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Abstract

Scene Classification has been an active area of research in Computer Vision. The goal of scene
classification is to classify an unseen image into one of the scene categories, e.g. beach, cityscape,
auditorium, etc. Indoor scene classification in particular is a challenging problem because of the large
variations in the viewpoint and high clutter in the scenes. The examples of indoor scene categories
are corridor, airport, kitchen, etc. The standard classification models generally do not work well for
indoor scene categories. The main difficulty is that while some indoor scenes (e.g. corridors) can be
well characterized by global spatial properties, others (e.g. bookstores) are better characterized by the
objects they contain. The problem requires a model that can use a combination of both the local and
global information in the images.

Motivated by the recent success of the Bag of Words model, we apply the model specifically for the
problem of Indoor Scene Classification. Our well-designed Bag of Words pipeline achieves the state-
of-the-art results on the MIT 67 indoor scene dataset, beating all the previous results. Our Bag of Words
model uses the best options for every step of the pipeline. We also look at a new method for partitioning
of images into spatial cells, which can be used as an extension to the standard Spatial Pyramid Technique
(SPM). The new partitioning is designed for scene classification tasks, where a non-uniform partitioning
based on the different regions is more useful than the uniform partitioning.

We also propose a new image representation which takes into account the discriminative parts from
the scenes, and represents an image using these parts. The new representation, called Bag of Parts can
discover parts automatically and with very little supervision. We show that the Bag of Parts representa-
tion is able to capture the discriminative parts/objects from the scenes, and achieves good classification
results on the MIT 67 indoor scene dataset. Apart from getting good classification results, these blocks
correspond to semantically meaningful parts/objects. This mid-level representation is more understand-
able compared to the other low-level representations (e.g. SIFT) and can be used for various other
Computer Vision tasks too.

Finally, we show that the Bag of Parts representation is complementary to the Bag of Words represen-
tation and combining the two gives an additional boost to the classification performance. The combined
representation establishes a new state-of-the-art benchmark on the MIT 67 indoor scene dataset. Our
results outperform the previous state-of-the-art results [58] by 14%, from 49.40% to 63.10%.
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Chapter 1

Introduction

The amount of visual data has increased exponentially over the past few years. Major factors
for the rise being the advent of social networks (Facebook [16]), online photo/video sharing services
(Flickr [23], Youtube [74], Instagram [28]), increase in number of smart-phones, etc. With this tremen-
dous increase in the visual data, there is a need to extract and associate semantic information with the
data. The information can be of various types, for example assigning meaningful labels to images, lo-
cating objects, recognizing human activities, detecting faces, etc. One of these tasks is recognising the
scenes from an image, i.e. given an image, a computer should be able to tell what scene is depicted
in the image. It could be an outdoor scene (forest, cityscape), or an indoor scene (airport, kitchen).
From a human point of view, the problem looks easy, because of the complicated neural mechanisms
of perception taking place in the human brain. However for a computer, an image is just a set of pixels
without any high level semantic knowledge about what is present in the image, which scene the image
depicts. To solve this problem, Computer Vision and Machine Learning algorithms come into picture.

1.1 Problem Statement and Contributions

The objective of this thesis is to solve the problem of indoor scene classification. Given a predefined
set of scene categories, we would like to classify any unseen image into one of the scene categories. For
example, given the images in Figure 1.1, our algorithm should be able to say that the images are from
Dining Room, Bookstore and Corridor respectively. To evaluate our methods presented in this work, we
use the MIT 67 indoor scene dataset of Quattoni and Torralba [49]. We make two major contributions
in our work. First, we investigate the popular Bag of Words pipeline [59] for the scene classification
task. We design it specifically for scene-classification by choosing the best options at each step of the
pipeline. Our pipeline is able to achieve state-of-the-art results for Indoor Scene Classification. But,
we feel that the bag of words is not able to capture the distinctive objects and structures. These objects
are semantically meaningful and help in building a better scene recognition pipeline. For example, an
auditorium image consists of chairs, bookstore consists of books, grocery store consists of food items.
Motivated by this observation, we propose a new model which discovers the distinctive parts in the dif-
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ferent scenes and use them to represent the images. We call it as the Bag of Parts model. This is second
contribution of our work. We show that the Bag of Parts representation indeed captures semantically
meaningful and distinctive elements from different scenes, and achieves good classification results. We
also show that this representation is complementary to the Bag of Words representation, and combin-
ing the two representations gives an additional boost in the classification performance. The combined
representation establishes a new state-of-the-art benchmark on the MIT 67 indoor scene dataset.

(a) Dining Room (b) Bookstore (c) Corridor

Figure 1.1: Example images showing three different scene types: (a) Dining Room, (b) Bookstore, (c)
Corridor.

1.2 Challenges

We discuss some of the challenges faced while solving the Scene Recognition problem. Some of
these challenges are common to other computer vision tasks also.

• Viewpoint changes

Images of the same scene taken from different viewpoints can change the appearance of the scene.
These kind of changes can be induced because of the different position of the camera while taking
pictures. Figure 1.2 shows images of auditorium taken from different viewpoints.

• Illumination

Illumination variation is one of the common problems which can cause large variations in the
intensity values of the pixels, which makes the recognition task difficult. The major cause for
illumination variation is different lighting conditions while taking the pictures.

2



Figure 1.2: Viewpoint Variation. Images of auditorium from different viewpoints. The example
shows that the viewpoint can cause large variation in the appearance of the scene.

• Inter-class similarity and Intra-class variation

The images belonging to different scene categories can look quite similar to each other (Inter-
class similarity). On the other hand, images belonging to the same category can have a lot of
variations (Intra-class variation). Both of these can cause confusions while predicting the scene
for an image, thus making the problem harder to solve. Figure 1.3 shows an example of Inter-class
similarity between three categories: concert-hall, movie theater and auditorium.

(a) Concert Hall (b) Movie Theater (c) Auditorium

Figure 1.3: Inter-class Similarity. Images from Concert Hall, Movie Theater and Auditorium.
The example shows the similarity in the images from different scene types.

• Semantic Overlap between classes

In some cases, the images are captured in such a way that it is very hard for even for a human to
predict the scene. They can be classified as more than one scene category. Figure 1.4 shows some
example images from different classes with semantic overlap. The example shows the difficulty
in predicting the correct scene type.
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(a) (b) (c)

Figure 1.4: Semantic Overlap. Images from different classes with semantic overlap. The exam-
ple shows the difficulty in predicting the correct scene type. (a) can be classified as cloister or
corridor, (b) can be classified as airport or waiting room, (c) can be classified as subway or train
station.

1.3 Applications

Scene recognition has lots of applications. Some of them are listed below:

• Robotics

Scene recognition is an essential task in robotics. For autonomous mobile robot navigation, it is
important that the robot knows about its location by recognising the scene in front of it, and then
make a decision accordingly.

• Semantic Search

As the computers become more intelligent, there is a need for more semantic search capabili-
ties. For example, a Google Image search query could be “Show me images of the airports”, a
Facebook search query could be “Give me images of my friends who were in a movie theater
last weekend”. Such queries can not be solved just by Computer Vision, but it is a very crucial
component in the whole pipeline.

• Photography

A professional photographer adjusts various settings (focus, exposure, etc.) in a camera before
taking a picture of a scene. A scene recognition system can be used in cameras where the camera
can make all the adjustments automatically based on the type of the scene recognised. Some
camera manufacturers (e.g. Nikon) have already included this kind of system in their cameras.

• Indexing/Labeling

As the amount of visual data increases, the recognition algorithms can be used to tag/label the
images with semantic labels and then use the labels to do indexing. The labeling and indexing
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can be used to archive the data efficiently, mine useful information from the data, and much more.
As the visual data is exploding, efficient indexing has become necessary.

1.4 Thesis Outline

In Chapter 2, we review the existing methods for Scene Classification and explain the dataset used
for evaluating the algorithms. We also explain the technical details of the basics of Computer Vision and
Machine Learning, e.g. Feature representations, Support Vector Machines. We also explain the Bag of
Words pipeline for image classification and show our results on the TRECVID 2010 Semantic Indexing
Challenge.

In Chapter 3, we present the Bag of Words pipeline designed for Scene Classification. We present
the results with the improved pipeline on MIT Scene 67 dataset. We also discuss an idea about a more
meaningful partitioning in images, suited for scene classification.

In Chapter 4, we introduce a new and more semantically meaningful representation for images, called
Bag of Parts representation. We present the results obtained by the Bag of Parts representation and the
combined Bag of Words and Bag of Parts representations on MIT Scene 67 dataset.

Chapter 5 summarizes the contributions of our work.
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Chapter 2

Background

In this chapter, we do a survey of the existing methods for scene classification in the literature. We
present background knowledge related to image classification. This will be helpful in understanding the
technical details presented in the next chapters. We also explain the standard Bag of Words pipeline,
and present our results on the TRECVID 2010 Semantic Indexing Challenge.

2.1 Literature Survey

Scene classification is a popular task that has been approached from a variety of different angles in the
literature. Several works [37, 44, 53, 54, 60, 62, 63] have focused on the problem of Indoor v/s Outdoor
image classification. Apart from solving just the problem of Indoor v/s Outdoor classification, there have
been works on classifying images into different scene categories. Oliva and Torralba [39] introduced a
compact and robust global descriptor (GIST), which tries to represent the dominant spatial structure of
a scene (in terms of perceptual dimensions: naturalness, openness, roughness, expansion, ruggedness).
These dimensions can be reliably estimated using spectral and coarsely localized information.

Indoor scene recognition has also received a lot of attention, because the models designed for Indoor
v/s Outdoor classification generally do not work well for indoor scene categories. The main difficulty
is that while some indoor scenes (e.g. corridors) can be well characterized by global spatial properties,
others (e.g. bookstores) are better characterized by the objects they contain. The problem requires a
model that can use both the local and global information in the images. Quattoni and Torralba [49]
study the problem of modeling scenes layout by a number of prototypes, which capture characteristic
arrangements of scene components. Each prototype is defined by multiple ROIs which are allowed to
move on a small window, and their displacements are independent of each other. The ROIs are obtained
by human annotator, and a classification model is learnt on top of the ROIs. Wu and Rehg [72] propose a
novel holistic image descriptor, CENTRIST (CENsus TRansform hISTogram) for scene classification.
CENTRIST encodes the structural properties in images and contains rough geometrical information
in the scene, while suppressing the textural details. Liu and Shah [35] model the scenes in terms of
semantic concepts. The clusters of semantic concepts (intermediate concepts) are discovered using
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Maximization of Mutual Information (MMI) co-clustering approach. Zhu et al. [75] explore the problem
of jointly modeling the interaction of objects and scene topics in an upstream model, where topics
are semantically meaningful and observed. This is done as a joint max-margin and max-likelihood
estimation method. The popular method for Object detection, Deformable Part Models (DPMs) [19]

Who When How Perfor-
mance

Pandey and Lazeb-
nik [41]

ICCV 2011 The method uses the standard DPM’s in combina-
tion with global image features.

43.10

Wu and Rehg [72] PAMI 2011 A new visual descriptor CENsus TRansform hIS-
Togram (CENTRIST) is introduced, for recognizing
topological places or scene categories. CENTRIST
mainly encodes the structural properties within an
image and suppresses detailed textural information.

36.90

Kwitt et al. [30] ECCV 2012 The method uses a set of predefined themes, a clas-
sifier trained for the detection of each theme, and
each image fed to all theme classiers. The image is
finally represented by the vector of resulting classi-
cation labels.

44.00

Wang et al. [70] CVPR 2012 The model incorporates covariance patterns from
natural images into feature construction. Covariance
is modeled as sparse linear combination of regular
patterns, and combined with learning of linear fea-
tures.

33.70

Parizi et al. [42] CVPR 2012 A reconfigurable version of a spatial BoW model
is proposed that associates different BoW descrip-
tors that associates to different image segments. A
scene is represented as a collection of region models
(“parts”) arranged in a reconfigurable pattern.

37.93

Singh et al. [58] ECCV 2012 A mid-level visual representation is proposed in
terms of discriminative patches.

49.40

Sadeghi and Tap-
pen et al. [51]

ECCV 2012 Discriminative characteristics of the scenes are cap-
tured by a set of Latent Pyramidal Regions (LPR).
Each LPR is represented in a spatial pyramid and
uses non-linear locality constraint coding for learn-
ing both shape and texture patterns of the scene.

44.84

Table 2.1: List of recent papers (past couple of years) which have focused on scene classification prob-
lem.

has also been tried to solve the problem of scene categorisation. Standard DPM’s are used by Pandey
and Lazebnik [41] to capture recurring visual elements and salient objects in combination with global
image features. The problem of part initialisation and learning is not addressed, and the quality of
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the parts that can be obtained in this manner remains unclear. Li et al. [34] try to solve the problem
by using explicit object detectors. They use a set of pre-trained object detectors and apply the set of
detectors to get an object filter bank representation of images. It requires hundreds and thousands of
object detectors, training of which could be expensive. Sadeghi and Tappen [51] address this problem by
capturing discriminative characteristics of the scenes by a set of Latent Pyramidal Regions (LPR). Each
LPR is represented in a spatial pyramid and uses non-linear locality constraint coding for learning both
shape and texture patterns of the scene. Parizi et al. [42] propose a reconfigurable version of a spatial
BoW model that associates different BoW descriptors to different image segments, corresponding to
different types of “stuff”. A scene is represented as a collection of region models (“parts”) arranged in a
reconfigurable pattern. The assignment of region model to image regions is specified by a latent variable.
The models can be learned using both generative and discriminative methods. Singh et al. [58] explores
learning parts in both an unsupervised and weakly supervised manner, where the weakly supervised case
uses only the class label of the image. The part-learning procedure described in their work is expensive.

To summarize, the scene classification methods can be categorized into three major groups:

(i) Methods which use low-level image descriptors (e.g. [42, 72]).

(ii) Methods which use mid-level representation like patches, object banks (e.g. [34, 41, 58]).

(iii) Methods which use complicated mathematical models (e.g. [75]).

In the past couple of years, there have been plenty of papers which have focused on scene classifica-
tion problem. We list down the recent methods in Table 2.1, along-with their performance on the MIT
Scene 67 Indoor dataset. As we discuss in the next chapters, our method beats all the existing results on
this dataset.

2.2 Dataset and Evaluation Measures

2.2.1 Dataset

Image datasets are an essential component of computer vision research. As humans are trained from
their knowledge and experience, similarly datasets are required to train the computers using different
algorithms. These datasets also allow to compare and benchmark performance of the different algo-
rithms. The datasets can be classified into different categories, based on the problem they are designed
to tackle. Some of the popular publicly available datasets are Caltech 101, Caltech 256, CIFAR-100,
ImageNet (Classification), PASCAL VOC (Classification, Detection, Segmentation), INRIA Persons
(Detection), UCF Sports Action Dataset (Action Recognition). The problem of Scene Classification
can be solved as a sub-problem of Image Classification. But the classification datasets like Caltech-256,
PASCAL VOC are more object-centric, most of the classes contain a primary object (e.g. Car, Bike,
Cat, Person, Bottle, TV, etc.).
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Store

bakery grocery store clothing store deli laundromat jewellery shop

bookstore videostore florist shoe shop mall toy store

bedroom nursery closet children room lobby garage

dining room corridor living room kitchen stairscase winecellar

Home

pantry

bathroom

Public Spaces

prisoncell library cloister waiting room museum subwaychurch

pool inside inside bus inside subway trainstation airport insidelocker room

elevator

Leisure

casino bowling gym gameroomhair salon

buffet fastfood concert hall bar movie theaterrestaurant

Working Place

studio music operating room office meeting roomcomputer room

kinder garden restaurant kitchen artstudio green housedental officehospital room

classroom warehouse

tv studio

laboratory wet

auditorium

Figure 2.1: MIT 67 Indoor data set Summary of the 67 indoor scene categories, organized into 5 big
scene groups. (Figure source : [49]).
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The image classification datasets are not designed for the problem of scene recognition, which is a
challenging open problem in high level vision. Quattoni and Torralba [49] introduced a new dataset,
MIT 67 indoor scene dataset designed specifically for indoor scenes. It is the largest available dataset
for indoor scenes, before this most of the work on scene recognition focused on a reduced set of indoor
and outdoor categories. The MIT data comprises 67 indoor scene categories loosely divided into stores
(e.g. bakery, toy store), home (e.g. bedroom, kitchen), public spaces (e.g. library, subway), leisure (e.g.
restaurant, concert hall) and work (e.g. hospital, TV studio).

The images in the dataset were collected from different sources: online image search tools (Google
and Altavista), online photo sharing sites (Flickr) and the LabelMe dataset. Figure 2.1 shows the 67
scene categories used in this study. The database contains 15620 images. A subset of the dataset that
has approximately the same number of training and testing samples per class is used for the experiments.
The partition that we use is:

Train Set: contains 67*80 images, total of 5360 images

Test Set : contains 67*20 images, total of 1340 images.

All images have a minimum resolution of 200 pixels in the smallest axis.

Apart from the MIT 67 indoor scene dataset, there are other datasets which have been used for eval-
uating scene classification methods. A couple of them are Scene-15 [18, 31] and the SUN dataset [73].
Scene-15 dataset is not a challenging dataset because of small size and limited number of categories. Re-
cent methods [24] have shown classification accuracies of upto 90% on this dataset. On the other hand,
SUN dataset has 899 categories. The database consists of both outdoor and indoor scenes and there is
a lot of variation in the amount of training data available for each class, making it difficult to evalu-
ate the methods. The recent scene classification methods have used the MIT 67 indoor scene dataset to
evaluate the performance. In this thesis, we use MIT 67 indoor scene dataset for evaluating our methods.

2.2.2 Evaluation Measures

In this section, we explain the evaluation measures which are used to measure the performance of
the methods described in this thesis. The performance of the classification methods is evaluated on the
Test Images. We use two popular evaluation measures:

(i) Mean Average Precision (MAP)

(ii) Classification Accuracy

2.2.2.1 Mean Average Precision (MAP)

Mean Average Precision is an evaluation measure commonly used for evaluating ranked lists in
Information Retrieval. Suppose we are building a system to classify images of scene “auditorium”. Let
the system be evaluated on a Test Set T . We define four accuracy counts:
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• True Positives (tp) : Number of “auditorium” images classified as “auditorium”.

• False Positives (fp) : Number of “non-auditorium” images classified as “auditorium”.

• True Negatives (tn) : Number of “non-auditorium” images classified as “non-auditorium”.

• False Negatives (fn) : Number of “auditorium” images classified as “non-auditorium”.

Now, Precision and Recall are defined as follows:

• Precision : Fraction of the the true positives in the retrieved results.

P =
tp

tp + fp
(2.1)

• Recall : Fraction of all the auditorium images.

R =
tp

tp + fn
(2.2)

Precision and Recall are used to characterize the performance of a classifier. A good classifier is good
at ranking actual “auditorium” images near the top of the list, its precision stays high as recall increases.
This can be observed by plotting Precision as a function of Recall (often called as PR curves). The
performance of the classifier is measured by a single number, area under the PR curve, also called as
Average Precision (AP). For a multi-class classification problem, we measure the performance by the
mean of Average Precision (AP) values of the individual classifiers. Figure 2.2 shows an example of a
PR curve for a classifier. The Average Precision (AP), measured as the Area under the Curve (AUC) is
85.20%.

2.2.2.2 Classification Accuracy

The performance of a classifier is also evaluated in terms of the correctness of labeling an image
of the given class. Accuracy of a binary classifier is defined as the proportion of the total number of
predictions that were correct. Following the notations from the previous section, the accuracy can be
defined as:

Accuracy =
tp + tn

tp + fp + tn + fn
(2.3)

For a multi-class classification problem, the class of an image is predicted by the classifier which
assigns the maximum score to that image. A confusion matrix (Table 2.2) is constructed, where each
column of the matrix represents the images in a predicted class, and each row represents the instances
in an actual class. The final accuracy of the system is calculated as the mean of the diagonal of the
confusion matrix.
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Figure 2.2: Precision Recall (PR) Curve. Example of a Precision Recall curve of a classifier with
Average Precision (AP)=85.20%.

2.3 Tools and Techniques

2.3.1 Image Descriptors

Image descriptors provide description of the visual content in images. Computer Vision algorithms
require an appropriate representation of the images. The different image descriptors try to capture dif-
ferent characteristics in images such as shape, edges, color, texture, spatial structure. These descriptors
can be classified into two categories: (a) Global descriptors which are computed on the entire image,
and (b) Local descriptors which are computed locally in small regions or points of interest in an image.
In this section, we describe two of the most commonly used image descriptors in the literature, SIFT
and HOG. We also use these two as the image descriptors in our methods described in the thesis.

2.3.1.1 SIFT

Scale-Invariant Feature Transform (SIFT) proposed by Lowe [36] is one of the popular local feature
detector and descriptor. SIFT descriptor is invariant to Affine transformation, Lighting changes, Noise.
The original SIFT implementation includes both an interest point detector and feature descriptors at
the interest points. The descriptor associates to the regions a signature which identifies their appear-
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Predicted Class
Class A Class B Class C

A
ct

ua
l

C
la

ss Class A 0.80 0.15 0.05
Class B 0.10 0.75 0.15
Class C 0.05 0.05 0.90

Table 2.2: Confusion Matrix. Example of a confusion matrix for a 3-class classification problem.

ance compactly and robustly. Figure 2.3 shows an example of SIFT descriptor computation at some
keypoints, and how they can be used to match points in different images.

Computing SIFT descriptor at a point starts with sampling the image gradient magnitudes and orien-
tations in a region around the point. The samples are then accumulated into orientation histograms (bin
size = 8), summarizing the contents over 4 × 4 subregions. These orientation histograms capture the
local shape. The final descriptor is formed from a vector containing the values of 4× 4 array of orienta-
tion histogram around the point. This leads to a SIFT feature vector with 4× 4× 8 = 128 elements. To
obtain illumination invariance, the feature vector is normalized by the square root of the sum of squared
components.

2.3.1.2 HOG

Histogram of Gradients (HOG) proposed by Dalal & Triggs [13] is a feature descriptor originally
used for Pedestrian Detection [13] and now popularly used for object detection [21]. The idea behind
the HOG descriptors is that the local object appearance and shape can be characterized within an image
by the distribution of local intensity gradients or edge directions.

The HOG descriptor is usually computed over a window in an image. The image window is first
divided into small spatial regions, also called as “cells” (usually the size of a cell is 8× 8 pixels). Then,
the gradient directions or edge orientations are computed over the pixels of the cell. The gradients
of each cell are accumulated into a 1-D histogram. The combined histogram entries form the HOG
representation of the image window. For better invariance to illumination, shadowing, etc., it is also
useful to contrast-normalize the local responses before using them. This is done by accumulating a
measure of local histogram “energy” over somewhat larger spatial regions (“blocks”) and using the
results to normalize all of the cells in the block. Figure 2.4 summarizes the pipeline for computing the
HOG descriptors.

2.3.2 k-means Clustering

k-means clustering is an unsupervised clustering algorithm, commonly used for constructing vo-
cabularies for Bag of Words model. Given a set of n data points and number of clusters K, k-means
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Figure 2.3: SIFT Descriptors. Example showing computation of SIFT descriptor in images. (Figure
source : [32].)

partitions the data points into K clusters, such that each data point belongs to the cluster with the nearest
mean. Figure 2.5 shows an example with some data points and the clusters formed with 3 clusters.

Let the n data points be x1,x2, . . . ,xn, where xi ∈ RD, and K be the number of clusters (K <= n).
S = S1,S2, . . . ,SK be the set of clusters each consisting of some data points, µi be the mean of points

in the set Si, µi =

P
xj∈Si

xjP
xj∈Si

1

k-means tries to minimise the following objective function:

S = arg min
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2 (2.4)

The k-means algorithm uses an iterative refinement technique to solve the optimization problem.
The iterative procedure is also referred to as Lloyd’s algorithm. The algorithm starts with randomly
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Figure 2.4: Overview of HOG descriptor extraction pipeline. (Figure source: [13]).

(a) Input data points

K = 3

(b) Clusters

Figure 2.5: k-means Clustering. Example data points, and the clusters computed by k-means cluster-
ing.

initializing the means µ1, µ2, . . . , µK . The algorithm proceeds by alternating between the following
two steps:

• Assignment Step During the assignment step, each data point is assigned to the cluster whose
mean is closest to that data point.

Si = {xp : ‖xp − µi‖ ≤ ‖xp − µj‖ ∀1 ≤ j ≤ K} (2.5)

• Update Step During the update step, the mean of each cluster is recomputed after the new assign-
ments from the previous step.

µi =

∑
xj∈Si

xj∑
xj∈Si

1
(2.6)

The algorithm converges when the assignments of the data points do not change. The “assignment”
step is also referred to as expectation step and the “update” step as maximization step, making the
algorithm a variant of the Expectation-Maximization algorithm.
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There is no guarantee that the algorithm will converge to the global optimum, and the result depends
on the initialisation of the cluster means. One common practice is to randomly chose K points from
the data points as the initial cluster means, and run it multiple times with different initialisations. There
are other variants of initialisations in the literature, for example k-means++[5], which avoids the poor
clusterings found by the standard k-means algorithm..

The only parameter involved in k-means clustering is K, the number of clusters. The value usually
depends on the nature of data, and should be chosen appropriately by experiments.

2.3.3 Classification using Support Vector Machines (SVM)

Classification is one of the most common task in machine learning. A supervised learning system
that performs classification is known as a learner or, more commonly, a classifier. Formally, given a set
of input items, X = {x1,x2, . . . ,xn} and a set of labels/classes, Y = {y1, y2, . . . , yn} and training data
T = {(xi, yi)|yi is the label/class for xi}, a classifier is a mapping from X to Y, f(T,x) = y. There
are multiple algorithms for solving the classification problem, e.g. Bayes classifier, k-nearest neighbor,
Neural Networks, Random Forests, Support Vector Machines, etc. In this thesis, we use Support Vector
Machines (SVM) for classification, which we explain in the following paragraphs.

Support Vector Machine [8, 11] is a popular and powerful classification learning tool. It is a super-
vised learning method, i.e. it learns from a given set of labelled training data and predicts the label for
an unseen test sample. We will explain SVMs for two-class case, which is also called as a “binary”
classifier. The basic idea behind a linear classifier is to separate the given D-dimensional data points
with a (D− 1) dimensional hyperplane. For a given set of points, there may exist multiple hyperplanes
which can separate the data (Figure 2.6(a)). The best classifier of all these hyperplanes is the one which
provides the maximum separation of the data points (Figure 2.6(b)). It essentially means that the best
hyperplane should maximise the distance between the nearest points on both sides of the hyperplane
(nearest points to the hyperplane from each class). This distance is defined as the “margin”, and the
SVM selects the hyperplane with the maximum margin. The hyperplane obtained is called maximum-
margin hyperplane and the linear classifier is called maximum-margin classifier.

Given a set of n labelled training samples,

S = {{xi; yi}| xi ∈ <D, yi ∈ {−1, 1}}ni=1

xi is the D-dimensional data point, yi represents the class to which the point xi belongs.

A separating hyperplane with w as the normal vector, can be written as

wTx + b = 0

Here, b is called the bias term, b
‖w‖ gives the perpendicular distance from the origin to the hyperplane.

Our goal is to find w and b, such that the “margin” is maximised. We can select two parallel hyperplanes
which separate the data and are as far as possible (Figure 2.6). These hyperplanes can be written as
follows:

16



(a) Multiple separating hyperplanes
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(b) Max-Margin Hyperplane

Figure 2.6: Example showing multiple separating hyperplanes and the max-margin hyperplane output
by SVM.

wTx + b = 1
wTx + b = −1

Now, the distance between the two parallel hyperplanes is 2
‖w‖ . Since the distance needs to be

maximised, it translates to minimizing ‖w‖. Since we do not want any data points falling in between
the two parallel hyperplanes, the following constraints are added:

wTxi + b ≥ 1 ∀ xi s.t. yi = 1
wTxi + b ≤ −1 ∀ xi s.t. yi = −1

The two constraints can be combined and rewritten as:

yi(wTxi + b) ≥ 1 ∀ xi

We can substitute ‖w‖ with 1
2‖w‖

2, without changing the solution, this makes the optimization
problem easier to solve. The optimization problem can now be written in primal form as:

min
w,b

1
2
‖w‖2 (2.7)

subject to yi(wTxi + b) ≥ 1 ∀xi

The optimization problem of SVM described above can be solved by different algorithms. In our
work, we use PEGASOS: Primal Estimated sub-GrAdient SOlver for SVM algorithm [55], which is
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described here. It is an iterative, gradient descent based algorithm which solves the SVM problem in
primal form. Given a training set S = {(xi, yi)}mi=1, where xi ∈ Rn and yi ∈ {+1,−1}, the SVM
problem (Equation 2.7) can be rewritten as the following minimization problem:

min
w

λ

2
‖w‖2 +

1
m

∑
(x,y)∈S

l(w; (x, y)), (2.8)

where

l(w; (x, y)) = max{0, 1− y〈w,x〉}. (2.9)

The bias term, b from the original problem is omitted here. In PEGASOS, bias can be added as an
additional element in the original data points xi’s as [xi ; b].

The input parameters to the Pegasos algorithm are:

(i) T : the number of iterations to be performed

(ii) k: the number of samples to use for calculating sub-gradients

The complete algorithm is given below:

Algorithm 1: Pegasos Algorithm.
Input: S, λ, T, k
Initialize: Choose w1 s.t. ‖w1‖ ≤ 1/

√
λ

for t = 1, 2, . . . , T do
ChooseAt ⊆ S,where |At| = k
Set A+

t = {(x, y) ∈ At : y〈wt, x〉 < 1}
Set ηt = 1

λt
Set wt+ 1

2
= (1− ηtλ)wt + ηt

k

∑
(x,y)∈A+

t
y x

Set wt+1 = min
{

1, 1/
√
λ

‖w
t+1

2
‖

}
end
Output: wT+1

2.4 Bag of Words Method

The bag of words model in computer vision is inspired from the bag of words model in the text
domain [52] where a document is represented as an unordered collection of words. The order of words
has no significance, it is the frequencies of the words that matters, for example the phrase “classification
problem in images” has the same representation as the phrase “in images classification problem”. The
bag of words model in computer vision got popular with Video Google [59], and is often referred to as
bag of visual words model. The idea has also been used in the texture recognition [33] where different
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textures can be characterized by the repetition of basic elements, called as textons [29]. The typical Bag
of Words (BoW) pipeline (Figure 2.7) is composed of the following steps:

1. Extracting local image features (e.g. SIFT, HOG),

2. Generating vocabulary of visual words (e.g. by k-means clustering),

3. Encoding and Generating spatial histograms, and

4. Learning a classifier based on the image descriptors (e.g. SVM).

SIFT 
Features K-Means Encoding Spatial 

Histograms SVM

Figure 2.7: Different steps in the Bag of Words pipeline.

2.4.1 Extracting local features

The first step in the bag of words pipeline is computing the local features, which capture the local
characteristics of an image. Any feature descriptor can be selected, the popular ones being SIFT (Sec-
tion 2.3.1.1) and HOG (Section 2.3.1.2). In our work, we use SIFT descriptors. SIFT descriptors are
extracted at a dense grid of uniformly-spaced points. At each point on the dense grid, the SIFT descrip-
tors are computed over multiple circular support patches [6, 7]. The multiple descriptors are computed
at each point to allow for scale variation between images. The SIFT descriptors below a certain contrast
threshold are mapped to null vectors. Figure 2.8 shows the computation of the SIFT descriptors in an
image at a dense grid, and at multiple scales at each point.

2.4.2 Codebook generation

After computing the local descriptors, the next step in the pipeline is to cluster the local descriptors
into a codebook of visual words. The alternatives to the term “codebook” are “vocabulary” or “dictio-
nary” of visual words, which is analogous to the dictionary of words in text domain. The idea behind a
codebook is that an image can be represented in terms of these visual words. k-means clustering (Sec-
tion 2.3.2) is a popular method to construct a vocabulary of visual words. A set of random descriptors
from a subset of the Training set images is used to construct the visual vocabulary. The number of visual
words is a parameter that depends on the dataset, and is generally determined experimentally.
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Figure 2.8: Example of SIFT descriptors extracted at a dense grid of points, and at multiple scales at
each point.

2.4.3 Spatial Histograms

After codebook generation, an image is then represented as a bag of visual-words. Each local de-
scriptor xi is encoded by the nearest visual word in the Euclidean space (Equation 2.10).

ci = arg min
k
‖xi − µk‖2 (2.10)

After getting the encodings for all the local descriptors in an image, it is described by a vector (or
histogram) that stores the distribution of all the visual words. The size of the histogram is equal to the
vocabulary size, where each bin corresponds to a visual word.

Bag of Words representation does not capture any spatial information. Spatial information is intro-
duced by the use of spatial pyramid [31]. An image is tiled into regions at multiple resolutions. An
encoding is then computed for each spatial region at each resolution level (Figure 2.9). The final de-
scriptor of an image is a concatenation of the encodings of different spatial regions into a single vector.
Note that the histograms of each region are individually normalized before concatenation. The distance
between the two vectors reflects the extent to which the images contain similar appearance and the extent
to which the appearances correspond in their spatial layout.

Figure 2.9 shows an example of Spatial Pyramids, the spatial regions are obtained by dividing the
image in 1 × 1, 2 × 2, and 4 × 4 grids, for a total of 21 regions. The histogram of each of the regions
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is K-dimensional, and the dimension of the complete, concatenated feature vector for an image is (1 +
2× 2 + 4× 4)K = 21K.
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Figure 2.9: Spatial Pyramid. An image tiled into regions at multiple resolutions and histograms com-
puted for each spatial cell.

2.4.4 Learning

The next step in the pipeline is learning. After getting the image descriptors, the aim is to learn
models (classifiers) for the different classes. SVM (Section 2.3.3) is a commonly used classifier in
BoW pipeline. For each class, a separate SVM is learnt which can predict whether an unseen image
belongs to that particular class or not. For training an SVM for a particular class, the descriptors of the
images belonging to that class act as positive data points for the SVM, and descriptors of rest of the
images act as negative data points. The set of these positive and negative images is also referred to as
the Training Set, while the set of unseen images whose classes are to be predicted, is referred to as the
Test Set.

2.5 Bag of Words for TRECVID 2010

Our team participated in the “light” version of the semantic indexing task (SIN), TRECVID 2010 [40].
The goal of the challenge was to automatically identify the occurrence of various semantic features/concepts
such as “Cityscape”, “Airplane”, “Nighttime” etc., which occur frequently in video information. The
challenge had 2 versions - “full” with 130 concepts, and “light” with 10 concepts. The DEVELOP-
MENT data set (provided for training) and the TEST data set, each consisted of 200 hours of video data
drawn from the IACC.1 collection using videos with durations between 10 seconds and 3.5 minutes.
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We extract our own keyframes for every shot of both the TRECVID 2010 DEVEL and TEST data
sets. The DEVEL set is subdivided into two halves denoted TRAIN and VAL and used for training
and validation, respectively. This subdivision respects movie boundaries to guarantee the statistical
independence of the keyframes in the two subsets. Ground truth labels for the DEVEL keyframes were
obtained by an internal team of annotators (refer Section 2.5.1).

2.5.1 Annotations

Annotations were carried out (only for the DEVEL subset) at the frame level for each of the ten
classes. For some of the selected object-like classes, Region of Interest (ROI) annotations were also
carried out. After obtaining the first set of ground truth labels, multiple rounds of refinement were
carried out to remove the errors in the annotation.

The refinement of annotations of the VAL set was carried out by using a weak classifier as follows :

1. Train a classifier on the TRAIN set.

2. Re-rank all the images in the VAL set based on the classifier output.

3. Refine the annotations of the top 1000 ranked frames and the bottom 1000 ranked frames. The
high ranked mistakes in annotation are corrected in this way.

Similarly the refinement of annotations of the TRAIN set was done by using a classifier trained on
the VAL set. Table 2.3 gives the statistics of the keyframes in DEVEL set for each category, along with
the number of positives and negatives in each category.

2.5.2 Method and Implementation

We use Pyramid Histogram of Visual Words [7] to represent an image. The Pyramid Histogram of
Visual Words (PHOW) descriptors consist of visual words which are computed on a dense grid. Here
visual words are vector quantized SIFT descriptors [36] which capture the local spatial distribution of
gradients.

Local appearance is captured by the visual words distribution. SIFT descriptors are computed at
points on a regular grid with spacing M pixels. We have used gray level representations for each image.
At each grid point, the descriptors are computed over circular support patches with radii r. Thus, each
point is represented by four SIFT descriptors. These dense features are vector quantized into visual
words using k-means clustering. Here, we have used a vocabulary of 1000 words. Each image is now
represented by a histogram of these visual words occurrences. We have used M = 5, K = 1000 and radii
r = 10; 15; 20; 25. To deal with the empty patches, we zero all the SIFT descriptors with L2 norm
below a threshold (200). In order to capture the spatial layout representation, which is inspired by the
pyramid representation of Lazebnik et. al. [31] , an image is tiled into regions at multiple resolutions.
A histogram of visual words is then computed for each image sub-region at each resolution level. To
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Category TRAIN VAL
# positives # negatives # positives # negatives

Cityscape 1438 100596 958 86666
Singing 1384 101312 1372 86567
Nighttime 417 102561 329 87921
Boat Ship 261 102803 246 87995
Airplane Flying 150 103041 89 88185
Hand 110 99077 119 85807
Demonstration or Protest 109 102779 136 87833
Telephone 41 103127 67 88266
Bus 34 103245 25 88390
Classroom 31 103246 7 88381

Table 2.3: Statistics of keyframes in DEVEL set (TRAIN + VAL) for each category of TRECVID-2010
Semantic Indexing Challenge.

summarize, the representation of an appearance descriptor for an image is a concatenation of the his-
tograms of different levels into a single vector which are referred to as Pyramid Histogram of Visual
Words (PHOW). We have used two levels for the pyramid representation. The distance between the two
PHOW descriptors reflects the extent to which the images contain similar appearance and the extent to
which the appearances correspond in their spatial layout.

The image-level classifier is a non-linear SVM on top of a bag of dense visual words. To train a
large-scale SVM efficiently, we use PEGASOS SVM [56] (as implemented in the VLFeat library [66]).
While PEGASOS is a linear SVM solver, we use the explicit feature map for χ2 kernel [68] to extend it
efficiently to use a χ2 (non-linear) kernel. The whole setup is fast and efficient compared to traditional
SVM techniques that do not use the feature map idea. For example, on our framework training an SVM
using 100K frames requires only 2 minutes and classifying 100K frames requires only 1 minute on an
Intel Xeon CPU clocked at 1.86 GHz.
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Category AP inf AP
Training Set TRAIN TRAIN+VAL
Testing Set VAL TEST
Cityscape 0.49 0.11
Nighttime 0.34 0.12

Demonstration Or Protest 0.27 0.07
Airplane Flying 0.21 0.13

Boat Ship 0.21 0.15
Singing 0.17 0.05

Table 2.4: Performance of the SVM image classifier. The table reports the average precision of the
method described in Section 2.5.2 when trained on TRAIN and evaluated on VAL, and TRECVID in-
ferred AP when trained on TRAIN+VAL. To compute average precision on TRAIN+VAL the complete
and cleaned annotations were used. In several cases the difference in AP and xinfAP is very large,
suggesting either that there is a significant statistical difference between the DEVEL and TEST data
subsets, or that the accuracy of the xinfAP estimate is poor (xinfAP may still be adequate to rank differ-
ent methods).

Figure 2.10: Top 15 shots from the TEST set (shown by keyframes) using an SVM for Airplane Flying
category
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Figure 2.11: Top 15 shots from the TEST set (shown by keyframes) using an SVM for Cityscape
category

Figure 2.12: Top 15 shots from the TEST set (shown by keyframes) using an SVM for Classroom
category
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Figure 2.13: Top 15 shots from the TEST set (shown by keyframes) using an SVM for Demonstration
or Protest category

Figure 2.14: Top 15 shots from the TEST set (shown by keyframes) using an SVM for Nighttime
category
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2.5.3 Results

The results on the TEST set are reported as xinfAP (inferred AP) [40], which is the measure used by
TRECVID to evaluate a method. Based on the evaluations by TRECVID, our method was ranked the
best method for Nighttime, and second best for Hand, Airplane flying. Figure 2.10 shows the qualitative
results for Airplane Flying category. Quantitative results on the VAL and TEST set are reported in Ta-
ble 2.4. For evaluating the results on the VAL set, we show the standard mean AP values.

Scene Classification Results
Our method worked well for most of the scene categories, (e.g. Nighttime, Cityscape, Demonstra-

tion or Protest, Classroom. The qualitative results for scene categories are shown in Figure 2.11 for
Cityscape, Figure 2.12 for Classroom, Figure 2.13 for Demonstration or Protest, Figure 2.14 for Night-
time. These results are obtained on the shots from the TEST set.
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Chapter 3

Bag of Words for Scene Classification

In this chapter, we explore the Bag of Words model for the problem of scene classification. We
examine the different steps of the Bag of Words pipeline, and use the best options at each step. Our well
designed pipeline is not only fast and efficient, but also establishes the state-of-the-art results on MIT
Indoor Scene 67 dataset, beating all the previously published results. We also go beyond the standard
Spatial Pyramid technique, and demonstrate an idea of non-uniform partitioning in images which may
be more suitable for scene classification tasks.

3.1 Introduction

We explained the standard Bag of Words model in Section 2.4. A lot of methods have been proposed
in the literature for image classification tasks. The aim is to develop better and improved models to solve
the classification problem. But in the process, the power of Bag of Words model is often overlooked.
Recently, Chatfield et al. [10] demonstrated that a well designed Bag of Words pipeline can achieve
state-of-the-art results on the challenging datasets like Caltech 101 [17] and PASCAL VOC 2007 [15].
Motivated by this, we explore the Bag of Words model for the problem of Scene Classification in images.
At each step of the Bag of Words pipeline, we pick the best choices available. Section 3.2 explains the
essential components of our well designed Bag of Words pipeline, Section 3.3 explains the method
(image representation and learning), Section 3.4 shows the state-of- the-art results on MIT Indoor Scene
67 dataset obtained with our Bag of Words pipeline.

We also look at the possibility of improvements in the standard Spatial Pyramid method. By design,
Bag of Words does not capture the spatial information, some weak spatial information can be introduced
by using Spatial Pyramid [31]. Instead of having a uniform division of an image into cells, we present
some ideas to have a non-uniform division of image into cells, which may be more suitable for the scene
classification task in hand. Section 3.5 discusses some of these ideas and shows some results obtained
using our proposed ideas.
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3.2 Bag of Words for Scene Classification

Section 2.4 explains the standard Bag of Words pipeline. The major steps in the pipeline are: (a)
Extracting local image features, (b) Generating vocabulary of visual words, (c) Computing feature en-
codings and generating spatial histograms, and (d) Learning a classifier based on the image descriptors.

We investigate the best options for each step of the BoW pipeline, as explained in [10]

(a) Local Image Features

(b) Encoding methods:

(i) Hard assignment (i.e. Vector Quantisation)

(ii) Kernel-codebook encoding(KCB)

(iii) Locality-constrained Linear Coding (LLC)

(iv) Improved Fisher Vector (IFV)

3.2.1 Local Image Features

The standard Bag of Words pipeline 2.4 uses SIFT descriptors [36] as the local image descriptors.
It is a well known fact that using χ2 or Hellinger distance to compare histograms often yields superior
performance compared to using Euclidean distance measure. Since SIFT is essentially a histogram, a
natural question is whether using alternative histogram distance measures benefit SIFT. Arandjelovic
and Zisserman [4] show that using a square root (Hellinger) kernel instead of the standard Euclidean
distance to measure the similarity between SIFT descriptors leads to a dramatic performance boost in
image retrieval tasks. In practice, the conversion from SIFT to RootSIFT is done as a simple algebraic
operation in two steps:

(i) L1 normalize the SIFT vector (originally it has unit L2 norm)

(ii) square root each element of the SIFT vector.

This conversion can be done online, without any additional storage space. In our pipeline, we replace
SIFT by RootSIFT at each step.

3.2.2 Encoding Methods

In the standard Bag of Words pipeline 2.4, after the codebook construction, the next step is to encode
the local features using the codebook. These codes are then pooled together to compute the descriptor
for an image. The standard pipeline uses a hard quantisation (vector quantisation) to encode the local
image features, where each local feature is encoded by the nearest visual word in the Euclidean space.
Alternative encodings have been proposed which replace the hard quantisation of the features and retain
more information about the original features. These alternate encodings try to encode the local features
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in different ways, e.g. by expressing features as combinations of visual words, or by recording the
difference between the features and the visual words.

We investigate a number of encoding methods as described in [10]: (i) Hard assignment (i.e. Vector
Quantisation) [12, 59]; (ii) Kernel-codebook encoding [47, 65]; (iii) Locality-constrained Linear Coding
(LLC) [69]; and (iv) Improved Fisher Vector (IFV) [45] . For all the encoding methods except IFV, let
us assume:

• xi be the local descriptors; xi ∈ RD, and D is the dimension of the local descriptors.

• the codebook be represented by the visual words µ1, µ2, . . . µK ; µi ∈ RD, and K is the size of
the codebook. The codebook is generated using K-means (Section 2.4.2).

Vector Quantisation (Hard assignment)
Vector Quantisation (VQ) [12, 59] is the simplest encoding method in which the code for a local

descriptor xi is given by the nearest visual word in the Euclidean space (Equation 3.1). Since each
local descriptor is strictly encoded in terms of a single visual word, this encoding is also called as Hard
Assignment.

ci = arg min
k
‖xi − µk‖2 (3.1)

Kernel Codebook Encoding
Kernel Codebook Encoding (KCB) [47, 65] is an encoding method where a local descriptor is as-

signed to multiple visual words, weighted by some distance measure in the descriptor space. It tries to
solve two drawbacks of Hard Assignment encoding:

(i) two local descriptors which are very close to each other may be assigned to different visual words,

(ii) all the descriptors assigned to a single visual word are given the same weights, irrespective of the
distance between the descriptor and the visual word.

The encoding of a local descriptor xi is defined in terms of weights corresponding to the visual words
(Equation 3.2)

cik =
K(xi, µk)∑K
j=1K(xi, µj)

(3.2)

whereK(x, µ) = exp(−γ
2‖x− µ‖

2)
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Locality-constrained linear (LLC) encoding
LLC encoding [69] utilizes the locality constraints to project each local descriptor into its local-

coordinate system. Let the codebook be denoted by B = [µ1, µ2, . . . , µK ]. LLC encoding tries to
minimise the following objective function:

min
C

N∑
i=1

‖xi −Bci‖2 + λ‖di � ci‖2 (3.3)

s.t. 1T ci = 1, ∀i

where C = [c1, c2, . . . , cN ] is the set of codes corresponding to local descriptors x1, x2, . . . , xN ;
ci ∈ RD

di = exp(
dist(xi, B)

σ
) (3.4)

where dist(xi, B) = [dist(xi, µ1), dist(xi, µ2), . . . , dist(xi, µK)]T , and dist(xi, µj) is the Euclidean
distance between local descriptor xi and visual word µj . σ is used for adjusting the weight decay speed
for the locality adaptor.

The analytical solution to the above optimisation is given as:

ci = (Ci + λdiag(d))\1 (3.5)

where Ci is called the data covariance matrix, given by Ci = (B − 1xTi )(B − 1xTi )T .
The codes ci (Equation 3.5) obtained are finally L1-normalized.

Improved Fisher Vector (IFV)
Fisher encoding [45] captures the average first and second order differences between the local de-

scriptors and the centers of a GMM, which can be thought of as a soft visual vocabulary. The con-
struction of the encoding starts by learning a Gaussian Mixture Model (GMM) from the entire data set,
and then associating the N local descriptors (from an image) to the K Gaussian components using soft
assignment. Let, qki, k = 1, . . . ,K, i = 1, . . . , N be the soft assignments of the N local descriptors to
the K Gaussian components, and for each k = 1, . . . ,K, define the vectors

uk =
1

N
√
πk

N∑
i=1

qikΣ
− 1

2
k (xt − µk),

vk =
1

N
√

2πk

N∑
i=1

qik
[
(xt − µk)Σ−1

k (xt − µk)− 1
]
. (3.6)

Then the Fisher encoding of the set of local descriptors is given by the concatenation of uk and vk
for all K components, giving an encoding of size 2DK

fFisher = [u>1 ,v
>
1 , . . .u

>
K ,v

>
K ]>. (3.7)
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Pooling
After getting the encodings for the local descriptors, the encodings are pooled to generate the spatial

histograms (Section 2.4.3). The pooling can be done in following two ways:

• Sum Pooling :

In sum pooling, the value of each bin is equal to the sum of the encodings of the local descriptors
corresponding to the visual word.

hj =
N∑
i=1

cij j = 1, . . . ,K (3.8)

• Max Pooling :

In max pooling, the value of each bin is equal to the maximum across all the encodings of the
local descriptors corresponding to the visual word.

hj = max
i=1,...,N

cij j = 1, . . . ,K (3.9)

The histogram obtained, H = [h1, h2, . . . , hK ] is the global descriptor of the image.

3.3 Image Representations and Learning

3.3.1 Dense visual words.

Dense RootSIFT descriptors [4, 36] are extracted from the image with a spatial stride of three to
five pixels and at six scales, defined by rescaling with factors 2−

i
2 , i = 0, 1, . . . , 5. Low-contrast SIFT

descriptors (identified as the ones for which the average intensity gradient magnitude is below a thresh-
old) are mapped to null vectors. The RootSIFT descriptors are then mapped to visual words. For the
IFV encoding, the visual word dictionary is obtained by training a Gaussian Mixture Model (diagonal
covariance) with 256 centers; for the other encodings, the dictionary is learned by using k-means and
setting k to 2,000.

3.3.2 Spatial encoding.

Weak geometric information is retained in the descriptors by using spatial histogramming [31]. For
the IFV encoding, the image is divided into 1× 1, and 2× 2 grids, obtaining a total of 5 spatial pooling
regions; for the other encodings, the image is divided into 1 × 1, and 2 × 2, and 4 × 4 grids, obtaining
a total of 21 spatial pooling regions. For the IFV encoding, we use max pooling for encoding the local
descriptors; for the other encodings we use sum pooling. The descriptors for each region are individually
normalised, and then stacked together to give the final image descriptor. For the IFV encoding, the image
descriptor is 204,800-dimensional, and for other encodings, the image descriptor is 42,000-dimensional.
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3.3.3 Learning and Classification.

Learning uses the PEGASOS SVM [55] algorithm, a linear SVM solver. In order to use non-linear
additive kernels instead of the linear one, the χ2 explicit feature map of [68] is used. Using the feature
map increases the dimension of the input feature vector by 3 times. For the IFV encoding, we use square-
root (Hellinger) kernel. The parameter C of the SVM (regularisation-loss trade-off) is determined by
4-fold cross validation. For multi-class image classification problems, 1-vs-rest classifiers are learned.
In this case, it was found beneficial to calibrate the different 1-vs-rest scores by fitting a sigmoid [48] to
them based on a validation set.

Class VQ KCB LLC IFV Class VQ KCB LLC IFV
airport inside 35.00 40.00 45.00 55.00 inside subway 61.90 61.90 71.43 80.95
artstudio 10.00 15.00 20.00 30.00 jewelleryshop 40.91 18.18 31.82 36.36
auditorium 61.11 55.56 61.11 72.22 kindergarden 70.00 70.00 75.00 70.00
bakery 26.32 26.32 31.58 31.58 kitchen 52.38 52.38 47.62 52.38
bar 33.33 33.33 33.33 44.44 laboratorywet 31.82 27.27 27.27 50.00
bathroom 55.56 66.67 55.56 66.67 laundromat 59.09 54.55 59.09 81.82
bedroom 33.33 33.33 28.57 33.33 library 45.00 50.00 45.00 45.00
bookstore 35.00 35.00 50.00 50.00 livingroom 40.00 35.00 50.00 45.00
bowling 90.00 95.00 90.00 90.00 lobby 40.00 40.00 45.00 55.00
buffet 65.00 60.00 70.00 70.00 locker room 47.62 42.86 47.62 57.14
casino 73.68 73.68 68.42 68.42 mall 40.00 40.00 45.00 45.00
children room 38.89 38.89 38.89 33.33 meeting room 59.09 54.55 50.00 68.18
church inside 73.68 73.68 68.42 78.95 movietheater 50.00 55.00 50.00 55.00
classroom 55.56 55.56 72.22 66.67 museum 34.78 34.78 39.13 43.48
cloister 95.00 90.00 95.00 90.00 nursery 70.00 70.00 70.00 70.00
closet 72.22 66.67 72.22 77.78 office 9.52 14.29 9.52 19.05
clothingstore 61.11 61.11 55.56 72.22 operating room 42.11 42.11 42.11 36.84
computerroom 83.33 77.78 83.33 83.33 pantry 60.00 60.00 60.00 75.00
concert hall 60.00 50.00 60.00 75.00 poolinside 50.00 35.00 45.00 60.00
corridor 57.14 57.14 57.14 61.90 prisoncell 55.00 55.00 60.00 70.00
deli 5.26 15.79 26.32 10.53 restaurant 40.00 40.00 30.00 60.00
dentaloffice 61.90 61.90 52.38 57.14 restaurant kitchen 60.87 52.17 43.48 60.87
dining room 38.89 33.33 38.89 50.00 shoeshop 42.11 36.84 31.58 47.37
elevator 76.19 71.43 85.71 85.71 stairscase 60.00 60.00 55.00 75.00
fastfood restaurant 52.94 52.94 76.47 82.35 studiomusic 78.95 73.68 78.95 84.21
florist 73.68 73.68 73.68 73.68 subway 38.10 42.86 52.38 61.90
gameroom 45.00 35.00 35.00 55.00 toystore 22.73 18.18 31.82 45.45
garage 66.67 50.00 66.67 66.67 trainstation 60.00 65.00 60.00 75.00
greenhouse 80.00 80.00 80.00 85.00 tv studio 72.22 72.22 61.11 72.22
grocerystore 47.62 42.86 42.86 57.14 videostore 45.45 40.91 40.91 40.91
gym 44.44 33.33 33.33 72.22 waitingroom 19.05 23.81 28.57 33.33
hairsalon 42.86 57.14 52.38 66.67 warehouse 47.62 47.62 52.38 52.38
hospitalroom 65.00 70.00 65.00 75.00 winecellar 57.14 47.62 57.14 76.19
inside bus 73.91 73.91 73.91 82.61 Average 52.14 50.59 53.03 60.77

Table 3.1: Per-class classification accuracies for Bag of Words (BoW). All results in %.
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Encoding Step size: 3 Step size: 4 Step size: 5
VQ [42,000] 52.14 (51.08) 50.38 (50.50) 49.76 (50.42)
KCB [42,000] 50.59 (49.65) 49.21 (49.19) 50.41 (49.92)
LLC [42,000] 51.52 (51.87) 53.03 (51.73) 51.70 (52.09)
IFV [204,800] 60.33 (60.90) 60.67 (61.39) 60.77 (61.05)

Table 3.2: BoW scene classification results. The table compares various BoW classifiers on MIT
Scene 67, reporting classification accuracy and mean average precision (in parentheses) for each case.
The best results significantly outperform the current state-of-the-art accuracy. The dimension of the
image representation is given in square brackets.

Method Accuracy (%) Mean AP (%)
ROI + Gist [49] 26.05 -
MM-scene [75] 28.00 -
CENTRIST [72] 36.90 -
Object Bank [34] 37.60 -
DPM [41] 30.40 -
RBoW [42] 37.93 -
LPR [51] 44.84 -
Patches [58] 38.10 -
DPM+Gist-color+SP [41] 43.10 -
Patches+GIST+SP+DPM [58] 49.40 -
VQ [42,000] 52.14 51.08
KCB [42,000] 50.59 49.65
LLC [42,000] 53.03 51.73
IFV [204,800] 60.77 61.05

Table 3.3: Average classification performance of different methods (previous publications and this pa-
per). The dimension of the image representation is given in square brackets.

3.4 Experiments and results

The four variants of BoW were compared (Section 3.2.2, Table 3.2) by varying the encoding and the
sampling density of the RootSIFT features. The best performance is 60.77% by using the IFV encoding
with sampling step of five pixels.

Very recently, [58] proposed a part-learning method demonstrating state-of-the-art performance in
the MIT Scene 67 dataset. Their best performing achieves an accuracy of 49.4% combining, in additions
to the learned parts, BoW, GIST, and DPM representations. We were therefore mildly surprised to find
that, by following the best practices indicated by [10], a solid bag of word implementation is actually
able to outperform (by 11%) the combined method of [58] as well as all other previous methods on
the MIT Scene 67 by using a single feature channel based on RootSIFT features (Table 3.3). Table 3.1
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Figure 3.1: Confusion matrix obtained with IFV. The diagonal represent the correct classifications,
and the brighter non-diagonal spots denote the confusion between two classes. The average of the
diagonal of the confusion matrix gives the classification accuracy.

reports the per-class classification accuracy for the Bag of Words model. We also show the confusion
matrix obtained with IFV encoding (Figure 3.1). The brighter spots in the confusion matrix shows the
confusion between different classes, mainly because of the inter-class similarity and semantic overlap
between classes (Section 1.2).

3.5 Beyond Spatial Pyramids

By design, Bag of Words does not capture the spatial information. Weak spatial information can be
introduced by using Spatial Pyramid [31], as described in Section 2.4.3. However, the division of the
image into cells is done uniformly across all the images. For example, for a 2 × 2 grid of cells, the
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image is divided from center in both horizontal and vertical directions. But for the image classification
problem, the uniform division may not be the most useful one. Consider the scene classification task,
a better strategy would be to divide the image in such a way that each cell is able to capture some
homogeneous regions of the scene. Figure 3.2 shows this with some examples. The red dotted line shows
the uniform partitioning of the image into a 2× 1 grid (passing through the center of the image), while
the green dotted line shows a better partitioning of the image, where each cell has more homogeneous
content of the scene. For the computer-room image, the green line is able to separate the computers
from the background wall. For the swimming pool image, the complete swimming pool is in the lower
half (green line), while in case of uniform partition, the red line cuts the swimming pool into 2 parts,
and it appears in both the lower and upper half.

There has been some recent work in this direction of finding discriminative, non-uniform partitions
of the images. Sharma and Jurie [57] proposed a method of learning discriminative spatial partitioning
from a space of grids, where each grid is obtained by a series of recursive axis aligned splits of cells.
Hakan et al. [26] formulate the estimation of the partition as a latent variable problem. Both these
methods use axis-aligned grids for partitioning the image. A better method would be one in which the
partitions can have more degrees of freedom, like a piecewise linear line. In this section, we present
some ideas for estimating better partitions in images, which can be used with Bag of Words model.
We start with a small experiment (Section 3.5.1) to check whether the non-uniform partitioning helps
in scene classification or not. We then formulate the problem of estimating the partition as Maximum
Likelihood Estimation (Section 3.5.2) and estimate it using an iterative procedure.

(a) Computer Room (b) Swimming Pool

Figure 3.2: Examples showing the uniform partitioning v/s non-uniform partitioning in images.
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3.5.1 Manual partition

This section describes a simple classification experiment which is performed to verify whether the
non-uniform partitioning gives any boost in the classification performance, as compared to the regu-
lar uniform partitioning. For this experiment, we consider 3 classes from the MIT 67 indoor scene
dataset [49]: auditorium, concert hall and movie theater. The 3 classes are quite confusing, and the
images from the 3 classes look very similar to each other. We manually partitioned the images into
2 × 1 grid, ensuring that the regions in the 2 cells are homogeneous. The dividing line need not be
axis parallel, it can be an inclined line as well. Figure 3.3 shows some partitions in images from the
auditorium class.

There are 100 images for each class, out of which 80 are used for training and 20 for testing. The
classification pipeline used is same as described in Section 2.4. The only change comes while comput-
ing the spatial histograms. Instead of using regular grids, we use the new partitions for constructing the
spatial histograms. We use the histograms of the base image as well, as in the standard Spatial Pyramid
technique. In this experiment for 2× 2 partition, we use the non-uniform partitioning in the horizontal
direction, the image is partitioned vertically from the center. Table 3.4 shows the classification results
measured in terms of average classification accuracy, and compares the results with uniform partition-
ing. The results do support the claim that a non-uniform partitioning performs better than a uniform
partitioning.

Method Representation Accuracy (%)

Base Image 69.63

Base Image + 2× 1 Uniform Partition 67.78

Base Image + 2× 1 Manual Partition 71.67

Base Image + 2× 2 Uniform Partition 69.81

Base Image + 2× 2 Manual Partition 73.52

Table 3.4: Classification results for 3-class experiment.

3.5.2 Maximum Likelihood Estimation of the Partition

In this section, we propose a Maximum Likelihood Estimate (MLE) [46] based solution to estimate
the partitions in an image. In this section, we consider 2 × 1 partition in an image. As described in
Section 3.5.1, a partition which divides the image into homogeneous regions should be a good partition.
One way to estimate this partition would be to estimate the distribution of visual words for the upper
and lower regions of images belonging to one class. For example, lower region of all swimming pool
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Figure 3.3: Manual Partitioning. Examples of manual partitioning in images from the auditorium
class.

images (Figure 3.2) should be homogeneous, consisting of the swimming pool (water), and the upper
region should consist of the homogeneous background walls.

Let A and B be the upper and lower parts of the image, defined by the partition H . The partition H
need not be a straight line, it can be estimated as piecewise linear. We formulate the MLE solution as
follows:

• Let the data be the feature occurrences x1, ..., xn in the whole image. In our case, the features are
the points at which SIFT features are computed.

• Let θA, θB be the parameters of a probabilistic model of the data. Here, θA, θB are the histograms
(l1 normalised) of visual words in the upper and lower parts of the image respectively.
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• Now, the probability (density) of a feature xi is defined as

p(xi| θA, θB) =

p(xi|θA) if xi in A

p(xi|θB) if xi in B
(3.10)

where p(xi|θ) = θ(W xi) (W xi is the visual word at xi point and θ(v) is the count of visual word
v in θ histogram)

• The probability of all the features jointly is the product (as we assume them to be iid)

p(x1, . . . , xn|θA, θB) =
∏
i

p(xi|θA, θB) (3.11)

Converting into the log-likelihood for simplicity, we get

log p(x1, . . . , xn|θA, θB) =
∑
xi∈A

log p(xi|θA) +
∑
xi∈B

log p(xi|θB) (3.12)

The solution is given by the regions A, B which maximises the score (Equation 3.12). In practice,
we use an iterative procedure to find the solution. The pseudocode is given below (Algorithm 2).

Algorithm 2: Pseudocode for estimating partition.
Input: Image I
Output: A, B
Initialisation: s = 0, A,B: partition by center line in I
x1, . . . , xn = points at which SIFT feature are computed in I
W = [v1, . . . , vK ] (vocabulary constructed from the SIFT features, using k-means)
Visual word v at point xi is given by W xi

while s is not converged do

θA[vj ] =
n∑
i=1

(W xi == vj) if xi in A

θB[vj ] =
n∑
i=1

(W xi == vj) if xi in B

A,B = arg max
A′,B′

(
∑

xi∈A′
log p(xi|θA) +

∑
xi∈B′

log p(xi|θB))

end

We use the above method of estimating non-uniform partitions and test it on images from MIT Scene 67
data set. Figure 3.4 shows some examples of the partitions obtained on some of the images.
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(a) Auditorium

(b) Meeting Room

(c) Corridor

(d) Pool Inside

(e) Computer Room

Figure 3.4: Examples of partitions obtained on images from MIT 67 scene dataset.
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3.6 Summary

We have presented a well designed Bag of Words pipeline for scene classification. We started with
the standard BoW pipeline, and motivated by [10], explored the different options available for each step
of the pipeline. As a result of our experiments, we are able to build a method which is not only fast and
efficient, but also establishes the state-of-the-art results on MIT Indoor Scene 67 dataset, beating all the
previously published results. We have also presented a novel idea of non-uniform partitioning in images
which may be more suitable for classification tasks. This technique can be used as an alternative to the
existing Spatial Pyramid technique.
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Chapter 4

Bag of Parts for Scene Classification

The automatic discovery of distinctive parts for an object or scene class is challenging since it re-
quires simultaneously to learn the part appearance and also to identify the part occurrences in images.
We propose a simple, efficient, and effective method to do so. We address this problem by learning
parts incrementally, starting from a single part occurrence with an Exemplar SVM. In this manner, ad-
ditional part instances are discovered and aligned reliably before being considered as training examples.
We also propose entropy-rank curves as a means of evaluating the distinctiveness of parts shareable
between categories and use them to select useful parts out of a set of candidates.

We apply the new representation to the task of scene categorisation on the MIT Scene 67 benchmark.
We show that our method can learn parts which are significantly more informative and for a fraction of
the cost, compared to previous part-learning methods such as Singh et al. [58]. We also show that a well
constructed bag of words or Fisher Vector model can substantially outperform the previous state-of-the-
art classification performance on this data.

4.1 Introduction

The notion of part has been of central importance in object recognition since the introduction of
pictorial structures [22], constellation models [71], object fragments [2, 61], right up to recent state-of-
the-art methods such as Deformable Part Models (DPMs) [19]. Yet, the automatic discovery of good
parts is still a difficult problem. In DPM, for example, part occurrences are initially assumed to be in a
fixed location relative to the ground truth object bounding boxes, and then are refined as latent variables
during learning [19]. This procedure can be satisfactory in datasets such as PASCAL VOC [14] where
bounding boxes usually induce a good alignment of the corresponding objects. However, when the
alignment is not satisfactory, as for the case of highly-deformable objects such as cats and dogs [43],
this approach does not work well and the performance of the resulting detector is severely hampered.

In this work, a simple, efficient, and effective method for discovering parts automatically and with
very little supervision is proposed. Its power is demonstrated in the context of scene recognition where,
unlike in object recognition, object bounding boxes are not available, making part alignment very chal-
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 4.1: Example of occurrences of distinctive parts learned by our method from weakly supervised
image data. These part occurrences are detected on the test data. (a) buffet, (b) cloister, (c) closet, (d)
computerroom, (e) corridor, (f) florist, (g) movietheater, (h) prisoncell, (i) stairscase.

lenging. In particular, the method is tested on the MIT Scene 67 dataset, the standard benchmark for
scene classification. Figure 4.1 shows examples of the learned parts detected on the test set.

To achieve these results two key issues must be addressed. The first is to find and align part instances
in the training data while a model of the part is not yet available. This difficulty is bypassed by learning
the model from a single exemplar of a candidate part. This approach is motivated by [38], that showed
that a single example is often sufficient to train a reasonable, if a little restrictive, detector. This initial
model is then refined by alternating mining for additional part instances and retraining. While this
procedure requires training a sequence of detectors, the LDA technique of [27] is used to avoid mining
for hard negative examples, eliminating the main bottleneck in detector learning [21, 67], and enabling
a very efficient part learning algorithm.

The second issue is to select distinctive parts among the ones that are generated by the part mining
process. The latter produces in fact a candidate part for each of a large set of initial seeds. Among
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these, the most informative ones are identified based on the novel notion of entropy-rank. This criterion
selects parts that are informative for a small proportion of classes. Differently to other measures such
as average precision, the resulting parts can then be shared by more than one object category. This is
particularly important because parts should be regarded as mid-level primitives that do not necessarily
have to respond to a single object class.

The result of our procedure is the automatic discovery of distinctive part detectors. We call them
“blocks that shout” due to their informative nature and due to the fact that, in practice, they are imple-
mented as HOG [13] block filters (Figure 4.2).

4.1.1 Related work

Parts have often been sought as intermediate representations that can complement or substitute lower
level alternatives like SIFT [36]. In models such as DPMs, parts are devoid of a specific semantic
content and are used to represent deformations of a two dimensional template. Often, however, parts
do have a semantic connotation. For example, in Poselets [9] object parts correspond to recognizable
clusters in appearance and configuration, in Li et al. [34] scene parts correspond to object categories,
and in Raptis et al. [50] action parts capture spatio-temporal components of human activities.

The learning of parts is usually integrated into the learning of a complete object or scene model [3,
19]. Only a few papers deal primarily with the problem of learning parts. A possibility, used for example
by Poselets [9], is to use some spatial annotation of the training images for weakly supervised learning.
Singh et al. [58] explores learning parts in both an unsupervised and weakly supervised manner, where
the weakly supervised case (as here) only uses the class label of the image. Their weakly supervised
procedure is applied to the MIT Scene 67 dataset, obtaining state-of-the-art scene classification perfor-
mance. As will be seen though, our part-learning method is: (i) simpler, (ii) more efficient, and (iii) able
to learn parts that are significantly better at scene classification.

4.2 Blocks that shout: learning distinctive parts

In characterising images of particular scene classes, e.g. computer room, library, book store, audi-
torium, theatre, etc., it is not hard to think of distinctive parts: chairs, lamps, doors, windows, screens,
etc., readily come to mind. In practice, however, a distinctive part is useful only if it can be detected
automatically, preferably by an efficient and simple algorithm. Moreover, distinctive parts may include
other structures that have a weaker or more abstract semantic, such as the corners of a room or a corri-
dor, particular shapes (rounded, square), and so on. Designing a good vocabulary of parts is therefore
best left to learning.

Learning a distinctive part means identifying a localized detectable entity that is informative for
the task at hand (in our example discriminating different scene types). This is very challenging be-
cause (i) one does not know if a part occurs in any given training image or not, and (ii) when the part
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occurs, one does not know its location. While methods such as multiple instance learning have often
been proposed to try to identify parts automatically, in practice they require careful initialisation to work
well.

Our strategy for part learning combines three ideas: seeding, expansion, and selection. In seed-
ing, (Section 4.2.1) a set of candidate part instances (seeds) is generated by sampling square windows
(blocks) in the training data guided by segmentation cues. All such blocks are treated initially as poten-
tially different parts. In expansion, (Section 4.2.2) each block is used as a seed to build a model for a
part while gradually searching for more and more part occurrences in the training data. This paced ex-
pansion addresses the issue of detecting and localizing part exemplars. Finally, selection (Section 4.2.3)
finds the most distinctive parts in the pool of candidate parts generated by seeding and expansion by
looking at their predictive power in term of entropy-rank. The procedure is weakly supervised in that
positives are only sought in the seeding and expansion stages within images of a single class.

Original Image Block HOG
Representation

Figure 4.2: An example block learnt automatically for the laundromat class. This block is a character-
istic part for this class.

Once these distinctive parts are obtained, they can be used for a variety of tasks. In our experiments
they are encoded in a similar manner to BoW: an image descriptor is computed from the maximum
response of each part pooled over spatial regions of the image (Section 3.2). Experiments show that this
representation is in fact complementary to BoW (Section 4.4.2).

4.2.1 Seeding: proposing an initial set of parts

Initially, no part model is available and, without further information, any sub-window in any training
image is equally likely to contain a distinctive part. In principle, one could simply try to learn a part
model by starting from all possible image sub-windows and identify good parts a-posteriori, during the
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(a) Original Image (b) Superpixels (c) Seed blocks

Figure 4.3: Selecting seed blocks. The super-pixels (b) suggest characteristic regions of the image, and
blocks are formed for these. Blocks with low spatial gradient are discarded.

selection stage (Section 4.2.3). Unfortunately, most of these parts will in fact not be distinctive (e.g. a
uniform wall) so this approach is highly inefficient.

We use instead low-level image cues to identify a subset of image locations that are more likely to
be centered around distinctive parts. Extending the notion of objectness [1], we say that such promising
locations have high partness. In order to predict partness, we use image over-segmentations, extending
the idea of [64] from objects to parts.

In detail, each training image is first segmented into superpixels by using the method of [20]. This
is repeated four times, by rescaling the image with scaling factors 2−

i
3 , i = 0, 1, 2, 3. Superpixels of

intermediate sizes, defined as the ones whose area is in the range 500 to 1,500 pixels, are retained. These
threshold are chosen assuming that the average area of an unscaled image is 0.5 Mpixels. Superpixels
which contain very little image variation (as measured by the average norm of the intensity gradient)
are also discarded.

Part models are constructed on top of HOG features [13]. At each of the four scales, HOG decom-
poses the image into cells of 8 × 8 pixels. Each part is described by a block of 8 × 8 HOG cells, and
hence occupies an area of 64× 64 pixels. A part seed is initialized for each superpixel by centering the
64× 64 pixel block at the center of mass of the superpixel. Compared to sampling blocks uniformly on
a grid, this procedure was found empirically to yield a much higher proportion of seeds that successfully
generate good discriminative parts.

Figure 4.3 shows an example of the superpixels computed from a training image, and the seed blocks
obtained using this procedure.

4.2.2 Expansion: learning part detectors

Learning a part detector requires a set of part exemplars, and these need to be identified in the training
data. A possible approach is to sample at random a set of part occurrences, but this is extremely unlikely
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to hit multiple occurrences of the same part. In practice, part initialisation can be obtained by means of
some heuristic, such as clustering patches, or taking parts at a fixed location assuming that images are
at least partially aligned. However, the detector of a part is, by definition, the most general and reliable
tool for the identification of that part occurrences.

There is a special case in which a part detector can be learned without worrying about exemplar
alignment: a training set consisting exactly of one part instance. It may seem unlikely that a good model
could be learned from a single part example, but Exemplar SVMs [38] suggest that this may be in fact
the case. While the model learned from a single occurrence cannot be expected to generalise much,
it is still sufficient to identify reliably at least a few other occurrences of the part, inducing a gradual
expansion process in which more and more part occurrences are discovered and more variability is
learned.

In practice, at each round of learning the current part model is used to rank blocks from images of the
selected class and the highest scoring blocks are considered as further part occurrences. This procedure
is repeated a set number of times (ten in the experiments), adding a small number of new part exemplars
(ten) to the training set each time. All the part models obtained in this manner, including the intermediate
ones, are retained and filtered by distinctiveness and uniqueness in Section 4.2.3. Figure 4.4 shows an
example seed part on the left, and the additional part occurrences that are are added to the training set
during successive iterations of expansion.

Note that this expansion process uses a discriminative model of the part. This is particularly impor-
tant because in image descriptors such as HOG most of the feature components correspond to irrelevant
or instance specific details. Discriminative learning can extract the distinctive information (e.g. shape),
while generative modelling (e.g. k-means clustering) has difficulty in doing so and constructing “seman-
tic” clusters.

LDA acceleration. The downside of this mining process is that the part detector must be learned
multiple times. Using a standard procedure that involves hard negative mining for each trained detec-
tor [21, 67] would then be very costly. We use instead the LDA technique of [27] which can be seen
as learning once a soft but universal model of negative patches (a similar method is described in [25]).
In practice, the parameter vector w of a part classifier is learned simply as w = Σ−1(x̄ − µ0) where
x̄ is the mean of the HOG features of the positive part samples, µ0 is the mean of the HOG blocks in
the dataset, and Σ the corresponding covariance matrix. HOG blocks are searched at all locations at the
same four scales of Section 4.2.1.

4.2.3 Selection: identifying distinctive parts

Our notion of a discriminative block is that it should occur in many of the images of the class from
which it is learnt, but not in many images from other classes. However, it is not reasonable to assume
that parts (represented by blocks) are so discriminative that they only occur in the class from which they
are learnt. For example, the door of a washing machine will occur in the laundromat class, but can also
occur in the kitchen or garage class. Similarly, a gothic arch can appear in both the church and cloister
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(a) Seed (b) Round 1 (c) Round 2 (d) Round 3 (e) Round 4 (f) Round 5

Figure 4.4: Mining of part instances. The seed (initial) block is on the left. On the right, the additional
example blocks added to the positive training set for retraining the part detector are shown in the order
that they are added. Note that mining uses blocks selected from a certain scene category, but no other
supervision is used.

class. However, one would not expect these parts to appear in many other of the indoor classes. In
contrast, a featureless wall could occur in almost any of the classes.

In selecting the block classifiers we design a novel measure to capture this notion. The block classi-
fiers were learnt on training images for a particular class, and they are tested as detectors on validation
images of all classes. Blocks learned from a class are not required to be detected only from images of
that class; instead, the milder constraint that the distribution of classes in which the block is detected
should have low entropy is imposed. In this manner, distinctive but shareable mid-level parts can be
selected. For the laundromat example above, we would expect the washing machine door to be detected
in only a handful of the classes, so the entropy would be low. In contrast the block for a wall would be
detected across many classes, so its distribution would be nearer uniform across classes, and hence the
entropy higher.
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(a) Discriminative classifier (b) Non-Discriminative classifier

Figure 4.5: Entropy-Rank (ER Curves). Entropy values reach a uniform value as more and more
images are ranked, with images from different classes coming in. Classifier (a) has low entropy at top
ranks, which shows that it is picking the blocks from a few classes. On the other hand, Classifier (b)
has more uniform entropy, which shows that it is picking the blocks from many classes, making the
classifier less discriminative. For each class, classifiers with low AUC are selected.

To operationalise this requirement, each block is evaluated in a sliding-window manner on each
validation image. Then, five block occurrences are extracted from each image by max-pooling in five
image regions, corresponding to the spatial subdivisions used in the encoding of Section 4.3. Each block
occurrence (zi, yi) detected in this manner receives a detection score z and a class label y equal to the
label of the image. The blocks are sorted on their score z, and the top r ranking blocks selected. Then
the entropy H(Y |r) is computed:

H(Y |r) = −
N∑
y=1

p(y|r) log2 p(y|r), (4.1)

where N is the number of image classes and p(y|r) is the fraction of the top r blocks (zi, yi) that
have label yi = y. We introduce Entropy-Rank Curves (ER curves) to measure the entropy of a block
classifier at different ranks. An ER curve is similar to a Precision-Recall Curve (PR curve), with rank
on the x-axis and entropy values on the y-axis.

Figure 4.5 shows the ER curves of a discriminative and a non-discriminative block detector, respec-
tively. Note, entropy for all part classifiers converges to a constant value (which depends on the class
prior) as the rank increases. Analogously to Average Precision, we then take the Area Under Curve
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(AUC) for the ER graph as an overall measure of performance of a classifier. The top scoring detectors
based on this measure are then retained.

The final step is to remove redundant part detectors. In fact, there is no guarantee that the part
mining procedure will not return the same or similar parts multiple times. The redundancy between
a pair of detectors w′ and w′′ is measured by their cosine similarity 〈w′/‖w′‖, w′′/‖w′′‖〉 (recall that
they are linear classifiers). For each class, n detectors are selected sequentially by increasing ER scores,
skipping detectors that have cosine similarity larger than 0.5 with any of the detectors already selected.

4.3 Image representations and learning

4.3.1 Bag of Parts Representation

The part detectors developed in Section 4.2 are used to construct “bag of parts” image-level de-
scriptors. In order to compute an image-level descriptor from the parts learned in Section 4.2, all the
corresponding classifiers are evaluated densely at every image location at multiple scales. Part scores
are then summarised in an image feature vector by using max-pooling, by retaining the maximum re-
sponse score of a part in a region. The pooling is done at spatial-pyramid fashion [31] (1 × 1, 2 × 2
grids), and encodings of each spatial region are stacked together to form the final image representation
of the image (the “bag of parts”). Note that the method of selecting the parts (Section 4.2.3) and here
the encoding into an image feature vector both use max-pooling over the spatial-pyramid.

4.3.2 Bag of Words and Bag of Parts Combined representation

In the final experiment, we explore the complementarity of the Bag of Words and Bag of Parts
representations. Bag of Words and Bag of Parts histograms are computed as described in Section 3.3
and Section 4.3.1 respectively. The two representations are combined by stacking the corresponding
vectors after proper normalisation.

4.3.3 Learning

Learning uses the PEGASOS SVM [55] algorithm, a linear SVM solver. In order to use non-linear
additive kernels instead of the linear one, the χ2 explicit feature map of [68] is used (the bag of parts
histograms are l1 normalised). Using the feature map increases the dimension of the input feature vector
by 3 times. The parameter C of the SVM (regularisation-loss trade-off) is determined by 4-fold cross
validation. For multi-class image classification problems, 1-vs-rest classifiers are learned. In this case,
it was found beneficial to calibrate the different 1-vs-rest scores by fitting a sigmoid [48] to them based
on a validation set.
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4.4 Experiments and results

4.4.1 Bag of Parts

The part-learning algorithm is evaluated on the task of scene classification on the MIT 67 indoor
scene dataset of Quattoni and Torralba [49]. Note that, differently from object recognition datasets such
as PASCAL VOC [15], in scene classification no geometric cue such as object bounding boxes is given
to help initialising parts.

Evaluation uses the protocol of [49], using the same training and test split as [49] where each category
has about 80 training images and 20 test images. In addition the training set is subdivided into about
64 train and 16 validation images. Performance is reported in terms of average classification accuracy
as in [49] (i.e. the average of the diagonal of the confusion matrix) and, additionally, in term of mean
Average Precision (mAP).

Method Accuracy (%) Mean AP (%)
ROI + Gist [49] 26.05 -
MM-scene [75] 28.00 -
CENTRIST [72] 36.90 -
Object Bank [34] 37.60 -
DPM [41] 30.40 -
RBoW [42] 37.93 -
LPR [51] 44.84 -
Patches [58] 38.10 -
Bag of Parts [3,350](Ours)
(1× 1 grid) 40.31 37.31

Bag of Parts [16,750](Ours)
(1× 1 + 2× 2 grid)

46.10 43.55

Table 4.1: Average classification performance of single methods (previous publications and this paper).
The dimension of the image representation is given in square brackets.

Method Number of parts selected per class
10 20 30 40 50

Bag of Parts 42.34 44.81 44.96 46.00 46.10
LLC + Bag of Parts 56.66 55.98 55.93 56.01 55.94
IFV + Bag of Parts 62.80 62.75 62.65 62.02 63.10

Table 4.2: Variation with number of part classifiers. The table reports the variation of classification
accuracy with number of part classifiers selected per class.
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Blocks are learned as described in Section 4.2. The 31-dimensional cell HOG variant of [21] is
used in all the experiments. For the seeding described in Section 4.2.1, the segmentation algorithm [20]
is run with parameters k = 0.5, σ = 200, and min = 20. The average number of part candidates
obtained for each class is 3,800. For each of these seed blocks, a classifier is learned by following the
expansion procedure of Section 4.2.2. We sample about 620,000 hog blocks randomly from the training
set, and compute the mean (µ0) and covariance (Σ) of this set. Since Σ comes out to be low-rank and
non-invertible, a regulariser (λ = 0.01) is added to the diagonal elements of the covariance matrix.

Once the parts have been learned as described in Section 4.2.2 and selected as in Section 4.2.3, the
bag of parts representation is extracted from each training image as described in Section 4.3. Finally,
67 one-vs-rest SVMs are learned from the training images, and the resulting scene classifiers are eval-
uated on the test data. As one can expect, the classification accuracy increases as more parts are added
to the representation (Table 4.2), but the peak is at around 50 parts per category. The probable rea-
son is a lack of training material (after all the parts and classifiers are learned on the same data) that
causes overfitting. To overcome this, we left-right flip the images in the positive training set, and add
them as additional positives. We also show the confusion matrix obtained with Bag of Parts method
(Figure 4.6).The brighter spots in the confusion matrix shows the confusion between different classes,
mainly because of the inter-class similarity and semantic overlap between classes (Section 1.2).

Top Detections on Validation Set
Figure 4.7 shows examples from the validation set images, with high detection score for a part

classifier learnt on different classes class. Note, only one detection per image is shown. Along with the
detections, we also show:

• the seed block (from the training set image) used for learning the part classifier. The seed block
is selected using the unsupervised method described in Section 4.2.1.

• the final learnt HOG template of the part classifier. The final classifier is obtained after 10 rounds
of retraining.

These results show that the part classifiers capture semantically meaningful parts/objects which are
characteristic features of the respective classes.

Overall, the proposed part learning method compares very favourably with the previous state-of-
the-art on part detection [58]. First, the parts found by our algorithm are much more informative. In
particular, our accuracy on MIT Scene 67 is 46.10% when 50 parts per category are used. By compar-
ison, the accuracy of [58] is 38.10%, and they use 210 parts per category. So our parts improve the
accuracy by 8% using a quarter of the detectors.

Second, our part learning method is significantly more efficient than the discriminative clustering
approach of [58] for three reasons. (i) [58] initialise their clustering algorithm by standard (generative)
K-means, which, as they note, performs badly on the part clustering task; our exemplar SVM approach
avoids that problem. (ii) These clusters are formed on top of a random selection of initial patches;
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we found that aligning seed patches to superpixels substantially increases the likelihood of capturing
interesting image structures (compared to random sampling). (iii) They use iterative hard-mining to
learn their SVM models. This approach was tested in our context and found to be 60 times slower than
LDA training that avoids this step.
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Figure 4.6: Confusion matrix obtained with Bag of Parts. The diagonal represent the correct classifi-
cations, and the brighter non-diagonal spots denote the confusion between two classes. The average of
the diagonal of the confusion matrix gives the classification accuracy.
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(a) closet

(b) computerroom

(c) florist

(d) corridor

Figure 4.7: Seed blocks and the learnt HOG templates, and detections on the validation set images.
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4.4.2 Bag of Words and Bag of Parts

In the final experiment, the bag of parts and bag of words representations are combined as described
in Section 4.3 and 67 one-vs-rest classifiers are learned as detailed above. We pick 50 parts per class
and compute the bag of parts representation. Table 4.3 reports the overall performance of the combined
descriptors and compares it favourably to BoW, and hence to all previously published results. Figure 4.8
shows qualitative results obtained by the combined bag of parts and bag of words method. Table 4.4
reports the per-class classification accuracy for the Bag of Parts model, and the combined Bag of Parts
and Bag of Words model.

Method Acc. (%) Mean AP (%)
DPM+Gist-color+SP [41] 43.10 -
Patches+GIST+SP+DPM [58] 49.40 -
LLC + Bag of Parts (Ours) 56.66 55.13
IFV + Bag of Parts (Ours) 63.10 63.18

Table 4.3: Average classification performance of combination of methods (previous publications and
this paper).
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Class BoP BoP +
LLC

BoP +
IFV

Class BoP BoP +
LLC

BoP +
IFV

airport inside 35.00 40.00 50.00 inside subway 71.43 76.19 80.95
artstudio 40.00 35.00 45.00 jewelleryshop 13.64 40.91 36.36
auditorium 61.11 66.67 72.22 kindergarden 55.00 80.00 75.00
bakery 15.79 26.32 36.84 kitchen 38.10 52.38 61.90
bar 16.67 38.89 55.56 laboratorywet 9.09 45.45 54.55
bathroom 55.56 55.56 66.67 laundromat 77.27 72.73 81.82
bedroom 38.10 47.62 47.62 library 40.00 45.00 45.00
bookstore 45.00 50.00 65.00 livingroom 15.00 30.00 40.00
bowling 80.00 95.00 90.00 lobby 30.00 40.00 45.00
buffet 70.00 75.00 65.00 locker room 28.57 52.38 61.90
casino 73.68 63.16 84.21 mall 45.00 45.00 45.00
children room 44.44 38.89 38.89 meeting room 68.18 59.09 63.64
church inside 78.95 68.42 73.68 movietheater 45.00 55.00 60.00
classroom 55.56 61.11 66.67 museum 30.43 39.13 43.48
cloister 90.00 95.00 95.00 nursery 60.00 70.00 80.00
closet 72.22 72.22 72.22 office 4.76 4.76 23.81
clothingstore 61.11 61.11 55.56 operating room 42.11 52.63 42.11
computerroom 44.44 77.78 83.33 pantry 85.00 60.00 70.00
concert hall 65.00 65.00 95.00 poolinside 30.00 45.00 65.00
corridor 52.38 66.67 57.14 prisoncell 50.00 65.00 70.00
deli 10.53 36.84 21.05 restaurant 30.00 40.00 60.00
dentaloffice 52.38 61.90 71.43 restaurant kitchen 34.78 56.52 69.57
dining room 38.89 44.44 55.56 shoeshop 26.32 26.32 47.37
elevator 71.43 90.48 90.48 stairscase 65.00 70.00 75.00
fastfood restaurant 17.65 64.71 64.71 studiomusic 52.63 84.21 89.47
florist 68.42 78.95 84.21 subway 61.90 57.14 61.90
gameroom 50.00 45.00 55.00 toystore 9.09 27.27 50.00
garage 38.89 55.56 61.11 trainstation 40.00 80.00 85.00
greenhouse 85.00 80.00 85.00 tv studio 66.67 66.67 61.11
grocerystore 23.81 61.90 57.14 videostore 36.36 50.00 50.00
gym 27.78 50.00 66.67 waitingroom 14.29 28.57 33.33
hairsalon 42.86 52.38 66.67 warehouse 38.10 57.14 57.14
hospitalroom 45.00 65.00 85.00 winecellar 33.33 57.14 71.43
inside bus 73.91 78.26 91.30 Average 46.10 56.66 63.10

Table 4.4: Per-class classification accuracies for Bag of Parts (BoP) and IFV + BoP (Combined). All
results in %.
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Figure 4.8: Categories with the highest classification rate (Bag of Words + Bag of Parts combined
method). Each row shows the top eight results for the category. (a) cloister, (b) concert hall, (c) inside
bus, (d) elevator, (e) bowling, (f) studiomusic, (g) greenhouse, (h) hospitalroom, (i) trainstation, and (j)
casino.
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4.5 Summary

We have presented a novel method to learn distinctive parts of objects or scenes automatically, from
image-level category labels. The key problem of simultaneously learning a part model and detecting
its occurrences in the training data was solved by paced learning by Exemplar SVMs, growing a model
from just one occurrence of the part. The distinctiveness of parts was measured by the new concept of
entropy-rank, capturing the idea that parts are at the same time predictive of certain object categories
but shareable between different categories. The learned parts have been shown to perform very well on
the task of scene classification, where they improved a very solid bag of words baseline or Fisher Vector
baseline that in itself establishes the new state-of-the-art on the MIT Scene 67 benchmark.

The outcome of this work are blocks that correspond to semantically meaningful parts/objects. This
mid-level representation is useful for other tasks, for example to initialize the region models of [42], and
yields more understandable and diagnosable models than the original bag of visual words method.
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Chapter 5

Conclusions and Future Work

In this thesis, we have explored the problem of Scene Classification and presented the solutions
to solve the problem. We started with investigating the standard Bag of Words pipeline for image
classification, and built a very fast and efficient pipeline for large scale semantic video retrieval. We have
demonstrated this on the Semantic Indexing Task (SIN), TRECVID 2010. Out of all the submissions to
this challenge, our results were ranked the best results for Nighttime, and second best for Hand, Airplane
flying.

Motivated by this, we applied the Bag of Words pipeline for Indoor Scene Classification. We inves-
tigate the recent improvements in the feature descriptors (e.g. RootSIFT), encoding methods (e.g. LLC,
Fisher Vector) and use them to build our Bag of Words method for Indoor Scene Classification. We
show that our method achieves the state-of-the-art results on the MIT 67 indoor scene dataset, beating
all the previous results. This is an interesting result because our method which uses only a single feature
channel is able to outperform the methods which use multiple feature channels.

We also proposed a new method for partitioning of images, which is an extension to the standard
Spatial Pyramid Technique (SPM). The new partitioning is designed for scene classification tasks, where
a non-uniform partitioning based on the different regions is more useful than the uniform partitioning.

We also observed that indoor scenes are characterized by some distinctive elements present in the
scene. These high level objects/elements are not captured by the Bag of Words representation. An image
representation which takes into account the distinctive parts from the scenes, should help in classifica-
tion. We proposed a new representation, called Bag of Parts which can discover parts automatically
and with very little supervision. We have also introduced a novel measure of entropy-rank to measure
the distinctiveness of parts. We have shown that such Bag of Parts representation is able to capture
the discriminative parts from the scenes, and achieves good classification results. The outcome of this
work are blocks that correspond to semantically meaningful parts/objects. This mid-level representation
yields more understandable and diagnosable models than the original bag of visual words method.

Finally, we have also shown that the Bag of Parts representation is complementary to the Bag of
Words representation, and combining the two gives a boost to the classification performance. The com-
bined representation establishes a new state-of-the-art benchmark on the MIT 67 indoor scene dataset.
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5.1 Future Work

We list down some of the possible extensions of the work presented in this thesis:

• Fisher encoding of Bag of Parts.

In our current method, the Bag of Parts representation is encoded by taking the maximum detec-
tion score of each part over an image. It would be interesting to try Fisher Vector encoding to
encode the Bag of Parts representation.

• Faster learning of Parts.

Our part learning algorithm is fast, primarily because we avoid hard-negative mining and the LDA
technique of [27]. However there are many seed blocks to start with, therefore the total time to
learn all the parts is high. One possible option to reduce the overall time could be to reduce the
number of seed blocks further.

• Better methods to remove redundant parts.

Redundant part detectors are currently removed in a greedy method. The redundancy between a
pair of detectors is measured by their cosine similarity. For each class, n detectors are selected
sequentially by increasing ER scores, skipping detectors that have cosine similarity larger than 0.5
with any of the detectors already selected. This selection procedure can be improved by selecting
the detectors as a global optimal solution.
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• Mayank Juneja, Andrea Vedaldi, C.V. Jawahar, Andrew Zisserman
“Blocks that Shout: Distinctive Parts for Scene Classification”
in Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Portland,
USA 2013.
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