where a is a weighing factor equal to Dis(Cmax) whereCmax is the maximum number of input clusters.

For in-depth description of other possible indices, please refer to [31].As these indices are relative,

we plot each of them as a line graph. Based on the index chosen, user searches for an optimum value

denoting the best quality of clusters achieved over the process. Figure 3.8 denotes a plot of Davies-

Bouldin index obtained for one of the experimental setups.

Figure 3.8Davies-Bouldin index: With each iteration, the value decreases meaning better cluster quality
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3.3.3 Interaction for Cluster Analysis

A zoom user interface allows user to change the scale of the viewer area.Holding the right mouse

button down, a mouse left and a right makes the graphical display zoom outand zoom in respectively.

This helps user pin down to a point of his/her interest.

User can rotate the display on either of the spatial axes (X, Y or Z) to change the view point. This

is achieved by holding down the left mouse button and moving in any direction. User can translate

the canvas by pressing middle mouse button and making a move in any direction. This provides great

flexibility to analyse the structure of the graph layout and pin down to the interest area.

User can move the cursor over any valid data to browse through the details.This is a drill-down

approach where visual words are displayed initially according to a graphlayout algorithm. User can

point the cursor over any node (each node represents a visual word) and click on it to generate a graph

layout of underlying SIFT vectors assigned to that particular visual word. Another click on any node

denoting a sift descriptor displays its interest region in an image as shown in Figure 3.9.

Figure 3.9Drill-down to a sift descriptor in a cluster. The interest region is denoted bya black colored
rectangle and the selected node is highlighted with a wired mesh enclosing it.

3.4 Automatic Weight Recommendation

It might often be tedious for a user to re-assign weights to each dimension based on cluster analysis.

An automatic weight suggestion scheme proves handy in manual weight assignments. There are differ-

ent ways of suggesting weights based on partition obtained from the clustering method. One way is to
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choose

wj =











0 if Dj = 0
1

∑h
t=1

[
Dj

Dt
]

1

β−1

if Dj 6= 0

Wherewj is the attribute weight ofj-th dimension,β ≤ 0 or β > 1, h is the number of variables

whereDj 6= 0 and

Dj =
k

∑

l=1

n
∑

i=1

ui,ld(xi,j , zl,j)











ui,l = 1 if
∑m

j=1w
β
j d(xi,j , zl,j) ≤

∑m
j=1wj

βd(xi,j , zt,j)

for 1≤ t ≤ k

ui,l = 0 for t 6= l

Z = {Z1, Z2, ...Zk} is a set ofk vectors representing the centroids of thek clusters, X ={X1, X2, ...Xn}

is a set ofn objects, each objectXi = (xi,1, xi,2, ..., xi,m) is characterized by a set ofm dimensions,

U is an × k partition matrix,ui,l is a binary variable anduil = 1 indicates that objecti is allocated to

clusterl, d(xi,j , zl,j) is the distance or dissimilarity measure between objecti and centroid of clusterl

on thej-th variable. This method of suggesting weights is a modified version from [34] where they aim

to minimize an objective function

P (U,Z,W ) =
k

∑

l=1

n
∑

i=1

m
∑

j=1

ui,lw
β
j d(xi,j , zl,j)

It is only a support process and the final decision to choose weights foreach dimension is left to the

user.
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Chapter 4

Experiments

We show an application example of the framework with a collection of image classification cate-

gories. This dataset contains 4485 images with 15 different classes available with UIUC [2]. We apply

SIFT feature detector on all images using Vedaldi’s implementation [5]. We obtain close to 1.1 million

SIFT vectors for this collection. We implemented the current tool using Qt, OpenSceneGraph [4] and

OpenCV. All computations are performed on a commodity pc whose major configutation details are

2.4Ghz quad core processor, 2.5GB RAM and a Nvidia GTX 280 graphicscard.

We use intersection kernel based Support Vector Machine (SVM) to builda classifier and a fast

intersection kernel for testing [56]. However, the CPU computations we perform are not multi-threaded.

We sample 60 SIFT descriptors from each image resulting in a total sample size of 0.26 million vectors

approximately. We experiment with this framework based tool on individual classes as well as entire

collection and the results are follows. After a series of iterations of weight re-assignment and clustering

in tandem over sampled data with manual intervention, we observe that clusters formed are relatively

stable, backed by a cluster validity index (for example, figure 3.8). Using the observed weights, we run

a weighted kmeans on the entire class or dataset with respectiveK cluster centers.

4.1 Individual classes

There are approximately 250-270 images in each of the classes and sum upto around 16 thousand

SIFT vectors. First, we assign weights based on 1D and 2D distributions to each of the dimensions.

More uniformity means less weightage since there is less chance of finding clusters in the respective

dimensions. We run weighted k-means on the sampled set using a pre-determined cluster size with 25

iterations. Once clustering is performed, we have a graphical look of clusters formed. Clusters which are

similar must be closer to each other and vice-versa. A random sampled browsing through the minimum

spanning tree of the clustering gives us a fair idea about the “visual” content inside. If we are satisfied

with the clustering process (either visually or by cluster validity index), we can proceed to use those

weights to cluster the entire collection. Else, we re-assign weights to each of the dimensions either

by intuition or by mathematically suggested values based on data distribution. In these experiments,
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we repeat this process from 3 to 10 times. Initial centers were the same for each cluster size (for

comparision). The results for a few of the randomly picked classes are asfollows.

No. of clusters With uniform
weights

By interactively
adjusted weights

400 51.1 52.7
500 51.4 53.0
600 52.2 52.9
700 52.6 53.9
800 53.5 54.6
900 53.8 55.1
1000 54.8 55.9

Table 4.1Results for ‘Mountain’

No. of clusters With uniform
weights

By interactively
adjusted weights

400 48.7 50.9
500 51.5 53.3
600 51.1 53.3
700 52.3 54.1
800 52.8 53.6
900 53.6 53.9
1000 54.4 55.6

Table 4.2Results for ‘Kitchen’

4.2 Sampled collection of all classes

As mentioned before, we end up with a total sample size of 0.26 million vectors approximately for

entire collection of 15 different classes. We perform the same operationsas in the previous experiments.

We can notice that in figure 4.1, non-similar looking patches are clustered intothe same visual word

when given uniform weights.

The experimental results are as follows.

After using our tool, we could notice that similar looking patches did fall into the same visual words

as shown in figure 4.2, 4.3
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No. of clusters With uniform
weights

By interactively
adjusted weights

400 51.7 55.3
500 52.5 55.2
600 53.1 54.9
700 53.7 55.3
800 54.2 55.6
900 54.1 55.8
1000 54.4 56.1

Table 4.3Results for ‘Highway’

No. of clusters With uniform
weights

By interactively
adjusted weights

400 51.7 53.7
500 51.5 53.0
600 52.1 54.1
700 52.6 54.3
800 53.1 54.6
900 52.8 53.9
1000 53.4 55.2

Table 4.4Results for ‘All classes’

Over several experiments, we observe that dimensions, especially thosebelonging to the corner cells

and corresponding to orientations135◦, 215◦, 270 ◦ are assigned low weights by automatic suggestion

schemas. Since we observe lower suggestive weights for a few dimensions in the previous iterative

process, we redo the entire process once again. But this time, we discarda set of dimensionsDs = {4,

12, 22, 43, 44, 54, 55, 71, 78, 79, 83, 84, 110, 116} resulting around 11% decrement in data size. The

observed overall classification accuracy in terms of percentage is shown in table 1.

Our CUDA based k-means algorithm takes half a second for an iteration forabove sampled data.

k-means is run upto convergence or 25 iterations, which ever is the earliest, there by consuming just

over 12 seconds in a user interaction loop. Initial weight to each of the dimensions is assigned based

on the behaviour observed in the histogram and PCP views. Once clustersare computed in a user

interaction loop, automatic weights are suggested withβ = 7 which takes less than half a second using

a CUDA based implementation of method described in section 3.4. We consume about a minute to

analyze the cluster quality and interactively adjust weights and proceed to the next round of clustering.

In the above experiments, we loop over weight re-adjustment and clustering process eight times after
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Figure 4.1 A few examples of SIFT descriptors in interest point regions denoted by black rectangular
patches. All the current regions are grouped into the same visual word.

which a considerable drop in Davies-Bouldin index was not observed. After we conclude with a set of

corresponding weights based on the sample data, our weighted k-means method is run over the entire

dataset as an offline process. In order to avoid inconsistency, we generate 5 random sample sets and

notify the mean classification accuracy obtained for entire dataset. Li et al.report a classification

accuracy of 52.5% for SIFT with DoG [52] for the same dataset.
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Figure 4.2 SIFT descriptors in interest point regions denoted by red rectangular patches. They are
encircled with blue sketch to highlight their presence. We can observe thatvisually similar patches are
closer after performing a weighted clustering.

Figure 4.3 A few examples of SIFT descriptors in interest point regions denoted by red rectangular
patches. They are encircled with blue markings to highlight their presence.The number of correctly
mapped visually similar regions has increased after performing a user feedback based clustering.

41



Figure 4.41D histogram corresponding to dimensions (a)84, (b) 110, (c) 124

Number of clus-
ters

Interactive
Weights(all
dimensions)

Interactive
weights(discarded
dimensions)

400 53.7 55.1

500 53.0 54.7

600 54.1 55.7

700 54.3 56.6

800 54.6 56.9

900 53.9 56.3

1000 55.2 57.6

Table 4.5Classificaton accuracy comparision.
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Chapter 5

Conclusions

In this thesis, we consider very high dimensional data which is not spatially correlated and accounts

for large storage space. Traditional techniques do not scale well with these kinds of datasets. Our

attempt in the current case is to come up with a framework to improve the processof analysis and

clustering of such datasets. Better clusters will result in generating robust indices thus leading to better

results in accuracy. We provide a visualization based interactive tool using the proposed framework

to guide the process of generating better clusters in the context of CBIR. We observed that distribution

along 0 degree orientations is uniform and spread over a large range for several datasets. Though it takes

considerable amount of time to analyze clusters, we can randomly sample a setof areas in the graph

layout and observe the results which gives an overall view about the current process.

We notice that though this tool has been designed for analyzing SIFT vectors from a given set of

images, we can extend it to any high-dimensional dataset which requires a cluster analysis scheme. We

use SIFT descriptors with DoG to generate interest point descriptors. Itwould be interesting to see how

it performs when SIFT is computed on a grid. The drawback is that it generates a lot of redundant data

and so does the entire vector set. We have built the tool in such a way that any user can customize it

using plugins. User has a new ranking scheme for his data or a new clustering method or another graph

drawing method, he can incorporate it into this tool without any difficulty. TheParallel Coordinate Plots

are rigid. We plan to make it interactive by providing a brush for subset comparision. User must be

able to shift those vertical lines from one end of the display to the other and corresponding plot should

be updated in near real-time. We like to explore the possibility of using other clustering methods to

generate visual words and compare the performances. The graph drawing method which we use is a

force based one. We look to incorporate other methods for analysis. Theautomatic weight suggestion

method which we use is based on uniformity of data along a dimension. We look to explore other ways

of suggesting weights in case user is not satisfied with the results. With encouraging results and many

possibilities to improve upon the current framework/tool, we hope to come up witha better analysis

technique which incorporates human feedback at the core of cluster generation.
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