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Abstract

The amount of multimedia content produced and made available on Internet and in professional and

personal collections is constantly growing. Equally increasing are the needs in terms of efficient and

effective ways to manage it. This has led to a great amount of research intocontent based retrieval and

visual recognition. In this thesis, we focus on efficient visual content analysis in images and videos.

Efficiency has emerged as one of the key issues with increase in quantity ofdata. Understanding of a

visual content has several aspects associated with it. One can concentrate on recognizing the inherent

characteristics of image (independent or from a video) like objects, scene and context. Searching for a

sequence of images based on similarity or characterizing the video based onits visual content could be

some other aspects.

We investigate three different approaches for visual content analysisin this thesis. In the first, we

target the detection and classification of different object and scene classes in images and videos. The

task of classification is to predict the presence of an object or a specific scene of interest in the test

image. Object detection further involves localizing each instance of the object present. We do exten-

sive experimentation over very large and challenging datasets with large number of object and scene

categories in it. Our detection as well as classification are based on Random Forest combined with

combinations of different visual features describing shape, appearance and color. We exploited the

computational efficiency in both training and testing, and other properties ofRandom Forest for detec-

tion and classification. We also proposed enhancements over our baselinemodel of object detector. Our

main contribution here is that we achieve fast object detection with accuracycomparable to the state of

art.

The second approach is based on processing continuous stream of videos to detect video segments

of interest. Our method is example-based where visual content to be detected or filtered is characterized

by a set of examples availableapriori. We approach the problem of video processing in a manner

complimentary to that of video retrieval. We begin with a set of examples (used as queries in retrieval)

and index them in the database. The larger video collection, which needs to be processed, is unseen

during the off-line indexing phase. We propose an architecture based on trie data structure and bag

of words model to simultaneously match multiple example videos in the database with theinput large

video stream. We demonstrate the application of our architecture for the task of content based copy

detection (CBCD).
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In our third and final approach we apply pattern mining algorithms in videos to characterize the

visual content. They are derived out of data mining schemes for efficient analysis of the content in

video databases. Two different video mining schemes are employed; both aimed at detecting frequent

and representative patterns. For one of our mining approaches, we use an efficient frequent pattern

mining algorithm over a quantized feature space. Our second approach uses random forest to represent

video data as sequences, and mine the frequent sequences. We experiment on broadcast news videos

to detect what we define asvideo stop-wordsand extract the contents which are more important such

as breaking news. We are also able to characterize the movie videos by automatically identifying the

characteristic scenes and main actors of the movie.

The ideas proposed in the thesis have been implemented and validated with extensive experimental

results. We demonstrate the accuracy, efficiency and scalability of all the three approaches over large and

standrad datasets likeVOC PASCAL, TRECVID, MUSCLE-VCDas well as movie and news datasets.



Contents

Chapter Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 1

1.1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1.1 Understanding Visual Content in Images . . . . . . . . . . . . . . . 3
1.1.1.2 Understanding Visual Content in Videos . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Image Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11

2.1.1 Global Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Local Representation: Sparse . . . . . . . . . . . . . . . . . . . . . . . . .. 12

2.1.2.1 Harris corner detector . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2.2 Hessian-Affine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2.3 Difference-of-Gaussians (DoG) . . . . . . . . . . . . . . . . . . . . 13
2.1.2.4 MSER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Local Representation: Dense . . . . . . . . . . . . . . . . . . . . . . . . . .. 13
2.1.4 Feature Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4.1 SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4.2 SURF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4.3 Gist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4.4 Histogram of Oriented Gradients: HOG . . . . . . . . . . . . . . . 16

2.1.5 Bag of Words Model for Image Representation . . . . . . . . . . . . . . .. . 17
2.2 Vector Quantization (Clustering) . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 19
2.3 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20

2.3.1 Random Forest classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.3.1.1 Training the classifier . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1.2 Random Forest Parameters . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Frequent Pattern Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23
2.4.1 Basic Terms and Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Frequent Pattern Mining: Problem Statement . . . . . . . . . . . . . . . . . .26
2.4.3 Frequent Itemset Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xv



xvi CONTENTS

2.4.4 Frequent Sequence Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

3 Rapid Object Detection using Random Forests. . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.2 Object Detection Literature and Methods . . . . . . . . . . . . . . . . . . . . . .. . . 30

3.2.1 Sliding window based methods . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Random Forests in Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . .. 32
3.3.1 Random ferns classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

3.4 Random Forect for Classification . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 33
3.4.1 Dataset, Annotations and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.3 Visual representation: Appearance . . . . . . . . . . . . . . . . . . . . .. . . 36
3.4.4 Visual representation: Shape . . . . . . . . . . . . . . . . . . . . . . . . . .. 36
3.4.5 Visual representation: Color . . . . . . . . . . . . . . . . . . . . . . . . . . .37
3.4.6 Experiments for Best Combinations . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.7 High-level feature results by TRECVID . . . . . . . . . . . . . . . . . . . .. 39

3.5 Object Detection System and Dataset . . . . . . . . . . . . . . . . . . . . . . . .. . . 39
3.5.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.2 Testing and Retraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.3 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.4 VOC PASCAL dataset and Object Detection Challenge . . . . . . . . . . . .. 42

3.5.4.1 Features and Object Detector . . . . . . . . . . . . . . . . . . . . . 42
3.6 Random Forests Vs Support Vector Machines . . . . . . . . . . . . . . . .. . . . . . 43

3.6.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.6.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.2.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6.2.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Random Forest for Object Detection . . . . . . . . . . . . . . . . . . . . . . .. . . . 47
3.7.0.3 3-Pose 1-Template Classifier . . . . . . . . . . . . . . . . . . . . . 48
3.7.0.4 5-Pose 1-Template Classifier . . . . . . . . . . . . . . . . . . . . . 49
3.7.0.5 Effect of Random Forest parameters . . . . . . . . . . . . . . . . . 49

3.8 Speeding up with cascade structure . . . . . . . . . . . . . . . . . . . . . . . .. . . . 52
3.9 Extended ROIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

3.9.1 TRECVID 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.9.1.1 Classification by detection . . . . . . . . . . . . . . . . . . . . . . . 56

3.9.2 BBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Online Video Spotting and Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
4.2 Video Processing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 62

4.2.1 Content based video retrieval . . . . . . . . . . . . . . . . . . . . . . . . . .. 63
4.2.2 Content based video filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Video summarization and segmentation . . . . . . . . . . . . . . . . . . . . . 64
4.2.4 Adding Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



CONTENTS xvii

4.3 Vocabulary Trie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65
4.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1.1 Representation and vocabulary trie construction . . . . . . . . . . . 67
4.3.1.2 Matching of videos . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Forest of Tries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Commercial Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 Content based copy detection (CBCD) . . . . . . . . . . . . . . . . . . . . .. 73

4.4.2.1 Experiment on MUSCLE-VCD-2007 database . . . . . . . . . . . . 74
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Video Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
5.2 Our Mining Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 79

5.2.1 Visual Frequent Pattern Mining . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.2 Randomized Trees for Mining Videos . . . . . . . . . . . . . . . . . . . . . . 81

5.2.2.1 Randomized Mining Forest . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

5.3.1 Quantitative Evaluation of Mining Approaches . . . . . . . . . . . . . . . . 84
5.3.2 Movie Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2.1 Characteristic Scenes of the Movie . . . . . . . . . . . . . . . . . . 86
5.3.2.2 Identifying main characters in the Movie . . . . . . . . . . . . . . . 88

5.3.3 Video Stop Word Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97





List of Figures

Figure Page

1.1 Examples of different sources of visual data: images containing objects and scenes (top
and middle); and movie and broadcast videos (bottom) . . . . . . . . . . . . . . .. . 2

1.2 Visual Recognition Problems: different approaches to understand the visual content of
an image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 (a) News video which is to be processed, (b) Detected commercials and (c) Breaking
news retrieved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Variation caused due to (a) View-point/Pose, (b) Occlusion/Truncationand (c) Scale/Size 7
1.5 (a) Examples of variations caused by object articulation, (b) two instances of same ob-

ject class, dog, with very different appearances, and (c) very similarlooking dog (left)
and cat (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 (a) Example of detected key-points and (b) SIFT descriptor computation: On the right
are the gradients of an image patch around a key-point. These gradients are then ac-
cumulated over4 × 4 sub-regions, as shown on the left, the length of the arrow corre-
sponding to the sum of the gradient magnitudes in that direction. . . . . . . . . .. . . 14

2.2 This figure illustrates the information encoded by the gist features for three different
images. See text for details (Courtesy A. Torralbaet al [151]) . . . . . . . . . . . . . 16

2.3 HOG feature extraction: The image or ROI (here detector window) is tiled with a grid
of overlapping blocks. Each block contains a grid of spatial cells. For each cell, the
weighted vote of image gradients in orientation histograms is performed. The block
descriptors are locally normalised and collected in one big feature vector. Courtesy [34] 17

2.4 Bag of visual words model: (a) Database of images, features extracted are clustered
to get (b) Visual vocabulary or collection of visual words, and (c) An example image
represented using constructed vocabulary. . . . . . . . . . . . . . . . . . .. . . . . . 18

2.5 Random Forest with T trees, leaf nodes are shown in green. Trainingsamples are tra-
versed from root to leaf nodes and posterior distributions (blue) are computed. A test
sample is classified by descending each tree and then aggregating the distributions at
each reached leaf. The paths formed while descending are shown in yellow. . . . . . . 22

3.1 Some examples of our object detection results. . . . . . . . . . . . . . . . . . .. . . . 30
3.2 Some examples of keyframes from TRECVID dataset . . . . . . . . . . . . .. . . . . 35
3.3 Inferred AP for the HLFs: our score (dot), median score (dashes) and best score (box).

Inferred AP is estimated using 50% samples. . . . . . . . . . . . . . . . . . . . . . .39
3.4 Top 10 results (distinct scenes) of (a) Street and (b) Hand. . . . . .. . . . . . . . . . . 40

xix



xx LIST OF FIGURES

3.5 Post-processing: On left, a typical result after scanning the binary classifier across the
test image at all positions and scales is shown. Results after non-maximum suppression
is on right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 VOC 2007 car detection: Performance of Random forest and fast IKSVM compared in
the precision-recall plots for test set (left) as well as trainval set (right). Comparison is
done separately for (a) Frontal + Rear, (b) Left + Right and (c) Unspecified poses. . . . 46

3.7 VOC 2007 car detection: Performance of Random forest and fast IKSVM compared in
the precision-recall plots for all the poses combined. . . . . . . . . . . . . . .. . . . . 47

3.8 3-Pose 1-Template: Performance of different features are compared using 100 tree RF
(left) and 1000 tree RF. Large improvement is achieved by combining the features. . . 48

3.9 5-Pose 1-Template: Performance of different features are compared using 100 tree RF
(left) and 1000 tree RF. Large improvement is achieved by combining the features. . . 49

3.10 Some examples of localization on VOC2007 Test set after non-maximum suppression.
Detections are shown by green boxes and groundtruth ROIs are drawnin yellow. . . . 50

3.11 Effect of (a) number of thresholds per node (τ ), (b) number of node-functions per node
(nf ) on average precision, (c) and (d) trees (T ) on average precision. . . . . . . . . . . 51

3.12 Cascade structure of classifiers and features. . . . . . . . . . . . . .. . . . . . . . . . 52
3.13 Examples of high-scoring detections on the PASCAL 2007 (top 3 rows)and 2009 (bot-

tom 3 rows) datasets. Last two images in each row illustrate false positives orfalse
negatives for each category. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 54

3.14 Top row shows the examples of original ROIs for classes bicycle andcar, and their
extended ROIs are shown in the bottom row. Note that all the extended ROIsof same
class have same aspect ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 55

3.15 Top 15 retrieved keyframes are shown for (a) Boat-Ship and (b)Bus categories, (c)
Keyframes ranked from 71 to 85 are shown for Person-riding-a-bicycle, top 70 are all
true positives coming from the same video. . . . . . . . . . . . . . . . . . . . . . . .57

3.16 Top 15 results from the BBC video dataset for Boat or Ship and Handcategories. . . . 59

4.1 Overview of the Example-based Video Processing . . . . . . . . . . . . . .. . . . . . 62
4.2 Example Trie for set of words . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 66
4.3 Building a Vocabulary trie for video sequences and using it for processing the input

video stream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Processing a query with forest of tries: The top row shows that a mismatch occurs when

we start searching from trieT1. The bottom row shows that a copy of sub-sequence of
an example can be detected by starting from the next trie. . . . . . . . . . . . . .. . . 70

4.5 Example frames from the Commercial Videos used . . . . . . . . . . . . . . . . .. . 71
4.6 Scalability of Trie for detecting commercials in broadcast TV. (a) Time Vs No. of

commercials and (b) False positives Vs No. of commercials. One can observe the
scalability of the system to large number of examples . . . . . . . . . . . . . . . . . .72

4.7 Effect of (a) duration of commercials, (b) number of visual words onF-score and (c)
Temporal quantization parameterp on false-negative rate . . . . . . . . . . . . . . . . 73

4.8 Examples of original and transformed video frames of Muscle data-set. . . . . . . . . 75

5.1 Frequent Pattern Mining in Video: Feature descriptors of frames are quantized to build
vocabulary in offline phase. During online processing, video is represented as a transac-
tional (or sequence) database, which is mined using Frequent Pattern Mining algorithms. 78



LIST OF FIGURES xxi

5.2 Randomized Mining Forest of T trees built without supervision. Each sample while
descending updates the counts of the nodes in each tree. The paths traversed by a sample
in each tree, shown in yellow, are concatenated and used as a sequencerepresentation
of the sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Performance of different approaches for ranking. . . . . . . . . .. . . . . . . . . . . 84
5.4 Top: Clustering time is too high compared to the time taken to build forests, which takes

only about 90 seconds to built 20 trees; Bottom left: Best scores by the baseline and our
two methods; and Bottom right: training RMF is about 20 times faster than clustering
for k=500, when k-means+FIM reaches its best range of ranking score. . . . . . . . . . 85

5.5 Some examples from the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 86
5.6 Some examples of characteristic scenes retrieved from movies Braveheart, Lord of The

Rings: The Return of The King, Sixth Sense and Chicago (from top to bottom). . . . . 87
5.7 Main character discovered from the moviesRocky1, 300, All About Eve, Slumdog Mil-

lionaire andA Beautiful Mind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.8 Stop word detection from video using Frequent Sequence Mining . . . .. . . . . . . 90
5.9 Some examples ofvideo stop-worddetection . . . . . . . . . . . . . . . . . . . . . . 92





List of Tables

Table Page

3.1 Classification results on Validation set using the best combination of feature, pyramid
level and node-test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

3.2 Time and memory requirements while training . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Testing on VOC 2007 car: Performance comparison . . . . . . . . . . . . .. . . . . . 47
3.4 PASCAL VOC 2007 results (test set): (a) average precision scoresof the base system,

(b) scores using cascade, (c) top result in VOC07 . . . . . . . . . . . . . .. . . . . . 53
3.5 PASCAL VOC 2009 results (validation set): (a) average precision scores of the base

system, (b) scores using cascade . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 53
3.6 Classification by detection results for Boatship: average precision scores of the base

detector before and after bootstrapping . . . . . . . . . . . . . . . . . . . . . .. . . . 56
3.7 Classification by detection results for BoatShip: average precision scores of the detec-

tor trained withExtended ROIsbefore and after bootstrapping . . . . . . . . . . . . . 58
3.8 Classification by detection results (Extended ROIs): average precision scores of the

detector trained on Train set and tested on Validation set. . . . . . . . . . . . . .. . . 58

4.1 Performance of Trie for copy detection . . . . . . . . . . . . . . . . . . . . .. . . . . 74
4.2 Results of Copy Detection on MUSCLE data-set . . . . . . . . . . . . . . . . .. . . 75

5.1 Precisions and recalls for frequent sequence,video stop-wordand informative content
detection with different vocabulary sizes. . . . . . . . . . . . . . . . . . . . . .. . . 91

xxiii





Chapter 1

Introduction

1.1 Introduction and Objective

The world is a rich and complex source of visual information, which is often captured as images and

videos. With the development of multimedia and proliferation of cheap equipments, amount of visual

information available in digital form is growing at an exponential rate. It is spreading expeditiously

worldwide due to rapid distribution through internet (sites like Flickr, YouTube etc). Millions of images

are indexed by Image search engines such as Google Images (claims 880 million), Picsearch (claims 2

billion). Every minute, around 13 hours of video are uploaded to YouTube. Video has become widely

spread medium for serving entertainment, education, communication and otherpurposes. In order to

cater to the needs arising from such databases and take advantage of them, advanced techniques for

recognition, indexing, mining of such visual content become more and more important. There is a need

to automatically extract high-level information from image or video. It can be the objects contained

in an image or shot with or without its location, image and video search, semantic characterization of

videos etc. And it is very important to do these tasks efficiently in order to meetthe user demands.

Some examples of sources of visual data are shown in Figure 1.1.

Computer vision methods and specifically visual recognition along-with different indexing tech-

niques, can help to cope with the increasing size of video and image collections. Visual image analysis

and recognition has been a subject to research by many people in last 40 years. Initially much of re-

search in visual recognition was focused on 2D pattern classification. Gradually methods based on

learning global appearance [97, 112, 126] and geometric invariance [121, 145] came up. This methods

were sensitive to clutter, occlusions and object articulations and had limited applicability. Limitations

of global features were overcome with the advent of local features [50, 74, 127].

Bag-of-words model has a long history of success in document retrieval, but it was not until the

idea of a visual vocabulary emerged [137], that it was possible to bring this model to vision. Since

then great progress can be seen in the area of visual recognition, content based retrieval, image/video

understanding in general. Different Bag-of-words feature descriptors combined with modern machine
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(a) Objects

(b) Scenes

(c) Movies (d) Broadcast video

Figure 1.1Examples of different sources of visual data: images containing objects and scenes (top and
middle); and movie and broadcast videos (bottom)

learning techniques led to excellent performance [29, 111, 135] for detection, retrieval and other visual

recognition tasks.

Other than learning based methods for recognition, many indexing techniques have been proposed for

image and video retrieval/search. Some of the successful indexing schemes for multimedia collections

include LSH [63], min-hash [27, 28], pyramid match hashing [54], vocabulary forest [171], etc. Content

based image and video retrieval has benefitted by incorporating better local descriptors, local invariant

region detectors, indexing methods from visual recognition and text retrieval communities. Region

detectors include DoG (Difference of Gaussian), LoG (Laplacian of Gaussian), MSER, Harris Affine,

Hessian Affine (see [92] for details). SIFT [84], PCA-SIFT [68], SURF [14] and DAISY [146] are the

more popular descriptors. Along with Bag-of-words model these featuredescriptors have been used for

variety of tasks. The power of Bag-of-words model to create efficientimage and video retrieval systems

has been explored by Sivic and Zisserman [137] as well as Nister and Stewenius [101]. Moreover, with

this model it is easier to adapt many text based indexing methods for images andvideos. For instance,

adaptation of PLSA [58] and LDA [17] to visual bag of words has provided promising results for static

image databases [19, 117, 122, 136].
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1.1.1 Objective

Our goal is to efficiently process, search, filter, analyze videos and large image collections. The

objective is to understand different aspects of visual information contained in the given image or video.

It can be finding out what scene or object categories are present bylearning models for those categories.

Some concepts like demonstration, violence, party are difficult to learn. In such cases, example based

approach can be taken for detecting/filtering content of interest (which are similar to examples). Au-

tomatic discovery of main actors in movies, important content in news videos andother characteristic

patterns is another way to understand and analyse video content.

More specifically the following problems are addressed in this thesis:

• Object localization in cluttered environment and scene/object classification.

• On-line processing and filtering of videos.

• Mining and finding characteristic patterns in videos.

The emphasis is on achieving above with high efficiency. We now further explain our objective of

understanding visual content in image and video. We take two examples one for each image and video

to justify the importance of our objective.

1.1.1.1 Understanding Visual Content in Images

Consider the image shown in Figure 1.2(a), one can observe a lot of thingsby just looking at it.

Humans can easily recognize any content of the image from objects like car,bus, people and other local

things to the global context of the image. The ultimate goal of visual content analysis would be to

explain pixels, objects and their interactions in an image. To understand the image it is inevitable to take

global as well as local information into account. The visual recognition problems: (i) classification, (ii)

object detection, (iii) object categorization and (iv) scene categorizationare shown in Figure 1.3. Each

of them enables computers to analyse some or other aspect of the visual content of image. In chapter 3,

we attempt to propose more efficient alternatives for object detection and classification.

1.1.1.2 Understanding Visual Content in Videos

Understanding visual content in video includes many approaches: (i) video retrieval or filtering, (ii)

activity recognition, (iii) identifying people, (iv) video characterization viamining or other methods, (v)

video summarization. Objectives of all these approaches overlap which are mainly of two types. First

is to detect or search content of interest, this can be done by learned models(activity recognition) or

example based methods (retrieval and filtering). Other one is aimed at characterizing or summarizing

the video by analysis or mining of the video content.

Figure 1.3 shows both types of approaches. The output shown in Figure1.3(b) shows some commer-

cials which are blocked. This essentially would be video filtering if the contentof interest, commercials,
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(a) Classification: any bus in the image? (b) Detection: if yes, where?

(c) Object Categorization: objects present (d) Scene Categorization: scene descirption

Figure 1.2 Visual Recognition Problems: different approaches to understand the visual content of an
image.

was detected by already learned model or based on its similarity to some example inthe database. Fig-

ure 1.3(c) shows output which is the more informative or important content of the news video such

as breaking news. This can be done by mining the video or by applying some video summarization

method.

In this thesis our approach for visual content processing in videos is based on filtering (chapter 4)

and mining (chapter 5).

1.2 Motivation

Given the amount of easily accessible visual information the significance ofits fast processing is

very much apparent. Achieving the objectives mentioned in the last section would serve a large number

of applications. Possible categories of applications include:
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(a) News video

(b) Blocked content (c) Informative content

Figure 1.3 (a) News video which is to be processed, (b) Detected commercials and (c)Breaking news
retrieved.

• Semantic search in images and videos

An automatic searching tool which would immediately return all images or frames containing

instance of given semantic concept. It can be scenes like mountain, cityscape or objects like

dog, hand, bus or activities like dancing, demonstration. Robust and efficient classification and

detection methods can greatly help for such application. Also example based approach would be

useful in searching complex activities like ’people applauding’ by detectingsequence of frames

similar to example sequences.

• Video characterization by automatic labeling

Automatic labeling of characteristic scenes, main actors and other aspects in movies or sitcom

videos can help in genre prediction, automatic annotation to build large-scale,highly varied

datasets. Information obtained through finding such patterns could convey a lot about the visual

content and major theme of the video. This can be used to mine patterns in movies for socio-

logical studies, for teaching cinematography students the proper theoriesand practices of film
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aesthetics. Other applications could be to implement automatic movie recommendation systems,

video summary or intelligent fast-forward. One could for example jump automatically between

all shots with characteristic scenes in the movie, or fast-forward to the nextappearance of main

character of the movie.

• Content based video filtering

Content-based filtering of images and videos includes many applications like removal of commer-

cials, event detection, content based copy detection, adult content removal, detecting occurrence

of a particular object. Many methods formulate this problem as an object/scenerecognition or

detection by using an appropriate classifier and many others use examples tomatch with for com-

plex categories. Sequence information can be very useful for event detection. Content based copy

detection is another possible application which has become very popular recently. The constant

struggle to identify and remove copyright multimedia content has been evidenton popular video

sites like YouTube. A efficient and scalable system for Content Based Copy Detection is required

to deal effectively with huge amount of visual data.

• Applications in robotics

Autonomous mobile robotics is another important area, where recognition of objects is critical

for robot localization and navigation. Real-time processing of visual content would enable robot

to quickly infer the world around and make it useful for variety of situations. In this way a

completely autonomous robot specialized to recognize certain objects of interest will be able to

substitute humans in dangerous situations such as underwater exploration,fireman help etc.

• Surveillance and Security

Automated surveillance is another aspect of security, where identification of objects and events

play an important role. Advanced systems to monitor a large set of security cameras and signal the

presence of specific objects/people or unusual events can be crucialto a good surveillance system.

The methods have to be efficient and robust in-order to perform well in crowded environments,

for example cricket stadium.

We have a long history of partially successful and encouraging attempts to analyse visual informa-

tion. However there is no perfect solution for the situations mentioned above, because they are still very

challenging.

1.3 Challenges

Whether the problem is object detection or retrieval, the challenge lies often indescribing the visual

content well inspite of many kinds of variations. We present the challengesand our solution for indexing,

learning and mining in chapters respective to these problems (Chapter 3, 4 and 5). Here we list some of

the prominent challenges in the area of visual recognition:
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(a) View-point/Pose

(b) Occlusion/Truncation

(c) Scale/Size

Figure 1.4Variation caused due to (a) View-point/Pose, (b) Occlusion/Truncation and (c) Scale/Size

• Illumination Variation

Lighting change have a major influence on the appearance and is one of thecommon problems in

recognition. Variation in environmental illumination causes large variations in theintensity values

of pixels. Due to different lighting and the occurrence of shadows objects can appear completely

different and become difficult to recognise. It can also add strong gradient edges to the image,

which can increase background-clutter and create confusion.

• Viewpoint and Pose Variation

Viewpoint or position of the camera relative to the object can significantly change the appearance

of an object. Objects occur in different poses and can have completely different appearances as a

result. For example, the different views of cars shown in Figure 1.4(a).

• Occlusion and Truncation

Visibility of some part of object can be hindered due to some other object in vicinity of the current

object or due to other parts of same object. The latter phenomenon is known as self-occlusion.

Sometimes object gets truncated by the image border. All these cases complicatethe recognition

task significantly as the visual model either needs to explicitly model the possibilityof missing
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(a) Articulation

(b) Intra-class (c) Inter-class

Figure 1.5 (a) Examples of variations caused by object articulation, (b) two instancesof same object
class, dog, with very different appearances, and (c) very similar looking dog (left) and cat (right).

parts or needs to be sufficiently robust to it. Figure 1.4(b) shows few examples of occlusion and

truncation.

• Scale and Size Variation

The scale and size of objects can significantly influence the similarity to other object-classes and

increase the variance within one object-class. Some examples given in Figure 1.4(c) illustrates

the effect of scale and size of object.

• Background Clutter

Highly complex background can result in confusion between foreground objects and background.

The chance of finding object features in the background increases thereby producing false-positives.

• Articulation

Articulation describes the variation of appearance caused by differentpositions of parts of the

object relative to each other. It mostly happens with living objects but also applies to other object

classes such as bicycles, bike. This causes large variations among the samples of same class and

increases intra-class variation. Figure 1.5(a) shows the different articulated positions of human,

horse and bike.

• Intra and Inter Class Variations

Many classes have high intra-class variation that is variation between objects belonging to the

same class. For example different breeds of dog (shown in Figure 1.5(b). High inter class simi-

larity in many object-classes is another problem which makes it challenging notto confuse those

classes. Figure 1.5(c) shows an example where dog and cat look very similar.
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We need approach that can address most of these challenges at the sametime keeping the solution

computationally efficient.

1.4 Our Contributions

In this thesis, we have proposed solutions for problems mentioned in Section 1.1.1. Brief description

of each of the contributions is given below:

• Rapid Classification and Localization with Random Forests

State of art object detection and scene classification is often achieved by support vector machines

(SVM). We have employed collection of randomized trees for efficient classification. The advan-

tage of Random Forest over SVM and other classifiers is that it is fast to train and test and still

almost as accurate as non-linear SVMs. We show that Random Forest classifier can be used for

fast and accurate classification and object localization. We have used a combination of different

visual features with random forest for the high-level feature extraction task of TRECVID’08 [3].

Random forest is presented as a rapid object detector with results on challenging datasets like

VOC PASCAL and TRECVID09. We achieved results comparable to the bestin VOC’07 [45] for

object detection.

• On-line Video Processing

We proposed an architecture for efficient online content based processing of continuous stream of

videos to detect segments (or sequences) which are similar to a given set of examples. An indexing

technique is developed usingTrie data structure with bag-of-words model. It does simultaneous

on-line spotting of multiple examples in a video stream which makes it possible to process large

amount of unseen video. This video filtering is complementary to video retrieval where query is

an example video and the retrieved results are similar clips from already indexed large database.

• Video Mining

We apply pattern mining in videos to characterize the visual content. Two different video mining

schemes are employed; both aimed at detecting frequent and representative patterns. For one of

our mining approaches, we use an efficient frequent pattern mining algorithm over a quantized

feature space. Our second approach uses random forest to represent video data as sequences, and

mine the frequent sequences. Experiments are done with boadcast Newsand Movie videos.

1.5 Thesis Overview

The remainder of the thesis is organized as follows. Chapter 3 presents Random Forest as fast

and robust object detector. After survey on object detection and Random Forest, we experimentally

compare RF with SVM. It is evaluated on VOC PASCAL and TRECVID datasetsfor detection and
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classification. In chapter 4, we have presented a detailed survey of existing approach towards video

processing and different indexing techniques. Our example based method for online processing and

filtering of videos is then presented with results for Content Based Copy Detection. Our video mining

approach is presented in Chapter 5 with experiments on movie and news videos. Finally, in Chapter 6

we draw conclusions from this thesis and also explore some of the possible avenues for future work.
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Chapter 2

Background

In this chapter we introduce some basic tools and algorithms that we use throughout in this thesis.

They include methods for image representation, clustering algorithms, visualvocabulary construction,

classifiers and pattern mining methods.

2.1 Image Representation

In visual recognition literature many techniques have been used to represent the content of an image.

All object/image classification and content based retrieval systems require an appropriate representation

of the input images. In this section the basic techniques for representing and describing images and

the objects therein are described. One can represent an image globally orlocally. In the case of local

models we havesparseanddenserepresentations. Sparse as well as dense image representations are

local as they focus on specific image regions instead of describing the imageas a whole. In the next

subsection we describe global representation. Then we give a detailed overview of sparse representation

techniques, which only represent interesting areas of an image. This is followed by the presentation of

methods that provide a dense representation of the image in the sense that each pixel contributes to the

feature description of the image. We then describe different feature descriptors used to represent image

content. In the last subsection we discuss Bag-of-words model for imagerepresentation.

2.1.1 Global Representation

Global features describe the entirety of an image with a single feature vectorcapturing information

from the whole image. For example, variations of global color or gradient histograms, texture features.

Attention is not paid to the constituents of the image, such as individual regionsor parts of objects.

Once each images feature is computed, we can classify each image or measure the similarity between

any pair of images using some distance metric. The appeal of this approach lies in its simplicity. The

drawbacks of global appearance representation are:

• problems with partial occlusion and background clutter.
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• the large amount of training data required to achieve viewpoint and lighting invariance.

Many recent works in computer vision has highlighted the importance of global image representa-

tions for scene recognition [47, 75, 104] and as a source of contextual information [60, 99, 150]. These

representations are based on computing statistics of low level features (similar to representations avail-

able in early visual areas such as oriented edges, vector quantized imagepatches, etc.) over fixed image

regions. One example of a global image representation is the gist descriptor[104]. The gist descrip-

tor is explained in section 2.1.4.3. Some of the earlier works that used this approach for recognition

are [40, 98, 126].

2.1.2 Local Representation: Sparse

Local appearance methods are at the heart of some of the most successful object recognition systems.

The introduction of very powerful local visual features in the late 90s is one of the main reasons for the

astonishing progress the field of computer vision has made in recent years. Unlike global features, local

features decompose the image into localized image patch descriptors around interest points (sparse) or

on a regular grid (dense).

Selecting the right image patches and describing them in meaninigful way is very important for

sparse image representation. In general this is carried out in two steps: (i) detecting interest points/regions

in the image; (ii) extracting a feature descriptor from each region, which describes that specific image

region. Since only a subset of image regions is represented by these feature descriptors, this provides a

sparse representation of the image.

A good interest point detector locates points, that can be detected repeatedly, even if the original

image is modified or the same scene is shown under varying conditions. Such variations include for

example viewpoint changes (angle, zoom, etc.), illumination changes, or imagecompression. We now

give an overview of a few interest point detectors that are used throughout the computer vision commu-

nity to model images sparsely. A detailed overview and comparison of some of the most well-known

interest point detectors can be found in [92, 93, 156].

2.1.2.1 Harris corner detector

Harris corner detector [56] is one of the first introduced interest pointdetectors. It is very basic but

still influential and compared to the newer achievements. It is based on detecting corners as areas with

low self similarity, i.e. small shifts of an image patch result in a large sum of squared differences.

2.1.2.2 Hessian-Affine

Hessian Affine interest point detectors [92] belong to a class of so calledaffine-covariant detectors,

which are not only invariant to scale and rotation, but can even cope with affine changes. The main

concept of these detectors is to find first a stable interest point in scale-space as with the methods

12



described above, but afterwards to fit an elliptical region around the interest point. (Instead of a square

or circle). This ellipse adapts - i.e. is covariant - with affine changes of theunderlying image structures.

For Hessian-Affine detectors, the shape of this ellipse is determined with the second moment matrix of

the intensity gradient.

The descriptor is extracted on a normalized region for all interest points, e.g. the ellipses are trans-

formed into a circle, before the descriptor is calculated on the pixels within this circle.

2.1.2.3 Difference-of-Gaussians (DoG)

This involves convolving the image with a Gaussian at several scales, creating a so called scale

space pyramid of convolved images. Interest points are now detected by selecting points in the image,

which are stable across scales. For Difference-of-Gaussians (DoG) approach the convolved images at

subsequent scales are subtracted from each other. The DoG approach is in fact simply an approximation

of the Laplacian. Stable points are searched in these DoG images by determining local maxima, which

appear at the same pixel across scales.

2.1.2.4 MSER

MSER (Maximally Stable Extrema Regions) [90] also belong to the class of affine-covariant de-

tectors. They are not based on one of the standard Gaussian scale space methods, but are based on

connected components of an appropriately thresholded image. The word extremal refers to the property

that all pixels inside the MSER have either higher (bright extremal regions) or lower (dark extremal

regions) intensity than all the pixels on its outer boundary. The maximally stable inMSER describes the

objective optimized during the threshold selection process: while changing the threshold value, these

regions binarization stays stable over a range of threshold values. “Maximally stable” is defined as the

local minimum of the relative area change as a function of relative change of threshold.

Just as with the Hessian-Affine detectors, an ellipse can be fitted to the output regions of the de-

tector, and after normalization, a region descriptor such as SIFT can be calculated on the pixels in the

region [93].

2.1.3 Local Representation: Dense

Dense features are a widely used for many recognition tasks as an alternative to region detectors. By

dense it means that the features are not extracted at the detected interestpoints, but feature descriptors are

computed for each sampled region/pixel on a dense grid. One advantage of dense representations over

sparse ones can be the fact that regions with uniform texture, which usually are not returned by interest

point detectors, will be represented equally well. The preferred method depends on the application and

computational constraints. There is no general rule stating clear advantages of sparse versus dense image

representations. In [66], Jurie and Triggs compare these two ideas on the object categorisation task and
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(a) Interest points (b) SIFT descriptor computation

Figure 2.1 (a) Example of detected key-points and (b) SIFT descriptor computation: On the right are
the gradients of an image patch around a key-point. These gradients are then accumulated over4 × 4
sub-regions, as shown on the left, the length of the arrow corresponding to the sum of the gradient
magnitudes in that direction.

conclude that dense features perform better there. Dense sampling is also used in [20, 161] which

boosted image classification and object detection results. However, due to computational constraints a

combination of sparse representations and dense sampling can be useful.In [78], Leibe and Schiele use

a sparse representation of interest points as a first step and refine the initial object detection by further

sampling of dense features around the initial hypothesis. Thereby, dense sampling in the whole image

is avoided and only applied to the potential candidate regions.

2.1.4 Feature Descriptors

Now we briefly present a few feature descriptors that we use to describe the detected regions of

interest or regions from dense grid. We also discuss global descriptorGist. It is very crucial for good

performance in visual recognition that the features are robust. The mostimportant quality criteria for

descriptors are a compact representation and high precision and recallwhile matching descriptors from

a database of images. Below we summarize the properties of some of the feature descriptors used in this

thesis.

2.1.4.1 SIFT

SIFT (Scale Invariant Feature Transform) proposed by Lowe [84] isscale and rotation invariant.

Originally SIFT consists of both an interest point detector and descriptor.It refers to an implementation

which uses a scale invariant region detector based on the difference ofGaussians. The descriptor is

however used stand alone as well in combination with various interest point detectors.

For the descriptor, around each interest point a region is defined, divided into orientation histograms

on (4 × 4) pixel neighborhoods. The orientation histograms are relative to the keypoint orientation.

14



Histograms contain8 bins each, and each descriptor contains a4 × 4 array of16 histograms around

the keypoint. This leads to a SIFT feature vector with (4 × 4 × 8 = 128 elements) (Figure 2.1). This

vector is normalized to enhance invariance to changes in illumination. The gradient histograms seem

to contribute significantly to this performance by representing local shape.One disadvantage of SIFT

is its high dimensionality and one way to reduce it is using PCA-SIFT [68] by performing Principal

Component Analysis (PCA) on the raw128 dimensional SIFT vector.

In original version after detecting interest points, several refinement steps are applied, to select the

most robust points (e.g. eliminating edge responses etc.). Finally, the most dominant orientations are

determined, by creating a radial histogram of gradients in a circular neighborhood of the detected point.

The maxima from this histogram determine the orientation of the point, and thus enable rotation invari-

ance.

2.1.4.2 SURF

SURF [14] is a particularly fast and compact method. Just like SIFT, SURFis also scale and rotation

invariant. The interest point detector used by SURF is based on the Determinant-of-Hessian (DoH) blob

detector. However, just as SIFT uses DoG as an approximation of the Laplacian, SURF uses a more

efficient approximation of the Hessian. This is done using a approximation ofthe Gaussian second

order derivatives of the Hessian detector with simple box filters. Using boxfilters allows using integral

images [164] for efficient computation.

Like its detector, the SURF descriptor is also tuned for efficiency. It calculates a set of simple Haar-

like features in sub-regions of a rectangular neighborhood around aninterest point. As in the case of

SIFT, this is done after determining a dominant orientation and expressing thedescriptor in relation to

that orientation to achieve rotation invariance. The Haar-like feature responses can again be calculated

very efficiently using integral images.

2.1.4.3 Gist

Gist is a global descriptor, initially proposed in [104]. The idea is to developa low dimensional rep-

resentation of the scene. A set of perceptual dimensions (naturalness,openness, roughness, expansion,

ruggedness) are proposed to represent the dominant spatial structure of a scene. Authors show that these

dimensions can be reliably estimated using spectral and coarsely localized information.

The descriptor is a vector of features,g, where each individual featuregk is computed as:

gk =
∑

x,y

Wk(x, y) × |I(x, y) ⊗ hk(x, y)|2

where⊗ denotes image convolution and× is a pixel-wise multiplication.I(x, y) is the luminance

channel of the input image,hk(x, y) is a filter from a bank of multiscale oriented Gabor filters (β

orientations and four scales), andwk(x, y) is a spatial window that will compute the average output

energy of each filter at different image locations. The windowsWk(x, y) divide the image into a grid of
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Figure 2.2This figure illustrates the information encoded by the gist features for threedifferent images.
See text for details (Courtesy A. Torralbaet al [151])

4× 4 non-overlapping windows. We use eight orientations (β = 8), which results in a descriptor with a

dimensionality of4 × 4 × 8 × 4 = 512.

Figure 2.2 illustrates the amount of information preserved by the gist descriptor. The middle column

shows the average of the output magnitude of the multiscale-oriented filters ona polar plot. The average

response of each filter is computed locally by splitting the image into4 × 4 windows. Each different

scale is color coded (red for high spatial frequencies, and blue for thelow spatial frequencies), and the

intensity is proportional to the energy for each filter output. Right column of Figure 2.2 shows noise

images that are coerced to have the same gist features as the target image. The gist descriptor provides

a coarse description of the textures present in the image and their spatial organization. It preserves

relevant information needed for categorizing scenes into categories (e.g., classifying an image as being

a beach scene, a street or a living-room). In addition to recognizing the scene gist can also be used to

provide strong contextual priors as we well.

2.1.4.4 Histogram of Oriented Gradients: HOG

Histogram of Oriented Gradients descriptor was first introduced by Dalaland Triggs in [34]. This

robust feature descriptor describes local shape and appearance within an image by distribution of gra-

dient orientation. The HOG descriptor, creates a dense image description by using locally contrast

normalised1D-histograms of oriented gradients. These orientation histograms are computed over small

non-overlapping cells (e.g.8 × 8 pixels) covering the whole image (or region of interest containing

an object etc), thereby creating a dense description. Each of those cellsare normalised with respect to
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Figure 2.3 HOG feature extraction: The image or ROI (here detector window) is tiled with agrid of
overlapping blocks. Each block contains a grid of spatial cells. For eachcell, the weighted vote of
image gradients in orientation histograms is performed. The block descriptorsare locally normalised
and collected in one big feature vector. Courtesy [34]

different blocks (larger spatial grid of neighbouring cells) and thus contributes to the HOG descriptor

multiple times. Authors found that this local contrast normalization with overlapping descriptor blocks

is crucial for good results. They also experimented to study the influence of modifications from this

baseline and varying parameters : e.g. radial cells, rectangular cells, different sizes of cells and blocks,

fine-scale gradients, fine orientation binning, relatively coarse spatial binning. Figure 2.3 shows the

process of computation of HOG descriptor. This descriptor idea can be seen as a dense version of the

SIFT descriptor. HOG and its variants have given state of art performance for object detection [48] and

image classification [20].

2.1.5 Bag of Words Model for Image Representation

In the last few years, bag of visual words have been commonly used in object recognition, object or

texture classification, scene classification, image retrieval and related tasks. It directly relates to the bag

of words model (BOW) originally used in text retrieval [12]. It has beenintroduced into the computer

vision community by Sivic and Zisserman [137], who apply it to object retrieval in videos.

The BOW model is usually based on interest points and corresponding feature descriptions. It uses a

clustering/vector-quantisation method to quantize the feature descriptors. Eventually each interest point

is represented by an ID indexing into a visual-codebook or visual-vocabulary. Visual vocabularies are

typically obtained by clustering the feature descriptors in high dimensional vector space. The dataset

(or a subset of dataset) is clustered intok representative clusters, where each cluster stands for a visual

word. The resulting clusters can be more or less compact, thus representing the variability of similarity

for individual feature matches. The value ofk depends on the application, ranging from a few hundred

or thousand entities for object class recognition applications up to one million for retrieval of specific

objects from large databases. For clustering, most often k-Means is used, but other methods are also
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(a) Dataset (b) Vocabulary (c) BOW representation

Figure 2.4 Bag of visual words model: (a) Database of images, features extracted are clustered to
get (b) Visual vocabulary or collection of visual words, and (c) An example image represented using
constructed vocabulary.

used for example hierarchical k-means is used by Nisteret al in [101]. Size of vocabulary is chosen

according to how much variability is desired in the individual visual words. In object class recognition,

the individual instances of a class can have large variations, while in retrieval for specific objects very

similar features have to be found.

After vocabulary building an image is then modelled as a bag of those so called visual-words. It can

thus be described by a vector (or histogram) that stores the distribution of all assigned codebook IDs or

visual words. The complete process for encoding an image with a visual vocabulary is summarized in

Figure 2.4. Note that this discards the spatial distribution of the image features. In contrast, the image

descriptions introduced in the previous sub-sections also carry spatial information, especially the dense

ones, e.g. HOG, are often used directly to provide a spatial description ofthe objects.

In visual recognition, the bag of words model has been employed by one of the most successful

methods in the PASCAL 2006 challenge [43]. One of the best performing approaches uses a combina-

tion of the methods introduced in Zhanget al [179] and Lazebniket al [75]. The system uses the bag of

visual-words model on sparse Harris-Laplace and Laplacian feature detectors or dense features on the

one hand, and an extension which uses spatial pyramids to represent spatial dependencies on the other

hand. This shows that this model compares to other state of the art object recognition methods despite

its apparent simplicity and crude neglect of spatial feature relations.
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For image and video retrieval based on visual vocabularies, often several additional methods are

borrowed from text retrieval [123], e.g. the most frequent and infrequent visual words are removed

from the images using a stop-list, or the features are ranked using a tf-idf variant, weighting frequently

occurring features lower. Sivic and Zisserman [137] use tf-idf weighting on the visual-word counts

produced by interest point detection and SIFT features in order to retrieve frames in videos containing

a query object.

We use visual vocabularies through out this work. In chapter 4 we presentvocabulary triebased on

this model for video filtering. Our approach for mining videos in chapter 5 uses visual words represen-

tation. For classification and detection in chapter 3 we use state of art features, some of which are again

based on this model.

2.2 Vector Quantization (Clustering)

Vector quantisation of image feature descriptors is a common step in the visual recognition commu-

nity. One reason for the quantisation is the large range of values and their sensitivity to small image

perturbations. Thus the quantisation introduces robustness. It involvesdata clustering or partitioning a

data set into groups of more related samples.

The most widely used method employs k-means clustering algorithm [85]. K-means starts withk

randomly selected data points, called cluster centres (different data driven initialisation techniques are

used as well). The first step assigns each of the remaining data points to the closest cluster centre. The

next step recomputes the cluster centres to be the mean of each cluster. These two steps are alternated

until convergence. It finds a partitioning ofN points from a vector space intok < N groups, where

k is typically specified by the user. The objective it tries to achieve is to minimize total intra-cluster

variance:

V =
k

∑

i=1

∑

xj∈ci

(xj − µi)
2

where there arek clustersci, i = 1...k, andµi is the mean of all the pointsxj ∈ ci .

While k is the only parameter that needs to be specified for k-Means, its choice is not trivial. In par-

ticular since it affects the outcome of the clustering result greatly. A common way to handle this problem

is to just try several values fork. However, for large datasets this approach is too time-consuming be-

causek can vary in a wide range. The time-complexity of the k-Means algorithm isO(Nkld) for N

datapoints of dimensiond, andl iterations. Herel depends on the distribution of the data in the feature

space and the initial centers. Many improvements of the standard k-Means algorithm have been sug-

gested [110, 41]. They either use efficient data structures or improve runtime and memory requirements

by reducing the number of distance calculations based on some approximationcriteria.

Other methods such as agglomerative clustering in [78], which uses normalised grey-scale correla-

tion on25 × 25 image patches, or the mean-shift based method described in [66] by Jurie and Triggs
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are used as well. Moosmannet al [94] introduced more efficient alternative for building codebooks in

Extremely Randomized Clustering Forests - ensembles of randomly created clustering trees.

In our work we use k-Means mostly to cluster local visual features into visual vocabularies.

2.3 Random Forests

Random Forests were introduced in the machine learning community by [8, 21]and are based on

decision trees [118]. Dietterich and Fisher did related work [38] for constructing ensembles of decision-

trees and compared methods based on bagging, boosting, and randomization. Decision tree classifiers

have shown problems related to over-fitting and lack of generalization. Random Forests are trained to

alleviate such problems by:

• injecting randomness into the training of the trees, and

• combining the output of multiple randomized trees into a single classifier.

A random forest multi-way classifier consists of a number of trees, with each tree grown using some

form of randomization. Randomness can be injected at two points during training: in sub-sampling the

training data so that each tree is grown using a different subset; and in selecting the node tests. The leaf

nodes of each tree are labeled by estimates of the posterior distribution overthe classes. Each internal

node contains a test that splits the space of data to be classified. A test sampleis classified by sending

it down every tree and aggregating the reached leaf distributions. Figure2.5 shows a Random Forest

which consists of T trees.

Random Forests have been shown to result in lower test errors than conventional decision-trees [174]

and performance comparable to SVMs in multi-class problems [20], while maintaining high computa-

tional efficiency.

2.3.1 Random Forest classifier

We employbinary decision-treesas building blocks. Each internal node of the tree has a test as-

sociated with it which can be in general of the formΦ : X → {true, false}, whereX is the feature

representation of input sample. In specific, this test can be a combination ofa node functionF of the

formF : X → R and a thresholdτ . The node test is then defined as:

Φ(X ) =

{

F(X ) > τ go to right child

else go to left child
(2.1)

Feature representation (i.e.X ) can be of general nature, e.g. any feature descriptor like color his-

togram, HOG, PHOW etc or output of a filter bank. Also the functionF is of a very general nature:

it could be a component or difference of two components of a feature descriptor, a linear classifier, the

output of another classifier, to give few examples.
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2.3.1.1 Training the classifier

Binary decision-trees are constructed by learning the node-tests discriminatively in a top-down man-

ner. Starting from the root, given the labeled training data, the node function F and thresholdτ which

maximize the information gain∆E are found at each node.

∆E = E(Q) −
∑

j

|Qj |

|Q|
E(Qj)

whereQ is the set of data points at the current node (to be splitted) andQj ⊆ Q are theleft andright

subset caused by partitioning the data withF > τ . E(Q) is the entropy of data points inQ. The

algorithm proceeds iteratively with the left and right subsetsQj at the children nodes untilQj is empty

or a threshold forE(Q) or ∆E is reached. Sometimes when the training data is very unbalanced it is

beneficial to normalize it during computation of∆E, by weighting each training point with its inverse

class prior probability. Note that this is different from normalizing the empirical class posteriors in the

leaf nodes. There are four ways in which priors can be used for normalization of training data:

• weighting each training point by its inverse class prior probability during computation of∆E and

also normalizing empirical class posteriors in the leaf nodes.

• using class prior probability during computation of∆E but not at the leaf nodes.

• normalizing empirical class posteriors in the leaf nodes but not using priorsduring computation

of ∆E.

• not using priors both during computation of∆E and at the leaf nodes.

During training of the tree each node has available only a randomly chosen subset of the entire poolP

of possible node functions. Training is achieved by finding for each non-terminal node a node function

and a threshold which yields maximum information gain∆E within such restricted, randomized search

space [20, 167]. The “randomization” can be tuned by several parameters like the size and composition

of the poolP , number of node-functions and thresholds (τ ) tried. Size of poolP and number of

thresholds to be tried at each node for each node-function are chosenaccording to the application. For

example, Shottonet al [133] uses 500 node-functions and 10 thresholds at each node while [79], [94]

do not optimizeτ , but pick it randomly.

The training data is sub-sampled (bagging) and each tree is trained using a different random subset.

This is done to increase the independence of the trees [21] and reduce training time. As a result of

training the empirical class posterior distributions are stored in the leaf nodes, in the form of histogram

counts over the class-labels of the training data as shown in Figure 2.5. Since decision-trees in Random

Forest are trained independently training can be easily paralleled. It is crucial to randomize enough so

that each tree result in independent classifications of the data [21].
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Figure 2.5Random Forest with T trees, leaf nodes are shown in green. Training samples are traversed
from root to leaf nodes and posterior distributions (blue) are computed. Atest sample is classified by
descending each tree and then aggregating the distributions at each reached leaf. The paths formed while
descending are shown in yellow.

2.3.1.2 Random Forest Parameters

The following describes the effect of different parameters on the training of the Random Forest.

• Number of decision-trees in the Random Forest (T ): The number of decision trees greatly influ-

ences the performance of the Random Forest. Additional independent/randomized decision-trees

add further information over the training data, as each tree partitions the feature space into differ-

ent cells and collects the empirical class posteriors for those cells in the leaf nodes. Our experi-

ments show that the performance increases the more decision-trees are used, but the improvement

is small after a certain number of decision trees are used.

• Node test parameters: These are the main parameters to influence the “randomness” of the

decision-trees.

– Number of functions chosen at each node (nf ): If nf = 1 there would be no optimization

of the information gain∆E and the decision-trees would define a random partitioning of

the feature space. The greaternf the more the partitioning will be driven by discriminating

between the object classes, as for each node the one node-function out of nf functions

that maximizes the information gain∆E is selected. Thesenf node-functions are sampled

randomly from the initial pool of node-functions P that is created for eachdecision-tree.

– Number of thresholds tried for each node-function at each node (nτ ): For each node-

functionnτ thresholds are tried over the feature responses of training samples. Thethresh-

olds are usually sampled uniformly across the responses. Likenf , increasingnτ leads to

more discriminative partitioning.
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• Decision-tree parameters: These parameters describe properties of thedecision-trees only.

– maximum depth of a tree: Experiments indicate that deeper trees tend to improve perfor-

mance as stronger trees are built. Thus the depth is mostly determined by computational

and memory considerations, but depending on the specifics of the implementation and the

number of trees in the forest it can also lead to over-fitting.

– fraction of training samples used to train a tree: Similar to the maximum depth, when larger

fraction of training data is used per tree, stronger trees are built. But too many training

sample per tree may cause over-fitting and an ensemble of larger number of weaker trees

may have better generalization.

– information gain or entropy stopping criterion: In order to avoid “over-fitting” of the tree, i.e.

partitioning of feature space areas into areas where there is no further partitioning necessary,

these two criteria can be used to stop expansion of the nodes before the maximum depth is

reached.

2.3.1.3 Classification

Data is classified independently by each decision tree during testing. Each sample is pushed through

the tree from the root to a leaf node. At each internal node depending onthe evaluation of the node-test

a sample is sent to the left or right child. This classification results in the assignment of the empirical

class posterior distribution to the test sample. It is often better to not use the empirical class posteriors

directly, but to weight them with the class prior probabilities. To combine the multipleclass posterior

distributionsPi(c|x) with i ∈ {1, ..., T}, we use Mixture of Experts method where individual probabil-

ity distributions are averaged:

P (c|x) =

∑T
i Pi(c|x)

Z

whereZ denotes the normalization such thatPi(c|x) is a proper probability distribution. In this method

each individual tree has an influence in voting for a specific class. In [15], Biauet alshow that the voting

and averaging classifiers are consistent and also investigate the consistency of Random Forests. It turns

out that if the individual decision-trees are consistent the averaging classifier is consistent as well.

2.4 Frequent Pattern Mining

Frequent pattern mining (FPM) has become one of the most actively researched topics in data mining

and knowledge discovery in databases. It was catalysed by market basket analysis and the task to mine

transactional data. It described the shopping behavior of customers ofsupermarkets, mail-order com-

panies and online shops, for products that are frequently bought together. For this task, which became

generally known as frequent item set mining, a large number of efficient algorithms were developed,

which are based on sophisticated data structures and clever processingschemes.
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Item set mining was followed by to sequence mining and the extensions are fairlystraightforward.

But they led to exciting new applications like genome mining and temporal pattern extraction from data

describing, for instance, alarms occurring in telecommunication networks. More complex problems

of mining frequent trees and general frequent subgraphs have been addressed in recent developments.

These have applications in biochemistry, citation network, web mining and program flow analysis. Fre-

quent Pattern Mining comprises of these problems:

• Frequent Itemset Mining (FIM)

• Frequent Sequence Mining (FSM)

• Frequent Tree Mining

• Frequent Graph Mining

In this work we only use frequent itemset mining and its extension frequent sequence mining. Using

FSM we deal with sequences of items or itemsets. Frequent itemsets play an essential role in many data

mining tasks that try to find interesting patterns from databases, such as association rules, correlations,

sequences, episodes, classifiers, clusters and many more. Pattern mininghas also been used in computer

vision by Till Quacket al [114, 115, 116] and Nowozinet al [102, 103]. We have used FIM and FSM

for mining patterns in videos in chapter 5.

In this section we first give the definitions of important terms and concepts. Then we give the general

problem statement for FPM followed by specific cases FIM and FSM.

2.4.1 Basic Terms and Notions

Here we summarize the relevant terms and notions for frequent itemsets. We also define association

rules before discussing frequent sequence mining.

• Let I = {i1, ..., ip} be a set ofp items. This is called theitem base.

• Any subsetA of I with l items, i.e.A ⊆ I, |A| = l is called anl-itemset.

• A transactionis an itemsetT ⊆ I with a transaction identifiertid(T ).

• A transaction databaseD is a set of transactions with unique identifiersD = {tid(T1)...tid(Tn)},

tid(Ti) = tid(Tj){i, j} ∈ I|i = j. Every transaction is an item set, but some item sets may not

appear inD.

• We say that a transactionT supports an itemsetA, if A ⊆ T .

• A sequenceα is an ordered list of items or itemsets (term used isevent). It is denoted asα =

(α1 → α2 → ... → αq)
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• A sequence withk items (k =
∑

j |αj |) is called ak-sequence. For example, (B → AC) is a

3-sequence.

• We sayα is a sub-sequence of another sequenceβ, denoted asα � β, if there exists a one-to-one

order-preserving functionf that maps events inα to events inβ.

• A sequence databaseS is a set of sequences. We say that a sequence fromS, αS , supports a

sequenceα, if α � αS .

Let A ⊆ I be an itemset andD a transaction database overI. Also let α be a sequence andS a

sequence database overI. We can now define relevant concepts:

Definition 2.4.1 Support of an itemset:The support (absolute) of an itemsetA ∈ D is

support(A) := |{T ∈ D|A ⊆ T}|

and relative support is

support(A) :=
|{T ∈ D|A ⊆ T}|

|D|
∈ [0, 1]

Definition 2.4.2 Cover of an itemset:For each itemset we can also find the transactions, which support

the itemset. The cover of an itemsetA ∈ D consists of the set of transaction identifiers of transactions

in D that supportA:

cover(A, D) := tid(T )|(T ∈ D, A ⊆ T )

Definition 2.4.3 Frequent itemset:An itemsetA is called frequent in databaseD if support(A) ≥

min supp wheremin supp is a threshold for the minimal support.

Definition 2.4.4 Closed itemset and Maximal itemset:A frequent item setA is called closed if no

super-set has the same support. A frequent item setA is called maximal if no super-set is frequent.

These are two special types of frequent itemsets that are often discriminated in the literature.

After mining frequent itemsets, one is often interested in the statistical dependence between the

individual items or subsets that form a set. These dependencies are typically expressed in the form of

association rules.

Definition 2.4.5 Association rule: An association rule is an expressionA → B whereA andB are

itemsets (of any length) andA ∩ B = φ.

The quality or interestingness of a rule is typically expressed in the support-confidence framework,

which was introduced in [5].
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Definition 2.4.6 Support of a rule:The support of an association ruleA → B is

supp(A → B) := supp(A ∪ B) =
|{T ∈ D|(A ∪ B) ⊆ T}|

|D|

In other words, the support of a rule is the support of the joined itemsets that make up the rule. The

support of a rule measures its statistical significance.

Definition 2.4.7 Confidence of a rule:The confidence of an association ruleA → B is

conf(A → B) =
supp(A ∪ B)

supp(A)
=

|{T ∈ D|(A ∪ B)T}|

|{T ∈ D|(A ⊆ T}|

The left-hand side of a rule is called antecedent, the right-hand side is the consequent. The confidence

is a measure of the strength of the implicationA → B.

Definition 2.4.8 Support of a sequence:The support (absolute) of a itemsetA ∈ D is

support(α) := |{αS ∈ D|A � αS}|

and relative support is

support(α) :=
|{αS ∈ D|A � αS}|

|D|
∈ [0, 1]

As in case of frequent item-set, a sequence is called frequent if its support is greater than threshold

for the minimal support. Also frequent sequence is maximal if none of its super-sequences is frequent.

2.4.2 Frequent Pattern Mining: Problem Statement

In the frequent pattern mining problem, we have a pattern contextPC = (P,R), for the input data

which is alocally finite poset. P is set of all possible patterns in the data andR is a containment relation.

We are given the set of input dataJ , the pattern contextPC, the support function,suppT : P → N and

a minimum support threshold,min supp ∈ N .

The task is to find the setF = {p ∈ P : suppT (p) ≥ min supp} and the support of the patterns in

F . Elements ofF are frequent and are calledfrequentpatterns. HereP is pattern context (set of possible

patterns),suppT : P → N is a support function andmin supp given minimum support threshold. The

input dataJ is a set of collection of patterns (transactions or sequences). There are many types of

patterns: itemsets [5], item sequences, sequences of itemsets [7] etc. All of these are some or other form

of collection ofitems coming from item base,I.
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2.4.3 Frequent Itemset Mining

Frequent itemset mining is a case of FPM where patterns are transactions and the containment re-

lation (R) is set inclusion (⊆) relation. The task is to find all frequent item sets from the transactional

database. Finding frequent itemsets is one of the most investigated fields of data mining. It is very

popular family of methods to detect the joint occurrence of certain items from alarge body of data. The

problem was first presented in [5]. The subsequent paper [6] is considered as one of the most important

contributions to the subject. Its main algorithm,Apriori, not only influenced the association rule min-

ing community, but it affected other data mining fields as well. Association rule and frequent itemset

mining became a widely researched area, and hence faster and faster algorithms have been presented.

Numerous of them areApriori based algorithms orApriori modifications.

Market basket analysis was the main application considered in the first publications on itemset min-

ing [5], however, since then same kind of problem has been analyzed in various other contexts. This

includes web usage mining [31], robust collaborative filtering [124], fraud detection in on-line advertis-

ing [91], document analysis [61] or massive recommendation systems for related search queries [81]. In

computer vision, frequent itemsets configurations are used to mine videos in [114, 115, 116].

2.4.4 Frequent Sequence Mining

Given a databaseS of input-sequences and minimum support, the problem of mining sequential

patterns is to find all frequent sequences in the database. On this versionof FPM data is in the form of

sequences and sub-sequence is the containment relation (R). The problem of mining sequential patterns

was introduced in [7]. They also presented three algorithms for solving thisproblem. TheAprioriAll

algorithm was shown to perform better than the other two approaches. In subsequent work [142], the

same authors proposed the GSP algorithm that outperformedAprioriAll by up to 20 times. Since then

improved algorithms kept coming, some of them are FreeSpan [55], PrefixSpan [109], SPADE [176].

Sequence discovery can essentially be thought of as association discovery [125, 142] over a temporal

database. While association rules discover only intra-event patterns (called itemsets), we now also have

to discover inter-event patterns (sequences). The set of all frequent sequences is a super-set of the set of

frequent itemsets. Due to this similarity sequence mining algorithms likeAprioriAll , GSP, etc., utilize

some of the ideas initially proposed for the discovery of association rules. Shortcomings ofApriori-like

approaches are: (i) potentially huge set of candidate sequences, (ii) multiple scans of databases and (iii)

difficulties at mining long sequential patterns. Algorithms like FreeSpan, PrefixSpan avoid the repeated

scans setback ofApriori which makes them suitable for dealing with very large databases.
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Chapter 3

Rapid Object Detection using Random Forests

3.1 Introduction

A long-standing goal of machine vision has been to build a system which is ableto recognize many

different kinds of objects in a cluttered world. Recent years have seengreat progress in the area of object

category recognition for natural images. However, in their basic form, many state-of-the-art methods

only solve a binary classification problem. They can decide whether an object is present in an image or

not, but not where exactly in the image the object is located.

Given an image, task of object detection is to find if the object of interest is present in the image, and

if present return the location of it. Some examples of object detection are shown in Figure 3.1. Object

localization is an important task for the automatic understanding of images as well,e.g. to separate an

object from the background, or to analyze the spatial relations of different objects in an image to each

other. Various classifiers have been used for object detection, such as SVMs [34, 49, 86, 108], naive

Bayes [128], mixtures of Gaussians [50], boosted decision stumps [148, 165], etc. In addition, many

types of image features have been considered, like generic wavelets [128, 165], histogram of gradient

orientation (HOG) [34, 49], spatial pyramid histogram of visual words and HOG [20, 84, 137, 161] etc.

The Random Forest is another discriminative classifier that has become very successful in computer

vision [8, 20, 21, 79, 133]. The advantages of Random Forest as a classifier are discussed in section

3.6. In this chapter we show that Random Forest can be used for fast and accurate object detection

comparable to the state of art. We start with an overview of previous relevant research on object detection

followed by theory of Random Forest and its application in computer vision in section 2.3. First in

section 3.4, we show strength of Random Forest as a classifier by experiments for image level scene and

object classification in high level feature detection task in TRECVID’08 [3]. We explain our detection

system by giving details of training, testing, post-processing and features in section 3.5. Then Random

Forest is compared with SVM as an object detector on account of accuracy, speed and memory usage.

Section 3.7 details our approach of sliding window based RF detector. This Random Forest baseline

detector is evaluated on challenging VOC PASCAL dataset [45]. In the following sections we propose

enhancements over the baseline detector and present Random Forest as a rapid object detector supported
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Figure 3.1Some examples of our object detection results.

by experiments and results. We also show how it performs for object retrieval in high level feature

detection task in TRECVID’09.

3.2 Object Detection Literature and Methods

A number of different approaches to object detection have been proposed in the past. In most of

them, images are represented using some set of features, and a learning method is then used to identify

regions in the feature space that correspond to the object class of interest. There has been considerable

variety in the methods based on types of features, classifiers and also based on how the localization is

done. Among them localization using sliding window approach is the most popular one.

3.2.1 Sliding window based methods

In this approach detector is based on a binary object/non-object classifier, which scans the image

with a detection window at all positions and scales. Feature descriptors extracted from each window

are scored by the classifier and multiple overlapping detections are fused toyield the final object de-

tections. Sliding window approaches have established themselves as state ofthe art. Most successful

localization techniques at the recent PASCAL VOC challenges on object category localization relied on

this technique.

After the introduction ofIntegral Imagein [164] for fast object detection, sliding window based

method became the most preferred method. It became possible to quickly compute features for ex-
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tremely large number windows by using integral images. The other two major contributions of [164]

were: feature selection withAdaBoostand combining classifiers in acascade. Their face detection

system was most clearly distinguished from previous approaches in its abilityto detect faces extremely

rapidly. This was followed by great progress in object detection and manymethods which used sliding

window approach were proposed, [29, 34, 149, 161, 183] to counta few.

The jointboost method for multiclass and multiview object detection was proposed in [149]. It was

based on boosted decision stumps, that reduces the computational and sample complexity, by finding

common features that can be shared across the classes (and/or views).The detectors for each class

are trained jointly, rather than independently. They found that the features selected by joint training

are generic edge-like features which generalize better and because ofsharing computational cost of

multi-class object detection is considerably reduced. Dalalet al [34] proposed Histogram of Oriented

Gradients (HOG) feature descriptor which gave excellent detection results for human detection. With

help of their HOG detector they won the VOC PASCAL2006 challenge for object detection and it

became a very popular feature. The Exemplar model of [29] was anothervery successful method that

used sliding window with integral image to efficiently compute the cost function. Vedaldiet al [161]

used Multiple Kernels with many robust features to achieve the performanceexceeding state of the art

for number of object classes in VOC2007 and VOC2008 challenges [45,46].

There are two main drawbacks to sliding-window object detectors: (a) mostlythe detectors fail to

take into account contextual cues; (b) the detector window has only few fixed aspect ratios making it

difficult for articulated objects or objects with large intra-class variation.

3.2.2 Other methods

The appearance of objects of the same class such as cars, person or motorbike in natural images vary

greatly due to intra-class differences, changes in illuminations and imaging conditions, and as well as

object articulations (person, bicycle). Part-based models provide an elegant framework for representing

such object categories and handling above variable conditions, speciallyobject articulations.

One of the earlier successful methods using part-based representationof objects for learning to de-

tect objects was proposed in [4]. Generalized Hough Transform of [77, 78] also uses highly flexible

learned representation for object shape. Their method learns the class-specific implicit shape model

(ISM), which is essentially a codebook of interest point descriptors typical for a given class. Implicit

shape models can integrate information from a large number of parts and thusthey demonstrate good

generalization. J. Gall and V. Lempitsky [52] proposed an interesting approach for object part detection

using a class-specific Hough forest. It is a random forest that classifies image patches as a part of object

or not and directly maps the patch to the probabilistic vote about the possible location of the object

centroid.

Recently, Felzenszwalbet al [48, 49] described an object detection system that is based on mixtures

of multiscale deformable part models. To train models with partially labeled data theyuse a latent SVM
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and use object parts as latent variables. Their system is able to represent highly variable object classes

and achieves state-of-the-art results in the PASCAL object detection challenges.

Efficient sub-window search based on branch and bound algorithm has been recently proposed by

C. Lampert and M. Blaschko [24, 25]. They argued that sliding window has been effective in many

situations but suffers from two disadvantages:

• it is computationally inefficient to scan over the entire image and test every possible object loca-

tion, and

• it is not clear how to optimally train a discriminant function for localization.

They addressed the first issue in [24, 25] by using efficient sub-window search, a branch-and-bound opti-

mization strategy, to efficiently determine the bounding box with the maximum score of the discriminant

function. This was further explored in [172], where an efficient methodfor concurrent object localiza-

tion and recognition based on a data-dependent multi-class branch-and-bound formalism was proposed.

Blaschkoet al addressed the second issue in [16] by proposing a training strategy thatspecifically op-

timizes localization accuracy, resulting in much higher performance than systems that are trained, e.g.,

using a support vector machine.

3.3 Random Forests in Computer Vision

Random Forest became popular in the computer vision community from the workof Lepetit et

al [80], Ozuyalet al [106]. They proposed methods for fast keypoint recognition using randomized

trees. In [106] random forest is employed to recognize the patches surrounding keypoints. [80] used

randomized trees as the classification technique and found it both fast enough for real-time performance

and robust. Many other papers have applied them to various classification, segmentation and clustering

tasks [20, 26, 36, 79, 88, 94, 167, 174, 130, 133].

Textons [87, 159] and visual words [137] have proven powerful discrete image representations for

categorization and segmentation. But the whole process of computing descriptors at interest points

(sparse or dense), then clustering them by K-means, followed by nearest-neighbor assignment is ex-

tremely slow. Even with optimizations such as kd-trees, the triangle inequality [41], or hierarchical

clusters [101] it is not fast enough. Moosmannet al [94] introduced more efficient alternative in Ex-

tremely Randomized Clustering Forests - ensembles of randomly created clustering trees - and showed

that these provide more accurate results, much faster training and testing and good resistance to back-

ground clutter in several state of the art image classification tasks.

In [133], Shottonet al extended [94] and proposed semantic texton forests for both Image Catego-

rization and Segmentation. These are ensembles of decision trees that act directly on image pixels and

are efficient and powerful low-level features. Other major work donein image segmentation are by

Schroffet al [130], Yin et al [174]. [130] investigates the use of Random Forests for class based pixel-

wise segmentation of images. They show the ability of Random Forests to combinemultiple features
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which improves the performance when textons, colour, filterbanks, and HOG features are used simul-

taneously. The benefit of the multi-feature classifier is demonstrated with extensive experimentation on

labeled image datasets.

The problem of classifying images and recognizing objects have been explored using Random Forests

in [20, 88, 167]. [20] compared the performance of the random forest/ferns classifier with a benchmark

multi-way SVM classifier. The performance of random forest/ferns was comparable to multi-way SVM

classifier but computationally they were far less expensive.

A method for localizing and recognizing hand poses and objects in real-time is presented in [36].

In their work, the task of simultaneously recognizing object classes, handgestures and detecting touch

events is cast as a single classification problem. [120] addresses human pose recognition from video

sequences by formulating it as a classification problem. They propose a pose detection algorithm based

on random forests. In [52] a method based on random forests is presented for object detection. They

proposed a class-specific Hough forest, which is a random forest that directly maps the image patch

appearance to the probabilistic vote about the possible location of the objectcentroid.

Existing work has shown the power of random forests as classifiers andas a fast means of clustering

descriptors. We further explore their suitability to object detection in next sections.

3.3.1 Random ferns classifier

To increase the speed of the random forest Ozuysalet al [106] proposed random ferns classifiers.

Ferns are non-hierarchical structures where each one consists of aset of binary tests (one at each node).

During training there are an ordered set of testsS applied to the whole training data set. This is in

contrast to random forests where only the data that falls in a child is taken intoaccount in the test.

As in random forests “leaves” store the posterior probabilities. During testing the probability that an

image belongs to any one of the classes that have been learned during training is returned. The result of

each test and the ordering on the set defines a binary code for accessing the “leaf” node. So, a if fern

has N nodes then it will have2N leaves. As in random forests, the test image is passed down all the

randomized ferns. Each node in the fern provides a result for the binary test which is used to access the

leaf which contains the posterior probability. The posteriors are combined over the ferns in the same

way as for random forests over trees.

3.4 Random Forect for Classification

In this section we show strength of Random Forest as a classifier experimentally by reporting its

performance for image level scene and object classification in high level feature detection task of

TRECVID’08 [3]. The TREC Video Retrieval Evaluation (TRECVID) [3,140] is aimed at promot-

ing content-based analysis and retrieval from digital video via open, metrics-based evaluation. In 2008,

they tested systems on five tasks:
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• surveillance event detection

• high-level feature extraction

• search (interactive, manually-assisted, and/or fully automatic)

• rushes summarization

• content-based copy detection

As a part of the Oxford-IIIT team we participated in the high-level feature extraction task. The high-

level features are semantic categories like Cityscape, Street (scene), hand, boat-ship (object) or some

action. In this task test videos, common shot boundary reference for thetest videos and the list of high-

level feature (HLF) definitions are given. The task is to detect these semantic categories or HLFs in the

given reference shot and return the list of at most 2000 shots from thetest collection for each HLF. The

list is ranked according to the highest possibility of detecting the presence of the HLF.

3.4.1 Dataset, Annotations and Evaluation

TRECVID (2008) provided development (100 hours) and test (100 hours) data of video sequences.

The development data was annotated in the collaborative effort [10]. Video shots were annotated into

20 semantic categories: (1)Classroom, (2) Bridge, (3) EmergencyVehicle, (4) Dog, (5) Kitchen, (6)

Airplane flying, (7) Two people, (8) Bus, (9) Driver, (10)Cityscape, (11)Harbor, (12)Telephone, (13)

Hand, (14)Street, (15)DemonstrationOr Protest, (16)Mountain, (17)Nighttime, (18)Boat Ship, (19)

Flower, (20)Singing.

TRECVID also provides keyframes for each shot, there are a total of43616 keyframes in develop-

ment data and81274 keyframes in test data. Some examples are shown in Figure 3.2. Note the difficulty

of these images, take any category there is lot of intra-class variation in color, texture, shape, depth.

During evaluation (annotation) each feature is assumed to be binary, i.e., it iseither present or absent

in the given reference shot. TRECVID gives results asInferred Average Precisionon test data using

the submitted runs. While building the system we experiment on development data(which divided into

training and validation) and useAverage Precisionas a metric for evaluation.

3.4.2 Our Approach

For the high-level feature extraction task, we have used a combination of different visual features

with Random Forest. We used a reduced subset of MPEG i-frames from each shot, found by clustering

i-frames within a shot. The approach was to train the classifiers for all high-level features using publicly

available annotations [10]. Then run them on the test set and subsequently rank the test shots by the

maximum score over the reduced i-frames.

One versus rest classifiers are trained for all the 20 concepts. For node test we have used two types of

node functions: (i) difference of two components and (ii) single component of the feature descriptor. We
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Figure 3.2Some examples of keyframes from TRECVID dataset

35



used100 decision-trees in the Random Forest and maximum allowed depth of a tree was10. Number of

functions chosen at each node (nf ) was kept100 and number thresholds tried for each node-function at

each node (nτ ) was10. To further inject randomness each tree is trained using15000 randomly selected

samples from the training data. We use a combination of features for example,PHOW + PHOG, PHOW

+ Color etc to train the classifier. Two appealing features of Random forests which we require here are:

(i) probabilistic output and (ii) the seamless handling of a large variety of visual features.

One global feature descriptor is extracted from each image. During testingthe feature descriptor of

the test image is passed down each random tree until it reaches a leaf node. All the posterior probabilities

are then averaged to obtain the classification score of the input image.

3.4.3 Visual representation: Appearance

These descriptors consist of visual words which are computed on a dense grid. Here visual words

are vector quantized SIFT descriptors [84] which capture the local spatial distribution of gradients.

Local appearance is captured by the visual words distribution. SIFT descriptors are computed at

points on a regular grid with spacingM pixels. We have used gray level representations for each image.

At each grid point, the descriptors are computed over circular support patches with radii r. Thus, each

point is represented by four SIFT descriptors. These dense features are vector quantized into visual

words using K-means clustering. Here, we have used a vocabulary of 300 words. Each images is now

represented by a histogram of these visual word occurrences.

We have usedM = 5, K = 300 and radiir = 10, 15, 20, 25. To deal with empty patches, we zero

all SIFT descriptors with L2 norm below a threshold (200).

In order to capture the spatial layout representation, which is inspired bythe pyramid representation

of Lazebnik et.al. [75] , an image is tiled into regions at multiple resolutions. A histogram of visual

words is then computed for each image sub-region at each resolution level.

Finally, the representation of an appearance descriptor is a concatenation of the histograms of dif-

ferent levels into a single vector which are referred to as Pyramid Histogram of Visual Words (PHOW).

Here, we have used three levels at maximum for the pyramid representation.The distance between the

two PHOW descriptors reflects the extent to which the images contain similar appearance and the extent

to which the appearances correspond in their spatial layout.

3.4.4 Visual representation: Shape

Local shape is represented by a histogram of edge orientations computedfor each image sub-region,

quantized intoK bins. Each bin in the histogram represents the number of edges that have orientations

within a certain angular range. This kind of representation is similar to the bag of (visual) words, where

each visual word is a quantization on edge orientation.

Initially, edge contours are extracted using the Canny edge detector. Theoriented gradients are then

computed using a3 × 3 Sobel mask without Gaussian smoothing. We have usedK = 8 bins for an
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angular range of [0, 180]. The vote from each contour point depends on its gradient magnitude, and

is distributed across neighboring oriented bins according to the difference between the measured and

actual bin orientation.

Finally the representation of Shape descriptor consists of concatenation of these histograms in a

single vector. This descriptor is referred to as Pyramid Histogram of Oriented Gradients (PHOG). Four

pyramid levels were used at maximum for this feature. Each level of PHOG is normalized to sum to

unity taking into account all the pyramid levels.

3.4.5 Visual representation: Color

Another feature used is a colour histogram combined with a spatial pyramid over the image to jointly

encode global and local information. This is similar to the descriptor proposed in [27], except that we

quantize colors more coarsely for all the levels. We used 10, 8, 4 and 2 bins for a cell in levels from 0 to

3 respectively. These are appended to create the final feature vector. We also used feature vector created

without decreasing the number of bins with levels.

3.4.6 Experiments for Best Combinations

Classifiers were trained for all the classes using different combinations of:

• features

– PHOW

– PHOW + PHOG

– PHOW + Color

• pyramid levels

– level 1, 2 for PHOW.

– level 1, 2 and 3 for PHOG and Color.

• node test

– single component of feature descriptor

– difference of two components of feature descriptor

– single + difference (selected at random)

To combine the features or node tests, one type is randomly selected from thecombination. For

example, if the combination is: (PHOW + PHOG) + (level 2, level 3) + (single + difference), then

randomly one feature from PHOW and PHOG, and one test from single anddifference are selected.

This makes 6, 18 and 18 possible combinations of pyramid levels and node testsfor PHOW, PHOW +
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HLF Feature Node Test AP
1 Classroom PHOW(3) + Color(2) Single 0.0229
2 Bridge PHOW(2) + PHOG(2) Single 0.0391
3 Emergency Vehicle PHOW(3) + Color(4) Single 0.0582
4 Dog PHOW(3) + Color(2) Difference + Single 0.2095
5 Kitchen PHOW(2) + Color(4) Single 0.0571
6 Airplane Flying PHOW(3) + Color(4) Difference + Single 0.0482
7 Two People PHOW(3) + Color(4) Difference 0.1141
8 Bus PHOW(3) + Color(3) Difference + Single 0.0768
9 Driver PHOW(2) + Color(2) Difference + Single 0.0775
10 Cityscape PHOW(3) Difference 0.2171
11 Harbor PHOW(2) Difference + Single 0.1930
12 Telephone PHOW(2) + Color(3) Difference + Single 0.0105
13 Street PHOW(2) Difference 0.2249
14 Demonstration

PHOW(2) + Color(3) Difference + Single 0.0865
Or Protest
15 Hand PHOW(3) + Color(4) Difference + Single 0.1507
16 Mountain PHOW(2) Single 0.1309
17 Nighttime PHOW(3) + Color(2) Difference 0.2759
18 BoatShip PHOW(2) + PHOG(3) Difference + Single 0.2764
19 Flower PHOW(2) + Color(3) Difference + Single 0.0735
20 Singing PHOW(2) + Color(4) Difference + Single 0.0445

Table 3.1Classification results on Validation set using the best combination of feature,pyramid level
and node-test.

PHOG and PHOW + Color, respectively. So, we have 42 possible combinations for each category or

HLF.

The advantage of the random forest classifier is the speed of training and testing. Because of fast

training and testing it was possible to train42 classifiers on training data for each concept and find the

best combination by testing on validation data. The best combinations for all theHLFs are reported in

Table 3.1 with results on validation data. With each feature type the number of pyramid levels used are

given in parentheses. For example, PHOW(2) means pyramid level number0 and1 are used.

Our method worked well for classes like Dog, Cityscape, Harbor, Street,Hand, Mountain, Nighttime

and BoatShip. For other concepts like Classroom, Bridge and Telephone in particular results are not

good. It is difficult to capture the variations present in these classes. For example take telephone (see

Figure 3.2), the definition says:“any kinds of telephone, but more than just a headset must be visible”.

It can be a cellphone or normal telephone, with person talking or lying on table, with different back-

grounds/context. Similarly it is very difficult to represent categories like Classroom, Bridge, Singing,

Kitchen DemonstrationOr Protest etc with just visual features.
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Figure 3.3 Inferred AP for the HLFs: our score (dot), median score (dashes) and best score (box).
Inferred AP is estimated using 50% samples.

We observed feature that contributed the most was PHOW. Though Color was helpful for Nighttime,

Hand and Flower, but in most of the cases there was only slight improvementin the performance by

adding other features.

3.4.7 High-level feature results by TRECVID

TRECVID uses inferred average precision (inf AP) [173] for evaluating the feature task. One run

C OXVGG 4 4 was submitted using only Random forest approach for all concepts except Two People.

The plot in Figure 3.3 gives the inf-AP for scored by our method for all HLFs except feature number7

(Two People). It compares our score with the best and the median of scores of all the teams by feature.

Relative performance of our approach was good for Dog, Cityscape,Street and Hand. Our scores came

over the median for all the classes except kitchen and airplane.

Some visual results form test set are shown in Figure 3.4(a) for street and Figure 3.4(b) for hand.

3.5 Object Detection System and Dataset

In this section, we give details of training, testing and post-processing methods we use for object

detection. VOC Dataset and detection challenge are also explained.
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(a)

(b)

Figure 3.4Top 10 results (distinct scenes) of (a) Street and (b) Hand.

3.5.1 Training

Each Random Forest classifier is trained to discriminate between candidate regions that do and do

not contain an instance of the object of interest. A one-versus-rest classifier is trained for an object

category. The trees we train here are binary and are constructed in a top-down manner. For node test we

have a node function (difference of two components of the feature vector) and a threshold. Number of

decision-trees (T ), number of functions per node (nf ), maximum depth are varied from case to case. For

training number of positive and negative data samples are required. The ground truth object instances

(Region of Interest or ROIs) for a class, plus a number of jittered instances (both from original and

flipped training images), are used as positive samples. Regions that do notoverlap the target object

instances by more than 20% are used as negative samples. The aspect ratio of the detector window is

found from the aspect ratios of the ROIs in the training set.
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3.5.2 Testing and Retraining

While testing we use a sliding window approach, where a detector window is applied at all positions

and scales of an image. The aspect ratio of the detector window is found from the aspect ratios of the

ROIs in the training set. Because the number of possible negative samples is exorbitantly large and it

is important to find a proper representative sub-set. This is done by bootstrapping or retraining each

classifier as follows:

• Train a classifier using positive and negative samples from training data.

• Run the classifier over the training images.

• Compare the detections with the ground truth ROIs, and label them as false positives if the overlap

is less than 20%.

• The top false positives are used as hard negative samples and are added to the negative set for

retraining.

After one or two rounds of retraining the classifier is ready to be run on test data.

3.5.3 Post-processing

In case of sliding window based detector, strong positive response is obtained even if the detection

window is slightly off-center or off-scale on the object. Also when classifiers are trained separately

for different poses we have multiple detections for the same object instance. Also a reliable detector

would not fire with similar confidence and frequency for non-object windows. So there is need of a

post-processing step to merge multiple detections and suppress odd false positives.

Figure 3.5 Post-processing: On left, a typical result after scanning the binary classifier across the test
image at all positions and scales is shown. Results after non-maximum suppression is on right.
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Robust non-maximum suppression techniques are proposed in literature.N. Dalalet al [33, 34] used

a technique which maps each detection to 3-D position in scale-space. Then the mean shift mode detec-

tion algorithm is applied to each detection which provides local smoothing of the detections. The result

is that strong and overlapping detections (nearby ones in 3-D position-scale space) cluster together. We

use a very simple technique for non-maximum suppression given in [161].The most highly ranked

candidate is selected, all other candidates with an overlap greater than 20%are removed and the pro-

cess is repeated until a safe number (images do not contain more than a few instances of an object) of

candidates are selected.

3.5.4 VOC PASCAL dataset and Object Detection Challenge

The PASCAL Visual Object Detection Challenge (VOC) [42] data consists of a few thousand images

annotated with bounding boxes for objects of twenty categories (e.g., car,bus, airplane, ...). Along with

bounding boxes the views or poses are also provided for each object instance asfrontal, rear, left, right

or unspecified. Ground truth also has information if the object is truncated or occluded. There are four

sets of images provided:train, val, trainval (union oftrain andval) andtest.

Thedetectionchallenge is the following: predict the bounding box and label of each object from the

target classes in a test image. Each bounding box is output together with a confidence value, and this

value is used to generate a precision-recall graph for each class. Detections are considered true or false

positives based on their overlap with ground truth bounding boxes. The overlap between a proposed

bounding box R and the ground-truth box Q is computed as:

area|Q ∩ R|

area|Q ∪ R|

An overlap of 50% or greater is labeled as true positive. Any additional overlapping bounding box

(duplicate detections) are rejected as false positives. Performance is then measured by the average

precision (AP). Full details of the challenge, including the results of all participants, are given at [42].

3.5.4.1 Features and Object Detector

The descriptor for appearance of the Region of interest (ROIs) is computed using different features.

We construct the descriptors in a manner exactly similar to [161] using open source code [160].

Dense words (PHOWGray, PHOWColor)[19]: Rotationally invariant SIFT descriptors are extracted

on a regular grid each five pixels, at four scales (10, 15, 20, 25 pixelradii), zeroing the low contrast

ones. Descriptors are then quantized in 300 visual words. The color versions stacks SIFT descriptors

for each HSV color channels.

Histogram of oriented edges (PHOG180, PHOG360): [34, 19]. The Canny edge detector is used to

compute an edge map and the underlying image gradient▽I(p) is used to assign an orientation and

a weight to each edge pixel p. The orientation angle is then quantized in eightbins with soft linear

assignment and a histogram is computed.
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Again we use spatial layout representation of [75] and a three-level pyramid of spatial histograms is

computed for each feature. All the histograms/descriptors arel2 normalized.

3.6 Random Forests Vs Support Vector Machines

Support Vector Machines (SVMs) is one of the leading techniques used for discriminative classifi-

cation in vision tasks ranging from detection of objects in images like pedestrians [34, 96], cars [108]

and others objects [49], multicategory object recognition in Caltech-101 [18, 75], to texture discrimi-

nation [179]. Part of the appeal for SVMs is that non-linear decision boundaries can be learned using

the so called kernel trick. Though SVMs have faster training speed compared to variants of boosted

classifiers, the run time complexity of a non linear SVM classifier is high.

It can be advantageous to use Random Forests over SVMs or boosting because of the following

properties:

• their computational efficiency in both training and classification

• independence of the trees allows for easy implementation and parallelism ([132])

• their probabilistic output

• the seamless handling of a large variety of visual features (e.g. colour, texture, shape, depth etc.)

• the inherent feature sharing of a multi-class classifier (see also [149] for feature sharing in boost-

ing).

3.6.1 Support Vector Machines

Support vector machines (SVM) are a widely used tool in the machine learning and computer vision

community. They were motivated by results of statistical learning theory and originally developed for

pattern recognition they are now described in various books [129, 157]and tutorials, e.g. Burges [23].

The basic idea is to learn a hyperplane in some feature space in order to separate the positive and negative

training examples with a maximum margin, thus called maximum margin classifiers. Also see [32] for

an early reference. There have been various extensions and improvements over the years. One example

is the recent variation [155] to enable the learning of structured output spaces instead of simple two or

multi-class classification problems. Bachet al [11], Varma and Ray [158] extend SVMs to multi-kernel

learners, which combine various base kernels into an optimal domain-specific kernel.

Straightforward classification using kernelized SVMs requires evaluatingthe kernel for a test vector

and each of the support vectors. The complexity of classification for a SVM using a non linear kernel is

the number of support vectors× the complexity of evaluating the kernel function. The later is generally

an increasing function of the dimension of the feature vectors. Since the testing is expensive with non-

linear kernels, linear kernel SVMs have become popular for real-time applications as they enjoy both
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Pose

Random fast IKSVM
Training Forests C=0.1 C=0.05
Round Time Memory Time Memory Time Memory

(second) (MB) (second) (MB) (second) (MB)
F + R 212 122 626 362 804 360

Round 0 L + R 258 125 1137 396 1052 394
U 319 126 1518 482 1714 490

F + R 440 235 1740 630 2179 626
Round 1 L + R 497 239 2610 670 2978 672

U 659 241 3654 680 4464 685

Table 3.2Time and memory requirements while training

faster training and classification speeds, with significantly less memory requirements than non-linear

kernels due to the compact representation of the decision function. But thiscomes at the expense of

accuracy ([86]) and linear SVM can not be used on tough datasets like VOC PASCAL.

There has been a fair amount of research on reducing run time complexity of non linear kernels

[22, 69, 105, 177]. These approaches are either aimed at reducing the number of support vectors by

constructing sparse representations of the classifier, or reducing the dimension of the features using a

coarse to fine approach. In [86], an orthogonal approach is proposed for speeding-up intersection kernel

SVMs (IKSVMs), a classifier which have been successfully used for detection and recognition [53, 75].

Maji et alhave shown that one can build (IKSVMs) with runtime complexity of the classifier logarithmic

in the number of support vectors as opposed to linear for the standard approach. In the next subsection

we compare the performance, training and testing times and memory requirementsof fast IKSVM

of [86] and Random Forests for object detection. For fast IKSVM, theexact version using binary

search is used for the comparison.

3.6.2 Comparison

We experiment on PASCAL VOC 2007 [45] dataset for car detection. Seesection 3.5 for the details

of the dataset and training, testing, retraining and non-maximum suppression methods for object detec-

tion. We train usingTrainval set and test onTestset. The training data is divided based on the poses or

views of the object instances and train separate classifiers for each set.Some poses are relatively easier

to learn than others, thus we can also compare how performance varies withlearning complexity.

3.6.2.1 Training

We extract PHOG360 [20, 161] features from the positive (ROIs containing cars) and negative sam-

ples taken from training data. Then Random Forest and fast IKSVM aretrained (round 0) using these

features. In each case we train classifiers separately for Frontal+Rear, Left+Right and unspecified poses.

So we have three Random Forests and three IKSVMs trained. We run these six classifiers over the train-
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ing data to find hard-negatives for each of them and then retrain (round1) the classifiers with respective

hard-negatives added. There were 175, 222 and 332 positives samples for Frontal+Rear, Left+Right

and unspecified poses respectively. From each positive sample 40 jittered and flipped instances were

generated for the final positive set. Around 30K negative samples wereselected (6 taken from an image

at random) fromTrainval set for each pose in round 0 and 20K high scoring false-positives were added

to the negative set in round 1.

Table 3.2 reports the time and memory requirements for both the classifiers for the two rounds of

training. For fast IKSVM we use code provided by [2]. The training time and performance depends

significantly on C parameter for SVM. The C parameter was varied and set to0.005, 0.001, 0.05, 0.01,

0.1, 1, 5, 10, 100 and 1000. The values performing best onTestset were found to be 0.1 and 0.05.

For Random forest we use 100 decision trees each of maximum depth 15, node-functions per node (nf )

=100, and thresholds per node (nτ ) = 10. Memory requirements for Random Forests is half of that of

SVMs as only half of the training samples selected randomly were used to train adecision tree. In case

of Frontal + Rear pose in round 0, time taken to train Random Forests is about half or one-third of that

of IKSVM (for C=100, 1000). But with increase in number of samples andlearning complexity (other

poses are more difficult to learn) the training time for IKSVM increases rapidly, while it is more stable

in case of Random Forest.

3.6.2.2 Testing

The trained detectors are run overTestandTrainvalset using Sliding window approach, followed by

non-maximum suppression. We evaluate the result by usual VOC method: any detection/localization

is considered true positive when the area overlap of the detected bounding-box with groundtruth is

more than 50%. To each detection a confidence score is assigned by the classifier. Fig 3.7 shows the

precision-recallplots of the results on test and train set. Table 3.3 compares the results of the detectors.

Random Forest detector obtains better Average Precision score before and after bootstrapping. The

difference ranges from 6% to 11% across the poses on test data, for trainval it is even more. Though

IKSVM has inferior AP score but it achieves higher recall in some cases. There is slight over-fitting

in RF. It’s performance relative to fast IKSVM on test set is not as goodas that on trainval set. While

testing, time taken by fast IKSVM to classify around 50K samples ranges from 2.2 to 4 seconds de-

pending on value of C parameter (or number of support vectors). RF with100 trees takes approximately

2 seconds for the same task. With only20 trees also, which 5 times faster, RF performs better than

IKSVM (Fig 3.7). All the experiments are done on an AMD Athlon Dual Core Processor (3GHz) with

4 GB RAM.

Random Forest shows promising results as an object detector. It achieves better AP and speed than

fast IKSVM, specially for left+right and unspecified poses it outperforms IKSVM. We have seen here

that with its speed and accuracy it can serve as a robust object detector. In section 3.7 we experiment

with Random Forest using multiple features, and increasing the number of trees.
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(a)

(b)

(c)

Figure 3.6VOC 2007 car detection: Performance of Random forest and fast IKSVM compared in the
precision-recall plots for test set (left) as well as trainval set (right).Comparison is done separately for
(a) Frontal + Rear, (b) Left + Right and (c) Unspecified poses.
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Figure 3.7VOC 2007 car detection: Performance of Random forest and fast IKSVM compared in the
precision-recall plots for all the poses combined.

Poses Test Set
Random fast IKSVM
Forest C=0.1 C=0.05

Avg Prec Recall Avg Prec Recall Avg Prec Recall

F + R
Trainval 45.9 58.8 29.5 54.4 33.8 54.4

Test 37.7 55.1 30.1 57.8 31.9 57.8

L + R
Trainval 38.5 49.7 15.7 43.1 17.2 42.1

Test 25.7 46.9 17.0 45.3 17.5 47.2

U
Trainval 38.8 51.5 13.5 41.0 14.4 41.8

Test 27.7 49.4 16.5 45.8 16.5 43.0

All
Trainval 42.2 51.4 19.5 41.5 19.0 40.4

Test 32.3 49.5 21.4 44.9 21.9 43.8

Table 3.3Testing on VOC 2007 car: Performance comparison

3.7 Random Forest for Object Detection

In this section we present baseline results with Random Forests for objectdetection. We use the

state-of-art features (PHOW, PHOG) [19, 20, 34] and techniques, and employ Random forest as the

classifier. Object localization experiments are done on PASCAL VOC2007 for car dataset. We also

observe the effect of different parameters of random forest.

The random forest object classifier is learned as per the details given insection 3.5. We divide the

training data into disjoint sets based on the views of the object instances and train separate classifiers

for each set. This is important because it simplifies learning as there is some alignment among the

object instances of same pose or view. Also object instances of same posegenerally have similar aspect

ratios, this helps during testing. While testing we use one or more representative bounding boxes or

templates per classifier as sliding detector window chosen based on the ROIsin the training set. Each
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Figure 3.83-Pose 1-Template: Performance of different features are comparedusing 100 tree RF (left)
and 1000 tree RF. Large improvement is achieved by combining the features.

template has a fixed aspect-ratio which may slide in scale-space (scale changes) or just in space (scale

remains constant). The aim is to cover the variation in aspect-ratio and scale by using a set of templates

with a classifier. So, given a test image we run RF detectors trained for different poses and combine the

results to get final detection results. Results for different poses are combined by applying non-maximum

suppression on ROIs detected by all the pose classifiers. Different types of classifiers based on training

(number of poses or classifier per class) and testing (number and type oftemplates) can be defined as

N-Pose, M-Template. We analyze performance and efficiency of some of the possible classifiers.

3.7.0.3 3-Pose 1-Template Classifier

The training data is divided into 3 sets based on poses: (1)frontal+rear, (2) left+right and (3)

unspecified. Each classifier slides one window of a fixed aspect-ratio found by takingmean of aspect-

ratios of the bounding boxes in the associated set. While running classifierswe evaluate around 150K

to 180K windows per image with all 3 pose classifiers. We use two values for number of decision trees

(T ), 100 and1000, each tree has maximum depth15. Other parameters are set as: thresholds per node

τ = 10, node-functions per node (nf ) is set to100 for PHOG features and to300 for PHOW features.

Each tree is trained with 50% of the total samples selected at random.

Precision-recall curves in Figure 3.8 compares the performance of different features. Better results

are obtained by using PHOW features in both the cases. Combining featuresyields a significant im-

provement in Average Precision. Using 1000 trees we have improvement of more than 1% in each case

except for PHOG180 and for combination of features AP increases by 1.4%.
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Figure 3.95-Pose 1-Template: Performance of different features are comparedusing 100 tree RF (left)
and 1000 tree RF. Large improvement is achieved by combining the features.

3.7.0.4 5-Pose 1-Template Classifier

The training data is divided into 5 sets based on the given 5 poses. So five classifiers are trained each

associated with a set and an aspect-ratio chosen from that set. Random forest parameters are same as

used for 3-Pose 1-Template classifier. We also run on lesser windows per image per pose classifier so

that total number of windows evaluated remains same as that for 3-Pose 1-Template.

Figure 3.9 shows precision-recall plots of different features for 5-Pose 1-Template Classifier. Here

performance with PHOG remains similar to what it is obtained in case of 3-Pose 1-Template, but APs

with PHOW drop. This is probably because of lesser number of training samples per pose to learn

PHOW feature which have higher dimension (6300) than PHOG (336).

Some examples of car detection from VOC2007Testset are shown in the Figure 3.10. The local-

ization results after non-maximum suppression are in green. We also draw groundtruth ROIs in yellow

to show the detection overlap and false negatives. High scoring detectionsof cars of different sizes,

orientation and variations are included. Correct detections are drawn in green and false positives in red.

Some false negatives are present in last two rows which occur mainly due totruncation, occlusion and

very small size. There are instances shown in the last row where truncated cars are also detected.

3.7.0.5 Effect of Random Forest parameters

Here we analyze the effect of random forest parameters on performance and speed for object detec-

tion. We basically experiment by varying one of the three: number of node-functions per node (nf ),

number of thresholds per node (τ ) and number of trees (T ), while keeping the other two constant. We
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Figure 3.10 Some examples of localization on VOC2007 Test set after non-maximum suppression.
Detections are shown by green boxes and groundtruth ROIs are drawnin yellow.

again take car as the target object and usetrain set for training and test onval set of VOC 2007. Classifier

used for this experiment is 3-Pose 1-Template RF and feature used is PHOG360.

As default we set:T = 50, nf = 50 andτ = 8 and vary one at a time. Maximum depth for each

tree is kept 10 and 50% randomly training samples are used to train each tree.In each case, classifier is

trained 5 times and the mean ofaverage precisionsis reported. In Figure 3.11(a),τ is varied from 1 to

26 and in Figure 3.11(a)nf is varied from 1 to 150 with constant parameters kept at their default values.

Initially AP increases with number of features and thresholds for bothTrain andVal sets but after a point

it becomes stable. Variation inτ or nf doesn’t effect the testing time but training time increases linearly

with each of them.

Plots in Figure 3.11(c) show the effect of number of trees on the performance. Average Precision

increases rapidly for first 20-30 trees and increases considerably till100-120 trees and then saturates or
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Figure 3.11Effect of (a) number of thresholds per node (τ ), (b) number of node-functions per node
(nf ) on average precision, (c) and (d) trees (T ) on average precision.

grows slowly. Random Forest do not over-fit when number of trees is increased and improvement can

be expected by using very large number of trees. We do one more experiment now onTestdata, with

number of randomized trees increased upto 1000. Figure 3.11(d) showshow AP changes for different

features and there combination. For every case there is some improvement though not much. For

combination of featuresAP improves by 1.4% to 44.5%. The best result for ’car’ category among all

methods submitted to the VOC 2007 challenge was 43.2%.

We gain 1%-2% by using 1000 trees but this increases complexity by a factor10. There is a need

to improve efficiency, keeping the performance same. We address this issue in the next section by the

observation that a small number of trees can also provided decent accuracy in detection.

51



3.8 Speeding up with cascade structure

The baseline random forest object detector is almost as accurate as state-of-art still the efficiency is

not enough for many applications. The main technical obstacle is searchingfor the best region in the

scale, space and aspect-ratio. This also increases training time as multiple rounds of bootstrapping are

required. Exhaustive search requires number of operations proportional to the number of regions tested

by the classifier, which typically ranges in1.4 × 104 to 2 × 104.

Figure 3.12Cascade structure of classifiers and features.

We use cascade of increasingly strong classifiers similar to [161, 165] for speed-up. This is natural

to random forests and can be done by increasing number of trees used for classification. For example

if we have a RF classifier withT trees which is used asn layers. In any layeri only a fraction,fTi,

of total trees are used to classify and based on the detection scores only atop fraction,fRi+1, of total

regions are passed to thei+1th layer. In this way inith layerfTi×T trees are used to classifyfRi×N

regions, whereN is the total number of regions to evaluate from an image. Speed up obtained byusing

L layers would be:
1

∑L
i=1 fTi × fRi

In our experiments we use Random Forest in three layers. We observe that by settingfT1 = 0.025,

fT2 = 0.1, fT3 = 1 andfRi = 0.1(i−1) with T = 1000, there is no or very less loss in performance.

And the speed-up obtained for classification over baseline RF with 1000 trees is around 22 times.

Unlike [161, 165] we build cascade which is also based on complexity of computing feature descrip-

tors. PHOG is used in the first layer which can be computed quickly for all theN number of regions.

Based on detection scores only a topfR2 × N regions are passed to the second layer. PHOW descrip-
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tors are computed only for these top ROIs which saves descriptor computation along with classification

time. Computing6300 dimensional PHOW descriptor using vocabulary of300 (300 integral images are

used) is around10 times slower than computing PHOG. Now this computation is only done for topfR

fraction of total ROIs visited. Practically, the time required to compute descriptors is reduced by a factor

of 1
fR2

by using the cascade. Figure 3.12 demonstrates our Cascade structure.

Tables 3.4 and 3.5 summarize the results of our system on the VOC 2007 (car,bicycle and boat)

and 2009 (aeroplane, motorbike and boat) datasets. Type of classifier used is 3-Pose 1-Template. The

performance with cascade is as good as the baseline system but with significant speed-up. To classify

and compute descriptors (all 4 features) for 45K samples it requires approximately 3 seconds and 1.8

seconds respectively. We also compare our result with other systems thatentered the official competition

in 2007. Our results are better than the team ranked 1 in VOC 2007 for car and boat. For VOC 2009 the

results shown are on validation data (training is done on train set) as the groundtruth for the test set is

not available.

car bicycle boat
a) baseline 44.5 38.5 9.5
b) cascade 44.3 37.7 9.5
c) voc07 (rank1) 43.2 49.9 9.4

Table 3.4PASCAL VOC 2007 results (test set): (a) average precision scores ofthe base system, (b)
scores using cascade, (c) top result in VOC07

aeroplane motorbike boat
a) baseline 38.0 26.4 9.9
b) cascade 37.3 26.1 9.7

Table 3.5PASCAL VOC 2009 results (validation set): (a) average precision scores of the base system,
(b) scores using cascade

Some examples of detection are shown from VOC 2007 and 2009 dataset in Figure 3.13. The correct

detections are shown in green and ground-truth bounding boxes are shown in yellow. False positives

cases are highlighted by red color. Again false negatives occur mainly when object is truncated, oc-

cluded or of very small size.

3.9 Extended ROIs

There are lot of variations in shape and appearance of objects, (suchas caused by extreme viewpoint

changes) that are not well captured by a single template (or aspect ratio). It is common to use multiple

templates to encode view or pose variations, for example separate templates for frontal and side views

of faces and cars [128]. To interpret the variations in large and difficult datasets like TRECVID or VOC
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Figure 3.13Examples of high-scoring detections on the PASCAL 2007 (top 3 rows) and2009 (bottom 3
rows) datasets. Last two images in each row illustrate false positives or false negatives for each category.

54



Figure 3.14Top row shows the examples of original ROIs for classes bicycle and car, and their extended
ROIs are shown in the bottom row. Note that all the extended ROIs of same class have same aspect ratio.

it would require many templates. Applying them over such a large dataset fortesting/bootstrapping is

computationally very expensive. To deal with this we use what we call asExtended ROIs.

Extended ROIs are obtained by extending the original ROIs such that its aspect ratio becomes the

selected one and its center coincides with the center of original ROI. This allows us to use only one

aspect ratio and still cover for large range of aspect ratios while testing.Figure 3.14 shows the original

ROIs from and their extended versions. While training Extended ROIs were used as the positive samples.

Then all the training ROIs as well as the detector window (while testing) had thesame aspect-ratio. The

detected windows were also extended ones with object at its center. With this approach we only search

in scale and space as the aspect-ratio is constant. We found this very useful for our classification by

detection approach for high-level feature extraction task in TRECVID 2009 (see section 3.9.1).

3.9.1 TRECVID 2009

Details about TRECVID tasks, dataset, annotations and evaluation are given in section 3.4. As a part

of the Oxford-IIIT team we participated in the high-level feature extraction task of TRECVID again in

2009. Like TRECVID’08 this time also one of our approaches was based on random forests. There

were some major changes in our approach for TRECVID’09:
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• Classification by detection: In 2008, we used random forest for whole image classification but

this time we focused on object categories with sliding-window random forestobject detector.

• Removal of noise from TRECVID annotations: We found the collaborativeannotations for the

TRECVID high level features to be quite noisy. Some shots are wrongly annotated, and others

are labeled as ’skip’ when they are, in fact, unambiguously positive or negative for the feature. To

remove this noise in the annotation, we used a weak classifier trained on the noisy data for each

high level feature as follows:

– Train a classifier using all the +ves and a subset of -ves in TRAIN and VAL sets according

to the Collaborative Annotation.

– Re-rank all the images in the TRAIN+VAL set based on the classifier output.

– Refine the annotations of the top 5000 ranked images.

In this manner, we could find many of the wrong annotations with minimal manual effort. This

refinement was found to be very effective.

• Use of extra data: Additional data was taken from sources like flicker, google which for under-

represented features (like bus) significantly improved performance.

• Bounding-box level annotation: The images containing the target object categories were manually

annotated by marking the bounding box of the visible area of the object.

3.9.1.1 Classification by detection

One versus rest random forest classifiers were trained using the ground truth bounding-boxes for the

target object. For representing we use only PHOW (explained in ) as feature as it performed best in our

earlier approach (see 3.4.6).

For detection we experiment with our baseline object detector and the one which is trained onEx-

tended ROIs. The confidence score of a test image is the maximum of the classification scores of the

regions in it. In our baseline object detector we use only one view and one template (1-Pose 1-Template

classifier). As the dataset is very large (209990 keyframes) using multipletemplate is very expensive.

The result of this detector for boatship class is reported in Table 3.6.

Training set Test set Training Round AP (50 trees) AP (100 trees)
Train Train 0 0.1435 0.1833
Train Validation 0 0.0294 0.0349
Train Train 1 0.3782 0.4386
Train Validation 1 0.1940 0.1977

Table 3.6Classification by detection results for Boatship: average precision scores of the base detector
before and after bootstrapping
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(a) Boat-Ship

(b) Bus

(c) Person-riding-a-bicycle

Figure 3.15 Top 15 retrieved keyframes are shown for (a) Boat-Ship and (b)Bus categories, (c)
Keyframes ranked from 71 to 85 are shown for Person-riding-a-bicycle, top 70 are all true positives
coming from the same video.
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Training set Test set Training Round AP (50 trees) AP (100 trees)
Train Train 0 0.5340 0.5525
Train Validation 0 0.2552 0.3080
Train Train 1 0.5874 0.5876
Train Validation 1 0.2787 0.4106

Table 3.7 Classification by detection results for BoatShip: average precision scores of the detector
trained withExtended ROIsbefore and after bootstrapping

When original ROIs were used average precision after one round of retraining improved from0.198

to 0.411. The result ofExtended ROIsdetector for boatship class is summarized in Table 3.8. In-

spired by this significant improvement we trained classifiers usingExtended ROIsfor 3 other classes:

Hand, Person-riding-a-bicycle and Bus. Results for these classes when trained on Train and tested on

Validation are summarized in Table 3.8. Considerable improvement can be observed on Validation set

when using 100 trees over 50 trees classifier. Our final RF classifiers with Extended ROIs were trained

on DEVEL (Train + Validation) set and then are run on the TEST set. Some visual Results shown in

Figure 3.15(a) for boat.

Top ranked keyframes for categories: Boat-Ship, Bus and Person-riding-a-bicycle are shown with

detected Extended ROIs in Figure 3.15 . For Boat-Ship and Bus top 15 results are displayed, in case of

Person-riding-a-bicycle all top 70 ranked results are true positives from the same video and are similar

to the first four frames shown for this category in Figure 3.15(c). So, keyframes ranked from 71 to 85

are shown here.

Category Training Round AP (50 trees) AP (100 trees)
Hand 0 0.2074 0.3056
Hand 1 0.2220 0.3736
Person-riding-a-bicycle 0 0.0758 0.1939
Person-riding-a-bicycle 1 0.2824 0.3443
Bus 0 0.0026 0.0141
Bus 1 0.0625 0.1316

Table 3.8Classification by detection results (Extended ROIs): average precision scores of the detector
trained on Train set and tested on Validation set.

3.9.2 BBC

Classifiers trained on TRECVID data were run on the video data provided by BBC. This is a collec-

tion of 428 videos of TV programmes. The total duration of the videos is 220 hours and in total there

are 137921 keyframes. The top retrieved results from BBC data are shown in Figure 3.16 for Hand and

Boat ship categories. The results are very good considering that the sourceof training data was different

and the generalization is excellent.
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Figure 3.16Top 15 results from the BBC video dataset for Boat or Ship and Hand categories.
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3.10 Summary

In this chapter, we have shown that Random Forest classifier can be used for fast and accurate clas-

sification and object localization. Its computational efficiency in both training and classification makes

it a promising choice. We have used a combination of different visual features with random forest for

the high-level feature extraction task of TRECVID’08. Random forestis presented as a rapid object

detector with results on challenging datasets like VOC PASCAL and TRECVID09. We achieved results

comparable to the best in VOC’07. In TRECVID’09, we used sliding windowbased RF detector for

four object categories (Boat-Ship, Person Riding a Bicycle, Bus and Hand). Efficiency with accuracy of

random forest was a key factor in running the detector over such a large dataset of about 200 thousand

key-frames.
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Chapter 4

Online Video Spotting and Processing

4.1 Introduction

In last few years, due to cheap storage, bandwidth and imaging hardware, huge amount of multimedia

data is being generated and stored. The world is covered with millions of cameras with each recording

a huge amount of video. With this ubiquitous video content there is a need of processing online video

sequences for information extraction and data mining. In online processingit is very important require-

ment to be able to retrieve video clips as and when they arrive. So, sifting through millions of videos to

find visual content of interest needs to be automated.

The aim of this chapter is to address online content based processing of continuous stream of videos

to detect video segments of interest. Our approach is example-based where visual content to be detected

or filtered is charaterized by a set of examples availabeapriori. Example-based content-level processing

of multimedia, has been popular in video and image retrieval literature [101, 137, 147]. The focus has

been on identifying appropriate descriptors [147] and developing scalable systems which enable efficient

retrieval from millions of images or video key-frames [101, 137]. There has also been significant interest

in characterizing and recognizing activities and semantic concepts from video examples [70]. This class

of algorithms, first learn to characterize the events from training data by computing a classifier, and then

apply the learned concepts in new situations.

However, many concepts of practical interest are not easy to represent and learn. For example, the

concept of violence is a difficult concept to characterize, even for thestate-of-the-art machine learning

algorithms. One may also come across categories like commercials in video streamswhich have high

within class variance and relatively small inter-class variance. On the otherhand, many of these concepts

can be described with the help of examples. This allows us to model the problemas simultaneous

spotting in a video stream. This approach could meet the immediate requirement of processing or

filtering the video stream based on the visual content.

In many practical situations, a human is present within the loop of a video processing system. For

example, a human operator is often associated with surveillance video processing for initiating actions

based on the video content. In such cases,on-line spottingof relevant information from a video sequence
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Figure 4.1Overview of the Example-based Video Processing

can be of immense help. We demonstrate that this is feasible even when a robust recognition of the

specific concept is probably impossible.

We approach the problem of video processing in a manner complimentary to that of video retrieval.

We begin with a set of examples (traditional “queries”) which are indexed inthe database. The larger

video collection, which needs to be processed, is unseen during the offline indexing phase. The video

collection is processed on-line, to identify the concepts represented by thegiven set of examples. In

a way, what we are interested is in spotting rather than retrieving. Traditional retrieval systems focus

on scalability to large databases for efficiency in retrieval. Our focus is onenhancing the throughput

of the system and making the algorithm capable of simultaneous spotting of multiple examples. Our

formulation also effectively utilizes the sequence information of the video stream, rather than treating it

as a set of frames.

In this chapter we have presented a survey of existing approach towards video processing in general

and our example based method for online processing of videos. The basicidea of example based video

processing is presented in Figure 4.1. We present results for commercialremoval and content based

copy detection (CBCD) as applications.

4.2 Video Processing Approaches

Content-based processing of videos has been proposed by different communities for various research

problems. These include:

• Video retrieval

• Filtering

– content based copy detection
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– advertisement detection

– action recognition

– other specific filters

– searches and mining in videos

• Video summarization and segmentation

• Adding Semantics

4.2.1 Content based video retrieval

Most of the content based image and video retrieval systems identify similar objects to a given

query [35]. Both query and database objects are represented with the help of a set of feature descriptors.

Earlier approaches used color, texture and shape descriptors computed globally or locally to describe

the visual content of the images. This has been successful in retrieving images with concepts which are

rather weak, (for example, “images with red flowers” or “scene of a sun-set next to water”). With this

initial success, the focus shifted to retrieving specific objects (under widely varying imaging conditions)

or object categories. Invariant description of interest points and patches have been the key to the success

in these situations.

Image and video retrieval has been successfully attempted for retrieving objects of interest invariant

to scale, orientation and illumination [101, 137, 171] in diverse multimedia collections. These methods

primarily addressed the scalability issue towards indexing in large databases. The videos are repre-

sented by their key-frames, which in turn are described as a bag-of-interest-regions. Features describing

regions-of-interest are quantized using K-means or hierarchical K-means, in an offline phase to build a

visual-vocabulary for the given data set. The video collection is then indexed against this visual vocabu-

lary. Once indexed, the database can retrieve videos corresponding to“short” queries, such as a (part of)

an image or key-frame selected by the user. Another set of works focuses on building efficient indexing

schemes for multimedia collections. Successful examples include LSH [63], min-hash [27, 28], pyramid

match hashing [54], vocabulary forest [171], etc. Vocabulary tree has been used for efficiently indexing

and retrieving large number of images [101]. A hierarchical partitioning ofthe feature space makes

the quantization efficient. Also the retrieval and ranking of documents are simultaneously achieved by

traversing the tree.

Focus of most of these approaches has been on indexing large amount of multimedia data to effi-

ciently search within the given collection. However, on-line structures forindexing video streams has

received very little attention. One of the related problem which received some interest in recent past is

that of adapting the index structure with changes in visual content. In this direction, Yehet al. [171] ex-

tended the notion of vocabulary tree to vocabulary forest while making the indexing process applicable

to dynamic environments.
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4.2.2 Content based video filtering

Content-based filtering of images and videos are attempted in literature for applications like adult

content detection [51, 181], removal of commercials [30, 143], event detection [83], copy detection [72]

etc. Most of these methods formulate this problem as an object/scene recognition or detection by using

an appropriate classifier in the right feature space. For example, the filters aimed at removal of adult

content or detection of fire formulate the problem in an appropriate color space [83, 180]. In general,

example video frames are used in an offline situation to learn the right model or aclassifier. Then the

new unseen video frames are classified using the learnt model/classifier. Accept and reject filters used

for commercial removal also employ similar techniques. Colomboet al. [30] attempt to characterize the

commercials with the help of low-level features and classify the video segmentsinto categories. With

the category of commercials becoming more and more diverse, such classification models in simple

feature spaces are found to be insufficient.

Content-based copy detection (CBCD) techniques have received significant attention in recent years [64,

71, 170]. Yanet al. [168] performed content based copy detection over streaming videos. Focus of

research has been on defining the right set of descriptors which are invariant to the allowable set of

transformations [72]. There has also been significant concern aboutthe computational complexity of

this class of algorithms because of the practical applications in video sharingsystems. In [27, 28] the

similar problem of near dublicate detection is addressed. Mining the video content can help in getting

important information regarding the internal structure of large video databases [39, 113]. Video mining

has been used for automatic video annotation [95], to extract principal objects, characters and scenes in

a video by determining their frequency of re-occurrence [138].

Action recognition has been an active research topic and many methods have been proposed. Recent

methods for action categorization have used local spatio-temporal features to characterize the video and

perform classification over the set of local features [70, 89, 100, 175].

4.2.3 Video summarization and segmentation

Video summarization is the process of creating a presentation of visual information about the struc-

ture of video, which should be much shorter than the original video. This abstraction process is similar

to extraction of keywords or summaries in text document processing. Thatis, we need to extract a sub-

set of video data from the original video such as keyframes or highlights as entries for shots, scenes, or

stories. The result forms the basis not only for video content representation but also for content-based

video browsing. Video summarization techniques have been proposed foryears to offer people compre-

hensive understanding of the whole story in the video [9, 37, 107]. Text have been also used in form

of caption and transcript to judge the boundaries of scenes or stories [13, 144]. Most previous works

on video summarization target on a single video document.The results are usually redundant due to the

lack of inter-video analysis. In [166], an approach is proposed for multi-document video summarization

by exploring the redundancy between different videos.
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Video segmentation or shot boundary detection esentially invloves examining the information con-

tained in individual video frames and comparing this with other nearby framesto determine if a shot

change has taken place. A number of methods have been proposed for frame comparison and for han-

dling gradual transitions to solve this problem [152, 153, 178].

4.2.4 Adding Semantics

It is difficult to map low-level feature (color, texture, shape, motion) description into semantic con-

cepts (such as person-riding-bicycle, cityscape or car-racing scenes). Because of this semantic gap it is

difficult to process high-level queries such as “black mercedes”. There has been a plethora of interesting

research work presented recently that focuses on problem of bridging this semantic gap [57, 62, 141].

Two possible solutions have been proposed to minimize the semantic gap are automatic metadata gen-

eration and relevance feedback [59, 182]. Content based semantics can be added by annotation of

symantic entities in video. This can give symbolic description of the video in terms of objects or scenes

it contains. Low level content based semantics like color, shape, structure and object motion can also

be used. Another way is to use structure in the video. It is widely accepted that video documents are

hierarchically structured into clips, scenes, shots and frames. Such structure usually reflects the creation

process of the videos.

4.3 Vocabulary Trie

For online processing of videos, we would like to retrieve concepts from streaming videos, based

on the similarity of a video sub-sequence with one of the given examples. Thissimilarity has to be

efficiently computed for each given example, for each incoming frame. Thisresembles to the concept of

keyword-spottingpopular in speech processing and document image retrieval [119]. Keyword spotting

methods locate the possible occurrence of the query word by matching with every possible words in

the database. In the case of document retrieval, words are often segmented first and indexed using a

set of appropriate features. However such methods are not directly applicable for video data, due to the

difficulty of characterizing the visual content corresponding to each concept.

Popular video retrieval systems aim at indexing large quantities of images and videos, and serving

a small set of queries while being deployed on the field. Focus has been onthe efficiency in retrieval

and scalability to large video databases. These formulations typically employs trees [101], hashes [54]

or inverted indices [137] for the indexing of the visual data. Our objective is to process large amount of

videos with the help of an index structure which is built out ofa relatively small set of example videos.

The indexing scheme that we require should be capable of

1. indexing relatively small number of examples availableapriori

2. processing of large amount ofunseenvideos
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Figure 4.2Example Trie for set of words

3. avoiding explicit segmentation of video stream for matching with example videos and

4. employing any generic comparison scheme for comparing frames/sequences.

We achieve these objectives with the help of aTrie data structure. Tries are ordered tree data struc-

tures popular for a number of tasks related to information retrieval [67]. They are useful for matching,

based on some similarity measure, for sequences of symbols in a language. Apath from the root to

a leaf represents a symbol sequence inserted into a trie, during the indexing. The leaf nodes store the

identifiers of symbol sequences. An example of trie is shown in Figure 4.2. Tries get constructed from

a sequence of alphabets. When trie is used for detection in an on-line setting, the stream of data gets

matched/aligned with the sequence of nodes, and any successful termination at the leaf is treated as a

valid detection. Trie has been extensively used as an index structure in thearea of string matching [131].

It is a suffix tree representation which can be used to find the strings that are exactly or approximately

matched to a given query string. Tries offer text searches (exact or approximate) with costs which are

independent of the size of the document being searched. Importantly, tries are not sensitive to the curse

of dimensionality problems which is a challenge in multimedia computing.

In the following sub-section we present our trie-based architecture,Vocabulary Trie, for content-

based processing of video streams. Our trie based solution allows simultaneous matching of multiple

examples.
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4.3.1 Formulation

A video can be represented as a sequence of symbols and indexed into a Trie structure. This is made

possible by the quantization of the visual data to produce a finite set of alphabets from a given video

sequence [101, 137]. A set of videos to be indexed results in an appropriate vocabulary (words) and

define the problem space. Traditional quantization schemes employ K-Means or its variants for the

quantization and vocabulary construction. Each frame can be represented as a symbol/alphabet where a

symbol can be a scalar or vector or even a set representation based onvisual words.

In our case, number and diversity of examples could be significantly smallerthan the total amount

of video that trie needs to process. In such cases, adding negative examples into the quantization step

allows one to control the detection (false positive and false negative) rates. When the examples are

diverse enough, influence of the negative examples seems to be negligible. Since the trie is represented

in terms of index of clusters, representation is independent of the dimensionality of the feature space, as

is the case in any bag of words representation.

There are two basic problems in formulating the on-line video processing problem using Trie: (i)

representation of video sequences with the help of discrete symbols (ii) computing similarities of two

video frames.

4.3.1.1 Representation and vocabulary trie construction

It is intuitive to use a temporal representation for videos, unlike the popularrepresentation as a set

of key-frames [137], which is not suitable for on-line processing of videos. Let us consider a simple

representation. A video frame is represented as the average color of theframe and video clip is repre-

sented as a sequence of such color descriptors. Such a frame-level representation could be sensitive to

the temporal sampling/segmentation process. One could also represent the averaged color over a set of

consecutive frames (overlapping or non-overlapping) as another measure for the description. For many

practical applications, a simple representation based on color could be quiteinsufficient. One could also

think of representing the video frame(s) with the help of a set of interest points and their representations

such as SIFT for matching and detection.

We represent the video at frame level using the features suitable for the given task. The feature space

is quantized intoK bins using features extracted from a limited set of training data, using a clustering

algorithm. Each feature is then indexed to the closest quantized bin, each frame then represented as a

set of these quantization indexes. The sequence of the frame features isused in the trie construction and

look-up.

The given set of example videos are indexed in a trie. Vocabulary trie construction from example

videos, is pictorially shown in Figure 4.3. During the construction phase, thetrie is incrementally

built from each example. The common prefix sub-sequences are aligned for those examples which have

similar frames to begin with.
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Figure 4.3 Building a Vocabulary trie for video sequences and using it for processing the input video
stream.

The trie has a heighth and a breadthb. Each frame of an example video occurs at different depths

from the node. Hence, the height of the Trie is the length of the longest example video. Each example

video constitutes a path from the root to a leaf of the Trie. The leaf is labeled with the concept of the

example. Example videos share the nodes corresponding to “similar” framesat the same depth. The

total number of leaves in the trie is the number of given examples,N . In the worst case, each example

will constitute a distinct path from the root to the leaf. In this case, the storagecomplexity would be

O(h.N) and the time for building the trie would beO(N2) requiring only the first frame to be compared

with the previously built trie. The ideal case is a balanced trie, with equal breadthb at all depths. The

storage complexity in the ideal case would beO(h.b) (b << N ), while the time complexity would be

O(h.b.N), since each frame is matched withb nodes at each depth.

Each edge of the vocabulary trie is a symbol. An input sequence of wordstakes the path along the

edge, symbol corresponding to which is most similar to it and the similarity is abovea certain threshold.

During detection, each frame is checked for a possible match with any of the nodes atd = 1. Whenever

there is a match, the subsequent frames are matched down the vocabulary trie, and so on. If the sequence

of frames from the on-line video terminates in a leaf node, the appropriate concept is said to have been

detected.

Algorithm 1 summarizes the trie construction and detection process. During the off-line phase,

examples are inserted into the database. During the on-line phase, the trie allows fast processing of the

given video sequences.
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Trie-Construction: In the offline phase, trie is constructed from example video sequences for the given
examples:V1,V2 . . .

• Initialize an empty trie. For the given examplesi = 1, 2, ...

• Find the longest prefix sequence which is common to the trie and theith

example video. When a mismatch takes place in the sequence, initiate a
new path in the trie resulting in termination of the leaf node labeled wi-
th this example.

Online-Detection: In the on line phase, video stream is processed for the possible presence of the
examples.

• For the given sequence of words, pass through the trie until either we get
a leaf node or no path is available.

• If we reach the leaf node, return back success with the detail of the exa-
mple and the location from where the possible sequence started.

Algorithm 1 : Vocabulary Trie

Such a trie can introduce a latency equal to the maximum length among the example videos, in the

worst case. Matching in trie is efficient, since only a few set of nodes will be evaluated for most frames.

Such a sequential matching, in general, favor’s lesser false positives.However, the matching threshold

can be varied to control the detection rates, depending on the application.

4.3.1.2 Matching of videos

Exact matching of two words or bag of words for detecting identical content could be relatively

straightforward with any reasonably invariant representation. In many practical situations, one is inter-

ested in matching which allows partial and inexact matches of two representation of words. When the

alphabets are described by a set of interest point descriptors, one could define a matching score based on

the cardinality of intersection of the representations in the video stream and inthe trie. Such a similarity

score was used earlier in [27].

The score/matching performance of a video sequence depends on (i) thelength of the sub-sequence

which it matches, normalized with respect to the length of possible paths in the triewhich has this as

a sub-path (ii) the quality/score of match of each of the alphabets/symbols. (iii)Number of tries which

generates warnings/detections. Decision to traverse further at any node in the trie will have to depend on

the scores of symbol matching done from the root to the current node. Therefore, we keep a threshold

on the mean of these scores to make the sequence matching robust to any rare symbol matching failure.

We also keep a threshold,F , on the number of frames matched. If number of frames matched is greater

thanF and atleast half of the length of possible paths in the trie which has same sub-path, then the video

is blocked.
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Figure 4.4Processing a query with forest of tries: The top row shows that a mismatch occurs when we
start searching from trieT1. The bottom row shows that a copy of sub-sequence of an example can be
detected by starting from the next trie.

4.3.2 Forest of Tries

In a generic video filtering situation, there are other practical challenges.Such as when sequence

in the query is similar to some sub-sequence of an example, a naive implementationof the video filter

could fail.

To deal with this problem we build a forest of N tries numbered from 1 toN , each of maximum

depthD. For building the forest of tries any example from the database is first inserted in the trie 1,

after insertingD frames we move to next trie and so on. Finally we getN = ⌈L/D⌉ tries, whereL is

the length of longest example in the database.

While processing the query video stream we initially start from trie 1. If any mismatch happens

after starting from theith trie, then we again start from the(i + 1)th trie and continue until a sequence

from the query is accepted or we reach the last trie. We move to the first trie when a mismatch occurs

in the last trie or a sequence is accepted. By this we ensure that we do not miss any sub-sequence of

length ≥ F + D in the query (assuming that when correct frames are compared they do match). This

is because we can miss a maximum ofD initial frames of any example when a forest of depthD is

used.D (can vary from 1 toL) acts as a trade-off parameter between performance and time which can

be observed in our next experiment.
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Figure 4.5Example frames from the Commercial Videos used

An example of how forest of tries work is shown in Figure 4.4, the brown part of the input video

stream is a copy of sub-sequence of an example video in the database (brown colored nodes in the

forest). When processing starts from trieT1 it leads to mismatch as shown by red path. The actual copy

of sub-sequence of an example is found when we search by starting from the trie next toT1, i.e.,T2, as

shown by green path. Detecting copy of such sub-sequences of examples is not possible with a single

trie.

4.4 Applications

We now demonstrate the application of vocabulary trie on a spectrum of situations. We start by

demonstrating the applicability of this method to the detection and removal of a set of apriori known

commercials from a broadcast video stream. The task is to detect the possiblepresence of a sequence of

video frames which are identical or highly similar to those available in the database. In the second ap-

plication, we address the problem of detecting copies of videos where a larger set of transformations are

possible [72]. Our method allows the detection of copies of multiple videos in a single pass (processing

cycle). We then demonstrate the applicability of vocabulary trie in situations where relatively complex

concepts of human activity, is spotted in images and videos.

4.4.1 Commercial Removal

Removal of commercials (or a set of example videos) help in segmenting, summarizing, storing and

processing of broadcast videos [82, 143]. They are also an integral part of information retrieval systems

designed for broadcast videos. Identification of the examples could be done either manually or with

the help of audio-visual clues. Given a set of commercials, we index them into a vocabulary trie in

the offline phase and use it for detecting the presence of similar video segments from the “test” videos.
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Figure 4.6Scalability of Trie for detecting commercials in broadcast TV. (a) Time Vs No. of commer-
cials and (b) False positives Vs No. of commercials. One can observe the scalability of the system to
large number of examples

During indexing, we extract color histogram features and build an associated vocabulary by clustering

them using K-Means, to 500 clusters. The visual words (or the cluster indices) are then used to construct

the trie.

The trie is tested over a video sequence of 300 hours duration (or approximately 300 GB in MPEG)

captured from 10 different broadcast news channels. We detect thepossible presence of a commercial in

this video sequence in about a second (excluding the feature extraction time). The false positive rate of

detecting the commercials is about 28%. The false positive rate could be reduced further by using more

complex and discriminative features (see the next sub-section). Our methodscales to large number of

commercials without any significant loss in computational efficiency or the precision as demonstrated

in Figure 4.6. The exact time requirement depends on the percentage of commercials in the video

sequence. In our case, commercials occupied 16% time of the video duration.

To further evaluate the performance of the vocabulary trie on detection ofcommercials, we manually

ground truth-ed a database of 20Hrs with 250 commercials. In addition to the label, start and end

frames were also annotated. Some example frames from the commercial videosused can be seen in

the Figure 4.5. The detection performance of the commercials depends on various parameters. We use

F-score as evaluation measure, which takes both the precision and the recall into account. It is defined

as

F =
2 ∗ (precision ∗ recall)

(precision + recall)

In Figure 4.7(a), we demonstrate the effect of length of commercial on the detection rate. In general,

it is observed that longer the duration of the commercial, better the detection rate. For this experiment,

we have used the number of clusters (visual words) to be 500. Number ofvisual words used for rep-
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Figure 4.7Effect of (a) duration of commercials, (b) number of visual words on F-score and (c) Tem-
poral quantization parameterp on false-negative rate

resentation of the video sequence also affect the detection rates. In Figure 4.7 (b), we demonstrate the

effect of number of clusters on the detection rate. With increase in number of clusters, the detection rate

also increases.

Many practical situations for video filters require controlling of the false positive/false negative rates

depending on the application. As mentioned in the previous section Vocabulary Trie allows flexibility in

design, and thereby parameters which can directly affect these rates. We vary the length of the example

and query videos by groupingp consecutive frames together and obtain the word corresponding to

the mean of their feature descriptors. We demonstrate the variation of false-negative rate withp in

Figure 4.7(c). We can observe that false-negative rate increases withtemporal quantization parameterp.

Thus, it can be seen that the vocabulary trie allows efficient and scalablespotting of commercials in

a video stream with significant amount of flexibility on false positives/false negatives.

4.4.2 Content based copy detection (CBCD)

Content-based copy detection has received significant attention in recentyears due to its immediate

practical applications [65, 72]. On-line CBCD [168] is becoming an important problem, to filter dupli-

cates in multimedia collections. The vocabulary trie approach is directly applicable to the problem of

on line CBCD.

Popular methods for CBCD extract a small number of pertinent features (called signatures or finger-

prints) from images or a video stream and then match them with the database according to a dedicated

voting function [72]. An important requirement which has come to existence inthis problem is the capa-

bility to detect (or match) possible copies of multiple video clips with minimal computational overhead.

There are two important steps in solving this problem: (i) efficient methods forsimilarity computation

(ii) detection of copies by accumulating the similarity scores. State-of-the-artmethods focus on solving

the first part efficiently. Our method is also capable of addressing the scalability in number of videos to

be matched as demonstrated in the last section.
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In the CBCD setting, one needs to allow larger amount of variability for defining duplicates. A

copy could be a video clip which is modified in appearance (eg. color, contrast), geometry (eg.re-size,

cropping) or re-capturing (eg. perspective effects, overlaid text) etc. [73]. To accommodate these vari-

abilities, we use SIFT [84] and SURF [14] feature descriptors computed over interest points to describe

the frames. The visual vocabulary is built using hierarchical K-Means algorithm. In most situations,

vocabulary is constructed by quantizing the feature descriptors obtainedfrom example videos. In our

case, Trie is supposed to function on similar examples as well as large numberof non-example situa-

tions. Thus we tried introducing feature descriptors from non-example videos while quantizing. While

clustering we weigh the distance from non-example videos byα, a measure of importance. We build the

trie with a symbol/alphabet represented frames, which converts a video into asequence of sets (bags) of

visual words. Given two elements of the sequence,A andB, we define the similarity as:

Sim(A, B) =
|A ∩ B|

|A ∪ B|
(4.1)

In our first experiment on CBCD, we compare the performance of different features and trie param-

eters for a set of 1000 video clips. Original video clips were obtained from broadcast news channels.

Video clips were manipulated by blurring, adding noise, cropping, resizing, gamma correction etc. We

use average precision for performance evaluation as used in most of theCBCD tasks [64].

We compare the performance of the above two features and Trie parameters, and present the results in

Table 4.1. The input video stream is formed by 100 transformed example videos and videos not present

in the database which constitute a total of 46K frames when sub-sampled at therate of2fps. Times

reported do not include the time taken for feature extraction. It can be observed that the performance in

general improves with Vocabulary size,K. Results are also not much affected by increasing the number

of examples,N , to build the trie though the time of processing increases.

4.4.2.1 Experiment on MUSCLE-VCD-2007 database

For our second experiment we use MUSCLE-VCD-2007 database [73]. This database is composed

of about one hundred hours of videos spread over 101 different files and it’s ST1 query set is composed

Vocabulary Number of
Size (N=210) Examples (K=104)

Feature K Average Time N Average Time
Precision (secs) Precision (secs)

94 0.7273 59 100 0.7907 28
SIFT 104 0.7778 62 150 0.7799 44

114 0.8007 64 210 0.7778 62
94 0.7236 40 100 0.7633 20

SURF 104 0.7656 42 150 0.7647 30
114 0.7509 42 210 0.7656 42

Table 4.1Performance of Trie for copy detection
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Figure 4.8Examples of original and transformed video frames of Muscle data-set

of 15 videos of total length of about two and a half hours. Out of these 15videos, 10 are transformed

from some video in the database and rest five are not from the database.Some examples of original and

transformed frames from Muscle data-set are shown in Figure 4.8.

We use the ST1 query set as our database and join 101 videos from MUSCLE database to form a 100

hour input video stream. This is according to our objective of filtering largeamount of videos with the

help of trie which is built out of a relatively small set of example videos. Feature descriptors computed

over interest points of frames from 15 videos of the database (sub-sampled at the rate of0.5fps ) are

quantized into 10K visual words and a Trie or a Forest of tries is built as explained above.

Results of this experiment using Trie and Forest of tries are shown in table 4.2. We can see the

improvement in the performance by using Forest of tries. Performance improves by decreasingD in

case of Forest of Tries at the expense of time. We can observe in the tablethat it improves for SURF

and remains constant for SIFT. The above experiments show how our approach provides an efficient and

accurate solution to the problem of CBCD.

Mean Trie
Score Forest

Feature Average Time D Average Time
Precision (secs) Precision (secs)

50 0.9011 86
SIFT 0.8182 19 100 0.9011 51

200 0.9011 26
50 0.9011 35

SURF 0.8012 9 100 0.8182 21
200 0.8012 11

Table 4.2Results of Copy Detection on MUSCLE data-set
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4.5 Summary

In this chapter, we have addressed a problem of video stream filtering given a set of example videos.

Our method is example-based where visual content to be detected or filteredis characterized by a set

of examples available apriori. We approach this problem in a manner complimentary to that of video

retrieval. The given set of examples (traditional queries) which indexedin the database. The larger

video collection, which needs to be processed, is unseen during the off-line indexing phase. We have

proposed a trie-based architecture,Vocabulary Trie, for content-based processing of video streams. This

architecture allows simultaneous spotting (or matching) of example videos in a stream of video frames.

We demonstrate the applicability of our architecture for commercial removal and content based copy

detection (CBCD).
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Chapter 5

Video Mining

5.1 Introduction

Large video repositories are becoming omnipresent. Content based analysis of such collections is

challenging. Processing these videos is computationally costly, error prone and difficult to scale up. The

necessity of content based access has triggered research in visual recognition with newer data-sets, cate-

gories, and computationally efficient methods [114, 137, 139]. Many approaches have been proposed for

different problems of video analysis including activity recognition, visualsearch, movie/sitcoms anal-

ysis and visual mining. Most of these methods are supervised and requires labeled examples at some

or other level. To make it feasible on large collection of videos, unsupervised and weakly supervised

approaches are desired as argued in many of the recent works [76, 169].

In this work, our objective is to mine the videos in order to discover or detectimportant patterns.

We discover characteristic patterns in videos based on frequency of occurrence of scenes, actors and

sequence of frames, in an unsupervised setting. With our approach, weare able to detect the represen-

tative scene and main characters of movies. Going beyond objects and people, we extend our work to

mine frequent video sub-sequences. We define“video stop-words”and present a method for detecting

them in broadcast news videos.Video stop-wordsare analogous to stop-words in text classification and

search. We definevideo stop wordsbased on frequency of occurrence of sub-sequences in videos over

the period of time and across different news channels in Section 5.3.3. Detecting them can assist in

removing redundancy in videos.

Movies are fascinating data sets with significant visual variation and diversity. In movies, certain

scenes, main characters or objects appear more frequently than others.Characteristic patterns in movies

could convey a lot about the visual content and major theme of the video. Weaim to discover these pat-

terns directly from the video. The pattern of interest could be individuals,scenes etc. In Section 5.3.2,

we do automatic labeling of characteristic scenes and main actors in movies. Ourapproach successfully

extracts the characteristic patterns (scenes and people) from our movie database. The characteristic

scene discovered from the movie database could vary significantly in visual content. Movie charac-

terization through such mining or otherwise can help a great deal in building movie recommendation
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Figure 5.1Frequent Pattern Mining in Video: Feature descriptors of frames are quantized to build vo-
cabulary in offline phase. During online processing, video is represented as a transactional (or sequence)
database, which is mined using Frequent Pattern Mining algorithms.

systems which to date are manual or semi-automatic requiring comprehensive human intervention. An-

other application is to mine patterns for sociological studies. The techniques are generic and are widely

applicable in other category videos.

In broadcast news videos, many events like breaking news and commercials occur repeatedly. Such

frequentitemsor sequencecan be used for automatic characterization and understanding videos. Our

goal is to efficiently detect frequently occurring sequence of frames in the news videos. This requires

partial or complete matching of frames or sequences of frames of variable lengths from different parts of

the videos. It is also desired that the method is robust enough to deal with thesituations when sequences

are repeated with few extra or fewer frames, but with ordering preserved. The challenge is to detect

these sequences very efficiently.

Mining the visual content and thereby characterizing videos, has been attempted in the recent past.

Sivic and Zisserman proposed a video mining approach in [139] to obtain principal objects, characters

and scenes. Frequently occurring spatial configurations of featureswere found using clustering algo-

rithms, rather than any frequent itemset mining schemes. Very few works have tried to adapt traditional

data mining methods for visual data [114, 154]. The objective has been, often, to find the most frequent

spatial configuration of points (eg. a building) from large number of videoframes. Mining in visual

data has been complemented by the processing of associated text (subtitles)[44] and speech [154] com-

ponents. Our method relates to visual recognition as well as data mining. In thissense, the closest to

our work is that of Quack and Gool in [114]. They usefrequent itemset miningfor finding frequently

occurring configurations of features for mining frequently occurring objects and scenes from videos.

They also apply frequent itemset mining: (a) on instances of a given object class to assist in object de-

tection [115], and (b) for mining object and events from community photo collection [116]. Nowozinet

78



al. in [102] introduced discriminative subsequence mining to find optimal discriminative subsequence

patterns. Rather than focusing on objects or point configurations, our primary interest is in scene char-

acterization, based on a global set of features. We also design the mining scheme to suite large video

collection, as required in our case.

We employ two different video mining schemes; that are aimed at detecting frequent and representa-

tive patterns. For one of our mining approaches, we use an efficient frequent pattern mining algorithm

over a quantized feature space, as in the case of visual bag of words methods. In our second approach we

suggest a sequence representation of videos based on Random Forest [21] and propose to mine frequent

sequences. This mining approach is also based on clusters by randomizedtrees.

The remainder of this chapter is organized as follows. We explain our two mining approaches in

the next section. Then we evaluate and compare these approaches quantitatively in Section 5.3.1. In

Section 5.3.2, we present our results on movies and show results for discovering characteristic scenes

and main characters in movies. In Section 5.3.3, we definevideo stop-wordsand present the method to

detect them. We demonstrate the accuracy and efficiency of the proposedapproach by experimenting

on a broadcast news video data.

5.2 Our Mining Approaches

For mining videos, we represent features in quantized code-books. This has been popular for many

recognition, retrieval and classification tasks [19, 111, 137]. Representing video frames using code-

books helps in accommodating the uncertainty of the visual description while retaining the essential

discriminative information. We employFrequent Pattern Mining(FPM) [5, 7] to extract frequent se-

quence or items from videos.

In FPM, a set of patterns (transactional database) and minimum support threshold are given. Pat-

terns are some or other form of collection ofitems such as itemsets [5], item sequences, sequences of

itemsets [7]. The task is to find all the frequent patterns whose frequencyof occurrence is no less than

the minimum support threshold.Frequent Itemset MiningandFrequent sequence miningare special

cases ofFrequent Pattern Mining. In FIM transactions are set of items and in FSM they are sequence of

items or itemsets. We say that a transaction supports an itemset (in case of FIM)or sequence (FSM), if

itemset is sub-set or sequence is sub-sequence of the transaction. Transactional database is more popu-

larly known as sequence database in case of FSM. Frequent sequence mining [7] has been successfully

applied to several large-scale data mining problems such as market basketanalysis or query log analy-

sis [5]. Many algorithms have been proposed in the literature for solving FIM as well as FSM such as

APriori [5], PrefixSpan [109], SPADE [176] etc.

In our first approach we use an FPM methods over video frames represented based on vocabulary

built by K-means clustering. We then propose sequence representation for frames/images using nodes

of randomized trees. We consider this representation using Random Forest for following reasons:

• Ensemble of clustering trees are able to find natural clusters in high dimensional spaces [94].
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• Random Forest leads to more efficient clustering and less memory usage than k-means based

algorithms.

• The existence of an implicit hierarchy in the trees can take care of partial matching of samples.

For large number of trees this sequence becomes very long and can not be mined efficiently usingPre-

fixSpanalgorithm. Therefore we proposeRandomized Mining Forestin Section 5.2.2 to mine frequent

patterns from such sequences. We discuss them in detail in the rest of thissection.

5.2.1 Visual Frequent Pattern Mining

Our approach of mining videos is illustrated in in Figure 5.1 as the online and offline phases. In

offline phase, features are extracted from example frames and quantized by k-means to build vocabulary.

During online phase, input data is assigned the visual words. Each frameor shot represented by visual

words makes a transaction (or sequence) and thus transactional (or sequence) database is built. Frequent

itemsets or frequent sequences are then mined from it using FIM or FSM algorithms.

We now state the problem of mining frequent sequences in video when frames are represented as

items or set of items and shot as a sequence. In other similar cases, for example when frame is itself

a sequence or transaction this can be modified accordingly. LetV = {w1, w2, ..., wk} be the visual

vocabulary ofk visual words. A frame,φ , is represented as a visual word or unordered set of visual

words,φ = (w1, w2, w3, ..., wm) andφ ⊆ V. A sequence is an ordered list of such frames.

A sequence of frames,Φα = (φα1 → φα2 → ... → φαp), is said to be sub-sequence of another

sequenceΦβ = (φβ1 → φβ2 → ... → φβq), Φα � Φβ , if there exist integers1 ≤ j1 < j2 < ... <

jp ≤ q such thatφα1 ⊆ φβj1 , φα2 ⊆ φβj2 ...,φαp ⊆ φβjp
. A video is represented as a database of shots.

Any sequenceΦ is valid if Φ � si, i = 1...N , wheresi is a shot andN is the number of shots in the

video. The relative support of a sequence,Φ, in a video or shot database,D, is the ratio of number of

sequences containingΦ to the number sequences present in the database.

supportS(Φ) =
|{(si ∈ D)|(Φ � si)}|

|D|
∈ [0, 1] (5.1)

A frame sequenceΦ is called frequent inD if supportS(Φ) ≥ min sup wheremin sup is a threshold

for the relative minimal support.

We obtain frequent sequences of frames by using PrefixSpan method. It is more efficient than APriori

based methods for mining sequential patterns [163] and particularly for lowermin sup values. In case

of videos even if a sequence of frames repeats for only a few times it wouldbe considered frequent.

Therefore we use PrefixSpan algorithm for our purpose of mining frequent sequences of frames in

videos in Section 5.3.3. Corresponding to each frequent sequence,Φ, we have an ordered set of visual

words (frequent itemset),VΦ = {w1, w2, ..., wn} and a set of tuplesM < sid, F >, wheresid is

shot-id,F is ordered set of frames in the shot andM is the absolute support ofΦ in the video.

When frame is itself a set of items (or transaction) i.e. no sequential informationis used (as in

Section 5.3.2.1) then it is a problem of FIM. The above formulation can be modified accordingly by
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Figure 5.2Randomized Mining Forest of T trees built without supervision. Each samplewhile descend-
ing updates the counts of the nodes in each tree. The paths traversed by asample in each tree, shown in
yellow, are concatenated and used as a sequence representation of thesample.

representingΦα as set of items/itemsets and replacing� by ⊆ in equation 5.1.APriori algorithm is

used to get frequent itemsets,Φ, andVΦ andF are orderless.

Now we discuss an alternative and more efficient approach using randomized trees.

5.2.2 Randomized Trees for Mining Videos

Random Forest was introduced in Machine Learning literature by Breiman [21] for classification

and regression, and is shown to be comparable with boosting and supportvector machines. They have

become very popular in the computer vision community. Many papers have applied them to various

classification, segmentation and clustering tasks [20, 94, 133]. Moosmannet al. [94] proposed an ef-

ficient clustering scheme using randomized decision tree. Shottonet al. [133] simultaneously exploit

both classification and clustering for segmentation and categorization.

We use ensemble of randomized trees for fast clustering and also make useof tree hierarchies in the

way similar to [94, 133]. Each tree is built in an unsupervised manner using arandomly selected subset

of the training data. At each node a split function that most evenly divides the data is used i.e., each

sample is considered to belong to a different class. Entropy at any nodeNi with Xi number of sample

is given as,E(Ni) = log(Xi).

The tree growing procedure is described as follows:

• At each internal nodeF node-functions are randomly selected. Here we consider 3 types of

node-functions: (a) single feature component, (b) difference of two components and (c) linear

combination of few components of the descriptor.

• For each node-function, we need to determine a threshold that best splits (most evenly) the data

reached to this node.
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• The combination of node-functions and threshold that gives maximum information gain is se-

lected.

When a sample (say a keyframe) is pushed through a tree its path from rootto leaf node makes a

sequence of nodes. Such sequences of nodes from all the trees areconcatenated (Figure 5.2) to represent

the frame as an item sequence. Applying FSM on such a sequential database would give us the frequent

set of paths across the trees. Similar frames may not reach the same leaf node or may not have long

enough common path or prefix sequence in some trees. Using ensemble ofT (around50) trees handles

this as similar frames are expected to have enough number of common paths across the trees. With the

proposed sequences (using path not just leaf) partial matching can be taken care of when FSM is applied

because of tree hierarchies.

Since we use each node as an item, set of all nodes becomes our vocabulary (V). Each frame is

represented as a sequence of such nodes,n ∈ V. Consider a frequent sequence extracted by FSM from

this sequential database,

seqfreq(i) = {ni
11 → ni

12 → ... → ni
1L1

→ ni
21 → ... → ni

TLT
} (5.2)

whereni
tj is jth node inseqfreq(i) from tth tree andni

1L1
is the last node coming fromtth tree in

seqfreq(i). Note thatni
1L1

need not be a leaf node. It is equivalent to represent these frequent sequences

by only last nodes:

seqfreq(i) = {ni
1L1

→ ni
2L2

→ ... → ni
TLT

}

So, set of frames supporting frequent sequenceseqfreq(i) can be given as:

̥Freq(seqfreq(i)) = {C(ni
1L1

) ∩ C(ni
2L2

) ∩ ... ∩ C(ni
TLT

)} (5.3)

whereC(n) is the set of frames passing through noden. We extract set of allmaximal frequent se-

quences, Fmax. A frequent sequence is maximal if it is not a subsequence of any other frequent

sequence. Support ofseqfreq(i) according to the definition of FSM would besuppT (seqfreq(i)) =
|̥Freq(seqfreq(i))|

|D| . Support of all sequences inFmax has to be greater than minimum support threshold,

minsupp. Frames supporting any frequent sequence fromFmax are frequent or characteristic frames.

Set of such frames is given by:

Γ =
⋃

Fmax

̥Freq(seqfreq(i)) (5.4)

5.2.2.1 Randomized Mining Forest

With T in range of50 − 100, the sequences become too long for PrefixSpan algorithm to compute

FSMs efficiently. Computational time exponentially increases with number of trees or length of se-

quence. We suggest Random Forest based solution to find Frequent frames in a given movie. Keyframes

(or features) of a video to be mined are passed through the built forest. The paths followed by each frame

and number of samples reaching at each internal and leaf node are stored. We call this ensemble of ran-

domized trees with above details of a given video as aRandomized Mining Forest(RMF). Figure 5.2
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illustrates an example of RMF. The node tests are learned from a sub-set of dataset consisting of several

videos. Such a set can be thought to have a number of complex classes (of say scenes). When a frame

reaches to a node in RMF it belongs to some hypothetical class with some probability. Therefore, the

item-sequence generated by RMF can be seen as a sequence of probabilistic items.

We here suggest a method to mine videos and find frequent frames approximately as given by equa-

tion 5.4. In each frequent sequenceseqfreq(i) we go down the trees after last node (ni
tLt

) to some

node,ni
tExt

that has highdepth normalized frequency(explained below). Thus we get a new sequence

seqext
freq(i) = {ni

1Ex1
→ ni

2Ex2
→ ... → ni

TExT
}, whereni

tExt
≥ ni

tLt
. By extending like this or going

further down the trees, frames left in the deeper nodes are mutually more similar. Set of these extended

sequences are extended maximal frequent sequence.Depth normalized frequencyof a noden is given

asdepF (n) = |C(n)|
2H−d , whereH is height of the tree andd depth of noden. To findnext, nodes with high

depF we start from leaf nodes. In each treet, M leaf nodes with highestdepF are selected at first as

a member of set of frequent nodes. Meandepth normalized frequencyMdepF of the selected nodes is

computed. Then we move to the parent of each of the selected nodes and if any of the parent hasdepth

normalized frequencygreater thanMdepF then child is replaced by the parent. This is done iteratively

until no parent satisfies the above criteria to get final set of extended frequent nodesN from all the trees

in RMF.

Set of frequent or characteristic frames from the given video can be approximately given as:

ΓExt =
⋃

n∈N

C(n) − {freq(fj) < τ |fj ∈
⋃

n∈N

C(n)} (5.5)

wherefreq(fj) number of occurrences of framefj in N which should be greater thanτ . We define

support of a frequent framefj ∈ ΓExt as:

suppT (fj) =

⋃

n∈Nfj
C(n)

|ΓExt|
(5.6)

whereNfj
are those frequent nodes through whichfj passes.

In summary, we approximate equation 5.4 by equation 5.5. We go further downfrom a last node

(ni
tLt

) to some node with high enoughdepF . This node will be traversed by a subset of frames that

reached node,ni
tLt

. The frames reaching to the extended node are expected to be mutually more similar

and also frequent. The idea is that when we take union of set of frames reaching the extended nodes we

get a set of nodes approximately similar to that given by equation 5.4. We of course take out those frames

that do not occur frequently in set of extended nodes (N ) in equation 5.5. We quantitatively evaluate

RMF in Section 5.3.1 and apply for mining characteristic scenes from the moviesin Section 5.3.2.

5.3 Experiments and Results

In this section, we first quantitatively evaluate the effectiveness of our approaches and compare them

on the grounds of accuracy and efficiency. Then we present our experiments on movie and news videos

with results for identifying characterisitc scenes and main actors, andvideo stop-worddetection.
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Figure 5.3Performance of different approaches for ranking.

5.3.1 Quantitative Evaluation of Mining Approaches

The goal of this experiment is to find the frequent object class categoriesin a given database. Since

we do not have the groundtruth for large movie and news datasets, we useVOC 2007 [45] as database

for the quantitative evaluation. It has 20 object categories such as person, boat, car etc. The dataset

also provides bounding box level ground truth for each object instance. The task is to automatically

rank these object instances such that the more frequent categories arehigher in the ranked list. For

representation of object bounding boxes we use Phog [20] descriptor. Here we analyze and compare our

mining approaches experimentally for finding frequent patterns. We also compare them with k-means

as a simple baseline.

K-means:In our baseline method we quantize the Phog descriptors by k-means and represent each

sample by the cluster ID. Now the samples are ranked based on the size of thecluster they belong to and

the ones belonging to larger clusters are ranked higher. Samples belonging to same cluster are ranked

based on their distance from the cluster center.

K-means (soft assignment) + FIM:Here each sample is represented by a set of cluster IDs. Set

includes the nearest cluster and the clusters having distance not more1.05 times of the distance from

nearest cluster. These sets can be seen as transactions and cluster IDs as items. We apply FIM on such

a transactional database to find frequent cluster ID sets. Each sample is assigned to the largest cluster

ID set which it supports. When a sample supports more than one sets of samesize then it is assigned to

that set of clusters which have least mean distance from it.

Randomized Mining Forest (RMF):This is the approach described in Section 5.2.2. Each sample

is represented by the sequences of nodes traversed till leaf node in each tree. We build Random forest
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Figure 5.4 Top: Clustering time is too high compared to the time taken to build forests, which takes
only about 90 seconds to built 20 trees; Bottom left: Best scores by the baseline and our two methods;
and Bottom right: training RMF is about 20 times faster than clustering for k=500, when k-means+FIM
reaches its best range of ranking score.

of 20 trees with50 features,15 thresholds at each node and maximum depth is set to20. Therefore,

the length of each transaction is about400. Samples are ranked according to their support given by

equation 5.6.

Let class ofrth sample in the ranklist (i.e. sample having rankr) is given asC(r). Frequency of an

object classesc is given as

Freq(c) =
number of samples of class c

N

whereN is total number of samples in the dataset. The ranklist-score is computed as,

ranklist-score=
1

N

N
∑

r=1

Freq(C(r)) × (N − r + 1) (5.7)

There are12839 object instances in VOC 2007trainval+testdata (we do not include truncated ex-

amples). In addition we randomly take bounding boxes (6642 samples) from background which do not
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overlap with any object instance. Frequency of these samples is set to zero (Freq(c) = 0). According

to equation 5.7 for 19481 samples the expected ranklist-score of a randomranking would be702.

Figure 5.3 shows the results of applyingK-meansandK-means+FIM for ranking these samples.

With minimum support greater than100, K-means + FIMmethod achieves higherranklist-scoreat

almost all values ofK. We get better results with larger number of clusters withK-means+FIMmethod.

UsingRMF we get scores ranging in750 to 847 with different values ofM . Figure 5.4 compares the

baseline and our two methods for efficieny and performance. Both our methods perform better than the

baseline. Best score byK-means+FIMis higher than that ofRMF. But it requires quantization into large

number of clusters, which takes significantly more time than that for training RMF. The advantage of

RMF comes in efficiency as building random forest is much faster (approx. 4.5seconds per tree). The

speed is critical while processing on large datasets as we do in the next section.

5.3.2 Movie Characterization

Figure 5.5Some examples from the dataset

The dataset for the experiments in these section includes 81 Oscar winning and nominated best

movies over the last 60 years ranging from 1950 to 2008. These movies form a good mixture and subset

of the huge number of movies available. The genres, directors and other movie details of the dataset

were taken from Internet Movie Database (IMDB, [1]). Figure 5.5 shows some example keyframes from

the database.

5.3.2.1 Characteristic Scenes of the Movie

In this experiment we apply our method to identify characteristic scenes of thegiven movie. We

extract GIST [104] features from the key-frames to encode the globalinformation. About 50 thou-

sand keyframes are selected at random from the dataset of81 movies for feature extraction. Using the

extracted features the feature space is quantized into1000 bins by K-means clustering algorithm. In

movies, frames belonging to same shot are generally very similar so we do notrepresent frame as a

transaction. Here we represent a shot as a transaction of frames (items)and do frequent itemset mining

to find frequent keyframes. Support of a visual word is computed as number of shots it occurs in divided

by total numbers of shots in the movie. Certain scenes such as people speaking, road, room etc. are
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Figure 5.6 Some examples of characteristic scenes retrieved from movies Braveheart, Lord of The
Rings: The Return of The King, Sixth Sense and Chicago (from top to bottom).

very common in the movies. So support computed from a movie is taken asterm-frequency (TF)and

the inverse document frequency (IDF)is computed by applying FIM on all the movies together. So the

TF/IDF support of any visual word (W ) in moviem from datasetM is given by

support(W ) =
supportm(W )

supportM (W )

Another experiment is done to detect characteristic scenes of the movie butwith each frame repre-

sented as a sequence of items as explained in Section 5.2.2. The items are the IDs of the nodes traversed

by the frame when pushed down the RMF. Each frame is represented as a sequence of items or nodes.

We used ensemble of100 randomized trees, number of features and thresholds tried to create node-test

at each node are100 and15 respectively.

Figure 5.6 shows some examples of characteristic scenes retrieved from our movie database. First

two rows show some examples of results by our first approach using FIM.Corresponding to each visual

word we have many frames and shots. The figure shows six keyframes for a movie each representing

one of the top 6 words from that particular movie. Last two rows in Figure 5.6shows some examples of

characteristic scenes retrieved by RMF.

Braveheartis an action, drama movie which has many war scenes in it, this can be seen in the

retrieved keyframes. Similarly for theLord of The Rings: The Return of The Kingwhich is again an

action, adventure, fantasy movie. Genre forSixth Senseis a drama, mystery, thriller andChicagois

a musical, drama and crime movie. The characteristic scenes retrieved by ourapproach also suggests

the same. We conducted the experiment for all81 movies and got relevant keyframes as characteristic
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Figure 5.7Main character discovered from the moviesRocky1, 300, All About Eve, Slumdog Millionaire
andA Beautiful Mind.

scenes. In films without much action, adventure or music mostly main charactersare visible in the

characteristic frames.

5.3.2.2 Identifying main characters in the Movie

The characteristic scenes can be used to predict the genre of the movie, inmovie recommendation

systems etc. Here we use these keyframes to predict the main character of the movie. Everinghamet al.

[44] have investigated the problem of automatically naming the characters in TVor film material. They

do this by aligning subtitles and transcripts, and complement these cues by visually detecting which

character in the video corresponds to the speaker.

We only use the key frames corresponding to most frequent visual words to find the main characters

of the movie. Face detection and facial feature localization is done on these characteristic key frames.

We start from the visual word with highest support and detect no more than 100 faces. Only faces larger

than100 × 100 are considered. The face descriptors are extracted from detected faces using Oxford

VGG face processing code [44]. These face descriptors are clustered into8-15 clusters by k-means.

Then each of the cluster is pruned by removing all the faces which are at adistance greater thanD from

its cluster center.D is computed as the mean of the distances of faces from their cluster centers.Clusters
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having faces only from nearby shots are rejected as the main character should be present at many points

throughout the movie. It is desired to have smaller clusters with many members. Wecompute the cluster

density as a summation of inverse of distances of all cluster members from the center. Cluster density

for clusterc is given as:δ(C) =
∑

i∈C
1
di

.

Only the most dense clusters are returned as the set of instances of main characters. Figure 5.7

shows the keyframes from the most dense clusters for moviesRocky1, 300, All About Eve, Slumdog

Millionaire andA Beautiful Mind. This works well as the characteristic scene mostly include many

instances of main character’s close-up face.

5.3.3 Video Stop Word Detection

Stop words in a language are words that many search engines do not stopfor when searching for

texts and titles on the web. These are common words, such as “the”, “are”,“is” etc. Similarly in text

classification, elimination of stop words potentially increases the accuracy, reduces the feature space

and helps to speed up the computation [134].

In videos too, certain sequence of frames repeatedly occur, motivating us to address the similar prob-

lems in videos. In videos, repetition could be either absolute or approximate. Examples are commercials

in TV programs and news or routine events in surveillance videos. It is desired to detect/remove such

redundancy for many applications like video summarization, and search.

We definevideo stop wordas the frequently occurringsequence of framesthat are not informative.

For example advertisement can be avideo stop word. The frequency of occurrence of a sequence in a

video gives us theTF part based on which we select frequent sequences or potentialvideo stop-words.

We useIDF to classify it asvideo stop-word. To computeIDF for any sequence, we use frequency with

which it occurs in news videos across different channels. Higher theIDF measure more is the probability

that the frequent sequence is a commercial. This works fine as commercials occur frequently in all the

channels and consistently for large intervals.

A typical news video would mostly contain important news or commercials in its set of frequent

sequences. Therefore when detectedvideo stop-wordsare removed from the set of frequent sequences

and we get theinformative contentof the video. This is shown in Figure 5.8, based onIDF measure

frequent sequences extracted from video are classified asvideo stop-wordor informative part of video.

Thus thevideo stop-worddetection results can be used to: (a) block undesirable content and (b)

summarize video with only important content. The latter can be done by computing the information

measureof each shot,Ssid as:

ΓSsid
=

∑

F∈Ffreq

sign(F ) ∗ support(F ) ∗ |F | (5.8)

sign(F ) =

{

−1 if F ∈ stopword

1 otherwise

whereFfreq is a set of frequent sequences in shotSsid andF is a frequent sequence inFfreq. Therefore,

more informative shots can be kept in the summary by keeping a threshold onΓsid.
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Figure 5.8Stop word detection from video using Frequent Sequence Mining

5.3.3.1 Experiments

Experiments are done on news videos obtained from eight broadcast news channels. For estimating

IDF measure, videos from these channels are mined over five days (100 hours) and extracted frequent

sequences with their frequency of occurrence (IDF) are stored. While testing theseIDF values are used

to separate commercials from the rest of the frequent sequences obtained in the set of test videos. For

testing 1000 news video clips of total duration of 10 hours are used. Newsvideos have lot of overlaid

text in its lower one-third part, which affects the feature descriptor and similar frames are assigned

different visual word or item. To handle this we only extract features from the upper two-third part of

the image.

We partition news video clips into shots and pick four frames per second withineach shot. The

ground truthing is done at the frame sequence level, each manually annotated frequent sequence is

marked asvideo stop-wordor informative content. This resulted in91 frequent sequences out of which

68 were marked as visual stop-word and remaining23 as informative content.

We use precision and recall to evaluate the detection performance. Precision and recall forvideo

stop-worddetection are computed as follows:

Precision =
# true visual stopwords detected

# total visual stopwords detected

Recall =
# true visual stopwords detected

# total true visual stopwords
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Vocabulary Frequent sequence Video stop-word Informative Content
size Precision Recall Precision Recall Precision Recall
100 0.63 0.57 0.67 0.59 0.55 0.52
200 0.81 0.68 0.87 0.71 0.67 0.61
500 0.87 0.78 0.93 0.79 0.71 0.74
1000 0.97 0.91 0.98 0.94 0.90 0.83
2000 0.98 0.90 0.98 0.93 0.95 0.83

Table 5.1Precisions and recalls for frequent sequence,video stop-wordand informative content detec-
tion with different vocabulary sizes.

Sometimes due to disturbance in the telecast, few frames get transformed. A detection is considered to

be true if the overlap between detected sequenceFDet and annotated sequenceFGT is more than 90%.

Overlap is given by|FDet∩FGT |
|FDet∪FGT | . Figure 5.9 shows some examples of detectedvideo stop-words.

For the experiments we setmin sup = 0.005. The performances for detecting frequent sequence,

video stop-wordand informative content in terms of precision and recall are reported in Table 5.1. The

precisions are high as it is difficult to get false frequent sequences when large enough vocabulary is

chosen. With vocabulary size of 1000 and above, recall and precisions are high for all three cases.

Precision always increases with vocabulary size. However recall starts decreasing with too much quan-

tization. This is because with more number of clusters a slight variation in a framecan assign it to a

different cluster, which may lead to false negatives. Some of the examples of detected commercials as

video stop-wordis shown in Figure 5.9.

Also the method is very efficient. In the online phase features are extractedat 150 fps and visual

words are assigned at250 fps with vocabulary size 1000. For mining76, 000 sequences of average

length 100 it takes about40 seconds. This shows that the proposed method is scalable and can be

effectively used for real-time on-line applications.

5.4 Summary

We have presented an approach to discover characteristic patterns in videos in an unsupervised fash-

ion. Our method is based on finding frequently occurring patterns. One ofour approaches employs

frequent pattern mining for efficient characterization. We also proposeto use randomized trees to rep-

resent frame as sequence of nodes and mine frequent sequences from a database of long sequences.

To evaluate the proposed methods we compare them with each other and with a simple baseline. The

approach is validated by experiments over a large movie dataset to discovercharacteristic scenes and

main actors in the video. We also definevideo stop-wordsand detect them using frequent sequence min-

ing. Stop words are identified usingTF-IDF type measure for frame sequences. Traditional methods

from data mining have been successfully used in computer vision and such techniques can result in fast,

efficient algorithms for large scale video processing.

91



Figure 5.9Some examples ofvideo stop-worddetection



Chapter 6

Conclusions

6.1 Summary

In this dissertation we have explored different aspects of visual processing in images and videos. Our

objective is to achieve efficiency along with accuracy. The following summarizes the key contributions

made:

• A state-of-art object detection and classification framework based on Random Forests is devel-

oped and evaluated. We have combined different types of feature descriptors based on bag of

visual words and gradient orientations. We have carefully selected all the major components of

such a framework, investigating features for visual representation, spatial grids, bootstrapping,

post-processing, different parameters of random forest and slidingwindow detector. The evalua-

tion was performed using multiple datasets with many object and scene categories. We have used

a combination of different visual features with random forest for the high-level feature extraction

task of TRECVID’08. On Pascal VOC’07 challenge our method achievesbetter performance

than by the team ranked 1 did in the competition. We have shown that Random Forest classifier

can be used for fast and accurate classification and object localization. Running the detector over

large dataset of about 200 thousand key-frames in TRECVID’09 was only possible due to the

fast training and testing of random forest. We also proposed Extended ROIs for classification by

detection, which allows us to use only one aspect ratio and still cover for large range of aspect

ratios while testing.

• We have proposed an architecture,Vocabulary Trie, for online content based processing of con-

tinuous stream of videos to detect video segments of interest. It is based ontrie and bag of words

model to simultaneously match multiple video segments in the database with the large input video

stream. We focus on enhancing the throughput of the system and for the same we need the al-

gorithm capable of simultaneous spotting of multiple examples. Our formulation alsoeffectively

utilizes the sequence information of the video stream, rather than treating it as aset of frames. To

handle generic video filtering situation and address other practical challenges we propose Forest
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of Tries. Our approach is generic and applicable for many applications that need matching video

sequence. We have demonstrated this by doing content based copy detection (CBCD) experiments

on MUSCLE VCD 2007 and broadcast news database.

• We have presented an approach for mining characteristic patterns in videos in an unsupervised

fashion. Mining is done based on frequently occurring patterns in the video, some possible pat-

terns can be scenes, characters or sequences of frames. In one ofour approaches we apply frequent

pattern mining algorithm to visual data. Our second approach uses randomized trees to represent

frames or images as a sequence of items and finds the frequent ones. We could discover char-

acteristic patterns and main actors of movie using frequent itemset mining. We also defined and

detectedvideo-stop wordsin broadcast news videos.

6.2 Future Work

The following perspectives for extension of the work presented in this thesis seem worth investigat-

ing:

• In our detection results on VOC datasets we observed many false negatives or missed detection

due to truncation and occlusion. Also when the object is very small or with lot of articulation

detections are missed. There has been efforts [48, 162] towards findinga way to handle such

difficult cases. But still state of art is far from what is desired. Our next step is to work on dealing

with the cases of truncation and occlusion.

Given the fast training and testing of random forests it would be interestingto apply them on

videos (with other tracking algorithm) for tracking objects by detection. Continuous improvement

of classifier by online learning of trees can be a promising.

• Processing of on-line video sequences for information extraction and data mining has many sig-

nificant applications in video scale-invariant retrieval. We are working towards designing appro-

priate processing (indexing, matching, ranking) architectures for information retrieval tasks from

broadcast and other similar on-line video streams. One of the challenges in obtaining real-time

solutions to the on matching in large line processing tasks is the computational efforts required

for feature extraction and matching. Our proposed architecture,Vocabulary Trie, is highly paral-

lelizable and a GPU based implementation can speed up the solution significantly.

• Frequent pattern discovery in visual data has potential for many extensions and applications.

For example in content based retrieval, it might be worthwhile to use mining to learn structural

patterns of features for a given query on-line.
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