TECHNIQUES FOR ORGANIZATION AND VISUALIZATION OF
COMMUNITY PHOTO COLLECTIONS

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
in

Computer Science

by

Kumar Srijan
200602015

kumar.srijan@research.iiit.ac.in

@ Center for Visual Information Techonology
International Institute of Information Technology
Hyderabad - 500 032, INDIA
August 2013

i

Copyright © Kumar Srijan, 2013
All Rights Reserved

1ii

v

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “ TECHNIQUES FOR ORGANIZATION
AND VISUALIZATION OF COMMUNITY PHOTO COLLECTIONS ” by Mr. Kumar Srijan, has

been carried out under my supervision, and is not submitted elsewhere for a degree.

Date Adviser: Prof. C.V. Jawahar

vi

To the Blue Planet

viii

Acknowledgments

I would like to thank my advisor Dr. C. V. Jawahar for giving me an opportunity to do research at
CVIT, IIIT Hyderabad. I am indebted for his support and guidance. I would also like to thank Dr. P J
Narayan, Dr. Jayanthi Siwaswamy and Dr. Anoop Namboodri for various references and guidance in
different subjects related to the stream. I wish to express my gratitude to Mr. Pratuysh Kumar Singh for
invaluable lessons in maths and physics.

I am also grateful to fellow lab mates at the CVIT, IIIT Hyderabad for their stimulating company. I
am very thankful to Siddharth Choudhary, Atif Igbal, Vaibhav Kedia, Raman Jain, Vempati Sreekanth,
Vibahav Vineet, Pawan Harish, Pramod Sankar, Omkar Parkhi, Anand Mishra and Gopal Joshi for their
support and guidance during these years. I would like thank my friends and well wishers who always
insisted me to work hard and always believed in me. Above all, I am thankful to my family members

for their patience, support and love.

ix

Abstract

Due to the digital and information revolution we are witnessing presently, there are a huge and
continously increasing number of images present on the Internet. For example, a query for “Eiffel
Tower” on Google Images returns more than two million images. The easy accessiblity of this data
provides us with unique opportunities to mine the contents of these images not only to do automatic
organization, but also for providing interactive interfaces to browse, explore and query. This task is
challenging given the massive size and the continous growth of the collection. To add to this, these
collections are taken in varying imaging conditions, with different cameras, at different resolutions,
from different perspectives and have different degrees of occlusions present in them. Hence, for image

collections even the simplest of tasks such as finding matching images turn out to be hard.

The Computer Vision community has been actively designing and redesigning algorithms to over-
come these challenges. One of the most widespread and noticable idea employed is that of extracting
robust, invariant and repeatable local features in the images, followed by the subsequent quantization
of the feature space as visual words. The similarity of images is gauged by the correspondence and
similarity of thier local features. Verifications of the matchings is done to eliminate spurious matches.
Building a data structure such as an inverted index over these visual words can catalyse the process of
discovery of matching features. This mining of similar images by matching features, forms the basis of
all high level algorithms such as clustering, skeletonization, summarization etc. which help in the orga-
nization, exploration and querying of these image collections. This thesis presents two novel algorithms

which help in achieving this goal.

First, we introduce a novel indexing scheme that makes it possible to do exhaustive pairwise match-
ing in large image collections. The quantization of image features and thier indexing provide on a
limited amount of leverage for speeding up the image matching process which depends upon the spar-
sity the posting lists. This sparsity is controlled by the number of visual words used which after a point
cannot be increased arbitrarily without affecting recall. Our scheme, generates higher order features
by pairing up nearby features and encoding their affine geometry. This provides a much larger feature
space to index which can be subsegently reprojected to any desired size by defining appropriate hash
functions. We implement our indexing scheme by providing an analogy with Bloom filters. The higher
order features extracted in the images are inserted into their respective equally sized Bloom filters using
a single hash function. This unformity in Bloom filters allows for only a single inverted index to be able

to index the hash buckets of all the Bloom filters, and thus providing a simplified interface to implicity

X1

Xii

query all the Bloom filters. We choose the size of these Bloom filters to be in proportion to the size
of the database. This enables us to do querying in constant time, since the average size of the posting
lists becomes constant. Also, the use of such large implicit Bloom filters is able to sufficiently mitigate
the negative effects of using a single hash functions. As a result, we are able to do exhaustive pairwise
matching over large databases of upto 100K images in linear time complexity.

Second, we present a fast and easy to implement framework for browsing large image collections
of landmarks and monumental sites. The existing framework ‘“Phototourism” would require doing a
reconstruction of the whole scene by employing Structure from Motion package called Bundler. This
requires pairwise matching required to generate tracks of matching features across images. Next an
incremental approach is applied, starting with a seed reconstruction and adding more matching images
into the reconstruction. This, however, requires continous refinement of the whole reconstruction using
a computationally expensive procedure called bundle adjustment. The pairwise matching and bundle
adjustment become the limiting factors in scaling this technique to large image collections.

To overcome the issues faced with “Phototourism”, our framework employs independent partial re-
constructions of the scene. We use standard Bag of words model and indexing techniques to determine
closest neighbours of each image in the collection, and do a local reconstruction corresponding to each
image using only the neighbouring images. This requires us to only solve multiple simple reconstruc-
tions problems instead of one large reconstruction problem, making it computationally more tractable.
Our browsing interface hops from one reconstruction to another to give the user an illusion of browsing a
global reconstruction. Our approach also makes it easy to adapt to growing image collections, as adding
an image only incurs a cost of creating a new independent reconstruction. We validate our approach
with a Golkonda Fort image dataset consisting of 6K images.

In summary, the techniques presented in this thesis for organizing large image collections tries to
solve the problem of doing exhausitive pairwise matching in image collection in a scalable manner, for
which a novel indexing scheme is proposed. We also present a novel technique for overcoming the
problems faced while doing “Structure from Motion” on large image collections. We hope that these
techniques will find application for browsing and mining matching images in large image collections,

and also in creating virtual experiences of several monuments and sites across the globe.

Contents

Chapter Page
1 Introduction e e 1
1.1 Community Photo Collections 1
1.1.1 Harvesting Community Photo Collections 2

1.1.2 Challenges in Organizing the Community Photo Collections 2

1.2 Structure from Motion L 2
1.2.1 Multi View Stereo e e e 3

1.2.2 Two-View Structure from Motion 3

1.2.3 Structure from Motion on Community Photo Collections 5

1.2.3.1 Correspondence Estimation via Feature Matching 6

1.2.4 Incremental Structure from Motion 6

1.3 Problem Setting e 6

1.4 Contributions e e e e 7

1.5 Organizationof the Thesis 7

2 Background 9
2.1 Image Matching L 9
2.1.1 ImageRepresentation. 9

2.1.2 Feature extractiono e 10

2.1.2.1 Affine-covariant Interest Regions 10

2.1.2.2 Feature Descriptors 11

2.2 Feature Matching and Bag-of-Visual-Words Model 12
2.2.1 Bag-of-Visual-Words based matching 13

2.2.2 Geometrical Verification L oo 14

2.3 Mining image-matchs in Community Photo Collections 15
2.3.1 Landmark Mining from match graphs 16

2.3.2 MinHash based Techniques 17

233 ImageWebs. e e 18

24 PhotoTourism oL e e 18

3 Fast Indexing and Retrieval in Large Image Collections 21
3.1 Towards faster Indexing and Retrieval 23

3.2 Indexing over High Order Features 23
32.1 Bloomfilter L 24

3.2.1.1 Implementation Details 24

3.2.1.2 Toy Example for BloomFilter 25

xiii

Xiv CONTENTS
3.2.2 Inverted Index over Bloom Filters 26

3.3 Experiments with Word-Images 27

34 DISCUSSION . . . v v vt e e e e e e e e e e e e e e e e 27

4 Towards Fast Match Graph Construction on Image Collections 29
4.1 High Order Features for Exhaustive Pairwise Matching 31
4.1.1 Extracting High Order Features 32

4.2 Indexing High Order Features using Bloom Filters 32
4.2.1 Indexing using an Inverted Index over Bloom Filters 33

4.2.2 Spatial Verification e 33

4.2.3 Match Graph Construction i 34

43 Results. o e 35
4.4 DISCUSSION v i e e e e e e e e e e e 37

5 Creating Walkthroughs from Image Collections 39
5.1 System OVerview oL e e e 41

5.2 ImageMatching e e 43
5.2.1 Obtaining Putative Matches L. 44

5.2.2 Geometric Verification L L o 45

5.3 Generating Partial Reconstructions L Lo oL 45
5.3.1 Improving Connectivity of the Graph 45

5.4 Incremental Addition of new images 46

5.5 Image-based rendering framework L oL oL, 46

5.6 Results. e 47
5.6.1 Experiments 48

57 Discussion. e e e e 49

5.8 Summary ... oL e 50

6 Conclusions and Future Work L L Lo 51

Bibliography e 57

Figure

1.1
1.2

1.3

1.4
1.5

1.6

2.1

2.2
2.3

24

25

2.6

2.7
2.8

3.1
3.2

List of Figures

Page

A sampling of images obtained by searching for “Golkonda Fort” on Flickr. 3
Multi View Stereo: (a) A sampling of toy dinosaur images (b) A 3D reconstruction
obtained by applying a multi view stereo algorithm. Image credits : Yasutaka Furukawa 4
An action sequence in the movie “The Matrix” made possible by the use of multi view

SEEICO. . v v i i e e e e e e e e e e e e e e e e e 4
Two-view Structure from Motion e 5
Incremental reconstruction of “ Trevi Fountain” by incremental addition of images in

Photo-Tourism [52]. Image reproduced from [50]. 5
Pipeline for Incremental Structure from Motion used in Photo-Tourism [52]. 8

Illustration of the SIFT descriptor. Image gradients within a patch (left) are accumulated
into a coarse 4 x 4 spatial grid. A histogram of gradient orientations is formed in each
gird cell. 8 orientation bins are used in each grid cell giving a descriptor a dimension of
128=(4 x4 x8) [26]. o o 11
Two images showing a sampling of the SIFT features extracted in them. 12
Bag of Words in Text Retrieval: Significant words extracted from documents provide
a quick impression about the documents. It can be easily inferred that the above two
documents are not similar. Image credits : Li Fei-Fei [11] 13
Bag of Visual Words : Top row shows 3 sample images, the bottom row shows feature
regions in the images, and the middle rows shows the histograms of the images with

respect to 4 visual words. Image credits : Li Fei-Fei [11] 14
Epipolar lines : The Back projection of the ray corresponding to point x produces the
Epipolar line on the other image. Image reproduced from [17]. 15

Spatial Verification : Top row shows top results obtained for a query image by using
a Bag-of-Visual-Words based approach. Correct matches are outlined in green and the
spurious matches are outlined in red. Inliers obtained for a truly matching and a spuri-
ously matching images are shown next. Spurious matches are eliminated to obtain more
accurate topresults. L L e e 16
Illustration of the MinHash Algorithm applied to a set of images by [8] 17
Illustration of the relation based browsing features for scene exploration in Photo Tourism. 19

Inverted index on a database of text documents. 21
Inverted Index over the visual words occuring in a database of images. Image credits :
Kristen Grauman. 22

XV

Xvi

33

34

3.5
3.6

4.1

4.2

43
4.4

4.5

4.6

5.1

52

53

54

5.5

LIST OF FIGURES

Bloom Filter: [left] The process of insertion and querying in a Bloom filter of size 10
bits with 3 hash functions. [right] The first query is is not present in the Bloom filter.
The second query is a false positive.

Inverted index over Bloom filters : Common images present in the posting lists corre-
sponding to the hash values of the query high order features are given a vote.

Some of the word-images taken from the Telugu dataset.

Query results of some the word-images from the Telugu dataset. The query word is
shown on the top and the reterieved results are shown under it, below the light horizontal
SEPATALOL. . .+« e

A path discovered from an image of All Souls Building to an image of Radcliffe Camera
in Oxford in our match graph.

A sampling of High Order Features(yellow) extracted in a pair of images. Geometric
parameters(s,/ss , D/sp , & and #) are computed for a primary feature(red) with re-
spect to all its secondary features(blue). s, and s, denote the scales of the primary and
secondary features respectively. Vectors point towards the dominant orientation of the
features. Four matching high order features are shown(green) which correspond to the
primary features highlighted in the images.

Plot showing the variation of log(F P R) with m/n for one hash function(k = 1). . . .

Two of the objects retrieved by our method for creating match graphs on the UKBench
Dataset. e e

Text is is the most common source of errors in our scheme. In this particular case,
a text image got matched to the window structure in the final image, which contains
the landmark Radcliffe Camera. Hence, these images also become a part of the cluster
containing Radcliffe Camera and All Souls Building.

Top two rows show small clusters identified by our method. Bottom row shows the
cluster corresponding to ‘difficult’ Magdalen Tower.

Our interface for browsing image collections using walkthroughs (a) An input image
collection (b) Our interactive image navigation interface. (c) One of the multiple partial
reconstructions of the scene, computed from the images shownin(b).

Overview of our system for computing image based walkthroughs, highlighting the pro-
cess of insertion of anew imageo

HILLTOP dataset: Graphs showing putative matches and verified matches. Images are
represented as dots on the circle. Edges represent match between two images. [left]Graph
showing the matches obtained by Bag-of-words based matching. [right] Graph showing
the matches obtained by the spatial verification of matches obtained by the Bag-of-
Words framework.

Descriptions of HILLTOP, GATE, COURTYARD and FORT datasets used in our experi-
ments. N shows the number of images and T shows the time taken by our system. . . .

HILLTOP dataset : [left)Matches determined by our system from G for a sample image
(shown in blue) compared with its matches in G,,; [right]Comparison of the number of
matches with the manual graph by the two systems.

24

26
27

28

30

31
34

35

36

37

40

44

47

LIST OF FIGURES

5.6

5.7

5.8

GATE dataset : U; represents the number of unregistered images and C;; represents the
size of largest cluster for a set with ¢ images; the figure shows that U; converge to a small
value and C; grows continuously indicating that more and more images get registered
to form a single cluster and the number of unregistered images decrease
GATE dataset: [left]Time taken in various stages of creating a walkthrough using our
system as compared to time required to do a global reconstruction using BUNDLER [49]
on the same set; [right] Graph comparing total time taken by the two systems.
FORT dataset: [left]Histogram showing the number of images of each degree in graph
G4 for the FORT dataset; [right] Table showing number of connected components of
various sizes present in (G4 after running our system on the FORT dataset

XVii

48

49

Xviii LIST OF FIGURES

Table

3.1

32

5.1

List of Tables

Page
False positive rates(FPR) for various combinations of parameters m(size of the Bloom
filter) /n(number of elements to be indexed) and k(number of hash functions). 25
False positives obtained for various sizes of Bloom filters using 2 Hash functions. . . . 26
Table showing the controls provided by our visualization interface. 46

XiX

XX

LIST OF TABLES

Chapter 1

Introduction

When ordinary light falls upon objects, it gets dispersed in all directions, conveying the information
about the surface of the objects. We have a sense of sight which enables us to see objects, both far or
near, as our eyes are able to gather these light rays, and our brain is able to make sense of this input.
Throughout the history, we have always been interested in making visual records of events happening
around us. Many ancient civilizations have made carvings on stones resembling humans, animals,
heavenly bodies etc. The fidelity of this method was superseded by paintings as it introduced color,
and allowed a higher degree of artistic expression. In this regard, we are currently living in the age of
digital photography. A digital camera is a device which essentially converges and captures light rays to
produce a permanent impression, called an image or a photograph. An image, therefore, acts as a high
fidelity record of what the objects in the world would look like while standing at a place and looking
in some direction. Images are, therefore, an invaluable means of making visual records of objects and
events happening around us.

In this thesis, we are interested in images of monuments, landmarks, historical sites and buildings.
We will look in the direction of organizing and visualizing such image collections which are now easily
accessible through the internet. This will help in providing an interactive platform where people could

virtually experience visiting a site.

1.1 Community Photo Collections

An image vividly describes a part of a moment in the real world. Their effectiveness, however, is
limited not only by the amount of space they capture and the level of detail, but also by the fact that they
capture information about a single instance in time. For instance, a user may be interested in knowing
what is to the left, what is to the top, what would the scene look like if I step back or zoom in. In such a
case, other images of the same context can come to rescue.

Gone are the days when we had to wait for the photographs to get developed before we can see the
image. With digital cameras, we can almost instantly see the image captured. This is made possible by

the use of CCD sensors which can convert the light signal into digital signals. This allows the image to

be compressed and stored in popular formats such as jpeg, png etc. Now, a large number of photographs
can be acquired by a single person in one go. With the advent of high speed internet connectivity, many
people share these photo collections on the Internet, making them accessible to everyone. Therefore,
now it is possible for anyone to acquire and share a large number of photographs of a given site. These
collections are called Community Photo Collections. These collections are very interesting as it is
possible to find varied related images for a given image to enhance its content. Specifically, for heritage
sights and tourist destinations, these collections can be used for providing a virtual sense of being at the

site. In this thesis, we will present techniques to organize and visualize such image collections.

1.1.1 Harvesting Community Photo Collections

Various photo sharing sites, such as Flickr, Panoramio etc. allow the users to annotate their images
with tags. On the other hand, users can do a tag based search to retrieve these images. A query about
a famous site such as “Taj Mahal” on Flickr can return up to 250k results. Downloading these images
would be a cumbersome task, but fortunately, these sites provide support for automatically download
these images. Similarly, web services such as Google Images crawl the web and index the images thus
found. Users can search in these images based on keywords. For example, a keyword search for “Taj
Mahal” on Google Images can returns up to 21M images. Figure 1.1 shows a sampling of images

obtained by searching for a query “Golkonda Fort” on Google Images.

1.1.2 Challenges in Organizing the Community Photo Collections

Given the crowd sourcing model of Community Photo Collections, they tend to be very diverse.
Images having a particular tag may be acquired with cameras ranging from DSLRs to Mobile Phone
cameras, they capture the site under various illumination conditions and from various viewpoints. These
images also differ very much in their resolution, and also on the amount of metadata embedded into
them. Some of the tags may be inaccurate, and such images need to be filtered. More than 80M images
get uploaded to the web everyday. As a side effect of this, the community photo collections are also
growing at a very rapid rate. These characteristics make these collections an interesting resource for
visualizing the landmarks, but at same time pose serious challenges as well. For example, given the
large variations in lighting, occlusion and viewpoint, it is not possible to reliably identify similar images

by using direct matching methods like cross correlation.

1.2 Structure from Motion

Structure from Motion(SfM) refers to the process of computing the three-dimensional structure using
the motion information available in images or videos captured from different view points. Traditionally,
3D points are computed given the camera poses of the input images, using a process known as trian-

gulation. Conversely, if we have known 3D point coordinates, the camera pose of the given image can

Figure 1.1 A sampling of images obtained by searching for “Golkonda Fort” on Flickr.

be estimated using pose estimation. However, in structure from motion neither camera pose nor point
location is available. This is an example of a circularly related problem. SfM estimates the camera
poses and the scene structure simultaneously without requiring either to be known a priori, from the

information about common points visible in the images.

1.2.1 Multi View Stereo

In this setting, several cameras with known internal and external calibrations are used to image an
object. This helps in recovering a dense mesh of the shape of the object, as each region on the surface is
imaged by several cameras. Figure 1.2 shows a dense reconstruction of a toy dinosaur recovered from
an image sequence. The famous fight sequence in the movie “The Matrix” was captured by using this

technique. Figure 1.3 shows a few snapshots of the sequence.

1.2.2 Two-View Structure from Motion

Two view SfM is closely related to the depth perception in the binocular human vision. Using images
formed by an object in two eyes, we are able to roughly triangulate its distance in the real world. To do

this, our brain implicitly computes the correspondences between the two images, so that we know which

e A S A S

Figure 1.2 Multi View Stereo: (a) A sampling of toy dinosaur images (b) A 3D reconstruction obtained
by applying a multi view stereo algorithm. Image credits : Yasutaka Furukawa

Figure 1.3 An action sequence in the movie “The Matrix” made possible by the use of multi view stereo.

point in the two images correspond to the same 3D location. Our brain uses the distance between the two
eyes (similar to relative camera pose) to triangulate the 3D location of the object. The same technique
can be applied to solve the problem of two-view SfM. Given two images of the same location, we find
matching pixels in the two images and use those matches to estimate the pose of one image relative to
the other. Using the relative pose, we estimate the 3D location of a point corresponding to each pair
of matching pixels. To do so, we shoot a 3D ray from each camera location through their respective
matched pixels and intersect the rays to get a 3D point location. Figure 1.4 depicts the triangulation of
a point using two views. The basic algorithm to estimate 3D point for two-views consists of these three

steps,

* Correspondence Computation : Identify corresponding points in the two images.

* Triangulation : Project rays from the corresponding points; their intersection gives the 3D posi-
tion of the point.

* Pose estimation : Estimate the relative camera pose between the two views.

o 3D Point

Relative Pose

Camera & Camera B

Figure 1.4 Two-view Structure from Motion

1.2.3 Structure from Motion on Community Photo Collections

Structure from motion on Community Photo Collections is a more difficult problem than Multi View
Stereo simply because the input to the former are “images taken in the wild” about whom very little
meta information is known. In contrast, while doing Multi View Stereo images are taken in a controlled
settings. Recently there has been a growing interest in calibrating cameras using the information avail-
able in the images itself without using any external aid in calibration. In the case of two-view SfM, pose
of an image relative to the other image is estimated by finding 2D-2D correspondences between the two
images. Given the correspondences, five-point algorithm is used to figure out the relative camera pose

of two views [22, 36]. The 2D-2D correspondences are triangulated to estimate 3D points. Similar

Figure 1.5 Incremental reconstruction of “ Trevi Fountain” by incremental addition of images in Photo-
Tourism [52]. Image reproduced from [50].

technique can be extended for community photo collections where multiple uncalibrated images are
present.

Large scale sparse 3D reconstruction from community photo collections using the structure from
motion pipeline is an active research area today. The process poses many algorithmic challenges due to
large variations in the weather, illumination conditions, camera type and the lack of geographic informa-
tion. Figure 1.6 gives a flowchart of the whole pipeline for reconstructing multiple images by structure
from motion as used in Photo-tourism [52]. The two major steps involved are : (a) Correspondence
estimation via feature matching and (b) Incremental structure from motion, which we briefly review

next.

1.2.3.1 Correspondence Estimation via Feature Matching

In order to construct 3D points corresponding to 2D points on the images, local features have to be
computed in each image which are matched between every two image. In order to take into account the
large variations, SIFT keypoint detector and descriptor [26] is used to find features in each image. SIFT
descriptors are invariant to scale changes and are quite robust to other variations. Therefore, it is well
suited to find correspondence across images. SIFT ratio test based matching is used to find correspon-
dence between two images [26]. The pair-wise image matches are geometrically verified using epipolar
constraints into RANSAC [12]. It removes the outliers which are not geometrically consistent and gives
a relative pose within all pair-wise configurations. Once pairwise matching and geometric verification
is done, all the matching features corresponding to the same 3D point are organized into a track. These
tracks serve as the basis of doing reconstruction, since it represents various views of a single point in

the real world.

1.2.4 Incremental Structure from Motion

Initially, we find the best matching pair of cameras which are optimally separated and reconstruct
it using the two-frame reconstruction method. Given the fracks of matching features computed earlier,
we estimate the 3D point and camera pose using Structure from Motion. Rest of the images are added
incrementally in small batches and reconstructed. After every increment, the points and cameras are
optimized using a non-linear optimization called bundle adjustment which minimizes the sum of re-
projection error across all registered images. The final output is a sparse point cloud corresponding to
tracks and the determination of position and orientation of the cameras which took the photos. Figure

1.5 visualizes the result of reconstruction after every set of images are added.

1.3 Problem Setting

We identify the following two problems as being very impactful for organization and visualization

of Community Photo Collections.

* Automatic discovery of matching images.

* Overcoming the scalability bottlenecks faced by incremental Structure from Motion pipeline.

1.4 Contributions

In this thesis we have made two contributions relating to the organization of Community Photo

Collections:

* Design an algorithm for doing exhaustive pairwise matching in large image collections to create

image match graphs.

* Design an efficient system for creating walkthroughs in large image collections while also allow-

ing incremental addition of new images.

1.5 Organization of the Thesis

* Chapter 2 provides a general introduction to the theory and concepts relevant to this thesis.

» Chapter 3 talks surveys a popular indexing technique used for organizing image collection. We
use Bloom Filters for efficient representation of the appearance and geometry of the features
extracted in an image data. We also introduce a new indexing scheme built on top of Bloom filters

for doing efficient retrieval.

» Chapter 4 investigates the terms required to make pairwise image matching feasible in order to
build match graphs on large image collections. We use the tools and techniques developed in
Chapter 3 to do pairwise matching and subsequently build a match graph on 105K images in

linear time complexity.

* Chapter 5 talks about the problem of browsing large image collections. We survey a popular
technique called photo-tourism to find its limitations, and provide our solution by creating scene

walkthroughs using independent local reconstructions.

* Chapter 6 concludes the work with a discussion and scope for future directions of research.

Correspondence Computation

Detect
features in
each image

Match
Keypoints
between each
pair of images

For each pair, Detect
estimate F-Matrix » features in
and refine matches each image

@ Image correspondences

Structure From Motion

Select good initial
pair to seed
reconstruction

triangulate new points

Add new images to

reconstruction and

Bundle
adjust

Figure 1.6 Pipeline for Incremental Structure from Motion used in Photo-Tourism [52].

Chapter 2

Background

2.1 Image Matching

Image matching is the most fundamental step towards automatic processing and organization of im-
age collections. The performance of various computer vision tasks such as object recognition, image
retrieval, image mosaicing, 3D reconstructions, etc. depends on the effectiveness of the underlying
matching scheme. The notion of matching images is also different for different applications. For ex-
ample, in “Object Retrieval”, an image of Ram’s car would be considered different from Shyam’s car;
from the point of “Categorization” or “Object Class Retrieval” problem, these two cars are considered
matching as they refer to the same concept — car.

Image are matched based on the features extracted from them. These features act as a representation
scheme which allows us design a measurement of similarity. A good feature representation scheme
should have the following properties:

* Efficient to compute
* Discriminative representation
* Invariance to distortions or variations

¢ Robustness to noise

2.1.1 Image Representation

An image is stored as a grid of color intensity. A cell in the grid is called a pixel. Black and white
images have only one channel which encodes the intensity of whiteness at each pixel location. For a
colored image we have three channels for the three primary colors, viz. red, green and blue. All other
colors are approximated by various combinations of intensities of these colors. One may note that it is

difficult to match images at this level.

2.1.2 Feature extraction

The content of matching images can be very different. For example, two images can be showing
the same car, but at different locations. The corresponding pixel in the two normalized images may not
correspond the same portion of the car. Therefore modelling the image matching problem as a corre-
spondence finding problem is widely employed. In the current context, correspondence computation
can be simply understood as which regions of one image match to other regions in another image. In
this case, it is beneficial to extract features corresponding to local regions in the image. As a first step
towards this, interesting regions in the image are found, and subsequently discriminative descriptions
of the regions are computed. In this thesis, we shall be using the Affine-covariant interest regions and
SIFT [26] interest point detector and descriptor which we review next.

2.1.2.1 Affine-covariant Interest Regions

Local feature based approaches select patches from the image to obtain a cumulative representation
of the image. For higher efficiency, one should identify and use patches that are bound to be invariant
under any possible transformations due to various distortions. Local feature based approaches can
represent and reliably recognize a variety of real-world images. One strict requisite is that the images
should have at least light textures. The key to good performance in this setting are (a) repeatability of the
local regions across various instances of a class (b) robust and discriminative description of local regions
(c) redundant description of an image by the use of multiple local regions to cope with occasional missed
or mismatched regions.

To achieve the above stated objectives the first problem is to use a consistent region detector to
mark patches for representation in the image. A popular class of region detectors find a set of Affine
covariant regions [31] in the image. The basic idea behind these regions is that the shape of the region
is automatically adapted to underlying image intensities in a single image in such a way that regions
detected independently in each image correspond to the same 3D surface patch. Other region detectors
such as [25] choose regions that are PCA or extrema of the DoG operator response. Patch orientation
in those approaches is chosen based on local image gradient orientations. The innovation in affine
covariant regions lies in automatically determining the shape of the local region. Regions described
in this section are called affine covariant because their size and shape transforms covariantly with a
2D affine image transformation. An affine transformation is a reasonable good local approximation to
transformations arising from viewpoint changes for locally planar(or at least smooth) surfaces.

Several affine covariant region detectors have been proposed in the literature [33], examples include

* [Iterative region shape adaptation about an interest point [30].
* Selecting stable areas from an intensity watershed segmentation [27].

e Parallelogram growing starting from an interest point [60].

10

» Exploring intensity profiles along lines emanating from a local intensity extrema [60].

» Searching over elliptical region support for extrema of a saliency measure [20].

A comprehensive review of affine covariant region detectors, and a comparison of their performance
appears in Mikolajzcyk et al. [33].

2.1.2.2 Feature Descriptors

After detecting local regions in an image, the usual procedure is to extract a descriptor from each
region, which is then used for image matching. Some methods for extracting local image descriptors are
reviewed next. A fairly comprehensive review of local region descriptors and experimental comparison
of their performance is given by Mikolajczyk and Schmid [32]. Some traditional feature descriptors
in literature use naive raw image intensities within the patches as descriptions. Some other approaches
use filter responses over the image patch to reduce the dimensionality of the descriptor and store the
filter responses, instead of the pixel values. Mikolajczk and Schmid [29] use steerable filters, which
are Gaussian derivatives steered in the direction of prevailing gradient orientation in the image patch.
Steering the derivatives makes the descriptor invariant to image rotation. One of the most popular

approach which has motivated extensive research in the area is the use of SIFT descriptor.

128 dimensional vector

&

' s 1

-r " ¥ L 4 o w7

4 » R I 0 M e T
LR KL v L]
& « " i

w x w| " vy
P - e P
4 |4 K|

Eoyd *"- Fh L A"

L]

i a
L] i A ik A
% 3 A i 45
e e K 4.
r v ¥
i b Ay

w | i ¥ L
& - - i 4 H‘F 4
h' & -:'i:" "' "'

Figure 2.1 Illustration of the SIFT descriptor. Image gradients within a patch (left) are accumulated
into a coarse 4 x 4 spatial grid. A histogram of gradient orientations is formed in each gird cell. 8
orientation bins are used in each grid cell giving a descriptor a dimension of 128 = (4 x 4 x 8) [26].

11

Figure 2.2 Two images showing a sampling of the SIFT features extracted in them.

SIFT: Lowe [26] proposed the gradient orientation histogram, which retains coarse spatial informa-
tion. The SIFT (Scale Invariant Feature Transform) descriptor is illustrated in Figure 2.1. To achieve
rotation invariance, all gradients within the patch are computed relative to a dominant gradient ori-
entation, which is obtained as the highest peak in a histogram of all gradient orientations within the
patch. Figure 2.2 shows a sampling of SIFT features extracted in two images from Golkonda fort in
Hyderabad.

The SIFT descriptor has been experimentally shown [32] to outperform other descriptors like steer-
able filters [29], complex filters [41], and cross-correlations on raw pixel intensities, in the context
of matching affine covariant regions. This is partially because of its high dimensionality (compared
to, for instance, filter responses) and partially because it is tolerant (due to the coarse spatial grid) to
small localization errors, which often occur. Thus the reason for this superior performance is that SIFT,
unlike other descriptors, is designed to be invariant to a shift of a few pixels in the region position, and
this localization error is one that often occurs. Combining the SIFT descriptor with affine covariant re-
gions gives region descriptions vectors which are invariant to affine transformations of the image. Note,
both the region detection and the description is computed on monochrome versions of the frame, color

information is not used in this work.

2.2 Feature Matching and Bag-of-Visual-Words Model

Features extracted from various regions in the image can act as a proxy for the image to allow
matching with other images. A rough quantification of image match between two images can be done
simply by looking at the distance of the nearest neighbours of every feature in the first image in the

second image. Thresholding the nearest neighbour distance would quantify the number of true matches

12

China is forecasting a trade surplus of $90bn
(£51bn) to £100bn this yvear, a threefold increase
on 2004 $32bn. The C e Ministry said the

surplus would be === e 30% jump

China, trade,
surplus, commerce,
exports, imports, US,
yuan, bank, domestic,
foreign, increase,
trade, value

¥ ik i s e P
the yuan to be allowed to trade freely.
Beijing has made it clear that it will takd
and tread carefully before allowing the yu
rise further in value,

sensory, brain,
visual, perception,

eye, cell, optical

nerve, image
Hubel, Wiesel

Figure 2.3 Bag of Words in Text Retrieval: Significant words extracted from documents provide a quick
impression about the documents. It can be easily inferred that the above two documents are not similar.
Image credits : Li Fei-Fei [11]

in the two images. Additionally, normalization with respect to total number of features can also be done.
A decision about whether the two images are matching can be made based on this.

Popular descriptors, such as SIFT, however are high dimensional(128 in this case), and hence, com-
puting distances between features is an expensive process. Therefore, it is useful to quantize the feature
space. This quantization first of all helps in reducing the amount of data that needs to be dealt with and
also simplifies the matching: all features quantized to the same bin are deemed to be matching to each
other. One popular implementation of this technique is the Bag-of-Visual-Words based matching, which

is explained next.

2.2.1 Bag-of-Visual-Words based matching

The Bag-of-Visual-Words is a model inspired from Bag-of-Words model used in text retrieval tech-
niques: If we compile a list of significant words, and compute the occurrence of these words in different
documents, then the similarity of these documents can easily be inferred by counting the occurrences
common significant words as shown in Figure 2.3. This concept was extended to Computer Vision
by Sivic et al. [47] by quantizing the feature space of SIFT descriptors, and calling the quantization
regions as “visual words”, in correspondence to words in the text retrieval domain. The visual words
are obtained by clustering, for example using k-means [57], a sample of SIFT features extracted from
several images. Hence, visual words can be though of as the cluster centers obtained by this clustering.

For obtaining the visual word representation of an image, all the SIFT features extracted in the image are

13

Figure 2.4 Bag of Visual Words : Top row shows 3 sample images, the bottom row shows feature
regions in the images, and the middle rows shows the histograms of the images with respect to 4 visual
words. Image credits : Li Fei-Fei [11]

quantized to the nearest visual word, according to a distance metric commonly L2 norm, and a vote is
given to the respective bin in the histogram. A histogram representation helps in the direct computation
of the a matching score between two images by using a cosine similarity measure. Figure 2.4 shows a

simplified representation of this concept.

2.2.2 Geometrical Verification

The Bag-of-Visual-Words model provides a compact summary of the image content, this however
comes at a high cost of complete neglect of geometrical information in the image. As such the top results
provided by the Bag-of-Visual-Words based retrieval may not always be correct. This makes it necessary
to a geometry based verification to remove spurious matches. To do this, we try to find a consistent
explanation for the visual word correspondences found in the two images. The correspondences of two
images capturing a similar object can be explained by a fundamental matrix which maps a point in the
first image to a epipolar line which corresponding to the ray produced by the back projection of the point
in the first image into the other image. Figure 2.5 shows a point in one image and its corresponding ray
which produces a epipolar line in the other image.

In general, as few as five point correspondences are sufficient to posit a fundamental matrix. The

quality of a selection can be measured by the number of other correspondences, called inliers, which

14

epipolar line
forx

Figure 2.5 Epipolar lines : The Back projection of the ray corresponding to point x produces the Epipo-
lar line on the other image. Image reproduced from [17].

are consistent to the fundamental matrix. Even if one of the 7 correspondences is wrong, then the
rest of the correspondences are very unlikely to correspond to the fundamental matrix obtained. an
best explain the epipolar geometry of the matching features between the images. Therefore, we use
RANSAC [12] algorithm which randomly selects and evaluate several candidate fundamental matrices.
This procedure keeps track of the number of inliers obtained for the best candidate encountered. This
maximum number of inliers obtained is used as the criteria for selecting or rejecting a match proposed
by the Bag-of-Visual-Words model. Figure 2.6 shows a scenario where the top matches reported by the

Bag-of-Visual-Words are verified to remove the spurious matches.

2.3 Mining image-matchs in Community Photo Collections

Large community photo collections are excellent resource to visually learn about a particular land-
mark or a destination. However, to build any useful application, it seems natural to first discover corre-
spondences and common regions in images. A simple data structure to record this is a Match Graph,
which encodes the pairwise relationships between the images. The images are represented as nodes, and
then a match between two images is represented using an edge between the corresponding nodes. These
match graphs can aid in various applications such as Browsing, Annotation Propagation, Object Mining

etc. Next, we review the existing techniques for building match graphs.

15

Figure 2.6 Spatial Verification : Top row shows top results obtained for a query image by using a Bag-
of-Visual-Words based approach. Correct matches are outlined in green and the spurious matches are
outlined in red. Inliers obtained for a truly matching and a spuriously matching images are shown next.
Spurious matches are eliminated to obtain more accurate top results.

2.3.1 Landmark Mining from match graphs

Philbin et al. [39] created a match graph on a large collection images(> 1M) download by searching
for “Rome” on Flickr and used it to mine Landmarks present in Rome. Their approach for computing
matches was to index the Bag-of-Visual-Words based representation of every image in the collection,
and then query each of the images via the index. The issue of indexing is addressed in detail in the
next chapter. The querying was done in two states: First, 400 top ranked images were shortlisted and
subsequently scored according to the number of geometrically verified inliers. An edge was created
between the query image and its top 400 retrievals, and assigned a weight equal to the score computed
above. Note that many of the edges in this graph my be spurious and may lead to coleasing of many
different unrelated images. Therefore, connected components are discovered in this graph and they are

subsequently over partitioned using a spectral clustering algorithm.

To re-establish connections in the over-partitioned clusters, a cluster merging approach is applied to
re-join different clusters depicting the same object. This involves finding the images with the highest
degree in each of the clusters. Next, a “query region” is then propagated via homography form these
highest degree images towards other such highest degree images, using the shortest path computed from

the original graph, to see if clusters can be merged.

16

K hash
functions

Tvw 4, vw_0,vw_19, {VW 19 ww 9 vw 51 Sketch 1=[vw_9, vw_4, vw_19],
= = = —l = - k h2=
vw_51, ... vw877, vw899, w19, v 4} preies =he 55 e S S
vw956} K j

Sketch
collision

Seed
Growing

Seed
Generation

Sketch 1

' Sketch 2 |:> Hash
Geometric Verification Tables

Accept
Sketch collisioy

\: Reject / K

Figure 2.7 Illustration of the MinHash Algorithm applied to a set of images by [8]

2.3.2 MinHash based Techniques

MinHash is an algorithm for quickly estimating the similarity of two sets, when the collection of
possible elements is known and finite. It involves computing multiple hash functions over the sets
to produce a signature of the set. These hash functions are designed to select the foremost element
in different random permutations of the elements present in the set. This leads to a property that the
probability of two sets having the same hash value is equal to their Jaccard similarity(J) [7]. Jaccard
similarity between two sets, A and B, is defined as the ratio of cardinality of the intersection to the
cardinality of their union. So, in this setting, an image, which can be treated as a set of Visual Words,
can be concisely represented by its corresponding list of hash values, known as signature. The ratio of

hashes that match in the signatures of two images acts an unbiased estimator of their similarity.

17

Chum et al. introduced [8], minHash based techniques for mining clusters of matching images
by introducing a set representation of the visual words present. The set representation is created by
binarizing the corresponding the histogram of visual words, that is, only the presence of visual words
is noted, not the count. Up to 512 minHash function are evaluated on the images in the database
to produce signatures. Next, a tuple of length 3, called a sketch, is computed by sampling 3 hash
values in the signatures, and inserted into a hash table. All the sketch collision produced in the hash
table are considered potential matches and their corresponding images are geometrically verified. A
geometrically verified match thus found is called a seed, as they are entry points for discovering a
cluster of matching images. For growing the seed, query expansion is used, which involves repeatedly
querying the newly retrieved matches. The querying is done by indexing the Bag-of-Visual-Words
representation of the images in the database, identical to Section 2.3.1.

2.3.3 Image Webs

Heath et al. [18] present a match graph building approach having two distinct steps: (a) Discovering
connected components, and (b) Boosting connectivity of the connected components. The first step
involves determining, for every image in the database, the top K matching images according to the
Bag-of-Visual-Words model in a manner similar to Section 2.3.1. These matches become candidates for
doing an expensive cosegmentation procedure, which segments a common object in a pair of images,
and are sorted in the order of their match scores. The cosegmentation procedure, similar to geometric
verification, also determines whether two images match or not. Since, the goal of the first step is only
to determine the outline of the connected components, only the candidates which lie in two different
components undergo cosegmentation.

The next step is to individually boost the connectivity of each of the connected components discov-
ered. For this, each of the connected components are treated like a new database, and the top K matches
for each images are determined in their respective connected components, just like in the first step. The
sorting of the candidate matches for doing cosegmentation is however different. For this, a Laplacian
matrix for the images in a connected component is built according to the match scores, and the candidate
match which has the highest potential for improving the algebraic connectivity of the matrix is selected

for cosegmentation.

2.4 Photo Tourism

Photo tourism, created by Snavely et al. [53], is a graphical system for browsing large image col-
lections in 3D which combines image-based rendering and photo navigation techniques. This approach
can handle large input image collections of images about which no prior information is given. This
approach automatically does a sparse 3D reconstruction of the scene from which the photos were taken

as a point cloud. It also provides the configuration of the cameras which have taken these photos. The

18

Figure 2.8 Illustration of the relation based browsing features for scene exploration in Photo Tourism.

underlying principle for Photo Tourism is to scale Structure from motion to large sets of image about
which no prior information is known. Thier struture from motion pipeline called bundler works by care-
fully selecting a seed pair of image to initialize the reconstruction. Followed by incremental addition of
matching images which in small batches. After each such iteration, a refinement is done to the estimated
parameters inorder to minimized the error using a expensive non linear optimization technique called
bundle adjustment. The final output is the a sparse 3D representation of the scene, as well as an estimate

of the camera parameters of the input images.

The photo explorer interface allows the interactive exploration of the scene in the computed 3D point
cloud space using free flight navigation, also, the images are also registered on a overhead map. This
space also shows the input images used for creating the reconstruction by placing them in accordance
with the camera parameters computed earlier. A users can do a variety to interactions to simultaneously
explore the scene and the image collection such as finding a zoomed out version of the image, finding
a image to the left of the image, etc. to do relation-based browsing as shown in Figure 2.8. A user can
also do object based browsing by selecting a region of an image and the system then takes the user to a
list of images which show the object in more detail.

This seminal work on community photo collections was paved way for doing Multi View Stereo [16],
summarization [43], finding paths [51] and skeletonization [55] of image collections. At the same time,
effort was also put in improving bundle adjustment for large image collections [1], [10]. The point
clouds and 3D models extracted from Community photo collection were also used for doing location

19

recognition of images. In [2], matching and reconstruction algorithms were parallelized and distributed
at each stage in the pipeline to reconstruct a the city of Rome with 150 K images in less than a day on a
cluster with 500 compute cores. In [23], Li et al. proposed a novel clustering based approach to using
the low dimensional global descriptors to extract iconic images which share features with all the other
images in the cluster. The relationship between the iconic views is captured by an iconic scene graph
which not only acts as a summary, but can also be used to direct the Sfm the efficiently produce the
3D reconstruction. In [13] a highly parallel implementations of image clustering, stereo, stereo fusion
and structure from motion were deployed on modern graphics processors and multi-core architectures

to reconstruct Rome with 3 million images within the span of a day on a single PC.

20

Chapter 3

Fast Indexing and Retrieval in Large Image Collections

The key to matching images, lies in matching features extracted in the images. The challenges for
doing this originate mainly from (a) the large size of image collections, and (b) high dimensionality of
features leading to a high cost of distance computation and large amount of main memory requirement
to store the feature representation. The Bag-of-Visual-Words model solves the second problem by
quantizing a feature to a visual word which can be denoted by a simple datatype such as an unsigned

integer. This representation also bypasses the need for doing any sort of distance computation as only

the features quantized to identical visual words are considered matching.

Document 1

The bright blue
butterfly hangs
on the breeze.

Document 2

It is best to
forge the great
sky and to
retire from
every wind

Document 3

Under the blue
sky and bright
sunlight, one
need not
search around.

Stoplist
= 2
and
around
every
for
from
= in
is
it
not
on
one
the
to
under

Inverted Index

o

Word

Documents

-

best

2

blue

1,3

bright

1,3

butterfly

1

breeze

1

forget

great

[N [\

hangs

-

Ole|N|Jloj|b]|]w]N

need

-
o

retire

-
-

search

W w

-
N

sky

23

-
w

wind

Figure 3.1 Inverted index on a database of text documents.

21

For querying a large collection of database images to find images similar to a query image, it would
be a very time taking job to be comparing the visual word histogram of the query to the histograms of
all the images in the database. Given that histograms are usually sparse, what would really be useful is
to quickly find out which images have at least one visual word in common with the query image. So
an index, called inverted index, mapping visual words to the posting list of images in which it occurs is

built. This index is kept in main memory to provide fast retrieval given a visual word query.

For scoring, initially an empty score array is initialized. Then for every visual word in the query,
score is incremented for all the images appearing in the posting list in the inverted index. Concepts such
as term frequency and inverse document frequency, dubbed #f-idf, may be used to provide normalization
with respect to the number of features in every image, and to downplay the role of commonly occur-
ring visual words. Additionally, a list of stopwords can be created to prevent heavily occurring words
contributing to the matching of 2 images. Figure 3.1 shows an a inverted index built over the words
occurring in a database of 3 documents. Note that heavily occurring words such as “a”, “an”, “the” etc.
are included in the list of stopwords and are not indexed. Figure 3.2 shows a similar inverted index built
over the visual words occurring in a database of 3 images.

Imags #1 1

3

i 2
m
o
E 7 1,2
o B
E Image &2 2 3
f
a 9

10

Images #3
a1 2

Figure 3.2 Inverted Index over the visual words occuring in a database of images. Image credits :
Kristen Grauman.

In spite of providing a direct access to the list of all the images which contain a visual word in the

query image, Bag-of-Visual-Words based retrieval using an inverted index technique has some limita-

22

tions which affect its performance in handing large image databases. First, this technique inherits the
inability to capture any geometrical information present in the image. Therefore, geometrical verifica-
tion needs to be applied separately. Since, this operation is expensive and requires access to the relevant
features in candidate images, this process can only be applied only to a small number of candidates
images. This may lead to missing out of several matching images which ended up further behind due
to low matching score. Secondly, prior to the verification of the shortlist, the number of images which
need to be considered in the posting lists, and hence, in the score array, is proportional to the size of the
database. Therefore, though it can be argued that the time taken for querying a image is constant [39]

in practice, but the actual time complexity, as also noted in [8], is linear in the size of the database.

3.1 Towards faster Indexing and Retrieval

The scalability issue with inverted index arises because of its constant length, which is determined by
the number of visual words. It can be seen that, if the length of the index could be chosen in proportion
to the size of the database, then the average size of the posting lists will be constant, leading to constant
time retrievals. However, one cannot arbitrarily increase the number of visual words without severely
affecting the matching performance. This effect was observed in [38], where the mean average precision
of querying the Oxford Building Dataset dropped while moving from a vocabulary of size 1M to 1.25M.

To tackle this problem, we use High Order features created by combining nearby features(visual
words). As a result, geometrical information will get embedded into the index. A similar notion of
spatial consistency was also used in [48] where the number of correspondences of neighbouring features
of two matching features was used to measure the confidence in the matching features. The use of
High Order features, however, raises issues regarding building an inverted index of the extremely large
domain of the High Order features. The next section shall deal with this issue in detail.

3.2 Indexing over High Order Features

We define, High Ordered features as the features which appear in the close vicinity of each other. For
computing them, we determine the n nearest neighbours(secondary feature) of every feature(primary
feature) which are closer than a distance of m pixels. It is represented as a tuple of the visual word
of the primary feature followed by the visual word of the secondary feature. Given the cardinality of
domain of visual words as C, the cardinality of the domain of High Order features would be C x C'. For
example, given a vocabulary of size 10°, then corresponding domain of High order features would be
10'2. Given this extremely large domain, an inverted index build over the domain of high order features
would have extremely sparse posting lists, even for very large databases. Unfortunately, the extreme
size of the domain does not allow the allocation of a corresponding inverted index. As we shall see next,
a Bloom filter based index can provide us with the benefits of using an extremely large domain, while

not requiring an inordinate amount of memory for allocation.

23

01 1/ >|0]1 1

INSERT(B) QUERY(D)

Figure 3.3 Bloom Filter: [left] The process of insertion and querying in a Bloom filter of size 10 bits
with 3 hash functions. [right] The first query is is not present in the Bloom filter. The second query is a
false positive.

3.2.1 Bloom filter

Bloom Filter [6] is a space efficient data structure for doing set membership queries. It allows
constant time insertions and set membership queries. The downside of this scheme is that it occasionally
identifies a non member query element as present. These are called false positives. Hence, the output

for each query can be interpreted as:
* 1 =“present in set, but can be wrong”
* 0 = “certainly not in set”

Also note that, for a set X = {a, b, ¢, d}, the elements of which are inserted into a bloom filter, say
B, if a query is made about the element a, then B would defiantly return that it is present in the set.
One definite advantage of Bloom Filters over Hash Tables is that it allows the addition of new elements
to a certain limit without any additional need for memory. It is interesting to note that a Bloom filter
does not store the actual data, it only works on the hash values produced by the data. The price to pay,
however, for overfilling a Bloom Filter is an increased false positive rate while querying. Bloom filters
and its variants are recently being used in many tasks such as data redundancy removal [5], sensing of

networks [63] etc.

3.2.1.1 Implementation Details

Let us look at the implementation details of a Bloom filter. A Bloom filter, B, is composed of a bit
array, A, and a fixed set of associated hash functions, H. For inserting an element, e, into the set S being
represented by B, all the h € H are evaluated for e, and the bit positions corresponding to the resulting
hash values are set to 1. For doing a membership query, h € H are evaluated on the query element, and
all the bit positions corresponding to the resulting hash values are checked for their set value. If any one
of these bit positions is not set in the bit array, then the element is definitely not in the set, otherwise the
element is deemed present. A false positive occurs when all the bit positions corresponding to the hash

values of a query element have already been set by other elements inserted before.

24

m/n | k=1 k=2 k=3 k=4 k=5 =6
0.393 | 0.400
0.283 | 0.237 | 0.253
0.221 | 0.155 | 0.147 | 0.160
0.181 | 0.109 | 0.092 | 0.092 | 0.101
0.154 | 0.0804 | 0.0609 | 0.0561 | 0.0578 | 0.0638

QNN B W

Table 3.1 False positive rates(FPR) for various combinations of parameters m(size of the Bloom
filter) /n(number of elements to be indexed) and k(number of hash functions).

Given the number of hash functions(k), the size of the bit vector(m) and the number of elements(n),
it is possible to determine the false positive rate by: (1 — e~*"/"™)k Figure 3.3 shows a simplified
representation of Bloom filter operations. Table 3.1 shows false positive rates for low values of m/n
and k. As intuition would suggest, it can be seen that the false positive rate becomes less when a larger
bloom filter is used, that is, m/n is increased. However, increasing the number of hash functions only
improves the false positive rate only upto a limit. This limit can be computed as In2 x m/n. Crossing
this limit should always be avoided as this implies more hash value computation for bad false positive

rate.

3.2.1.2 Toy Example for Bloom Filter

Let us consider a bloom filter, B of size M, in which multiples of 7 less than 1000, a total of 142
elements(/V), are to be inserted. We use 2 simple linear hash functions to do these operation as shown

in the C++ code below.

int hashfnl (int x) {

int a=4754,b=733;

return (ax (x/10)+bx* (x%10)) %bfsize;
}
int hashfn2 (int x) {

int a=3455,b=587;

return (ax (x/10)+b* (x%10)) %bfsize;

Table 3.2 lists the performance of this Bloom filter for various values of M while querying the first

thousand Natural numbers.

25

M M/N | Queries Set elemets #False Positives | Sample False Positives

100 | 0.71 | 1,2,..,1000 | 7,14,21,..,.994 858 123456891011 1213..

200 | 142 | 1,2,..,1000 | 7,14,21,..,994 696 | 2345689101112 13..

400 | 2.85 | 1,2,.,1000 | 7,14,21,..,.994 233 1 358121518 192224 26..
800 | 5.71 | 1,2,.,1000 | 7,14,21,..,.994 50 | 31215246880 101122 135..
1600 | 11.43 | 1,2,..,1000 | 7,14,21,..,.994 5 | 1524279 338 681

Table 3.2 False positives obtained for various sizes of Bloom filters using 2 Hash functions.

Hash Values Posting Lists . .
— List Intersections

Query h2
<vw1,vw2> @
h3

Final Retrieval

CTT]

h1

Figure 3.4 Inverted index over Bloom filters : Common images present in the posting lists corresponding
to the hash values of the query high order features are given a vote.

3.2.2 Inverted Index over Bloom Filters

A simple indexing scheme can be built for N images by allocating N Bloom filters, A; ... Ay, of
identical size and using identical hash functions, and inserting the respective high order features of each
of the N images. A query high order feature, ¢ can now be resolved by evaluating all h € H, and
checking the corresponding bit positions in all the Bloom filters. It is easy to see that this process can

be sped up by storing the bit arrays of the Bloom filters as an inverted index over the bit positions.

Retrieval can now be done easily by taking intersections of the posting lists of bit positions corre-
sponding to evaluations of all h € H on . This operation can be executed very fast as it is possible to
store the posting lists in a sorted manner without any additional overheads. Next, score is incremented
for the images containing the query high order feature. Figure 3.4 illustrates the process of querying
high order features in the query image using an inverted index over the Bloom filters of the database

images.

26

T8 008 Wa““wm% B$2350655 AVE03D |

Figure 3.5 Some of the word-images taken from the Telugu dataset.

3.3 Experiments with Word-Images

A word-image is an image of a printed word. These can be obtained by scanning a printed document
followed by segmentation of word regions. In order to demonstrate the feasibility of our technique, we
do image retrieval on a database of Telugu word-images. The Telugu word-image dataset, has 4304
images of words written in Telugu script extracted by scanning the individual pages of a book. Figure
3.5 shows a few of these images.

We prepare the ground truth by clustering all the instances of every word in the database. Given an
image of a word as query, the retrieval system should ideally return rest of the instances of this word in
the database. We have used 15 such queries to test our approach. We have used Harris-affine detector to
detect interesting regions in word images. These interesting regions were described by the SIFT [26]
descriptor. We created a vocabulary of 24000 visual words by hierarchically clustering [37] the SIFT
descriptors extracted in the 4304 images. We extracted high order features, and computed two hash
functions per high order features corresponding to the bloom filters of each of the images. Next, we
indexed the bloom filters by building an inverted index of size 22° over the bloom filters as described
in section 3.2. Using the approach were able to obtain a mean average precision of 0.6 on the dataset
for the 15 queries. The average time taken for each query was 0.6 micro seconds. Figure 3.6 shows
retrieval results for some of the query images. Note that some of the matches have also occured due to

matching characters.

3.4 Discussion

In this chapter we see that building an inverted index over the set of visual words speeds up the
querying. This speed up is controlled by the number of visual words used to quantize the features
extracted in the database images. It is however not practical to obtain any desired speedup by simply
increasing the number of visual words, as after a limit it severely affect the matching of features. We
provide a solution to this problem by producing a much richer quantized features space by combing
nearby visual words as High order features. This huge features space is projected to desired size using
hash functions, and an inverted index is build over this space to provide the desired speed up. Our
experiments with word images validate the usefulness of our approach. We show the application of this

technique to Community Photo Collections in the next chapter.

27

B Bo5ts

Sty ‘293‘“?15252}%5 ZI B0 2ITI0 FGE Y A mTiges
srooga Rty SiESgISTY

KBTS
Eug>s B0 oY
mdmméﬁsﬁa;m@:&v@

ST OSSR

Sre iSRS ST e BRSEY BSomsosss
wzg@’;@esws Sop gD SrogEas KOsy

Wvgqﬁ'ﬂeitmﬁb’ {nﬂase;*yuzﬁdaﬁg Scr-ug?;ﬁﬂ'eﬁnﬁ-ﬁtf

Fo W oo
2B (e Ty FTTITass REBH S

L%J?.’J'-S&Saaémm‘ﬁma S04 g ST | T Foax L

Figure 3.6 Query results of some the word-images from the Telugu dataset. The query word is shown
on the top and the reterieved results are shown under it, below the light horizontal separator.

28

Chapter 4

Towards Fast Match Graph Construction on Image Collections

The easy accessibility of large collections of images has opened opportunities for mining them.
These datasets are excellent resources for location recognition[24], browsing[18], summarization[44],
reconstruction[53] or creating walkthroughs[56] of various popular destinations. Given the current tech-
niques for harvesting these large collections, they tend to be highly unordered and have a lot of irrelevant
images. Hence, the automatic organization of these datasets is very much required. We present a method
to organize these datasets as image match graphs. A match graph is a simple data structure in which im-
ages are depicted as nodes, and a match between images is represented by an edge. This representation
allows the discovery of interesting intermediate images to connect distant images, as shown in Figure

4.1, and small clusters of matching images.

The match graph construction problem is to produce a graph denoting matches between any pair of
images in the dataset. This problem is related to the image retrieval problem, where the user supplies a
query image and the system returns a ranked list of similar images. Many of the recent techniques [38]
for image retrieval utilize the Bag-of-Words(BoW) framework to implement a filtering stage whereby
a large number of images are rejected. In this framework, visual words are cluster centers extracted by
clustering a large collection of descriptors extracted from various images. These visual words are used
to quantize feature descriptors, such as SIFT [26], SURF [4] etc. To speed up the matching process,
an inverted index is built which maps the visual words to a posting list of images which contain them.
For every visual word in the query image, a vote is given to all the images which contain that visual
word. A shortlist is obtained by taking into account the top scoring images. A geometric verification is

performed on the images in the shortlist for reranking and rejecting non matching images.

Many of the recent techniques for image retrieval [65, 61, 9] try to bring geometry into the filtering
stage to obtain more precise posting lists. Zhang et al. [65] use the geometry preserving visual words
which captures both cooccurrences, and local and long-range spatial layouts of the visual words to
outperform even the BOW model using RANSAC for geometry verification. Similarly, [61] incorporate
the neighborhood statistics of features into the vocabulary tree and in the spatial domain to improve the

discriminative power of the features.

29

Figure 4.1 A path discovered from an image of All Souls Building to an image of Radcliffe Camera in
Oxford in our match graph.

Efficient solutions for match graph construction also use techniques use for efficient image retrieval,
such as feature quantization, indexing etc., to limit the amount of data that needs to be dealt with. Image
retrieval also provides an immediate solution to the match graph construction problem: ‘query each
image in turn’ and create a link from every image to each of its verified retrieved images [39]. Query
expansion is used on these verified images to discover more overlapping images. Similarly, Image
webs [18] use Image retrieval techniques to identify the skeleton of clusters, and complete the clusters
by verifying potential links within a connected component with a focus on maximizing the algebraic

connectivity of the cluster.

Chum et al. introduced Minhash based techniques [8, 9] which employ random sampling of the
visual words using MinHash functions to obtain image signatures, similar to image histograms in the
BoW framework. The signatures are sampled to obtain sketches, which become more discriminative
than an individual visual word. Hence, all the sketch collisions, which are detected using a hash table,
are verified. This makes the chance of discovery of a matching pair of images independent of the size
of the database. The verified matches, called seeds, are grown using query expansion to obtain full
clusters. One disadvantage of this technique is that the chance of discovery of small clusters is not very
high.

Notwithstanding, the success of the above techniques, it can be seen that the ideal solution for match
graph construction is matching every image in the database to every other, that is, exhaustive pairwise
matching. We explore the feasibility of doing this for building match graphs for large datasets. For this,
we build upon the advantages of the above techniques: First, we employ an inverted index based retrieval
scheme which provides direct access to the list of relevant images for a given query. Second, similar
to the sketches used by Minhash based techniques, we use high ordered features, extracted from pairs
of nearby features, to do feature matching in a more discriminative space. The indexing of geometry
allows us to do match verification directly from index retrievals. We are thus able to implement ‘query

each image in turn’ for exhaustive pairwise matching in linear time complexity.

30

Figure 4.2 A sampling of High Order Features(yellow) extracted in a pair of images. Geometric pa-
rameters(s,/ss , D /s, , o and) are computed for a primary feature(red) with respect to all its sec-
ondary features(blue). s, and s, denote the scales of the primary and secondary features respectively.
Vectors point towards the dominant orientation of the features. Four matching high order features are
shown(green) which correspond to the primary features highlighted in the images.

4.1 High Order Features for Exhaustive Pairwise Matching

The direct implementation of ‘query each image in turn’ for building match graphs is not applicable
due to its quadratic matching cost. In [39] and [18], the number of images needed to be taken into con-
sideration for a query visual word is proportional to the size of the database. The number of such queries
needed to be issued is proportional to the size of the database, making the overall timing complexity of
the whole process quadratic in the number of images. Also, the need for keeping a shortlist of candidates
from the filtering stage has the potential to miss out some of the matching images, thereby missing the
quality of exhaustive pairwise matching. This issue becomes serious in the presence of a large number
of distractor features, like those coming from trees, water etc., which dilute the contribution of visual
words coming from the object in the image. This leads to relevant images not being able to make into
the shortlist.

Min Hashing based techniques[8] are able to bring down the computational cost by computing
sketches which lead to lesser number of random matches than visual words. However, at a time, only
one sketch per image is taken for matching as compared to a histogram level matching in [39, 18]. This
affects the chance of discovery of matching images having only a few visual words in common. The
chance of discovering a match also depends upon the size of the sketch. Choosing a low sketch size
would find many matching images, but would also lead to many irrelevant sketch collisions in large
datasets. In [8], using a sketch size of 3 for Oxford 100K Oxford Landmark database, 38.4 sketch col-
lision were generated per image which lead to only 441 verified seeds in total. Therefore, a high sketch
size is used in practice, but this leads to missing out seeds in smaller clusters and in clusters having
low average image similarity. Moreover, since query expansion is used for completing the clusters,
the success of these techniques is indirectly affected by the size of the database. The effect of these

phenomenon is observed in the cluster representing the landmark “Magdalen Tower” in the Oxford

31

Buildings Dataset [38], where only 3 of the 54 valid images were discovered, and no other image could
be discovered through query expansion.

We identify scalable exhaustive pairwise matching as a feasible paradigm to overcome aforemen-
tioned issues. It can be seen that the inverted indexing technique could be made scalable if the size
of the inverted index could grow with the size of the database, making the average size of the posting
lists constant to allow querying in constant time. This is, however, not possible given the fixed domain
of visual words. Therefore, we extract high order features by combining a feature with its nearby fea-
tures and encoding their respective geometric configuration. This provides an extensive domain which
is much more discriminative than visual words, and can be easily reprojected to a required size, using
hash functions, based on the size of the database to obtain constant average size of the list. Zhang et
al. have used a similar notion of high order spatial features in [64] to find all the cooccurring feature
occurrences under translation in a pair of images.

To address the problem of missing potential matches outside the shortlist, we design a match verifica-
tion criteria which can be implemented on-the-fly from the index retrievals. This works well in practice
as our high order features capture geometric information. Moreover, we match all high order features
in a query image with all other high order features in the database, unlike [8], where only one sketch is

pooled at a time per image for matching. This greatly enhances the chance of discovering small clusters.

4.1.1 Extracting High Order Features

We extract Hessian Affine regions and compute SIFT [26] descriptors of these regions for all the
images in the database. These SIFT descriptors are quantized to a visual word vocabulary, using a kdtree
built over the vocabulary. We choose nearby features for creating high order features, as their perspective
projection into a matching image can be well modeled using a much simpler affine geometry. Next, we
bin every image into bins of size 100 pixels. For each bin, we select up to 30 features, called primary
features, by shortlisting features with the highest value of the scale parameter. Each primary feature
is paired with upto 20 of their nearest neighbours, within a radius of 80 pixels, to create high order
features. Since our high order features are confined to local regions, we expect their correspondences to
follow affine geometry. Next, we compute the geometric parameters corresponding to the four grammar
rules enlisted in [62]. Figure 4.2 gives a detailed description of these parameters. These grammar
rules define invariants with respect to affine transformations. A high order feature is represented as a
tuple enlisting visual words of the primary and the secondary feature, and the quantized values of the

geometric parameters.

4.2 Indexing High Order Features using Bloom Filters

The domain of high order features is obtained by the cross product of the domain of visual words

with itself and the domain of geometric parameters. Given a 1M vocabulary, the size of the domain of

32

our high order features is 10'2 even while neglecting the geometric parameters. This makes it possible
to reproject our domain to a custom size, in accordance with the size of the database, to obtain sparse
posting lists in the inverted index. To do this, we design an indexing scheme inspired from Bloom filters

which minimizes the memory usage and provide constant time retrievals.

4.2.1 Indexing using an Inverted Index over Bloom Filters

A simple indexing scheme can be built for N images, by allocating equally sized Bloom filters,
Aq, ..., Ay, with identical hash functions, and inserting the respective high order features of each of
the NV images. A query high order feature, ¢ can now be resolved by evaluating all A € H, and checking
the corresponding bit positions in all the Bloom filters. It is easy to see that this process can be speeded
up by storing the bit arrays of the Bloom filters as an inverted index over the bit positions. Retrieval
can now be done easily by taking intersections of the posting lists of bit positions corresponding to
evaluations of all h € H on gq.

In the above framework, it is interesting to note that, keeping k = 1, that is, using only a single hash
function, would eliminate any need of computing list intersections, making the retrieval process similar
to that of BoW framework. However, unlike standard BoW, there is no restriction on the size of the
inverted index, which is determined by the size of the bit array used. We can thus control the size of
the inverted index in accordance to the size of the database to ensure a constant average length of the
posting lists. This ensures constant time query retrievals. Use of only a single hash function was also
used by Mitzenmacher in [34] to make Bloom filters compressible.

It is important to take care to always choose a big enough size of the inverted index so that the false
positive rate while querying is low. Figure 4.2.1 shows the variation of false positive rate with m /n for
k = 1. For a given maximum number, c, of high order features for any image in the database, it is easy
to see that a false positive rate better than 10~3 can be easily achieved by allocating an inverted index of
size 1000c. Assuming 20k high order features in a query and database images, this implies generation

of 20x 103 x 1073 = 20 false matches on an average with every image.

4.2.2 Spatial Verification

We consider two primary features in different images a true correspondence only if they have at least
v high order features originating from them in common. This criteria can be evaluated directly from
inverted index retrievals, by querying all the high order features from a primary feature in succession and
selecting images which claim to have v of these features. We consider an image level match verification
to be passed if w such truly corresponding primary features are found. This works well in practice as
the high order features come from a very discriminative domain, resulting in very few mismatching
of primary features across images. We keep the maximum number of secondary features per primary
feature high at 20, to provide sufficient redundancy for finding common high order features with other

primary features.

33

=05

I"._I:' _a 'I i
[l
|
2 a5t

At .

",
M,__q_q_._
-a5} TR .
.| 1 1 1 _T___——
0 2000 4000 &0on 000 10000

Figure 4.3 Plot showing the variation of log(F P R) with m/n for one hash function(k = 1).

Given the susceptibility of our retrieval scheme to errors, it is necessary for our spatial verification
criteria to be robust to occasional mismatches. It is not difficult to see that our spatial verification
scheme is robust to the introduction of a few spurious matches, as a single high order feature mismatch
at random is not very likely make the corresponding query primary feature truly correspond to another in
a non matching image. Similarly, the event of multiple spurious high order mismatches corresponding
to a single primary feature is also unlikely.

4.2.3 Match Graph Construction

We start by choosing an appropriate size, m, of the inverted index as discussed earlier. For Match
Graph construction, we use a three-pass strategy, where we start by declaring a counter array of the size
m to keep a count of high order features getting a certain hash value. In the first pass, we compute high
order features and their corresponding hash value for all the images, while also updating the counter
array. Now, precise memory allocations can be made for the posting lists of the inverted index based on

the counter array. In the second pass, we index all the images by inserting their hash values computed

34

Figure 4.4 Two of the objects retrieved by our method for creating match graphs on the UKBench
Dataset.

earlier into the inverted index. In the final pass, we query each image in turn, and note down all the

correspondences in an adjacency list.

4.3 Results

We use a standard image retrieval benchmark dataset, the University of Kentucky dataset(UKBench),
introduced by Nister et al. [37], to measure our detection rate in small clusters. This dataset has 4
images each of 2550 objects making a total of 10200 medium resolution images. We used a vocabulary
of 100K visual words for this experiment. On an average, 1048 features were extracted per image from
this databset. An average of 413 primary features were selected for every image, which resulted in
an average of 7436 high order features per image. This implies every primary feature combines with
18 secondary features on an average. A total of around 76m high order features were indexed using a
simple FNV hash function. We defined the size of the inverted index to be 22°, while the highest number
of high order features in a image was 23598. This corresponds to a maximum expected false positive
rate of querying an image at 7x10~%. This implies a maximum of 16.6 mismatches are expected to be
generated between any pair of images.

The timing breakdown of the whole execution is as follows: Extraction of the high order features
and computation of their hash value took an average of 0.1 seconds per image. Building the inverted
index over Bloom filters took 39 seconds. Querying the database took around 0.073 seconds per image.
The total time required for the whole process was 23.6 minutes. The number of bytes required for
indexing is equal to the sum of size of the inverted index and the number of high order features, that is,
8 x 32+ 4 x 76 = 560Mb.

For the purpose of measuring our efficiency in detecting small clusters, we choose our match verifi-
cation criteria as finding one primary feature with 3 high order features identical. We were able to find
1868 object clusters, corresponding to 73.2% recall, as compared to 49.6% recall reported in [8]. Figure
4.4 shows 2 of our retreived objects.

We have tested our approach on the challenging Oxford 5k dataset, introduced in [38]. It contains
5062 high resolution images of various buildings in Oxford, obtained by querying for building names on
Flickr. Since, labels given to images tend not to be very accurate, this dataset contains a lot of distractors.
Ground truth is available for 11 of these buildings in the form of Good, Ok, and Junk images. Out of
these Good and Ok images are considered true positives and the Junk images are considered as “don’t

care” samples.

35

= TR
. e
VTR RHTIT

Yo i

= v, Rantsig
MIBACLE

ICHMIRDIL SALYE |

Figure 4.5 Text is is the most common source of errors in our scheme. In this particular case, a text
image got matched to the window structure in the final image, which contains the landmark Radcliffe
Camera. Hence, these images also become a part of the cluster containing Radcliffe Camera and All
Souls Building.

For Oxford Buildings dataset, the maximum amount of high order features which got extracted for an
image was 45k. The size of the inverted index used was 22%. This gives a false positive rate of 8 x 107>
for indexing 45k elements. This implies a maximum of 3.6 mismatches are expected to be generated
between any pair of images. A total of 78 million high order features were extracted leading to a total
memory requirement for indexing at 8 x 512 4+ 4 x 78 = 4408Mb. The total time taken for extracting
high order features and querying each image was 25 + 2 = 29 minutes. For the high order features

queried, the average length of the posting list was 1.16.

We kept the match verification criteria as finding at least 3 primary features having at least 4 high
order features each identical between a query and a database image. We have computed the clusters
as the connected component on the graph of matching images. In all 317 clusters were discovered
containing a total 1367 images in them. The largest cluster has 362 images showing nearby All Souls
building and Radcliffe Camera from various viewpoints. We were also able to find many interesting
smaller clusters. These results are shown in Figure 4.6. We got mismatches, mostly in the form of text

images, as shown in Figure 4.5.

We tested the scalability of our approach using the Oxford 105K dataset used in [8]. A total of 1480

229 which resulted in

million high order features were extracted. We used an inverted index of size
an average length of posting list for the queried high order features at 6.8. The effect of larger average
length of posting list can be seen at the average query time per image, which increased from 0.024
seconds to 0.086 seconds. A faster average query time can be obtained by using a larger inverted index.
The total time taken for extracting features and querying was 9 + 2.5 = 11.5 hours. The memory
requirement for indexing was 8 x 512 4+ 4 x 1480 = 10016Mb. We used the verification criteria as
finding at least 6 primary features having at least 4 high order features in common. We were able to
obtain 2147 clusters involving 7198 images, with the largest cluster having 2265 images. Eyeballing
this cluster revealed mismatches due to repeating patterns such as text, doors and windows which lead

to coalescing of many smaller clusters.

36

Figure 4.6 Top two rows show small clusters identified by our method. Bottom row shows the cluster
corresponding to ‘difficult’ Magdalen Tower.

4.4 Discussion

We show that it is feasible to index sufficient high order features capturing the appearance and ge-
ometric characteristics in an image, to an extent that there is no need for doing explicit geometrical
verification. This is very advantageous as it eliminates any need for random disk accesses to fetch in-
formation required for doing geometrical verification. This is made possible as our geometric match
verification criteria is computable directly from inverted index retrievals. We design an inverted index-
ing scheme which can adapt to the size of the database to ensure adequate sparsity of the posting lists to
ensure constant time retrievals. The space savings are made by exploiting the behavior of an oversized
Bloom filter using only one hash function. The extreme amounts of memory used by the Bloom filter is
then shared efficiently using an inverted index structure for indexing multiple images. Our match veri-
fication is robust to the introduction of occasional spurious matches generated by our indexing scheme.
Indexing high order features coming from an extensive domain would create problems for all the pop-
ular indexing schemes used for image retrieval or match graph construction, but we turn this to our
advantage, by devising an indexing scheme based on Bloom filters, which uses constant storage per
entry irrespective of its size or complexity.

In conclusion, our contributions can be summarized as: (i) introducing a novel indexing scheme
suited for indexing and querying the geometrical and appearance information in images (ii) implement-
ing an exhaustive pairwise matching scheme to build an image match graph for moderately large datasets

in linear time (iii) introducing a geometric verification criteria verifiable at index.

37

38

Chapter 5

Creating Walkthroughs from Image Collections

The increasing popularity of digital photography and online photo-sharing sites such as Flickr is cre-
ating photo collections of landmarks and popular destinations around the world that are growing by the
day. These massive datasets are visually interesting as they often capture a landmark site from a variety
of viewpoints and in different illuminations and compositions. However, browsing such a massive un-
structured photo collection can be difficult without any cues that indicate the relationship between the
images. This has motivated a variety of approaches that try to organize photographs using geographical
data, annotations, tags, etc. [42, 52, 23]. Attempts were also made to provide interactive and intuitive
means of exploring photos and videos. The World-Wide Media Exchange (WWMX) [59] arranged
images on an interactive 2D map, PhotoCompas [35] clustered images based on time and location,
Realityflythrough [28] explored video from camcorders instrumented with GPS and tilt sensors, and
Kadobayashi and Tanaka [21] presented an interface for retrieving images using proximity to a virtual
camera. Image-based walkthroughs which worked on the principles of image based rendering and vir-
tual view synthesis had also been created but from controlled acquisition of imagery [3]. Aspen Movie
Map allowed a user to take a virtual tour of the city of Aspen, Colarado by registering images captured
from a moving car onto an interactive street map of the city. Google Street View and EveryScape pro-
vide panoramic views from various positions along many streets in the world. In Photowalker [58], a
user can manually author a walkthrough of a scene by specifying transitions between pairs of images in
a collection. In these systems, location is obtained from GPS or is manually specified. Johansson and
Cipolla [19] developed a system where a user can take a photograph, upload it to a server where it is

compared to an image database to receive location information.

Recent advances in computer vision in robustly solving image matching and the recovery of 3D
structure and camera pose from images via structure from motion (Sfm), was exploited by the system
dubbed Photo-Tourism[52]. It created extremely effective virtual 3D walkthroughs of a scene from un-
structured Internet photo collections of popular tourist locations. The image correspondences and 3D
camera poses recovered automatically by this system[52], made it possible for users to interactively
navigate images registered in 3D. However, the underlying pipeline did not scale to large photo collec-

tions. Running times reported in[54] varied from 11 hours for a 1K image dataset to > 50 days for 8000

39

images. The primary computational bottlenecks were in the pairwise image matching step and the sub-
sequent incremental 3D reconstruction stage where multiple rounds of global non-linear optimization
referred to as bundle adjustment are performed. This is important since one of the overall goal in this

system is to recover a single globally consistent reconstruction of the scene and all the cameras.

(b) (c)

Figure 5.1 Our interface for browsing image collections using walkthroughs (a) An input image collec-
tion (b) Our interactive image navigation interface. (c) One of the multiple partial reconstructions of the
scene, computed from the images shown in (b).

We present a new system that generates interactive navigation of a photo-collection similar to Photo-
tourism[52]. Our system however does not require a global 3D reconstruction of the scene and all the
cameras. Rather, it relies only on partial local reconstructions which are independently estimated from
subsets of nearby overlapping images and thereby allowing it to scale to large datasets.

In an image-based walkthrough, users primarily observe images or transitions between image pairs
at any time. Rendering a realistic transition between an image pair via image based rendering tech-
niques [46] requires the knowledge of relative pose between the corresponding cameras, a sparse 3D
reconstruction of points observed by these two cameras and optionally a geometric reconstruction of
the scene (required by advanced IBR techniques such as [46]). Therefore, a global Sfm reconstruction
would allow direct transitions between any image pairs, as the relative pose of all pairs can be obtained
from the global reconstruction. However, in practice only transitions between images whose views over-
lap tend to be the most useful. Our system limits the possible images that one would view next to a small
set of proximal images whose views overlap with the current image. This is determined by the size of

the subset for which a partial reconstruction is estimated.

Our approach for detecting these image subsets builds upon a state of the art image based retrieval
technique [47, 37, 14, 40] which can efficiently retrieve duplicates or similar images based on visual
appearance. This approach can be made scalable and more efficient by the use of inverted indices which
map individual visual words to a list of images in which they occur. This can be very useful because
generally only a small percentage of the visual words are present in an image. Each of the subsets are
processed through a standard structure from motion pipeline. Restricting the size of the image subsets

and processing them independent of each other reduces computation time and also makes it possible to

40

exploit parallelism during the reconstruction stage. We demonstrate the ability to scale to large datasets
without sacrificing much on the user’s navigation experience.

The pairwise image matching bottleneck is addressed in a novel way by the work of [23], where
iconic images are first recovered using a global scene descriptor (Gist features) for clustering the images
into small collections. Then the expensive pairwise matching is applied within these small clusters to
find the iconic image of each cluster as the image having the greatest number of features in common with
rest of the images. Each of the iconic images are then verified with respect to its top n matches among
the iconic images recovered using a visual word vocabulary based search. Another recent approach
[42] avoids a globally consistent reconstruction of the scene in the context of robotic navigation to do
scalable localization and mapping (to enable appearance based navigation) of the scene.

One of the key assumptions made by most previous systems is that all images will be available prior
to processing, hence they are designed to process all the images in batch mode. However, online photo
collections of important landmarks are often growing continuously and this indicates the need for an
efficient online system that can incrementally insert new photographs into an existing reconstruction
as they become available. Our incremental reconstruction framework maintains the photographs as a
graph whose topology changes dynamically as new photographs become available. When a new image
is successfully matched to existing photos in a pre-computed dataset, a new partial reconstruction is
potentially added.

Our system is mostly immune to the various difficulties in computing a full global reconstruction
via an incremental Sfm reconstruction approach, in particular its sensitivity to the choice of the initial
image pair. We solve independent local Sfm problems and relax the need for global consistency in our
reconstructions and camera poses. Thus, we avoid the catastrophic errors that occur when inaccuracies
in camera pose estimation propagate and get compounded further along the sequence as new images,
whose views overlap with the camera with erroneous pose, get added. This can lead to severe errors in

large sections of a reconstruction [52, 54].

5.1 System Overview

Our system takes a set, .S, of uncalibrated images. The overall system can be broken up into stages
in which operations are performed on this set of images. The relevant information required in the next
stage, or for the incremental addition of images, is stored in the form of a graph at each stage. The

following is the summary of the various stages in our system:

¢ Obtaining Putative matches: Use Vocabulary based techniques, for every image ¢ € S, to
efficiently and scalably find the set of neighbours, V;, as the images with similarity in appearance
with image ¢. Create a directed graph of images, (G1, to store N; for each i. Also store the
histogram representation of the visual words present in ¢ in the node corresponding to image ¢ to

allow easy comparison with a new incoming image during incremental insertion.

41

* Geometric verification of the putative matches: Estimate pairwise epipolar geometry to deter-
mine which images in /N; were viewing a common 3D structure as image i, for every ¢ € S. The
verified set of images are called verified neighbors of ¢, V;. The information about the verified

neighbours is stored in the form of a directed graph of images, Go.

 Calibrating each image with respect to its Verified neighbors: Use a Sfm system on the set
i UV, for every ¢ € S, to find the parameters required for displaying images and making a
transition from one image to another in a virtual setting while navigating though the scene. Store
this information in the form of a directed graph of images, GG3, where every edge stores the

parameters required for making a transition.

* Creating mirrored edges to improve connectivity: For every pair of images, add an edge from
1 to j, if an edge from j to ¢ is present in (G3 and mark it as a mirrored edge. Store this new
graph as GG4. While browsing the photo collection, the mirrored edges are simulated using their
corresponding true edges due to which they were created. The set of images to which an edge go

from the node corresponding to image ¢ is called as Registered neighbors of 7, R;.

* Addition of new images: Repeat the previous four steps for the new image while updating the
corresponding graphs at each stage. Also add the new image to the set .S to allow matching with

images coming in future.

R

Addition of a new image Final Graph for
Visualization

Figure 5.2 Overview of our system for computing image based walkthroughs, highlighting the process
of insertion of a new image

The distribution of vertex degrees in graph (G4 indicates how connected it is. Even though the pair-
wise relations between the images are commutative, G1, G2 and G5 are represented as directed graphs
in order to bound the number of spatial verifications required and the number of images on which Sfm
is performed for an image in one round. Provided the above two points are true, it is safe to assume
that under normal circumstances, a finite bound is put on the time taken in performing Sfm on the set
of images ¢ U V;. This makes the time complexity of creating graph G's from (G5 approximately linear
in the number of images and thus allowing it to scale to large number of images. Similarly, it is easy
to see that creating Go from (3 is also linear in the number of images in set S. Once a vocabulary is

determined, then the representation of an image in the form a histogram of visual words depends upon

42

the number of visual words (which is bounded) and also on the number of features extracted from every
image (which is also bounded). Therefore, we need to do an O(/N?) matching of histograms of the im-
ages. These histograms are sparse in general. In such a scenario, the determination of the top matches
becomes O(N) with respect to the number of images under consideration by the use of inverted indices
of visual words as in [40].

Our visualization scheme allows the user to navigate the edges and nodes present in the graph G4
in a virtual 3D world. Our visualization scheme is similar to that of [52] in terms of using a single
proxy plane for view interpolation, but better viewpoint interpolations can also be computed using 3D
geometric proxies, [46]. When the user is on a node corresponding to an image ¢, we show ¢ in the center
along with images in R; which are shown as wireframes oriented in space in a way so as to provide a
cue about the relationship among the images in the set ¢ U R;.

In the following sections, we describe our system in more detail.

5.2 Image Matching

Our goal is to recover for each image 4, a partial scene reconstruction based on the currently available
images which were directly matched to 7. The relative pose of all the cameras and a sparse set of 3D
points reconstructed from these images are represented in a local coordinate system. Putative matches
for any image can be easily computed by matching its features with the features extracted from the
rest of the images and ranking the images on the basis of number of feature matched with the query
image. Quantization of features, by the use of visual word vocabularies, can be employed to speed up
the process of matching the features. This visual word vocabulary used for this can be created from
the features of a representative set of images of the whole dataset. As a result, an image can now be
concisely represented as a histogram of visual word frequency and thereby reducing the problem of
comparing images to comparing histograms. Alternatively, a Vocabulary tree based image search used
in [15] can also be employed to find the top matching images of a query image.

The Bag of visual word based model ignores the position of the features, and hence, some of the
features may get incorrectly matched based on appearance across images. If two images are looking
at the same portion of the scene, then the geometric model predicted by the feature matches across the
images is expected to accurately predict the position of most of the matching features across the images.
Thus, verification of a matching pair can be done by examining the number of correct predictions the
best geometric model, estimated from the feature matches, is able to do. Alternatively, these false
matching images can be identified and removed by the Sfm system, i.e. creating '3 directly from G,
but we prefer to run the Sfm system only on the verified matches of an image as indicated in GGo. This
saves time in case the Sfm system does an exhaustive pairwise matching of images. Additionally, it
saves time for the bundle-adjustment step typically employed by Sfm systems to refine the estimates
and further reject non matching images. This pre-verification can also be used in the identification of a

good initial pair with respect to image ¢ prior to applying Sfm on the set ¢ UV;. Specifying the initial pair

43

for reconstruction as such increases the chance of image 7 getting registered by the Sfm system when it

is run on Image 7 and its neighbours. The following subsections give the implementation details:

Figure 5.3 HILLTOP dataset: Graphs showing putative matches and verified matches. Images are rep-
resented as dots on the circle. Edges represent match between two images. [left]Graph showing the
matches obtained by Bag-of-words based matching. [right] Graph showing the matches obtained by the
spatial verification of matches obtained by the Bag-of-Words framework.

5.2.1 Obtaining Putative Matches

As a first step towards identifying the verified neighbours of every image in S, we try to find the
images which are similar in appearance. For this we extract robust SIFT features from all the images to
apply a visual word vocabulary based image matching system. We used a representative set of images
of the landmark to create a context specific vocabulary. The SIFT features from these images were clus-
tered using the Kmeans algorithm implemented on GPU. Alternatively, to avoid the overhead of creating
a vocabulary, we also used the Vocabulary tree based image search used in [15] in some experiments.
While creating the histograms of the images, we used Term Frequency(tf) to normalize the difference
in the number of SIFT points extracted per image. We also used Inverse Document Frequency(idf) to
downplay the importance of commonly occurring words. We measure the similarity between two im-
ages on the basis the similarity of the histogram of the two images measured using Cosine similarity
distance function, used in many document retrieval techniques. The top 10 matches according to this
score are recorded for each image in (7. Image matches obtained by considering the top 10 matches on
a 114 image HILLTOP dataset having 3 different landmarks are shown in Figure 5.3. Note that it is not
inferable from this graph that 3 different landmark are present in this dataset.

44

5.2.2 Geometric Verification

We do a refinement of the top matches returned for each image by the previous step to remove
spurious matches. To verify an image pair, we first estimate a Fundamental matrix using RANSAC
which can best explain the epipolar geometry of the matching features between the images. The inliers
with respect to this fundamental matrix are computed and if the number of inliers is greater than the
threshold (40 in our case), then the match is accepted. These images can be sent per se to the Sfm
system for Geometry computation where some of the images may fail to get registered. The success
of Geometry computation step depends significantly upon the initial pair of matching images used for
starting the calibration process. The initial pair of images should have a good number of matching
features and also have a good baseline. To identify the suitable matching pair for the reconstruction,
we score them on the ratio of area which is covered by the inliers in each of the images as compared
to the total area of the images. The area covered by the inliers is computed as the area covered by
the convex hull enclosing all the inliers. The matching image which has the highest score with respect
the concerned image, along with the concerned image, is taken as one of images in the initial pair for
the reconstruction. Verified image matches obtained by verifying the top 10 matches on a 114 image
HILLTOP dataset having 3 different landmarks are shown in 5.3. Note that it is inferable from this graph
that 3 different landmark are present in this dataset.

5.3 Generating Partial Reconstructions

After the spatial verification stage, we obtain a set of 2D correspondences within the set of images
1UV;. We now perform structure from motion on these images, to estimate a partial metric reconstruction
of cameras and 3D points. We use BUNDLER [49], a freely available Sfm implementation that first
generates an initialization for all cameras and points using an incremental seed and grow approach
and then performs several rounds of bundle adjustment and outlier removal to refine the full camera
calibration parameters and the sparse 3D points. Note that these camera pose estimates are with respect
to a local coordinate frame, selected arbitrarily for each partial Sfm problem we solve. However, this is

sufficient to recover the relative pose between camera ¢ and any of its immediate neighbors in V;.

5.3.1 Improving Connectivity of the Graph

The partial reconstruction corresponding to each image ¢ is referred to as P;. P; comprises of re-
constructed cameras for the set of images ¢ U V; and a set of 3D points visible in these images. The
relationship of any image 7, with its registered neighbors R; can be represented in the form of a directed
graph, (G3, in which a directed edge is present from image ¢ to every image j € R;. Any such edge
means that a transition from the source to the destination image is possible while navigating the scene.

Also, an edge from ¢ to j can potentially be used to create an edge from j to ¢ if it is not present. This is

45

Function Key

Zoom in ,

Zoom out .
Show/Hide wireframes Right Click
Transition to a new image Left Click
Move w/s/a/d
Rotate z/X

Display neighboring images | r

Table 5.1 Table showing the controls provided by our visualization interface.

done by using the P; as a proxy for P; by centering F; with respect to 5 while showing a transition for

j to 7. This makes the graph used for navigating the scene, (G4, undirected.

5.4 Incremental Addition of new images

Our framework makes it possible to incrementally add new images into our system. For the new
image, SIFT features are extracted and quantized by using the visual word vocabulary. These visual
words are queried against the inverted index storing the pre-existing images to determine potentially
matching images of the new image. The new image is then also inserted into the inverted index structure
to allow matching with more incoming images. Next, a spatial verification is applied to the top 10
matches. The verified matches along with the new image are provided to BUNDLER to obtain a partial
reconstruction for the new image. In G4, all the registered matches of the new image get connected to

the new image via a undirected link, i.e. a transition can be made from both the directions.

5.5 Image-based rendering framework

Our scene navigation scheme is inspired from the one used in the Phototourism system [52]. Initially,
we show a 3D world corresponding to a partial reconstruction, P;, of one of the images, 7. Images are
displayed by using a best fit plane(computed using RANSAC) corresponding of the points visible in the
image as a proxy surface for projection. Initially, the virtual camera is placed congruent to the camera
parameters recovered for image 7 and image i is projected on it proxy surface. Images in R; are shown
as wireframes of their corresponding projections on their proxy planes.

The user can point and click at any of the wireframes to move to the partial reconstruction corre-
sponding the a new image, j. This is done by showing a transition within P; during which the virtual
camera moves from the camera parameters corresponding to image ¢ to the camera parameters cor-
responding to image j. Note that the recovery of metric camera calibration allows the possibility of
estimating dense depth maps from the images, thus making it possible to use advanced image-based

rendering techniques such as [45] for generating better transitions between photographs. The transition

46

is accompanied by showing a fading in of image j and corresponding fading out of image ¢. At the
end of the transition, we show the partial reconstruction P; in the same way as described above. Thus,
the user is able to navigate the scene using partial reconstructions. Table 5.5 shows a list of controls

provided by our visualization interface.

Name SampleImages N T

P
- ' X r i | : —
Gate | X . d 4 | 135 | Llhour
il “ he |

687 | 9hours

42

114 .
minutes

Courtyard

124

5989
hours

Fort

Figure 5.4 Descriptions of HILLTOP, GATE, COURTYARD and FORT datasets used in our experiments.
N shows the number of images and T shows the time taken by our system.

5.6 Results

We have tested our system on a large collection of 6000 photographs of a heritage site, which we refer
to as the FORT dataset. Some small subsets of this dataset which have been used in specific experiments
are the 135 images of the GATE dataset, and the HILLTOP dataset containing 114 images. We also tested
the performance of our incremental system on the COURTYARD dataset containing 687 images taken

under different lighting conditions.

— Qur System

g Bundler
=
% 15 Manual
2 — Sample Image
z . ple Imag
ZO M&“’Wﬁ | —

AL T

! fo Y N —
. _ WSV,
M sampleimage [l Correct matches [l] Matches missed by us Image Sequence

Figure 5.5 HILLTOP dataset : [left]Matches determined by our system from G5 for a sample image
(shown in blue) compared with its matches in G,y ; [right]Comparison of the number of matches with
the manual graph by the two systems.

47

5.6.1 Experiments

We run the first 2 stages of the pipeline on the HILLTOP dataset to determine whether our system
is able to robustly identify the correct neighbours of every image even when we are considering the
top n» matches given by a non geometric test (recorded in ;) which are further refined by a simple
RANSAC based geometric test (recorded in GG3). The vocabulary used for creating (G; was created
using a set of 1088 randomly sampled images of the whole monument. We created an undirected match
graph(G,,,), to be used as a ground truth, by manually comparing every image to every other image in
the dataset. We also computed a match graph(Gp), in a manner similar to [52] by running BUNDLER
[49] individually on the 3 different clusters present in the dataset. Figure 5.5[right] reports the number of
matches of each image obtained from G5 and G, when compared against the set of neighbours obtained
from G,,. Figure 5.5[left] shows an example image along with its matches obtained from G5 compared

with matches obtained from Gy,

15 150 15 150

10 100 10 100

U G U G
5 50 5 50
0 0 0 0
i 1strun # i 20d pun #
15 150 15 150
10 100 10 100
U G U G
5 50 5 50
0 0 Q 0
i 3drun # #i 4thryun #i

Figure 5.6 GATE dataset : U; represents the number of unregistered images and C; represents the size
of largest cluster for a set with ¢ images; the figure shows that U; converge to a small value and C;
grows continuously indicating that more and more images get registered to form a single cluster and the
number of unregistered images decrease

In another experiment, we simulated a scenario in which we initialize with a small set of random
images, and images arrive over time. For this we generate random permutations of the images in the
GATE dataset. We initialize our system from the first 50 images. We use the pre-trained vocabulary
tree generated from large number of images from the internet which was made available by [14] for
computing (G; and incrementally add the rest of the 85 images. This was repeated for other permutations.
The images which do not have any neighbour in G4 are marked as unregistered images and the size of
the largest cluster is also shown (Figure 5.6) with the addition of each image. The graph G4 is very
fragmented in the beginning, but as more images get added, smaller disconnected components in the
match graph get merged resulting in a largest cluster size of 126, 127, 128 and 124 images respectively
for the four runs. The final match graph is well connected and provides a pleasant navigation experience.

48

In a similar experiment with the COURTYARD dataset, we were able to get a cluster of 674 images out of
687 images while initializing from 200 images. This shows the applicability of our system on datasets

of various sizes.

No of Time taken by our system Time taken by Bundler 8000
Images| G, G, G; | Tetal [Matching| Adjﬁ;c.::l:aent Total 7000
s5 |22 | 401 | sa1 | sea | 719 310 1029 _
65 | 27 | 474 | 635 |1136 | 1092 409 1501 _E_ 2000
75 | 31| 563 | 738 |1332 | 1427 563 1990 g 4000 cundler
85 | 35 | 649 | 858 |1542 | 1858 660 | 2518 F 3000 / — oursystem
95 | 39 | 785 | 1165 | 1989 | 2437 1023 | 3460 2000
105 | 43 | 847 | 1437 | 2327 | 2914 1183 4097 1000
115 | 47 | 975 | 1768 |2790 | 3621 1470 | 5091 0
125 | 51 |1079 | 2112 | 3242 | 4459 2146 | 6605 35 B3 75 B3 95 105 115 125 133
135 | 55 | 1164 | 2382 | 3601 | 4955 2487 | 7442 Number of Images

Figure 5.7 GATE dataset: [left]Time taken in various stages of creating a walkthrough using our system
as compared to time required to do a global reconstruction using BUNDLER [49] on the same set; [right]
Graph comparing total time taken by the two systems.

In another experiment with the GATE dataset, we compare the time complexity of creating a walk-
through using our system to that of time taken to run the Sfm system on the whole dataset. We tested
with sets of sizes 55 to 135 images with increments of 10 images. We use the pre-trained vocabulary
tree made available by [14] for computing G;. Time taken by our system is reported as the time required
for matching ((G1), geometric verification (GG2) and creating partial scene reconstruction (G3) for each
image. The results are shown in 5.7[left].

In another experiment we demonstrate the scalability of our system on FORT dataset. We computed
the graph GG of the set using the scene specific vocabulary created using a representative set of 1088
images from the FORT dataset. We report the degree of each image in 5.8[left]. The average degree
obtained per node is 7.1 for the registered images in graph G4 even when we consider only 10 matches
per image in (1. The largest connected component we obtain is of 4249 images and another cluster of
453 images. Thus, we demonstrate that a good navigation experience can be built in a scalable fashion

from our system as we are able to obtain clusters of decent size with good connectivity on large datasets.

5.7 Discussion

We identified pairwise image matching and incremental 3D reconstruction involving bundle adjust-
ment, used in Photo-tourism systems, as the bottlenecks for scaling to large image collections. Doing
this is essential as this system requires a globally consistent 3D reconstruction of the whole image
collection. We approach this problem from the users perspective to find that during visualization, the

images near to the current image are the most useful. Therefore, our approach first identifies a limited

49

Size of connected Number of
component Instances
700
500 1-10 277
g so0 11-20 17
: % 21-30 5
§ 300 -
E 31-100 2
2 200 4
100 1 101-500 2
0 - 501-1000 0
o 1 2 3 4 5 6 7 B8 9% 10 11 12 13 14 15 15+
Degree 1000"' 1

Figure 5.8 FORT dataset: [left]Histogram showing the number of images of each degree in graph G4
for the FORT dataset; [right] Table showing number of connected components of various sizes present
in G4 after running our system on the FORT dataset

number these useful nearby images for every image using image retrieval techniques involving Bag
of Words representation and spatial verification. We compute 3D reconstructions on these small sets
to obtain a reconstruction of the neighborhood of every image. If computing a full 3D reconstruction
for the whole image collection is seen as solving a large difficult problem, then our approach, in this
analogy, can be described as solving several small difficult problems. Given only a definite maximum
number of images are reconstructed as neighbors for every image, it is safe to assume a finite bound on
computational cost. This makes our whole framework approximately linear in the number of images.
Our visualization scheme is also simple as it only requires migration to the local reconstruction of the

neighbouring image selected by the user.

5.8 Summary

We demonstrated that it is possible to achieve an image based browsing experience comparable to the
one generated by a full reconstruction even by employing several partial reconstructions of a scene. The
proposed approach is incremental, approximately linear in the number of images and massively parallel
at every stage, and hence easily scalable to very large image collections. The ability to incrementally

grow our reconstruction makes it well suited for browsing the ever growing photo collections.

50

Chapter 6

Conclusions and Future Work

The rapid advances in digital technology has now made it possible to acquire, share and download
large number of images. The automation in downloading has allowed anyone to aquire thousands of
images of a particular topic. In this thesis, we have desribed our contributions to the ongoing efforts in
the computer vision community to acquire meaningful information from these collections. In particular,
we have presented techniques for organization and visualization of these image collections keeping in

mind buildings and heritage sites.

Our first contribution is for the organization of these image collections as clusters of matching im-
ages. These clusters are easily obtainable if a image match graph is constructed showing images as
nodes and a match between images as an edge. For this, we considered a novel problem of doing ex-
haustive pairwise matching of all the images in a scalable manner. This problem is difficult given the
quadratic nature of the complexity of the problem. Our main inspiration for bringing scalablity to this
problem comes from a well established baseline implementation of image retrieval which uses the Bag
of visual words framework. This framework gains scalability by building an index over the quantized
regions, also known as visual words, of the feature space of the features of database images. This index
basically tells for a given visual word in the query image, which all images in the database contain this
particular visual word. Hence, the average number of matches to be considered in the database images
is proportional to the average size of the posting lists in the index which depends upon the number of
visual words. The main limitation with this technique is that the number of visual words cannot be

increased arbitrarily.

Our solution for doing exhaustive pairwise matching involves building an index similar to Bag of
visual words framework, and querying every image in the collection to obtain its matches. In order to
get scalability, we focus on obtaining a large enough feature space over which a sufficiently large index
can be created. We obtain this features space by extracting high order features in images by combining
visual words of nearby image features with the quantization of their relative affine geometry. This
discreet feature space is large enough to allow us to reproject, using hash functions, into a sufficiently
large number of bins, over which an inverted index is built subsequently. In particular, we choose the

number of bins to be in proportion to the size of the database. This makes the average posting list size

51

constant which consquently implies contant query time for querying one image, making querying all

the images feasible.

We choose these bins as the bit positions of Bloom filters, which are set membership query datastruc-
ture designed for trading off retrieval accuracy for space efficieny. As a result, querying over this index
indirectly means querying the respective Bloom filters of each of the database images in the index. In
order to minimize computation required we use only one hash fuction in these Bloom filters. A potential
drawback in this setting is the increase in chance of getting false postives while querying getting. This
effect is mitigated by the fact that very large Bloom filters are implied by the large inverted index we
used for indexing. Moreover, our spatial verification criteria robust to occasional false correspondence
detections. Our approach also does not require a post verification step as our spatial verification criteria
is computable directly from index retrievals, enable us to do exhaustive pairwise matching in linear time
complexity. We validated our approach on a moderately large dataset of 5k and 100K images. Our
approach was also effective in finding small clusters of matching images in the University of Kentucky
benchmark dataset.

Our second contribution is designing a scalable and incremental framework to create walkthroughs in
large image collections. This is achieved by bypassing the scalability and error propagation issues faced
by a benchmark technique employing structure from motion to do global reconstruction using all the
images in a incremental manner. Our approach involves determinig a fixed number of top neighbours
of each image using standard bag of words model based image retrieval followed by reranking with
geometric verification. A local reconstruction is created for each of the images in database using the top
neighbours. This is much easier easier than doing a complete reconstruction of the scene which need
to employ an expensive bundle adjustment procudure after each iterative addition of images in order to
keep error accumulation in check. Our approach is shown is shown to be approximately linear in the

number of images in the database.

Our browsing scheme shows one of these reconstructions, and upon a transition to neighbouring
image, loads the reconstruction corresponding to the transitioned images. This gives the user an illusion
of browsing a global reconstruction. We thus demonstrate that it is possible to achieve an image based
browsing experience comparable to the one generated by a full reconstruction even by employing several
partial reconstructions of a scene. The proposed approach is incremental, approximately linear in the
number of images and massively parallel at every stage, and hence easily scalable to very large image
collections. The ability to incrementally grow our reconstruction makes it well suited for browsing the
ever growing photo collections. We validate our approach using a Golkonda Fort image dataset having
around 6k images.

The digital revolution has openend gates to a deluge of data of all sorts. However, we are yet to
witness the kind of advances made in the field textual data, in the visual domain. This is mainly because
textual data is clean, segmented, one dimensional and easily indexable, and on the other hand visual data
is noisy, unsegmented and not unidimensional. Hence, there is a lot of scope for improvement at these

basic levels. However, we feel there is an often neglected leeway while mining for matching images,

52

which is in matching images being likely to be discovered reliably even when a few of the matching
features are mismatched, given the profusion of features extracted per image. We translated this leeway
into a novel indexing scheme which trades accuracy for computational speed and memory efficiency. In
future, we hope to extend this idea to seeming related frameworks such as sparse dictionaries, cortical
learning algorithms, finding nearest neighbours etc. We are looking in the direction of extracting more
repeatable and more robust high order features: the high order features we currently use encode affine
geometry of a pair of features which is good enough only for features lying on a plane. Our other
contribution for visualizing image collection builds upon the observation that which navigating, users
are mostly interested in nearby images. We exploited this observation to apply a divide and conquer
paradigm to the problem of obtaining a reconstruction of the scene, while not requiring to recombine
the solutions to the subproblems. We are searching for more complex problems which meet the criteria
of not explicity requiring a recombining step. Finally, we believe that the two techiques are significant

steps towards the big goal of organizing and visualizing visual data available on the internet.

53

54

Related Publications

e Kumar Srijan, Syed Ahsan Ishtiaque, Sudipta N. Sinha and C.V. Jawahar, “Image-based Walk-
throughs from Incremental and Partial Scene Reconstructions”, in Proceedings of the British Ma-
chine Vision Conference(BMVC), 2010 at Aberystwyth, UK

* Kumar Srijan and C.V. Jawahar, “Towards Exhaustive Pairwise Matching in Large Image Collec-
tions”, in Proceedings of the Workshop on Web-scale Vision and Social Media, in conjuction with

European Conference on Computer Vision(ECCV), 2012 at Firezine, Italy

55

56

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

Bibliography

S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle adjustment in the large. In ECCV (2), pages
29-42, 2010.

S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. Building rome in a day. In ICCV, 2009.

D. G. Aliaga, T. Funkhouser, D. Yanovsky, and I. Carlbom. Sea of images. Visualization Conference, IEEE,
2002.

H. Bay, T. Tuytelaars, and L. J. V. Gool. Surf: Speeded up robust features. In ECCV (1), pages 404—417,
2006.

S. Bhattacherjee, A. Narang, and V. K. Garg. High throughput data redundancy removal algorithm with
scalable performance. In HiPEAC’11, pages 87-96, 2011.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 13(7):422-426,
1970.

A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent permutations (ex-
tended abstract). In STOC, 1998.

O. Chum and J. Matas. Large-scale discovery of spatially related images. IEEE Trans. Pattern Anal. Mach.
Intell., 32(2):371-377, 2010.

O. Chum, M. Perdoch, and J. Matas. Geometric min-hashing: Finding a (thick) needle in a haystack. In
CVPR, pages 17-24, 2009.

D.J. Crandall, A. Owens, N. Snavely, and D. Huttenlocher. Discrete-continuous optimization for large-scale
structure from motion. In CVPR, pages 3001-3008, 2011.

L. Fei-Fei. Tutorial on bag-of-visual-words. In CVPR. IEEE Computer Society, 2007.

M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with applications
to image analysis and automated cartography. Commun. ACM, 24(6):381-395, 1981.

J.-M. Frahm, P. F. Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, and
S. Lazebnik. Building rome on a cloudless day. In ECCV (4), 2010.

F. Fraundorfer, C. Engels, and D. Nistér. Topological mapping, localization and navigation using image
collections. In IROS, pages 3872-3877, 2007.

F. Fraundorfer, C. Wu, J.-M. Frahm, and M. Pollefeys. Visual word based location recognition in 3d models

using distance augmented weighting. In 3DPVT, 2008.

57

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz. Multi-view stereo for community photo
collections. In ICCV, 2007.

R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press,
ISBN: 0521540518, second edition, 2004.

K. Heath, N. Gelfand, M. Ovsjanikov, M. Aanjaneya, and L. J. Guibas. Image webs: Computing and
exploiting connectivity in image collections. In CVPR, pages 3432-3439, 2010.

B. Johansson and R. Cipolla. A system for automatic pose-estimation from a single image in a city scene.
In IASTED int. conf. Signal Processing, Pattern Recognition, and Applications, 2002.

T. Kadir, A. Zisserman, and M. Brady. An affine invariant salient region detector. In ECCV (1), pages
228-241, 2004.

R. Kadobayashi and K. Tanaka. 3d viewpoint-based photo search and information browsing. In SIGIR,
pages 621-622, 2005.

H. Li and R. I. Hartley. Five-point motion estimation made easy. In ICPR (1), pages 630-633, 2006.

X. Li, C. Wu, C. Zach, S. Lazebnik, and J.-M. Frahm. Modeling and recognition of landmark image
collections using iconic scene graphs. In ECCV (1), pages 427-440, 2008.

Y. Li, N. Snavely, and D. P. Huttenlocher. Location recognition using prioritized feature matching. In ECCV
(2), pages 791-804, 2010.

D. G. Lowe. Object recognition from local scale-invariant features. In /ICCV, pages 1150-1157, 1999.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer
Vision, 60(2):91-110, 2004.

J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal
regions. In BMVC, 2002.

N. J. McCurdy and W. G. Griswold. A systems architecture for ubiquitous video. In MobiSys, pages 1-14,
2005.

K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest points. In In Proceedings of the
8th International Conference on Computer Vision, pages 525-531, 2001.

K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In ECCV (1), pages 128-142,
2002.

K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. International Journal of
Computer Vision, 60(1):63-86, 2004.

K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal.
Mach. Intell., 27(10):1615-1630, 2005.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. J. V.
Gool. A comparison of affine region detectors. International Journal of Computer Vision, 65(1-2):43-72,
2005.

M. Mitzenmacher. Compressed bloom filters. IEEE/ACM Trans. Netw., 10(5):604-612, 2002.

58

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

M. Naaman, Y. J. Song, A. Paepcke, and H. Garcia-Molina. Automatic organization for digital photographs
with geographic coordinates. In JCDL, pages 53-62, 2004.

D. Nister. An efficient solution to the five-point relative pose problem, 2004.

D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In CVPR (2), pages 2161-2168,
2006.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast
spatial matching. In CVPR, 2007.

J. Philbin and A. Zisserman. Object mining using a matching graph on very large image collections. In
ICVGIP, pages 738-745, 2008.

J. Philbin and A. Zisserman. Object mining using a matching graph on very large image collections. In
ICVGIP, pages 738-745, 2008.

F. Schaffalitzky and A. Zisserman. Multi-view matching for unordered image sets, or "how do i organize
my holiday snaps?”. In ECCV (1), pages 414—431, 2002.

S. Segvic, A. Remazeilles, A. Diosi, and F. Chaumette. Large scale vision-based navigation without an
accurate global reconstruction. In CVPR, 2007.

I. Simon, N. Snavely, and S. M. Seitz. Scene summarization for online image collections. In ICCV, pages
1-8, 2007.

I. Simon, N. Snavely, and S. M. Seitz. Scene summarization for online image collections. In ICCV, pages
1-8, 2007.

S. N. Sinha, P. Mordohai, and M. Pollefeys. Multi-view stereo via graph cuts on the dual of an adaptive
tetrahedral mesh. In ICCV, 2007.

S.N. Sinha, D. Steedly, and R. Szeliski. Piecewise planar stereo for image-based rendering. In /CCV, 2009.
J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV,
pages 1470-1477, 2003.

J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV,
pages 1470-1477, 2003.

N. Snavely. Bundler, 2007. http://phototour.cs.washington.edu/bundler/.

N. Snavely. Scene reconstruction and visualization from internet photo collections, 2008.

N. Snavely, R. Garg, S. M. Seitz, and R. Szeliski. Finding paths through the world’s photos. ACM Trans.
Graph., 27(3), 2008.

N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring photo collections in 3d. ACM Trans.
Graph., 25(3):835-846, 2006.

N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring photo collections in 3d. ACM Trans.
Graph., 25(3):835-846, 2006.

N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from internet photo collections. International

Journal of Computer Vision, 80(2):189-210, 2008.

59

[55]
[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

N. Snavely, S. M. Seitz, and R. Szeliski. Skeletal graphs for efficient structure from motion. In CVPR, 2008.
K. Srijan, S. A. Ishtiaque, S. Sinha, and C. V. Jawahar. Image-based walkthroughs from incremental and
partial scene reconstructions. In BMVC, 2010.

H. Steinhaus. Sur la division de corps matriels en parties. In Bull. Acad. Polon. Sci., 1956.

H. Tanaka, M. Arikawa, and R. Shibasaki. A 3-d photo collage system for spatial navigations. In Digital
Cities, pages 305-316, 2001.

K. Toyama, R. Logan, and A. Roseway. Geographic location tags on digital images. In ACM Multimedia,
pages 156-166, 2003.

T. Tuytelaars and L. J. V. Gool. Wide baseline stereo matching based on local, affinely invariant regions. In
BMVC, 2000.

X. Wang, M. Yang, T. Cour, S. Zhu, K. Yu, and T. X. Han. Contextual weighting for vocabulary tree based
image retrieval. In ICCV, pages 209-216, 2011.

Y. Xu and R. Madison. Robust object recognition using a cascade of geometric consistency filters. In
AIPRO09, pages 1-8, 2009.

M. Zhang, M. C. Chan, and A. L. Ananda. Connectivity monitoring in wireless sensor networks. Pervasive
and Mobile Computing, 6(1):112-127, 2010.

Y. Zhang and T. Chen. Efficient kernels for identifying unbounded-order spatial features. In CVPR, pages
1762-1769, 2009.

Y. Zhang, Z. Jia, and T. Chen. Image retrieval with geometry-preserving visual phrases. In CVPR, pages
809-816, 2011.

60

