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Abstract

Computer Vision algorithms, which mainly focussed on analyzing image data till the early 1980’s, have

now matured to handle video data more efficiently. In the past, computational barriers have limited the

complexity of video processing applications. As a consequence, most systems were either too slow to be

practical, or succeeded by restricting themselves to very controlled situations. With the availability of

faster computing resources over the past couple of decades, video processing applications have gained

popularity in the computer vision research community. Moreover, the advances in data capturing, stor-

age, and communication technologies have made vast amounts of video data available to consumer and

enterprise applications. This has naturally created a demand for video analysis research.

Video sequences typically consist of long-temporal objects – called events – which usually extend over

tens or hundreds of frames. They provide useful cues for analysis of video information, including, event-

based video indexing, browsing, retrieval, clustering, segmentation, recognition, summarization, etc.

The state-of-the-art techniques seldom use the event information inherent in videos for all these prob-

lems. They either simply recognize the events or use primitive features to address other video analysis

issues. Furthermore, due to the large volume of video data we need efficient models to capture the es-

sential content in the events. This involves removing the acceptable statistical variability across all the

videos. These requirements create the need for learning-based approaches for video analysis.

In this thesis, we aim to address the video analysis problems by modelling and recognizing the dynamic

events in them. We propose a model to learn efficient representation of events for analyzing continuous

video sequences and demonstrate its applicability for summarizing them. Further, we observe that all

parts of a video sequence may not be equally important for the classification task. Based on the charac-

teristics of each part we compute its potential in influencing the decision criterion. Another observation

we make is that, a feature set appropriate for one event may be completely irrelevant for another. Hence,

an adaptive feature selection scheme is essential. We present an approach to learn an optimal combina-

tion of spatial and temporal based on the events being analyzed. Finally, we describe some of our work

on unsupervised framework for video analysis.
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Chapter 1

Introduction

In the middle of the twentieth century, experts in the field of Artificial Intelligence felt that the task of

making machines see was a trivial problem. Even to date, this fundamental problem remains largely

unsolved and will perhaps remain so for quite some more time [120]. In the course of many efforts to

achieve this dream, a new discipline has emerged – Computer Vision, which encompasses areas such

as mathematics, computer science, psychology of perception, biology, neuro sciences, etc. Computer

Vision deals with extracting descriptions of the world from images or sequences of images much like

the human brain does from the images captured by our eyes.

The growth of Computer Vision has been helped by advances in Image Processing [41, 55], Pattern

Recognition [26] and Machine Learning [76] techniques. Image processing deals with enhancing cer-

tain desired characteristics of images, the brightness of an image, for instance. In simpler terms, image

processing techniques take an image as input and produce an image as output. In contrast, computer

vision algorithms analyze the image (or set of images) and extract information as output. Image pro-

cessing is thus, only a tool which aids in our objective of understanding images. For example, in

Geographical Information Systems (GIS), images captured by satellites are first ‘processed’ to enhance

their details for better (further) analysis, such as automatic extraction of roads, rivers, vegetation, etc.,

which are the major interest features. Pattern Recognition techniques provide strong statistical models

to understand images and videos, and hence find great relevance in computer vision problems. Ma-

chine learning, in general, addresses the question of how to build computer programs that improve their

performance at some task through experience. Its ultimate goal is to make computers learn and adapt

over time, which would open up many new uses of computers and new levels of competence and cus-

tomization [76]. Many successful machine learning applications have been developed over the years,

including autonomous vehicles that learn to see and drive on public highways [86]. These three classes

of techniques – Image Processing, Pattern Recognition, Machine Learning – form an important core of

most of the computer vision solutions.
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Significant progress in computer vision research has resulted in a number of applications ranging from

car manufacturing to the entertainment world. Many applications in computer vision stem from the

different interpretations that users seek from images [32]. Popular applications include medical image

understanding, inspection of objects in manufacturing units to determine whether they are within the

specifications allowed, building systems for browsing and searching image databases, understanding

the geometry of the scene to introduce virtual objects into it, realistic rendering of synthetic scenes in

computer graphics, military applications such as analysis of satellite image data, and video analysis to

build systems for browsing, activity detection, surveillance, etc. A more comprehensive list of appli-

cations can be found in [51]. Vision techniques, which mainly focussed on analyzing image data till

the early 1980’s, have now matured to handle video data more efficiently. The proceedings of recent

workshops [1, 3] exemplify the burgeoning interest towards video analysis in the research community.

In the past, computational barriers have limited the complexity of video processing applications. As a

consequence, most systems were either too slow to be practical, or succeeded by restricting themselves

to very controlled situations. With the availability of faster computing resources over the past couple

of decades, video processing applications have gained popularity in the computer vision research com-

munity [98]. Moreover, the advances in the data capturing, storage, and communication technologies

have made vast amounts of video data available to consumer and enterprise applications [25]. Video

sequences typically consist of long-temporal objects – called events [118] – which usually extend over

tens or hundreds of frames. They form a powerful cue for analysis of video information, including,

event-based video indexing, browsing, clustering, segmentation, recognition, and summarization [118].

Polana and Nelson [85] classified events into three groups, namely temporal textures which are of inde-

terminate spatial and temporal extent, activities which are temporally periodic but spatially constrained,

and motion events which are isolated events that do not exhibit spatial or temporal repetition. Examples

of temporal textures are motion of a flock of birds, wind blown trees or grass, ripples on water, turbulent

flow in cloud patterns, etc. Examples of activities include walking, running, rotating or reciprocating

machinery, etc. Examples of motion events are isolated instances of throwing a ball, starting a car,

smiling, throwing a ball, etc. Many previous attempts have been made to analyze these three categories

of events. However, they are inefficient in handling certain aspects as we will see in the coming chapters.

Video processing and analysis has a number of promising applications in addition to the general goal

of designing a machine capable of interacting intelligently with a human-inhabited environment [37].

Some of the applications include interactive virtual worlds, gaming, access control, video surveillance,

gesture recognition, digital libraries and content-based video indexing, industrial monitoring, sign lan-

guage recognition, wearable computing, event-based video coding, choreography of dance/ballet, gait

analysis, “smart” interfaces, face expression analysis, etc. [12, 30, 37, 38, 85, 107, 116]. A more detailed

discussion on video analysis applications in various domains is presented in Section 1.1.3.
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The domain of video analysis is rich and challenging. Some of the challenges that the vision research

community encounters are:

• The need to segment (rapidly, in most cases) changing scenes in natural environments with mov-

ing elements in the background (e.g., swaying trees).

• Robustness to lighting variations and whatever is in its visual field. The system should not depend

on careful placement of cameras.

• Bulky nature of video data. The spatial and temporal redundancies in videos create the need for

efficient modelling techniques.

• Demand for appropriate feature selection schemes due to the myriads of events one may observe

in the real-world.

• The need for modelling techniques which handle variabilities in a large video collection as events

occur with different temporal extents.

• Occlusion of objects of interest, due to other objects or different parts of the same object.

• A subject-invariant representation is essential since most applications, such as gesture recognition,

activity recognition, video coding, etc., do not require identification of the subject performing the

event. For example, when recognizing events performed by humans, colour of the outfits worn by

them or their ethnicity is immaterial.

• Secondary issues such as the sampling rate, image resolution and nature of the video are to be

considered when extracting features.

1.1 Dynamic Event Analysis in Videos : An Overview

In this section we review the state of the art in dynamic event analysis. We begin with a discussion

on the modelling and characterization techniques which are popular for analyzing events in videos. In

Section 1.1.2 we summarize the evolution of these techniques as a time-line. We then elaborate on the

applications of event analysis (mentioned before) in various domains.

1.1.1 Modelling and Characterization Techniques

A review of the popular methods for modelling events (with the focus being on human events) can be

found in [1, 37] and the references therein. Wang et al. [107] provide an extensive survey on the recent

developments in motion analysis, focussing on the aspects of detection, tracking and event analysis.

Most of the early techniques can be categorized into three classes, namely 2D approaches with explicit
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shape models, 2D approaches without explicit shape models and 3D approaches. These methods em-

ploy segmentation and subsequent (2D or 3D) tracking of individual parts to model the dynamism in

events [38, 112]. They first identify moving objects – typically referred to as blobs – which are con-

strained by their size or shape. Tracked trajectories or higher-order image features of these blobs are

used to distinguish events. Naturally, these methods are very sensitive to the quality of segmentation

and tracking of blobs. An alternate approach for modelling events is to use appearance-based features

such as Motion History Images (MHI) and Motion Energy Images (MEI) [22], Pixel Change History

(PCH) – a combination of MHI and Pixel Energy [111]. These methods exploit the overall form of the

subject performing the event and build a feature image which describes its spatiotemporal appearance,

i.e., the recency and spatial density of motion. Although the early methods lead to satisfying results,

they are not capable of handling the uncertainty that exists when modelling events.

The need for incorporating uncertainty when modelling events has been recognized by many researchers

in the past [43, 48, 66, 81, 99]. This uncertainty occurs due to the multiple instantiations of events in a

large collection of videos. Probabilistic methods such as Gaussian Mixture Models (GMMs) [43], Hid-

den Markov Models (HMMs) [81, 99], etc., have been used to address this issue. The ability to learn

from training data and to develop internal representations with a sound mathematical framework makes

models like HMM attractive. One of the first applications of HMM for event analysis was proposed

by Yamato et al. [113]. HMMs are nondeterministic state machines which, given an input, move from

state to state according to various transition probabilities [37]. Typically, in HMM-based approaches for

event modelling/recognition, the set of hidden states is specified apriori and the transition probabilities

between these states are learnt from examples [99]. Also, one HMM is used per event. Many variants of

Markov models, such as Variable Length Markov Model (VLMM) [36], Layered HMM (LHMM) [81]

have been proposed for analyzing events. VLMMs, which capture long-term as well as short-term tem-

poral dependencies in events, and LHMMs, which encode the hierarchical temporal structure of a video,

overcome the limitations of the traditional Hidden Markov models. Greenspan et al. [43] proposed a

probabilistic video representation and modelling scheme using GMMs. They cluster the video into

space-time blobs for detection and recognition applications. An interesting aspect of this work is the

analysis of a video as a single entity rather than as a sequence of frames. This transforms the typical two-

stage processing framework (frame-by-frame spatial segmentation and temporal tracking across frames)

into a single-stage modelling framework of identifying spatio-temporal objects. A detailed discussion

on the mathematical formulation of HMMs and other modelling techniques is provided in Chapter 2.

In certain situations, it may be desirable to model the events after extracting essential visual con-

tent from the video. For instance, to characterize and model activities or motion events, it is prof-

itable to subtract the background. Many methods for background removal have been proposed in the

past [37,98,107,112,121]. Most researchers have now abandoned non-adaptive methods of background

removal since they do not account for constantly changing backgrounds. In these methods, errors in

4



the background accumulate over time, making them effective only in highly-supervised and short-term

applications where there are no significant changes in the scene [98]. A standard method of adaptive

backgrounding removal is by averaging the images over time and creating a background approximation.

While this approach is useful in situations where the background is visible for a significant portion of

time, it is not robust to scenes with fast-changing backgrounds. Furthermore, it cannot handle mul-

timodal backgrounds. Stauffer and Grimson [98] proposed an adaptive background removal scheme.

They model the values of each pixel as a mixture of Gaussians. The Gaussians that correspond to the

background are determined based on their persistence and variance. Pixels that do not fit the “back-

ground” Gaussians are labelled as foreground as long as there is a “foreground” Gaussian that includes

them with sufficient evidence. Recently an improvement to this model proposed by Zivkovic [121]

chooses the number of mixtures in an adaptive fashion.

Although effective, the modelling schemes discussed so far may not be useful for some of the ap-

plications [106]. Approaches for extracting layer representations from image sequences have gained

popularity [59,65,102,104] ever since they were first introduced by Wang and Adelson [106]. They of-

fer a simple yet efficient way to model and subsequently analyze video sequences. Handling occlusions

is one of the important problems in event/motion analysis. Popular schemes such as those using optical

flow [47] are inadequate to handle the motion discontinuities caused by occlusions. An elegant solution

to this problem is decomposing the 3D scene into a set of 2D objects in layers [59]. Jojic and Frey [59]

proposed a scheme to learn the appearances of multiple objects in multiple layers, over the entire video

sequence. They introduce “flexible sprites”, which can deform from frame to frame and thus model all

the dynamic objects in the scene. This method claims to be very generic and requires the number of

layers and the number of sprites as the only input. Recently, Kumar et al. [65] presented an approach

that performs significantly better than the previously reported results.

Almost all the event-based analysis research has been accomplished to solve recognition problems. It

has seldom been used for addressing higher level video analysis problems such as video summarization,

indexing, browsing and searching [24, 118]. The traditional approaches are limited to detecting cuts

and tracking object in extracted shots [96]. Other approaches include using the frame structure of the

video in the MPEG-4 standard [46], extracting the key frames from the video [79, 97]. Zelnik-Manor

and Irani [118] defined a statistical distance measure between video sequences. They used this measure

to isolate and cluster events within long continuous video sequences. As a result of this clustering the

long temporal sequences are temporally segmented into event-consistent subsequences. However these

events cannot be identified as no prior knowledge of type of events is assumed. One of the few meth-

ods for content-based video analysis is presented by Denman et al. [24]. They propose three tools for

this analysis – with applications to sports videos – namely, a parsing tool based on geometry (without

explicit 3D computation), event detection tool, and summarization tool.
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To sum up, in this section a brief review of the current state-of-the-art techniques for analyzing video

sequences is presented. We infer that video analysis is still in its primitive stages of development and has

many challenging problems which are unaddressed. The mathematical formulations underlying some

of these models are discussed in Chapter 2.

1.1.2 Evolution of Techniques

In this section we review the evolution of various techniques for video analysis. Although motion

(captured in the form of videos) plays an important role in many tasks, motion analysis in general, has

received little attention in the literature compared to the volume of work on static object recognition [85].

Most computational work in motion has been concerned with various aspects of the structure-from-

motion problem. There has been a spurt of interest in these problems only in the past decade [1]. Hence,

we divided the time-line into five periods – before 1980, 1980-1990, 1990-1995, 1995-2000, 2000 till-

date. Our findings are summarized in the table below.

Year Characteristics References

Before 1980 Most of the techniques dealt with understand-

ing the perception of motion in a psychophysi-

cal sense. The influential work of Johansson [58]

on Moving Light Display led to much research.

The earliest attempt to recognize events was re-

ported in [83] on synthetic images using many

constraints. None of the techniques were tested

on real video sequences and much of the work was

rather at a high level of abstraction [15, 85].

Johansson, 1973 [58]

O’Rourke and Badler, 1980 [83]

1980-1990 Video analysis techniques were restricted to rec-

ognizing simple events for surveillance applica-

tions [21]. This was achieved either by assuming

explicit structural models [50] or by computing

features such as spectral energy in a (temporal)

difference image [8], invariant images from joint

angles and angular velocities [40], event trajecto-

ries [42], etc. The general applicability of these

approaches was severely limited by various fac-

tors – computation of joint angles, velocities, ac-

curacy of the trajectory tracker. During this pe-

riod some fundamental temporal pattern recogni-

tion work was done in the context of speech pro-

cessing [60]. However, its applicability for event

analysis was not investigated.

Cutting, 1981 [21]

Hogg, 1983 [50]

Anderson et al., 1985 [8]

Juang and Rabiner, 1985 [60]

Gould and Shah, 1989 [42]

Goddard, 1989 [40]
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1990-1995 Common representations included space time

curves [78], appearance based features [13, 16],

spatio-temporal angle histograms [33]. Dur-

ing this period advanced modelling/recognition

schemes such as HMM were first introduced in

the video analysis domain [113]. A major break-

through in the video analysis domain was The

Informedia project [18]. The goal of this work

was to automatically skim documentary and news

videos with textual transcriptions. They create a

skim video – a short synopsis of the video – by

first abstracting the text using classical text sum-

marization techniques [70], and then looking for

the corresponding parts in the video. This was

achieved by integration of language as well as im-

age understanding techniques by extracting sig-

nificant information, such as specific objects, au-

dio keywords, and relevant video structure.

Yamato et al., 1992 [113]

Niyogi and Adelson, 1994 [78]

Bobick and Wilson, 1995 [13]

Christel et al., 1995 [18]

Campbell and Bobick, 1995 [16]

Freeman and Roth, 1995 [33]

1995-2000 Event recognition in this period was character-

ized by methods which primarily used track-

ing [37, 38, 108]. It also saw a large number

of DARPA funded projects on tracking, event

analysis, surveillance [19, 98]. As part of the

multi-institution VSAM project [19] many tech-

niques have evolved, which includes adaptive

background removal [98], multi-sensor detection

and tracking [19]. The purpose of the VSAM

project was to develop an automatic video under-

standing technology that enabled an operator to

monitor events over complex areas such as battle-

fields and civilian scenes [107]. Methods which

employed a combination of shape analysis and

tracking were also popularly used [49]. The ap-

plicability of such methods for constructing the

appearance-based models as well as monitoring

events in outdoor environments was successfully

demonstrated [89, 112]. Towards the latter half

of this period, the use of example-based learning

schemes started gaining momentum.

Regh and Kanade, 1995 [89]

Gavrila and Davis, 1996 [38]

Bregler, 1997 [15]

Wren et al., 1997 [108]

Gavrila, 1999 [37]

Yacoob and Black, 1999 [112]

Stauffer and Grimson, 2000 [98]

Collins et al., 2000 [19]

Haritaoglu et al., 2000 [49]
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2000 Till-date Methods which fit event data to models fixed apri-

ori are being replaced by example-based learn-

ing schemes [4, 36, 81]. Many novel techniques

for representing and analyzing videos, such as

layer representation [59, 65, 102], space-time

blobs [43], content-based analysis [24], event

clusters [118], etc., were proposed. Video se-

quences have also been analyzed by considering

them to be made up of a sequence of events [7,

118]. As observed by Sun et al. [99], techniques

that do not require explicit tracking or segmenta-

tion are of much interest for real-life applications.

Tao et al., 2000 [102]

Ali and Aggarwal, 2001 [7]

Galata et al., 2001 [36]

Jojic and Frey, 2001 [59]

Zelnik-Manor and Irani,

2001 [118]

Greenspan et al., 2002 [43]

Nuria et al., 2002 [81]

Denman et al., 2003 [24]

Kumar et al., 2005 [65]

Table 1.1 A summary of the evolution of techniques for video analysis.

1.1.3 Application Domains

Video processing finds a number of promising applications in many areas, namely, Human Computer

Interaction (HCI), Storage & Digital Libraries, Interactive environments, Wearable Computing, Broad-

cast video, Industrial monitoring, Surveillance/Security, Entertainment, Education, etc. We will look at

applications in some of these areas in detail below.

Security Systems: Building automatic systems for surveillance is a traditional application of video

analysis [37]. Event recognition has become a very useful technology to monitor the situation at

important locations. The recognition system can be trained to distinguish between acceptable and

potentially dangerous event. This is popularly known as “unusual” event/activity detection [119].

When a system detects these events, it may trigger appropriate measures – such as raise an alarm,

alert the security personnel, etc. In a parking lot setting one might want to signal suspicious be-

haviour such as wandering around and repeatedly looking into cars [37]. Gavrila [37] describes

what are called as “smart” surveillance systems, i.e., systems that do more than just motion detec-

tion to prevent false alarms (like blowing wind, animals moving around, etc.). A first requirement

for these systems would be to sense if a human is present in the scene. This may be followed

by face recognition for controlling access to secure installations ranging from ATMs to defence

organizations. However, to get a deeper understanding of the situation, event-based video analysis

is crucial.

Digital Libraries: Due to the ubiquitous nature of good quality video capture devices, a large amount

of video content is available these days. Given such libraries of videos, one would like to have

easy-to-use tools to organize them, browse through them, query them, and retrieve the snapshots

of particular interest. The bulky nature of videos creates a need for efficient representation and
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storage. Event-based video coding is an interesting research to achieve this [37]. Automatic

content-based annotation of videos is another important application in this domain. Content-

based video retrieval systems essentially depend on this annotation. Furthermore, when browsing

through a large video collection it is useful to have a way of being able to skim through the

contents. This is the problem of video summarization, which is analogous to text summariza-

tion [63,70] in many ways. An example scenario is one where security personnel browse through

the surveillance video, captured during the entire day, to detect any anomalies. It is needless to

say that the process is tremendously speeded-up when they use the skim-video instead of a large

video collection. Event analysis can be profitably used in all these applications.

Human Computer Interaction (HCI): One of the important applications of modelling and recogniz-

ing events is in the area of Human Computer Interaction. When designing machines capable of

interacting intelligently with a human-inhabited environment it is inevitable for them to have an

understanding of human events [37]. Such machines will know when you are looking at them,

will be able to recognize your gestures, and will detect where you are pointing [27]. This analy-

sis can also complement speech recognition and natural language understanding. These types of

gesture-based interfaces are part of a growing trend toward developing non-invasive and intuitive

interaction between computers and humans. Specific applications include areas where the tradi-

tional interfaces – keyboards and mouse, for instance – are not effective. This would improve the

way we visualize CAD models, interact in computer games, and even control household appli-

ances [82].

Virtual Reality: Application areas in the Virtual Reality domain lie in interactive virtual worlds, gam-

ing, virtual studios, character animation, teleconferencing. Event analysis can enrich the interac-

tion among the participants or objects by adding gestures, head pose, and facial expressions as

cues [37]. Application systems such as FingerMouse, FingerPaint [20, 87] are a result of some of

the specialized gesture recognition based devices developed for better interactivity.

Education & Entertainment: Event modelling and analysis has innumerable applications in educa-

tion and entertainment domains. It could be used in choreography of dance/ballet or teaching

dance steps in a controlled environment, e.g., KidsRoom [12]. Noninvasive methods to track and

analyze in video sequences have helped devise realistic models. They find applications in crash

simulations, synthesis of human motion, etc., which are quite commonly used in current motion

pictures. An interesting application in the field of education is “intelligent” tutors [27, 61]. They

judge whether a student is confused, or confident based on his/her actions and moods. Broadcast

video analysis is another active application area with regard to event analysis [2]. Many tools

have been developed to summarize video clips broadcast on television.

The aforementioned list of application domains is only indicative and by no means exhaustive or com-

plete. However, it demonstrates the importance of the problem and motivates the development of robust

and efficient models for modeling video events.
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1.2 Motivation

The motivation for this thesis stems from the fact that machines, more specifically computer systems,

have largely been “blind”, with little understanding of their surroundings. Although developing tech-

niques for making computers see has been the focus of much research over the past decades, it is mostly

in the domain of image understanding. It is a known reality that videos, typically comprising of a large

collection of images, contain much more information about the scene when compared to a single or mul-

tiple image(s). They may provide details of the scene from multiple view points, temporal relations that

occur in the scene, an understanding of what different objects do, etc. However, video analysis research

is still in its preliminary stages even to date. There have been very few attempts to learn higher level

representations from videos. The limited research and breakthrough technologies in this domain may

be partly attributed to the hardware limitations that existed till quite recently. But with the ubiquitous

nature of good quality video acquisition devices, and the fading of most computational barriers, video

analysis and processing has received great attention from computer vision researchers of late.

A desirable application for any user viewing a video (e.g., a recorded cricket video) could be to point

out an interesting video segment containing an event of interest (e.g., a short clip which shows a player

hitting a six in a cricket match), and request a “system” to fast-forward to the next clip which shows a

similar action. Such applications require appropriate video indexing/browsing schemes or event-based

similarity measures [118]. A more challenging task is to map a text query into a set of matching video

clips. The current video indexing schemes which analyze the sequence frames based on the visual con-

tent alone are ill-equipped to handle these problems. We need techniques which understand what is

happening in the video. This is a hard problem to tackle, and can be addressed by learning from ex-

amples. Understanding video contents is also useful when segmenting a video document into shots and

scenes to compose a table of contents. We may also extract keyframes or key sequences as index entries

for scenes or stories.

The availability of video cameras to the common man has created even more research challenges. These

issues are succinctly stated by Dimitrova et al. [25] as follows.

“At the other extreme, for consumers, the products and applications need to be extremely

simple for them to be viable in the marketplace. As an example, increasing consumer

access to electronic imaging devices such as still digital cameras and digital camcorders

has resulted in an explosion in the volume of data being generated. For consumers to

annotate, index, handle, process, and access their data, products must be designed with

simple yet useful functionalities. This would preclude searching techniques that are, for

example, based on color histograms. Instead, consumers might want to find all the pictures

in which uncle Joe is with the baby by defining once and for all, who uncle Joe and baby
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are pictorially. Clearly, from a technical point of view, this is harder to solve than searching

color histograms. At the moment, no technically robust solutions exist for this problem.”

In addition to this, consumers may want to query their video collection to retrieve all videos where the

baby is walking. This requires the system to have apriori knowledge of both walking and the baby.

Identification of the baby is more or less a solved problem [32], but an efficient way to understand what

the baby is doing (walking, running, etc.) is an active research area which motivates this thesis. Another

important factor is the voluminous surveillance data available for analysis. The ultimate goal would be

to build a system which processes all this data and comes up with an understanding of most of the events

that occur in real-world situations. It may also learn the kind objects that perform certain events, typical

duration of each event, diurnal effects, etc.

1.3 Objectives

Any video sequence is essentially a set of events or temporal objects. We believe decomposing a video

into individual “event components” leads to better understanding of its contents. It may also be a crucial

preprocessing step in most of the applications discussed above. For instance, event-based analysis can

be effectively used in video summarization, video coding, etc. The purpose of this thesis is to present

efficient event-based modelling and recognition techniques. In particular, we aim to

• Build an efficient representation for videos in terms of their event content.

• Demonstrate the use of event recognition to summarize video sequences.

• Present better feature selection schemes for recognizing events.

• Develop event modelling and recognition techniques which learn to adapt to the set of events in

consideration.

• Propose an unsupervised framework for modelling events.

1.4 Organization of the Thesis

This thesis focusses on three main issues, namely, event-based summarization, feature selection for

event analysis, and an unsupervised framework for describing events. So far in this chapter we have

presented an overview of dynamic event analysis in videos. In Section 1.1.2 we discussed the evolution

of techniques for modelling and characterizing events. The applications of video analysis in many areas,

such as Security Systems, Education & Entertainment, Virtual Reality, Human Computer Interaction,

Digital Libraries, etc., are provided in Section 1.1.3. We present the motivation behind our work in

Section 1.2 and discuss the objectives of this thesis in Section 1.3. The rest of the thesis is organized as

follows.
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• In Chapter 2 we present a review of some of the mathematical models for video analysis which

are also referred in our work. These models include Principal Component Analysis (PCA), Lin-

ear Prediction Coding (LPC), Hidden Markov Model (HMM), Gaussian Mixture Models (GMM),

Mixture of Factor Analyzers (MFA). PCA is one of the popular methods for finding an optimal set

of features that constitute an object/event in question. Linear Prediction and HMM are schemes

which model the temporal relations in data. LPC is a simple model which works by minimizing

a least squared error, while HMM follows a probabilistic approach to estimate the temporal char-

acteristics of data. GMM is a sophisticated statistical density estimation technique which is used

for clustering data, and MFA is essentially a reduced dimension mixture of Gaussians.

• In Chapter 3 we present an event-based summarization technique. Video summarization is an

important step in building fast and accurate content-based retrieval systems. It involves providing

a description of the important constituents of videos. The state-of-the-art techniques seldom ana-

lyze the “events” in videos. They are limited to detecting shot and scene changes. We propose a

method to learn a low-dimensional representation of an event set, using which we label the con-

tent in individual frames of an unseen video following a maximum likelihood approach. This is

an extension of our previous work on activity recognition (refer Appendix A). We demonstrate

the applicability of the new proposed scheme on various video sequences and compare our results

to those reported in literature.

• In Chapter 4 we investigate the core problem of feature selection – identification of appropriate

features – for event recognition. The problem of selecting features for analyzing events has seen

few advancements over the years. Most of them are trivial extensions of image feature selection

methods and treat all parts of a sequence as being similar. In this work we demonstrate that

all parts of a video sequence are not equally important when distinguishing between classes.

We propose an approach to identify the discriminatory potential of video segments and use it to

compute a weighted similarity measure. We present results on hand gesture and human activity

videos. Examples from online handwriting recognition, which is another form of sequential data,

are used to supplement our discussion.

• In Chapter 5 we present a basic model for automated analysis of videos. Given video sequences

recorded for potentially long duration, we first detect the various objects captured by the camera.

We use features from these objects and find the most likely model and the parameters that describe

their state over time. The formulation was tested on synthetic as well as real video sequences

captured at a traffic junction.

• In Chapter 6 we present a summary of the results obtained, the contributions made, and sugges-

tions for future work.

• In Appendix A we summarize our prior work on activity recognition. This work is based on

the assumption that activities are composed of homogeneous units, actions, many of which are
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common to more than one activity. The problem of recognizing activities is transformed to that

of recognizing the actions and the temporal relations that exist between them. The actions and the

transitions among them are learnt from examples in a low-dimensional space. Results on various

recorded and publicly available videos are shown here. We also present a statistical justification

of our model.
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Chapter 2

Mathematical Models for Video Analysis

A video sequence consists of a highly correlated set of images, referred to as frames, captured at regular

instants [103]. Owing to the 2-dimensional nature of the spatial extents of frames, video sequences are

3-dimensional. The additional third dimension corresponds to the temporal aspect of the video. Events,

which are temporal objects spanning over tens or thousands of frames, constitute video sequences.

Many mathematical models have been proposed in the past to analyze videos either directly or by the

interpreting the events in them1. In this section, we look at some of these models relevant at various

stages in the video analysis framework.

2.1 Principal Component Analysis

Due to the large size of video data, it is inefficient and impractical to model the events in videos di-

rectly. Modelling videos in a low-dimensional space is the solution to this problem. In these methods

the objective is to find an optimal set of features that constitute each event. Many schemes for learning

a low-dimensional representation of bulky data exist in computer vision [39, 56, 77, 105, 112, 114, 115].

Principal Component Analysis (PCA) is one such classical statistical method. It is a linear model based

on the statistical representation of a random variable. PCA finds a compact representation by minimiz-

ing the correlation in the data. In terms of mean squared error, PCA is considered to be an optimal linear

dimensionality reduction method.

Consider N samples {x1,x2, . . . ,xN} in a p-dimensional space. Let yi represent the corresponding

low-dimensional representation of xi. In this case PCA proceeds as follows. The d most significant

eigen vectors of Σ = 1
N

N
∑

i=1
[xi − µ][xi − µ]T are chosen based on the corresponding d largest eigen

values. The matrix A (d×p) formed by arranging the eigen vectors as rows is used to obtain the subspace

representation as yi = Axi. The d principal components of the given examples capture the maximum

variations in the data. PCA is an optimal linear dimensionality reduction method. Furthermore, it is easy

1Refer to Chapter 1 for an overview of video analysis techniques.
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to compute the model parameters from the data directly. These benefits have made PCA an attractive

scheme for computing the low-dimensional manifold. PCA representations are computed in many ways;

SVD being the most popular among them [112]. Roweis [91] proposed an EM algorithm for the same.

This algorithm permits an efficient computation of eigenvalues and eigenvectors even in the presence

of missing data points. To overcome some of the limitations of PCA, methods such as Robust Principal

Component Analysis (RPCA) [29], Sensible PCA (SPCA) [91] etc. have been devised. However, the

lack of appropriate noise model in PCA remains as a major disadvantage [91].

2.2 LPC and Time Series Models

An important cue in video analysis or the events that constitute videos is the inherent dynamism. Events

are marked by smooth variations over time. Linear Prediction Coding (LPC) is a popular scheme for

modelling such sequential data [72, 109]. For a sequence of N data points X = {xi}, i = 1, 2, . . . , N ,

a p th order linear predictor relates a sample xi to its previous p samples as

x̂i = a1xi−1 + a2xi−2 + . . . + apxi−p,

i = (p + 1), (p + 2), . . . , N , where x̂i denotes the prediction of xi. The coefficient vector a =

[a1, a2, . . . , ap] is estimated by minimizing the sum of squared errors
∑

i ||x̂i − xi||2. In the case of

video sequence data, the vector a captures the temporal correlation among the samples of X, which is

an ordered sequence of frames xi. Using a Linear prediction scheme, video sequences can be modelled

economically using the initial few frames and the coefficient vector.

Dynamic Time Warping (DTW) [94] is a method to find an optimal match between two given sequences

(e.g., time series). The sequences are “warped” non-linearly to match each other using Dynamic Pro-

gramming. DTW has been previously used to recognize events [44]. The cost of aligning two video

sequences, D(p, q), of lengths p and q is given by

D(i, j) = min











D(i − 1, j − 1)

D(i, j − 1)

D(i − 1, j)











+ d(i, j),

where d(i, j) is the local cost in aligning the i th element of the first sequence and the j th element of

the second. This cost can be used to match a test pattern with a reference pattern.

2.3 Hidden Markov Models

Hidden Markov Models (HMMs) [88] are one of the most successful approaches for modeling and

classifying sequential time series data. HMMs have gained increasing attention in computer vision
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Figure 2.1 Illustration of a 4-state standard left-right HMM showing the states (denoted by circles) and
the transitions.

related areas in the recent past, specifically in online handwriting [84], gesture and activity recogni-

tion [4,81,99]. They are popular since they offer dynamic time warping, a training scheme and a strong

mathematical framework [14]. HMMs are non-deterministic state machines which, on input, move from

one state to another following the transition probabilities. An example of a standard 4-state left-right

HMM is illustrated in Figure 2.1. They generate output symbols probabilistically in each state. The

use of HMMs involves a training and a classification phase. In the training phase the number of hidden

states are specified apriori and the state transition and output probabilities are learnt such that the gen-

erated output symbols match the features of the respective dynamic event. In the classification (testing)

phase, the probability that a particular HMM could have generated the test sequence is computed [37].

Mathematically, each event Ei is modelled by a corresponding HMM Hi, where i = 1, 2 . . .K. The

parameters of the model H = {Ξ, A, B, π}, where Ξ is the set of states, A = {ajk} is the transition

probabilities matrix, B = {bj} is the observation symbol probability corresponding to state j and π

is the initial state distribution, are estimated from the training sequences. The video sequence Φ is

identified by computing the posterior P (Hi|Φ), ∀i. A test sequence which contains only one event is

labelled as Ep, whose model Hp gives the highest posterior score. One of the concerns in using HMMs

is that the events are modelled in a high dimensional space. There have been attempts to use PCA-based

features in HMMs [99] to reduce the dimensionality. However, such models are not generic enough, as

they do not encode higher order temporal dependencies easily [36]. Another problem is that iterative

optimization methods used for solving HMMs often lead to local optima.

2.4 Gaussian Mixture Models

Mixture Models form a class of density model which comprise a number of component functions. All

these component functions combine to produce a multimodal density. Each sample xi arises from a

probability distribution with density given by

P (xi | θ) =
m
∑

k=1

pkh(xi | ηk),
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where θ = {pk, ηk}m
k=1 denotes the set of parameters to be estimated and h(xi | ηk) is the probability

distribution parametrized by ηk. pk (≥ 0), which denotes the mixing proportion of the distribution

h(.|ηk), is such that
m
∑

k=1

pk = 1. In the case of a Gaussian Mixture Model (GMM) the component

functions follow a Normal distribution. In other words, h(xi | ηk) is parameterized in terms of mean µk

and variance Σk and is given by

h(xi | ηk) =
1

2π|Σk|
1

2

exp− 1

2
(xi−µk)T Σ−1

k
(xi−µk) .

GMMs are one of the most widely used methods for unsupervised clustering of data, where clusters are

approximated by Gaussian distributions, fitted on the provided data. The set of parameters are typically

estimated following a maximum likelihood algorithm for fitting a mixture model to a set of training

data. Expectation Maximization [23] is a well established technique to achieve this. In the E-step the

likelihood of the distribution of the hidden variables, given the current estimates of all the parameters, is

computed, while in the M-step the parameters are updated using the likelihoods computed in the E-step.

These two steps are repeated until convergence2.

2.5 Mixture of Factor Analyzers
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Figure 2.2 The generative model of Mixture of Factor Analysis.

Mixture of Factor Analyzers (MFA) is a linear dimensionality reduction model which also clusters the

data. It combines Factor Analysis (FA) [28] with Gaussian Mixture Model. In other words, it clusters

the given data probabilistically in a subspace. Let the total number of samples be N and let xt (of di-

mension d), t = 1 . . . N denote the t th frame. The subsequent frames of an event are highly correlated

and therefore, for each xt, a p-dimensional (p � d) representation zt exists. That is, xt is modelled

as xt = Λjzt + u where Λj represents the transformation basis for j th cluster and u is the associated

2Interested readers are encouraged to refer [11], a tutorial on Expectation Maximization algorithm for GMM parameter
estimation.
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noise. Multiple sequences, occurring across different events, are used to learn Λj for each cluster and

the corresponding low-dimensional representation.

If we consider a mixture of m FAs (denoted by ωj , j = 1, . . . , m), where each FA has the same number

of p factors, but different means (µj) and factor loading matrices (Λj), the generative model is given by

the following

p(xt) =
m
∑

j=1

∫

p(xt | zt, ωj)p(zt | ωj)P (ωj)dzt. (2.1)

The MFA generative model is shown in Figure 2.2. The parameters in this mixture model are given

by {(µj , Λj)
m
j=1, π, Ψ}, where π is the vector of adaptable mixing proportions, πj = P (ωj). These

parameters are estimated with an EM algorithm [39]. The E-step (Inference) and the M-step (Learning)

are discussed below.

Inference: In this step, the current estimates of parameters are used to compute the expected values

for various interactions of the subspace representation and the mixtures. In other words, we compute

E[ωj | xi] , E[z | ωj , xi] and E[zzT | ωj , xi] (for all classes ωj), all of which can be obtained from

Equation 2.1. These quantities, are computed according to

E[ωjz | xi] = hijβj(xi − µj) (2.2)

E[ωjzzT | xi] = hij(I − βjΛj + Λj(xi − µj)(xi − µj)
T βT

j ), (2.3)

where

hij = E[ωj | xi] = πjN (xi − µj , ΛjΛ
T
j + Ψ)

βj = ΛT
j (ΛjΛ

T
j )−1.

Here, each µj , j = 1 . . .m denotes the representative appearance for the corresponding mixture, while

Λj , j = 1 . . .m denotes the corresponding subspace bases. π denotes the mixing proportions of actions

in the activity set while Ψ is a measure of noise present in the data. hij can be interpreted as the mem-

bership of xi to class j – the higher the value of hij , the more likely that xi belongs to class j. In this

manner, we infer the values of the subspace representations of xi and the classes to which they belong to.

Learning: In this step, the statistics collected during the inference from all the training examples are

used to obtain better estimates of the parameters. We solve a set of linear equations to find πj , Λj , µj

and Ψ. The interested reader may refer to the work of Ghahramani and Hinton [39] for more details. xi

is assigned to a class ci according to

ci = arg max
j

hij j = 1 . . . m (2.4)

The EM algorithm for MFA model can be summarized as follows.
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1. Initialize the parameters πj , Λj , µj and Ψ.

2. In the E-step, compute the expectations using the Equations 2.2 and 2.3.

3. In the M-step, estimate the parameters πj , Λj , µj and Ψ using the equations given in [39].

4. Repeat steps 2 and 3 till convergence.

5. Assign each sample xi to a class ci according to the Equation 2.4.

To sum up, Mixture of Factor Analyzers model is essentially a reduced dimension mixture of Gaussians.

Each factor analyzer fits a Gaussian to a portion of the data, weighted by the posterior probabilities hij .

2.6 Other Models

Many other models for representing videos (or events in videos) have been reported in literature [107].

They include Neural Network (NN), variants of HMM and NN such as Variable Length Markov Model

(VLMM), Coupled HMM (CHMM), Time-Delay NN (TDNN), optical flow-based methods [85], tem-

poral templates [12], finite automata or semantic description based approaches. For further details or

relevant references for these models, the reader may refer to the comprehensive survey by Wang et

al. [107]. Although it presents a survey of human motion analysis techniques, it covers a broad spec-

trum of generic frameworks.
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Chapter 3

Event-based Summarization

Video summarization has been a topic of great interest over the past several years due to its innumer-

able applications [2, 9]. It involves providing a description of the important constituents – the summary

– of the video concerned. Due to the bulky nature of video data, we need summarization algorithms

to process it efficiently for browsing and retrieval applications [92]. Beginning with the Informedia

Digital Video Library Project [18] many attempts have been made to interpret video content. To en-

able fast and accurate content access to video data, current techniques segment the video document into

shots and scenes. The keyframes or key sequences from these shots and scenes are used for indexing

the video [2, 46, 69, 79, 117]. Such an analysis provides only a low-level understanding of the video

content. Therefore, the core research problem in content-based video indexing/retrieval is developing

technologies to automatically parse video to identify meaningful composition structure and to extract

and represent content attributes of any video sources [25].

A video can be perceived as a document. Hence, video summarization is in many ways analogous to

text document summarization. Text summarization is the problem of extracting (or abstracting) from

large text databases. This is achieved mostly by extracting important sentences from the text data or

by abstracting the text using advanced Natural Language Processing methods [63, 70]. Unfortunately,

video summarization has not reached such a stage yet. The state-of-the-art techniques do not provide

a scheme for abstraction of video content, i.e. synthesizing a new (short) video with the essence of the

original (large) video. We also limit ourselves to the extraction problem in this work, where we identify

the important segments of the original video.

In this chapter we present an approach to summarize video sequences by analyzing the constituent events

in them. We begin by learning a low-dimensional representation of an event set, preserving the temporal

relations in it (see Section 3.2). Using this representation we label the content in individual frames of

an unseen video following a maximum likelihood approach. The labellings are then grouped to build a

hierarchical interpretation of the video. The proposed method finds related work in three domains: (1)
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Traditional summarization techniques (e.g., Cut detection schemes), (2) Event/Activity1 Recognition in

video sequences, and (3) Event analysis in continuous videos.

Traditional summarization schemes: A popular way of summarizing videos is by detecting cuts and

tracking objects in the extracted shots [96]. Other approaches include using the contents (au-

dio/visual information) in the video [79, 97], frame structure of the video in the MPEG-4 stan-

dard [46], etc. Most of the summarization techniques developed so far present the summary as

a set of key frames extracted from the video [64, 79]. These frames are organized spatially in

many forms to indicate the video summary [64]. Such schemes are limited by the complexity

of the video being summarized and are not intuitive. Although analyzing the events in the video

provides more useful information, it has seldom been used in summarization techniques [24].

Activity Recognition: The problem of analyzing video sequences to characterize the activities in them

has received much attention in the recent past [12, 38, 72]. A discussion on the methods for mod-

elling activities and their importance to Human Computer Interaction and video surveillance can

be found in [1, 37]. Initial attempts at solving this problem were based on segmentation and

tracking of individual moving parts [38, 112]. Bobick and Davis [12] used temporal templates as

an alternate approach. Although these schemes produced satisfactory results, they are limited in

modelling the uncertainty in activities. Probabilistic methods such as time-series models, Gaus-

sian Mixture Models, Hidden Markov Models are becoming popular to achieve this [48,66,81,99].

Activity analysis in continuous video: Ali and Aggarwal [7] presented a restricted model for segmenta-

tion and recognition of human activities in a continuous video. Their approach is limited to lateral

views of the subject, since they use the angle of inclination of body components. We propose a

method to overcome this limitation and handle videos with both lateral and frontal views of the

subject performing the activity. Zelnik-Manor and Irani [118] defined a statistical distance mea-

sure between video sequences and used it to analyze continuous videos. This approach processes

the videos in a high-dimensional space.

The proposed approach combines the advantages in the above three domains. We present a probabilistic

method which models the activities economically in a low-dimensional manifold. In addition to the

spatial redundancy (which is well studied in image processing algorithms using statistical and struc-

tural methods), videos have temporal redundancy due to the smooth variation of the scene over time.

Our representation of activities exploits these redundancies. Furthermore, we model an activity as a

sequence of atomic spatiotemporal units, henceforth referred to as actions. Thus, characterization of

activities can now be modelled as that of identifying the constituent actions and their sequence order.

We first estimate the individual actions and their compositional rules for the corresponding activities,

given video segments. The low-dimensional representation for the set of given activities is built, which

1Since the technique described in this chapter is applicable to both events and activities, which are defined in Chapter 1,
we use these terms interchangeably.

21



is used to summarize a given video. Assuming the video consists of a series of either known or un-

known activities, we segment it into individual activities and subsequently annotate each of them. This

annotation naturally leads to summarization of the entire video as discussed in the sections to follow.

The remainder of the chapter is organized as follows. A brief description of the event-based summariza-

tion framework is given in Section 3.1.2. In Section 3.2.1 we provide an introduction to the underlying

probabilistic formulation, followed by a description of the mixture model in Section 3.2.2. The learn-

ing framework and the algorithm are outlined in the remainder of Section 3.2. The summarization and

representation schemes are provided in Section 3.3. Section 3.4 illustrates the results on summarization

of various video sequences (human activity, Cricket, aerobics). A comparison of our results to those

reported in literature are also provided here2. Conclusions and avenues for future work are discussed in

Section 3.5. In the following section we provide a background on the characteristics a summarization

system should possess and review a traditional cut detection method.

3.1 Video Summarization

The goal of video summarization is to provide the essence of the video. Ideally, summarization systems

should possess characteristics such as a browsable description of the video, a hierarchical structure, a

view of the highlights. These desired qualities and the state-of-the-art in providing them are presented

in further detail below.

Browsable Description: Cut detection and similar approaches generate the summary as a sequence

of short clips [64]. This achieves a temporal segmentation of the video and may be used to generate a

browsable description. A major drawback of these approaches is the requirement of manual intervention

for labelling each clip.

Hierarchical Structure: Representing the video as a hierarchy of events makes it more structured and

organized. Traditional schemes do provide this hierarchical structure [79, 96].

Table Of Contents (TOC): Viewing the video as a TOC provides easy access to the content a user may

be interested in. Shot or cut detection approaches are useful for generating a table, but lack the ability

of identifying the content without explicit human intervention.

Video Highlights: One of the important requirements of summarization tools is to present highlights of

a given video sequence. Achieving this with no manual intervention is still an unsolved problem. Most

techniques provide video highlights by taking explicit input from the user.

Indexing and Retrieval: To build video retrieval systems on the lines of text-based search systems,

videos need to be indexed. Learning schemes such as the one presented in this chapter are ideal for

indexing a large collection of videos.

2Part of the implementation was done by Ankit Kumar, B.Tech. 2005.
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3.1.1 Cut detection

Figure 3.1 Detecting cuts in a broadcast news clip. A sports segment of the broadcast is illustrated here.
The left panel shows a hierarchical structure of the video sequence. Key frames representing the shots
in the video are shown in the middle panel, while the right panel shows a controller which plays the
selected shot from the video.

A simple way of segmenting and summarizing videos is by using the cut detection approach [64, 101,

117]. A cut is defined as a sudden shot change in a single frame, where a shot is an unbroken sequence

of frames from one camera. Some of the earliest techniques for cut detection were based on pixel dif-

ferences between two consecutive frames. A block-wise comparison of every sequence frame with a

few of the previous frames is also used to detect cuts. Certain methods also used colour histogram

measures to confirm the results obtained, inorder to avoid spurious detections caused by camera motion.

These methods developed into more stable statistical techniques at a later stage [117]. Other approaches

include using edge tracking, histogram differences and motion vector information [2]. The results of

cut detection schemes are typically illustrated in a browsable and hierarchical format (as can be seen in

Figure 3.1).

In Figure 3.1 we show cut detection results using the block-wise scheme (16 × 16 sized blocks) on

the sports segment of a news clip. Sports segments of news clips typically include scenes from dif-

ferent broadcasts (for example, Cricket broadcasts as in this case). Hence, they have a large number of

abrupt shot changes making them ideal for testing cut detection approaches. Figure 3.1 shows a tool that

presents a hierarchical structure of the entire video sequence in the left panel and the representative key

frames of the shots are in the middle panel. The major limitation of this summarization tool is the lack of
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the ability to provide a browsable description with minimal manual intervention. In order to overcome

this, we need a mechanism to characterize/model and then identify the video content automatically.

To sum up, cut detection approaches provide only a low-level abstraction of the video in terms of scene

changes and in some cases, the important scenes. Providing a higher level abstraction helps in many

situations (for e.g., video browsing, video retrieval). Moreover, cut detection approaches are not viable

for continuous video sequences. In the next section we outline our event-based summarization approach.

3.1.2 Annotation of Dynamic Events

The event-based summarization scheme we present in this chapter has most of the ideal characteristics

discussed in the previous section. We believe it is an important step towards achieving an ideal video

summarization system. Our approach allows for labelling video segments with minimum manual in-

tervention. The intervention is limited to the training phase, where a labelled collection of videos is

required. Given an unseen video, it is annotated automatically using the learnt representation. Fur-

thermore, we generate the summary with different description details. An example of the summary

generated can be seen in Figure 3.11. Here we perform a temporal segmentation of the video, analysis

and recognition of the activities and also provide a textual description of the video contents. The video

summary is also presented in an XML format (refer Section 3.3). An XML representation is useful for

indexing and retrieval of a large collection of videos. Text query systems may easily incorporate this

data and build on-demand video retrieval systems. User-defined video highlights can also be retrieved

using this query system. For instance, the user may query the system to retrieve all Tennis video seg-

ments in which a particular player exercises forehand shots, or all Cricket video segments in which the

batsman plays a Hook shot. Identifying the video contents in a learning-based framework allows for

more useful and descriptive TOC unlike those given by the traditional methods.

We use a probabilistic approach for summarizing and representing video sequence data by analyzing its

contents. A traditional cut detection approach is insufficient for summarizing continuous videos as there

may not be any “cuts” in the video. Our approach is independent of the (in)existence of cuts in the video

and hence overcomes this limitation. We begin by learning a low-dimensional representation of various

activities. It may be noted that this approach is more suitable for domain-specific summarization, as it is

impractical to train the system on all possible set of activities/events. The learnt representation is used

to summarize any new test video. The training (offline) and testing (online) phases of our method are

outlined below.

Training: Learn the representation of activities in videos.

1. Identify the actions in the given set of activities.

2. Represent the activities as a mixture model of actions.
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3. Thus, learn an efficient representation of the activities.

Testing: Summarize an unseen video.

1. Follow a maximum likelihood approach to annotate all the frames of the video.

2. Generate a hierarchical structure.

3. Build an XML representation of the video, which is useful for indexing and retrieval.

3.2 Modelling and Analyzing Videos

In this section we provide details of: (a) the model, (b) the learning scheme, and (c) the method for

identification of the most likely activities in the video and its subsequent annotation.

3.2.1 The Model

We consider videos to be made up of a sequence of activities/events. In a typical scenario, these videos

may consist of a variety of activities. Let A1, . . . AK denote the subset of activities, whose videos are

available during the training phase. We refer to these activities as the known activities and the rest as

unknown activities. Our objective is to automatically extract the activities in the sequence, identify the

known ones, and eventually summarize the entire video. We propose a method to learn the representa-

tion of the known activities and use it in segmenting the video (across time) into identifiable parts.

Let the total number of frames from examples of all the activities be N and let xt, t = 1 . . . N denote

the tth frame. Subsequences of xt constitute actions, which form the basic units of our model. For every

d-dimensional xt, there exists a p-dimensional representation zt, with p � d, due to high correlation

among the frames. Using a linear dimensionality reduction model gives xt = Λjzt + u, where u is

the associated noise and Λj denotes the transformation basis for the jth action. The transitions across

actions follow a unique probabilistic structure for each activity. Thus, estimating the actions and the

transitions among them provides a representation for the known activities. The low-dimensional rep-

resentations for the actions are learnt from multiple subsequences occurring across different activities.

The transitions are learnt by observing zts across the various actions for each activity. This model is

similar in spirit to a standard left-to-right HMM [99]. However, we work at a lower dimension, which

is simultaneously obtained while modelling the activity structure.

Given this model to analyze activities, we use it to generate summaries of videos. Consider a new video

sequence with known and unknown activities. A low-dimensional representation corresponding to this

sequence is constructed using the previously learnt representation. The known activities in the video are

recognized, thereby annotating a subset of the given frames. This provides a higher level of abstraction
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for chunks in the video. Assuming a small number of unknown activities, most of the given sequence

can be replaced by textual description of the activity.

In the remaining subsections, we elaborate on the scheme for learning various actions and the associated

activities. The algorithm to summarize videos is also described in detail.

3.2.2 Mixture Modelling

Squatting Hopping Waving

Figure 3.2 A few sample frames from a continuous video with activities such as Squatting, Hopping
(Kangaroo hop) and Waving.

As can be seen in Figure 3.2, there exist actions common to different activities (the action ‘Standing’

can be seen here). Hence, using a mixture model of actions can be profitable. Gaussian Mixture Models

(GMMs) form a special case wherein the mixtures follow a normal distribution, in a high-dimensional

space. On the other hand, Mixture of Factor Analyzers (MFA) model achieves the same in a low-

dimensional space. In other words, it is essentially a reduced dimension mixture of Gaussians. We

use the MFA model to get a subspace representation of the actions. To model the complete activity we

observe the transitions of the frames between actions.

Let us consider the process of generating a typical frame xt using a mixture model of actions. The action

to which it belongs to is chosen according to the discrete distribution P (ωj), j = 1 . . .m. A continuous

subspace representation zt is generated according to p(zt | ωj), depending on the chosen action. Having
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obtained zt and the action ωj , we can synthesize xt according to the distribution p(xt | zt, ωj). Thus, xt

is modelled as a “mixture model of actions” as follows

p(xt) =

m
∑

j=1

∫

p(xt | zt, ωj) p(zt | ωj) P (ωj) dzt, (3.1)

where ωj , j = 1 . . .m denotes the jth action. This equation describes a reduced dimensionality mixture

model where the m mixture components are actions. It describes the probability of generating a frame

given the action (to which it belongs) and its corresponding subspace representation. We estimate the

parameters of these distributions from the frames of all the activities by inverting the generative process.

Ghahramani and Hinton [39] describe an Expectation Maximization (EM) algorithm [23] to learn the

parameters in an MFA model. EM alternates between inferring the expected values of hidden variables

using observed data, keeping the parameters fixed, and estimating the parameters underlying the dis-

tributions of the variables using the inferred values. The following section provides details of the EM

algorithm used to estimate the action representation in a low-dimensional manifold.

3.2.3 Learning to Summarize

We use the videos of all the activities, arranged as a sequence of frames, for training. In our case, the

observed data corresponds to frames, the hidden variables to the low-dimensional representations of

these frames and the actions to which these frames are associated. The two phases of the EM algorithm

– E-Step (Inference) and M-Step (Learning) – are discussed below.

• E-Step: The current estimates of parameters are used to compute the expected values for various

interactions of the subspace representation and the actions. In other words, we compute E[ωj | xt],

E[zt | ωj , xt] and E[ztz
T
t | ωj , xt] for all frames t and actions ωj . Figure 3.3 shows the equations

used to compute these quantities. In this figure, µj , j = 1 . . . m denotes the representative

appearance for each of the actions while Λj , j = 1 . . .m denotes the various subspace bases for

the actions. π denotes the mixing proportions of actions in the activity set while Ψ is a measure

of noise present in the data. htj can be interpreted as the membership of frame t in action j – the

higher the value of htj , the more likely that frame t contains a subject performing action j. In

this manner, we infer the values of the subspace representations of the frames and the actions to

which they belong to.

• M-Step: The statistics collected during the inference from all the training examples are used to

obtain better estimates of the parameters. We solve a set of linear equations to find πj , Λj , µj and

Ψ. Interested reader may refer to [39] for more details on these equations. Each of the frames xt

is assigned to an action ct according to

ct = arg max
j

htj j = 1 . . .m. (3.2)
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Initialize πj , Λj , µj , Ψ

E-Step

1. Compute the expectations as

E[ωjzt | xt] = htjβj(xt − µj)

E[ωjztz
T
t | xt] = htj(I − βjΛj + Λj

(xt − µj)(xt − µj)
T βT

j ),

where

htj = πjN (xt − µj , ΛjΛ
T
j + Ψ)

βj = ΛT
j (ΛjΛ

T
j )−1.

M-Step

1. Solve a set of linear equations to
compute πj , Λj , µj , Ψ [39].

2. Each frame xt is assigned to an
action ct as
ct = arg max

j
htj , j = 1 . . . m.

Figure 3.3 The two steps in the EM algorithm are executed in an iterative fashion till convergence. In the
equations, µj denotes the mean appearance of each action and Λj denotes the corresponding subspace
basis.

The two steps are executed iteratively till convergence. After convergence, we form the action transition

matrix Tk = [τk
pq] for each activity Ak. The entries τk

pq of the matrix are given by

τk
pq =

N−1
∑

t=1

[ct = p][ct+1 = q], (3.3)

where 1 ≤ p, q ≤ m. The action transitions for successive frames of the activity Ak are represented by

the entries in the transition matrix Tk. This matrix encodes the temporal characteristics of the activity.

Normalizing the entries gives the corresponding probability transition matrix Pk.

To sum up, we obtain the parameters of the model – {(µj , Λj)
m
j=1, π, Ψ}, {Pk}K

k=1 – at the end of

the training phase. The model which now encapsulates the activity structure can be employed for the

various tasks such as recognition, summarization, as described below

3.2.4 Likelihood Computation

Given the learnt representation, our task is to use it in a summarization framework. Let us consider a

video of V frames which is to be summarized. To annotate each of these frames, we follow a maxi-
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mum likelihood approach. First, we reduce the problem to a lower dimensional space using the factors

learnt from the training data. We also compute the membership htj of every frame xt in action j

according to the equation given in Figure 3.3. xt is then assigned a single action label by choosing

the maximum htj , j = 1 . . . m as in Equation 3.2. Let c1, c2 . . . cV denote the action assignments

for the frames x1, x2 . . . xV respectively. A sequence probability (likelihood) Sk is computed using

Sk =
V−1
∏

t=1
Pk[ct][ct+1].

3.3 Summarization

The sequence probability can now be used to label the new video sequence. If the given video has only

one activity, Sk denotes the likelihood of the video representing activity Ak. In this case, the unlabelled

video is assigned to be the activity A∗
k, which maximizes Sk, k = 1, 2, . . . , K.

Thus, the task of labelling the given video is trivial when it contains one activity. In a generic scenario,

we need to summarize videos containing more than one activity. To handle this situation, we modify

the likelihood computation accordingly. We consider a sliding window W of size w (� V), which is

moved over the entire video sequence one frame at a time. Many references to such sliding window

approaches have been found in literature. In particular, Zelnik-Manor and Irani [118] use this approach

to find the distance between two video sequences in a higher dimensional space. For each position i,

i = (w/2), . . . , (V − (w/2) + 1), of the sliding window, we compute a subsequence probability S i
k

using Si
k =

i+(w/2)−2
∏

t=i
Pk[ct][ct+1]. The frames between positions i and (i + (w/2) − 2) are assigned

to the activity A∗
k, following a maximum likelihood approach, if S i

k is greater than a pre-determined

threshold. Otherwise, the frames are labelled as unknown.

In our implementation, we compute the subsequence probability in an efficient manner. This is achieved

by observing the correlation between any two consecutive sequence probabilities, say S i+1
k and Si

k. The

subsequence probability is computed in an incremental fashion, as we slide over the frame sequence.

Si+1
k is obtained from Si

k using

Si+1
k =

Si
kPk[ci+1][ci+2]

Pk[ci][ci+1]
.

Once we have labelled the frames in the video sequence, we generate summaries in different ways (refer

Figure 3.11). Grouping identically labelled contiguous frames segments the video temporally. These

labelled chunks can be further classified as either known or unknown activity and are grouped based

on their similarity. Finally, textual descriptions of the known activities are provided, which are a very

useful abstraction of the video sequence.
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This representation provides a hierarchical structure of the video. It also allows for a browsable descrip-

tion of the video contents. We then build an XML representation of the video sequence, an example

of which is shown below. Efficient indexing and retrieval applications can be developed easily on this

XML data.

<video>

<segments number=5>

<segment name=Squatting length=100>

</segment>

<segment name=Flapping length=121>

</segment>

<segment name=Jumping length=163>

</segment>

<segment name=Waving length=97>

</segment>

<segment name=Jumping length=116>

</segment>

</segments>

</video>

Standard Information Retrieval techniques [95] used in text retrieval systems are directly applicable on

such a representation. A Table of Contents may be automatically built by parsing the XML data corre-

sponding to the video. Furthermore, simple text querying on the video will provide user-specific video

highlights. Thus, our approach for summarization and representation of videos provides most of the

desirable characteristics of summarization systems discussed earlier in Section 3.1.

We now outline the entire summarization process. The given collection of videos is used to learn a

representation of the constituent activities. Using this, the individual frames of a test video sequence are

annotated, if the subsequence probability exceeds a certain threshold, else they are unlabelled (i.e., they

belong to an unknown activity). All these annotated frames are used to generate summaries in one of

the ways described above.

3.4 Results

In this section, we illustrate the applicability of our model for analysis and annotation of different video

sequences. We present results on human activity, Cricket and aerobics sequences. We also compare

30



our results to those reported by Zelnik-Manor and Irani [118] and provide a statistical validation of the

proposed model.

Human activity videos: Summarization of human activity video sequences finds application in surveil-

lance systems. It is needless to say that in such applications, browsing through a summarized video is

much more efficient than going through each and every frame of the long video sequence. A typical sce-

nario where an activity-based summarization tool may be used is that of identifying security breaches.

If the system is trained on a set of acceptable activities, then any un-trained activity can trigger appropri-

ate remedial steps such as sound an alarm, close the entry points, etc. In other words, a summarization

system is a useful aid for humans to monitor unusual activities.
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Figure 3.4 A graph showing the logarithm of sequence probability S i
k for the frames of a video with

known activities (Jumping 0 − 85, Flapping 86 − 276, Waving 277 − 390, Squatting 391 − 546). Each
frame is annotated as the activity whose corresponding probability is maximum. Note that the model
remains fairly accurate even during the activity transition phases. On an average, 96% of the frames are
annotated correctly. The crests and troughs in the graph (frames 400 − 546) clearly denote two actions
(Sitting and Standing) of the activity Squatting which are performed by the subject 4 times.

For analysis of human activity videos, we considered video sequences of 7 activities – Flapping, Jump-

ing, Squatting, Waving, Limping, Walking and Hopping. A few sample frames of some of these activi-
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Frame Number

Generated Summary

Ground Truth

Jumping

Flapping

Squatting

Waving

Figure 3.5 Summarization of a 670 frame long video sequence with Jumping (Blue), Flapping (Green),
Squatting (Yellow) as the known activities and Waving (Red) as the unknown activity. The video is
summarized based on the subsequence probability observed for each frame. The frames corresponding
the the unknown activity are unlabelled due to their low probability values (represented by the blank
region in the generated summary). 96% of the frames are identified correctly in this case.

ties are shown in Figure 3.2. We captured the videos at 24 fps using a Panasonic Digital Video Camera.

The average duration of each activity is 5 seconds. Minimal pre-processing steps, such as normalizing

the frames by centering the concerned subject, retaining only the visually significant information by

subtracting the background, and thresholding were performed. The processed frames were then used to

learn the low dimensional representation and the probability transition matrices for all the activities.

In the first experiment, videos comprising of the activities Flapping, Jumping, Squatting, Waving were

considered. The test sequence comprised of these known activities (performed by a new subject). Using

the learnt representations of the activities we computed the subsequence probability for all the four

activities. A window size w = 40 was found appropriate for our experiments. This is based on the

assumption that the activities (captured at 25 fps) in consideration are performed for atleast 1.6 seconds.

It is to be noted that the window size is not a critical choice, if it is sufficiently small. The results of

this experiment are shown as a probability plot against time in Figure 3.4. The x-axis denotes the frame

number and the y-axis denotes the logarithm of the subsequence probability S i
k for each of the activities.

It can seen that almost all the frames are annotated correctly. The activity ‘Jumping’ shows a high

correlation with all the other activities, hence the probabilities in the initial few frames corresponding to

this activity are very similar. Nevertheless, the frames are identified correctly as Jumping, considering

the maximum probability. The repetitive nature of the graph at various regions is due to the fact that

each activity is performed more than once by the subject. Another interesting observation is that the

activities are recognized after seeing only the initial few frames. This supports our claim that the model

has effectively captured the activities and can be used in a real-time environment. By choosing the

activity-set – on which the model is trained – randomly we found that our model summarizes 96% of
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the frames accurately on average. Notice that the actions in the activity Squatting (frames 400 - 546)

are very prominently visible in Figure 3.4. The crests and troughs visible in this region correspond to

the two actions (Sitting and Standing) that constitute the activity Squatting.

Figure 3.6 Sample frames of 4 Cricket shots – Cover drive, Straight drive, Hook, Square cut. The subtle
variations among these shots make the summarization task challenging.

The results of video summarization are illustrated in different ways. Figure 3.11 shows different sum-

maries (arranged hierarchically) on a video with four known activities – Squatting, Flapping, Jumping

and Waving. Temporal segmentation of the sequence provides a label for each frame, which is used to

group them into similar activities. The recognition framework described in the previous section identi-

fies each of these activities, if the model is trained on them. Such a naming is useful in building (text)

query-based video retrieval systems.

In another experiment, we test the model on a video with a combination of known and unknown ac-

tivities. Figure 3.5 shows the results on a video sequence with Jumping, Flapping, Squatting as the

known, and Waving as the unknown activity. We learn the representation of the three known activities

and test it on a video sequence with all the four activities. We observed that the unseen activity has

low subsequence probabilities, unlike the activities on which the model is trained. Hence, all the frames

with low probabilities are left unlabelled (or unidentified). Based on these labellings at each frame, we

summarize the video as shown in Figure 3.5. We perform a leave-one-out test and find that 95.5% of

the frames are identified correctly.

Cricket videos: There has been an increasing use of technology in modern day sports [2]. Analysis of

video recordings of sports events to improve upon one’s performance is a common phenomenon nowa-

days. For instance, in Cricket, statistics such as percentage of shots played on the on side, percentage of

hook shots, etc. provide useful information about a player. Similar statistics are useful for other games
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like Baseball, Football, Tennis. A summary of such video sequences comes in handy especially when

the duration of the game is very long, as is the case with Cricket videos.
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Figure 3.7 The logarithm of subsequence probability is plotted against frames of the activities – Straight
drive (0− 55 frames), Hook (56− 118 frames), Cover drive (125− 156 frames). Following a maximum
likelihood approach, the summary generated is 0 − 60: Straight drive, 61 − 120: Hook, 121 − 156:
Cover drive. In all, only 11 frames of this video sequence were labelled incorrectly.

We provide the summarization results of videos consisting of batsmen executing various shots. The

videos were recorded using a Konica Minolta Dimage Z2 camera at 30 fps and 320 × 240 resolution.

The model was trained and tested on videos with 8 Cricket shots – Cover drive, Forward defence,

Flick, Hook, Late cut, Square cut, Straight drive, Sweep. Figure 3.6 shows sample frames of some of

these shots. Subtle differences among the shots (cover drive and straight drive, for instance) make the

summarization task more challenging. A leave-one-out test on the data resulted in 95.5% of the frames

being labelled correctly. Performance of the model on a video sequence with Cover drive, Hook and

Straight drive is shown in Figure 3.7. In this case, only 11 frames (in 156 frame long video sequence)

were labelled incorrectly.

Aerobics videos: Aerobics video sequences comprise of many complex activities. Summarization

can prove to be useful in categorizing a large collection of such videos. As pointed out by Zelnik-Manor
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Frames

Generated Sequence

Ground Truth

Figure 3.8 Summarization of an aerobics video sequence. The representative frames of the activities
are shown in the top row. Ignoring the frames in which the sliding window falls on the boundary of two
activities, 98% accuracy was observed.

and Irani [118], a desired application could be one where the user selects an interesting segment in the

video and queries for an identical sequence in the collection. We trained our model on a set of aerobic

activities [53] and summarized a 425 frame long video sequence. Results of this experiment are shown

in Figure 3.8 along with the representative frames of the activities. As can be observed from the figure,

almost all the frames are labelled correctly. If we ignore the frames in where the sliding window W

consists of frames belonging to two activities (i.e., the window falls on a boundary separating the two

activities, which are difficult even for the human eye to identify,) the accuracy rate is nearly 98%.

Videos from [118]: Zelnik-Manor and Irani [118] proposed a statistical distance measure based on

the video content. They use this measure for clustering activities (events) and thereby temporally seg-

menting long video sequences. As this is done without any prior knowledge of the types of events, they

cannot label the frames automatically.

We used the video sequences available at [54] to test our model. Figures 3.9 shows the results obtained

on the Punch-Kick-Duck video sequence. Our approach resulted in similar labellings when compared

with those reported by Zelnik-Manor and Irani [118]. They are also mostly consistent with the ground

truth, which was obtained by manual segmentation. Results on the summarization of Tennis video

sequence are shown in Figure 3.10 along with representative frames of the three activities. The relatively

low accuracy rate of 85% is attributed to mainly two reasons: (a) High degree of similarity between

the activities Hop and Step, (b) High-speed nature of the game, which results in the activities being

performed for a short duration. However, the results are marginally better in our approach compared to

those reported by [118]. Thus, the results obtained following our approach are consistent, if not better,

with those reported in literature. The main advantage is that our model affixes labels correctly after

observing only the initial few frames (5 − 10 on average).
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Frames

Ground Truth

Our result

Result in [24]

Figure 3.9 Summarization of Punch-Kick-Duck video sequence. Sample frames of the three activi-
ties (Punch - Blue, Kick - Green, Duck - Red) are also shown. Both the approaches label the frames
quite accurately when compared to the ground truth, which was obtained by manually segmenting the
sequence.

3.4.1 Validation of the Model

As mentioned before, the videos are represented in a low-dimensional manifold (refer Section 3.2.2). We

computed a quantitative measure for the representation error. Using the low-dimensional representation

zt and the factor loading matrix Λj , we reconstruct the original frame, xt. The average per pixel intensity

difference between the original and the reconstructed frames of over 30 video sequences was found to

be a very negligible 0.63%. Table 3.1 shows these errors for 7 different videos. We also performed a

χ2 test [118] to quantify the annotation performance of our approach on several videos. We computed

the χ2 distance between the annotation result obtained and the ground truth labelling that is available

a priori for each frame. In general, the χ2 distance between two sequences a1(i) and a2(i), i =

1, 2, . . . , N , is given by

χ2 =
∑

i

(a2(i) − a1(i))
2

a2(i) + a1(i)
.

In this case an element ak(i) denotes the annotation label for the i th frame of the kth sequence. Say

we have 4 activities in the video sequence, then ak(i) ∈ {1, 2, 3, 4}. The results of this analysis on 5

video sequences with more than 500 frames each are illustrated in Table 3.2. On an average, χ2 distance

was 3.55. In comparison, the χ2 distance between a hypothetical sequence, where 10% of the frames

are annotated incorrectly, and the ground truth is about 18.72. The χ2 distance between a hypothetical
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Figure 3.10 Summarization of a Tennis video sequence with three activities – Hop (Cyan), Stroke (Red),
Step (Blue). It should be noted that the activities Hop and Step are fairly similar. Due to the high-speed
nature of the game, each activity is performed for a short duration. This explains the relatively low
accuracy rate (nearly 85%). However, they are marginally better compared to those reported by Zelnik-
Manor and Irani [118].

sequence, where 20% of the frames are annotated incorrectly, and the ground truth is about 39.20. This

shows that very few frames are annotated incorrectly using our approach.

3.5 Summary

In this chapter we presented an event-based approach to summarize video sequences. The summariza-

tion proceeds by temporally segmenting the video into events/activities and subsequently identifying

them. We provide a hierarchical structure of the video sequences and build XML representations for

them. Such high level abstractions of video have a large potential for application in browsing and re-

trieval systems. We demonstrated the performance of our approach on a variety of video sequences.

One of the main advantages of this approach is that it analyzes the contents of the video without any

explicit feature extraction. Furthermore, the transitions between activities are identified with a fairly

large accuracy. As shown above, our model is applicable not only for the activities learnt, but also for

unseen activities making them ideal for detecting unusual activities. A monitoring system built using

our approach can be trained on a set of acceptable activities and any other activity that is observed can

trigger appropriate remedial measures. Our approach is limited to providing video summary by “ex-
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Reconstruction Error
Video 1 0.0100
Video 2 0.0054
Video 3 0.0093
Video 4 0.0086
Video 5 0.0056
Video 6 0.0016
Video 7 0.0041

Table 3.1 A quantitative measure of the error in representing the activities in a low-dimensional space.
The average per pixel intensity differences between the reconstructed and the original frames of 7 video
sequences is shown here.

χ2 Distance
Video 1 3.67
Video 2 4.00
Video 3 1.33
Video 4 5.44
Video 5 3.33

Table 3.2 χ2 distance between the ground truth annotations and the results obtained using our approach.
As a comparison, the χ2 distance between a hypothetical sequence, where 10% of the frames are anno-
tated incorrectly, and the ground truth is about 18.72. This shows that very few frames are annotated
incorrectly using our approach.

tracting” the essential content. The interesting problem of “synthesizing” the summary of the video is

largely unaddressed.
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case) up and down giving a signal
To move or swing hands as in 

with knees bent
To wave (arms, in this

legs and feet
by muscular effort of the
To spring off the groundTo sit in a crouching position

Activity 1 Activity 2 Activity 3 Activity 4

Temporal Segmentation

Video Sequence

ContentActivity

Textual description

Squatting Flapping Jumping Waving

Figure 3.11 Representation of the summarization results. We present the summary of the given video
sequence in three levels. In the first level, the sequence is temporally segmented. In the second, the
content is identified and is grouped into similar units. And finally, if the activity is known (i.e., the
activity is seen during the training phase), we provide a textual description. This description may be
used in building video retrieval systems.
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Chapter 4

Feature Selection for Event Recognition

As is the case with most Pattern Recognition problems, feature selection – identification of appropriate

features – plays an important role in event recognition [26,35,73,80]. From a given set of features, one

can select a subset of useful features [35] (e.g., Forward/backward subset selection procedure, Branch

and Bound algorithms, etc.) or transform the feature space to a new basis to achieve better classification

in a lower dimension [73] (e.g., PCA, LDA, ICA, etc.). These techniques are demonstrated to be effec-

tive for solving recognition problems when patterns are represented as vectors in a feature space [26].

Most of the event recognition techniques follow similar approaches. Unfortunately, the problem of fea-

ture selection for analyzing videos has seen few advancements over the years [3, 17, 37]. In this chapter

we present novel feature selection schemes in the domain of video analysis, with applications to event

recognition.

Due to the bulky nature of video data, we need a compact representation for efficient recognition ap-

plications. Often this is achieved using models like Linear Prediction, PCA, ARMA, Markov methods

etc. [26, 103]. It has been argued that such modelling techniques, suited for efficient signal represen-

tation, (like PCA or as a matter of fact, schemes like LPC, HMM, etc.) need not be optimal for the

classification task [10]. Using a discriminant-based approach along with these models provides better

features for classification. However, it is not evident how discriminant analysis can be coupled with

these modelling schemes to extract class-specific features for better recognition. Therefore, we need a

discriminating mechanism which works at the compact modelling/representation level; and identifies the

parts of the video sequence which can discriminate between two events belonging to different classes.

We begin by reviewing the state-of-the-art feature selection methods for event recognition. An exhaus-

tive review of the classical approaches for event recognition can be found in [17, 37]. Many of these

approaches employed 2D or 3D tracking to temporally isolate the object, which is performing the event,

from the scene. Subsequent to tracking, the activity is recognized by extracting higher-order image

features such as joint locations and inter-joint angles. Another significant direction is to extract motion

features without resorting to tracking. Motion History and Motion Energy images [12], which represent
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Figure 4.1 A few sample frames of events performed by humans: Squatting (top row), Flapping (bottom
row). Note the presence of a common action – Standing – between these events. The initial few frames
of the event Squatting represent the action standing while the other frames represent the action sitting.
The action standing also occurs in the initial few frames of the activity Flapping. Thus, both these events
share the common action Standing.

recency and spatial density of motion respectively, were used for modelling a dynamic activity. A re-

lated approach is to use low level motion features computed using an IIR filter for each frame [72]. All

these schemes may be effective to represent the event, but not necessarily to recognize the event.

Kiran, et al. [93] proposed an approach for event recognition by identifying actions – the atomic spa-

tiotemporal units inherent in events, which are subsequences extracted from the video sequences – and

their sequencing information. They observed that most of the events (activities) performed by humans

have common actions. For example, the event Squatting has two distinct actions: a standing action and

a sitting action (refer Figure 4.1). Similarly, the event Flapping (flapping of hands) has standing and

hands stretched out as the constituent actions. Clearly, these events share the common action ‘standing’.

The correlation that exists between these and other such events was profitably exploited in learning a

compact representation. More details of this approach can be found in Appendix A. Although this

approach led to efficient and effective representations, it may not be ideal for recognition applications.

Usage of the relative importance of actions among events is limited to the representation phase. It is

hardly evident in the recognition phase and does not provide an intuitive understanding of the important

subsequences (actions) in the event.

We present an approach to overcome the limitations of these state-of-the-art techniques. To our knowl-

edge, the proposed method is the first to use a discriminant-based feature extraction scheme for video

sequences. We identify the parts of the videos (i.e., subsequences or actions) which are more useful in

discriminating between two dynamic events by analyzing their statistical characteristics. The individ-

ual actions are modelled and their discriminatory potential – the relative importance for distinguishing

events – is then computed. A similarity/dissimilarity measure for the event is computed by combin-

ing the weights for individual actions, as shown in the example in Figure 4.2. We demonstrate the
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Figure 4.2 A few sample hand gesture frames showing two parts with different discriminatory poten-
tials. In this case of events Click and No, the latter frames of the sequences are more useful in the
classification task when compared to the former frames. The individual segments (two segments in this
case) of the video sequences are modelled and their discriminatory potential is combined to compute a
similarity/dissimilarity score.

application of these ideas on event videos and supplement our discussion with examples from Online

Handwriting data [84].

The remainder of the chapter is organized as follows. In Section 4.1 we review the details of popular

modelling schemes used for event representation along with a discussion on Discriminant Analysis tech-

niques. The algorithm to obtain discriminant-based features for video sequences is given in Section 4.2.

We show results on two categories of videos, namely hand gestures and human activities, along with

a statistical analysis in Section 4.2.5. In Section 4.3 we present a novel scheme for integrating spatial

(offline) and temporal (online) features in videos. We summarize the work in Section 4.4 and suggest

directions for possible extensions. In the rest of this section we discuss an example that motivates our

approach.

A Motivating Example

To better appreciate the need for discriminating features for event recognition, consider the example

illustrated in Figure 4.2. Here, we show sample frames from two hand gesture [71] events: “Click”,

“No”. Recognizing hand gestures has received a lot of attention in the recent past. It finds innumerable

applications in HCI, Virtual Reality [74, 82]. One of the challenges in hand gesture recognition is the

large similarity among the events (gestures). Given this scenario, we need to identify a feature space

where the classes are compact (minimum inter-class variance) and distinct (maximum intra-class vari-
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ance).

The two events shown in Figure 4.2 are described as follows. In the Click event the subject moves his

index finger vertically up and down, as if clicking a mouse, while in the No event the subject moves

his index finger sideways horizontally, as if “saying” no to something. The two events appear to posses

similar properties at the beginning of the sequences (where the finger remains in an almost stationary

state). As the complete video sequence begins to appear over time, the distinguishing characteristics

unfold. In other words, the latter frames of the sequence are more useful for discriminating between

the two events when compared to the former frames. Thus, the latter frames should contribute more

towards the decision making process when compared to the former frames. As shown in Figure 4.2, our

objective is to identify subsequences Click 2 and No 2 which map to a feature space wherein the events

are clearly distinguishable. The other parts (Click 1 and No 1 in this example) owing to their similarity

may not contribute much to the decision criteria. Popular pattern recognition approaches [26,56] do not

allow for such a scheme. They give equal importance to all parts of a video sequence during matching,

which may not be the optimal, as in this case.

4.1 Preliminaries

We need efficient modelling schemes for building a compact representation of the events, by discarding

the acceptable statistical variability. Efficient modelling also involves removing the redundancy inherent

in video data. Spatial redundancies in individual frames are well exploited in image processing algo-

rithms using statistical and structural methods [41, 55]. In a video, an additional temporal redundancy

exists due to the smooth variation of the scene over time. Often, efficient video representations are

achieved by methods like Hidden Markov Models (HMMs), Linear Prediction, Principal Component

Analysis (PCA), etc. [4, 72]. Most of these modelling schemes exploit the inherent dynamism (i.e.,

temporal relations) in videos.

HMM is a popular method for capturing the inherent dynamism in events, which are marked by smooth

variations over time. Event representation, and subsequent recognition, using HMM typically proceeds

as follows. The Markov model is fixed apriori based on the nature of the events being considered. Sun

et al. [100] use four states to model events such as sitting, getting up from chair, and martial arts, etc.

Each event (in a set of K events) is modelled by a corresponding HMM Hi, where i = 1, 2 . . .K.

The parameters of the model H = {Ξ, A, B, π}, where Ξ is the set of states, A = {ajk} is the tran-

sition probabilities matrix, B = {bj} is the observation symbol probability corresponding to state j

and π is the initial state distribution, are estimated from the training sequences. The video sequence

Φ is identified by computing the posterior P (Hi|Φ), ∀i. The sequence is labelled as the event whose

corresponding model H gives the highest posterior score.
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Figure 4.3 Sample frames of event Running (top row) modelled with Linear Prediction features (bottom
row) (from Masoud and Papanikolopoulos [72], c© 2003 IEEE).

Linear Prediction is another scheme for modelling the temporal relations in video sequences [72]. For

a sequence of N video frames X = {xi}, i = 1, 2, . . . , N , a pth order linear predictor relates a frame

xi to its previous p frames as x̂i = a1xi−1 + a2xi−2 + . . . + apxi−p, i = (p + 1), (p + 2), . . . , N ,

where x̂i denotes the prediction of xi. The coefficient vector a = [a1, a2, . . . , ap] is typically estimated

by minimizing the sum of squared errors
∑

i ||x̂i − xi||2. This vector captures the temporal correlation

among the frames of X. Masoud and Papanikolopoulos [72] used a linear prediction scheme to extract

motion features from event videos. They computed feature images Fi = |x̂i − xi|, i = 1, 2, . . . , N ,

where x̂i = αxi−1 + (1 − α)x̂i−1. This is an Infinite Impulse Response (IIR) filter whose response is

a measure of the motion in the image. Unlike the standard LPC methods, where the coefficients are

estimated, the scalar α (0 < α < 1) is chosen based on the class of events. It signifies the importance of

a frame over time. In the case of moving objects, this recursive filter produces a fading away effect. The

features Fi implicitly encode the speed and the direction of motion. An example of a Running sequence

and its corresponding feature sequence is shown in Figure 4.3. The motion trail is clearly visible in

these feature images.

Due to the large size of video data, it is inefficient and impractical to model the events directly. Mod-

elling the events in a low-dimensional space is the solution to this problem [72]. The goal is to find

the optimal set of features that constitute each event. Principal Component Analysis (PCA) is one of

the popular methods for achieving this. It is a linear model based on eigenvectors corresponding to the

dominant eigenvalues [26]. Given normalized vectors xi, we find the eigenvalues and the eigenvectors

of
∑

i xix
T
i . Choosing the eigenvectors related to the top k eigenvalues, gives us the k most impor-

tant features of the data x. In terms of mean squared error, PCA is considered to be an optimal linear

dimensionality reduction method. It has been widely used for obtaining a low-dimension manifold of

non-sequential data, such as images. Approaches dealing with application of PCA on video sequences
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are limited to extracting a feature set based on offline patterns (images) [72, 112]. Furthermore, PCA is

believed to be suitable for representing the data, unlike discriminant based approaches which are appro-

priate for classification problem [10].

These modelling schemes treat all parts of a video sequence uniformly. As mentioned earlier (refer

Section 4), this may not ideal in most cases. To distinguish between the different parts of a sequence,

we need to weigh them appropriately in computing the decision criterion. This is in the spirit of Dis-

criminant Analysis and Statistical Pattern Recognition techniques.

4.1.1 Discriminant Analysis Techniques

Fisher Discriminant Analysis (FDA) is a popular feature extraction scheme for 2-class problems [31,73].

It finds an optimal direction ϕ along which the between class variance is maximized and the within class

variance is minimized. The criterion function J(.) is defined as

J(ϕ) =
ϕTSbϕ

ϕTSwϕ
, (4.1)

where Sw and Sb are the within class and between class scatter matrices. The function J(.) is maxi-

mized to compute optimal ϕ for discriminating between the patterns. It is shown that any vector ϕ which

maximizes the Fisher criterion in Equation 4.1 satisfies Sbϕ = λSwϕ for some constant λ [26]. This

can be solved as an eigenvalue problem. Thus, the discriminant vector, ϕ is given by the eigenvector

corresponding to the largest eigenvalue of Sw
−1Sb.

Ever since Fisher Discriminant Analysis was proposed [31], many extensions to it have evolved [68,73,

75]. Multiple Discriminant Analysis adapts FDA to a multiclass scenario. This is achieved by gener-

alizing the scatter matrices Sw and Sb to include multiclass information [73]. Lin et al. [68] recently

proposed an incremental Linear Discriminant algorithm for multiple classes. They expressed the scatter

matrices in terms of the means and covariances of the classes and updated them incrementally using the

Sequential Karhunen-Loeve algorithm [67]. FDA has also been extended to discriminate non-linear data

samples, using Kernel Discriminant Analysis methods [73, 75]. Non-linearity is handled by projecting

the dataset into some linear feature space using the kernel trick [75].

Although these traditional discriminant analysis schemes provide efficient features, they are insufficient

to handle video sequences directly.

4.2 Discriminative Features for Events

When recognizing events, there exist situations where some parts are more useful to distinguish than

others. For example, when distinguishing two events – “Click”, “No” – in hand gesture data [71] (see
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Segment 1

Segment 2

Aligned video
sequence

Figure 4.4 Temporal segmentation of a sample video sequence.

Figure 4.5), the common subevent (frames where the index finger appears in a vertical position) in them

is less important. In this section we present the method for identifying discriminant features for event

modelling and recognition, along with examples from online handwriting recognition [84]1. We support

our claims with experimentation and analysis on hand gesture and human activity videos.

Let us consider two video sequences A and B which belong to events (classes) A and B respectively.

They represent a sequence of image frames where the corresponding event (like Click, No, etc.) is

captured.

4.2.1 Temporal Segmentation

For the two video sequences A and B, dissimilarity can be computed by comparing the sequences. If the

sequences are of different lengths (say due to variation in frame rate of video capture or duration of the

event), a normalization can be done by resampling. However, comparison of video data frame-by-frame

is not valid since the event of interest is macro in nature and cannot be captured from one sample frame.

Also, the identification of a simple model parameter (say using HMM or LPC) may not be valid for

the entire sequence. Therefore, researchers have frequently decided to pick an appropriate intermediate

subsequence for the representation [118]. The problem we address is identification of contribution of

each of these subsequences for the global dissimilarity/discriminative information for the given video

sequences.

Before segmenting the video sequences temporally, we need to align the video frames. In this work, we

assume that the video sequences are already aligned with respect to a sample video (called the template

video). It is to be noted that the alignment scheme and further processing steps are independent of the

1Thanks to Satya Lahari Putrevu, B.Tech. 2005, for conducting experiments on Online Handwriting data [5].
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Common Subevent

Figure 4.5 A few frames of hand gesture data showing two events – “Click” (left), “No” (right), and
their common subevent.

choice of the template video. Moreover, if we are given that the data samples are obtained at a uniform

rate (i.e., the video sequences are captured at a uniform frame rate and all events have approximately

similar duration), the sequences are already aligned, and can be directly segmented.

After alignment, we identify subsequences (or segments) of each video sequence by splitting it into a

pre-fixed number parts. The number of segments is determined based on the set of events under con-

sideration and their constituent actions. For our experiments on videos captured at nearly 25 fps, with

about 150 frames each, we used 10 segments, with the assumption that all actions are performed in

approximately 0.6 seconds. The temporal segmentation process is summarized using a sample video

sequence in Figure 4.4.

At the end of the segmentation stage, we have s segments each of A and B, denoted by Ak and

Bk, k = 1, 2, . . . , s, respectively.

Example: Let us look at Online Handwriting Recognition as an example. Each handwritten charac-

ter/stroke is represented as a sequence of points, in the order it is written. Figure 4.7 shows sample

handwritten strokes of the numerals 2 and 3. Just as in the case of video sequences, all parts of the

stroke, which are referred to as substrokes, are not useful for the recognition task. To identify the relative

importance of each substroke, we begin by identifying the segments. For this type data we use the well-

known Dynamic Time Warping (DTW) techinque [84] to align and thus segment the sequences. DTW

aligns a sequence of feature vectors using dynamic programming [26]. In this case, the feature set com-

prises of 2-dimensional points obtained over time. D(p, q), the cost of aligning the sequences A and B

(of lengths p and q respectively), is given by D(i, j) = min{D(i − 1, j − 1), D(i, j − 1), D(i − 1, j)}
+d(i, j), where d(i, j) is the local cost in aligning the ith element of A and the jth element of B. Back-

tracking along the minimum cost path obtained for D(p, q) provides the alignment information. This

alignment results in a correspondence between the two sequences. We extract a fixed number of seg-

ments from one of the sequences and choose the corresponding (aligned) subsequences from the others.

We will continue our discussion on modelling and recognizing handwritten strokes, as an example, in

the remaining parts of this section.
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4.2.2 Modelling the video segments

The segments Ak and Bk are modelled appropriately to capture their inherent properties. This is

achieved by transforming the video segment features with a modelling function. We denote the model

parameters of the jth sample by θk
Aj for the segment Ak, and similarly θk

Bj for Bk. The modelling

function: (i) enforces a local continuity constraint within the segments, and (ii) preserves the ordering

across segments. We use Motion History Images (MHI) proposed by Bobick and Davis [12] to model

the video segments, which denote the actions that constitute events.

MHI represents how the motion is occuring in the event. In other words, it denotes the direction of

motion. The history image of the jth sample for the segment Ak is denoted by θk
Aj . From [12], the

intensities at pixels in the history image at time instant t, Hτ (t), are a function of the temporal history

of the motion of the corresponding points. It is defined as

Hτ (t) =

{

τ if I(t) = foreground

max(0, Hτ (t − 1) − 1) otherwise

where τ is a pre-determined constant and I(t) = foreground denotes the set of all pixels belonging to

the event-performing subject. For every segment k of the sequence A, we compute the History Image

feature for the last frame in that segment, i.e., every segment has exactly one History Image feature.

Motion History Image features of a few sample video segments are illustrated in Figure 4.6. The motion

of these event segments is clearly visible.

Figure 4.6 Motion History Image (MHI) features of a few sample video segments clearly illustrating
the motion trails.

Example: Due to the simplicity of online handwritten data, many modelling schemes, such as LPC,

HMM, DTW, etc., are viable for modelling the substrokes. For instance, using a trivial model – LPC of

rth order – to capture the dynamic nature of the substrokes, we have the ith element of the jth sample,

Ak
ji = [xk

ji, y
k
ji]

T predicted using the r previous 2D observations. The scalars xk
ji, y

k
ji denote the spatial

location of the 2D data point. The prediction Âk
ji is given by

Âk
ji = ak

1A
k
j(i−1) + ak

2A
k
j(i−2) + . . . + ak

rA
k
j(i−r);

i = (r + 1), (r + 2), . . . , pk
j , where Âk

ji denotes the prediction of Ak
ji, and pk

j is the length of segment

Ak
j . Most linear predictors estimate ak

i s by minimizing the sum of squared errors
∑

i ||Âk
ji − Ak

ji||2.
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In other words, θk
Aj = ak = [ak

1, a
k
2, . . . , a

k
r ]

T . This scheme can be trivially extended to handle other

features traditionally used in online handwriting recognition [84].

4.2.3 Discriminatory potential of segments

To identify the segments (subsequences) useful for the classification task, we find the weights ϕk, k =

1, 2, . . . , s, for each segment such that they have optimal distinguishing characteristics along the direc-

tion of the vector ϕ. We obtain this vector using a Fisher-like analysis, i.e., we minimize the within class

scatter and maximize the between class scatter for the sequences. The scatter matrices are defined as

Sw =
∑

i∈{A,B}

Ni
∑

j=1

(θij − θ̄i)(θij − θ̄i)
T

Sb = (θ̄A − θ̄B)(θ̄A − θ̄B)T ,

where the number of samples in class i is denoted by Ni, the symbols without the superscript k denote

the sequence features with subsequences stacked as rows and the mean over the samples of a class i

is given by θ̄i = 1
Ni

∑Ni

j=1 θij . Also, (θij − θ̄i) is the distance measure defined in the representation

space. Here, the s × s matrices Sw and Sb capture the within class and between class scatters at the

subsequence level. Each entry of Sb = {bij} represents the variance between subsequences Ai and Bj

over the set of all samples. Maximizing the objective function in Equation 4.1 results in classes with

large discriminating characteristics.

To sum up, the process of computing discriminant features (training phase) is outlined here.

1. Align all the sequences in the training set with respect to a template sequence, and segment them

temporally to obtain s segments for all the video samples in the two classes A and B.

2. Model the individual video segments using Motion History Images (MHI) to get the new set of

features – {θk
Aj , θ

k
Bj}s

k=1.

3. Compute the discriminant vector ϕ, whose elements represent the relative importance of each

segment, by minimizing the objective function J(.) according to Equation 4.1.

Figure 4.7 An Online Handwriting [84] example. The numerals 2 and 3 possess similar curvature
properties at the beginning of the sequences. Their distinguishing characteristics unfold over time, as
the complete numbers begin to appear.
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Example: Let us revisit the online handwriting example discussed earlier. Consider the numeral pair

(2, 3) shown in Figure 4.7. The two numerals appear to possess similar curvature properties at the be-

ginning of the sequences. As the complete numbers begin to appear, their distinguishing characteristics

unfold over time. In other words, the tail portion of the numbers is more useful for distinguishing them.

This vector is computed by minimizing the within-class variance and maximizing the between-class

variance. This objective is achieved by minimizing the function J(.) in Equation 4.1. When computing

the s × s matrices Sb and Sw, we build the θij and θ̄i matrices. In this case, they are s × r matrices

where each row consists of the r Linear Prediction coefficients.

In this example using two segments to model the strokes, ϕ was found to be [0.410, 0.590]T . The

elements of the discriminant vector support our claim that the head portion (ϕ1 = 0.410) is less dis-

criminatory compared to the tail portion (ϕ2 = 0.590).

4.2.4 Recognition

Let T be the sequence we are interested in recognizing. It is labelled as class i∗ according to

i∗ = arg min
i∈{A,B}

D(T, i), (4.2)

where D defines the cost of recognizing the sequence T as the sequence i. The matching cost D(T,A)

is given by D(T,A) = f(ϕ1, . . . , ϕs, θ
1
T

, . . . , θs
T

, θ1
A, . . . , θs

A). The function f(.) models D as a com-

bination of the subsequence (or action) level matching costs and the weights ϕk, which discriminate

between the subsequences. Naturally, f(.) depends on the modelling scheme used for the subsequences.

Given the modelling scheme used in our approach, we define

f(.) =

s
∑

k=1

ϕkd(θk
T , θk

A),

where d(.) is the distance between the two Motion History Image feature vectors.

We now present a justification for using the elements of the Discriminant vector as weights in the

decision criterion. Discriminant Analysis identifies an optimal direction φ along which the ratio of

between-class scatter and within-class scatter is maximized. When the data points, say, θk
T and θk

A

are projected onto this direction as φT θk
T and φT θk

A respectively, each element of φ acts as a weight

for the corresponding dimension. In the lower dimension, the distance between two event segments

θk
T and θk

A is expressed as a weighted linear combination of distances along each dimension, i.e.,

d(φT θk
T , φT θk

A) =
∑

k φkd(θk
T , θk

A). This relation holds for any metric distance d(.).

Example: In the online handwriting case, where we modelled the data points using a Linear prediction

scheme, we define the metric as the distance between the two prediction coefficient vectors. Recognition
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of numerals 2 and 3 (Figure 4.7) modelled using a linear predictor of order 3, resulted in an average

accuracy of 97.33% using our weighing method compared to 93.73% using equal weights – a 56.51%

reduction in error. A leave-one-out approach was followed to compute this recognition accuracy. For a

more detailed discussion on the experiments and an analysis of the results on online handwriting data,

the reader may refer to [5].

4.2.5 Experiments and Results

In this section we present results on two classes of videos – hand gestures and human activities. We

used recorded as well as publicly available videos [71] for testing the applicability of our model. We

also present a statistical validation experiment.

Figure 4.8 Sample frames showing four events. Hand gestures: Click, No (first two rows); Human
activities: Jumping, Squatting (last two rows).

Hand gestures: Recognizing hand gestures has received a lot of attention in the recent past. It finds

innumerable applications in HCI, Virtual Reality [82], wherein input to the computer can be regulated

through various hand gestures, for instance controlling the visualization of a CAD model. One of the

challenges in hand gesture recognition is the high similarity among the events (gestures). We test the

applicability of our approach on this dataset. We used hand gestures videos from Marcel’s Dynamic

Hand Gesture database [71]. It consists of 15 video sequences for each of the 4 hand gestures, namely
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Segment 1 Segment 2 Segment 3 Segment 4

Click

No

0.006 0.030 0.152 0.197

Figure 4.9 Motion History Image features computed for 4 segments of the events Click, No, and their
corresponding discriminatory potential (shown in the last row). It can be observed that the first two
segments have low discriminatory potential owing to their similarity. The last two segments are more
useful for the classification task.

Click, No, StopGraspOk and Rotate. The data was divided into separate train and test sets. No resub-

mission error on the data set was observed. We present results on three of the possible pairs – Click vs

No, StopGraspOk vs Rotate, Rotate vs Click – which have high degree of similarity. Sample frames of

a couple of hand gestures are shown in Figure 4.8. Following is the experiment conducted on this data

set.

1. We segment the aligned sequences temporally to obtain actions (video segments) for all the video

samples in the two classes.

2. We model each video segment using MHI features.

3. We then compute the discriminant vector, which represents the relative importance of each seg-

ment according the method described in the Section 4.2.3.

4. Given a new video sequence to recognize, we follow the first two steps, then use the already

estimated weights to compute the similarity score and label the video as discussed in the previous

subsection.

The accuracy results on this data set are illustrated in Table 4.1. We compare our results to those

generated by techniques which give equal importance to all parts of the sequence. Here, we observed

an average improvement of 3.6% in the recognition accuracy. In Figure 4.9 we illustrate the Motion

History Image features computed for 4 segments of Click, No events. Our claim that the latter frames of

the sequence are more useful for the classification task is supported by the discriminatory potential of

these frames.

Other activities: Recognition of events involving humans finds many applications in surveillance [4,

12, 72]. These events are marked by a considerable amount of overlap among them. We exploit this
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Video Pairs
% Accuracy

Equal weights Optimal weights

Click vs No 91 93
StopGraspOk vs Rotate 90 92

Rotate vs Click 87 92
Jumping vs Squatting 85 90
Limping vs Walking 87 91

Table 4.1 Recognition accuracy for over 60 video sequences. On an average a reduction of 30.29% was
observed.

observation and apply our discriminant based feature selection scheme. For this experiment on human

activities, we used videos of 20 human subjects performing 4 different activities, of average duration

6 seconds. These activities occur with the subject either stationary or indulging in locomotion. In the

former category, we consider activities Jumping and Squatting, while in the latter category (involving

locomotion), we consider Limping and Walking. The videos were captured with a Panasonic Digital

Video Camera at 24 fps. The data set was divided into distinct train and test sets. Minimal preprocessing

is done on the video sequences. In order to retain only the visually significant information, background

subtraction and normalization is performed on all the frames. Motion compensation is performed to

center the subject for activities where locomotion is involved. We then segment the event and model

the individual parts using MHI features. The modelled segments are used to estimate the discriminatory

potential of each segment. To recognize an unlabelled test event, the sequence is preprocessed as above

and the similarity measure is computed with respect to the two learnt event representations. The test

video is labelled as the event for which the weighted similarity measure is maximum (refer Section

4.2.4). The recognition accuracy results on these activities are presented in Table 4.1. On an average,

our approach results in 32.05% reduction in error.

Statistical Analysis: We now present a statistical analysis of the proposed model. To quantify the

performance of the model, we computed the within-event and between-event scatters before and after

the feature space transformation on a set of “Click” and “No” video sequences. Optimality of the

feature set is defined in terms of the compactness (low variance within the class) and the separability

(high variance between classes) of the classes. Low within-event and high between-event scatters shown

in Table 4.2, after transforming the features to a discriminant-based feature space, support our claim that

the model identifies an optimal discriminating feature set.
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Feature Space Within-event scatter Between-event scatter

Standard
Class 1 5.025

Class 1 vs 2 6.174
Class 2 4.619

Discriminant-based
Class 1 3.907

Class 1 vs 2 15.958
Class 2 2.794

Table 4.2 Performance of the model in identifying an optimal discriminant-based feature set. Here we
show the within-class and the between-class scatters for both the classes (Click and No) before and after
the feature space transformation. The values were computed by segmenting the sequences into 3 parts.
Low within-action and high between-action scatter values indicate that our approach identifies a feature
space wherein the classes are compact and well-separated.

4.3 Online and Offline features for event recognition

In this section we present another scheme to select appropriate features for event recognition. As men-

tioned earlier, events are characterized by smooth temporal variations. These variations provide useful

cues for recognizing events. The state-of-the-art event recognition schemes can be broadly classified

into two categories: (a) the ones that encode temporal features as image(s) [12, 72] (offline feature

based methods), and (b) the ones that explicitly encode the temporal variations into the model [93, 100]

(online feature based methods). We believe that the latter type of methods, henceforth referred to online

feature based methods, are more appropriate to handle a wider class of events. In particular, the model

proposed by Kiran et al. [93] is very attractive for event recognition. It represents the temporal relations

in the event sequences in a low-dimensional space. The model is based on the observation that most

events, which are composed of actions (the homogeneous units), have a large amount of overlap amongst

them. This overlap is evident in the form of common actions among various events (see Appendix A).

They model the frames of events as a mixture model of actions and employ a probabilistic approach to

learn the individual actions, and the compositional rules for the events in a low-dimensional manifold.

This is achieved by using a Mixture of Factor Analyzers (MFA) model [39] combined with a probability

transition matrix, which encodes the transitions among action clusters. To sum up, actions denote the

offline features and the transitions between them denote the online features in the events. However, this

model is restrictive since the combination of online and offline features, which is determined by the

number of actions, is fixed a priori and hence may not be appropriate for all events.

We now present an integrated model which combines these two types – online and offline – of features.

We use a mixture of models with varying combinations of online and offline features. This is achieved

by changing the number of action clusters in each of the component models. A small number of clusters

denotes low online and high offline feature content, while a large number of clusters signifies high

online and low offline feature content. It is a hard problem to determine one combination of online and

offline features that suits all the events. Therefore, the relative importance of each model component
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(i.e., each combination of online and offline features) for a particular event is learnt through examples.

The individual components, with the extreme cases using either one of the features, are trained on

the given set of events. The learnt representation is then used to classify new video sequences. The

decision criterion is defined as a weighted combination of the individual components (as shown in the

Figure 4.10).
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Figure 4.10 Video sequences consist of temporal (online) and appearance-based (offline) features, as
shown on the left side. A summary of the proposed online and offline feature integration model is shown
on the right side. We use a mixture of MFAs (MFA 1 . . . MFA M) to have the model choose between
offline (say, MFA 1), online (say, MFA M), which are the two extreme cases, and a combination of
both features (say, MFA i) automatically. The contribution of each of these components in the decision
making process is identified by its corresponding weight (w i).

4.3.1 The Model

We begin by reviewing the basic model presented in [93]. It consists of an MFA coupled with a prob-

ability transition matrix. MFA is essentially a reduced dimension mixture of Gaussians. Let the total

number of frames from examples of all the events be N and let xt (of dimension d), t = 1 . . . N de-

note the tth frame. Subsequences of xt form actions (the atomic units of an event). For instance, if we

consider the event Squatting (which consists of two distinct actions – standing and sitting), the initial

few frames represent the action standing and the other frames represent the action sitting (as in Figure

4.1). The subsequent frames of an action are highly correlated and therefore, for each xt, a p (� d)-

dimensional representation zt exists. That is, xt is modelled as xt = Λjzt + u where Λj represents the

transformation basis for jth action and u is the associated noise. Multiple such subsequences, occurring

across different events, are used to learn Λj for each action and the corresponding low-dimensional rep-
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resentation. Interested readers may refer to Appendix A for more details on MFA and the Expectation

Maximization framework for learning its parameters.

Although MFA captures the actions effectively, it does not account for the temporality in events. This is-

sue is addressed by modelling the dynamism in events as transitions across the learnt actions ω1, ω2, . . . ωm.

The transition probabilities are computed by observing zts across the various actions for each event. In

the end, we obtain a compact representation of the events by automatically learning the m actions in a

low-dimensional manifold and the sequencing information (which is embedded in the example frames).

The structure of the ensemble of events is contained in the parameters of the actions and the probability

transition matrix. More details of this approach can be found in [6, 93].

This model has a pre-fixed combination of online and offline features. We now propose an adaptive

model which learns the appropriate composition of online and offline features based on the event in

consideration. As mentioned earlier, the temporal (online) nature of the event is directly related to the

number of action clusters in the MFA model. Hence, our method uses a set of MFAs with varying

number of clusters; in some sense it is a mixture of MFAs. The two extreme cases in this framework

are: modelling with (1) a single cluster for each event and, (2) a cluster for every frame of an event. In

our model we vary the number of clusters between the two extremes. Our task is to define an approach

which chooses the appropriate amount of offline and online features for recognizing events. In other

words, we need to identify the relative importance of each model component for every event.

4.3.2 Learning the event representations

Theoretically, we can define a single cluster for each frame in the event video sequence. However, such

a scheme is inefficient and impractical due to the possibly large number of transitions between these

clusters. The maximum number of action clusters is typically decided by the nature of the data set,

but is much lower than the total number of frames. Each MFA Mi, i = 1, 2, . . . , M is trained with the

frames of all the events using an Expectation Maximization (EM) algorithm. EM is a general method for

finding the maximum-likelihood estimate of the parameters of an underlying distribution from a given

data set when the data has missing or unknown values [23]. In our case, the data corresponds to frames,

the unknown values to the lower-dimensional representations of these frames and the actions to which

these frames are associated. The procedure is explained in further detail below.

The videos of all the events of the subjects are represented as a sequence of frames and are used for

training. The two phases of the EM algorithm – Inference and Learning – are executed sequentially and

repeatedly till convergence. The E-step (Inference) proceeds by computing E[ωj | xt], E[zt | ωj , xt] and

E[ztz
T
t | ωj , xt] for all frames t and actions ωj , where zt denotes the corresponding low-dimensional

representation of the frame xt. In the M-step (Learning) we compute the model parameters.

56



During the E-step we use the following equations

E[ωjzt | xt] = htjβj(xt − µj)

E[ωjztz
T
t | xt] = htj(I − βjΛj + Λj(xt − µj)(xt − µj)

T βT
j ),

where htj = E[ωj | xt] = πjN (xt − µj , ΛjΛ
T
j + Ψ), βj = ΛT

j (ΛjΛ
T
j )−1. The parameters µj , Λj ,

j = 1 . . . m, denote the mean and the corresponding subspace bases of the mixture j respectively. The

mixing proportions of actions in the event are denoted by π. The noise in the data is modelled as Ψ. htj

can be interpreted as a measure of the membership of xt in class j.

After the EM algorithm converges, we form the action transition matrix Tk = [τk
pq] for each event Ek as

follows.

τk
pq =

N−1
∑

t=1

[ct = p][ct+1 = q]; 1 ≤ p, q ≤ m (4.3)

where ct denotes the class label of the frame xt and is given by ct = arg maxj htj ; j = 1 . . .m. The

entries in the transition matrix Tk represent the transitions of actions for successive frames of the event

Ek. In other words, the matrix Tk encodes the temporal characteristics of the activity. Normalizing the

entries gives the corresponding probability transition matrix Pk.

Thus, by the end of the MFA training phase, we obtain the parameters of the model – {(µj , Λj)
m
j=1,

π, Ψ}, {Pk}K
k=1 for each model component.

4.3.3 Estimating the weights

Learning the representation also involves estimating the relevance of the individual components for a

particular event. We identify this by optimizing an objective function J(.) defined over the training set

of N video sequences. The objective function J(.), formulated along the lines of [57], is given by

J(Γ) =
N
∑

j=1

M
∑

i=1

(γijdij)
2,

where Γ ∈ R
MN is a matrix [γij ]. γij denotes the contribution (or the significance) of the ith MFA for

the jth video sequence in the data set and dij is the distance metric signifying the cost of recognizing

the jth sample with the ith MFA. We minimize this objective function over the space of γs. This is done

by using Lagrange multipliers with the constraint
∑M

i=1 γij = 1.

We observe that the weights for each video sequence are independent and hence the minimization can

be done independently in each column. Thus, the Lagrangian is given by

J (λ, γj) =
M
∑

i=1

(γijdij)
2 − λ(

M
∑

i=1

γij − 1). (4.4)
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Differentiating Equation 4.4 with respect to γpq, we get

∂J
∂γpq

= 2γpq(dpq)
2 − λ = 0,

=⇒ γpq = λ/2(dpq)
2. (4.5)

Using Equation 4.5 in the constraint
∑M

r=1 γrq = 1 gives

λ = 1

/(

2

M
∑

r=1

(drq)
2

)

.

Substituting λ into Equation 4.5 we get

γpq = 1

/

(dpq)
2

M
∑

r=1

(drq)
2 . (4.6)

This equation provides a method for estimating the weights, given the distance metric dij . We define this

metric in terms of the likelihood of the MFA Mi recognizing the correct event, which is the probability

computed from the corresponding transition matrix. Other metrics based on HMM, SVM, NN, etc., can

also be explored.

4.3.4 Recognition

Once the weights [γij ] are identified for all the classes, we use them in the recognition framework. Given

an un-trained video, we learn the low-dimensional representations using each of the MFAs, Mi, i =

1, 2, . . . , M . We then compute the maximum likelihood of the event being recognized as belonging to

class j using all the MFAs. The decision criteria based on the weighted sum of posterior probabilities

(for class j) is given by

pj =
N
∑

i=1

γijp(j|data,Mi).

The event is labelled as belonging to the class j∗, which maximizes the posterior probability according

to j∗ = arg maxj pj .

4.3.5 Experiments and Results

The proposed framework was tested on two classes of events, namely hand gestures and human activi-

ties. We used hand gesture videos from Marcel’s database [71]. For the experiment on human activities,

we used videos of 20 human subjects performing 7 different activities for an average duration of 6 sec-

onds. These activities occur with the subject either being stationary or indulging in locomotion [6]. In

the former category, we consider activities Flapping, Jumping, Squatting and Waving, while in the lat-

ter category (involving locomotion), we consider Limping, Walking and Hopping. All the videos were

captured with a Panasonic Digital Video Camera at 24 fps.
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Events
% Accuracy

Single MFA Mixture of MFAs

Hand gestures:
Click 89 94
No 88 93

StopGraspOk 90 92
Rotate 86 90

Human Activities:
Flapping 83 88
Jumping 80 86
Squatting 83 90
Waving 82 86
Limping 85 92
Walking 87 93
Hopping 84 90

Table 4.3 A comparison of recognition accuracy using a single MFA model (which has a fixed com-
position of online and offline features) and the proposed mixture of MFA model (which learns the
composition of features). On an average, 35.35% reduction in error was observed. Sample frames of
some of these events can be seen in Figure 4.8.

Minimal preprocessing is done on the video sequences. In order to retain the visually significant in-

formation, background subtraction and normalization is performed on all the frames. For the activities

involving locomotion, the frames are motion compensated to center the subject performing the activity.

Using a set of example videos as the training set, we learn the appropriate composition of online and

offline features, and the parameters that describe them for all the events (refer Sections 4.3.2 and 4.3.3).

To recognize an unlabelled test event, the frame sequence transitions are computed via the inference

step of EM algorithm. This results in a set of sequence probabilities computed for each event. The

test video is then labelled as the event whose corresponding weighted probability measure is maximum

(refer Section 4.3.4). The recognition accuracy results obtained using the proposed model and an MFA

model [6] are presented in Table 4.3. When compared to the single MFA model [6], we achieve 35.35%

reduction in error on average.

4.4 Summary

In this chapter, we addressed the issue of feature selection for recognizing events. We highlight the im-

portance of feature selection for recognizing rather than just representing events. We also demonstrated

that a fixed feature selection scheme may not be appropriate for a wide class of events. The two schemes

presented here are briefly discussed below. The first one is based on discriminant analysis of sequential

data, in particular video sequences. This approach: (a) provides a mechanism to identify the video seg-
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ments (actions) and their importance statistically, (b) is applicable for different modelling schemes, (c)

is suitable for various domains such as video event, online handwriting, etc., (d) is straight-forward to

implement as there is no need for parameter-tuning, and (e) can be extended to a multiclass scenario on

the lines of Multiple Discriminant Analysis [26]. Also, using Kernel Discriminant Analysis extends the

applicability of the approach to non-linear data.

The second feature selection scheme presented adapts based on the set of events being considered. It

learns an optimal combination of online and offline features for every event from a set of examples.

The composition of online and offline feature content is controlled by the number of mixtures in the

model. Furthermore, the model captures the temporal relations that exist in events in a low-dimensional

manifold. Many interesting avenues for further research are possible. Incorporating the discriminant

based scheme into this framework could lead to interesting results. Also, the features used to learn this

adaptive model are quite primitive. Many sophisticated techniques can be investigated to improve upon

this aspect [56, 110].
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Chapter 5

Learning to Describe Videos

Automated analysis of videos for surveillance applications has been one of the most important problems

for Computer Vision researchers [8,47,59]. Most of these applications require detection and tracking of

moving objects – which is a difficult fundamental problem to date [34, 90, 108]. Traditional approaches

such as optical flow computation [47], temporal differencing [8, 90], background subtraction (or elimi-

nation) [108] may not be generic enough to analyze videos captured under various conditions. Of late,

researchers have found learning-based approaches to be more appropriate for video surveillance appli-

cations [59, 98].

In this chapter, we present a technique to automatically analyze video sequences and generate a descrip-

tion of the contents. Given video sequences recorded for potentially long duration, we first detect the

various objects captured by the camera. This involves removal of insignificant information such as the

scene background. Features of each object are then extracted. Using these features, we find the most

likely model and the parameters to describe the state of the object over time. The model and its param-

eters may change over time as the object undergoes different transformations.

Our main focus is on observing moving objects and estimating the motion model that is most likely to

describe the object. Any moving object which comes to a halt and remains stationary for a considerable

amount of duration is discarded as the background. In this aspect our work differs from that presented

in [34], where a layered background is assumed. Moving objects which remain stationary form various

layers in their work. Jojic and Frey [59] describe an approach to identify deformable sprites in video

layers. Each object is described by a “flexible sprite”, which can deform from frame to frame in a linear

fashion, i.e., for a flexible sprite s the transformation T between frames is given by Ts. The method

presented in this work, overcomes the linearity assumption. Another closely related, although super-

vised, approach is presented in [15]. Bregler [15] presents a probabilistic approach to recognize human

dynamics by learning the model that represents the motion. However, the type of dynamic model is

assumed to remain unchanged over the entire video sequence. Only the parameters of the model are

allowed to vary. Furthermore, the approach seems to be have been tested only on human movements in
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video and is limited to handling one “object” in the scene. In comparison, our approach identifies the

models and their parameters of all the objects in the scene. We also allow for the model to change over

time. For example, the motion of a person walking may be described by a linear model, and later when

(s)he starts jogging the motion may be described better by a complex mixture model.

The remainder of the chapter is organized as follows. Section 5.1 presents a generative model for

videos. The details of our approach for learning the contents of video sequences and an Expectation

Maximization algorithm to learn the model parameters are discussed in Section 5.2. Section 5.3 presents

details of the experiments conducted on synthetic and real video sequences. We tested our formulation

with traffic video sequences available at [52]. Concluding remarks are provided in Section 5.4.

5.1 A Generative model for video

Let us begin by understanding the video generation process. Let O1, O2, . . . denote the objects in

the scene undergoing different motions. Let the motion parameters of these objects be described by

parametric models M1,M2, . . . respectively. Examples of Mi include Hidden Markov Model (HMM),

Gaussian Mixture Model (GMM), etc. The objects, when undergoing motion, constitute the foreground

F of the scene and the regions which remain stationary in the video form the background B. Together,

the background B and the foreground F describe the entire video. Thus the generative model for a

generic video sequence V containing N distinct moving objects described by M models is given by

P (V) =
M
∑

k=1

N
∑

i=1

p(V|Oi,Mk)p(Oi|Mk)p(Mk),

where p(Oi|Mk) denotes the likelihood of the model Mk describing the object Oi and p(Mk) denotes

the prior of the corresponding model. Our task is to invert the generative process and learn the param-

eters of the distributions mentioned above. We use the Expectation Maximization (EM) algorithm to

perform this. EM is a general method of finding the maximum-likelihood estimate of the parameters of

an underlying distribution from a given data set when the data has missing or unknown values [23].

To make the estimation problem tractable, we assume that the maximum number of models that may

exist in a video sequence is known apriori. Before using the EM algorithm to estimate the model param-

eters, it is necessary to remove the unwanted background in the scene. Background removal or subtrac-

tion, as it is popularly known, forms an important preprocessing step in identifying the moving objects in

the scene. Many methods for background removal have been proposed in the past [37,98,107,112,121].

Most researchers have now abandoned non-adaptive methods of background removal since they do not

account for constantly changing backgrounds. In these methods, errors in the background accumulate

over time, making them effective only in highly-supervised and short-term applications where there are

no significant changes in the scene [37]. A standard method of adaptive backgrounding removal is by
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averaging the images over time and creating a background approximation [98]. While this approach is

useful in situations where the background is visible a significant portion of the time, it is not robust to

scenes with fast-changing backgrounds. Furthermore, it cannot handle multimodal backgrounds. An

appropriate way of overcoming this limitation is by mathematically modelling the background process.

We follow the method described in [121], which is an extension of the model proposed by Stauffer and

Grimson [98]. It follows a pixel-based approach wherein each pixel is classified as either background or

foreground using a Bayesian decision criterion. The intensities of the pixels are modelled as a mixture

of Gaussians. Each pixel is labelled based on whether the Gaussian distribution which represents it is

considered part of the background model. The parameters of the Gaussians are updated over time to

accommodate varying backgrounds. Also, moving objects which come to a halt and remain in the state

of rest are incorporated into the background model automatically. A few sample frames from a traffic

video sequence [52] and their corresponding extracted foreground frames are illustrated in Figure 5.2.

To sum up, the background elimination process provides the spatial extents of all the objects in every

frame. Once the objects are identified, we extract features from each of the objects. In this case we used

the 2D coordinates of all the points that belong to objects as features.

5.2 Inference and Learning

After extracting features from the moving objects identified in the scene, we learn the model parame-

ters that describe their motion. This is achieved by using the EM algorithm. The EM algorithm has

two steps: E-step (Inference step) and M-step (Learning step). In the E-step, the model parameters are

assumed to be correct and, probabilistic inference is used to find the values of the unobserved variables.

In the M-step, the model parameters are estimated to increase the joint probability of the observations

and the computed unobserved variables. These two steps are repeated until convergence.

Since the objects Oi are already identified, the effective objective function Q(.) is given by

Q(.) =
M
∑

k=1

N
∑

i=1

wikp(Oi|Mk),

where wik denotes the relative importance of model Mk in describing the object Oi. In this case, the

observed data corresponds to the features extracted from the video frames and the unobserved data

corresponds to the model parameters and the weights wik. Our task is to estimate the unobserved data

such that the expectation E[Q(.)] is maximized with respect to all the models and the objects. Note that

the model parameters of one object are independent of another. Thus, we can infer the model parameters

independently for each object. In other words, we optimize E[Qi(.)], where

Qi(.) =
M
∑

k=1

wikp(Oi|Mk),
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for each object Oi, i = 1, 2, . . . , N . In general, for any function f(x) that is linear in x, E[f(x)] = f(E[x]).

Since
∑

k is a linear function, we have

E[Qi(.)] =

M
∑

k=1

E[wikp(Oi|Mk)].

For computing the expectation in the E-step, the above equation can also be written as

E[Qi(.)] =
M
∑

k=1

E[wik]p(Oi|Mk), (5.1)

because the model parameters are assumed to be constant. To compute the model parameters, which

define the likelihoods p(Oi|Mk), in the M-step we maximize E[Qi(.)] with respect to the parameters of

all the models. The exact form of the equations depends on the type and the number of models chosen

apriori. They can be derived easily once this choice is made. If Φ denotes the estimates of the parameter

set, then the two steps of the EM algorithm can be summarized as follows.

E-step: Compute the expectation E[Qi(.)], for all the objects using the Equation 5.1.

M-step: Replace the parameters Φ by maximizing {E[Qi(.)]}i over the entire set of possible parame-

ters.

The convergence criterion is determined by the computed likelihoods p(Oi|Mk). After convergence we

get the most estimate for the parameters Φ and the weights wik. EM will converge to a global maximum

likelihood estimate, if the likelihood function has a single maximum [76]. As an example, we now

discuss the EM solution for estimating the means of k Gaussian distributions.

Example: Consider a situation wherein the data has been generated by a probability distribution that

is a mixture of k distinct Gaussian distributions. Each instance xi is generated according to one of the

distributions selected at random from the set of k Gaussians. The process is repeated to generate all the

data samples. For this discussion, we assume that all the distributions are equally likely and have an

equal (known) variance, σ2. Our objective is to estimate the means µ1, µ2, . . . , µk of the k distributions.

If all the samples are generated from a single distribution, then this reduces to a maximum likelihood

estimation problem. However, in our case the problem involves a mixture of Gaussians and so we cannot

observe which samples were generated by a particular distribution. In other words, this is a prototypical

example of a problem involving estimation of hidden variables.

The observed data corresponds to the samples xi, i = 1 . . . n. For each sample xi there exists a cor-

responding k-dimensional random variable zi = [zij ], j = 1 . . . k, where zij denotes the membership

of the sample xi in the jth distribution. In particular, zij has the value 1 if xi was created by the jth

Gaussian and 0 otherwise. The random variable zi corresponds to the hidden data. As discussed above,

64



the k-means problem is to estimate the parameters µ = 〈µ1 . . . µk〉. As the first step, we compute the

likelihood of the complete data Y = 〈y1, . . . , yn〉 i.e., observed and hidden data, where yi = 〈xi, zi〉, as

p(xi, zi|µ) =
1√

2πσ2
e−

1

2σ2

Pk
j=1

zij(xi−µj)
2

.

Thus the log-likelihood of the complete data can be written as

ln p(Y |µ) = ln
n
∏

i=1

p(xi, zi|µ)

=
n
∑

i=1



ln
1√

2πσ2
− 1

2σ2

k
∑

j=1

zij(xi − µj)
2



 .

We then take the expected value of this likelihood over the distribution governing the hidden components

zi of the data Y as follows.

E[ln p(Y |µ)] = E





n
∑

i=1



ln
1√

2πσ2
− 1

2σ2

k
∑

j=1

zij(xi − µj)
2









=
n
∑

i=1



ln
1√

2πσ2
− 1

2σ2

k
∑

j=1

E[zij ](xi − µj)
2



 ,

since
∑

i and ln are both linear functions1. Noting that E[zij ] is just the probability that xi was generated

by the jth Gaussian distribution 2, we have

E[zij ] =
e−

1

2σ2
(xi−µj)

2

∑k
p=1 e−

1

2σ2
(xi−µp)2

.

The definition of the expectation E[ln p(Y |µ)] forms the E-step in the EM algorithm. The second step

(maximization or the M-step) defines the expressions for computing new estimates of the parameters

µ1 . . . µk, that maximize the function E[ln p(Y |µ)]. Maximizing E[ln p(Y |µ)] is equivalent to mini-

mizing
n
∑

i=1

k
∑

j=1
E[zij ](xi − µj)

2, i.e.,

µj = arg max
µj

E[ln p(Y |µ)]

= arg max
µj

n
∑

i=1



ln
1√

2πσ2
− 1

2σ2

k
∑

j=1

E[zij ](xi − µj)
2





= arg min
µj

n
∑

i=1

k
∑

j=1

E[zij ](xi − µj)
2.

1As mentioned before, for any linear function f(z), E[f(z)] = f(E[z]).
2zij is a binary random variable and E[zij ] = (zij = 1)p(zij = 1).
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The above minimization, done for each µj , provides the estimates of the means of the k Gaussian

distributions as

µj =
1

n

n
∑

i=1

E[zij ]xi. (5.2)

5.3 Experiments and Results

In this section we discuss the experiments conducted to support our claims. We present results on

synthetic as well as real traffic video sequences [52]. Given the videos, we identify the objects in them,

extract features corresponding to each of the objects and learn the parameters which are most likely to

describe their motion.

5.3.1 Toy Problem

Type of Model Ground Truth Estimated value

Gaussian
µ =

[

30
25

]

µ =

[

30.0059
25.0235

]

σ2 =

[

5 0
0 7

]

σ2 =

[

5.0377 0
0 7.0513

]

Linear Predictor





0.7
0.5
0.2









0.6907
0.5010
0.2049





Table 5.1 A comparison of ground truth and estimated model parameters from the 2 objects (refer
Section 5.3.1). The feature points from Object 1 follow a Gaussian distribution and those from Object
2 follow a Linear Predictive model.

We wish to test our formulation for estimating the model parameters on synthetic data. The advantages

of using such data are: (1) ground truth is available for comparison, and (2) the additional preprocessing

steps, such as background removal, feature extraction, etc., are eliminated. The toy problem involves

estimating the parameters that are likely to describe a certain number of objects, whose features are

generated according to pre-determined distributions. The estimated parameters are then compared to

the ground truth data that is available. In the rest of this discussion we assume two objects (N = 2) in

the scene and two possible model types (M = 2), namely Gaussian distribution and Linear Predictive

models. For our experiments we used a Gaussian distribution with mean

[

30

25

]

, variance

[

5 0

0 7

]

and a third order linear predictor with coefficients
[

0.7 0.5 0.2
]

. At every time instant t, we gen-

erate the feature points of each object according to the known distributions. We repeat this process for

100 frames and generate the feature points (about 50 2D coordinates in this case) of the 2 objects in the

scene. Without loss of generality, we generate the feature points from object O1 such that they follow
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Figure 5.1 Graph showing the likelihood of the parameters of the two models describing the object O1,
whose features were generated according to a Gaussian distribution. The likelihood corresponding to
the Gaussian (with the estimated parameters shown in Table 5.1) is greater at all time instants.

the Gaussian distribution and those from object O2 follow the linear predictive model defined previously.

We begin our estimation process by initializing the unknown parameters of the two models. We assume

both the models are equally likely and initialize the two weights wi1, wi2 to 0.5. The feature points of

the first frame are used to estimate the parameters through the EM algorithm described in the previous

section. After the EM algorithm converges, the new parameters and the weights computed are used as

initial estimates when processing the second frame. This method is followed for the entire collection

of 100 frames. Table 5.1 shows a comparison of the ground truth and the estimated model parameters

for the two objects. It can observed that the error in estimation is almost negligible. The learning

characteristics of the algorithm can be observed from the graph illustrated in Figure 5.1. It shows the

likelihood of the parameters of the two models describing the object O1. Since this object’s features

follow a Gaussian distribution, the likelihood corresponding to this model is greater at all time instants

when compared to likelihood computed using the linear prediction model. Furthermore, the likelihood

increases gradually since the estimates of the model parameters improve over time.

5.3.2 Analysis of Real Videos

In another experiment we compute the model parameters of objects present in traffic surveillance

videos [52]. Automatic analysis of such videos finds innumerable applications, such as detecting traffic

congestion, unusual activity detection, etc. [62]. A few sample frames from the video are shown in
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Background elimination
(Identifying the moving objects)

Model/Parameter estimation
(Estimating parameters of each object)

Figure 5.2 An overview of the video analysis procedure. First the objects (defined as consistently
moving regions) are detected. The features (2D coordinates in this case) are extracted from each object.
Then, the most likely model and its parameters representing each object are computed.

Figure 5.2. The analysis of these videos proceeds in three stages: (i) detecting objects, (ii) extracting

features for each object, and (iii) estimating model parameters which describe the motion of each object.

We used a pixel-based approach developed by Zivkovic [121] to subtract the background and detect the

objects in the scene. In this method, the intensity of each pixel is modelled as a mixture of Gaussians.

The pixels are classified as either background or foreground using a Bayesian decision criterion. The

adaptive nature of this method makes it robust to variations in the background. As stated previously,

moving objects which come to a halt and remain in the state of rest are incorporated into the background

model. In other words, we identify only moving regions as objects. Figure 5.2 illustrates the quality of

foreground extraction on a few sample frames. The features corresponding to the objects are then used

to estimate the model parameters which describe the object motion. Figure 5.3 illustrates the likelihoods
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Figure 5.3 A plot showing the variation of likelihoods of the car object (refer Figure 5.2) with respect
to Gaussian and linear predictor models. It can be observed the car is most likely described by a linear
predictor model, which is acceptable because the car undergoes a linear motion in the video sequence.

computed for one of the cars in the video sequence (refer Figure 5.2). It can be observed that the Linear

Prediction model likelihood represents the motion of the car better.

5.4 Summary

In this chapter we presented a technique to automatically analyze video sequences and identify the

motion parameters, which are most likely to describe the objects in the scene. We discussed an unsu-

pervised scheme for estimating these parameters. The parameters as well as the models are allowed to

vary over time. The work presented here is only a step towards building learning-based video analysis

systems. It promises to open many new avenues to understand video content. Firstly, the feature ex-

traction scheme can be investigated. Other statistically strong models (refer Chapters 2 and 4) can be

successfully used here. Secondly, an integrated framework for identifying the objects and then estimat-

ing the model parameters could be a promising approach. In our method we distinguish between object

extraction and model parameter estimation. Thirdly, an interesting direction of research would be to

associate the motion models to known events in the world.
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Chapter 6

Conclusions

We have presented techniques for analyzing videos by interpreting the dynamic events in them. Our

contributions are mainly in three main aspects, namely, event modelling, feature selection, and event

recognition.

We proposed a model which, given a continuous video, builds a hierarchical representation of the video

and also generates its XML content. Such high level abstractions of video have a large potential for

application in browsing and retrieval systems. The model first learns efficient representations of events

from an example set of video sequences. We achieved results comparable to those reported in litera-

ture, using a stronger mathematical model. We also demonstrated the use of this model for identifying

unusual activities. Although this approach resulted in efficient event representations, it may not be op-

timal for recognizing events. We then proposed a method for selecting features which are useful for

recognizing rather than just representing events. We found that all the video segments (actions) of an

event may not be equally important for the recognition task. We presented a discriminant-based algo-

rithm for identifying the video segments and their relative statistical importance. Using these relative

weights we computed a similarity measure for comparing two video sequences. The main advantage

of this approach is that it does not involve a careful choice of parameters. It is sufficiently robust to

any parameter initializations. We illustrated the superiority of this method by testing it on hand gesture

and human activity videos. We also presented an adaptive feature selection technique which chooses an

optimal combination of spatial (offline) and temporal (online) features in events. Our claim that a fixed

feature selection method is not appropriate for a set of events is supported by the results we achieved.

A significant improvement in the recognition accuracy, when tested on hand gesture and human activity

events, was observed. In some cases it may be difficult to obtain a set of example videos for training the

learning-based systems described above. Such situations necessitate unsupervised learning frameworks.

We describe one such framework for analyzing videos and identifying the motion parameters, which are

most likely to describe the objects in the scene. The parameters are well as the models are allowed to

vary over time. A preliminary evaluation of the system was done on synthetic as well as real traffic
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surveillance videos.

The work presented in the thesis can be considered as a step towards building autonomous video anal-

ysis systems. The ultimate goal of these systems is to capture video recordings for long durations, and

generate an “intelligent” summary of the observations. The unsupervised learning framework is the

most significant part in the system. This framework can be improved upon by using stronger mathe-

matical models. The feature extraction scheme in this case also needs more investigation. The feature

selection and video summarization schemes discussed here form important components of the system.

They come in handy once the system has enough data accumulated for using them as training examples.

However, our summarization approach is limited to providing video summary by “extracting” the essen-

tial content. The interesting problem of “synthesizing” the summary of the video is largely unaddressed.

Also, the discriminant-based feature selection scheme can also extended to multiple classes for wider

applicability.
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Appendix A

MFA-based Activity Recognition∗

Most activities1 are characterized by considerable amount of spatiotemporal variation. Activities are

composed of homogeneous units, henceforth referred to as actions, many of which are common to more

than one activity as shown in Figure A.1. To develop an effective recognition framework, it is essential

to have a representation which can capture these activities efficiently.

1

2

3

4

1

4

3
2

1

2

3

4

4

2

3

1

Figure A.1 A sample of human activities (image strips) and their action representatives (individual
frames). A set of actions and the transitions among them constitute an activity. Four activities and their
corresponding actions are shown as distinct groups here (Green (Top Left) - Jumping, Red (Top Right)
- Flapping, Blue (Bottom Left) - Squatting, Magenta (Bottom Right) - Waving). The arrows denote the
temporal transitions between the actions and the number on each arrow denote the temporal sequencing
of the activity. In addition, there are self-loops for each action (not shown in the figure). Note that the
action ‘standing’ is common to all of these activities.

Here we discuss a model to learn a compact representation, exploiting the redundancies like HMM, etc.

An activity is modelled as a sequence of atomic spatiotemporal units called actions. Human activities

are constrained by the degrees of freedom allowed for joints and muscles of the human body and hence,

∗This appendix is based on our prior work [6, 93].
1The terms activities and events are used interchangeably in this appendix.
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Figure A.2 A few sample frames of human activities: Squatting (top row), Flapping (bottom row). Note
the presence of a common action – Standing – between these activities in the initial few frames.

limited to a finite set of actions. The problem of characterizing human activities can, therefore, be

modelled as that of identifying the constituent actions and their sequencing information. Given a large

number of video segments, we employ a probabilistic method to learn these individual actions and their

compositional rules for the corresponding activities. These actions, in turn, are represented in a lower

dimensional space exploiting the spatial redundancy. Identifying the actions from a given video is not

trivial and therefore, we learn the actions from examples. Our approach is comparable to the probabilis-

tic models, such as HMM, GMM, etc., popularly used in activity recognition [48, 66, 81, 99]. However,

we capture the activities in a very low-dimensional space which speeds up the entire recognition process.

As described before, the activities are modelled in a low-dimensional subspace. We performed a quanti-

tative analysis of the sub-space by reconstructing the original sequences from the learnt representations.

In other words, using Λj and the low-dimensional representation, zt, we recover the original frame, xt,

∀t, thereby generating the entire sequence. The reconstruction error was found to be 0.5%. A compari-

son of some of the original and recovered frames is shown in Figure A.3. To quantify the performance

of the model in identifying the inherent m actions, we compute the within-action and between-action

scatter. These statistics are shown in Table A.1. Low within-action scatter values indicate that the frames

grouped to belong to a particular action are similar, while high between-action scatter values indicate

that the actions (clusters) are well separated – a useful property when clustering data.

Within-action scatter Between-action scatter

1 4.9945 1 - 2 12.6427
2 4.5310 2 - 3 11.6940
3 3.9053 3 - 1 13.4344

Table A.1 Performance of the model in identifying the actions among the activities. The values were
computed with the 3 actions learnt from activities Squatting and Jumping. Low within-action and high
between-action scatter values are observed.
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Figure A.3 A comparison of the original (top) and reconstructed (bottom) frames of the activity Squat-
ting. Even though we achieve 99.94% reduction in size, the reconstruction error is negligible (0.5%).

A.1 Modelling of Activities

We consider a generative process for the ensemble of activities based on the MFA model. An activity

(captured as a set of frames) is composed of various actions. A typical frame of the activity, xt, can

be generated as follows. The action to which it belongs to is chosen following the discrete distribution

P (ωj), j = 1 . . .m. Depending on the chosen action, a continuous subspace representation zt is gener-

ated according to the distribution p(zt | ωj). Having learnt zt and action ωj , we obtain the observed xt

according to the distribution p(xt | zt, ωj). That is, xt is modelled as a “mixture model of actions” as

follows:

p(xt) =
m
∑

j=1

∫

p(xt | zt, ωj)p(zt | ωj)P (ωj)dzt, (A.1)

where ωj , j = 1 . . .m denotes the jth action. The above is essentially a reduced dimensionality mixture

model where the m mixture components are individual actions. The equation describes the probability of

generating a frame given the action (to which it belongs) and its corresponding subspace representation.

Our task is to invert the generative process and learn the parameters of these distributions from the

frames of all the activities. We perform this by using an EM algorithm. It is a general method of finding

the maximum-likelihood estimate of the parameters of an underlying distribution (Equation A.1 in this

case) from a given data set when the data has missing or unknown values [23]. In the context of video

sequences, the data corresponds to frames, the unknown values to the lower-dimensional representations

of these frames, and the actions to which these frames are associated. The procedure is explained in

further detail below.

A.1.1 EM Framework for Learning

EM alternates between inferring the expected values of hidden variables (subspace representation and

actions) using observed data (frames), keeping the parameters fixed and estimating the parameters un-
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derlying the distributions of the variables using the inferred values. The videos of all the activities of the

subjects are represented as a sequence of frames and are used for training. The two phases of the EM

algorithm – Inference and Learning – are executed sequentially and repeatedly till convergence. The

E-step (Inference) proceeds by computing E[ωj | xt], E[zt | ωj , xt] and E[ztz
T
t | ωj , xt] for all frames

t and actions ωj , while in the M-step (Learning), we compute parameters πj , Λj , µj and Ψ.

During the E-step we use the following equations

E[ωjzt | xt] = htjβj(xt − µj)

E[ωjztz
T
t | xt] = htj(I − βjΛj + Λj(xt − µj)(xt − µj)

T βT
j ),

where

htj = E[ωj | xt] = πjN (xt − µj , ΛjΛ
T
j + Ψ), (A.2)

βj = ΛT
j (ΛjΛ

T
j )−1.

Here each µj , Λj , j = 1 . . .m denotes the mean and the corresponding subspace bases of the mixture

j respectively. The mixing proportions of actions in the activity are denoted by π. The noise in the data

is modelled as Ψ. htj can be interpreted as a measure of the membership of xt in class j. More details

about MFA and its EM solution can be found in [39].

After the EM algorithm converges, we form the action transition matrix Tk = [τk
pq] for each activity Ak

as follows.

τk
pq =

N−1
∑

t=1

[ct = p][ct+1 = q]; 1 ≤ p, q ≤ m (A.3)

where ct denotes the class label of the frame xt and is given by ct = arg maxj htj ; j = 1 . . .m. The

entries in the transition matrix Tk represent the transitions of actions for successive frames of the activity

Ak. In other words, the matrix Tk encodes the temporal characteristics of the activity. Normalizing the

entries gives the corresponding probability transition matrix Pk. In the M-step the statistics collected

during the inference from all the training examples are used to obtain better estimates of the parameters.

We solve a set of linear equations to find πj , Λj , µj and Ψ. The interested reader may refer to [39] for

more details. xi is assigned to a class ci according to

ci = arg max
j

hij j = 1 . . . m (A.4)

Thus, by the end of training phase, we obtain the parameters of the model – {(µj , Λj)
m
j=1, π, Ψ},

{Pk}K
k=1. The model, which now encapsulates the activity structure, can be employed for various tasks

such as recognition, summarization. In this work we only discuss the recognition scheme.
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Figure A.4 Graph showing the recognition accuracy (y axis) with respect to the number of actions (x
axis), considering Flapping, Jumping, Squatting and Waving activities.

A.1.2 Recognition

We recognize activities in an unlabelled video using the parameters obtained in the training phase. Let

the activity being recognized have Ns frames. We reduce the dimensionality of the problem by using

the factors learned from the training data. We also compute the membership of the frames in each of the

actions (from Equation A.2). Each frame is then assigned a single action label using the Equation A.4.

Let c1, c2 . . . cNs
be the action assignments for the respective frames. Then, the probability of the video

frames to be from the kth activity, Sk, is computed using Sk =
Ns−1
∏

t=1
Pk[ct][ct+1]. The unlabelled video

is assigned to be the activity A∗
k, which maximizes Sk. If the test video has more than one activity, we

can obtain each of the activities present by observing the ranges of selected features extracted from the

subject performing the activity.

There are two subjective decisions to be made in this approach: choosing the number of (1) factors,

and (2) mixtures. Our experience shows that the change in accuracy is insignificant beyond a certain

number of factors or mixtures. As seen in Figure A.4, recognition accuracy is dependent on the number

of actions, m, we assume in the model. However, beyond a certain limit, increase in m does not show

any appreciable improvement in the performance.

A.2 Implementation, Results and Discussion

We first describe the implementation details of the two phases in our approach, namely, modelling (train-

ing phase) and recognition (testing phase). In both these phases, we begin by preprocessing the video

data in a similar fashion. The collection of videos is preprocessed by subtracting the background and
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then binarizing the individual frames of all the activities performed by various subjects. In the activities

which involve movement of the subject across the field of view (as in the case of the activity Hopping,

shown in Figure A.5), motion compensation is performed to center the subject in every frame. This data

is stacked into a matrix and is normalized to have a zero mean and unit covariance. The normalized

data is used to learn the representation of the activities in terms of actions (in a low-dimensional sub-

space) and their corresponding probability transition matrix (refer Section A.1.1). In the testing phase,

the learnt parameters are used to compute the subspace representation for the new preprocessed video

which is to be recognized. In other words, we execute only the E-step during the testing phase (refer

Section A.1.2).

The proposed approach differs from various time-series models in many aspects. Our techniques for

preprocessing, feature extraction, representation and recognition have considerable advantages, as de-

scribed below.

• Preprocessing and Feature Extraction: Attempts have been made in the past to extract features

which summarize an activity by modelling its recency and spatial density [12, 72]. Higher-order

image features, which correspond to attributes of various body parts such as joint locations and

inter-joint angles (obtained by temporal isolation via tracking [112]), have also been used. Other

popular approaches for feature extraction are based on motion parameter vectors [99], measure-

ments of relative distances and velocities [48], colour and motion densities [12, 81]. In contrast,

we perform minimal preprocessing and avoid any explicit feature extraction. It is limited to back-

ground subtraction and binarization of the individual frames. Some of the approaches seek to

obtain low-dimensional features by exploiting the covariance structure of the activity via methods

such as PCA. In case of our model, the relevant lower dimensional representation is automatically

obtained from the observed intensity distribution.

• Representation: For many approaches, the extracted features themselves represent the activ-

ity [12]. Some of the methods assume that the form of data distribution is known. They use a

compact feature information to represent the activity in terms of the distribution parameters [112].

Probabilistic methods such as GMMs and HMMs are popularly used to achieve this [48,66,81,99].

Our model is similar in spirit to a standard left-to-right HMM. However, we work at a lower di-

mension, which is simultaneously obtained while modelling the activity structure. Typically,

separate HMMs are trained for modelling each activity [99] in the ensemble of activities. In our

case, a single observation model achieves the same. Conceptually, we believe that multiple ac-

tivities share the same actions (observation model) and therefore one model is enough for their

representation.

• Recognition: For many of the methods based on explicit feature extraction, K-nearest neighbour

classifier and its variants are used for recognition [12, 72]. In this aspect, we employ a procedure

similar to methods with probabilistic representations [48, 81, 99]. Typically, when the model is
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applied for a recognition task, the likelihood of the observation sequence is computed. Instead, we

compute the likelihood for the sequence of actions inferred from the observations (refer Section

A.1.2). The video is assigned to the activity which maximizes this value.

We demonstrate the applicability of the model for different kinds of human activity recognition through

the following examples.

A.2.1 Example 1: Recorded data

Recognition of activities involving the whole body finds many applications in surveillance. These activ-

ities usually occur with the subject either stationary or indulging in locomotion. In the former category,

we consider activities Flapping, Jumping, Squatting and Waving (top row of Figure A.5), while in the

latter category (involving locomotion), we consider Limping, Walking and Hopping (bottom row of

Figure A.5). We use videos of 20 human subjects performing 7 different activities, of average duration

6 seconds. The videos were captured with a Panasonic Digital Video Camera at 24 fps. As mentioned

before, minimal preprocessing is done on the recorded video. In order to retain only the visually sig-

nificant information, background subtraction and normalization is performed on all the frames. Motion

compensation is performed to center the subject for activities where locomotion is involved. To recog-

nize an unlabelled test activity, the frame sequence transitions are computed via the inference step of

EM algorithm, which is used to calculate the sequence probability for each activity. The test video is

labelled as the activity for which this probability is maximum (refer to Section A.1.2).

Figure A.5 Sample frames of in-place activity, Waving (top row) and activity involving motion, Hopping
(bottom row).

The ability of the model to accommodate considerable variation in the range and variety of spatial mo-

tion is highlighted by the results (Figures A.6(a), A.6(b) and Figure A.6(c) (the entire ensemble of the

7 activities)). The occasional misclassification is present between activities which share spatial coher-

ence to a large degree, for example Flapping and Waving. The recognition accuracy was found to be

88 − 91% for various activities.
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Figure A.6 Confusion Matrices for in-place (F - Flapping, J - Jumping, S - Squatting, W - Waving),
locomotion (L - Limping, H - Hopping, Wl - Walking) and the entire activity set respectively. The areas
of the squares are proportional to the numerical entries of the confusion matrix.

A.2.2 Example 2: HumanID data

We also verified our model using the MoBo Database [45] available from the Robotics Institute, Carnegie

Mellon University. The database consists of 25 subjects performing 4 different walking activities on a

treadmill. Each sequence is 11 seconds long and was recorded at 30 fps. We used the data correspond-

ing to one of the view angles (vr03 7 of [45]). Sample frames of some of the activities are shown in

Figure A.7.

Figure A.7 Sample frames showing activities from the CMU MoBo Database [45].

The activities in this database (Slow walk, Fast walk, Incline walk, Walking with a ball) have subtle

differences, which make the recognition task challenging. On an average, the activities have been

correctly identified 81% of the times.
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Figure A.8 Cumulative sequence probabilities for the activity Squatting. Sample frames of this activity
(performed 3 times) are shown above the graph. The horizontal axis represents the frame number and
the vertical axis represents the logarithm of the sequence probability. The uppermost plot (blue dotted
line) corresponds to Squatting. A closer view of the graph (shown in inset) indicates that the activity is
recognized after observing a few frames – 5 in this case.

A.2.3 Discussions

One of the significant advantages of the model presented is that it frees us from the task of feature ex-

traction. Instead, the features are automatically chosen so as to best explain the observed activity in an

economical manner. The preprocessing on raw video data is quite minimal. In addition, the model does

not incur the computational overhead of subject (agent) tracking since precise spatiotemporal localiza-

tion is not a primary requirement. The probabilistic framework allows for a coarse localization while

leveraging the power of Bayesian inference for learning the actions and subspace representation. Since

actions can be learned individually from each activity, the training sequences need not be aligned to

actions or possess equal length. This is significant across the example categories also, considering that

the activity durations for the recorded data and HumanID data are quite different (6 − 8 seconds and

11 seconds respectively). Another feature of the model is that the learned representations are intuitive

– they are based on the actions that occur when an activity is performed. This is clearly demonstrated

by the representative appearances of actions (as shown in Figure A.1) and also the predominant actions

in the activities (Figure A.9). Training for these activities requires limited amount of data (in our case,

3 − 4 examples per activity were found to be sufficient). Moreover, the advantage of learning a low-

dimensional representation such as ours, lies in the accurate recognition of activities in real-time. For
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real-time applications, the activities are to be identified after observing a few video frames. In Fig-

ure A.8 we observe that the activity Squatting is identified in the initial few frames (indicated by the

corresponding probability value in the graph). Thus, our model is suitable for such applications. The

framework also ensures spatiotemporal capture of all the activities without further constructs such as

modelling an activity grammar or the transitions between them etc.

1

2

3

4

5

6

1 2 3 4 5 6

1 2 3 4 5 6

Figure A.9 Cluster transition matrix for the activity Squatting. The rows and columns correspond to the
actions learned by the model. The shaded areas are proportional to the numerical probability entries in
the transition matrix. Here, squatting is represented by the transitions among clusters 1, 3, 5. Note the
constituent actions – Standing and Sitting – represented by these cluster means.

We illustrate some of the features of the model using the activity Squatting (see Figure A.2) as an

example. Our representation needs only 40 (fixed apriori) floating point numbers to explain a 320×240

frame, a reduction of nearly 99.94%. This drastic reduction in the size of representation makes the

model extremely favourable for applications involving real-time recognition. The recognition process

over frames is displayed in Figure A.8, as a plot of the likelihood for each possible activity. The correct

activity Squatting – the uppermost plot in the figure – is clearly disambiguated within the first few

frames (around 5), which shows the ability of the model to obtain all the aspects of the activity quickly

and accurately. The fact that the actions of each activity are properly represented is demonstrated by

Figure A.9, which shows the transition matrix for Squatting. The rows and columns correspond to the

actions learned by the model. The areas of the squares indicate the transition probabilities between
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these actions. Notice that the predominant entries correspond to Standing and Sitting - the main actions

present in Squatting.

A.3 Summary

The purpose of this appendix is to a give the details of the Mixture of Factor Analyzer based model pro-

posed earlier. We discussed a framework for modelling various kinds of human activities using MFA.

The application of this model for recognizing activities was demonstrated. A low-dimensional represen-

tation of the activities is learnt, which captures both the spatial and temporal aspects of activities. This

is ideal for applications involving real-time activity recognition. The model has potential for application

in continuous video analysis – representation and summarization, for instance.
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