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Abstract

The amount of multimedia content produced and made available on Intechigt professional and
personal collections is constantly growing. Equally increasing are thaésrinderms of efficient and
effective ways to manage it. This has led to a great amount of researatoimtent based retrieval and
visual recognition. In this thesis, we focus on efficient visual contaatysis in images and videos.
Efficiency has emerged as one of the key issues with increase in quantiitaof Understanding of a
visual content has several aspects associated with it. One can cate@mirecognizing the inherent
characteristics of image (independent or from a video) like objectsesamh context. Searching for a
sequence of images based on similarity or characterizing the video ba#ied/isnal content could be
some other aspects.

We investigate three different approaches for visual content andtytiés thesis. In the first, we
target the detection and classification of different object and scensesl@s images and videos. The
task of classification is to predict the presence of an object or a spewndine ©f interest in the test
image. Object detection further involves localizing each instance of thetqginesent. We do exten-
sive experimentation over very large and challenging datasets with largbamnwof object and scene
categories in it. Our detection as well as classification are based on Raratest Eombined with
combinations of different visual features describing shape, appeam@nd color. We exploited the
computational efficiency in both training and testing, and other propertiBaiodlom Forest for detec-
tion and classification. We also proposed enhancements over our basetieéof object detector. Our
main contribution here is that we achieve fast object detection with accaamegarable to the state of
art.

The second approach is based on processing continuous streane@s tiddetect video segments
of interest. Our method is example-based where visual content to be deatefiteered is characterized
by a set of examples availabépriori. We approach the problem of video processing in a manner
complimentary to that of video retrieval. We begin with a set of examples (usgdaxies in retrieval)
and index them in the database. The larger video collection, which needspimbessed, is unseen
during the off-line indexing phase. We propose an architecture basédeodata structure and bag
of words model to simultaneously match multiple example videos in the database witiptiéarge
video stream. We demonstrate the application of our architecture for the ftasktent based copy
detection (CBCD).

Xiii



Xiv

In our third and final approach we apply pattern mining algorithms in videohaoacterize the
visual content. They are derived out of data mining schemes for effiaigalysis of the content in
video databases. Two different video mining schemes are employed;ibwt at detecting frequent
and representative patterns. For one of our mining approaches, evanusfficient frequent pattern
mining algorithm over a quantized feature space. Our second appreastiandom forest to represent
video data as sequences, and mine the frequent sequences. Weerpen broadcast news videos
to detect what we define agdeo stop-wordsind extract the contents which are more important such
as breaking news. We are also able to characterize the movie videos byatiatdly identifying the
characteristic scenes and main actors of the movie.

The ideas proposed in the thesis have been implemented and validated wigivexéxperimental
results. We demonstrate the accuracy, efficiency and scalability of alltedpproaches over large and
standrad datasets liIROC PASCALTRECVIQ MUSCLE-VCDas well as movie and news datasets.
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Chapter 1

Introduction

1.1 Introduction and Objective

The world is a rich and complex source of visual information, which is ofesgriured as images and
videos. With the development of multimedia and proliferation of cheap equippantaunt of visual
information available in digital form is growing at an exponential rate. It i®ading expeditiously
worldwide due to rapid distribution through internet (sites like Flickr, Youdatr). Millions of images
are indexed by Image search engines such as Google Images (claims 889) nRilisearch (claims 2
billion). Every minute, around 13 hours of video are uploaded to YouTwiseo has become widely
spread medium for serving entertainment, education, communication andpotipeises. In order to
cater to the needs arising from such databases and take advantagmoftivanced techniques for
recognition, indexing, mining of such visual content become more and mowatiamp. There is a need
to automatically extract high-level information from image or video. It can leedihjects contained
in an image or shot with or without its location, image and video search, semaatiacterization of
videos etc. And it is very important to do these tasks efficiently in order to theetiser demands.
Some examples of sources of visual data are shown in Figure 1.1.

Computer vision methods and specifically visual recognition along-with diffendexing tech-
nigues, can help to cope with the increasing size of video and image collectignal image analysis
and recognition has been a subject to research by many people in lasar® ynitially much of re-
search in visual recognition was focused on 2D pattern classificatioadually methods based on
learning global appearance [97, 112, 126] and geometric invaridi2de 145] came up. This methods
were sensitive to clutter, occlusions and object articulations and had limitgidagility. Limitations
of global features were overcome with the advent of local features/flQL27].

Bag-of-words model has a long history of success in document rdirlaviait was not until the
idea of a visual vocabulary emerged [137], that it was possible to brisgrbdel to vision. Since
then great progress can be seen in the area of visual recognitidentbased retrieval, image/video
understanding in general. Different Bag-of-words feature detecagombined with modern machine



(c) Movies (d) Broadcast video

Figure 1.1 Examples of different sources of visual data: images containing objedtscenes (top and
middle); and movie and broadcast videos (bottom)

learning techniques led to excellent performance [29, 111, 135] tectien, retrieval and other visual
recognition tasks.

Other than learning based methods for recognition, many indexing tecisriigue been proposed for
image and video retrieval/search. Some of the successful indexing selfi@mmeultimedia collections
include LSH [63], min-hash [27, 28], pyramid match hashing [54], vataly forest [171], etc. Content
based image and video retrieval has benefitted by incorporating bettedésaaiptors, local invariant
region detectors, indexing methods from visual recognition and textvatremmunities. Region
detectors include DoG (Difference of Gaussian), LoG (Laplacian afsGan), MSER, Harris Affine,
Hessian Affine (see [92] for details). SIFT [84], PCA-SIFT [68l)IF [14] and DAISY [146] are the
more popular descriptors. Along with Bag-of-words model these fedseriptors have been used for
variety of tasks. The power of Bag-of-words model to create efficieage and video retrieval systems
has been explored by Sivic and Zisserman [137] as well as Nister aner8tes [L01]. Moreover, with
this model it is easier to adapt many text based indexing methods for image#&land. For instance,
adaptation of PLSA [58] and LDA [17] to visual bag of words has prediggromising results for static
image databases [19, 117, 122, 136].



1.1.1 Objective

Our goal is to efficiently process, search, filter, analyze videos ane iarage collections. The
objective is to understand different aspects of visual information cadamthe given image or video.
It can be finding out what scene or object categories are presdsaitnyng models for those categories.
Some concepts like demonstration, violence, party are difficult to learrudim cases, example based
approach can be taken for detecting/filtering content of interest (whiekimilar to examples). Au-
tomatic discovery of main actors in movies, important content in news videostared characteristic
patterns is another way to understand and analyse video content.

More specifically the following problems are addressed in this thesis:

e Object localization in cluttered environment and scene/object classification.
e On-line processing and filtering of videos.
¢ Mining and finding characteristic patterns in videos.

The emphasis is on achieving above with high efficiency. We now furthglaiexour objective of
understanding visual content in image and video. We take two examplesoegch image and video
to justify the importance of our objective.

1.1.1.1 Understanding Visual Content in Images

Consider the image shown in Figure 1.2(a), one can observe a lot of thynyst looking at it.
Humans can easily recognize any content of the image from objects likeusapeople and other local
things to the global context of the image. The ultimate goal of visual conteiysis would be to
explain pixels, objects and their interactions in an image. To understand the inmevitable to take
global as well as local information into account. The visual recognitioblpros: (i) classification, (ii)
object detection, (iii) object categorization and (iv) scene categorizat®shown in Figure 1.3. Each
of them enables computers to analyse some or other aspect of the visteadtaaf image. In chapter 3,
we attempt to propose more efficient alternatives for object detectionlassifecation.

1.1.1.2 Understanding Visual Content in Videos

Understanding visual content in video includes many approaches: é) vetrieval or filtering, (ii)
activity recognition, (iii) identifying people, (iv) video characterization mning or other methods, (v)
video summarization. Objectives of all these approaches overlap wtaahainly of two types. First
is to detect or search content of interest, this can be done by learned r{actalgy recognition) or
example based methods (retrieval and filtering). Other one is aimed attdraiag or summarizing
the video by analysis or mining of the video content.

Figure 1.3 shows both types of approaches. The output shown in Hid(l® shows some commer-
cials which are blocked. This essentially would be video filtering if the comtignterest, commercials,
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(c) Object Categorization: objects present (d) Scene Categorization: scene descirption

Figure 1.2 Visual Recognition Problems: different approaches to understandghel\wontent of an
image.

was detected by already learned model or based on its similarity to some exar@alatabase. Fig-
ure 1.3(c) shows output which is the more informative or important contetiteonews video such
as breaking news. This can be done by mining the video or by applying soi®e summarization
method.

In this thesis our approach for visual content processing in videossisdban filtering (chapter 4)
and mining (chapter 5).

1.2 Motivation

Given the amount of easily accessible visual information the significands st processing is
very much apparent. Achieving the objectives mentioned in the last sectiad s@rve a large number
of applications. Possible categories of applications include:
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(b) Blocked content (c) Informative content

Figure 1.3 (a) News video which is to be processed, (b) Detected commercials aBde@iing news
retrieved.

e Semantic search in images and videos
An automatic searching tool which would immediately return all images or framasiomng
instance of given semantic concept. It can be scenes like mountain, pigyscabjects like
dog, hand, bus or activities like dancing, demonstration. Robust amitaffclassification and
detection methods can greatly help for such application. Also example bagexhah would be
useful in searching complex activities like 'people applauding’ by detecmgience of frames
similar to example sequences.

¢ Video characterization by automatic labeling
Automatic labeling of characteristic scenes, main actors and other aspectsigsmp sitcom
videos can help in genre prediction, automatic annotation to build large-dtgldy varied
datasets. Information obtained through finding such patterns couldycarieé about the visual
content and major theme of the video. This can be used to mine patterns in novsio-
logical studies, for teaching cinematography students the proper themdepractices of film



aesthetics. Other applications could be to implement automatic movie recommengatenss
video summary or intelligent fast-forward. One could for example jump autoaligticetween
all shots with characteristic scenes in the movie, or fast-forward to theapgdarance of main
character of the movie.

Content based video filtering

Content-based filtering of images and videos includes many applications likeakoicommer-
cials, event detection, content based copy detection, adult contentakmetecting occurrence
of a particular object. Many methods formulate this problem as an object/seeognition or
detection by using an appropriate classifier and many others use examplatstowith for com-
plex categories. Sequence information can be very useful for eeggttttbn. Content based copy
detection is another possible application which has become very popuéartlyecThe constant
struggle to identify and remove copyright multimedia content has been eadgyipular video
sites like YouTube. A efficient and scalable system for Content Baspyg Detection is required
to deal effectively with huge amount of visual data.

Applications in robotics

Autonomous mobile robotics is another important area, where recognitiobjetts is critical
for robot localization and navigation. Real-time processing of visual comteuld enable robot
to quickly infer the world around and make it useful for variety of situatioms this way a
completely autonomous robot specialized to recognize certain objects afsntetl be able to
substitute humans in dangerous situations such as underwater expldnaioan help etc.

Surveillance and Security

Automated surveillance is another aspect of security, where identificatiobjects and events

play an important role. Advanced systems to monitor a large set of securigraa and signal the
presence of specific objects/people or unusual events can be touighod surveillance system.
The methods have to be efficient and robust in-order to perform weliowded environments,

for example cricket stadium.

We have a long history of partially successful and encouraging attemptslygsa visual informa-
tion. However there is no perfect solution for the situations mentioned abegause they are still very
challenging.

1.3 Challenges

Whether the problem is object detection or retrieval, the challenge lies oftasaribing the visual
content well inspite of many kinds of variations. We present the challeargsur solution for indexing,
learning and mining in chapters respective to these problems (Chapten® 5).aHere we list some of
the prominent challenges in the area of visual recognition:



(c) Scale/Size

Figure 1.4 Variation caused due to (a) View-point/Pose, (b) Occlusion/Truncatidri@rScale/Size

e lllumination Variation

Lighting change have a major influence on the appearance and is onecohtingon problems in
recognition. Variation in environmental illumination causes large variations imtbesity values
of pixels. Due to different lighting and the occurrence of shadows tbjm appear completely
different and become difficult to recognise. It can also add strondigmtiedges to the image,
which can increase background-clutter and create confusion.

Viewpoint and Pose Variation

Viewpoint or position of the camera relative to the object can significantipgh#he appearance
of an object. Objects occur in different poses and can have complettdyedif appearances as a
result. For example, the different views of cars shown in Figure 1.4(a).

Occlusion and Truncation

Visibility of some part of object can be hindered due to some other objectiimityiof the current
object or due to other parts of same object. The latter phenomenon is krsosetfacclusion.
Sometimes object gets truncated by the image border. All these cases contpioateognition
task significantly as the visual model either needs to explicitly model the possifffilityssing



(b) Intra-class (c) Inter-class

Figure 1.5 (a) Examples of variations caused by object articulation, (b) two instasfcesme object
class, dog, with very different appearances, and (c) very similairigalog (left) and cat (right).

parts or needs to be sufficiently robust to it. Figure 1.4(b) shows fewpbes of occlusion and
truncation.

e Scale and Size Variation
The scale and size of objects can significantly influence the similarity to otlextatlasses and
increase the variance within one object-class. Some examples given ir Bigic) illustrates
the effect of scale and size of object.

e Background Clutter
Highly complex background can result in confusion between foregrobiects and background.
The chance of finding object features in the background increasedthgroducing false-positives.

e Articulation
Articulation describes the variation of appearance caused by diffeasitions of parts of the
object relative to each other. It mostly happens with living objects but alstes to other object
classes such as bicycles, bike. This causes large variations amongiiesaf same class and
increases intra-class variation. Figure 1.5(a) shows the differentilated positions of human,
horse and bike.

e Intra and Inter Class Variations
Many classes have high intra-class variation that is variation betweent®bjelonging to the
same class. For example different breeds of dog (shown in Figure) 11i@h inter class simi-
larity in many object-classes is another problem which makes it challengirtg nohfuse those
classes. Figure 1.5(c) shows an example where dog and cat lookwdar.s



We need approach that can address most of these challenges at thinsakexeping the solution
computationally efficient.

1.4 Our Contributions

In this thesis, we have proposed solutions for problems mentioned in Sectidn Brief description
of each of the contributions is given below:

¢ Rapid Classification and Localization with Random Forests
State of art object detection and scene classification is often achievegpgrsvector machines
(SVM). We have employed collection of randomized trees for efficiensilaation. The advan-
tage of Random Forest over SVM and other classifiers is that it is fashitodnd test and still
almost as accurate as non-linear SVMs. We show that Random Forgsifielacan be used for
fast and accurate classification and object localization. We have usadldmation of different
visual features with random forest for the high-level feature extrad¢tiek of TRECVID’08 [3].
Random forest is presented as a rapid object detector with results bengieg datasets like
VOC PASCAL and TRECVIDO09. We achieved results comparable to therb®€C’'07 [45] for
object detection.

e On-line Video Processing
We proposed an architecture for efficient online content basedgsimgeof continuous stream of
videos to detect segments (or sequences) which are similar to a givéesatples. Anindexing
technique is developed usifigie data structure with bag-of-words model. It does simultaneous
on-line spotting of multiple examples in a video stream which makes it possible tegs¢arge
amount of unseen video. This video filtering is complementary to video rettmwéere query is
an example video and the retrieved results are similar clips from alreadyeiddemnge database.

¢ Video Mining
We apply pattern mining in videos to characterize the visual content. Twaoeatiffegideo mining
schemes are employed; both aimed at detecting frequent and represguadierns. For one of
our mining approaches, we use an efficient frequent pattern miningitalgoover a quantized
feature space. Our second approach uses random forest teaepvleo data as sequences, and
mine the frequent sequences. Experiments are done with boadcasahgWrvie videos.

1.5 Thesis Overview

The remainder of the thesis is organized as follows. Chapter 3 presentiRa-orest as fast
and robust object detector. After survey on object detection and dRarebrest, we experimentally
compare RF with SVM. It is evaluated on VOC PASCAL and TRECVID dataketsletection and



classification. In chapter 4, we have presented a detailed survey tihgxapproach towards video
processing and different indexing techniques. Our example based anfethonline processing and
filtering of videos is then presented with results for Content Based Copgcen. Our video mining

approach is presented in Chapter 5 with experiments on movie and news.viggally, in Chapter 6

we draw conclusions from this thesis and also explore some of the posa#inlees for future work.
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Chapter 2

Background

In this chapter we introduce some basic tools and algorithms that we usehibrdug this thesis.
They include methods for image representation, clustering algorithms, wiscabulary construction,
classifiers and pattern mining methods.

2.1 Image Representation

In visual recognition literature many techniques have been used to eeptke content of an image.
All object/image classification and content based retrieval systems requapgaopriate representation
of the input images. In this section the basic techniques for representihdeseribing images and
the objects therein are described. One can represent an image glodalbalyy. In the case of local
models we haveparseanddenserepresentations. Sparse as well as dense image representations are
local as they focus on specific image regions instead of describing the msagevhole. In the next
subsection we describe global representation. Then we give a detafiedeo of sparse representation
techniques, which only represent interesting areas of an image. Thi®igdd by the presentation of
methods that provide a dense representation of the image in the sensekthpixehcontributes to the
feature description of the image. We then describe different featuceiptess used to represent image
content. In the last subsection we discuss Bag-of-words model for inrepgesentation.

2.1.1 Global Representation

Global features describe the entirety of an image with a single feature wagituring information
from the whole image. For example, variations of global color or gradistadgrams, texture features.
Attention is not paid to the constituents of the image, such as individual regioparts of objects.
Once each images feature is computed, we can classify each image orertbassimilarity between
any pair of images using some distance metric. The appeal of this approaah itie simplicity. The
drawbacks of global appearance representation are:

e problems with partial occlusion and background clutter.
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¢ the large amount of training data required to achieve viewpoint and lightirgiance.

Many recent works in computer vision has highlighted the importance of giolage representa-
tions for scene recognition [47, 75, 104] and as a source of conténfaemation [60, 99, 150]. These
representations are based on computing statistics of low level features (sonmdpresentations avail-
able in early visual areas such as oriented edges, vector quantizedpatabes, etc.) over fixed image
regions. One example of a global image representation is the gist des§tipddr The gist descrip-
tor is explained in section 2.1.4.3. Some of the earlier works that used thigagbpfor recognition
are [40, 98, 126].

2.1.2 Local Representation: Sparse

Local appearance methods are at the heart of some of the most $uloakjest recognition systems.
The introduction of very powerful local visual features in the late 90sies@f the main reasons for the
astonishing progress the field of computer vision has made in recent Ybdike global features, local
features decompose the image into localized image patch descriptors artaredtipoints (sparse) or
on aregular grid (dense).

Selecting the right image patches and describing them in meaninigful wayyisrnaportant for
sparse image representation. In general this is carried out in two Shegestegting interest points/regions
in the image; (ii) extracting a feature descriptor from each region, whishribes that specific image
region. Since only a subset of image regions is represented by thasefdascriptors, this provides a
sparse representation of the image.

A good interest point detector locates points, that can be detected mdgeaten if the original
image is modified or the same scene is shown under varying conditions. 8Sdations include for
example viewpoint changes (angle, zoom, etc.), illumination changes, or toagaession. We now
give an overview of a few interest point detectors that are used thoatighe computer vision commu-
nity to model images sparsely. A detailed overview and comparison of some aidht well-known
interest point detectors can be found in [92, 93, 156].

2.1.2.1 Harris corner detector

Harris corner detector [56] is one of the first introduced interest mi@tectors. It is very basic but
still influential and compared to the newer achievements. It is based oriidgtegrners as areas with
low self similarity, i.e. small shifts of an image patch result in a large sum of squdifferences.

2.1.2.2 Hessian-Affine

Hessian Affine interest point detectors [92] belong to a class of so cafiee-covariant detectors,
which are not only invariant to scale and rotation, but can even cope ffitie @hanges. The main
concept of these detectors is to find first a stable interest point in quate-as with the methods
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described above, but afterwards to fit an elliptical region around theesitpoint. (Instead of a square
or circle). This ellipse adapts - i.e. is covariant - with affine changes afitiderlying image structures.
For Hessian-Affine detectors, the shape of this ellipse is determined witke¢bad moment matrix of
the intensity gradient.

The descriptor is extracted on a normalized region for all interest poigtsthee ellipses are trans-
formed into a circle, before the descriptor is calculated on the pixels withinitile.c

2.1.2.3 Difference-of-Gaussians (DoG)

This involves convolving the image with a Gaussian at several scalesingr@aso called scale
space pyramid of convolved images. Interest points are now detecteddayisg points in the image,
which are stable across scales. For Difference-of-Gaussians) (@aoach the convolved images at
subsequent scales are subtracted from each other. The DoG epmaafact simply an approximation
of the Laplacian. Stable points are searched in these DoG images by detgrlogahmaxima, which
appear at the same pixel across scales.

2124 MSER

MSER (Maximally Stable Extrema Regions) [90] also belong to the class okatfimariant de-
tectors. They are not based on one of the standard Gaussian scaensgihods, but are based on
connected components of an appropriately thresholded image. The xtaethal refers to the property
that all pixels inside the MSER have either higher (bright extremal regiangmeer (dark extremal
regions) intensity than all the pixels on its outer boundary. The maximally stab8ER describes the
objective optimized during the threshold selection process: while changenipteshold value, these
regions binarization stays stable over a range of threshold values.irfiidly stable” is defined as the
local minimum of the relative area change as a function of relative chartgesshold.

Just as with the Hessian-Affine detectors, an ellipse can be fitted to thet oeitions of the de-
tector, and after normalization, a region descriptor such as SIFT caaldadated on the pixels in the
region [93].

2.1.3 Local Representation: Dense

Dense features are a widely used for many recognition tasks as antafeetaaegion detectors. By
dense it means that the features are not extracted at the detected puagrssbut feature descriptors are
computed for each sampled region/pixel on a dense grid. One advaridgese representations over
sparse ones can be the fact that regions with uniform texture, whietlyisue not returned by interest
point detectors, will be represented equally well. The preferred metbpendis on the application and
computational constraints. There is no general rule stating clear adeamtbgparse versus dense image
representations. In [66], Jurie and Triggs compare these two ideas objirt categorisation task and
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(a) Interest points (b) SIFT descriptor computation

Figure 2.1 (a) Example of detected key-points and (b) SIFT descriptor computatiorth®right are
the gradients of an image patch around a key-point. These gradientearadtumulated over x 4
sub-regions, as shown on the left, the length of the arrow corresgpnalithe sum of the gradient
magnitudes in that direction.

conclude that dense features perform better there. Dense sampling issals$ in [20, 161] which

boosted image classification and object detection results. However, domputational constraints a
combination of sparse representations and dense sampling can be nsfg8], Leibe and Schiele use
a sparse representation of interest points as a first step and refinditebject detection by further
sampling of dense features around the initial hypothesis. Thereby dangpling in the whole image
is avoided and only applied to the potential candidate regions.

2.1.4 Feature Descriptors

Now we briefly present a few feature descriptors that we use to desttrébdetected regions of
interest or regions from dense grid. We also discuss global desc@jdtr It is very crucial for good
performance in visual recognition that the features are robust. Theimpsttant quality criteria for
descriptors are a compact representation and high precision andwhitalmatching descriptors from
a database of images. Below we summarize the properties of some of the figariptors used in this
thesis.

2141 SIFT

SIFT (Scale Invariant Feature Transform) proposed by Lowe [84F&e and rotation invariant.
Originally SIFT consists of both an interest point detector and descriptefers to an implementation
which uses a scale invariant region detector based on the differer@ausisians. The descriptor is
however used stand alone as well in combination with various interest paiattdrs.

For the descriptor, around each interest point a region is definddediinto orientation histograms
on (4 x 4) pixel neighborhoods. The orientation histograms are relative to theok®ygrientation.
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Histograms contai® bins each, and each descriptor containsa 4 array of 16 histograms around
the keypoint. This leads to a SIFT feature vector with«(4 x 8 = 128 elements) (Figure 2.1). This
vector is normalized to enhance invariance to changes in illumination. Theegtddstograms seem
to contribute significantly to this performance by representing local shape.disadvantage of SIFT
is its high dimensionality and one way to reduce it is using PCA-SIFT [68] ifopaing Principal
Component Analysis (PCA) on the raM8 dimensional SIFT vector.

In original version after detecting interest points, several refinemeps @re applied, to select the
most robust points (e.g. eliminating edge responses etc.). Finally, the mostai orientations are
determined, by creating a radial histogram of gradients in a circular neijbbd of the detected point.
The maxima from this histogram determine the orientation of the point, and thbokentation invari-
ance.

2142 SURF

SURF [14] is a patrticularly fast and compact method. Just like SIFT, S8R0 scale and rotation
invariant. The interest point detector used by SURF is based on the Dea@itrofiHessian (DoH) blob
detector. However, just as SIFT uses DoG as an approximation of tHadiam SURF uses a more
efficient approximation of the Hessian. This is done using a approximatidheoGaussian second
order derivatives of the Hessian detector with simple box filters. Usindilhess allows using integral
images [164] for efficient computation.

Like its detector, the SURF descriptor is also tuned for efficiency. It tales a set of simple Haar-
like features in sub-regions of a rectangular neighborhood arourntenest point. As in the case of
SIFT, this is done after determining a dominant orientation and expressimgsceptor in relation to
that orientation to achieve rotation invariance. The Haar-like featur®nsss can again be calculated
very efficiently using integral images.

2.1.43 Gist

Gist is a global descriptor, initially proposed in [104]. The idea is to devallmv dimensional rep-
resentation of the scene. A set of perceptual dimensions (naturabpessess, roughness, expansion,
ruggedness) are proposed to represent the dominant spatial groiciuscene. Authors show that these
dimensions can be reliably estimated using spectral and coarsely localiaedation.

The descriptor is a vector of featureswhere each individual featugg is computed as:

gk =Y _ Wiz, y) x [I(z,y) @ hi(z, y)|”
T,y
where® denotes image convolution and is a pixel-wise multiplication. I(x,y) is the luminance
channel of the input imagéy(z,y) is a filter from a bank of multiscale oriented Gabor filtefs (
orientations and four scales), ang (z,y) is a spatial window that will compute the average output
energy of each filter at different image locations. The winddWgz, y) divide the image into a grid of
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Figure 2.2 This figure illustrates the information encoded by the gist features for thiffeeent images.
See text for details (Courtesy A. Torralbtal [151])

4 x 4 non-overlapping windows. We use eight orientatigis=(8), which results in a descriptor with a
dimensionality oft x 4 x 8 x 4 = 512.

Figure 2.2 illustrates the amount of information preserved by the gist dascrine middle column
shows the average of the output magnitude of the multiscale-oriented filtargaar plot. The average
response of each filter is computed locally by splitting the image4nto4 windows. Each different
scale is color coded (red for high spatial frequencies, and blue fdothepatial frequencies), and the
intensity is proportional to the energy for each filter output. Right columnigiiré 2.2 shows noise
images that are coerced to have the same gist features as the target itmagéest @escriptor provides
a coarse description of the textures present in the image and their spgtaization. It preserves
relevant information needed for categorizing scenes into categoriesolassifying an image as being
a beach scene, a street or a living-room). In addition to recognizingceregist can also be used to
provide strong contextual priors as we well.

2.1.4.4 Histogram of Oriented Gradients: HOG

Histogram of Oriented Gradients descriptor was first introduced by Ral&lTriggs in [34]. This
robust feature descriptor describes local shape and appeardhiteam image by distribution of gra-
dient orientation. The HOG descriptor, creates a dense image descrigtiosirty locally contrast
normalised! D-histograms of oriented gradients. These orientation histograms are cahopatesmall
non-overlapping cells (e.g8 x 8 pixels) covering the whole image (or region of interest containing
an object etc), thereby creating a dense description. Each of thosareefisrmalised with respect to
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_Input Image Gradient Image

Figure 2.3 HOG feature extraction: The image or ROI (here detector window) is tiled wittidaof
overlapping blocks. Each block contains a grid of spatial cells. For ealththe weighted vote of
image gradients in orientation histograms is performed. The block descrigg®iscally normalised
and collected in one big feature vector. Courtesy [34]

different blocks (larger spatial grid of neighbouring cells) and thugrdautes to the HOG descriptor
multiple times. Authors found that this local contrast normalization with overlgpgéscriptor blocks
is crucial for good results. They also experimented to study the influehemadifications from this
baseline and varying parameters : e.g. radial cells, rectangular cdsedifsizes of cells and blocks,
fine-scale gradients, fine orientation binning, relatively coarse spatiaing. Figure 2.3 shows the
process of computation of HOG descriptor. This descriptor idea candmeasea dense version of the
SIFT descriptor. HOG and its variants have given state of art perfarenfam object detection [48] and
image classification [20].

2.1.5 Bag of Words Model for Image Representation

In the last few years, bag of visual words have been commonly useddot@bcognition, object or
texture classification, scene classification, image retrieval and relatex tegdkectly relates to the bag
of words model (BOW) originally used in text retrieval [12]. It has bé&&noduced into the computer
vision community by Sivic and Zisserman [137], who apply it to object rettievaideos.

The BOW model is usually based on interest points and corresponditugdekescriptions. It uses a
clustering/vector-quantisation method to quantize the feature descriptanstually each interest point
is represented by an ID indexing into a visual-codebook or visual-wdaghb Visual vocabularies are
typically obtained by clustering the feature descriptors in high dimensiomébvepace. The dataset
(or a subset of dataset) is clustered ihtrepresentative clusters, where each cluster stands for a visual
word. The resulting clusters can be more or less compact, thus repregsietivariability of similarity
for individual feature matches. The value/otlepends on the application, ranging from a few hundred
or thousand entities for object class recognition applications up to one milliaetigeval of specific
objects from large databases. For clustering, most often k-Meansds lusteother methods are also
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Figure 2.4 Bag of visual words model: (a) Database of images, features extradetiustered to
get (b) Visual vocabulary or collection of visual words, and (c) Aareple image represented using
constructed vocabulary.

used for example hierarchical k-means is used by Nistex in [101]. Size of vocabulary is chosen
according to how much variability is desired in the individual visual wordsobject class recognition,
the individual instances of a class can have large variations, while invatfar specific objects very
similar features have to be found.

After vocabulary building an image is then modelled as a bag of those so cadiead-words. It can
thus be described by a vector (or histogram) that stores the distributidirassayned codebook IDs or
visual words. The complete process for encoding an image with a visoabutary is summarized in
Figure 2.4. Note that this discards the spatial distribution of the image feataresntrast, the image
descriptions introduced in the previous sub-sections also carry spétiahation, especially the dense
ones, e.g. HOG, are often used directly to provide a spatial descriptitie objects.

In visual recognition, the bag of words model has been employed by fotiee anost successful
methods in the PASCAL 2006 challenge [43]. One of the best performipgaphes uses a combina-
tion of the methods introduced in Zharatal[179] and Lazebnilet al[75]. The system uses the bag of
visual-words model on sparse Harris-Laplace and Laplacian featteetdrs or dense features on the
one hand, and an extension which uses spatial pyramids to repreatat dppendencies on the other
hand. This shows that this model compares to other state of the art olgjeghitton methods despite
its apparent simplicity and crude neglect of spatial feature relations.
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For image and video retrieval based on visual vocabularies, oftemaseadditional methods are
borrowed from text retrieval [123], e.g. the most frequent and iufemt visual words are removed
from the images using a stop-list, or the features are ranked using a Hridhy, weighting frequently
occurring features lower. Sivic and Zisserman [137] use tf-idf weightin the visual-word counts
produced by interest point detection and SIFT features in order touvefii@mes in videos containing
a query object.

We use visual vocabularies through out this work. In chapter 4 weeptescabulary triebased on
this model for video filtering. Our approach for mining videos in chapteres wssual words represen-
tation. For classification and detection in chapter 3 we use state of artdeasome of which are again
based on this model.

2.2 Vector Quantization (Clustering)

Vector quantisation of image feature descriptors is a common step in the \@soghition commu-
nity. One reason for the quantisation is the large range of values and ¢neitigty to small image
perturbations. Thus the quantisation introduces robustness. It inwad¥a<lustering or partitioning a
data set into groups of more related samples.

The most widely used method employs k-means clustering algorithm [85]. Ksrstarts withk
randomly selected data points, called cluster centres (different datndniitialisation techniques are
used as well). The first step assigns each of the remaining data points togbst cluster centre. The
next step recomputes the cluster centres to be the mean of each clusts.tWhesteps are alternated
until convergence. It finds a partitioning &f points from a vector space info < N groups, where
k is typically specified by the user. The objective it tries to achieve is to minimizéitata-cluster
variance:

k
V=> ) (a—mw)
i=1 x;€c;
where there aré clustersc;, i = 1...k, andy; is the mean of all the points; < ¢; .

While k is the only parameter that needs to be specified for k-Means, its choicktis/iz. In par-
ticular since it affects the outcome of the clustering result greatly. A commgnatendle this problem
is to just try several values fdr. However, for large datasets this approach is too time-consuming be-
causek can vary in a wide range. The time-complexity of the k-Means algorith@(¥ kld) for N
datapoints of dimensiod, and! iterations. Heré depends on the distribution of the data in the feature
space and the initial centers. Many improvements of the standard k-Mkgmihen have been sug-
gested [110, 41]. They either use efficient data structures or impooNiE™e and memory requirements
by reducing the number of distance calculations based on some approxicritoia.

Other methods such as agglomerative clustering in [78], which uses nagthgliey-scale correla-
tion on25 x 25 image patches, or the mean-shift based method described in [66] by ddrigiggs
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are used as well. Moosma al [94] introduced more efficient alternative for building codebooks in
Extremely Randomized Clustering Forests - ensembles of randomly creasésticlg trees.
In our work we use k-Means mostly to cluster local visual features int@aligacabularies.

2.3 Random Forests

Random Forests were introduced in the machine learning community by [&n@ldre based on
decision trees [118]. Dietterich and Fisher did related work [38] fostroieting ensembles of decision-
trees and compared methods based on bagging, boosting, and randomiRatision tree classifiers
have shown problems related to over-fitting and lack of generalizationddRafrorests are trained to
alleviate such problems by:

e injecting randomness into the training of the trees, and
e combining the output of multiple randomized trees into a single classifier.

A random forest multi-way classifier consists of a number of trees, with #ae grown using some
form of randomization. Randomness can be injected at two points duringnain sub-sampling the
training data so that each tree is grown using a different subset; anigatisg the node tests. The leaf
nodes of each tree are labeled by estimates of the posterior distributiotheveasses. Each internal
node contains a test that splits the space of data to be classified. A test saolpésified by sending
it down every tree and aggregating the reached leaf distributions. F2gbirghows a Random Forest
which consists of T trees.

Random Forests have been shown to result in lower test errors thaentimmal decision-trees [174]
and performance comparable to SVMs in multi-class problems [20], while mamgaigh computa-
tional efficiency.

2.3.1 Random Forest classifier

We employbinary decision-treess building blocks. Each internal node of the tree has a test as-
sociated with it which can be in general of the fodm: X — {true, falsg, whereX is the feature
representation of input sample. In specific, this test can be a combinatsonaxfe functiorF of the
form 7 : X — R and a threshold. The node test is then defined as:

B(X) = { F(X)>71  go to right c.hild 2.1)
else go to left child

Feature representation (i.&) can be of general nature, e.g. any feature descriptor like color his-
togram, HOG, PHOW etc or output of a filter bank. Also the functiis of a very general nature:
it could be a component or difference of two components of a featuigts, a linear classifier, the
output of another classifier, to give few examples.
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2.3.1.1 Training the classifier

Binary decision-trees are constructed by learning the node-tests disdilypan a top-down man-
ner. Starting from the root, given the labeled training data, the node fungtiand threshold- which
maximize the information gai\ ' are found at each node.

Q
AEZEQ Z\@r

where( is the set of data points at the current node (to be splittedand @ are theleft andright
subset caused by partitioning the data with> 7. E(Q) is the entropy of data points ). The
algorithm proceeds iteratively with the left and right subggfsat the children nodes unti); is empty

or a threshold folZ(Q) or AFE is reached. Sometimes when the training data is very unbalanced it is
beneficial to normalize it during computation AfF, by weighting each training point with its inverse
class prior probability. Note that this is different from normalizing the emgdidkss posteriors in the
leaf nodes. There are four ways in which priors can be used for rizatian of training data:

e weighting each training point by its inverse class prior probability during edgatjpn of AE and
also normalizing empirical class posteriors in the leaf nodes.

e using class prior probability during computation&# but not at the leaf nodes.

e normalizing empirical class posteriors in the leaf nodes but not using ghiwiisg computation
of AFE.

e not using priors both during computation AfF' and at the leaf nodes.

During training of the tree each node has available only a randomly chobsetof the entire pod?
of possible node functions. Training is achieved by finding for eachteoninal node a node function
and a threshold which yields maximum information gaif within such restricted, randomized search
space [20, 167]. The “randomization” can be tuned by several paeasrike the size and composition
of the pool P, number of node-functions and threshold$ {ried. Size of poolP and number of
thresholds to be tried at each node for each node-function are choserding to the application. For
example, Shottoet al [133] uses 500 node-functions and 10 thresholds at each node W8]lg94]
do not optimizer, but pick it randomly.

The training data is sub-sampled (bagging) and each tree is trained usifeyend random subset.
This is done to increase the independence of the trees [21] and rediriadgrtime. As a result of
training the empirical class posterior distributions are stored in the leaf nodie form of histogram
counts over the class-labels of the training data as shown in Figure 2.8 d&nision-trees in Random
Forest are trained independently training can be easily paralleled. liggaktto randomize enough so
that each tree result in independent classifications of the data [21].
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Figure 2.5 Random Forest with T trees, leaf nodes are shown in green. Traimmgiesare traversed
from root to leaf nodes and posterior distributions (blue) are compute@stisample is classified by
descending each tree and then aggregating the distributions at edoddr&saf. The paths formed while
descending are shown in yellow.

2.3.1.2 Random Forest Parameters

The following describes the effect of different parameters on the tiqofithe Random Forest.

e Number of decision-trees in the Random Foré&st (The number of decision trees greatly influ-
ences the performance of the Random Forest. Additional indepenaelttinézed decision-trees
add further information over the training data, as each tree partitions ttuedesgpace into differ-
ent cells and collects the empirical class posteriors for those cells in thedda$ nOur experi-
ments show that the performance increases the more decision-trees@reuishe improvement
is small after a certain number of decision trees are used.

e Node test parameters: These are the main parameters to influence thenireessd” of the
decision-trees.

— Number of functions chosen at each node)( If n; = 1 there would be no optimization
of the information gaimMA £ and the decision-trees would define a random partitioning of
the feature space. The greatgrthe more the partitioning will be driven by discriminating
between the object classes, as for each node the one node-functiof ou functions
that maximizes the information gaihE is selected. These; node-functions are sampled
randomly from the initial pool of node-functions P that is created for edision-tree.

— Number of thresholds tried for each node-function at each nadg (For each node-
functionn. thresholds are tried over the feature responses of training samplethrébb-
olds are usually sampled uniformly across the responses. rLjikéncreasing.. leads to
more discriminative partitioning.
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e Decision-tree parameters: These parameters describe propertiesletisien-trees only.

— maximum depth of a tree: Experiments indicate that deeper trees tend to imgroe p
mance as stronger trees are built. Thus the depth is mostly determined by ciomalita
and memory considerations, but depending on the specifics of the implemerstatiahe
number of trees in the forest it can also lead to over-fitting.

— fraction of training samples used to train a tree: Similar to the maximum depth, wigen la
fraction of training data is used per tree, stronger trees are built. But tow m&ining
sample per tree may cause over-fitting and an ensemble of larger numbeakémirees
may have better generalization.

— information gain or entropy stopping criterion: In order to avoid “over-fittiaf the tree, i.e.
partitioning of feature space areas into areas where there is no fuafidioping necessary,
these two criteria can be used to stop expansion of the nodes before timeumestepth is
reached.

2.3.1.3 Classification

Data is classified independently by each decision tree during testing. &agitesis pushed through
the tree from the root to a leaf node. At each internal node dependitice@valuation of the node-test
a sample is sent to the left or right child. This classification results in the assigrof the empirical
class posterior distribution to the test sample. It is often better to not use thigoaingass posteriors
directly, but to weight them with the class prior probabilities. To combine the multlpkes posterior
distributionsP; (c|x) with i € {1, ..., T}, we use Mixture of Experts method where individual probabil-
ity distributions are averaged:

T P;(c|x
Plepe) = 2 L)
whereZ denotes the normalization such ttfatc|x) is a proper probability distribution. In this method
each individual tree has an influence in voting for a specific class 5lnRiau et al show that the voting
and averaging classifiers are consistent and also investigate the aunsEt®andom Forests. It turns

out that if the individual decision-trees are consistent the averagisgifita is consistent as well.

2.4 Frequent Pattern Mining

Frequent pattern mining (FPM) has become one of the most actively casedopics in data mining
and knowledge discovery in databases. It was catalysed by market laaslysis and the task to mine
transactional data. It described the shopping behavior of custometgpefmarkets, mail-order com-
panies and online shops, for products that are frequently bougtthegé&or this task, which became
generally known as frequent item set mining, a large number of efficlgotitnms were developed,
which are based on sophisticated data structures and clever procassémges.
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Item set mining was followed by to sequence mining and the extensions arestasightforward.
But they led to exciting new applications like genome mining and temporal patteacéan from data
describing, for instance, alarms occurring in telecommunication networkse omplex problems
of mining frequent trees and general frequent subgraphs haveddekessed in recent developments.
These have applications in biochemistry, citation network, web mining andgrofipw analysis. Fre-
quent Pattern Mining comprises of these problems:

e Frequent Itemset Mining (FIM)

e Frequent Sequence Mining (FSM)
e Frequent Tree Mining

e Frequent Graph Mining

In this work we only use frequent itemset mining and its extension freqeeuience mining. Using
FSM we deal with sequences of items or itemsets. Frequent itemsets plagatigssle in many data
mining tasks that try to find interesting patterns from databases, suchoasaties rules, correlations,
sequences, episodes, classifiers, clusters and many more. Patternhmialgo been used in computer
vision by Till Quacket al[114, 115, 116] and Nowoziat al[102, 103]. We have used FIM and FSM
for mining patterns in videos in chapter 5.

In this section we first give the definitions of important terms and concepemn e give the general
problem statement for FPM followed by specific cases FIM and FSM.

2.4.1 Basic Terms and Notions

Here we summarize the relevant terms and notions for frequent itemsetdsiefine association
rules before discussing frequent sequence mining.

e Let] = {iy,...,i,} be a set op items This is called thétem base

Any subsetd4 of I with [ items, i.e.A C I,|A| = [ is called an-itemset

A transactionis an itemsef” C I with a transaction identifietid(7T).

A transaction databas® is a set of transactions with unique identifiérs= {tid(1y)...tid(T,)},
tid(T;) = tid(T;){i,j} € I|i = j. Every transaction is an item set, but some item sets may not
appear inD.

We say that a transactidh supports an itemset, if A C T.

A sequencey is an ordered list of items or itemsets (term useehien). It is denoted as =

(g = ag — ... — ag)
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e A sequence witk items ¢ = 3_; o) is called ak-sequenceFor example, B — AC) is a
3-sequence

e We saya is a sub-sequence of another sequehatenoted as: < 3, if there exists a one-to-one
order-preserving functioyfi that maps events in to events ing3.

e A sequence databasgis a set of sequences. We say that a sequence $fony, supports a
sequence, if a < ag.

Let A C I be an itemset and a transaction database over Also let o be a sequence arftla
sequence database oveMe can now define relevant concepts:

Definition 2.4.1 Support of an itemsetThe support (absolute) of an itemséte D is
support(A) == |{T € D|A C T}

and relative support is

_ H{T e DIACT}

D € [0,1]

support(A) :

Definition 2.4.2 Cover of an itemsetFor each itemset we can also find the transactions, which support
the itemset. The cover of an itemget D consists of the set of transaction identifiers of transactions
in D that supportA:

cover(A,D) :=tid(T)|(T € D,ACT)

Definition 2.4.3 Frequent itemset:An itemsetA is called frequent in databasP if support(A) >

min_supp wheremin_supp is a threshold for the minimal support.

Definition 2.4.4 Closed itemset and Maximal itemsef frequent item sef! is called closed if no
super-set has the same support. A frequent item $etcalled maximal if no super-set is frequent.
These are two special types of frequent itemsets that are often discrichindke literature.

After mining frequent itemsets, one is often interested in the statistical dependetween the
individual items or subsets that form a set. These dependencies aralyypipressed in the form of
association rules.

Definition 2.4.5 Association rule: An association rule is an expressioh— B whereA and B are

itemsets (of any length) andin B = ¢.

The quality or interestingness of a rule is typically expressed in the suppofidence framework,
which was introduced in [5].
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Definition 2.4.6 Support of a rule: The support of an association rue — B is

Supp(A — B) = supp(A U B) _ ’{T € D‘(./|4DL’J B) - T}|

In other words, the support of a rule is the support of the joined itemsedtsnidee up the rule. The
support of a rule measures its statistical significance.

Definition 2.4.7 Confidence of a rule:The confidence of an association rle— B is

supp(AU B) _ {T € D|(AUB)T}|
supp(A) {T € D|(A c T}

conf(A— B) =

The left-hand side of a rule is called antecedent, the right-hand side isiBeqeent. The confidence
is a measure of the strength of the implicatién- B.

Definition 2.4.8 Support of a sequencerhe support (absolute) of a itemséte D is
support(a) := [{ag € D|A < ag}|

and relative support is

DIA <
support(a) = o !l‘)l asil ¢ [0,1]

As in case of frequent item-set, a sequence is called frequent if its gupgweater than threshold
for the minimal support. Also frequent sequence is maximal if none of itsrssgupiences is frequent.

2.4.2 Frequent Pattern Mining: Problem Statement

In the frequent pattern mining problem, we have a pattern coMéxt (P, R), for the input data
which is alocally finite posetP is set of all possible patterns in the data & a containment relation.
We are given the set of input dafg the pattern contex?C, the support functionsuppT : P — N and
a minimum support thresholehin_supp € N.

The task is to find the sét = {p € P : suppT'(p) > min_supp} and the support of the patterns in
F. Elements off” are frequent and are callé®@guentpatterns. Her® is pattern context (set of possible
patterns)supp1 : P — N is a support function andvin_supp given minimum support threshold. The
input data7 is a set of collection of patterns (transactions or sequences). Thermany types of
patterns: itemsets [5], item sequences, sequences of itemsets [7] ettth&be are some or other form
of collection ofitems coming from item basd.,.
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2.4.3 Frequent Itemset Mining

Frequent itemset mining is a case of FPM where patterns are transactbtisearontainment re-
lation (R) is set inclusion €) relation. The task is to find all frequent item sets from the transactional
database. Finding frequent itemsets is one of the most investigated fieldsaoméhing. It is very
popular family of methods to detect the joint occurrence of certain items fiange body of data. The
problem was first presented in [5]. The subsequent paper [6] sidered as one of the most important
contributions to the subject. Its main algorithApriori, not only influenced the association rule min-
ing community, but it affected other data mining fields as well. Association ruderaguent itemset
mining became a widely researched area, and hence faster and fastéhmig have been presented.
Numerous of them arApriori based algorithms okpriori modifications.

Market basket analysis was the main application considered in the firstgidns on itemset min-
ing [5], however, since then same kind of problem has been analyzeatious other contexts. This
includes web usage mining [31], robust collaborative filtering [124),dr detection in on-line advertis-
ing [91], document analysis [61] or massive recommendation systenal&bed search queries [81]. In
computer vision, frequent itemsets configurations are used to mine videb&Ain15, 116].

2.4.4 Frequent Sequence Mining

Given a databas# of input-sequences and minimum support, the problem of mining sequential
patterns is to find all frequent sequences in the database. On this vef§iBiM data is in the form of
sequences and sub-sequence is the containment refRijofilie problem of mining sequential patterns
was introduced in [7]. They also presented three algorithms for solvingthldem. TheAprioriAll
algorithm was shown to perform better than the other two approachesbseguent work [142], the
same authors proposed the GSP algorithm that outperfoAp&driAll by up to 20 times. Since then
improved algorithms kept coming, some of them are FreeSpan [55], Ppafi{309], SPADE [176].

Sequence discovery can essentially be thought of as associationaisfAR5, 142] over a temporal
database. While association rules discover only intra-event pattettesi(itamsets), we now also have
to discover inter-event patterns (sequences). The set of all inegaguences is a super-set of the set of
frequent itemsets. Due to this similarity sequence mining algorithmsAkeoriAll, GSP, etc., utilize
some of the ideas initially proposed for the discovery of association ruhestc®mings ofApriori-like
approaches are: (i) potentially huge set of candidate sequences,[{iplenscans of databases and (iii)
difficulties at mining long sequential patterns. Algorithms like FreeSpan XSedin avoid the repeated
scans setback @&fpriori which makes them suitable for dealing with very large databases.
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Chapter 3

Rapid Object Detection using Random Forests

3.1 Introduction

A long-standing goal of machine vision has been to build a system which isaf#eognize many
different kinds of objects in a cluttered world. Recent years haveges progress in the area of object
category recognition for natural images. However, in their basic formyratate-of-the-art methods
only solve a binary classification problem. They can decide whether aotabjgresent in an image or
not, but not where exactly in the image the object is located.

Given an image, task of object detection is to find if the object of intereseseit in the image, and
if present return the location of it. Some examples of object detection avenshd-igure 3.1. Object
localization is an important task for the automatic understanding of images agweltp separate an
object from the background, or to analyze the spatial relations of €iffaybjects in an image to each
other. Various classifiers have been used for object detection, susiMs [34, 49, 86, 108], naive
Bayes [128], mixtures of Gaussians [50], boosted decision stumps 1653, etc. In addition, many
types of image features have been considered, like generic wavel8{slA%], histogram of gradient
orientation (HOG) [34, 49], spatial pyramid histogram of visual word$ @G [20, 84, 137, 161] etc.

The Random Forest is another discriminative classifier that has becoynsuaeessful in computer
vision [8, 20, 21, 79, 133]. The advantages of Random Forest &ssifeer are discussed in section
3.6. In this chapter we show that Random Forest can be used forMdsicgurate object detection
comparable to the state of art. We start with an overview of previous relegaarch on object detection
followed by theory of Random Forest and its application in computer visiomdtian 2.3. First in
section 3.4, we show strength of Random Forest as a classifier byragpés for image level scene and
object classification in high level feature detection task in TRECVID’08 8¢ explain our detection
system by giving details of training, testing, post-processing and featusection 3.5. Then Random
Forest is compared with SVM as an object detector on account of agcgreed and memory usage.
Section 3.7 details our approach of sliding window based RF detector. Hmdd/ Forest baseline
detector is evaluated on challenging VOC PASCAL dataset [45]. In theafimipsections we propose
enhancements over the baseline detector and present Random Farespia object detector supported
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Figure 3.1 Some examples of our object detection results.

by experiments and results. We also show how it performs for objectvatiie high level feature
detection task in TRECVID’09.

3.2 Object Detection Literature and Methods

A number of different approaches to object detection have been ggdpa the past. In most of
them, images are represented using some set of features, and a learnhiad im¢hen used to identify
regions in the feature space that correspond to the object class ostnfEnere has been considerable
variety in the methods based on types of features, classifiers and aésbdrasow the localization is
done. Among them localization using sliding window approach is the most pomsga

3.2.1 Sliding window based methods

In this approach detector is based on a binary object/non-object classtfieh scans the image
with a detection window at all positions and scales. Feature descriptoestedrfrom each window
are scored by the classifier and multiple overlapping detections are fuggelddhe final object de-
tections. Sliding window approaches have established themselves as steeadf Most successful
localization techniques at the recent PASCAL VOC challenges on objegjag localization relied on
this technique.

After the introduction ofintegral Imagein [164] for fast object detection, sliding window based
method became the most preferred method. It became possible to quickly teofeatures for ex-
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tremely large number windows by using integral images. The other two majtriladions of [164]
were: feature selection witAhdaBoostand combining classifiers in @ascade Their face detection
system was most clearly distinguished from previous approaches in its abitigtect faces extremely
rapidly. This was followed by great progress in object detection and mmeatlyods which used sliding
window approach were proposed, [29, 34, 149, 161, 183] to caiaw.

The jointboost method for multiclass and multiview object detection was prdpngé49]. It was
based on boosted decision stumps, that reduces the computational arel samplexity, by finding
common features that can be shared across the classes (and/or vidwgsiletectors for each class
are trained jointly, rather than independently. They found that the featiglected by joint training
are generic edge-like features which generalize better and becasbarofg computational cost of
multi-class object detection is considerably reduced. Datlal [34] proposed Histogram of Oriented
Gradients (HOG) feature descriptor which gave excellent detectioftsdsuhuman detection. With
help of their HOG detector they won the VOC PASCAL2006 challenge forablgetection and it
became a very popular feature. The Exemplar model of [29] was anaghesuccessful method that
used sliding window with integral image to efficiently compute the cost functidaldiet al [161]
used Multiple Kernels with many robust features to achieve the perfornrexoeeding state of the art
for number of object classes in VOC2007 and VOC2008 challengeg {45,

There are two main drawbacks to sliding-window object detectors: (a) nibstlgetectors fail to
take into account contextual cues; (b) the detector window has only few &ispect ratios making it
difficult for articulated objects or objects with large intra-class variation.

3.2.2 Other methods

The appearance of objects of the same class such as cars, persdorbikadn natural images vary
greatly due to intra-class differences, changes in illuminations and imagititioms, and as well as
object articulations (person, bicycle). Part-based models provide garglzamework for representing
such object categories and handling above variable conditions, spedglt articulations.

One of the earlier successful methods using part-based represenfatiojects for learning to de-
tect objects was proposed in [4]. Generalized Hough Transformfq8] also uses highly flexible
learned representation for object shape. Their method learns thespleaific implicit shape model
(ISM), which is essentially a codebook of interest point descriptors &/pac a given class. Implicit
shape models can integrate information from a large number of parts anthéyudemonstrate good
generalization. J. Gall and V. Lempitsky [52] proposed an interestingpaph for object part detection
using a class-specific Hough forest. It is a random forest that clessifiage patches as a part of object
or not and directly maps the patch to the probabilistic vote about the possillgoloof the object
centroid.

Recently, Felzenszwalkt al [48, 49] described an object detection system that is based on mixtures
of multiscale deformable part models. To train models with partially labeled data$ieeg latent SVM
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and use object parts as latent variables. Their system is able to retniegen variable object classes
and achieves state-of-the-art results in the PASCAL object detectidiernpes.

Efficient sub-window search based on branch and bound algoritisibéen recently proposed by
C. Lampert and M. Blaschko [24, 25]. They argued that sliding windew lbeen effective in many
situations but suffers from two disadvantages:

e it is computationally inefficient to scan over the entire image and test evesjop@ebject loca-
tion, and

e itis not clear how to optimally train a discriminant function for localization.

They addressed the firstissue in [24, 25] by using efficient subemirsztarch, a branch-and-bound opti-
mization strategy, to efficiently determine the bounding box with the maximum sttre discriminant
function. This was further explored in [172], where an efficient metloodoncurrent object localiza-
tion and recognition based on a data-dependent multi-class brandiwand-formalism was proposed.
Blaschkoet al addressed the second issue in [16] by proposing a training strateggptaftically op-
timizes localization accuracy, resulting in much higher performance thamsysbat are trained, e.g.,
using a support vector machine.

3.3 Random Forests in Computer Vision

Random Forest became popular in the computer vision community from the afidrkpetit et
al [80], Ozuyalet al [106]. They proposed methods for fast keypoint recognition usingomized
trees. In [106] random forest is employed to recognize the patchesusgling keypoints. [80] used
randomized trees as the classification technigque and found it both fagglefay real-time performance
and robust. Many other papers have applied them to various classificggigmentation and clustering
tasks [20, 26, 36, 79, 88, 94, 167, 174, 130, 133].

Textons [87, 159] and visual words [137] have proven powerisgrgte image representations for
categorization and segmentation. But the whole process of computingpdesciat interest points
(sparse or dense), then clustering them by K-means, followed bystewighbor assignment is ex-
tremely slow. Even with optimizations such as kd-trees, the triangle inequalify ¢4 hierarchical
clusters [101] it is not fast enough. Moosmaetnal [94] introduced more efficient alternative in Ex-
tremely Randomized Clustering Forests - ensembles of randomly createdintystees - and showed
that these provide more accurate results, much faster training and tedilggaah resistance to back-
ground clutter in several state of the art image classification tasks.

In [133], Shottoret al extended [94] and proposed semantic texton forests for both Imageocateg
rization and Segmentation. These are ensembles of decision trees thag¢ettt dn image pixels and
are efficient and powerful low-level features. Other major work dionenage segmentation are by
Schroffet al[130], Yin et al[174]. [130] investigates the use of Random Forests for class basald p
wise segmentation of images. They show the ability of Random Forests to combltiple features
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which improves the performance when textons, colour, filterbanks, &@ f¢atures are used simul-
taneously. The benefit of the multi-feature classifier is demonstrated withsxteexperimentation on
labeled image datasets.

The problem of classifying images and recognizing objects have betrestpising Random Forests
in [20, 88, 167]. [20] compared the performance of the random fibeess classifier with a benchmark
multi-way SVM classifier. The performance of random forest/ferns wasparable to multi-way SVM
classifier but computationally they were far less expensive.

A method for localizing and recognizing hand poses and objects in real-tinresermted in [36].
In their work, the task of simultaneously recognizing object classes, gestdres and detecting touch
events is cast as a single classification problem. [120] addresses has@mnegognition from video
sequences by formulating it as a classification problem. They propossealptection algorithm based
on random forests. In [52] a method based on random forests isnpedsi®r object detection. They
proposed a class-specific Hough forest, which is a random foreastlitteatly maps the image patch
appearance to the probabilistic vote about the possible location of the objeonbid.

Existing work has shown the power of random forests as classifierasaadast means of clustering
descriptors. We further explore their suitability to object detection in neticres.

3.3.1 Random ferns classifier

To increase the speed of the random forest Ozugsal [106] proposed random ferns classifiers.
Ferns are non-hierarchical structures where each one consistsebbfbinary tests (one at each node).
During training there are an ordered set of testapplied to the whole training data set. This is in
contrast to random forests where only the data that falls in a child is takemdatmunt in the test.
As in random forests “leaves” store the posterior probabilities. Durininteghe probability that an
image belongs to any one of the classes that have been learned durimgti@neturned. The result of
each test and the ordering on the set defines a binary code for iagcdss“leaf” node. So, a if fern
has N nodes then it will have" leaves. As in random forests, the test image is passed down all the
randomized ferns. Each node in the fern provides a result for theyttiestrwhich is used to access the
leaf which contains the posterior probability. The posteriors are combivnedtioe ferns in the same
way as for random forests over trees.

3.4 Random Forect for Classification

In this section we show strength of Random Forest as a classifier expéaiimdoy reporting its
performance for image level scene and object classification in high leatlire detection task of
TRECVID'08 [3]. The TREC Video Retrieval Evaluation (TRECVID) [340] is aimed at promot-
ing content-based analysis and retrieval from digital video via open, redtdsed evaluation. In 2008,
they tested systems on five tasks:
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surveillance event detection

high-level feature extraction

search (interactive, manually-assisted, and/or fully automatic)
e rushes summarization
e content-based copy detection

As a part of the Oxford-IlIT team we participated in the high-level feagxtraction task. The high-
level features are semantic categories like Cityscape, Street (scand),doat-ship (object) or some
action. In this task test videos, common shot boundary reference ftegheideos and the list of high-
level feature (HLF) definitions are given. The task is to detect thesergencategories or HLFs in the
given reference shot and return the list of at most 2000 shots fromesheollection for each HLF. The
list is ranked according to the highest possibility of detecting the presdice bILF.

3.4.1 Dataset, Annotations and Evaluation

TRECVID (2008) provided development (100 hours) and test (1a0)alata of video sequences.
The development data was annotated in the collaborative effort [LOpoVstiots were annotated into
20 semantic categories: (Olassroom (2) Bridge (3) Emergencyehicle (4) Dog, (5) Kitchen (6)
Airplaneflying, (7) Two people(8) Bus (9) Driver, (10) Cityscape (11) Harbor, (12) Telephone(13)
Hand, (14) Street (15) DemonstrationOr_Protest (16) Mountain (17) Nighttime (18) Boat Ship (19)
Flower, (20) Singing

TRECVID also provides keyframes for each shot, there are a tote#8@if6 keyframes in develop-
ment data and1274 keyframes in test data. Some examples are shown in Figure 3.2. Note thdtgiffic
of these images, take any category there is lot of intra-class variation in lture, shape, depth.

During evaluation (annotation) each feature is assumed to be binary, i.eitlités present or absent
in the given reference shot. TRECVID gives resultdrderred Average Precisioon test data using
the submitted runs. While building the system we experiment on developmer{idach divided into
training and validation) and ugeserage Precisioms a metric for evaluation.

3.4.2 Our Approach

For the high-level feature extraction task, we have used a combinatioifferedt visual features
with Random Forest. We used a reduced subset of MPEG i-frames &omséot, found by clustering
i-frames within a shot. The approach was to train the classifiers for alllbighifeatures using publicly
available annotations [10]. Then run them on the test set and subsigguaek the test shots by the
maximum score over the reduced i-frames.

One versus rest classifiers are trained for all the 20 concepts. Bertest we have used two types of
node functions: (i) difference of two components and (ii) single comptofehe feature descriptor. We
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Classroom

Figure 3.2 Some examples of keyframes from TRECVID dataset
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used100 decision-trees in the Random Forest and maximum allowed depth of a trd® wdsmber of
functions chosen at each noderf was keptl00 and number thresholds tried for each node-function at
each noder(;) was10. To further inject randomness each tree is trained usig0 randomly selected
samples from the training data. We use a combination of features for exdhjidy + PHOG, PHOW
+ Color etc to train the classifier. Two appealing features of Randomtfordsch we require here are:
(i) probabilistic output and (ii) the seamless handling of a large variety oaVisatures.

One global feature descriptor is extracted from each image. During tekg@rfgature descriptor of
the testimage is passed down each random tree until it reaches a leafAfidlde posterior probabilities
are then averaged to obtain the classification score of the input image.

3.4.3 Visual representation: Appearance

These descriptors consist of visual words which are computed onsz dgid. Here visual words
are vector quantized SIFT descriptors [84] which capture the locéibspastribution of gradients.

Local appearance is captured by the visual words distribution. SIBTrig¢ors are computed at
points on a regular grid with spacing pixels. We have used gray level representations for each image.
At each grid point, the descriptors are computed over circular supptrh@s with radii r. Thus, each
point is represented by four SIFT descriptors. These dense featgevector quantized into visual
words using K-means clustering. Here, we have used a vocabulaB0of@rds. Each images is now
represented by a histogram of these visual word occurrences.

We have used/ = 5, K = 300 and radiir = 10, 15, 20, 25. To deal with empty patches, we zero
all SIFT descriptors with L2 norm below a threshod@).

In order to capture the spatial layout representation, which is inspiréaeyyramid representation
of Lazebnik et.al. [75] , an image is tiled into regions at multiple resolutions. A dniato of visual
words is then computed for each image sub-region at each resolution level.

Finally, the representation of an appearance descriptor is a concateoftie histograms of dif-
ferent levels into a single vector which are referred to as Pyramid Histogf&/isual Words (PHOW).
Here, we have used three levels at maximum for the pyramid representltienlistance between the
two PHOW descriptors reflects the extent to which the images contain similaauzmge and the extent
to which the appearances correspond in their spatial layout.

3.4.4 Visual representation: Shape

Local shape is represented by a histogram of edge orientations confipuéaath image sub-region,
gquantized intaX bins. Each bin in the histogram represents the number of edges thatrietations
within a certain angular range. This kind of representation is similar to thefi{@goal) words, where
each visual word is a quantization on edge orientation.

Initially, edge contours are extracted using the Canny edge detectoarieméed gradients are then
computed using 8 x 3 Sobel mask without Gaussian smoothing. We have used 8 bins for an
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angular range of [0, 180]. The vote from each contour point dependts gradient magnitude, and
is distributed across neighboring oriented bins according to the differeetwveen the measured and
actual bin orientation.

Finally the representation of Shape descriptor consists of concatendtibese histograms in a
single vector. This descriptor is referred to as Pyramid Histogram of @de@radients (PHOG). Four
pyramid levels were used at maximum for this feature. Each level of PHOGrmsatized to sum to
unity taking into account all the pyramid levels.

3.4.5 Visual representation: Color

Another feature used is a colour histogram combined with a spatial pyramidi@/image to jointly
encode global and local information. This is similar to the descriptor prapiosg7], except that we
guantize colors more coarsely for all the levels. We used 10, 8, 4 and 2dvia cell in levels from O to
3 respectively. These are appended to create the final feature. Wetaiso used feature vector created
without decreasing the number of bins with levels.

3.4.6 Experiments for Best Combinations

Classifiers were trained for all the classes using different combinatfons o
o features

— PHOW
— PHOW + PHOG
— PHOW + Color

e pyramid levels

— level 1, 2 for PHOW.
— level 1, 2 and 3 for PHOG and Color.

e node test

— single component of feature descriptor
— difference of two components of feature descriptor
— single + difference (selected at random)
To combine the features or node tests, one type is randomly selected frarartiténation. For
example, if the combination is: (PHOW + PHOG) + (level 2, level 3) + (singldffernce), then

randomly one feature from PHOW and PHOG, and one test from singlaiffedence are selected.
This makes 6, 18 and 18 possible combinations of pyramid levels and nod&otd3i$OW, PHOW +
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HLF Feature Node Test AP

1 Classroom PHOW(3) + Color(2) Single 0.0229
2 Bridge PHOW(2) + PHOG(2) Single 0.0391
3 Emergency Vehicle PHOW(3) + Color(4) Single 0.0582
4 Dog PHOW(3) + Color(2) Difference + Single 0.2095
5 Kitchen PHOW(2) + Color(4) Single 0.0571
6 Airplane Flying PHOW(3) + Color(4) Difference + Single 0.0482
7 Two People PHOW(3) + Color(4) Difference 0.1141
8 Bus PHOW(3) + Color(3) Difference + Single 0.0768
9 Driver PHOW(2) + Color(2) Difference + Single 0.0775
10 Cityscape PHOW(3) Difference 0.2171
11 Harbor PHOW(2) Difference + Single 0.1930
12 Telephone PHOW(2) + Color(3) Difference + Single 0.0105
13 Street PHOW(2) Difference 0.2249
o Deronstration PHOW(2) + Color(3) Difference + Single 0.0865
15 Hand PHOW(3) + Color(4) Difference + Single 0.1507
16 Mountain PHOW(2) Single 0.1309
17 Nighttime PHOW(3) + Color(2) Difference 0.2759
18 BoatShip PHOW(2) + PHOG(3) Difference + Single 0.2764
19 Flower PHOW(2) + Color(3) Difference + Single 0.0735
20 Singing PHOW(2) + Color(4) Difference + Single 0.0445

Table 3.1 Classification results on Validation set using the best combination of fegiynamid level
and node-test.

PHOG and PHOW + Color, respectively. So, we have 42 possible comhisdtio each category or
HLF.

The advantage of the random forest classifier is the speed of trainthtgating. Because of fast
training and testing it was possible to trai# classifiers on training data for each concept and find the
best combination by testing on validation data. The best combinations for diLtRe are reported in
Table 3.1 with results on validation data. With each feature type the numberarhylevels used are
given in parentheses. For example, PHOW(2) means pyramid level ninabel are used.

Our method worked well for classes like Dog, Cityscape, Harbor, Stieeirl, Mountain, Nighttime
and BoatShip. For other concepts like Classroom, Bridge and Telephone in partresialts are not
good. It is difficult to capture the variations present in these classesexample take telephone (see
Figure 3.2), the definition say%any kinds of telephone, but more than just a headset must be visible”
It can be a cellphone or normal telephone, with person talking or lying da,talith different back-
grounds/context. Similarly it is very difficult to represent categories likes€2tzom, Bridge, Singing,
Kitchen Demonstratio©Or_Protest etc with just visual features.
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Figure 3.3 Inferred AP for the HLFs: our score (dot), median score (dashed)bast score (box).
Inferred AP is estimated using 50% samples.

We observed feature that contributed the most was PHOW. Though Caonelpful for Nighttime,
Hand and Flower, but in most of the cases there was only slight improvaméra performance by
adding other features.

3.4.7 High-level feature results by TRECVID

TRECVID uses inferred average precision (inf AP) [173] for evihgathe feature task. One run
C_OXVGG 4.4 was submitted using only Random forest approach for all concepgpeXawo People.
The plot in Figure 3.3 gives the inf-AP for scored by our method for alFsliexcept feature numb@r
(Two People). It compares our score with the best and the median afssoball the teams by feature.
Relative performance of our approach was good for Dog, Citys@&peet and Hand. Our scores came
over the median for all the classes except kitchen and airplane.

Some visual results form test set are shown in Figure 3.4(a) for strddtigure 3.4(b) for hand.

3.5 Object Detection System and Dataset

In this section, we give details of training, testing and post-processing deethie use for object
detection. VOC Dataset and detection challenge are also explained.
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(b)

Figure 3.4 Top 10 results (distinct scenes) of (a) Street and (b) Hand.

3.5.1 Training

Each Random Forest classifier is trained to discriminate between candidaies that do and do
not contain an instance of the object of interest. A one-versus-resifota is trained for an object
category. The trees we train here are binary and are constructed rdawspmanner. For node test we
have a node function (difference of two components of the featureneutd a threshold. Number of
decision-treesK(), number of functions per node ), maximum depth are varied from case to case. For
training number of positive and negative data samples are required. rdtiedgtruth object instances
(Region of Interest or ROIs) for a class, plus a number of jittered instaftwoth from original and
flipped training images), are used as positive samples. Regions that dwert#p the target object
instances by more than 20% are used as negative samples. The aspeftthe detector window is
found from the aspect ratios of the ROIs in the training set.
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3.5.2 Testing and Retraining

While testing we use a sliding window approach, where a detector windowliedat all positions
and scales of an image. The aspect ratio of the detector window is foumctlie aspect ratios of the
ROls in the training set. Because the number of possible negative sampleskgantly large and it
is important to find a proper representative sub-set. This is done byttaggimg or retraining each
classifier as follows:

e Train a classifier using positive and negative samples from training data.
e Run the classifier over the training images.

e Compare the detections with the ground truth ROls, and label them as falitiggmif the overlap
is less than 20%.

e The top false positives are used as hard negative samples and atetadde negative set for
retraining.

After one or two rounds of retraining the classifier is ready to be run drléda.

3.5.3 Post-processing

In case of sliding window based detector, strong positive responsédmet even if the detection
window is slightly off-center or off-scale on the object. Also when clagsifere trained separately
for different poses we have multiple detections for the same object instédise a reliable detector
would not fire with similar confidence and frequency for non-object wivkloSo there is need of a
post-processing step to merge multiple detections and suppress odd &tsepo

Figure 3.5 Post-processing: On left, a typical result after scanning the binargifitasacross the test
image at all positions and scales is shown. Results after non-maximum ssippris on right.
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Robust non-maximum suppression techniques are proposed in litefdtubalal et al[33, 34] used

a technique which maps each detection to 3-D position in scale-space. Erreedn shift mode detec-
tion algorithm is applied to each detection which provides local smoothing ofetteetibns. The result
is that strong and overlapping detections (nearby ones in 3-D posite@da-sgace) cluster together. We
use a very simple technique for non-maximum suppression given in [IB818. most highly ranked
candidate is selected, all other candidates with an overlap greater thaar@d®moved and the pro-
cess is repeated until a safe number (images do not contain more than stemcas of an object) of
candidates are selected.

3.5.4 VOC PASCAL dataset and Object Detection Challenge

The PASCAL Visual Object Detection Challenge (VOC) [42] data consisadew thousand images
annotated with bounding boxes for objects of twenty categories (e.gbusarirplane, ...). Along with
bounding boxes the views or poses are also provided for each olgtade agrontal, rear, left, right
or unspecified Ground truth also has information if the object is truncated or occludeereTdre four
sets of images providedain, val, trainval (union oftrain andval) andtest

Thedetectionchallenge is the following: predict the bounding box and label of eaclkcofimm the
target classes in a test image. Each bounding box is output together wittiidecce value, and this
value is used to generate a precision-recall graph for each clastiDeseare considered true or false
positives based on their overlap with ground truth bounding boxes. VFéap between a proposed
bounding box R and the ground-truth box Q is computed as:

areal@ N R)|
area|@ U R|

An overlap of 50% or greater is labeled as true positive. Any additionatl@apping bounding box
(duplicate detections) are rejected as false positives. Performancenisnéfesured by the average
precision (AP). Full details of the challenge, including the results of atigjpants, are given at [42].

3.5.4.1 Features and Object Detector

The descriptor for appearance of the Region of interest (ROISs) is atadusing different features.
We construct the descriptors in a manner exactly similar to [161] using apgnescode [160].

Dense words (PHOWGray, PHOWCol¢tP]: Rotationally invariant SIFT descriptors are extracted
on a regular grid each five pixels, at four scales (10, 15, 20, 25 pixtki), zeroing the low contrast
ones. Descriptors are then quantized in 300 visual words. The catgiome stacks SIFT descriptors
for each HSV color channels.

Histogram of oriented edges (PHOG180, PHOG3§84, 19]. The Canny edge detector is used to
compute an edge map and the underlying image gradjditp) is used to assign an orientation and
a weight to each edge pixel p. The orientation angle is then quantized intgightvith soft linear
assignment and a histogram is computed.
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Again we use spatial layout representation of [75] and a three-levahpyg of spatial histograms is
computed for each feature. All the histograms/descriptorgarermalized.

3.6 Random Forests Vs Support Vector Machines

Support Vector Machines (SVMs) is one of the leading techniques usatiscriminative classifi-
cation in vision tasks ranging from detection of objects in images like pedes{84n96], cars [108]
and others objects [49], multicategory object recognition in Caltech-1817A], to texture discrimi-
nation [179]. Part of the appeal for SVMs is that non-linear decisiambaries can be learned using
the so called kernel trick. Though SVMs have faster training speed aechpa variants of boosted
classifiers, the run time complexity of a non linear SVM classifier is high.

It can be advantageous to use Random Forests over SVMs or boostingde of the following
properties:

¢ their computational efficiency in both training and classification

independence of the trees allows for easy implementation and parallelis2})([13

their probabilistic output

the seamless handling of a large variety of visual features (e.g. colgturgeshape, depth etc.)

the inherent feature sharing of a multi-class classifier (see also [14&dture sharing in boost-
ing).

3.6.1 Support Vector Machines

Support vector machines (SVM) are a widely used tool in the machine Igganithcomputer vision
community. They were motivated by results of statistical learning theory dguhalty developed for
pattern recognition they are now described in various books [129,dfljutorials, e.g. Burges [23].
The basic idea is to learn a hyperplane in some feature space in ordeatatsdpe positive and negative
training examples with a maximum margin, thus called maximum margin classifiers. @d482] for
an early reference. There have been various extensions and immaotgeover the years. One example
is the recent variation [155] to enable the learning of structured outagespnstead of simple two or
multi-class classification problems. Baghal [11], Varma and Ray [158] extend SVMs to multi-kernel
learners, which combine various base kernels into an optimal domain-speiiiel.

Straightforward classification using kernelized SVMs requires evaludiimgernel for a test vector
and each of the support vectors. The complexity of classification forM @&/ng a non linear kernel is
the number of support vectossthe complexity of evaluating the kernel function. The later is generally
an increasing function of the dimension of the feature vectors. Since tirgtesexpensive with non-
linear kernels, linear kernel SVMs have become popular for real-timkcatipns as they enjoy both
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Random fast IKSVM
Training Pose Forests C=0.1 C=0.05
Round Time | Memory| Time | Memory| Time | Memory

(second)| (MB) | (second)| (MB) | (second)] (MB)
F+R 212 122 626 362 804 360
Round 0| L +R 258 125 1137 396 1052 394
U 319 126 1518 482 1714 490
F+R 440 235 1740 630 2179 626
Round 1| L+R 497 239 2610 670 2978 672
U 659 241 3654 680 4464 685

Table 3.2Time and memory requirements while training

faster training and classification speeds, with significantly less memory eagemts than non-linear
kernels due to the compact representation of the decision function. Butaimss at the expense of
accuracy ([86]) and linear SVM can not be used on tough datasets Gke RASCAL.

There has been a fair amount of research on reducing run time complé&xitndinear kernels
[22, 69, 105, 177]. These approaches are either aimed at redueinuthber of support vectors by
constructing sparse representations of the classifier, or reducingnteasion of the features using a
coarse to fine approach. In [86], an orthogonal approach is peapfor speeding-up intersection kernel
SVMs (IKSVMs), a classifier which have been successfully useddtgalion and recognition [53, 75].
Maji et alhave shown that one can build (IKSVMs) with runtime complexity of the clasifgarithmic
in the number of support vectors as opposed to linear for the standarokap. In the next subsection
we compare the performance, training and testing times and memory requireshdéass IKSVM
of [86] and Random Forests for object detection. For fast IKSVM, ékact version using binary
search is used for the comparison.

3.6.2 Comparison

We experiment on PASCAL VOC 2007 [45] dataset for car detections&etion 3.5 for the details
of the dataset and training, testing, retraining and non-maximum supprassibods for object detec-
tion. We train usindlrainval set and test ofiestset. The training data is divided based on the poses or
views of the object instances and train separate classifiers for ea@osat. poses are relatively easier
to learn than others, thus we can also compare how performance varidsamiting complexity.

3.6.2.1 Training

We extract PHOG360 [20, 161] features from the positive (ROIs amingcars) and negative sam-
ples taken from training data. Then Random Forest and fast IKSVNraireed (round 0) using these
features. In each case we train classifiers separately for FrontaltRé&aRight and unspecified poses.
So we have three Random Forests and three IKSVMs trained. We rundinedassifiers over the train-
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ing data to find hard-negatives for each of them and then retrain (rbuthé classifiers with respective
hard-negatives added. There were 175, 222 and 332 positivedesafopFrontal+Rear, Left+Right
and unspecified poses respectively. From each positive sample 4Qljittedeflipped instances were
generated for the final positive set. Around 30K negative samplesse&reted (6 taken from an image
at random) fronilrainval set for each pose in round 0 and 20K high scoring false-positives agaed
to the negative set in round 1.

Table 3.2 reports the time and memory requirements for both the classifiereftwahrounds of
training. For fast IKSVM we use code provided by [2]. The training timd performance depends
significantly on C parameter for SVM. The C parameter was varied and 6€2@8, 0.001, 0.05, 0.01,
0.1, 1, 5, 10, 100 and 1000. The values performing bestemset were found to be 0.1 and 0.05.
For Random forest we use 100 decision trees each of maximum deptbdesfumctions per nodex ()
=100, and thresholds per node.j = 10. Memory requirements for Random Forests is half of that of
SVMs as only half of the training samples selected randomly were used to tlaitisaon tree. In case
of Frontal + Rear pose in round 0O, time taken to train Random Forests i$ laddor one-third of that
of IKSVM (for C=100, 1000). But with increase in number of samples l@agning complexity (other
poses are more difficult to learn) the training time for IKSVM increases hgpadhile it is more stable
in case of Random Forest.

3.6.2.2 Testing

The trained detectors are run ovi@standTrainval set using Sliding window approach, followed by
non-maximum suppression. We evaluate the result by usual VOC methgdiegaction/localization
is considered true positive when the area overlap of the detected bgtmahnwith groundtruth is
more than 50%. To each detection a confidence score is assigned bysi@erlaFig 3.7 shows the
precision-recallplots of the results on test and train set. Table 3.3 compares the results ef¢htods.

Random Forest detector obtains better Average Precision score lagfd@after bootstrapping. The
difference ranges from 6% to 11% across the poses on test datagifaatrit is even more. Though
IKSVM has inferior AP score but it achieves higher recall in some ca$ésre is slight over-fitting
in RF. It's performance relative to fast IKSVM on test set is not as gaothat on trainval set. While
testing, time taken by fast IKSVM to classify around 50K samples ranges 2@ to 4 seconds de-
pending on value of C parameter (or number of support vectors). RH @fttrees takes approximately
2 seconds for the same task. With only trees also, which 5 times faster, RF performs better than
IKSVM (Fig 3.7). All the experiments are done on an AMD Athlon Dual Coredessor (3GHz) with
4 GB RAM.

Random Forest shows promising results as an object detector. It estiietter AP and speed than
fast IKSVM, specially for left+right and unspecified poses it outpenf® IKSVM. We have seen here
that with its speed and accuracy it can serve as a robust object defecsection 3.7 we experiment
with Random Forest using multiple features, and increasing the numbeesf tre
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Figure 3.6 VOC 2007 car detection: Performance of Random forest and fastNMK&mpared in the
precision-recall plots for test set (left) as well as trainval set (rigpmparison is done separately for

Pose: Frontal + Rear (Test set)

Pose: Frontal + Rear ( Trainval set)
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(a) Frontal + Rear, (b) Left + Right and (c) Unspecified poses.
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Figure 3.7 VOC 2007 car detection: Performance of Random forest and fasfNMK&mpared in the
precision-recall plots for all the poses combined.

Random fast IKSVM
Poses| Test Set Forest C=0.1 C=0.05

Avg Prec| Recall | Avg Prec| Recall | Avg Prec| Recall

F+R Trainval 45.9 58.8 29.5 54.4 33.8 54.4
Test 37.7 55.1 30.1 57.8 31.9 57.8

L+R Trainval 38.5 49.7 15.7 43.1 17.2 42.1
Test 25.7 46.9 17.0 45.3 175 47.2

U Trainval 38.8 51.5 135 41.0 14.4 41.8
Test 27.7 49.4 16.5 45.8 16.5 43.0

Al Trainval 42.2 514 195 41.5 19.0 40.4
Test 32.3 49.5 214 44.9 21.9 43.8

Table 3.3Testing on VOC 2007 car: Performance comparison

3.7 Random Forest for Object Detection

In this section we present baseline results with Random Forests for algjeszttion. We use the
state-of-art features (PHOW, PHOG) [19, 20, 34] and techniguas.eaploy Random forest as the
classifier. Object localization experiments are done on PASCAL VOC200¢ar dataset. We also
observe the effect of different parameters of random forest.

The random forest object classifier is learned as per the details giwatiion 3.5. We divide the
training data into disjoint sets based on the views of the object instancesaamddparate classifiers
for each set. This is important because it simplifies learning as there is sommatigamong the
object instances of same pose or view. Also object instances of samgqree@lly have similar aspect
ratios, this helps during testing. While testing we use one or more repregeriatinding boxes or
templates per classifier as sliding detector window chosen based on thénRf@graining set. Each
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Figure 3.83-Pose 1-Template: Performance of different features are compsiregl 100 tree RF (left)
and 1000 tree RF. Large improvement is achieved by combining the features

template has a fixed aspect-ratio which may slide in scale-space (scaleshangist in space (scale
remains constant). The aim is to cover the variation in aspect-ratio and yaadinly a set of templates

with a classifier. So, given a test image we run RF detectors trained feratiffposes and combine the
results to get final detection results. Results for different poses arkined by applying non-maximum

suppression on ROIs detected by all the pose classifiers. Differezd tfclassifiers based on training
(number of poses or classifier per class) and testing (hnumber and typeplates) can be defined as
N-Pose, M-TemplatéNVe analyze performance and efficiency of some of the possible clessifie

3.7.0.3 3-Pose 1-Template Classifier

The training data is divided into 3 sets based on posesfrébjal+rear, (2) left+right and (3)
unspecified Each classifier slides one window of a fixed aspect-ratio found by takian of aspect-
ratios of the bounding boxes in the associated set. While running classiieggaluate around 150K
to 180K windows per image with all 3 pose classifiers. We use two valuesifober of decision trees
(T, 100 and1000, each tree has maximum depth Other parameters are set as: thresholds per node
7 = 10, node-functions per node: ) is set to100 for PHOG features and %00 for PHOW features.
Each tree is trained with 50% of the total samples selected at random.

Precision-recall curves in Figure 3.8 compares the performance efeatitf features. Better results
are obtained by using PHOW features in both the cases. Combining fegiglds a significant im-
provement in Average Precision. Using 1000 trees we have improverheare than 1% in each case
except for PHOG180 and for combination of features AP increasesiby.1
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5-Pose 1-Template: 100 Trees
T T T

1 '_4".-‘—».;:‘_1' : : ,:’ PR g !
" 3 S, ! Yan ‘\- ~
f
1o ' \ |
‘o .
08l \ Yy 7 08r PN
ey . .
- . ' ". .
07t LY 7 07f s |
5 s '
"- ' ' ll‘ [N
Xl i L e Ly
~ 06 0 - 06 R
o o o “ 1
' 3
O 05 AT B O 05F he N )
() "
o Y ¢ RS
& o4t 9 g & oal ".:.3_
it N
. N e
0.3 All combined: AP=42.7% A"‘A“ - 0.3F All combined: AP=44.1% -“:‘
Y .
phog180: AP=36.3% "."\ phog180: AP=37.4% \\1\'
0.2 - = = phog360: AP=37.1% ".5) 1 02 |- = -phog360: AP=38.2% ,*:l.
= = = phowcolor: AP=34.6% 3y = = = phowcolor: AP=35.1% ‘t"..~
0.1 B 0.1 .
- = = phowgray: AP=35.6% \r.‘.__ - = - phowgray: AP=36.5% \:ﬁ.
L~ oy
o ‘ ‘ ‘ ‘ b e o ‘ ‘ ‘ ‘ Tty
o 0.1 0.2 0.3 0.4 05 0.6 0.7 0 0.1 0.2 03 0.4 05 0.6 0.7
RECALL RECALL

Figure 3.95-Pose 1-Template: Performance of different features are compsiregl 100 tree RF (left)
and 1000 tree RF. Large improvement is achieved by combining the features

3.7.0.4 5-Pose 1-Template Classifier

The training data is divided into 5 sets based on the given 5 poses. Stafigdiers are trained each
associated with a set and an aspect-ratio chosen from that set. Ramgisinplarameters are same as
used for 3-Pose 1-Template classifier. We also run on lesser windavirmage per pose classifier so
that total number of windows evaluated remains same as that for 3-Pa=saflafe.

Figure 3.9 shows precision-recall plots of different features fonsePL-Template Classifier. Here
performance with PHOG remains similar to what it is obtained in case of 3-R@eeplate, but APs
with PHOW drop. This is probably because of lesser number of training leamper pose to learn
PHOW feature which have higher dimension (6300) than PHOG (336).

Some examples of car detection from VOC20@5tset are shown in the Figure 3.10. The local-
ization results after non-maximum suppression are in green. We also doawdgruth ROIs in yellow
to show the detection overlap and false negatives. High scoring deteofimass of different sizes,
orientation and variations are included. Correct detections are drawaeén @nd false positives in red.
Some false negatives are present in last two rows which occur mainly duentation, occlusion and
very small size. There are instances shown in the last row where trdreateare also detected.

3.7.0.5 Effect of Random Forest parameters

Here we analyze the effect of random forest parameters on perficer@and speed for object detec-
tion. We basically experiment by varying one of the three: number of fimtietions per noder{y),
number of thresholds per node)@nd number of treed(), while keeping the other two constant. We
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Figure 3.10 Some examples of localization on VOC2007 Test set after non-maximum esgoqn.
Detections are shown by green boxes and groundtruth ROIs are drgwhow.

again take car as the target object andtteia set for training and test oral set of VOC 2007. Classifier
used for this experiment is 3-Pose 1-Template RF and feature used is3800G

As default we setl” = 50, ny = 50 andT = 8 and vary one at a time. Maximum depth for each
tree is kept 10 and 50% randomly training samples are used to train eacimteaeh case, classifier is
trained 5 times and the meanaferage precisions reported. In Figure 3.11(ay,is varied from 1 to
26 and in Figure 3.11(a); is varied from 1 to 150 with constant parameters kept at their defaultsialue
Initially AP increases with number of features and thresholds for biatim andVal sets but after a point
it becomes stable. Variation inor n; doesn't effect the testing time but training time increases linearly
with each of them.

Plots in Figure 3.11(c) show the effect of number of trees on the perfa@natwverage Precision
increases rapidly for first 20-30 trees and increases consideraldl9@HlL20 trees and then saturates or
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Figure 3.11 Effect of (a) number of thresholds per node,((b) number of node-functions per node
(ny) on average precision, (c) and (d) tre€3 On average precision.

grows slowly. Random Forest do not over-fit when number of treesieésed and improvement can
be expected by using very large number of trees. We do one more experiove onTestdata, with
number of randomized trees increased upto 1000. Figure 3.11(d) $stoow&P changes for different
features and there combination. For every case there is some improvemegih thot much. For
combination of featureAP improves by 1.4% to 44.5%. The best result for 'car’ category among all

methods submitted to the VOC 2007 challenge was 43.2%.

We gain 1%-2% by using 1000 trees but this increases complexity by a fH&torhere is a need
to improve efficiency, keeping the performance same. We address thisitisthe next section by the
observation that a small number of trees can also provided decenaegdudetection.
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3.8 Speeding up with cascade structure

The baseline random forest object detector is almost as accurate agfstdtstill the efficiency is
not enough for many applications. The main technical obstacle is searfchititge best region in the
scale, space and aspect-ratio. This also increases training time as multipls aibootstrapping are
required. Exhaustive search requires number of operations piapeairto the number of regions tested
by the classifier, which typically ranges it x 10% to 2 x 10%.

Layer 1
PHOG360 computed Random Forest :
for all N ROIs ::> Classifier Roigv;gé o
RF Classifier <=———=  PHOW Gray
Combining output of RF Classifier <(=——=  PHOW Color
different classifiers and <:|
Non-maXIr_num RF Classifier <(——= PHOG 180
suppression
- RF Classifier <=—=  PHOG 360
Post-processing
Layer 2 and 3: Battery of feature
specific RF classifiers

Figure 3.12Cascade structure of classifiers and features.

We use cascade of increasingly strong classifiers similar to [161, 165pé&ed-up. This is natural
to random forests and can be done by increasing number of treesarsgdssification. For example
if we have a RF classifier witll” trees which is used as layers. In any layef only a fraction, f7;,
of total trees are used to classify and based on the detection scorestopljraction, f R, , of total
regions are passed to the 1" layer. In this way in*" layer fT; x T trees are used to classifiR; x N
regions, whereV is the total number of regions to evaluate from an image. Speed up obtainesthiy

L layers would be:
1

ZiL=1 fTi x fR;
In our experiments we use Random Forest in three layers. We obsatugytkettingf 77 = 0.025,
Ty = 0.1, fT3 = 1 and fR; = 0.10—Y with T = 1000, there is no or very less loss in performance.
And the speed-up obtained for classification over baseline RF with 108®is@round 22 times.
Unlike [161, 165] we build cascade which is also based on complexity of atingpfeature descrip-
tors. PHOG is used in the first layer which can be computed quickly for alMhmimber of regions.
Based on detection scores only a thBs x N regions are passed to the second layer. PHOW descrip-
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tors are computed only for these top ROIs which saves descriptor compuaditg with classification
time. Computing300 dimensional PHOW descriptor using vocabularge (300 integral images are
used) is around0 times slower than computing PHOG. Now this computation is only done foftop
fraction of total ROIs visited. Practically, the time required to compute descsifgoeduced by a factor
of f—}gg by using the cascade. Figure 3.12 demonstrates our Cascade structure.

Tables 3.4 and 3.5 summarize the results of our system on the VOC 200bi(yate and boat)
and 2009 (aeroplane, motorbike and boat) datasets. Type of class#iiu3-Pose 1-Template. The
performance with cascade is as good as the baseline system but with aigréfieed-up. To classify
and compute descriptors (all 4 features) for 45K samples it requirgsxppately 3 seconds and 1.8
seconds respectively. We also compare our result with other systenesitbedd the official competition
in 2007. Our results are better than the team ranked 1 in VOC 2007 fonddooat. For VOC 2009 the
results shown are on validation data (training is done on train set) as thedgnath for the test set is
not available.

car bicycle boat
a) baseline 445 38.5 9.5
b) cascade 44.3 37.7 9.5
c) voc07 (rankl)| 43.2 49.9 9.4

Table 3.4 PASCAL VOC 2007 results (test set): (a) average precision scordwdiase system, (b)
scores using cascade, (c) top result in VOCO07

aeroplane motorbike boat
a) baseline 38.0 26.4 9.9
b) cascade 37.3 26.1 9.7

Table 3.5PASCAL VOC 2009 results (validation set): (a) average precision sagrthe base system,
(b) scores using cascade

Some examples of detection are shown from VOC 2007 and 2009 dataggita B.13. The correct
detections are shown in green and ground-truth bounding boxes @& $h yellow. False positives
cases are highlighted by red color. Again false negatives occur mairdy whject is truncated, oc-
cluded or of very small size.

3.9 Extended ROls

There are lot of variations in shape and appearance of objects,dsweaused by extreme viewpoint
changes) that are not well captured by a single template (or aspect misoommon to use multiple
templates to encode view or pose variations, for example separate templidtesta and side views
of faces and cars [128]. To interpret the variations in large and diffiatiasets like TRECVID or VOC
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e

M&orb—ike

Boat

Figure 3.13Examples of high-scoring detections on the PASCAL 2007 (top 3 rows2@08 (bottom 3
rows) datasets. Last two images in each row illustrate false positives eniedgtives for each category.
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Original ROls

Extended ROIs

Figure 3.14Top row shows the examples of original ROIs for classes bicycle andmratheir extended
ROls are shown in the bottom row. Note that all the extended ROIs of sassehadae same aspect ratio.

it would require many templates. Applying them over such a large datastetsfimg/bootstrapping is
computationally very expensive. To deal with this we use what we c@lkéended ROls

Extended ROIls are obtained by extending the original ROIs such thapistastio becomes the
selected one and its center coincides with the center of original ROI. Thigsalle to use only one
aspect ratio and still cover for large range of aspect ratios while tegtiggre 3.14 shows the original
ROIs from and their extended versions. While training Extended ROIs wssrd as the positive samples.
Then all the training ROIs as well as the detector window (while testing) hashiine aspect-ratio. The
detected windows were also extended ones with object at its center. Witlpghisaah we only search
in scale and space as the aspect-ratio is constant. We found this veny fosefur classification by
detection approach for high-level feature extraction task in TRECVIO94Bee section 3.9.1).

3.9.1 TRECVID 2009

Details about TRECVID tasks, dataset, annotations and evaluation areigigection 3.4. As a part
of the Oxford-1lIT team we participated in the high-level feature extractask of TRECVID again in
2009. Like TRECVID'08 this time also one of our approaches was basedmdom forests. There
were some major changes in our approach for TRECVID’09:
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¢ Classification by detection: In 2008, we used random forest for wholgencissification but
this time we focused on object categories with sliding-window random folgett detector.

e Removal of noise from TRECVID annotations: We found the collaboraiveotations for the
TRECVID high level features to be quite noisy. Some shots are wronglgtated, and others
are labeled as 'skip’ when they are, in fact, unambiguously positivegative for the feature. To
remove this noise in the annotation, we used a weak classifier trained onislgedata for each
high level feature as follows:

— Train a classifier using all the +ves and a subset of -ves in TRAIN andséis according
to the Collaborative Annotation.

— Re-rank all the images in the TRAIN+VAL set based on the classifier output.

— Refine the annotations of the top 5000 ranked images.

In this manner, we could find many of the wrong annotations with minimal manfeat.eT his
refinement was found to be very effective.

e Use of extra data: Additional data was taken from sources like flickeglgovhich for under-
represented features (like bus) significantly improved performance.

e Bounding-box level annotation: The images containing the target objetiages were manually
annotated by marking the bounding box of the visible area of the object.

3.9.1.1 Classification by detection

One versus rest random forest classifiers were trained using thedynath bounding-boxes for the
target object. For representing we use only PHOW (explained in ) agdeadut performed best in our
earlier approach (see 3.4.6).

For detection we experiment with our baseline object detector and the dok ishrained orEx-
tended ROIs The confidence score of a test image is the maximum of the classificatic¥s sufothe
regions in it. In our baseline object detector we use only one view and orpate (1-Pose 1-Template
classifier). As the dataset is very large (209990 keyframes) using mukiplglate is very expensive.
The result of this detector for baahip class is reported in Table 3.6.

Training set Test set Training Round AP (50 trees) AP (100 trees)
Train Train 0 0.1435 0.1833
Train Validation 0 0.0294 0.0349
Train Train 1 0.3782 0.4386
Train Validation 1 0.1940 0.1977

Table 3.6Classification by detection results for Baogtip: average precision scores of the base detector
before and after bootstrapping
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(c) Person-riding-a-bicycle
Figure 3.15 Top 15 retrieved keyframes are shown for (a) Boat-Ship and (b)Bsgories, (c)
Keyframes ranked from 71 to 85 are shown for Person-riding-acldcyop 70 are all true positives
coming from the same video.
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Training set Test set Training Round AP (50 trees) AP (100 trees)
Train Train 0 0.5340 0.5525
Train Validation 0 0.2552 0.3080
Train Train 1 0.5874 0.5876
Train Validation 1 0.2787 0.4106

Table 3.7 Classification by detection results for Bdahip: average precision scores of the detector
trained withExtended ROIbefore and after bootstrapping

When original ROIs were used average precision after one rouradrafrring improved fron®.198
to 0.411. The result ofExtended ROlsletector for boaship class is summarized in Table 3.8. In-
spired by this significant improvement we trained classifiers usxignded ROI$or 3 other classes:
Hand, Person-riding-a-bicycle and Bus. Results for these classs tndined on Train and tested on
Validation are summarized in Table 3.8. Considerable improvement can beethssn Validation set
when using 100 trees over 50 trees classifier. Our final RF classifigr&wtended ROIs were trained
on DEVEL (Train + Validation) set and then are run on the TEST set. SonvaMresults shown in
Figure 3.15(a) for boat.

Top ranked keyframes for categories: Boat-Ship, Bus and PeidioigHa-bicycle are shown with
detected Extended ROIs in Figure 3.15 . For Boat-Ship and Bus top llfsraseidisplayed, in case of
Person-riding-a-bicycle all top 70 ranked results are true positieas fhe same video and are similar
to the first four frames shown for this category in Figure 3.15(c). Sgr&mes ranked from 71 to 85
are shown here.

Category Training Round AP (50 trees) AP (100 trees)
Hand 0 0.2074 0.3056
Hand 1 0.2220 0.3736
Person-riding-a-bicycle 0 0.0758 0.1939
Person-riding-a-bicycle 1 0.2824 0.3443
Bus 0 0.0026 0.0141
Bus 1 0.0625 0.1316

Table 3.8Classification by detection result&Xtended RO)s average precision scores of the detector
trained on Train set and tested on Validation set.

3.9.2 BBC

Classifiers trained on TRECVID data were run on the video data provig&BE. This is a collec-
tion of 428 videos of TV programmes. The total duration of the videos is »2@shand in total there
are 137921 keyframes. The top retrieved results from BBC data annshd-igure 3.16 for Hand and
Boat ship categories. The results are very good considering that the sifuraming data was different
and the generalization is excellent.
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Hand

Figure 3.16Top 15 results from the BBC video dataset for Boat or Ship and Hangad¢s.
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3.10 Summary

In this chapter, we have shown that Random Forest classifier caretldardast and accurate clas-
sification and object localization. Its computational efficiency in both trainimd@assification makes
it a promising choice. We have used a combination of different visualesituith random forest for
the high-level feature extraction task of TRECVID'08. Random foregiresented as a rapid object
detector with results on challenging datasets like VOC PASCAL and TREC¥IR®& achieved results
comparable to the best in VOC'07. In TRECVID'09, we used sliding windmsed RF detector for
four object categories (Boat-Ship, Person Riding a Bicycle, Bus and X &fficiency with accuracy of
random forest was a key factor in running the detector over such e datgset of about 200 thousand
key-frames.
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Chapter 4

Online Video Spotting and Processing

4.1 Introduction

In last few years, due to cheap storage, bandwidth and imaging hadweaye amount of multimedia
data is being generated and stored. The world is covered with millions of aamith each recording
a huge amount of video. With this ubiquitous video content there is a neadadgsing online video
sequences for information extraction and data mining. In online proceissngery important require-
ment to be able to retrieve video clips as and when they arrive. So, siftiogghmillions of videos to
find visual content of interest needs to be automated.

The aim of this chapter is to address online content based processiogtifunus stream of videos
to detect video segments of interest. Our approach is example-basezivigher content to be detected
or filtered is charaterized by a set of examples avaitglyeri. Example-based content-level processing
of multimedia, has been popular in video and image retrieval literature [101,143]. The focus has
been onidentifying appropriate descriptors [147] and developingldeagstems which enable efficient
retrieval from millions of images or video key-frames [101, 137]. Thergdiso been significant interest
in characterizing and recognizing activities and semantic concepts fraa giamples [70]. This class
of algorithms, first learn to characterize the events from training datarpating a classifier, and then
apply the learned concepts in new situations.

However, many concepts of practical interest are not easy to reprase learn. For example, the
concept of violence is a difficult concept to characterize, even fostidte-of-the-art machine learning
algorithms. One may also come across categories like commercials in video stvbarndave high
within class variance and relatively small inter-class variance. On theludinel; many of these concepts
can be described with the help of examples. This allows us to model the preislsimultaneous
spottingin a video stream. This approach could meet the immediate requirement okgirarer
filtering the video stream based on the visual content.

In many practical situations, a human is present within the loop of a vide@gsog system. For
example, a human operator is often associated with surveillance videsgiragéor initiating actions
based on the video content. In such caeadjne spottingf relevant information from a video sequence
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Figure 4.1 Overview of the Example-based Video Processing

can be of immense help. We demonstrate that this is feasible even when aregtmgmition of the
specific concept is probably impossible.

We approach the problem of video processing in a manner complimentaryt tf thdeo retrieval.
We begin with a set of examples (traditional “queries”) which are indexe¢lddrdatabase. The larger
video collection, which needs to be processed, is unseen during the @fftiaxing phase. The video
collection is processed on-line, to identify the concepts represented Igyviire set of examples. In
a way, what we are interested is in spotting rather than retrieving. Traditielngval systems focus
on scalability to large databases for efficiency in retrieval. Our focus isntiancing the throughput
of the system and making the algorithm capable of simultaneous spotting of mukiigpkes. Our
formulation also effectively utilizes the sequence information of the videarstreather than treating it
as a set of frames.

In this chapter we have presented a survey of existing approach ®widib processing in general
and our example based method for online processing of videos. Thedeeiof example based video
processing is presented in Figure 4.1. We present results for comnremialal and content based
copy detection (CBCD) as applications.

4.2 Video Processing Approaches

Content-based processing of videos has been proposed by differemunities for various research
problems. These include:

e Video retrieval
o Filtering

— content based copy detection
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advertisement detection

action recognition

other specific filters

searches and mining in videos
¢ Video summarization and segmentation

e Adding Semantics

4.2.1 Content based video retrieval

Most of the content based image and video retrieval systems identify similectetio a given
query [35]. Both query and database objects are represented witalthefla set of feature descriptors.
Earlier approaches used color, texture and shape descriptors congbaitelly or locally to describe
the visual content of the images. This has been successful in retrieviggsmath concepts which are
rather weak, (for example, “images with red flowers” or “scene of asgimext to water”). With this
initial success, the focus shifted to retrieving specific objects (undetyweeying imaging conditions)
or object categories. Invariant description of interest points and eattdve been the key to the success
in these situations.

Image and video retrieval has been successfully attempted for retridvject® of interest invariant
to scale, orientation and illumination [101, 137, 171] in diverse multimedia colletibhese methods
primarily addressed the scalability issue towards indexing in large datab@kesvideos are repre-
sented by their key-frames, which in turn are described as a bag-oésiiegions. Features describing
regions-of-interest are quantized using K-means or hierarchical &xsen an offline phase to build a
visual-vocabulary for the given data set. The video collection is then etlagainst this visual vocabu-
lary. Once indexed, the database can retrieve videos correspondghmptt queries, such as a (part of)
an image or key-frame selected by the user. Another set of worksdeausbuilding efficient indexing
schemes for multimedia collections. Successful examples include LSH [63hawsim[27, 28], pyramid
match hashing [54], vocabulary forest [171], etc. Vocabulary teselfeen used for efficiently indexing
and retrieving large number of images [101]. A hierarchical partitionintheffeature space makes
the quantization efficient. Also the retrieval and ranking of documentsimmdtaneously achieved by
traversing the tree.

Focus of most of these approaches has been on indexing large anfionultimedia data to effi-
ciently search within the given collection. However, on-line structuregnidexing video streams has
received very little attention. One of the related problem which receivetsoterest in recent past is
that of adapting the index structure with changes in visual content. In tieistidin, Yehet al.[171] ex-
tended the notion of vocabulary tree to vocabulary forest while making tfexing process applicable
to dynamic environments.
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4.2.2 Content based video filtering

Content-based filtering of images and videos are attempted in literature fiicadioms like adult
content detection [51, 181], removal of commercials [30, 143], eveteiotion [83], copy detection [72]
etc. Most of these methods formulate this problem as an object/sceneiterogndetection by using
an appropriate classifier in the right feature space. For example, the filteed at removal of adult
content or detection of fire formulate the problem in an appropriate cobares|83, 180]. In general,
example video frames are used in an offline situation to learn the right modellassifier. Then the
new unseen video frames are classified using the learnt model/classifemptfand reject filters used
for commercial removal also employ similar techniques. Colorttad. [30] attempt to characterize the
commercials with the help of low-level features and classify the video segrimtatsategories With
the category of commercials becoming more and more diverse, such chisifimodels in simple
feature spaces are found to be insufficient.

Content-based copy detection (CBCD) techniques have receivedsagphdittention in recent years [64,
71, 170]. Yanet al. [168] performed content based copy detection over streaming videmsus Fof
research has been on defining the right set of descriptors which\agaimt to the allowable set of
transformations [72]. There has also been significant concern dp@abmputational complexity of
this class of algorithms because of the practical applications in video stsystgms. In [27, 28] the
similar problem of near dublicate detection is addressed. Mining the vidgerdaran help in getting
important information regarding the internal structure of large video da&sj89, 113]. Video mining
has been used for automatic video annotation [95], to extract princigdtsbcharacters and scenes in
a video by determining their frequency of re-occurrence [138].

Action recognition has been an active research topic and many methazlbdev proposed. Recent
methods for action categorization have used local spatio-temporal fe&burkaracterize the video and
perform classification over the set of local features [70, 89, 108]. 17

4.2.3 Video summarization and segmentation

Video summarization is the process of creating a presentation of visuaiafimn about the struc-
ture of video, which should be much shorter than the original video. Thigsadiion process is similar
to extraction of keywords or summaries in text document processing.ig,va¢ need to extract a sub-
set of video data from the original video such as keyframes or highlightsimies for shots, scenes, or
stories. The result forms the basis not only for video content reptas@mbut also for content-based
video browsing. Video summarization techniques have been proposgeiarto offer people compre-
hensive understanding of the whole story in the video [9, 37, 107]t faxe been also used in form
of caption and transcript to judge the boundaries of scenes or stoBg$44]. Most previous works
on video summarization target on a single video document.The results atly usdandant due to the
lack of inter-video analysis. In [166], an approach is proposed fdti-locument video summarization
by exploring the redundancy between different videos.
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Video segmentation or shot boundary detection esentially invioves examir@ngftimmation con-
tained in individual video frames and comparing this with other nearby framdstermine if a shot
change has taken place. A number of methods have been proposeahierdomparison and for han-
dling gradual transitions to solve this problem [152, 153, 178].

4.2.4 Adding Semantics

It is difficult to map low-level feature (color, texture, shape, motion) dpton into semantic con-
cepts (such as person-riding-bicycle, cityscape or car-racingsgeBecause of this semantic gap it is
difficult to process high-level queries such as “black mercedes’t€ltgs been a plethora of interesting
research work presented recently that focuses on problem of byitlgs semantic gap [57, 62, 141].
Two possible solutions have been proposed to minimize the semantic gap arataitoetadata gen-
eration and relevance feedback [59, 182]. Content based semaatidsecadded by annotation of
symantic entities in video. This can give symbolic description of the video in tefolgjects or scenes
it contains. Low level content based semantics like color, shape, stuatar object motion can also
be used. Another way is to use structure in the video. It is widely accepaeditteo documents are
hierarchically structured into clips, scenes, shots and frames. Suctusérusually reflects the creation
process of the videos.

4.3 Vocabulary Trie

For online processing of videos, we would like to retrieve concepts fiioeaming videos, based
on the similarity of a video sub-sequence with one of the given examples. sithigrity has to be
efficiently computed for each given example, for each incoming frame.résenbles to the concept of
keyword-spottingpopular in speech processing and document image retrieval [119jvdfdyspotting
methods locate the possible occurrence of the query word by matching weith pessible words in
the database. In the case of document retrieval, words are often dednfiest and indexed using a
set of appropriate features. However such methods are not direpligape for video data, due to the
difficulty of characterizing the visual content corresponding to eacicejot.

Popular video retrieval systems aim at indexing large quantities of imagesaemsyand serving
a small set of queries while being deployed on the field. Focus has bethie efficiency in retrieval
and scalability to large video databases. These formulations typically empéegs[i01], hashes [54]
or inverted indices [137] for the indexing of the visual data. Our objedtvo process large amount of
videos with the help of an index structure which is built outigtlatively small set of example videos.
The indexing scheme that we require should be capable of

1. indexing relatively small number of examples availadgeiori

2. processing of large amount efiseervideos
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Figure 4.2 Example Trie for set of words

3. avoiding explicit segmentation of video stream for matching with example sided
4. employing any generic comparison scheme for comparing frames/seguenc

We achieve these objectives with the help diree data structure. Tries are ordered tree data struc-
tures popular for a number of tasks related to information retrieval [6f¢yTBre useful for matching,
based on some similarity measure, for sequences of symbols in a langugmsh om the root to
a leaf represents a symbol sequence inserted into a trie, during the igd&kia leaf nodes store the
identifiers of symbol sequences. An example of trie is shown in Figure 4i&s get constructed from
a sequence of alphabets. When trie is used for detection in an on-line s#igrgjream of data gets
matched/aligned with the sequence of nodes, and any successful termatati@ leaf is treated as a
valid detection. Trie has been extensively used as an index structuredretnef string matching [131].
It is a suffix tree representation which can be used to find the stringsréhakactly or approximately
matched to a given query string. Tries offer text searches (exagpooximate) with costs which are
independent of the size of the document being searched. Importandyateaot sensitive to the curse
of dimensionality problems which is a challenge in multimedia computing.

In the following sub-section we present our trie-based architeciaoregbulary Trie for content-
based processing of video streams. Our trie based solution allows simulamedching of multiple
examples.
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4.3.1 Formulation

A video can be represented as a sequence of symbols and indexed if@saukcture. This is made
possible by the quantization of the visual data to produce a finite set oftafshitom a given video
sequence [101, 137]. A set of videos to be indexed results in an @ vocabulary (words) and
define the problem space. Traditional quantization schemes employ KsMeadts variants for the
guantization and vocabulary construction. Each frame can be repedssena symbol/alphabet where a
symbol can be a scalar or vector or even a set representation bagisdanvords.

In our case, number and diversity of examples could be significantly sntiadierthe total amount
of video that trie needs to process. In such cases, adding negaiingkos into the quantization step
allows one to control the detection (false positive and false negativey. ritéhen the examples are
diverse enough, influence of the negative examples seems to be negBjitale the trie is represented
in terms of index of clusters, representation is independent of the dimatigiaf the feature space, as
is the case in any bag of words representation.

There are two basic problems in formulating the on-line video processirggonousing Trie: (i)
representation of video sequences with the help of discrete symbols (iutimgsimilarities of two
video frames.

4.3.1.1 Representation and vocabulary trie construction

It is intuitive to use a temporal representation for videos, unlike the popeggiesentation as a set
of key-frames [137], which is not suitable for on-line processing otwil Let us consider a simple
representation. A video frame is represented as the average colorfcdrtie and video clip is repre-
sented as a sequence of such color descriptors. Such a frameelgnedaentation could be sensitive to
the temporal sampling/segmentation process. One could also represevdrtoged color over a set of
consecutive frames (overlapping or non-overlapping) as anothesurestor the description. For many
practical applications, a simple representation based on color could bénguitiicient. One could also
think of representing the video frame(s) with the help of a set of interastgpand their representations
such as SIFT for matching and detection.

We represent the video at frame level using the features suitable fowdretgsk. The feature space
is quantized intd< bins using features extracted from a limited set of training data, using arahgste
algorithm. Each feature is then indexed to the closest quantized bin, each fhen represented as a
set of these quantization indexes. The sequence of the frame featusesl i the trie construction and
look-up.

The given set of example videos are indexed in a trie. Vocabulary tristwmion from example
videos, is pictorially shown in Figure 4.3. During the construction phasefridnés incrementally
built from each example. The common prefix sub-sequences are alignibd$e examples which have
similar frames to begin with.
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Figure 4.3 Building a Vocabulary trie for video sequences and using it for pracgdke input video
stream.

The trie has a height and a breadtlh. Each frame of an example video occurs at different depths
from the node. Hence, the height of the Trie is the length of the longestimgasideo. Each example
video constitutes a path from the root to a leaf of the Trie. The leaf is labatédive concept of the
example. Example videos share the nodes corresponding to “similar” fraintee same depth. The
total number of leaves in the trie is the number of given exampledn the worst case, each example
will constitute a distinct path from the root to the leaf. In this case, the staragplexity would be
O(h.N) and the time for building the trie would (V') requiring only the first frame to be compared
with the previously built trie. The ideal case is a balanced trie, with equabltiné at all depths. The
storage complexity in the ideal case would®é:.b) (b << N), while the time complexity would be
O(h.b.N), since each frame is matched witmodes at each depth.

Each edge of the vocabulary trie is a symbol. An input sequence of wakds the path along the
edge, symbol corresponding to which is most similar to it and the similarity is aboggain threshold.
During detection, each frame is checked for a possible match with any obttesmat! = 1. Whenever
there is a match, the subsequent frames are matched down the vocaleyandiso on. If the sequence
of frames from the on-line video terminates in a leaf node, the appropriatepbis said to have been
detected.

Algorithm 1 summarizes the trie construction and detection process. During the offHmsep
examples are inserted into the database. During the on-line phase, the wigfalb processing of the
given video sequences.
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Trie-Construction: In the offline phase, trie is constructed from examgeowsequences for the given
examplesyy, Vs ...

¢ Initialize an empty trie. For the given examples 1,2, ...

e Find the longest prefix sequence which is common to the trie and’the
example video. When a mismatch takes place in the sequence, initiate a
new path in the trie resulting in termination of the leaf node labeled wi-
th this example.

Online-Detection: Inthe on line phase, video stream is processed foosiséfe presence of the
examples.

e For the given sequence of words, pass through the trie until eithertwe ge
a leaf node or no path is available.

¢ If we reach the leaf node, return back success with the detail of the exa-
mple and the location from where the possible sequence started.

Algorithm 1: Vocabulary Trie

Such a trie can introduce a latency equal to the maximum length among the exadegls, ¥n the
worst case. Matching in trie is efficient, since only a few set of nodes widhaluated for most frames.
Such a sequential matching, in general, favor’s lesser false positiaegever, the matching threshold
can be varied to control the detection rates, depending on the application.

4.3.1.2 Matching of videos

Exact matching of two words or bag of words for detecting identical cargenld be relatively
straightforward with any reasonably invariant representation. In meastipal situations, one is inter-
ested in matching which allows partial and inexact matches of two represanatimrds. When the
alphabets are described by a set of interest point descriptors, oltedadine a matching score based on
the cardinality of intersection of the representations in the video stream émeltiie. Such a similarity
score was used earlier in [27].

The score/matching performance of a video sequence depends onl¢igditie of the sub-sequence
which it matches, normalized with respect to the length of possible paths in thehiiéa has this as
a sub-path (ii) the quality/score of match of each of the alphabets/symbol§uiiper of tries which
generates warnings/detections. Decision to traverse further at aaymtbeb trie will have to depend on
the scores of symbol matching done from the root to the current noderefiine, we keep a threshold
on the mean of these scores to make the sequence matching robust teayhol matching failure.
We also keep a threshold, on the number of frames matched. If number of frames matched is greater
thanF and atleast half of the length of possible paths in the trie which has samea#ulifen the video
is blocked.
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Figure 4.4 Processing a query with forest of tries: The top row shows that a mismettisowhen we
start searching from tri&'1l. The bottom row shows that a copy of sub-sequence of an examplescan b
detected by starting from the next trie.

4.3.2 Forest of Tries

In a generic video filtering situation, there are other practical challen§ash as when sequence
in the query is similar to some sub-sequence of an example, a naive implemenfatiervideo filter
could fail.

To deal with this problem we build a forest of N tries numbered from IVtoeach of maximum
depth D. For building the forest of tries any example from the database is firstéusi the trie 1,
after insertingD frames we move to next trie and so on. Finally we et= [L/D] tries, whereL is
the length of longest example in the database.

While processing the query video stream we initially start from trie 1. If anyhrmatsh happens
after starting from theé'” trie, then we again start from th{e + 1)** trie and continue until a sequence
from the query is accepted or we reach the last trie. We move to the firsthga & mismatch occurs
in the last trie or a sequence is accepted. By this we ensure that we do samgisub-sequence of
length > F + D in the query (assuming that when correct frames are compared they do) mEtcs
is because we can miss a maximum/iofinitial frames of any example when a forest of de@his
used.D (can vary from 1 tal) acts as a trade-off parameter between performance and time which can
be observed in our next experiment.
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Figure 4.5 Example frames from the Commercial Videos used

An example of how forest of tries work is shown in Figure 4.4, the brown giathe input video
stream is a copy of sub-sequence of an example video in the databasm @wlored nodes in the
forest). When processing starts from tfié it leads to mismatch as shown by red path. The actual copy
of sub-sequence of an example is found when we search by startingteotrie next tdl'1, i.e., 72, as
shown by green path. Detecting copy of such sub-sequences of lesaisipot possible with a single
trie.

4.4 Applications

We now demonstrate the application of vocabulary trie on a spectrum of sitsatMve start by
demonstrating the applicability of this method to the detection and removal of & aptiori known
commercials from a broadcast video stream. The task is to detect the pgssd#ace of a sequence of
video frames which are identical or highly similar to those available in the daal@she second ap-
plication, we address the problem of detecting copies of videos whergea &at of transformations are
possible [72]. Our method allows the detection of copies of multiple videos irgéegpass (processing
cycle). We then demonstrate the applicability of vocabulary trie in situationsenkéatively complex
concepts of human activity, is spotted in images and videos.

4.4.1 Commercial Removal

Removal of commercials (or a set of example videos) help in segmenting, sirmyastoring and
processing of broadcast videos [82, 143]. They are also an ihfEgtaf information retrieval systems
designed for broadcast videos. Identification of the examples couldie either manually or with
the help of audio-visual clues. Given a set of commercials, we index themaimocabulary trie in
the offline phase and use it for detecting the presence of similar video segfram the “test” videos.
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Figure 4.6 Scalability of Trie for detecting commercials in broadcast TV. (a) Time Vs Neommer-
cials and (b) False positives Vs No. of commercials. One can observealabiity of the system to
large number of examples

During indexing, we extract color histogram features and build an egedcvocabulary by clustering
them using K-Means, to 500 clusters. The visual words (or the clustieesidare then used to construct
the trie.

The trie is tested over a video sequence of 300 hours duration (onampgattely 300 GB in MPEG)
captured from 10 different broadcast news channels. We deteobfisible presence of a commercial in
this video sequence in about a second (excluding the feature extractign Tineefalse positive rate of
detecting the commercials is about 28%. The false positive rate could beeckefluther by using more
complex and discriminative features (see the next sub-section). Our methtes to large number of
commercials without any significant loss in computational efficiency or theigiom as demonstrated
in Figure 4.6. The exact time requirement depends on the percentagenoferoials in the video
sequence. In our case, commercials occupied 16% time of the video duration

To further evaluate the performance of the vocabulary trie on detectioonafercials, we manually
ground truth-ed a database of 20Hrs with 250 commercials. In addition to ltké Eart and end
frames were also annotated. Some example frames from the commercial ugggbsan be seen in
the Figure 4.5. The detection performance of the commercials dependsiamsvaarameters. We use
F-score as evaluation measure, which takes both the precision anddhéntecaccount. It is defined
as

Fo 2 x (precision * recall)

(precision + recall)
In Figure 4.7(a), we demonstrate the effect of length of commercial oretfeetibn rate. In general,
it is observed that longer the duration of the commercial, better the detectirFa this experiment,
we have used the number of clusters (visual words) to be 500. Numlvisuafl words used for rep-
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Figure 4.7 Effect of (a) duration of commercials, (b) number of visual words astére and (c) Tem-
poral quantization parametgron false-negative rate

resentation of the video sequence also affect the detection rates. he Bigu(b), we demonstrate the
effect of number of clusters on the detection rate. With increase in nurbkrsters, the detection rate
also increases.

Many practical situations for video filters require controlling of the falsgtp@/false negative rates
depending on the application. As mentioned in the previous section Vocgbuiarallows flexibility in
design, and thereby parameters which can directly affect these ragesarywthe length of the example
and query videos by grouping consecutive frames together and obtain the word corresponding to
the mean of their feature descriptors. We demonstrate the variation ofmiedsive rate withp in
Figure 4.7(c). We can observe that false-negative rate increasetemitioral quantization parameter

Thus, it can be seen that the vocabulary trie allows efficient and scajadifttng of commercials in
a video stream with significant amount of flexibility on false positives/falgmtiees.

4.4.2 Content based copy detection (CBCD)

Content-based copy detection has received significant attention in festdue to its immediate
practical applications [65, 72]. On-line CBCD [168] is becoming an impopaoblem, to filter dupli-
cates in multimedia collections. The vocabulary trie approach is directly aplditathe problem of
on line CBCD.

Popular methods for CBCD extract a small number of pertinent featuafledcignatures or finger-
prints) from images or a video stream and then match them with the databasdilagto a dedicated
voting function [72]. An important requirement which has come to existenttesmproblem is the capa-
bility to detect (or match) possible copies of multiple video clips with minimal computdtavesthead.
There are two important steps in solving this problem: (i) efficient methodsirfutarity computation
(ii) detection of copies by accumulating the similarity scores. State-of-thmetttods focus on solving
the first part efficiently. Our method is also capable of addressing thebdds in number of videos to
be matched as demonstrated in the last section.
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In the CBCD setting, one needs to allow larger amount of variability for defidinplicates. A
copy could be a video clip which is modified in appearance (eg. color,asijitgeometry (eg.re-size,
cropping) or re-capturing (eg. perspective effects, overlaid tést) €3]. To accommodate these vari-
abilities, we use SIFT [84] and SURF [14] feature descriptors compwedinterest points to describe
the frames. The visual vocabulary is built using hierarchical K-Medgarighm. In most situations,
vocabulary is constructed by quantizing the feature descriptors obtaimmadexample videos. In our
case, Trie is supposed to function on similar examples as well as large nofr@n-example situa-
tions. Thus we tried introducing feature descriptors from non-exampéosid/hile quantizing. While
clustering we weigh the distance from non-example videas,laymeasure of importance. We build the
trie with a symbol/alphabet represented frames, which converts a videosetjuance of sets (bags) of
visual words. Given two elements of the sequentand B, we define the similarity as:

) ANB
Sim(A, B) = 1UB 4.2)

In our first experiment on CBCD, we compare the performance of diftsleatures and trie param-
eters for a set of 1000 video clips. Original video clips were obtained trooadcast news channels.
Video clips were manipulated by blurring, adding noise, cropping, resig@agma correction etc. We
use average precision for performance evaluation as used in most@BD tasks [64].

We compare the performance of the above two features and Trie parayagigpresent the results in
Table 4.1. The input video stream is formed by 100 transformed examplesvéohel videos not present
in the database which constitute a total of 46K frames when sub-sampledratéha&f2 fps. Times

reported do not include the time taken for feature extraction. It can berwdx$that the performance in

general improves with Vocabulary siz&€, Results are also not much affected by increasing the number

of examples )V, to build the trie though the time of processing increases.

4.4.2.1 Experiment on MUSCLE-VCD-2007 database

For our second experiment we use MUSCLE-VCD-2007 database Th# database is composed
of about one hundred hours of videos spread over 101 diffetestdind it's ST1 query set is composed

Vocabulary Number of

Size (N=210) Examples (K20%)
Feature] K | Average| Time | N | Average | Time

Precision| (secs) Precision| (secs)

91 | 0.7273 59 | 100| 0.7907 28
SIFT | 10* | 0.7778 62 | 150| 0.7799 44
11* | 0.8007 64 | 210| 0.7778 62
9 | 0.7236 | 40 | 100| 0.7633 20
SURF | 10* | 0.7656 42 | 150| 0.7647 30
11| 0.7509 | 42 | 210| 0.7656 | 42

Table 4.1Performance of Trie for copy detection
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Figure 4.8 Examples of original and transformed video frames of Muscle data-set

of 15 videos of total length of about two and a half hours. Out of thes@dewos, 10 are transformed
from some video in the database and rest five are not from the dat&@mase.examples of original and
transformed frames from Muscle data-set are shown in Figure 4.8.

We use the ST1 query set as our database and join 101 videos from Mit&Eabase to form a 100
hour input video stream. This is according to our objective of filtering largeunt of videos with the
help of trie which is built out of a relatively small set of example videos. Fealescriptors computed
over interest points of frames from 15 videos of the database (sublezhiaipthe rate 00.5fps ) are
quantized into 10K visual words and a Trie or a Forest of tries is built piamed above.

Results of this experiment using Trie and Forest of tries are shown in tahleWe can see the
improvement in the performance by using Forest of tries. Performancewespby decreasing in
case of Forest of Tries at the expense of time. We can observe in thehableimproves for SURF
and remains constant for SIFT. The above experiments show how piwaagh provides an efficient and
accurate solution to the problem of CBCD.

Mean Trie

Score Forest
Feature| Average | Time | D | Average | Time
Precision| (secs) Precision| (secs)

50 | 0.9011 86
SIFT 0.8182 19 | 100| 0.9011 51
200 | 0.9011 26
50 | 0.9011 35
SURF | 0.8012 9 100 | 0.8182 21
200 | 0.8012 11

Table 4.2Results of Copy Detection on MUSCLE data-set
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4.5 Summary

In this chapter, we have addressed a problem of video stream filtetieg giset of example videos.
Our method is example-based where visual content to be detected or fittarlearacterized by a set
of examples available apriori. We approach this problem in a manner compliypéaténat of video
retrieval. The given set of examples (traditional queries) which indéxelde database. The larger
video collection, which needs to be processed, is unseen during thireoffidexing phase. We have
proposed a trie-based architectiecabulary Trie for content-based processing of video streams. This
architecture allows simultaneous spotting (or matching) of example videos ieearstf video frames.
We demonstrate the applicability of our architecture for commercial remoghtantent based copy
detection (CBCD).
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Chapter 5

Video Mining

5.1 Introduction

Large video repositories are becoming omnipresent. Content basediaralguch collections is
challenging. Processing these videos is computationally costly, errog prahdifficult to scale up. The
necessity of content based access has triggered research in gmxgiition with newer data-sets, cate-
gories, and computationally efficient methods [114, 137, 139]. Mansoagpes have been proposed for
different problems of video analysis including activity recognition, visesdrch, movie/sitcoms anal-
ysis and visual mining. Most of these methods are supervised and etpbeied examples at some
or other level. To make it feasible on large collection of videos, unsupahasd weakly supervised
approaches are desired as argued in many of the recent work6g6, 1

In this work, our objective is to mine the videos in order to discover or détgabrtant patterns.
We discover characteristic patterns in videos based on frequencycofrence of scenes, actors and
sequence of frames, in an unsupervised setting. With our approacirevable to detect the represen-
tative scene and main characters of movies. Going beyond objects gplé,pge extend our work to
mine frequent video sub-sequences. We defiideo stop-words”and present a method for detecting
them in broadcast news videdddeo stop-wordsire analogous to stop-words in text classification and
search. We defineideo stop wordéased on frequency of occurrence of sub-sequences in videos ov
the period of time and across different news channels in Section 5.3.3ctibgtéhem can assist in
removing redundancy in videos.

Movies are fascinating data sets with significant visual variation anddiyerdn movies, certain
scenes, main characters or objects appear more frequently than Gharacteristic patterns in movies
could convey a lot about the visual content and major theme of the videairiv® discover these pat-
terns directly from the video. The pattern of interest could be individsalnes etc. In Section 5.3.2,
we do automatic labeling of characteristic scenes and main actors in moviegp@oeach successfully
extracts the characteristic patterns (scenes and people) from our nadsleade. The characteristic
scene discovered from the movie database could vary significantly inl iengent. Movie charac-
terization through such mining or otherwise can help a great deal in buildingermesommendation
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Figure 5.1 Frequent Pattern Mining in Video: Feature descriptors of frames amgtigad to build vo-
cabulary in offline phase. During online processing, video is repteders a transactional (or sequence)
database, which is mined using Frequent Pattern Mining algorithms.

systems which to date are manual or semi-automatic requiring compreheasiag intervention. An-
other application is to mine patterns for sociological studies. The technigeigereric and are widely
applicable in other category videos.

In broadcast news videos, many events like breaking news and comimeigar repeatedly. Such
frequentitemsor sequencean be used for automatic characterization and understanding videos. Ou
goal is to efficiently detect frequently occurring sequence of frameseimétws videos. This requires
partial or complete matching of frames or sequences of frames of varialgbsefrom different parts of
the videos. It is also desired that the method is robust enough to deal wittitatgons when sequences
are repeated with few extra or fewer frames, but with ordering preder¥he challenge is to detect
these sequences very efficiently.

Mining the visual content and thereby characterizing videos, has lisenm@ed in the recent past.
Sivic and Zisserman proposed a video mining approach in [139] to obtmiciell objects, characters
and scenes. Frequently occurring spatial configurations of featteesfound using clustering algo-
rithms, rather than any frequent itemset mining schemes. Very few wovksthad to adapt traditional
data mining methods for visual data [114, 154]. The objective has béen, to find the most frequent
spatial configuration of points (eg. a building) from large number of vileames. Mining in visual
data has been complemented by the processing of associated text (sydtilasd speech [154] com-
ponents. Our method relates to visual recognition as well as data mining. lsetige, the closest to
our work is that of Quack and Gool in [114]. They usequent itemset mininfpr finding frequently
occurring configurations of features for mining frequently occurribggcts and scenes from videos.
They also apply frequent itemset mining: (a) on instances of a giventaldfess to assist in object de-
tection [115], and (b) for mining object and events from community photo cibdie [116]. Nowozinet
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al. in [102] introduced discriminative subsequence mining to find optimal discriimeaubsequence
patterns. Rather than focusing on objects or point configurations risoany interest is in scene char-
acterization, based on a global set of features. We also design the mihieges to suite large video
collection, as required in our case.

We employ two different video mining schemes; that are aimed at detectingefiegnd representa-
tive patterns. For one of our mining approaches, we use an efficegqudnt pattern mining algorithm
over a quantized feature space, as in the case of visual bag of wolltsdseln our second approach we
suggest a sequence representation of videos based on Randat{ZEbrand propose to mine frequent
sequences. This mining approach is also based on clusters by randbraéesed

The remainder of this chapter is organized as follows. We explain our two gnapproaches in
the next section. Then we evaluate and compare these approachéttjuely in Section 5.3.1. In
Section 5.3.2, we present our results on movies and show results fovelisgpcharacteristic scenes
and main characters in movies. In Section 5.3.3, we defihen stop-wordsind present the method to
detect them. We demonstrate the accuracy and efficiency of the progppezhch by experimenting
on a broadcast news video data.

5.2 Our Mining Approaches

For mining videos, we represent features in quantized code-booksha$ been popular for many
recognition, retrieval and classification tasks [19, 111, 137]. Reptigy video frames using code-
books helps in accommodating the uncertainty of the visual description whdlmirey the essential
discriminative information. We employrequent Pattern MinindFPM) [5, 7] to extract frequent se-
guence or items from videos.

In FPM, a set of patterns (transactional database) and minimum suppeshaoitd are given. Pat-
terns are some or other form of collectionitééms such as itemsets [5], item sequences, sequences of
itemsets [7]. The task is to find all the frequent patterns whose frequragcurrence is no less than
the minimum support threshold=requent Itemset Miningnd Frequent sequence minirage special
cases ofrequent Pattern Miningln FIM transactions are set of items and in FSM they are sequence of
items or itemsets. We say that a transaction supports an itemset (in case afrilddjuence (FSM), if
itemset is sub-set or sequence is sub-sequence of the transactiosactianal database is more popu-
larly known as sequence database in case of FSM. Frequent sequiriag [7] has been successfully
applied to several large-scale data mining problems such as market baakedis or query log analy-
sis [5]. Many algorithms have been proposed in the literature for solvingdsl well as FSM such as
APriori [5], PrefixSpan [109], SPADE [176] etc.

In our first approach we use an FPM methods over video frames egpeesbased on vocabulary
built by K-means clustering. We then propose sequence representatifparhes/images using nodes
of randomized trees. We consider this representation using Randost farrfollowing reasons:

e Ensemble of clustering trees are able to find natural clusters in high dimahspates [94].
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e Random Forest leads to more efficient clustering and less memory usagk-theans based
algorithms.

e The existence of an implicit hierarchy in the trees can take care of partiahimgtof samples.

For large number of trees this sequence becomes very long and cam mitdxd efficiently usindPre-
fixSpanalgorithm. Therefore we propostandomized Mining Forest Section 5.2.2 to mine frequent
patterns from such sequences. We discuss them in detail in the rest sfd¢ticn.

5.2.1 Visual Frequent Pattern Mining

Our approach of mining videos is illustrated in in Figure 5.1 as the online arideoffhases. In
offline phase, features are extracted from example frames and quHnyikemeans to build vocabulary.
During online phase, input data is assigned the visual words. Each trast®t represented by visual
words makes a transaction (or sequence) and thus transactionajjense) database is built. Frequent
itemsets or frequent sequences are then mined from it using FIM or FSvithigs.

We now state the problem of mining frequent sequences in video whendraregepresented as
items or set of items and shot as a sequence. In other similar cases, fgulexahen frame is itself
a sequence or transaction this can be modified accordinglyVLet {w;, ws, ..., w;} be the visual
vocabulary ofk visual words. A frameg , is represented as a visual word or unordered set of visual
words,¢ = (w1, wa, ws, ..., wy,) ande C V. A sequence is an ordered list of such frames.

A sequence of frame®, = (a1 — da2 — ... — dap), IS said to be sub-sequence of another
sequencebg = (¢g1 — dg2 — ... = Pgq), Po < Pg, if there exist integers < j; < jo < ... <
Jp < gsuchthaa1 C gy, da2 C dgj, - Pap € Ppj,- AVideo is represented as a database of shots.
Any sequence is valid if & < s;,7 = 1...N, wheres; is a shot andV is the number of shots in the
video. The relative support of a sequenge|n a video or shot databasB, is the ratio of number of
sequences containingto the number sequences present in the database.

_ H(si € D)I(® < 5)}

D) € [0,1] (5.1)

supports(®)

A frame sequence is called frequent irD if supports(®) > min_sup wheremin_sup is a threshold
for the relative minimal support.

We obtain frequent sequences of frames by using PrefixSpan metigohdre efficient than APriori
based methods for mining sequential patterns [163] and particularly ferbain_sup values. In case
of videos even if a sequence of frames repeats for only a few times it vikmuttbnsidered frequent.
Therefore we use PrefixSpan algorithm for our purpose of mininguéegsequences of frames in
videos in Section 5.3.3. Corresponding to each frequent sequéne& have an ordered set of visual
words (frequent itemset)s = {wi, we,...,w,} and a set of tupled! < sid, F' >, wheresid is
shot-id, F' is ordered set of frames in the shot albis the absolute support df in the video.

When frame is itself a set of items (or transaction) i.e. no sequential informigtiosed (as in
Section 5.3.2.1) then it is a problem of FIM. The above formulation can be raddiicordingly by
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Figure 5.2Randomized Mining Forest of T trees built without supervision. Each sawtgle descend-
ing updates the counts of the nodes in each tree. The paths traversedrpla in each tree, shown in
yellow, are concatenated and used as a sequence representatiogavhie.

representingb,, as set of items/itemsets and replaciddoy C in equation 5.1.APriori algorithm is
used to get frequent itemsefls, andVg and F' are orderless.
Now we discuss an alternative and more efficient approach usingmapeid trees.

5.2.2 Randomized Trees for Mining Videos

Random Forest was introduced in Machine Learning literature by Brei@Hnf¢r classification
and regression, and is shown to be comparable with boosting and supptat machines. They have
become very popular in the computer vision community. Many papers haviedypipem to various
classification, segmentation and clustering tasks [20, 94, 133]. Moosetain94] proposed an ef-
ficient clustering scheme using randomized decision tree. Shettah[133] simultaneously exploit
both classification and clustering for segmentation and categorization.

We use ensemble of randomized trees for fast clustering and also masktieshierarchies in the
way similar to [94, 133]. Each tree is built in an unsupervised manner usiawgdomly selected subset
of the training data. At each node a split function that most evenly dividesldha is used i.e., each
sample is considered to belong to a different class. Entropy at anyXpdé&h X; number of sample
is given asE(N;) = log(X;).

The tree growing procedure is described as follows:

e At each internal nodd” node-functions are randomly selected. Here we consider 3 types of
node-functions: (a) single feature component, (b) difference of twoponents and (c) linear
combination of few components of the descriptor.

e For each node-function, we need to determine a threshold that best syt €venly) the data
reached to this node.
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e The combination of node-functions and threshold that gives maximum infarmgain is se-
lected.

When a sample (say a keyframe) is pushed through a tree its path frororeaff node makes a
sequence of nodes. Such sequences of nodes from all the treeseatenated (Figure 5.2) to represent
the frame as an item sequence. Applying FSM on such a sequential datadnzd give us the frequent
set of paths across the trees. Similar frames may not reach the same leairnmody not have long
enough common path or prefix sequence in some trees. Using enseriib{aroinds0) trees handles
this as similar frames are expected to have enough number of common paitstaertrees. With the
proposed sequences (using path not just leaf) partial matching cakelmectare of when FSM is applied
because of tree hierarchies.

Since we use each node as an item, set of all nodes becomes our voc&bilaEach frame is
represented as a sequence of such nodes)’. Consider a frequent sequence extracted by FSM from
this sequential database,

(i i i i i
8€q freq(i) = AN11 — Mg — - — Nip, — Ny — .. = npp,} (5.2)

wheren;; is j™ node inseqy,.q; from " tree andn}; is the last node coming froni" tree in
5€q freq(i)- NOtE tha‘mﬁL1 need not be a leaf node. It is equivalent to represent these frespguences
by only last nodes:

— [0 i i
S€qfreq(i) = {n1L1 oL, T e T nTLT}

So, set of frames supporting frequent sequengg,. ;) can be given as:

F Freq(s€dpreqiy) = {C(niy,) N Clnbg,) N ... N Cndp,)} (5.3

whereC'(n) is the set of frames passing through nedeWe extract set of almaximal frequent se-
quences Fi,... A frequent sequence is maximal if it is not a subsequence of any atbguent
sequence. Support 6kqy,.,;) according to the definition of FSM would baippT' (seqyeqi)) =
W Support of all sequences #,,,,. has to be greater than minimum support threshold,
minsupp. Frames supporting any frequent sequence ffggn.. are frequent or characteristic frames.
Set of such frames is given by:

T'= | F rreq(s€qpreqqi)) (5.4)

Fmaz

5.2.2.1 Randomized Mining Forest

With T in range of50 — 100, the sequences become too long for PrefixSpan algorithm to compute
FSMs efficiently. Computational time exponentially increases with number of treéength of se-
quence. We suggest Random Forest based solution to find Frecpraesfin a given movie. Keyframes
(or features) of a video to be mined are passed through the built fotespaths followed by each frame
and number of samples reaching at each internal and leaf node a: $t@reall this ensemble of ran-
domized trees with above details of a given video &&aadomized Mining Fore§RMF). Figure 5.2
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illustrates an example of RMF. The node tests are learned from a subdsgtset consisting of several
videos. Such a set can be thought to have a number of complex clabsag &zenes). When a frame
reaches to a node in RMF it belongs to some hypothetical class with somejitgbd herefore, the
item-sequence generated by RMF can be seen as a sequence oflistabiédms.

We here suggest a method to mine videos and find frequent frames apately as given by equa-
tion 5.4. In each frequent sequenesey;,.,;) We go down the trees after last nodq'lgt) to some
node,n;p,, that has highdepth normalized frequenggxplained below). Thus we get a new sequence
seqfity iy = {Mipe, — Mpe, — - — Wrpy, ), wherenjp, > ng; . By extending like this or going
further down the trees, frames left in the deeper nodes are mutually morersBeitaf these extended
sequences are extended maximal frequent sequé&wegeth normalized frequen®f a noden is given
asdepF(n) = 'fH(TZi' , WhereH is height of the tree anddepth of node:. To findn**, nodes with high
depF we start from leaf nodes. In each tree\/ leaf nodes with highestepF' are selected at first as
a member of set of frequent nodes. Meatapth normalized frequendy depF' of the selected nodes is
computed. Then we move to the parent of each of the selected nodes agpaffthe parent hadepth
normalized frequencgreater than\/ depF' then child is replaced by the parent. This is done iteratively
until no parent satisfies the above criteria to get final set of extendgdént noded/ from all the trees
in RMF.

Set of frequent or characteristic frames from the given video cappezgimately given as:

T = | Cn) = {freq(fy) <7lf;€ |J Cn (5.5)
neN neN
where freq(f;) number of occurrences of framfe in AV which should be greater than We define
support of a frequent framg € I'g,, as:

Unen;, C(n)

suppT (fj) = ——="——
T Eetl

whereN;, are those frequent nodes through whjtIpasses.

In summary, we approximate equation 5.4 by equation 5.5. We go further flomna last node
(niLt) to some node with high enouglepF'. This node will be traversed by a subset of frames that
reached nodey;; . The frames reaching to the extended node are expected to be mutuallyimitae s
and also frequent. The idea is that when we take union of set of fraraelsing the extended nodes we
get a set of nodes approximately similar to that given by equation 5.4. Vdeidetake out those frames
that do not occur frequently in set of extended nod€3 ih equation 5.5. We guantitatively evaluate
RMF in Section 5.3.1 and apply for mining characteristic scenes from the miavgection 5.3.2.

(5.6)

5.3 Experiments and Results

In this section, we first quantitatively evaluate the effectiveness offganoaches and compare them
on the grounds of accuracy and efficiency. Then we present geriaxents on movie and news videos
with results for identifying characterisitc scenes and main actorsyidetd stop-wordletection.
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Figure 5.3 Performance of different approaches for ranking.

5.3.1 Quantitative Evaluation of Mining Approaches

The goal of this experiment is to find the frequent object class categorgegiven database. Since
we do not have the groundtruth for large movie and news datasets, W&O@S2007 [45] as database
for the quantitative evaluation. It has 20 object categories such agrpdysat, car etc. The dataset
also provides bounding box level ground truth for each object instafibe task is to automatically
rank these object instances such that the more frequent categorieglaee in the ranked list. For
representation of object bounding boxes we use Phog [20] desciifgog we analyze and compare our
mining approaches experimentally for finding frequent patterns. We alspare them with k-means
as a simple baseline.

K-means:In our baseline method we quantize the Phog descriptors by k-meanspaadeast each
sample by the cluster ID. Now the samples are ranked based on the sizeloftiee they belong to and
the ones belonging to larger clusters are ranked higher. Samples begldogiame cluster are ranked
based on their distance from the cluster center.

K-means (soft assignment) + FIMdere each sample is represented by a set of cluster IDs. Set
includes the nearest cluster and the clusters having distance notlradrgmes of the distance from
nearest cluster. These sets can be seen as transactions and cleisteitéiins. We apply FIM on such
a transactional database to find frequent cluster ID sets. Each samp$égseal to the largest cluster
ID set which it supports. When a sample supports more than one sets ofigatigen it is assigned to
that set of clusters which have least mean distance from it.

Randomized Mining Forest (RMFT:his is the approach described in Section 5.2.2. Each sample
is represented by the sequences of nodes traversed till leaf nodéitreacWe build Random forest
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Figure 5.4 Top: Clustering time is too high compared to the time taken to build forests, which take
only about 90 seconds to built 20 trees; Bottom left: Best scores by #@dita and our two methods;
and Bottom right: training RMF is about 20 times faster than clustering for @=&8en k-means+FIM
reaches its best range of ranking score.

of 20 trees with50 features,15 thresholds at each node and maximum depth is sgd.torherefore,
the length of each transaction is abd0t. Samples are ranked according to their support given by
equation 5.6.

Let class of* sample in the ranklist (i.e. sample having rafks given asC(r). Frequency of an
object classesis given as

number of samples of class ¢
Freq(c) = N

whereN is total number of samples in the dataset. The ranklist-score is computed as,

N
. 1
ranklist-score= > Freq(C(r)) x (N —r+1) (5.7)

r=1
There arel 2839 object instances in VOC 20Qrainval+testdata (we do not include truncated ex-
amples). In addition we randomly take bounding box#&lZ samples) from background which do not
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overlap with any object instance. Frequency of these samples is sebt@zex(c) = 0). According
to equation 5.7 for 19481 samples the expected ranklist-score of a raad&mng would ber02.

Figure 5.3 shows the results of applyifgmeansand K-means+FIMfor ranking these samples.
With minimum support greater thar00, K-means + FIMmethod achieves higheanklist-scoreat
almost all values of<. We get better results with larger number of clusters Witmeans+FIMmethod.
Using RMF we get scores ranging irb0 to 847 with different values of\/. Figure 5.4 compares the
baseline and our two methods for efficieny and performance. Both our dsegiesform better than the
baseline. Best score I§+rmeans+FIMis higher than that dRMF. But it requires quantization into large
number of clusters, which takes significantly more time than that for training. RM& advantage of
RMF comes in efficiency as building random forest is much faster (approxseténds per tree). The
speed is critical while processing on large datasets as we do in the néahsec

5.3.2 Movie Characterization

Figure 5.5Some examples from the dataset

The dataset for the experiments in these section includes 81 Oscar winmdngoainated best
movies over the last 60 years ranging from 1950 to 2008. These mowiesafgood mixture and subset
of the huge number of movies available. The genres, directors and otivég dedails of the dataset
were taken from Internet Movie Database (IMDB, [1]). Figure 5.5/&hsome example keyframes from
the database.

5.3.2.1 Characteristic Scenes of the Movie

In this experiment we apply our method to identify characteristic scenes afitha movie. We
extract GIST [104] features from the key-frames to encode the giobaimation. About 50 thou-
sand keyframes are selected at random from the datasétrobvies for feature extraction. Using the
extracted features the feature space is quantizedldi0 bins by K-means clustering algorithm. In
movies, frames belonging to same shot are generally very similar so we depresent frame as a
transaction. Here we represent a shot as a transaction of frames @etndd frequent itemset mining
to find frequent keyframes. Support of a visual word is computed axbauof shots it occurs in divided
by total numbers of shots in the movie. Certain scenes such as peopléngpeakd, room etc. are
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Figure 5.6 Some examples of characteristic scenes retrieved from movies Braiebear of The
Rings: The Return of The King, Sixth Sense and Chicago (from top to battom)

very common in the movies. So support computed from a movie is tak@rrasfrequency (TFand
theinverse document frequency (IDiS)computed by applying FIM on all the movies together. So the
TF/IDF support of any visual wordi{’) in moviem from datasef\/ is given by
support(W) = supportm (W)
support (W)

Another experiment is done to detect characteristic scenes of the movigtbwach frame repre-
sented as a sequence of items as explained in Section 5.2.2. The items aedhthibnodes traversed
by the frame when pushed down the RMF. Each frame is representecggeense of items or nodes.

We used ensemble @f0 randomized trees, number of features and thresholds tried to creatéasbde
at each node arg)0 and15 respectively.

Figure 5.6 shows some examples of characteristic scenes retrieved dramouie database. First
two rows show some examples of results by our first approach using@&dkesponding to each visual
word we have many frames and shots. The figure shows six keyframagriovie each representing
one of the top 6 words from that particular movie. Last two rows in FigursBdvs some examples of
characteristic scenes retrieved by RMF.

Braveheartis an action, drama movie which has many war scenes in it, this can be seen in the
retrieved keyframes. Similarly for theord of The Rings: The Return of The Kingpich is again an
action, adventure, fantasy movie. Genre &xth Sensé a drama, mystery, thriller an@hicagois
a musical, drama and crime movie. The characteristic scenes retrieved bpmoach also suggests
the same. We conducted the experiment foBalmovies and got relevant keyframes as characteristic
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Figure 5.7Main character discovered from the moviescky1 300, All About Eve Slumdog Millionaire
andA Beautiful Mind

scenes. In films without much action, adventure or music mostly main characeekssible in the
characteristic frames.

5.3.2.2 Identifying main characters in the Movie

The characteristic scenes can be used to predict the genre of the mawieyigrecommendation
systems etc. Here we use these keyframes to predict the main characeenmivie. Everingharet al.
[44] have investigated the problem of automatically naming the characters ar filvh material. They
do this by aligning subtitles and transcripts, and complement these cues hjlywidetecting which
character in the video corresponds to the speaker.

We only use the key frames corresponding to most frequent visuabwoifthd the main characters
of the movie. Face detection and facial feature localization is done on thasacteristic key frames.
We start from the visual word with highest support and detect no morelfiisfaces. Only faces larger
than100 x 100 are considered. The face descriptors are extracted from detect=ldaing Oxford
VGG face processing code [44]. These face descriptors are @dsit#o 8-15 clusters by k-means.
Then each of the cluster is pruned by removing all the faces which amdisteace greater thail from
its cluster centerD is computed as the mean of the distances of faces from their cluster c&itesters
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having faces only from nearby shots are rejected as the main chataatéd be present at many points
throughout the movie. Itis desired to have smaller clusters with many membecrigeite the cluster
density as a summation of inverse of distances of all cluster members frorartex.cCluster density
for clusterc is given asd(C) = e -

Only the most dense clusters are returned as the set of instances of raeaotets. Figure 5.7
shows the keyframes from the most dense clusters for m&aeky1 300 All About Eve Slumdog
Millionaire and A Beautiful Mind This works well as the characteristic scene mostly include many
instances of main character’s close-up face.

5.3.3 Video Stop Word Detection

Stop words in a language are words that many search engines do néorstapen searching for
texts and titles on the web. These are common words, such as “the”, “m’edtc. Similarly in text
classification, elimination of stop words potentially increases the accuredyces the feature space
and helps to speed up the computation [134].

In videos too, certain sequence of frames repeatedly occur, motivatitogaaldress the similar prob-
lems in videos. In videos, repetition could be either absolute or approximedenfites are commercials
in TV programs and news or routine events in surveillance videos. It isedet® detect/remove such
redundancy for many applications like video summarization, and search.

We definevideo stop wordas the frequently occurringequence of framehat are not informative.
For example advertisement can beideo stop word The frequency of occurrence of a sequence in a
video gives us th@F part based on which we select frequent sequences or poteidtal stop-words
We uselDF to classify it asvzideo stop-wordTo computdDF for any sequence, we use frequency with
which it occurs in news videos across different channels. HighéDiReneasure more is the probability
that the frequent sequence is a commercial. This works fine as commeuggalsfiequently in all the
channels and consistently for large intervals.

A typical news video would mostly contain important news or commercials in itsfseequent
sequences. Therefore when deteatiglbo stop-wordsire removed from the set of frequent sequences
and we get thenformative contenof the video. This is shown in Figure 5.8, basedIDiF measure
frequent sequences extracted from video are classifigilas stop-wordr informative part of video.

Thus thevideo stop-worddetection results can be used to: (a) block undesirable content and (b)
summarize video with only important content. The latter can be done by compuérigféhmation
measuref each shotS,;; as:

Is,,, = Z sign(F') = support(F) * | F| (5.8)
FeFfreq
-1 ifFest d
sign(F) = 8 opwor
1 otherwise

whereFY,., is a set of frequent sequences in skigy and ' is a frequent sequence ky,.,. Therefore,
more informative shots can be kept in the summary by keeping a threshblg.on
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Figure 5.8 Stop word detection from video using Frequent Sequence Mining

5.3.3.1 Experiments

Experiments are done on news videos obtained from eight broadeesthannels. For estimating
IDF measure, videos from these channels are mined over five days (180 aAod extracted frequent
sequences with their frequency of occurrerl@8( are stored. While testing theHaF values are used
to separate commercials from the rest of the frequent sequences dhtathe set of test videos. For
testing 1000 news video clips of total duration of 10 hours are used. Miel@ss have lot of overlaid
text in its lower one-third part, which affects the feature descriptor and sifndenes are assigned
different visual word or item. To handle this we only extract featuresiftioe upper two-third part of
the image.

We partition news video clips into shots and pick four frames per second vétth shot. The
ground truthing is done at the frame sequence level, each manually andnfrejaent sequence is
marked avideo stop-wordr informative contentThis resulted ir91 frequent sequences out of which
68 were marked as visual stop-word and remair#8@s informative content.

We use precision and recall to evaluate the detection performance. iGmesisl recall forvideo
stop-worddetection are computed as follows:

# true visual stopwords detected

Precision =
# total visual stopwords detected

# true visual stopwords detected

Recall =

# total true visual stopwords
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Vocabulary| Frequent sequence Video stop-word | Informative Content
size Precision| Recall | Precision| Recall | Precision| Recall
100 0.63 0.57 0.67 0.59 0.55 0.52
200 0.81 0.68 0.87 0.71 0.67 0.61
500 0.87 0.78 0.93 0.79 0.71 0.74
1000 0.97 0.91 0.98 0.94 0.90 0.83
2000 0.98 0.90 0.98 0.93 0.95 0.83

Table 5.1Precisions and recalls for frequent sequeraeo stop-wordand informative content detec-
tion with different vocabulary sizes.

Sometimes due to disturbance in the telecast, few frames get transformetkcfiateis considered to
be true if the overlap between detected sequéngg and annotated sequenggr is more than 90%.
Overlap is given b))‘% Figure 5.9 shows some examples of detegiddo stop-words

For the experiments we setin_sup = 0.005. The performances for detecting frequent sequence,
video stop-wordand informative content in terms of precision and recall are reportedile Bal. The
precisions are high as it is difficult to get false frequent sequences \dige enough vocabulary is
chosen. With vocabulary size of 1000 and above, recall and presisianhigh for all three cases.
Precision always increases with vocabulary size. However recdl stacreasing with too much quan-
tization. This is because with more number of clusters a slight variation in a framassign it to a
different cluster, which may lead to false negatives. Some of the exampliesexted commercials as
video stop-words shown in Figure 5.9.

Also the method is very efficient. In the online phase features are extraci®d fps and visual
words are assigned a60 fps with vocabulary size 1000. For miniri@, 000 sequences of average
length 100 it takes aboutl0 seconds. This shows that the proposed method is scalable and can be
effectively used for real-time on-line applications.

5.4 Summary

We have presented an approach to discover characteristic patterngas udan unsupervised fash-
ion. Our method is based on finding frequently occurring patterns. Owerodpproaches employs
frequent pattern mining for efficient characterization. We also profiosse randomized trees to rep-
resent frame as sequence of nodes and mine frequent sequenes flatabase of long sequences.
To evaluate the proposed methods we compare them with each other and mihle lsaseline. The
approach is validated by experiments over a large movie dataset to dist@recteristic scenes and
main actors in the video. We also defwideo stop-wordand detect them using frequent sequence min-
ing. Stop words are identified usifg--IDF type measure for frame sequences. Traditional methods
from data mining have been successfully used in computer vision and sincticqees can result in fast,
efficient algorithms for large scale video processing.
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Chapter 6

Conclusions

6.1 Summary

In this dissertation we have explored different aspects of visual psatgin images and videos. Our
objective is to achieve efficiency along with accuracy. The following suriz@sithe key contributions
made:

o A state-of-art object detection and classification framework based addrRa Forests is devel-
oped and evaluated. We have combined different types of featureiptess based on bag of
visual words and gradient orientations. We have carefully selectedeathfjor components of
such a framework, investigating features for visual representati@tiabgrids, bootstrapping,
post-processing, different parameters of random forest and shdimdpw detector. The evalua-
tion was performed using multiple datasets with many object and scene catefdeibave used
a combination of different visual features with random forest for thé-egel feature extraction
task of TRECVID’'08. On Pascal VOC'07 challenge our method achi&etter performance
than by the team ranked 1 did in the competition. We have shown that Randest Elassifier
can be used for fast and accurate classification and object localizationirig) the detector over
large dataset of about 200 thousand key-frames in TRECVID’09 whspmssible due to the
fast training and testing of random forest. We also proposed Exten@éxifBr classification by
detection, which allows us to use only one aspect ratio and still cover fye lange of aspect
ratios while testing.

e We have proposed an architectuvecabulary Trie for online content based processing of con-
tinuous stream of videos to detect video segments of interest. It is based and bag of words
model to simultaneously match multiple video segments in the database with the langedepu
stream. We focus on enhancing the throughput of the system and foartieewe need the al-
gorithm capable of simultaneous spotting of multiple examples. Our formulatiorefitstively
utilizes the sequence information of the video stream, rather than treatingseasfframes. To
handle generic video filtering situation and address other practical chafieme propose Forest
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of Tries. Our approach is generic and applicable for many applicatiohsdied matching video
sequence. We have demonstrated this by doing content based coptipdg@BCD) experiments
on MUSCLE VCD 2007 and broadcast news database.

e We have presented an approach for mining characteristic patterns irsvuidao unsupervised
fashion. Mining is done based on frequently occurring patterns in theygtene possible pat-
terns can be scenes, characters or sequences of frames. Iroomapproaches we apply frequent
pattern mining algorithm to visual data. Our second approach uses raretbtrées to represent
frames or images as a sequence of items and finds the frequent onesuM/gliscover char-
acteristic patterns and main actors of movie using frequent itemset mining. W/dedleed and
detectedrideo-stop word#n broadcast news videos.

6.2 Future Work

The following perspectives for extension of the work presented in thgglseem worth investigat-
ing:

¢ In our detection results on VOC datasets we observed many false negatinessed detection
due to truncation and occlusion. Also when the object is very small or withflattizulation
detections are missed. There has been efforts [48, 162] towards fiadimy to handle such
difficult cases. But still state of art is far from what is desired. Outt 8&ep is to work on dealing
with the cases of truncation and occlusion.

Given the fast training and testing of random forests it would be interegtirgply them on
videos (with other tracking algorithm) for tracking objects by detection. Cantis improvement
of classifier by online learning of trees can be a promising.

e Processing of on-line video sequences for information extraction amachaiaing has many sig-
nificant applications in video scale-invariant retrieval. We are workingtde designing appro-
priate processing (indexing, matching, ranking) architectures fornrdton retrieval tasks from
broadcast and other similar on-line video streams. One of the challengbtaining real-time
solutions to the on matching in large line processing tasks is the computatiomas effquired
for feature extraction and matching. Our proposed architectaeabulary Trig is highly paral-
lelizable and a GPU based implementation can speed up the solution significantly.

e Frequent pattern discovery in visual data has potential for many extsnaind applications.
For example in content based retrieval, it might be worthwhile to use mining to starctural
patterns of features for a given query on-line.
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