
Document Enhancement Using Text Specific Prior

Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science (by Research)

in

Computer Science

by

Jyotirmoy Banerjee
200507006

jyotirmoy@research.iiit.ac.in

Centre for Visual Information Technology
International Institute of Information Technology

Hyderabad - 500 032, INDIA
Feb 2009



ii



Copyright c© Jyotirmoy Banerjee, 2009

All Rights Reserved



iv



International Institute of Information Technology

Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Document Restoration using Text

Specific Prior” by Mr. Jyotirmoy Banerjee, has been carried out under my supervision and is

not submitted elsewhere for a degree.

Date Advisor: Dr. C.V. Jawahar



To my mother



Abstract

Document images are often obtained by digitizing paper documents like books or manuscripts.

They could be poor in appearance due to degradation of paper quality, spreading and flaking

of ink toner, imaging artifacts etc. All the above phenomena lead to different types of noise

at the word level including boundary erosion, dilation, cuts/breaks and merges of characters.

Further, with the advent of modern electronic gadgets like PDAs, cellular phones, and digi-

tal cameras, the scope of document imaging has widened. Document image analysis systems

are becoming increasingly visible in everyday life. For instance, one may be interested in sys-

tems that process, store, understand document images obtained by cellular phones. Processing

challenges in this class of documents are considerably different from the conventional scanned

document images. Many of this new class of documents are characterized by low resolution

and poor quality. Super resolution provides an algorithmic solution to the resolution enhance-

ment problem by exploiting the image-specific apriori information. In this thesis we study and

propose new methods for restoration and resolution enhancement of document images.

We present a single image super-resolution algorithm for gray level document images with-

out using any training set. Super-resolution of document images is characterized by bimodal-

ity, smoothness along the edges as well as subsampling consistency. These characteristics

are enforced in a Markov Random Field (MRF) framework by defining an appropriate energy

function. In our case, subsampling of super-resolution image will return the original low-

resolution one, proving the correctness of the method. The restored image, is generated by

iteratively reducing the energy function of the MRF, which is a nonlinear optimization prob-

lem. This approach is a single frame approach and is useful when you do not have multiple

low-resolution images.

Document images have repetitive structural nature as the characters and words are found

more than once in a page/book. The extraction of a single high-quality text image from a set

of degraded images is benefited from the apriori information. A character segmentation is per-

formed to extract the characters. A total variation based prior model is used in a Maximum A



Posteriori (MAP) estimate, to smoothen the edges and preserve the corners, so characteristic

of text images. Dependence on character segmentation still remains a bottle-neck. Character

segmentation problem is not a completely solved problem. The segmentation accuracy de-

pends on the quantity of noise in the text image. In our next approach, we shall overcome the

dependency on character segmentation. We shall look for a restoration approach that does

not perform a explicit character segmentation, but still uses the repetitive component nature of

document images.

In document images degradation is varied at different places in a document. Context plays

an important role in textual image understanding. A MRF framework that exploits the con-

textual relation between image patches, is proposed. Using the topological/spacial constraints

between the image patches, the impossible combinations are eliminated from the initial set of

matchings, resulting in an unambiguous textual output. The local consistency is adjusted to

the global consistency using the belief propagation algorithm. As we are working with patches

and not characters, we avoid performing an explicit segmentation. The ability to work with

larger patch sizes allows us to deal with severe degradations including cuts, blobs, merges

and vandalized documents. This approach can also integrate document restoration and super-

resolution into a single framework, thus directly generating high quality images from degraded

documents.

To conclude, the thesis presents an approach for reconstructing document images. Unlike

other conventional reconstruction methods, the unknown pixel values are not estimated based

on their local surrounding neighbourhood, but on the whole image. We exploit the multiple oc-

currence of characters in the scanned document. A great advantage of our proposed approach

over conventional approaches is that we have more information at our disposal, which leads to

a better enhancement of the document image. Experimental results show significant improve-

ment in image quality on document images collected from various sources including magazines

and books, comprehensively demonstrate the robustness and adaptability of the approach.
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Chapter 1

Introduction

1.1 Introduction

Document image analysis has carved a niche out of the more general problem of computer

vision because of its distinctness from regular class of images. Optical character recognition

(OCR) was taken as one of the first clear applications of pattern recognition. Even today, the

challenges of complex content, noisy data, and use of new imaging devices keep the field ac-

tive. It is increasingly becoming important to provide people with regular and effective access

to the information. Document images are information rich. Computer systems are used to

develop the digital technology systems, which enables easy access to the vast reservoir of in-

formation. These system have an OCR at their core. Modern OCRs donot perform well in the

case where the document image is substantially degraded. Adequate enhancement approaches

are required to make the document images fit for OCRing. Further, the degraded image are

not aesthetically appealing. These images are all departure from an ideal version of the doc-

ument image, which is unambiguously well defined in the domain of machine-printed textual

documents. The goal of this thesis is to revert back the degradation process and reach the ideal

version of the document image.

The ultimate objective of the document image analysis is to recognize the text components

in images of documents, and to extract the intended information as a human would. With the

advent of modern publishing technologies, document analysis systems will become increas-

ingly more evident in the form of everyday document systems.
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1.2 Motivation

Images of paper documents are almost inevitably degraded in the course of printing, pho-

tocopying, Faxing, and scanning, and this loss of quality - even when it appears negligible to

human eyes - can be responsible for an abrupt decline in accuracy by the current generation

of text recognition (OCR) systems. This fragility of OCR systems when confronted by low

image quality is well known to the OCR community [80]. The accuracy of today’s document

recognition algorithms falls abruptly when image quality degrades even slightly [3]. The phys-

ical causes of image degradation are myriad: spreading and flaking of ink toner; uneven paper

surface; low print contrast; non-uniform illumination; defocusing; finite spatial sampling rate;

variations in pixel sensor sensitivity and placement; noise in electronic components; binariza-

tion (e.g. fixed and adaptive thresholding). And, images may result from more than one stage

of printing and imaging. By “degradation” (or “defects”) we mean a wide variety of less-than

ideal properties of real images.

Traditionally, document images are scanned from pseudo binary hardcopy paper manuscripts

with a flatbed, sheet-fed, or mounted imaging device. Recently, however, the community has

seen an increased interest in adapting modern imaging device like digital cameras to tasks re-

lated to document image analysis. Digital camcorders, digital cameras, PCcams, PDAs, and

even cellphone cameras are becoming increasingly popular, and they have shown potential as

alternative imaging devices [47]. Although they cannot replace scanners, they are small, light,

easily integrated with various networks, and more suitable for many document capturing tasks

in less constrained environments. These advantages lead to a natural extension of the document

processing community where cameras are used to image hardcopy documents or natural scenes

containing textual content. This has given rise to new potential applications, though most of

the time handicapped by low-resolution. For text and document analysis, as the application ar-

eas extend to lower resolution camera enabled devices, super-resolution methods are becoming

more important and necessary. Digital video compression algorithms can benefit from suc-

cessful text resolution expansion techniques. Video could be indexed and retrieved based on

text information, text observed in these types of images is often low-resolution. In these con-

2



ditions, it is virtually impossible to do character segmentation independently from recognition.

Resolution enhancement is one of the approach that can assist the cause of recognition in low-

resolution images. Super-resolution methods are useful where physical limitations exist pre-

venting higher resolution images from being obtained. Whenever dynamic image enlargement

is needed, such as text in camera-based imagery, super-resolution techniques can be utilized.

1.3 Text Enhancement

Image processing modifies pictures to improve them (enhancement, restoration), extract

information (analysis, recognition), and change their structure (composition, image editing).

Images can be processed by optical, photographic, and electronic means, but image processing

using digital computers is the most common method because digital methods are fast, flexible,

and precise.

Image enhancement improves the quality (clarity) of images for human viewing. Removing

blurring and noise, increasing contrast, and revealing details are examples of enhancement

operations. For example, an image might be taken of an monument, which might be of low

contrast and somewhat blurred. Reducing the noise and blurring and increasing the contrast

range could enhance the image. The original image might have areas of very high and very

low intensity, which mask details. An enhancement algorithm reveals these details. Adaptive

algorithms adjust their operation based on the image information (pixels) being processed. In

this case the mean intensity, contrast, and sharpness (amount of blur removal) could be adjusted

based on the pixel intensity statistics in various areas of the image.

The aim of image enhancement is to improve the interpretability or perception of infor-

mation in images for human viewers, or to provide ‘better’ input for other automated image

processing techniques.

Image enhancement techniques can be divided into two broad categories:

• Spatial domain methods, which operate directly on pixels, and

• frequency domain methods, which operate on the Fourier transform of an image.

3



Unfortunately, there is no general theory for determining what is ‘good’ image enhancement

when it comes to human perception. If it looks good, it is good! However, when image en-

hancement techniques are used as pre-processing tools for other image processing techniques,

then quantitative measures can determine which techniques are most appropriate. Traditional

methods for image enhancement can be classified into two categories: image restoration, and

resolution expansion.

(a) Portion of a degraded text image

(b) Restoration output image

Figure 1.1 Restoration of document images.

Our Interest in this thesis - In this thesis we are interested in the problem image restoration

and resolution expansion of text images. Our algorithm deals with only the textual part of

a document image. In case there are graphic object in the document page, then a suitable

segmentation algorithm should be used to separate the textual content from the non textual

one.

• Text Restoration - Document images are often obtained by digitizing paper documents

like books or manuscripts. They could be poor in appearance due to degradation of paper

quality, spreading and flaking of ink toner, imaging artifacts etc as shown in Figure 1.1.

4



(a) Portion of a low-resolution text image

(b) Super-resolution output image

Figure 1.2 Restoration of document images.

Restoration of such images has many applications in enhancing the performance of char-

acter recognizers as well as in book readers used in digital libraries.

• Text Super-resolution - The goal of resolution expansion is to create an expanded im-

age with improved definition from observed low-resolution imagery. Acquisition of this

low-resolution imagery can be modeled by averaging a block of pixels within a high-

resolution image. The image acquisition process consists of converting a continuous im-

age into discrete values obtained from a group of sensor elements. Each sensor element

produces a value which is a function of the amount of light incident on the device. For 8-

bit grayscale quantization, the allowable range of values for each sensor are integers from

0 (black) to 255 (white). The sensors are typically arranged in a non-overlapping grid of

square elements, smaller elements result in higher resolution imagery. A high-resolution

image is shown in Figure 1.2 where the number of sensors is adequate to represent the

desired text image. The majority of pixels within the image are either white or black,

with a small number of gray pixels occurring at the edges. Figure 1.2 illustrates a low-

resolution image where the number of sensors has been reduced by a factor of q = 4

5



in both the horizontal and vertical directions. This low-resolution acquisition results in

significant blockiness and is insufficient to accurately represent this image. Each sen-

sor element effectively averages the image within its section of the grid, resulting in an

increased amount of gray pixels.

1.4 Image Enhancement as an Inverse Problem : MAP

In an image enhancement problem, we assume that an ideal image, f , has been corrupted

to create the measured image, g. The usual model for the corruption is a distortion operation,

denoted by D, followed by the addition of random noise

g = D(f) + n (1.1)

where g = [g1, . . . , gN ] and gi denotes the ith pixel in a column vector representation of the

image g. Here, f and n are also similarly represented. The restoration problem then, is the

problem of finding the best estimate of f given the measurement, g, some knowledge of the

distortion (e.g. blur), and the statistics of noise.

Restoration is often referred to as an inverse problem. That is, we have a process (in this

case blur) which takes an input and produces an output. We can only measure the output, and

we wish to infer the input.

Inverse problems and ill-posedness - A problem g = D(f) is said to be well-posed if

• for each f , a solution, g, exists

• the solution is unique

• the solution g continuously depends on the data f .

If these three conditions do not all hold, the problem is said to be “ill-posed”. Ill-posedness

is normally caused by the ill-conditioning of the problem. Conditioning of a mathematical

problem is measured by the sensitivity of output to changes in input. For a well-conditioned

problem, a small change of input does not affect the output much; while for an ill-conditioned

problem, a small change of input can change the output a great deal.
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A simple example of ill-conditioning is as follows: consider the linear system described by

a blur A, and unknown image f, and a measurement g, where

g = Af

A =




1 1

1 1.01



 f =




f1

f2



 g =




1

1





This system has solution f1 = 1, f2 = 0. Now, suppose the measurement, g, is corrupted by

noise, producing g = [1 1.01]T . Then, the solution is f1 = 0, f2 = 1. A trivially small change

in the measured data causes a dramatic change in the solution. Thus in all such situations, the

vector f = A−1g (or in the full ranked overdetermined case A+g, with the pseudo inverse

A+ = (A∗A)−1A∗), if it exists at all, is usually a poor approximation of f (This can be seen

from an analysis in terms of the singular value decomposition [71]).

Importance of well-posedness has been noted long before the dawn of the computer age by

Maxwell who in 1873 wrote [6]:

There are certain classes of phenomena, as I have said, in which a small error

in the data only introduces a small error in the result. Such are, among others,

the larger phenomena of the solar system, and those in which the more elementary

laws in dynamics contribute the greater part of the result. The course of events in

these cases is stable.

There are many ways to approach these ill-posed restoration problems. They all share a

common structure: the regularization theory. Generally speaking, any regularization method

tries to analyze a related well-posed problem whose solution approximates the original ill-

posed problem.

For example, the first approach one might think of is to produce an image estimate which

has the minimum linear least squares error. That is, find the unknown image f which minimizes

E = ||g − Af ||2

However, the matrix A may be ill-conditioned or singular yielding a large number of solutions.

Directly minimizing E does not work, as the problem is still ill-conditioned. In order to give
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Figure 1.3 Two choices of cost functions.

preference to a particular solution with desirable properties, the regularization term is included

in this minimization. A regularization term or a prior is indeed needed to derive a solution to

an ill-posed problem. The Maximum A Posteriori (MAP) approach, is one such framework

where the prior is used to derive the solution.

The Maximum A Posteriori (MAP) approach - Bayes image reasoning is a theory of

fundamental importance in estimation and decision making. According to this theory, when

both the prior distribution and the likelihood function of a pattern are known, the best that can

be estimated from these sources of knowledge is the Bayes labeling. The maximum a posterior

(MAP) solution, as a special case in the Bayes framework, is sought in many vision works.

Bayes Estimation - In Bayes estimation, a risk is minimized to obtain the optimal estimate.

The Bayes risk of estimate f ∗ is defined as

R(f ∗) =

∫

f∈F

C(f ∗, f)P (f |d)df

where d is the observation, C(f ∗, f) is a cost function and P (f |d) is the posterior distribution.

First of all, we need to compute the posterior distribution from the prior and the likelihood.

According to the Bayes rule, the posterior probability can be computed by using the following

formulation

P (f |d) =
p(d|f)P (f)

p(d)

where P (f) is the prior probability of labellings f , p(d|f) is the conditional p.d.f. of the

observations d, also called the likelihood function of f for d fixed, and p(d) is the density of d

which is a constant when d is given.
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The cost function C(f ∗, f) determines the cost of estimate f when the truth is f ∗. It is

defined according to our preference. Two popular choices are the quadratic cost function

C(f ∗, f) = ||f ∗ − f ||2

where ||a − b|| is a distance between a and b, and the δ cost function

C(f ∗, f) =







0 if ||f ∗ − f || ≤ δ

1 1 otherwise

where δ > 0 is any small constant. A plot of the two cost functions are shown in Figure 1.3.

The Bayes risk under the quadratic cost function measures the variance of the estimate

R(f ∗) =

∫

f∈F

||f ∗ − f ||2P (f |d)df

Letting ∂R(f∗)
∂f

= 0, we obtain the minimal variance estimate

f ∗ =

∫

f∈F

fP (f |d)df

The above is the mean of the posterior probability.

For the δ cost function, the Bayes risk is

R(f ∗) =

∫

||f∗−f ||>δ

P (f |d)df = 1 −

∫

||f∗−f ||≤δ

P (f |d)df

When δ → 0, the above is approximated by

R(f ∗) = 1 − κP (f |d)

where κ is the volume of the space containing all points f for which ||f ∗−f || ≤ δ. Minimizing

the above is equivalent to maximizing the posterior probability. Therefore, the minimal risk

estimate is

f ∗ = argmax
f∈F

P (f |d)

which is known as the MAP estimate. Because p(d) is a constant for a fixed d, P (f |d) is

proportional to the joint distribution

P (f |d) ∝ P (f, d) = P (d|f)P (f)
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Then the MAP estimate is equivalently found by

f ∗ = argmax
f∈F

{P (d|f)P (f)}

Obviously, when the prior distribution, P (f), is flat, the MAP is equivalent to the maximum

likelihood. Hence prior plays a important role in the enhancement process.

Figure 1.4 Observation model of the document image acquisition

1.5 Design of Prior

Restoration from a still image is a well recognized example of an ill-posed inverse prob-

lem. Such problems may be approached using regularization methods which constrain the

feasible solution space by employing a-priori knowledge. This may be achieved in two com-

plimentary ways; (1) obtain additional novel observation data and (2) constrain the feasible

solution space with a-priori assumptions on the form of the solution. Both techniques feature

in modern restoration methods which utilize (1) image sequences which provide additional

spatio-temporal observation constraints (typically in the form of novel data arising from sub-

pixel motion) and (2) various a-priori constraints on the degraded image (e.g. local smooth-

ness, edge preservation, positivity, energy boundedness, etc.). The use of non-linear a-priori
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constraints provides the potential for bandwidth extension beyond the diffraction limit of the

optical system.

It remains however to compute the solution to the ill-posed enhancement inverse problem.

Amongst the numerous solution techniques featuring in the literature, the Bayesian Maximum

A Posteriori (MAP) estimation method, is promising. MAP estimation provides a rigorous

theoretical framework, several desirable mathematical properties and makes explicit use of

a-priori information in the form of a prior probability density on the solution image.

The relationship between the paper document, the observed inferior image and the desired

enhanced/restored image is once illustrated in Figure 1.4. In this thesis, we formulate the text

prior using two mathematical framework : 1) Total Variation (TV) 2) Markov Random Field

(MRF). The TV formulation provides an edge preserving smoothness prior. Since their intro-

duction in a classic paper by Rudin, Osher and Fatemi [81], total variation minimizing models

have become one of the most popular and successful methodology for image restoration. More

recently, there has been a resurgence of interest and exciting new developments, some extend-

ing the applicability to inpainting, blind deconvolution and vector-valued images, while others

offer improvements in better preservation of contrast, geometry and textures. The spatial prop-

erty can also be modeled through different aspects, among which, the contextual constraint is

a general and powerful one. MRF theory provides a convenient and consistent way to model

context-dependent entities such as image pixels and correlated features. In the next chapter, we

shall discuss in detail about these mathematical frameworks. In this thesis we shall see how to

construct document specific prior and use them for our enhancement.

1.6 Observations

Document images are a distinct class of images widely different from natural images. The

problem of document restoration and super-resolution is a special case of image restoration

because

• document images are pseudo binary in nature,
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• the regularity of the patterns used in this “visual” language distinguishes the document

images from natural scenes, and

• the relatively small size of the (character) image, makes them more susceptible to degra-

dation.

• in a document image it is quite possible that the same character image at different phys-

ical location in a document may be degraded differently.

These factors, lead to an array of interesting observations, specific to this domain.

This thesis focuses on the issue of restoration and super-resolution of a document image

using text specific prior information. The restoration of text is an ill-posed problem and one

that is highly sensitive to the additional assumptions or information needed to establish its

well-posedness. These assumptions are generally reflected in the priors that are imposed in

the formulation. Generic smoothness constraint tend to smooth over the important details and

produce improper restoration.

A successful document restoration and super-resolution algorithm needs to use the text-

specific apriori information. Further, a mathematical framework is needed that incorporate

the prior information and handles the text related uncertainties. We exploit the properties of

document images to develop a specific restoration technique, specially suited for the same.

1.7 Related Work

Related articles to this thesis are referred and discussed in detail in the relevant parts of

the next four chapters. However, a brief sketch of the related work is provided to give the

background of the thesis.

1.7.1 Related Work in Image Restoration

• Image Denoising has remained a fundamental problem in the field of image process-

ing [70, 62]. Spatial filtering for image denoising works only for additive noise. Median

filters, mean filters, max and min filter and various spatially adaptive versions [34] are
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commonly used. The simplest method for noise removal is Gaussian filtering, which

is equivalent to solving anisotropic heat diffusion equation [89], a second-order linear

PDE. To keep sharp edges, anisotropic diffusion can be performed [77], wavelets give

a superior performance in image denoising due to properties such as sparsity and mul-

tiresolution structure. With wavelet transform gaining popularity in the last two decades

various algorithms for denoising in wavelet domain were introduced. The focus was

shifted from the Spatial and Fourier domain to the wavelet transform domain. Ever since

Donoho’s wavelet based thresholding approach was published in 1995 [23, 66], there

was a surge in the denoising papers being published.

1.7.2 Related Work in Document Restoration

• Text Restoration - Filter based Approaches - Filter based approaches were widely

used in general imagery. There are few works, where these techniques are applied on

document images. In Stubberud et al. [90], by using the output from an OCR system

and a distorted text image, their technique trains an adaptive restoration filter and then

applies the filter to the distorted text image that the OCR system could not recognize.

Ramponi et al. [79] have used quadratic filters to enhance the document. Fan et al. [26]

propose to exploit the spatial correlations between wavelet coefficients by replacing the

thresholding process with a diffusion process.

• Text Restoration and Enhancement - A border following algorithm is used in [101]

to reconstruct the borders and missing links of noisy and broken handwritten digits. Shi

et al. [87] performs selective and adaptive stroke filling with a neighborhood operator

which emphasizes stroke connectivity. Allier et al. [2] proposed a method for accurate

character reconstruction based on the active contour model. Some of the restoration ef-

forts are based on morphological filters [60, 103] where the size of the morphological

filter directly depends on the font size. Some other methods [1, 5] use model based ap-

proaches. A variety of methods have been proposed in order to improve contrast within

text images. They include methods based on multi-resolution pyramid with fuzzy edge
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detectors [85], and a mixed approach using topological features and contour beautifica-

tion [73]. Resolution expansion is also attempted using text bitmap averaging [39]. This

method depends on the segmentation and then clustering of character images which is

often hard to obtain. Combination of interpolation and binarization [55] is also used to

improve quality of text in images.

• Text Restoration in Historical Documents - The general problem in historical docu-

ments is the “ink bleed-through” problem. There are many non-blind approaches, mainly

based on the comparison between the front and back page which requires a registration

of the two sides of the document of the two sides of the document in order to identify the

interfering strokes to be eliminated. Techniques. Sharma’s approach [86] simplifies the

physical model of these effects to derive a linear mathematical model and then defines

an adaptive linear-filtering scheme. Approach proposed by Dubois and Pathak [25] is

mainly based on processing both sides of a gray-level manuscript simultaneously using

a six parameter affine transformation to register the two sides. In [92], a wavelet recon-

struction process is applied to iteratively enhance the foreground strokes and smear the

interfering strokes. A blind restoration approach i.e, it does not need of the both sides

of the document, is generally based on steered filters. An approach proposed by Wang

et al. [100, 99] uses directional wavelets to remove images of interfering strokes. Other

more flexible techniques exist, among which, we can cite techniques based on Indepen-

dent Component Analysis [95], adaptive binarization [32], self-organizing maps [88],

color analysis [52]. Drira’s [24] approach consists of combining both Principal Compo-

nent Analysis (PCA) and K-means. These techniques are applied recursively to separate

original text from interfering and overlapping areas of text.

• Text Enhancement in Video - Li et al. [55] applied Shannon interpolation method to

increase image resolution and Niblack’s adaptive thresholding [72] to binarize the image

with complex backgrounds. In [53], Li et al. use multi-frame integration to enhance cap-

tions in video. The influence of the background is reduced on the basis of motion clues.

Sato [84] enhances the text on the basis of its sub-structure: line element, by using filters
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with four orientations: vertical, horizontal, left diagonal and right diagonal in the located

text block. Asymmetric Gabor filters have been proposed by Chen et al. [18], which

can efficiently extract the orientation and scale of the stripes present in a video image.

This information is used to enhance contrast at only those edges most likely to represent

text. In Kwak et al. [49], after the multiple video text frames containing the same cap-

tions are detected and the caption area in each frame is extracted, five different image

enhancement techniques are serially applied to the image: multi-frame integration, res-

olution enhancement, contrast enhancement, advanced binarization, and morphological

smoothing operations.

1.7.3 Related Work in Image Super-resolution

• Super-resolution techniques may be divided into two main classes; frequency domain

and spatial domain. All frequency domain approaches are, to a greater or lesser extent,

unable to accommodate general scene observation models including spatially varying

degradations, non-global relative camera/scene motion, general a-priori constraints or

general noise models. Spatial domain formulations can accommodate all these and pro-

vide enormous flexibility in the range of degradations and observation models which

may be represented and are thus the methods of choice. Spatial domain observation

models facilitate inclusion of additional data in the observation equation with the effect

of reducing the feasible solution space.

Tipping et al. developed a Bayesian treatment of the super-resolution problem in which

the likelihood function for the image registration parameters is based on a marginaliza-

tion over the unknown high-resolution image [94]. A texture based approach is provided

in Pickup et al. [78] where a domain-specific image prior in the form of a p.d.f. based

upon sampled images. Single image interpolation algorithms which use a database of

training images to create plausible high-frequency details in zoomed images is proposed

by Freeman et al. [31]. A comprehensive review with directions for future research can

be found in [8]. Limits of super-resolution are discussed in [4, 61].
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1.7.4 Related Work in Document Super-resolution

• Multi-frame Approaches - Super-resolution is the process of simulating a high-resolution,

high-quality camera from blurred, noisy images captured using a low-resolution cam-

era. SR algorithms are divided into two categories viz. multi-frame and learning based

single-image super-resolution. Li and Doermann [54] used the method of projection onto

convex sets (POCS), to deblur scene text in video sequences. In a parallel work, Capel

and Zisserman [14] used a projective transform motion model for super-resolution of

text specifically for image sequences in which the point-to-point image transformation

was of enough complexity to demand such consideration. In a recent work, Teager filter

(a quadratic unsharp masking filter) was adopted by Mancas-Thillou and Mirmehdi [67]

for the extraction of high frequencies thus enhancing character edges. Donaldson and

Myers [22] proposed a text specific prior model, which modeled the bimodality and the

local smoothness with step discontinuity. They use the Gibbs prior with a Huber gradient

penalty function as their smoothness function. This piecewise smoothness prior is good

at reducing false speckles in the results, but it undermines the importance of enhancing

edges. Dalley et al. [20] employed a training-based method, in a Bayesian framework.

A database is built that indicates which high-resolution patch should be output given an

input low-resolution patch. Park et al. [74] developed an alternative approach, an edge-

based super-resolution technique. It attempts to locate the edges to subpixel accuracy in

a sequence of images taken from training examples, and then fuses the conglomerated

edge information into the super-resolved image using a MRF formulation.

• Single-frame Approaches - Thouin and Thouin et al. [93] used nonlinear optimization

on a gray scale input image to minimize a Bimodal Smoothness Average (BSA) score.

1.8 Contributions

In this thesis we have proposed new methods for enhancement with focus on restoration and

super-resolution of document images. In particular, we address the following:
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• First, we present a method for restoration of document images, using a Maximum a

Posteriori formulation. The advantage of our method is that the prior need not be learned

from the training images. The extraction of a single high-quality enhanced text image

from a set of degraded images can benefit from a strong prior knowledge, typical of

text images. The restoration process should allow for discontinuities but at the same

time discourage oscillations. These properties were represented in a total variation based

prior model.

• Second, we formulate the text image restoration problem in a relaxation framework. Text

images are very different from natural images. The regularity of the patterns used in

this “visual” language distinguishes these pseudo binary document images from natural

scenes. Context plays an important role in textual image understanding. A stochastic

framework that exploits the contextual relation between image patches, is proposed in

this paper. Using the topological/spacial constraints between the image patches, the

impossible combinations are eliminated from the initial set of matchings, resulting in an

unambiguous textual output. The local consistency is adjusted to the global consistency

using the belief propagation algorithm.

• Lastly, we present an edge-directed, single image super-resolution algorithm for docu-

ment images without using any training set. This technique creates an image with smooth

regions in both the foreground and the background, while allowing sharp discontinuities

across and smoothness along the edges. Our method preserves sharp corners in text im-

ages by using the local edge direction, which is computed first by evaluating the gradient

field and then taking its tangent. Super-resolution of document images is characterized

by bimodality, smoothness along the edges as well as subsampling consistency. These

characteristics are enforced in a Markov Random Field (MRF) framework by defining

an appropriate energy function. In our method, subsampling of super-resolution image

will return the original lowresolution one, proving the correctness of the method. The

super-resolution image, is generated by iteratively reducing this energy function.
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1.9 Organization of the Thesis

This thesis focuses on, namely, restoration, and super-resolution framework of document

images. So far in this chapter we have presented an overview of image restoration. We dis-

cussed in Section 1.3, that restoration is an ill-posed problem and how regularization helps in

solving this ill-posed problem. It indirectly meant that for restoration, prior information should

be incorporated. Then we discussed Maximum A Posteriori method to incorporate the prior

information. In Section 1.5 we discussed the related work in the field of text restoration in the

field of document restoration and super-resolution.

• In Chapter 2, we give an overview of the mathematical methods used in this thesis. In

Section 2.2, the total variation based formulation for noise removal is explained. A itera-

tive algorithm used to solve the same is discussed. In Section 2.3, we discuss the labeling

problem and the markov random field. A number of concepts relating to the formulation

of an energy function and its justification in a Bayesian framework is explained.

• In Chapter 3, we discuss our method on single image document super-resolution. Section

3.2 discuss the super-resolution in document images. In Section 3.3 we discuss the text

specific prior information. The MRF based formulation for document Super-resolution is

discussed in Section 3.4. Experimental results are shown in Section 3.5 and Conclusion

in Section 3.6.

• In Chapter 4, we discuss our first method on document restoration using bayesian in-

ference. In Section 4.2 we present some related work. Section 4.3 describes our text

restoration algorithm in detail and Section 4.3.1 presents a discussion on the algorithm.

We present experimental result in Section 4.4 and conclusion and future work in Section

4.5.

• In Chapter 5, we discuss our second method on document restoration using relaxation

framework. In Section 5.2 we analyze how to restore by labeling. Section 5.3 describes

the Markov network construction. Experimental results are shown in Section 5.4 and

Conclusion in Section 5.5.

• In Chapter 6, we conclude and discuss future work.
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter, we discuss the mathematical preliminaries required in the chapters ahead.

We had introduced the importance of MAP based formulation for the document restoration

ill-possed problem. We had also discussed the use of prior information in the Maximum A

Posteriori (MAP) formulation in the previous chapter. Various a-priori, constraints on the de-

graded image (e.g. local smoothness, edge preservation, positivity, energy boundedness, etc.).

In this chapter we will now look at a natural way to incorporate the priori knowledge. Total

variation and Markov Random Field (MRF) models help in designing the prior in the MAP

formulation. We shall briefly discuss these mathematical frameworks in rest of the chapter.

2.2 Total Variation

Variational models have been extremely successful in a wide variety of restoration prob-

lems, and remain one of the most active areas of research in mathematical image processing

and computer vision. By now, their scope encompasses not only the fundamental problem of

image denoising, but also other restoration tasks such as deblurring, blind deconvolution, and

inpainting. Variational models exhibit the solution of these problems as minimizers of appro-

priately chosen functionals. The minimization technique of choice for such models routinely
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involves the solution of nonlinear partial differential equations (PDEs) derived as necessary

optimality conditions.

Perhaps the most basic (fundamental) image restoration problem is denoising. It forms a

significant preliminary step in many machine vision tasks, such as object detection and recog-

nition. It is also one of the mathematically most intriguing problems in vision. A major concern

in designing image denoising models is to preserve important image features, such as those

most easily detected by the human visual system, while removing noise. One such important

image feature are the edges; these are places in an image where there is a sharp change in im-

age properties, which happens for instance at object boundaries. A great deal of research has

gone into designing models for removing noise while preserving edges; recently there has also

been a lot of effort in preserving other fine scale image features, such as texture. All successful

denoising models take advantage of the fact that there is an inherent regularity found in natural

images; this is how they attempt to tell apart noise and actual image information. Variational

and PDE based models make it particularly easy to impose geometric regularity on the solu-

tions obtained as denoised images, such as smoothness of boundaries. This is one of the main

reasons behind their success.

2.2.1 Nonlinear total variation based noise removal

Total variation based image restoration models were first introduced by Rudin, Osher, and

Fatemi (ROF) in their pioneering work [81] on edge preserving image denoising. It is one

of the earliest and best known examples of PDE based edge preserving denoising. It was

designed with the explicit goal of preserving sharp discontinuities (edges) in images while

removing noise and other unwanted fine scale detail. Being convex, the ROF model is one of

the simplest variational models having this most desirable property. The revolutionary aspect of

this model is its regularization term that allows for discontinuities but at the same time disfavors

oscillations. It was originally formulated in [81] for grayscale imagery in the following form:

inf
R

Ω
(u−f)2dx=σ2

∫

Ω

|∇x| (2.1)
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Here, Ω denotes the image domain (for instance, the computer screen), and is usually a rect-

angle. The function f(x) : Ω → R represents the given observed image, which is assumed to

be corrupted by Gaussian noise of variance σ2. The constraint of the optimization forces the

minimization to take place over images that are consistent with this known noise level. The

objective functional itself is called the total variation (TV) of the function u(x); for smooth im-

ages it is equivalent to the L1 norm of the derivative, and hence is some measure of the amount

of oscillation found in the function u(x). Optimization problem in equation 2.1 is equivalent

to the following unconstrained optimization, which was also first introduced in [81]:

inf
u∈L2(Ω)

∫

Ω

|∇x| +

∫

Ω

λ(u − f)2dx (2.2)

Here, λ > 0 is a Lagrange multiplier. The equivalence of problems 2.1 and 2.2 has been

established in [16]. In the original ROF paper [81] there is an iterative numerical procedure

given for choosing λ so that the solution u(x) obtained solves 2.1.

Total variation based energies appear, and have been previously studied in, many different

areas of pure and applied mathematics. For instance, the notion of total variation of a function

and functions of bounded variation appear in the theory of minimal surfaces. In applied mathe-

matics, total variation based models and analysis appear in more classical applications such as

elasticity and fluid dynamics. Due to ROF, this notion has now become central also in image

processing.

2.2.2 Numerical Method

There have been numerous numerical algorithms proposed for minimizing the ROF objec-

tive. Most of them fall into the three main approaches, namely, direct optimization, solving

the associated Euler-Lagrange equations and using the dual variable explicitly in the solution

process to overcome some computational difficulties encountered in the primal problem. We

will focus on the second approach.
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2.2.2.1 Artificial Time Marching and Fixed Point Iteration

In their original paper [81], Rudin et al. proposed the use of artificial time marching to

solve the Euler-Lagrange equations which is equivalent to the steepest descent of the energy

function. More precisely, consider the image as a function of space and time and seek the

steady state of the equation

du

dt
= ∇.

(

∇u

|∇u|β

)

− 2λ(u − f) (2.3)

Here, |∇u|β =
√

|∇u| + β2 is a regularized version of |∇u| to reduce degeneracies in flat

regions where |∇u| ≈ 0. In numerical implementation, an explicit time marching scheme

with time step ∆t and space step size ∆x is used. Under this method, the objective value

of the ROF model is guaranteed to be decreasing and the solution will tend to the unique

minimizer as time increases. However, the convergence is usually slow due to the Courant-

Friedrichs-Lewy (CFL) condition, ∆t ≤ c∆x2|∇u| for some constant c > 0 [68], imposed

on the size of the time step, especially in flat regions where |∇u| ≈ 0. CFL condition in

numerical equation solving states that, given a space discretization, a time step bigger than

some computable quantity should not be taken. The condition can be viewed as a sort of

discrete “light cone” condition, namely that the time step must be kept small enough so that

information has enough time to propagate through the space discretization.

To relax the CFL condition, Marquina and Osher use, in [68], a “preconditioning” technique

to cancel singularities due to the degenerate diffusion coefficient 1
|∇u|:

du

dt
= |∇u|

[

∇.

(

∇u

|∇u|β

)

− 2λ(u − f)

]

(2.4)

which can also be viewed as mean curvature motion with a forcing term −2λ(u− f). Explicit

schemes suggested in [68] for solving the above equation improve the CFL to ∆t ≤ c∆x2|∇u|

which is independent of |∆u|.

To completely get rid of CFL conditions, Vogel and Oman proposed in [98] a fixed point

iteration scheme (FP) which solves the stationary Euler-Lagrange directly. The Euler-Lagrange

equation is linearized by lagging the diffusion coefficient and thus the (i + 1)-th iterate is
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obtained by solving the sparse linear equation:

∇.

(

∇ui+1

|∇ui|β

)

− λ(ui+1 − f) = 0 (2.5)

While this method converges only linearly, empirically, only a few iterations are needed to

achieve visual accuracy. In practice, one typically employs specifically designed fast solvers to

solve equation 2.5 in each iteration.

2.3 Markov Random Fields

The field of computer vision is related to the task of obtaining relevant information about

the real world by inferring the images of that world. Typically the task becomes difficult ow-

ing to the uncertainties in the imaging process and the ambiguities in the inference of the real

world. This in turn leads to multiple solutions to a particular vision problem. An optimization

approach provides an elegant technique to reduce the number of possible solutions by formu-

lating various constraints on the problem at hand. The optimization approach consists of two

major steps described as follows.

The first step is the formulation of an objective function. It is a function from the set of all

possible solutions to real numbers. In order to formulate an objective function it is important

to impose a set of constraints which should be satisfied by the final solution. The solution to

an objective function which satisfies these set of constraints in the best possible manner is the

desired solution. Thus, the value of the real number to which the objective function is mapped

gives the measure of goodness of that solution. Conventionally, the lesser the value, the better

the solution is. Two of the most commonly used constraints to formulate an objective function

for a vision problem are obtained by the input data which could be an image for example

and the prior knowledge about this data. The data constraint restricts the desired solution to be

close to the observed data and the prior constraint confines the desired solution to have the form

which is agreeable with the prior knowledge about the problem. The objective function thus

formulated and containing the two constraints is referred to as an energy function. The data

constraint is defined specific to the vision problem being solved. The prior constraint is usually
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imposed by the assumption that the variables of the objective function belong to a Markov

Random Field (MRF). The concept of MRFs is explained in the next section. Prior to this in

Section 2.3.1, we explain the concept of Labeling in vision which is a natural representation

for the study of MRFs and is imperative to understand the optimization framework for various

problems in computer vision.

The second step of the optimization approach is to minimize the energy function by find-

ing the global minima. An energy function in computer vision is typically not convex and

they have multiple local minima. This makes the task of global minimization difficult. Addi-

tionally, the energy function for an image has a large number of unknowns, which makes the

computational requirements for minimization high. In fact its an NP-hard problem to find the

exact minima. This leads finding approximate solutions which are closer to the global min-

ima. One of the assumption which relaxes the optimization approach to some extent is that

the set of solutions is finite. This is done by discretizing the variables which are used to for-

mulate the energy function. This makes the set of solutions countable but still too large to be

explored completely. Such an optimization problem where the input solution set is countable

is combinatorial in nature and is called as a discrete optimization problem. It can be shown

that minimizing such an optimization function in computer vision will indeed lead to the opti-

mal solution by using a Bayesian perspective (Maximum A Posteriori (MAP) estimation) as is

explained in Section 2.3.5.

2.3.1 Labeling Problem

A number of computer vision problems can be posed as labeling problems. For example

consider the problem of image segmentation: Here segmenting an image boils down to the

problem of assigning a unique label out of two possible labels to each pixel. The two possible

labels being either foreground or background.

A labeling problem is completely defined by two sets : site set and label set. The site set

is the set of image features e.g. the pixels in an image, image regions, edges in an image

etc. which can have some properties and the label set is these set of properties which can
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be assigned to site set e.g. in segmentation a pixel can be in foreground or background. All

the members of the label set are possible candidates which could be assigned to a particular

member of the site set. This leads to a very large set of possible mappings as explained below.

Let the set of sites S and labels L be denoted as

S = {1, 2, . . . , m}.

L = {l1, l2, . . . , lk}.

where m is the number of sites and k is the number of labels. For segmenting an image of size

h×w into foreground and background, we have m = h×w , k = 2, (l0 = foreground and l1 =

background). A labeling can be defined as a function g which maps sites to labels as

g : S → L.

Each possible mapping where all the sites in S are assigned some label from the set L is referred

to as a configuration. Thus, the total number of possible labeling configurations O is

O = L × L · · · × L
︸ ︷︷ ︸

m times
= L

m

which is exponential in size. One of these configurations will be the optimal configuration.

Since the search space of all possible labeling C is large, finding optimal labeling becomes an

NP - hard problem. An energy function encodes any particular labeling into an objective func-

tion and the value of that objective function becomes a quantitative measure of the goodness

of the various labeling. A number of problems in Computer Vision can be addressed using this

general framework of labeling:

• Image Segmentation: S = {pixels} and L = {0, 1} (see [10]).

• Stereo Reconstruction: S = {pixels} and L = {disparities} (see [12]).

• Image Restoration: S = {pixels} and L = {intensities(0, . . . , 255)} (see [33]).

• Texture Synthesis: S = {pixels} and L = {patches} (see [50]).

• etc..
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In the following section, we explain Markov Random Fields (MRF) and show its equiva-

lence to Maximum a Posteriori(MAP) estimate of underlying labels given the input data. This

equivalence leads to the formulation of an energy function which can be minimized using Be-

lief Propagation [29].

The Markov Property - Markov Random Field (MRF) is a branch of probability theory

for analyzing the spatial or contextual dependencies of a physical phenomena. The concept

of MRFs has its origins from statistical physics where Ising used this model to explain certain

empirically observed facts about ferromagnetic materials [46]. It is used in a labeling problem

to establish probabilistic distributions of interacting labels at each site as follows.

Let F = {F1, . . . , Fm} be a family of random variables defined on the set S, in which

each random variable Fi takes a label li in L. The family F is called a random field. We

use the notation Fi = li to denote the event that Fi takes the label li and the notation (F1 =

l1, . . . , Fm = lm) to denote the joint event. For simplicity, a joint event is abbreviated as F = l

where l = {l1, . . . , lm} is a configuration of F, corresponding to a realization of the field.

For a discrete label set L, the probability that random variable Fi takes the value li is denoted

Pr(Fi = li), abbreviated Pr(li) and the joint probability is denoted Pr(F = l) = Pr(F1 =

l1, . . . , Fm = lm) and abbreviated Pr(l). Similarly, corresponding to a continuous label set L,

we have probability density functions(pdf) p(Fi = li) and p(F = l).

F is said to be a Markov Random Field on S with respect to a neighborhood system N if

and only if the following two conditions are satisfied:

1. Pr(F = l) > 0 ∀ l ∈ F (Positivity).

2. Pr(li|lS−{i}) = Pr(li|lNi
) (Markovianity).

where S−{i} is the set difference, i is some site in S such that i ≤ m, lS−{i} denotes the set of

labels at the remaining sites in S − {i} and

lNi
= {li′|i

′ ∈ Ni}.

denotes the set of labels at the sites neighboring i. The first statement signifies that each

configuration of the labels is probable and the second statement means that a label at a given
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site i depends solely on the labeling of the neighbors of i. We describe neighboring system and

the concept of Cliques in the next section which are useful in showing the equivalence of MRF

to a Gibbs distribution.

2.3.2 Neighborhood System and Cliques

Neighborhood System - The sites in S are related to one another via a neighborhood system

N which is defined as

N = {Ni|∀i ∈ S}.

where Ni is the set of sites neighboring the site i. The neighboring relationship has the follow-

ing properties.

1. A site is not neighboring to itself : i /∈ Ni,

2. The neighboring relationship is mutual : i ∈ Ni′ ⇐⇒ i
′

∈ Ni.

For a regular lattice S, the neighboring set of i : Ni is defined as the set of nearby sites within

a radius of r. Thus,

Ni = {i
′

∈ S|[dist(pixeli′ , pixeli)]
2 ≤ r, i

′

6= i}.

where dist(A, B) denotes the Euclidean distance between A and B and r takes an integer

value. Depending on the value of r, the neighborhood systems can be classified into different

orders of neighborhood system e.g. first order neighborhood system where any site x ∈ S has

4 neighbors (See Fig. 2.1), second order neighborhood system has 8 neighbors around x (See

Fig. 2.1). When the sites in a regular rectangular lattice S = {(i, j)|1 ≤ i, j ≤ n} correspond

1

1 x

1

1

1

2 2

2 2

x1 1

1

Figure 2.1 The left shows a first order neighborhood relationship between sites and the right
shows a second order relationship. The numbers denote the order of neighborhood relationship.
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to the pixels of an n×n image in the 2D plane, an internal site (i, j) has four nearest neighbors

as Ni,j = {(i− 1, j), (i + 1, j), (i, j − 1), (i, j + 1)} and a site at the boundary has three and a

site at the corner has two nearest neighbors.

Cliques - A 2D lattice corresponds to a regular graph where the vertices of the graph corre-

spond to the sites and the edges in the graph correspond to the neighborhood system among the

sites as described above. Thus a graph can be denoted as G , (S, N). A clique in a graph is a

set of pairwise adjacent vertices, or in other words, an induced subgraph which is a complete

graph. The set of cliques C in the graph G can consist of singe site c = {i}, pair of neighboring

sites c = {i, i′}, triple of neighboring sites c = {i, i′, i′′} and so on. Thus we can denote these

cliques as

C1 = {i|i ∈ S}.

C2 = {{i, i′}|i′ ∈ Ni, i ∈ S}.

C3 = {{i, i′, i′′}|i, i′, i′′ ∈ S are neighbors to one another}.

The collection of all cliques of (S, N) is

C = C1 ∪ C2 ∪ C3 · · ·

In Fig. 2.2, we show the various sized cliques for a second order neighborhood system in a 2D

lattice. As the order of the neighborhood system increases, the number of cliques grow rapidly.

Figure 2.2 Cliques of various sizes in a second order neighborhood system.
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2.3.3 Gibbs Random Fields

A set of random variables F is said to be a Gibbs Random Field (GRF) on S with respect

to the neighborhood system N if and only if its configurations obey a Gibbs distribution. A

Gibbs distribution for a given labeling l has the following form

Pr(l) = Z−1 × e−
1

T
U(l).

where

Z =
∑

l∈F

e−
1

T
U(l).

is the normalizing constant called the partition function and T is a constant called the tem-

perature and assumed to have a value of 1. U(l) is called the energy function and is given

as

U(l) =
∑

c∈C

Vc(l).

which is a sum of clique potentials Vc(l) over all possible cliques C. The value of Vc(l) depends

on the local configuration of the clique c. Expanding the above equation in terms of cliques of

various sizes we get

U(l) =
∑

{i}∈C1

V1(li) +
∑

{i,i′}∈C2

V2(li, li′) +
∑

{i,i′,i′′}∈C3

V3(li, li′, li′′) + · · ·

An important special case is when only cliques of size up to two are considered. In this case,

the energy can also be written as

U(l) =
∑

i∈S

∑

i′∈Ni

V2(li, li′).

Thus, the Gibbs distribution for a particular labeling l can be given as

Pr(l) = Z−1 × e−
1

T

P

i∈S

P

i′∈Ni
V2(li,li′).

2.3.4 Markov-Gibbs Equivalence

An MRF is characterized by its local property (the Markovianity) whereas a GRF is charac-

terized by its global property (the Gibbs distribution). The Hammersley-Clifford theorem [37]
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establishes the equivalence of these two types of properties. The theorem states that F is an

MRF on S with respect to N if and only if F is a GRF on S with respect to N . A proof that a

GRF is an MRF is given as follows. Let Pr(l) be a Gibbs distribution on S with respect to the

neighborhood system N . Consider the conditional probability

Pr(li|lS−{i}) =
Pr(li, lS−{i})

Pr(lS−{i})
=

Pr(l)
∑

l′i∈L
Pr(l′)

.

where l′ = {l1, . . . , li−1, l
′
i, li+1, . . . , lm} is a configuration which agrees with l at all sites

except possibly i. Using Pr(l) = Z−1 × e−
P

c∈C
Vc(l) in the above equation, we get

Pr(li|lS−{i}) =
e−

P

c∈C
Vc(l)

∑

l′i
e−

P

c∈C
Vc(l′)

.

Now, the set of cliques C can be divided into two sets A and B with A consisting of cliques

containing i and B with cliques not containing i. Then the above can be written as

Pr(li|lS−{i}) =

[
e−

P

c∈A
Vc(l)
] [

e−
P

c∈B
Vc(l)
]

∑

l′
i

{[
e−

P

c∈A
Vc(l′)

] [
e−

P

c∈B
Vc(l′)

]} .

Because Vc(l) = Vc(l
′) for any clique c that does not contain i, the term e−

P

c∈B
Vc(l) cancels

from both the numerator and denominator. Therefore, this probability depends only on the

potentials of the cliques containing i,

Pr(li|lS−{i}) =
e−

P

c∈A
Vc(l)

∑

l′i
e−

P

c∈A
Vc(l′)

.

that is, it depends on labels at i′s neighbors. This proves that a Gibbs random field is a Markov

Random Field. The reverse proof that an MRF is a GRF is given in [45]. This equivalence

between MRF and GRF provides a simple way of specifying the joint probability of the labels l

on the grid S. The joint probability Pr(F = l) can be obtained by specifying the clique poten-

tial functions Vc(l) and choosing the appropriate potential functions according to the problem.

One of the classical potential functions of pairwise cliques C2 is the Pott’s model where we

have

V2(li, lj) =







1 if li 6= lj

0 otherwise
This simple case enforces the neighbor sites to have the same label and is applicable to many

computer vision energy functions. A number of other potential functions are discussed in [97].
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2.3.5 Maximum A Posteriori (MAP) - Markov Random Field (MRF) La-
beling

The realization of the labeling F = l is not accessible directly, rather it can only be realized

via the observation d. The conditional probability Pr(d|l) is the link between the realization

and the observation. A classical method to estimate the configuration l is to use the Maximum

A Posteriori estimation as follows. Lets denote the observed data as d and the unknown labeling

configuration to be l. For the case of images, let the set of sites S be all the pixel positions in an

image denoted as G and the size of G is m. At each pixel location (x, y) in the grid G we have

an observed variable d(x,y) and an unknown label l(x,y) which is drawn from the set of labels

L. See Fig. 2.3 for an explanation of this realization setting. The posterior distribution of the

Figure 2.3 Labeling of observed variables where the unknown variables belong to a Markov
Random Field

labelings l is given as Pr(l|d). From Bayes theorem

argmax
l

Pr(l|d) = argmax
l

Pr(d|l) Pr(l).

where Pr(d|l) is the likelihood of generating the observation d and Pr(l) is the prior knowledge

about the structure of the unknown labels l. A simple likelihood formulation can be given as

Pr(d|l) = K × exp (−U(d|l)).
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where K is a constant and

U(d|l) =
m∑

i=1

(li − di)
2

2σ2
i

.

The prior is given as

Pr(l) = Z−1 exp−U(l).

where from a Markov Random Field modeling of the unknown labels and a quadratic clique

potential function for pairwise cliques we have

U(l) =
∑

c∈C

Vc(l) =

m∑

i=1

(li − li−1)
2.

Here Z =
∑

l exp−U(l) and Vc(l) is the clique potential defined in cliques c of size 2 in the

image grid G. This potential incorporates a smoothness constraint in the final solution. Thus

the posterior becomes

Pr(l|d) ≈ exp (−U(d|l)) × exp−U(l).

Taking a negative log of the above equation converts the maximization of probability to mini-

mization of an energy function. Mathematically speaking we have

U(l|d) = U(d|l) + U(l)

=
m∑

i=1

(li − di)
2

2σ2
i

+
m∑

i=1

(li − li−1)
2.

Thus the MAP estimate becomes minimizing of the posterior energy

l∗ = argmin
l

U(l|d).

The energy function U(l|d) is commonly written as E(l) and consist of two terms. The first

term is called the data term which is
∑m

i=1
(li−di)

2

2σ2
i

and the second term is called potential
term which is

∑m
i=1(li − li−1)

2 in the previous equation. As the names imply, the data term

is derived from the observed data and the potential term encodes the clique potential of the

underlying labeling. Thus we write

E(l) = Edata(l) + Epotential(l).
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where the data term has the general form of

Edata(l) =
∑

i∈S

Di(li).

which encodes the cost of assigning the label li to pixel i or in other words how much does

labeling disagree. The potential term has the general form of

Epotential(l) =
∑

{i,j}∈N

V{i,j}(li, lj).

which measure the amount of closeness in the labeling given to neighboring pixel locations i

and j. Thus, the procedure of the MAP-MRF approach for solving computer vision problems

is summarized in the following:

• Pose a vision problem as one of labeling and choose an appropriate MRF representation

for the labeling l.

• Formulate an energy function by deriving proper likelihood and smoothness function

• Find the MAP solution by solving the energy function using optimization technique like

Belief Propagation [29, 31].

The energy minimization approach has been used since long in computer vision for a num-

ber of problems e.g. image restoration and reconstruction [35, 33], shape from shading [42],

stereo, motion and optical flow [40], texture [44, 19], edge detection [96], image segmenta-

tion [56], perceptual grouping [63, 69], object matching and recognition [57, 58] and pose

estimation [38]. Some of the recent works which are based on optimization techniques are

prominently in single view [12] and multi-view stereo [48], image restoration [33], texture

synthesis [50] etc.

2.4 Summary

Total Variation -Usual choice for restoration are quadratic functionals. They give easier

(lineal) mathematical problem but enforces smoothness of image and edges are not well re-

stored. Thus the need non-quadratic functionals. Variational models exhibit the solution of
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this problem as minimizers of appropriately chosen functionals. The minimization technique

of choice for such models routinely involves the solution of nonlinear partial differential equa-

tions (PDEs) derived as necessary optimality conditions. Variational and PDE based models

make it particularly easy to impose geometric regularity on the solutions obtained as denoised

images, such as smoothness of boundaries. This is one of the main reasons behind their suc-

cess.

Markov Random Field -The spatial property can be modeled through different aspects,

among which, the contextual constraint is a general and powerful one. Markov random field

(MRF) theory provides a convenient and consistent way to model context-dependent entities

such as image pixels and correlated features. This is achieved by characterizing mutual influ-

ences among such entities using conditional MRF distributions.
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Chapter 3

Super-resolution of Document Images

3.1 Introduction

With the advent of modern electronic gadgets like PDAs, cellular phones, and digital cam-

eras, the scope of document imaging has increased. Document image analysis systems are

becoming increasingly visible in everyday life. For instance, one may be interested in process-

ing, storing, understanding a class of document images obtained by cellular phones [47]. Pro-

cessing challenges in this class of documents are considerably different from the conventional

scanned document images. Many of this new class of documents are characterized by low

resolution and poor quality making the immediate recognition practically impossible. Super

resolution provides an algorithmic solution to the resolution enhancement problem by exploit-

ing the image-specific apriori information [27, 75].

Super-resolution of low resolution document images is becoming an important pre-requisite

for design and development of robust document analysis systems [14, 54]. Large scale camera

based book scanners employed in digital libraries could get benefited from resolution enhance-

ment to obtain high OCR accuracies. It is also true with the text embedded in natural scenes,

which could be used for indexing their images. Digital video compression algorithms can also

benefit from the successful text resolution expansion techniques. Videos are often indexed and

retrieved based on embedded text information. The text observed in broadcast videos is often

low in resolution. Without enhancement, a simple binarization could completely remove many

strokes. In these conditions, it is virtually impossible to do character recognition as most of the
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OCRs are designed to work at reasonably high resolutions. Resolution enhancement algorithm

increase spatial resolution, while maintaining the difference between text and background. It

can further assist the recognition in low-resolution text images.

This chapter focuses on the issue of increasing the resolution of a single document im-

age. There has been a substantial amount of previous work in super-resolution for general

imagery [27, 28, 75]. However, document images are a distinct class of images widely dif-

ferent from natural images. The problem of document super-resolution is a special case of

image super-resolution because (a) document images are pseudo binary in nature and (b) the

regularity of the patterns used in this “visual” language distinguishes the document images

from natural scenes. Further, due to our excessive familiarity, in the case of document images,

we have fair amount of apriori knowledge about the high resolution image. This increases

the expectations on the document super resolution algorithms. A successful document super

resolution algorithm needs to use the text-specific apriori information. Edges are geometric

regular spatial patterns, and are among the most noticeable features in document images. The

visual quality near the edge areas adversely affect our perception of distortion.

In this work, we propose an algorithm for super-resolution of textual document images

using an edge directed tangent field. This scheme is ideally suited for the textual content

where the smoothness will have to be enforced along the edges instead of across the edges.

We demonstrate the applicability of the approach on documents obtained from book scanners,

cell-phone cameras and broadcast videos. We demonstrate the qualitative and quantitative

improvement of this method over traditional resolution enhancement schemes.

3.2 Related Work

Simple approaches to image enhancement are popular in literature. Gaussian and Wiener

filters (and a host of other linear filters) have been used for smoothing the blockiness created

by the low resolution imaging [43]. Median filters (and similar nonlinear filters) tend to fare

better, producing less blurry images. Interpolation methods such as cubic-spline interpolation

tend to be the most common image resolution enhancement approach. There are two primary
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difficulties with interpolation methods for resolution enhancement. First, smoothing in inter-

polation is indiscriminate. It occurs in places with gradual change, as well as across the sharp

edges, producing blurring. Second, these approaches are inconsistent. Subsampling the super-

resolution image will not return the original low-resolution one, which implies that the high

resolution image is not the “true” high resolution image, which one is interested in estimat-

ing. Hence we need a model which not only maintains consistency but also tries to ensure that

smoothing does not occur in region boundaries.

One of the earliest attempts to do super-resolution of document images was by Li and Doer-

mann [54]. They used the method of projection onto convex sets (POCS), to deblur scene text

in video sequences. This was particularly suitable for their application since overlaid text, usu-

ally have pure translation between frames. A pure translational model is a common assumption

due to its simplicity and ease of implementation. In a parallel work, Capel and Zisserman [14]

used a projective transform motion model for super-resolution of text specifically for image se-

quences in which the point-to-point image transformation was of enough complexity to demand

such consideration. Both these methods successfully demonstrate the use of super-resolution

to improve the document images. In a recent work, Teager filter (a quadratic unsharp masking

filter) was adopted by Mancas-Thillou and Mirmehdi [67] for the extraction of high frequen-

cies thus enhancing character edges. Most of these prior models did not reflect any text image

property. This has been identified as a promising direction to derive super resolution algorithms

specially suited for document images. Donaldson and Myers [22] proposed a text specific prior

model, which modeled the bimodality and the local smoothness with step discontinuity. They

use the Gibbs prior with a Huber gradient penalty function as their smoothness function. This

piecewise smoothness prior is good at reducing false speckles in the results, but it undermines

the importance of enhancing edges. Dalley et al. [20] employed a training-based method, in a

Bayesian framework. A database is built that indicates which high-resolution patch should be

output given an input low-resolution patch. Park et al. [74] developed an alternative approach,

an edge-based super-resolution technique. It attempts to locate the edges to subpixel accuracy

in a sequence of images taken from training examples, and then fuses the conglomerated edge

information into the super-resolved image using a MRF formulation.
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A variety of methods have been proposed to improve the contrast within a single text image.

They include methods based on multi-resolution pyramid with fuzzy edge detectors [85], and

a mixed approach using topological features and contour beautification [73]. There has been

only limited work in the area of single frame non-training based super-resolution. Thouin and

Chang [93] used nonlinear optimization on a gray scale input image to minimize a Bimodal

Smoothness Average (BSA) score. Though this method works well, the processed direction

of the smoothness constraint, which is a differential equation based method, is defined by the

gradient magnitude of the image, where the random attribute of the image is not considered.

Therefore it fails to preserve edge and texture, specially the corner edges of text image.

In general, most of the previous approaches treated document image super-resolution very

similar to that of super-resolution of natural images. This resulted in adverse characteristics

near the character edges and corners. Textual content in document images are primarily binary

and the smoothness will have to be preserved along the edges and not across the edges. We

demonstrate that such an edge preserving resolution enhancement technique is ideally suited

for document images.

3.3 List of Contributions

Here are the list of contribution in this chapter

• We propose a belief propagation based discrete optimization technique for single-frame

text super-resolution. We formulate a novel objective function for text images. The

technique generates all the prior information on the fly and requires no training images.

• A novel way to model the bimodal nature of the document images in the MRF is shown,

and is incorporated in the objective function to generate a sharp bimodal output image.

• The proposed method has edge-directed smoothing function that is tailor made for doc-

ument images. It is ideally suited for the textual content where the smoothness will have

to be enforced along the edges instead of across the edges.
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Figure 3.1 Bimodal Distribution:I(p) is the gray level at pixel p. µblack and µwhite are fore-
ground and background peaks, respectively.

3.4 Text Specific Prior Estimation

Though some of the [73, 93] existing methods super-resolve documents, they have less

emphasis on enhancing the edges. Significant amount of degradation takes place at the edges

in the resolution expansion methods. Preserving character edges is most vital in document

images. However, edges in low-resolution document images appear as spatially blurred edges

due to degradation, sensor noise and focal blur. When edges are blurred, it is difficult to

explicitly locate the edges and its digital directions. This makes the super-resolution with

focus on explicit enhancement of edges in document images difficult.

To avoid the difficulties with explicit edge enhancement approach, implicit edge-directed

super-resolution method is proposed in this chapter. The proposed Markov Random Field

(MRF) based edge-directed super-resolution method, is an implicit edge-directed restoration. It

generates the edge-directed information on the fly, making the method independent of training

set.

Ideally, any algorithm to perform document image super-resolution, should have the follow-

ing characteristics:

• It should be able to successfully handle the bimodal distribution so typical of a document

image.

• It should preserve and enhance the edges and corners.
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• Expanded images are constrained such that the subsampling the super-resolution image

should return the original low-resolution one.

For practical use, we would like our method to be reasonably fast. We will also try to imbibe

all the above properties in our formulation.

The general framework for the problems can be defined as follows. Let P be the set of

pixels in an image and L be a set of labels. For e.g., in gray level images, there are 256

labels. The labels correspond to quantities that we want to estimate at each pixel. A labeling

f assigns a label fp ∈ L to each pixel p ∈ P . The quality of a labeling is given by the

energy function E(f), and is defined in terms of its clique system. A neighborhood structure

Np, which contains neighboring pixels of site p (p is not included in Np), is first defined.

Then a clique is defined on the neighborhood structure Np. A set of pixel sites c in Np is a

clique if all pairs of sites in c are neighbors. Lastly, a function Vc, called potential function,

defines the interactions of pixel sites in clique c. Spatial constraints are imposed through the

formulation of potential function Vc. The potential function is related to the energy function as

E(f) =
∑

c∈C Vc(f).

3.4.1 Bimodality Constraint

Images of text are usually smooth in both the foreground and background regions with sharp

transitions only at the edges. Thus, text images typically have bimodal distributions, as shown

in Figure 3.1, with large black and white peaks. The peak occurs at µwhite, the background

(white) values, since the majority of pixels on a text page is background. There is a second

peak at µblack, representing the black letters. Additionally, there are a small number of gray

values occurring between the two peaks, which represent the gray pixels that exist at transitions

from white to black. The amount of these intermediate gray levels is related to the amount of

blur in the document image. The textual content is almost always rendered with a high contrast,

otherwise, the content provider risks, the viewer not noticing the content. In order to obtain an

unblurred image, we wish to obtain a sharp bimodal distribution, pushing the intermediate gray
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level towards their nearest peaks. To incorporate this property we define the energy function as

Bp(fp) = (fp − µwhite)
2(fp − µblack)

2 (3.1)

where Bp(fp) is the cost of assigning label fp to pixel p, effecting the distribution, and is

referred to as the bimodal cost. This expression measures how far the assigned label fp is from

the assigned bimodal peaks. Minimizing this expression will assign labels fp to pixel p, values

that are close to either of the peaks, making the peaks in the distribution increasingly sharper.

It is interesting to notice that this energy component is capable of regulating the distribution of

the document image, thus the MRF operating at a global level. As we shall see later that we

try to minimize this energy component, resulting in a sharp bimodal image.

We would also like the label fp to be as close to the gray value I(p), for a pixel p. Thus, the

energy term for clique with single site, is defined as

Dp(fp) = (I(p) − fp)
2 + Bp(fp) (3.2)

where Dp(fp) is the cost of assigning label fp to pixel p, which is referred to as the data cost.

I(p) is the gray level at pixel p.

3.4.2 Smoothness Along Edges

A sharp edge in an image corresponds to relatively large intensity gradients concentrated

along the edge, while a relatively smooth area is composed of a more scattered set of weaker

or almost no gradients. With the exception of edges, text images tend to be very smooth in

both the foreground and background regions which results in neighbors with similar values.

A document image has character images with sharp curves along the boundaries as shown in

Figure 3.2a. The relation between high- and low-resolution image, essentially depend on the

smoothness of the edge direction. Character edges generally consist of piece wise smooth

curves. The join of two curves are the corners of the characters. The enhancement approach

needs to discriminate between smooth curve and the corners in the text image. Therefore, while

restoring these character images, the smoothness along the character edges have to be enforced

in the formulation, on the other hand maintaining sharp discontinuities across the edges. To
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(a) Character ‘A’ (b) Gradient Field

(c) Tangent Field (d) Resolved x, y Components
of Tangent Field

Figure 3.2 Tangent Field: (a) Character ‘A’ (b) The gradient field (c) The tangent field and (d)
The resolved x and y components of the tangent field (c).

find the edge direction we first compute the gradient of image as shown in Figure 3.2b. Then

we take vectors tangential to this gradient field. This tangent field consists of vectors pointing

along the boundaries of character images as shown in Figure 3.2c. Let the tangent vector

at pixel location p of the degraded low-resolution image I be T p. The tangent field is further

resolved into its x−axis and y−axis components as shown in Figure 3.2d, which are denoted

as T p
x and T p

y , respectively. This is done because the edges are four-connected image grid graph.

These potentials are used in assigning labels fp and fq to two neighboring pixels. We define

the energy function with a quadratic cost function for the clique with two sites as

V (fp, fq) =







min(sTx(fp − fq)
2, d) if (p, q) are

along x-axis

min(sTy(fp − fq)
2, d) if (p, q) are

along y-axis

(3.3)

where s is the rate of increase in the cost. In order to allow for large discontinuities in the

labeling the cost function stops growing after the difference becomes large. This is controlled

42



by the parameter d. V (fp, fq) is the cost of assigning labels fp and fq to two neighboring

pixels, and is normally referred to as the smoothness cost. The truncated quadratic cost changes

smoothly from being almost quadratic near the origin to a constant value as the cost increases.

To understand why this approach is effective, notice that a character edge has either sharp

corners or smooth curves. These geometric spatial constraints can be described by local tangent

field. Our proposed MRF model-based method is an implicit edge-directed approach. In this

formulation, the edge direction of an edge pixel is indicated by the continuity strength in that

direction. Instead of labeling each direction as either edge or non-edge direction, we measure

the continuity strength in each direction with the strength of the tangent field. These values

are derived from the intensity variations, i.e., the gradient. The relative continuity strengths of

the directions are used as edge direction information to formulate the geometric regular spatial

constraint, which can be summarized as smoothness along edge directions and sharpness across

edge directions. Areas where the gradient is zero or negligible, the smoothness cost function

is very low and does not have much influence. In these places the bimodal cost is the major

deciding factor, thus rendering a highly smooth surface in those regions.

3.4.3 Subsampling Consistency

The subsampling consistency should be preserved between the low-resolution and its cor-

responding high-resolution image, which means that when you subsample a high-resolution

image generated by the method, it should recover the original input image. In this section we

describe a dualscale technique to circumvent this problem. The basic idea is to impose the

criteria that the expanded images are constrained such that the average of a group of high-

resolution pixels is close to the original value of the low-resolution pixel from which they were

derived. We use hierarchy to impose this constraint on the successive finer level.

In establishing the coarse-to-fine relation, we use the notion of dualscale image grid, as

shown in Figure 3.3. The lower level corresponds to the original labeling problem we want to

solve. The higher level consists of blocks of 2m × 2m pixel locations grouped together, where

m is the magnification factor, and the resulting blocks are connected in a grid structure. The
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Figure 3.3 Dualscale structure: Each node in lower level(Super-resolved Image) corresponds to
a block of four nodes in the higher level(Low-resolution Image). In this case the magnification
factor m = 2.

lower level and the higher level in Figure 3.3 correspond to the high- and low-resolution images

respectively. A block in the higher level corresponds to a pixel in the low-resolution image.

The subsampling consistency can then be conditioned as

Sp(fp, b) = (I(b) − fp)
2 (3.4)

where p is a pixel at the lower level and block b is the corresponding pixel at the higher level.

I(b) is the gray level at pixel b. Sp(fp, b) is the cost of assigning label fp to pixel p based

on block b that measures its distance from the corresponding block at the higher level. It is

referred to as the subsampling cost.

3.5 MRF Formulation to Document Super-resolution

We model the spatial relationships in images using a Markov network, which has many well-

known uses in image processing [17]. This means that the probability distribution of a node

on the intermediate-resolved image is conditionally independent of all but the neighborhood of

the node. Figure 3.4a shows the neighborhood of a node of the MRF and Figure 3.4b shows

the cliques in the neighborhood system. In Figure 3.4a, circles represent network nodes, and

the lines indicate statistical dependencies between nodes. In Figure 3.4b, we define two kinds

of cliques c1 ∈ C1 and c2 ∈ C2. Therefore, for each node on intermediate-resolved image,
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Figure 3.4 Clique system in the proposed MRF

there are six cliques related to it, one c1 clique and five c2 cliques. The clique c1 represents

the dependency between the intermediate-resolved image and the bimodality of the restored

image. The clique attains higher energy value as the pixel moves away from the bimodal peak.

Lowering the energy, facilitates in deriving a sharp bimodal image. The clique c2 represents

the dependency between two neighboring nodes. Clique c2 performs two distinct tasks. First,

the selective smoothing using a tangent field is performed to improve the local smoothness of

each region of text region. Second, it ensures that the high resolution image does not drift far

from the corresponding low resolution image. This is done by establishing a relation between

the low- and high-resolution image.
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The quality of a labeling in general restoration problem is given by an energy function,

E(f) =
∑

(p,q)∈N

(V (fp, fq) + Sp(fp, b)) +
∑

p∈P

Dp(fp) (3.5)

where N are the edges in the five-connected image grid graph shown in Figure 3.4a. Here, p

and q are nodes belonging to the same level and node b belongs to the immediate higher level.

Finding a labeling with minimum energy corresponds to the Maximum A Posteriori (MAP)

estimation problem for an appropriately defined MRF.

3.5.1 Energy Minimization using Loopy Belief Propagation

While the MRF framework yields an optimization problem that is NP hard, good approxi-

mation techniques based on graph cuts [11] and on belief propagation [29, 31] have been devel-

oped and demonstrated for problems such as stereo and image restoration. These methods are

good both in the sense that the local minima they find are minima over “large neighborhoods”,

and in the sense that they produce highly accurate results in practice.

We start by briefly reviewing the BP approach for performing inference on Markov random

fields. First we consider the max-product algorithm, which can be used to approximate the

MAP solution to MRF problems. Normally this technique is defined in terms of probability

distributions, but an equivalent computation can be performed with negative log probabilities,

where the max-product becomes a min-sum. We use this formulation because it is less sensitive

to numerical artifacts, and because it directly corresponds to the energy function definition in

equation 4.6.

The max-product BP algorithm works by passing messages around the graph defined by the

four-connected image grid. The method is iterative, with messages from all nodes being passed

in parallel. Each message is a vector of dimension given by the number of possible labels, k.

Let mt
p→q be the message that node p sends to a neighboring node q at iteration t. When using

negative log probabilities all entries in m0
p→q are initialized to zero, and at each iteration new

messages are computed in the following way,
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mt
p→q(fp) = min

fp

(

V (fp, fq) + Sp(fp, b) + Dp(fp) +
∑

s∈N (p)\q

mt−1
s→p(fp)

)

(3.6)

where N (p)\q denotes the neighbors of p other than q. After T iterations a belief vector is

computed for each node,

bq(fq) = Dq(fq) +
∑

p∈N (q)

mT
p→q(fq) (3.7)

Finally, the label f ∗q that minimizes bq(fq) individually at each node is selected. The standard

implementation of this message passing algorithm on the grid graph runs in O(nk2T ) time,

where n is the number of pixels in the image, k is the number of possible labels for each pixel

and T is the number of iterations. It takes O(k2) time to compute each message and there are

O(n) messages to be computed in each iteration.

3.5.2 Algorithm Details

Proposed super-resolution process embeds the MRF super-resolution framework (Figure 3.4a)

through iteration. The bicubic-interpolated image of an observed low-resolution image is given

as an initial intermediate resolved image. We predict missing image details in the interpolated

image to create the super-resolution output. And the intermediate-resolved image is improved

by the MRF framework. The edge weights are calculated both from neighbors from same level

and the immediate higher level. The quality of the final super-resolved result varies with the

number of iterations. The edge weights of the same level are extracted from the tangent field

and is given in Equation. 4.3. The edge that connects to the higher level in the dualscale struc-

ture (Figure 3.3) which passes the coarse-to-fine information, are estimated using Equation 4.5.

Finding the exact solution can be computationally intractable, but we find good results using

the approximate solution obtained by running a fast, iterative algorithm called efficient belief

propagation [29]. The algorithm runs at one level of resolution and then uses the messages at

that level in order to get estimates for the messages at the next finer level, and so on, down to

the original grid. Three or four iterations at each level and a maximum of five levels of grid

hierarchy are sufficient. Inference algorithms based on belief propagation have been found to
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Figure 3.5 Character ‘s’ super-resolved by a factor of 4 times

(a)
Bilinear

(b)
Cubic
Spline

(c) BSA
Algo-
rithm

(d) Pro-
posed

Figure 3.6 Thresholded version of the results of several methods in Figure 3.5.

yield accurate results, but despite recent advances are often too slow for practical use [29].

For a full-size page (of size 1600 × 2600) the processing time is way beyond any commercial

use. To make it work more efficiently for a document page, we try to divide and conquer the

problem. Each character in a document is visually an independent entity, not to mention about

a word or a line. Geometrically it does not depend on one another. Thus they can be dealt

separately without effecting the overall document image. In our method, the low resolution

full size paper is segmented to word or line level as per the feasibility. These small chunks of

images are then fed into the algorithm, drastically reducing the time and space complexity.
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(a) Ideal High-resolution Image (b) Low-resolution Image

(c) Bilinear Interpolated Image (d) Cubic Spline Interpolated Image

(e) Using Proposed Method Restored Image

Figure 3.7 Text super-resolved by a factor of 4 times

3.6 Experimental Results

We demonstrate the performance of our algorithm on textual content in video frames as well

as the document images obtained by book scanners, and cellphone cameras. We quantitatively

and qualitatively demonstrate the superiority of the proposed model.

To show the effectiveness of our method, we compare the results with several common

methods, including bilinear interpolation, cubic-spline interpolation and BSA algorithm [93].

Figure 3.5 shows resulting images obtained from linear interpolation, cubic spline expansion,

BSA algorithm and our method. The character ‘s’ from an image scanned at 75 dots per inch

(dpi) using 8-bit gray scale quantization is shown in Figure 3.5a where significant blockiness

is apparent. Bilinear interpolation results in a continuous curve, with a discontinuous deriva-

tive. These images naturally tend to be smooth, without sharp discontinuities, producing blurry

results. Bilinear interpolation by a factor of four was used to create the image in Figure 3.5b,

which is very blurry and lacks good contrast. Cubic-spline interpolation is an alternate popular

scheme. The disadvantage of cubic splines is that they could oscillate in the neighborhood of

an outlier producing a ringing effect. Figure 3.5c depicts the resulting image from cubic spline

expansion which has better contrast but is still not sharp at the edges. The image obtained

using BSA restoration in Figure 3.5d has superior to the images obtained using other interpo-

lation methods for this example. This method allows for sharp edges but does not discriminate

between general text edge and corners. Our method presents an edge-directed super-resolution
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(a) Low-resolution Camera Based Image (b) Our method

Figure 3.8 Camera based results. A small portion of the text is magnified and displayed.

(a) Low-resolution Image from television
broadcast

(b) Our method

Figure 3.9 Result on text from television broadcast frames.

algorithm. Consequently the local edge direction are represented well by this method. Fig-

ure 3.5e shows, image quality is improved, strokes are reconstructed more precisely, linearity

and smoothness of contours are improved, stroke width is more uniform, and shape features of

fonts are reconstructed finely. Figure 3.6 shows the thresholded version of the results of sev-

eral methods in Figure 3.5. Bilinear and cubic spline methods introduces cut in the thresholded

image as shown in Figure 3.6a and Figure 3.6b, respectively. Figure 3.6c shows that there is

still blockiness left on the smooth surface of the character ‘s’, introduced by BSA algorithm.

The reason being that the algorithm breaks the whole image into 4 × 4 blocks and each of

these blocks are handled independently, resulting in lack of continuity across the blocks. Fig-

ure 3.6d shows that there is not much difference from the original image in Figure 3.5d even

after thresholding as our method generates a sharp bimodal image. The image obtained using

our method has smooth edges and is superior to the images obtained using other methods.

We demonstrate the effectiveness by creating low-resolution images from high-resolution

originals, expanding the low-resolution imagery, and then measuring the distance to the orig-

inals. To achieve this an anti-aliasing process is performed by blurring (low pass filter) the

image followed by block averaging (subsampling). For an image I , of r rows and c columns

and a low pass filter with impulse response G, the resulting image i subsampled at each ∆

50



Figure 3.10 Text super-resolved by a factor of 4 times

pixels would be represented by

i(x, y) =

r∑

j=1

c∑

i=1

I(i, j)G(x − i, y − j),

where x = 1, . . . , c/∆ and y = 1, . . . , r/∆. Restored images are then compared with the

original to determine the success of restoration numerically. For binary document images,

the PSNR does not match well with subjective assessment, since it is a point-based measure-

ment, and mutual relations between pixels are not taken into account. Hence, we use the

Distance-Reciprocal Distortion Measure (DRDM) that measures the visual distortion in dig-

ital binary document images and matches well to the subjective evaluation by human visual

perception [64]. The DRDM was used to compare the various methods of image resolution

expansion. We initially take a 70×380 size image at 300dpi as shown in Figure 3.7a. The low

resolution image is generated by the process of anti-aliasing, where a Gaussian low pass filter

of standard variance σ = 1 and block averaged with ∆ = 4 was used shown in Figure 3.7b.

The bilinear interpolation produces a severely blurred image shown in Figure 3.7c, reducing

the DRDM to 7549.7. The cubic-spline gives better result in Figure 3.7d with DRDM reduced

to 6945.3. Our method produced the best image shown in Figure 3.7e by reducing the DRDM

to 6156.4. The sharp decline in DRDM score justifies our claim. A comparative study of the
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(a) Low-resolution Image

(b) Spline Interpolated Image

(c) Spline Interpolated OCR text

(d) Our method

(e) Our method OCR text

Figure 3.11 An example text block.
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reduction in DRDM for the various image expansion techniques is plotted in Figure 3.6. We

observe that higher blur factor leads to greater error during restoration.

Experiments with Camera-Based images is conducted by capturing document images using

a Cannon hand held camera. Result on camera-based image is displayed in Figure 3.8 Text in a

video broadcast frames are rendered in very low-resolution. Result obtained by super-resolving

these images is shown in Figure 3.9.

We examined effectiveness of the proposed method for improving OCR accuracy. A set

of 20 page from a book were used, where a page consist of approx 350 ∼ 400 words. Each

page was then scanned using 8-bit gray scale quantization at 100 dpi to create low-resolution

original images using a ZEUTSCHEL OS 5000 scanner. These 100 dpi resolution pages were

then expanded using various resolution expansion methods by a factor of four to create 400

dpi images which were processed by OCR. Restored images in 400 dpi were generated from

input images in 100 dpi by the proposed method. The OCR accuracy, using FreeOCR Version

2.2, a freely downloadable OCR package, was compared with the results of images that were

expanded using various other resolution expansion methods by a factor of four. There were

a total of 28708 characters in these 20 images. Cubic spline interpolation resulted in 1558

character errors and our method had 869 character errors for an overall improvement of 44.2%

for this set of images. The expansion required about 6 1
2

min per page for our restoration

algorithm. A sample section of restored images using cubic spline expansion and our method

are shown in Figure 3.11. Figure 3.11a shows the original low-resolution image. We observe

that the text is bimodal where µblack and µwhite are 20 and 170, respectively. The reason for

improvement in OCR-accuracy is possibly the enhancement of the edge directed tangent field.

Since many OCR algorithms use directional features along contours as primary features, the

contour enhancement are effective for improving OCR accuracy as well as image quality.

3.7 Summary

An implicit edge-directed super-resolution algorithm for document images is proposed in

this paper. Edge direction information is incorporated in the formulation of the energy function
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in the MRF model. The edge preserving super resolution scheme provides better results on a

wide class of document images. The method is quite straightforward to implement and generate

good results. Our algorithm is an instance of a general non training based approach that can

be useful for document image-processing, that extracts a single high-resolution frame from a

single low-resolution image, where the priors are derived from same image. In this approach,

the unknown pixel values are estimated based on their local surrounding neighbourhood, but

not on the whole image. In particular, we donot exploit the multiple occurrence of characters

in the scanned document. In the next chapter we propose to take advantage of this repetitive

behaviour, we divide the image into character segments and match similar character segments

to filter relevant information before the reconstruction.
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Chapter 4

Text Restoration by exploiting repetitive character behaviour

4.1 Introduction

Document images are often obtained by digitizing paper documents like books or manuscripts.

They could be poor in appearance due to degradation of paper quality, spreading and flaking

of ink toner, imaging artifacts etc. All the above phenomena lead to different types of noise

at the word level including boundary erosion, dilation, cuts/breaks and merges of characters.

Restoration of such images has many applications in enhancing the performance of character

recognizers as well as in book readers used in digital libraries. Often, along with the restoration,

one also looks for enhancement of the resolution. Text observed from these sources is often

low-resolution degraded images, and requires restoration and resolution expansion in order to

improve OCR performance. Moreover, these imperfect images may be inadequate for subse-

quent human use. The visual and recognition ability fall due to these effects. The accuracy

of today’s document recognition algorithms falls abruptly when image quality degrades even

slightly [3]. Significant improvement in accuracy on hard problems now depends as much, or

more, on the size and quality of training sets as on algorithms and hardware [3].

Restoration and enhancement are well studied in image processing literature. The linear

filters are based on the assumption of linear, space invariant degradation. The restoration tech-

nique can be carried out in the frequency domain. The linear filter is easy to design and analyze.

Popular low pass noise removal filters do not make any significant assumption about the scene

content. Inverse-filtering based restoration technique model the degradation (eg. motion blur)
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Figure 4.1 Generative Model: (a) A typical ideal image with Serif font. (b) is the Degradation
version of (a) with parameters (α0, α, β0, β) = (0.6, 1.5, 0.8, 2.0) [103]. (c) is the scanning
process. (d) and (e) are the Blurred version and then down-sampled versions of (b), respec-
tively. Our problem is to rectify the low resolution degraded image to a high-quality magnified
document image, making it suitable for further machine and human use.

and recover the signal in a model-based framework. But document images have sharp edges.

The restriction that the estimation rule be linear combination of observed values is not suitable.

We exploit the properties of document images to develop a specific restoration technique, spe-

cially suited for the same. This chapter presents a document restoration technique that takes

advantage of the repetitive structural nature of a document image which is further enhanced

by a document specific prior information. Both prior and likelihood distributions are then

formulated as a maximum a posterior (MAP) solution, which is a special case in the Bayes

framework.

4.2 Related Work

There has been significant amount of research in the field of document restoration. Text en-

hancement efforts focus on fixing broken or touching characters [90, 102]. Traditional methods

for text image enhancement can be classified into four categories: filtering, contrast enhance-

ment, model-based image restoration, and resolution expansion. Some of the restoration efforts

are based on morphological filters [103, 60] which discuss a method for binary morphologi-

cal filter design to restore document images degraded by subtractive or additive noise, given

a constraint on the size of filters. Bern and Goldberg [5] assume a probabilistic model of
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the scanning process, and uses this model to cluster instances of the same letter and to com-

pute super-resolved representatives of the clusters. Other methods [1] use similar model based

approaches. A variety of methods have been proposed in order to improve contrast within

text images. They include methods based on multi-resolution pyramid and fuzzy edge detec-

tors [85] where document image to be enhanced is obtained from a scanner and is a blurred

binary image that is corrupted by additive noise. A mixed approach using topological fea-

tures and contour beautification [73] for restoring high-resolution binary images is presented

to improve legibility of low-resolution document images. The initially restored image is gen-

erated by simple techniques, and is then improved by integrating a variety of features obtained

through image analysis. Missing strokes of characters are complemented based on topographic

features. Few of the resolution expansion approaches include text bitmap averaging [39] where

the essence of the method is in finding and averaging bitmaps of the same symbol that are scat-

tered across a text page. Outline descriptions of the symbols are then obtained that can be

rendered at arbitrary resolution. Shannon interpolation is performed with text separation from

the image background in [55] to improve the OCR accuracy of digital video. Restoration of

images is widely considered as an example of an ill-posed inverse problem. Such problems

may be approached using regularization based methods, which constrain the feasible solution

space by exploiting the a priori knowledge [9].

A number of research efforts investigated combining text enhancement with resolution ex-

pansion in order to improve low-resolution text images. Perhaps the most salient property of

text is that it is generally bimodal. By its very nature, text characters must have some contrast

with the background to make them human-readable. This constraint has been successfully ap-

plied to the resolution enhancement of text in single images [93, 21]. This technique creates

a strongly bimodal image with smooth regions in both the foreground and background, while

allowing for sharp discontinuities at the edges. The restored image, which is constrained by

the given low-resolution image, is generated by iteratively solving a nonlinear optimization

problem. Dalley et al. [20] adopt a training-based method, where a database is build to map

the output high-resolution patch for a given input low-resolution patch. Given a single image

of text scanned in at low resolution from a piece of paper, return the image that is mostly likely
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to be generated from a noiseless high-resolution scan of the same piece of paper. Though this

method is efficient, it assumes that we have the font and script information, which is not always

true.

This chapter describes a restoration technique with enhancement for document images that

mimics image sequences by clustering similar character components. Spatiotemporal obser-

vation constraints are additionally added to constrain the feasible solution space with a priori

assumptions on the form of the solution. The prior information in our formulation is inde-

pendent of script and font information which is hard to predict. Our method differs from the

previous work [39] in the context that we have focused on the requirement of the prior infor-

mation, further combining the prior and data distribution in a Bayesian framework.

We propose a method for restoring high-quality binary images from degraded gray-scale

images in low resolution. An effective approach to tackle this problem is to utilize a Bayesian

inference approach. The restored image is generated from a collection of similar images by

estimating the likelihood, and it is then improved by integrating with a prior information, mak-

ing it a Maximum a Posteriori estimate. Here, we present a new image prior model based on

Total Variational (TV) energy minimization. The basic idea stems from the need for preserving

sharp edges, while discouraging degradations. In this chapter the performance of this method

is demonstrated by showing the improvement in visual quality of the document image. Further,

the results are quantitatively evaluated by running an OCR engine on the restored document

images.

4.3 List of Contributions

Here are the list of contribution in this chapter

• We have developed a mathematical framework based on maximum a posteriori (MAP) to

generate the prototype character from a set of similar degraded characters. The method of

maximum a posteriori estimation is used to obtain a estimate of an unobserved quantity,

in this case the prototype characters, on the basis of empirical data i.e, the degraded

characters.
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• We have proposed a prior smoothness function for document image restoration. The

smoothness prior is based on variational model. The variational based method imposes

geometric regularity on the solution obtained as denoised image and ensures smoothness

of boundaries.

• We have proposed a document restoration algorithm that takes advantage of the repetitive

structural nature of text in document images.

4.4 Document Restoration by Bayesian Inference

Given an input page as a gray-scale image, we first perform skew detection and page layout

analysis upto character segmentation. We need to find images of the same character symbol

that are scattered on a document page. For restoring document images, we assume that the

input image is obtained by digitizing and down-sampling a degraded character. A pictorial

explanation of the imaging process is given in Figure 4.1, where we see that the image gets

degraded on the paper as well as while imaging. Given input pages of a document as a binary

image, we segment them to obtain the word images. Connected components within this word

image are then extracted from all the segmented words. The bitmaps of the segmented character

images are initially clustered using a correlation based method [5]. (An alternate method is also

available in [39].) We say component C1 is equivalent to component C2 if:

r(C1/C2) > θ1 and r(C2/C1) > θ2 (4.1)

where θ1 and θ2 are the tight thresholds. For our experimentation we assume θ1 and θ2 to be

0.85. The value r(C1/C2) is computed as:

r(C1/C2) =
maxxi,j corr(C1, C2)

maxxi,j corr(C2, C2)

where xi,j is an element of the correlation matrix.

Document restoration problem can now be formulated as generation of good prototypes

corresponding to each cluster, where in our case the clustering is done using the Equation 4.1.

We exploit the simple fact that a textual region is generated by repetition of character images
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according to a language/script model. We assume that the document image being processed has

enough repetitive characters to take advantage of their multiple occurrences. Since the whole

page is from one book or collection, it is also in a single font.

The imaging model (Figure 4.1) specifies how the high-resolution text is transformed to

generate a low-resolution degraded image. This typically involves blurring, spatial sampling

and adding of noise. A high-resolution scene x with N pixels, is assumed to have generated

a set of K low-resolution images y(k), each with M pixels. The generative model for the kth

image is

y(k) = W(k)x + εG
(k) (4.2)

where εG represents noise on the low-resolution image, and consists of i.i.d. samples from a

zero-mean Gaussian with precision βG (equivalent to standard deviation σN = βG
(−1/2)). For

each image, the blurring and sub-sampling of the scene is modeled by an M×N sparse matrix

W(k) which is assumed to be parameterized by some vector θ(k). In other words, W(k) is a

function of θ(k). Given the sequence {y(k)}, the goal is to recover x, without any explicit

knowledge of the registration parameters {θ(k), εG
(k)}.

We argue that the image registration parameters may be determined a priori. For an indi-

vidual low-resolution image, given registrations and x, the likelihood is

p
(

y(k)|x, θ(k), εG
(k)
)

=

(
βG

2π

)M/2

exp

[

−
βG

2
‖y(k)−W(k)x‖

2
]

(4.3)

The vector x yielding the maximal value of Equation 4.3, would be the Maximum Like-

lihood (ML) estimation to the problem. But super-resolution images recovered in this way

often tend to be dominated by a great deal of high-frequency noise [78]. Moreover, the super-

resolution problem is almost always poorly conditioned, so a prior over x is usually required

to avoid solutions that are subjectively implausible to the human viewer.

In real world applications, it is critical that we use an accurate prior model. The problem

becomes more challenging when we deal with document images, because of its pseudo binary
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nature and the regularity of the patterns used in this “visual” language. Images of text are also

usually smooth in both the foreground and background regions with sharp transitions only at

the edges. In addition, expanded images are constrained so the average of a group of high-

resolution pixels is close to the original value of the low-resolution pixel from which they were

derived. The challenges of complex content, various types of structures (e.g., corners, edges or

surfaces) has to be incorporated in the model accurately.

We present the prior over the high resolution image by employing a total variational energy

minimization function. A major concern in designing image denoising models is to preserve

important image features, such as those most easily detected by the human visual system, while

removing noise. One such important image feature are the edges typical of a document image;

these are places in an image where there is a sharp change in image properties, which happens

for instance at object boundaries. Total variation (TV) based image restoration models were

first introduced by Rudin, Osher, and Fatemi in their pioneering work [81] on edge preserving

image denoising. It is one of the earliest and best known examples of PDE based edge preserv-

ing denoising. It is designed with the explicit goal of preserving sharp discontinuities (edges)

in images while removing noise and other unwanted fine scale detail. The revolutionary aspect

of this model is its regularization term that allows for discontinuities but at the same time dis-

courages oscillations. This algorithm seeks an equilibrium state (minimal energy) of an energy

functional comprised of the TV norm of the image x and the fidelity of this image to the noisy

input image x0. The minimizing energy function is:

ETV =

∫

Ω

(|∇x|) +
1

2
λ(x − x0)

2du dv (4.4)

Here, Ω denotes the image domain, and is usually a rectangle and λ is a Lagrange multiplier.

If we assume a uniform prior over the input images, the Maximum a Posteriori (MAP)

solution is found using the Bayes’ rule. The posterior distribution over x is of the form

p
(

x|y(k), θ(k), εG
(k)
)

=

p(x)
K∏

k=1

p
(

y(k)|x, θ(k), εG
(k)
)

(4.5)
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Figure 4.2 Restoration of words.

As the prior probability distribution on the super-resolution image is available, this informa-

tion is used to “regularize” the estimation. Inserting this prior into Equation 4.5, the posterior

over x, and taking the negative log, the MAP (maximum a posterior) estimator has the form:

xMAP = argmax
x

(−L) (4.6)

where

L = β ETV +

K∑

k=1

‖y(k)−W(k)x‖
2

where the right-hand side has been scaled to leave a single unknown ratio β between the data

error term and the prior term. We optimize the objective function of Equation 4.6 using con-

jugate gradient method to obtain an approximation to our resultant image. Here, we assume

that the matrix W(k) is available. To estimate W(k) we have used a method suggested by Tip-

ping and Bishop [94]. These enhanced images form the high-quality representatives of their

respective clusters.

Our restoration and enhancement algorithm is based on the basic Bayesian framework. The

Algorithm 1 shows the flow of our procedure. It is an iterative procedure, where at every stage

we infer a better estimate of restored image x. Assuming a set of K low-resolution degraded

observation images, {y(k)}, the algorithm finds the corresponding high-quality image x such
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6

(g) Iteration 7 (h) Iteration 8 (i) Iteration 9

(j) Iteration 10 (k) Iteration 15 (l) Iteration 20

Figure 4.3 Evolution of a word image. (a) Degraded Input (b)-(k) Intermediate restored images
and (l) Final restored image.

that the conditional probability of x, given the observed images {y(k)}, p(x|y(k)), is maxi-

mized. In our case this is difficult to calculate directly. Thus using Bayes’ law, we obtain

p(x|y(k)) ∝ p(x)p(y(k)|x), which is the MAP estimator. Once p(x)p(y(k)|x) are defined, the

output image, x, that maximizes p(x|y(k)), is iteratively calculated by stepping down the gradi-

ent of the negative log likelihood of p(x)p(y(k)|x) until a minimum is reached or a maximum

number of iterations are executed. Finally, reassembling the output page by replacing each

member of the cluster by its representative we restore the document.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.4 Evolution of a character image. (a) Degraded Input (b)-(f) Intermediate restored
images and (g) Final restored image.
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Figure 4.5 (a) Portion of text from original image (b) Portion of text from restored image.

Input: Given the document image and parameter W(k) [?].
Perform a character level segmentation.
Here y is the input image.

Output: Here x is the output image.
initialization - Perform the initial clustering [Equation 1].;
foreach cluster bin do

foreach element of the bin do
repeat

1) Parameterize the posterior distribution as a function of x

by substituting the values of y in Equation 4.3;
2) The equation is then minimized using conjugate gradient algorithm
to get a estimate of x;
3) Total energy minimization of x is then performed
to get the next estimation on x [Equation 4.4];

until the energy is minimized;
end

end
Algorithm 1: MAP formulation
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4.4.1 Discussion

We make the following comments about our method and its implementation. Document im-

age processing algorithms to detect text regions, and then segmenting them to obtain word and

component images are not described here. There exists significant amount of material in this

respect [15]. In real-life situations, character images could be split into multiple components or

merged to form single component. They may affect the clustering process. In [39] a procedure

is discussed to find images of the same character symbol that are scattered on a document page.

They employ a sequence of different clustering techniques, each applied to a different set of

shape features derived from the character images. The motivation is to progressively divide all

characters on a page into groups of decreasing sizes, and delay the uses of more expensive tech-

niques until later stages when the groups are sufficiently small. This method is experimentally

verified to be quite effective. However, in our case by defining appropriate similarity measure

in clustering, they are taken care of. It is important to classify the character images into as few

clusters as possible, since this is how the algorithm achieves its benefits. Yet it is even more im-

portant to avoid clustering incompatible character images since this leads to “mistakes” in the

output. The clustering results are important side products of the procedure and they have other

potential uses that remain to be explored. The computational requirement of this algorithm

is directly proportional to the number of similar components in the cluster and the conjugate

gradient method used in the optimization process. Further, it is worth while mentioning that

our method differs from the previous super-resolution methods in following three aspects: (i)

we do not learn a low-resolution to high-resolution match to build up our output image; (ii)

since we are using energy function (i.e., total variation minimizing process) to determine our

prior, we need not have any font or script information; (iii) our approach of image restoration

cum resolution expansion adopts a Maximum a Posteriori estimation approach as it provides a

rigorous theoretical framework with several desirable mathematical properties.
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Figure 4.6 MSE with ground truth for the character image “g”.
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Figure 4.7 MSE with ground truth for the word image “throughout”.

Specification Noisy Page Restored Page
Number of words 325 325
Recognized words 268 325
% Accuracy 82% 100%

Table 4.1 OCR Evaluation of image restoration results.
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4.5 Experimental results

The complete algorithm is implemented on degraded document images scanned at a specific

resolution. We expect restored document images as output, at the end of our experimentation.

We show the effectiveness of our algorithm by demonstrating the results using samples col-

lected mainly from degraded books. We scan these books in 200dpi using a ZEUTSCHEL OS

5000 scanner shown in Figure 4.1(c). The scanning device used here has a mounted camera

on top of the flat bed where the book is kept. The focus of the camera has to be adjusted to

get a sharp image. We have scanned 20 pages from four different variety of books containing

different fonts and styles. The document books already contain degradations. After the scan-

ning process the resultant image gets blurred and down-sampled. We proceed with binarizing

and skew correcting the scanned images. After a character level segmentation, we cluster the

components. For a character we get an approximate of 10-15 or more similar components.

Effectiveness is demonstrated for improving image quality. Fig. 4.5b shows the generated

binary image with resolution enhanced by a factor of two, along with the original image in

200dpi shown in Fig.4.5. Image quality is improved as resolution increases; strokes are re-

constructed more precisely, linearity and smoothness of contours are improved, stroke width is

more uniform, and shape features of fonts are reconstructed more finely. The proposed method

is effective for Latin scripts as well as oriental scripts. The plot in Fig. 4.6 depicts the evolution

of the degraded character “g”. The x-axis shows the number of connected components used

and the y-axis determines the Mean Square Error (MSE). The performance of our algorithm

was evaluated with respect to the mean square error (MSE). The figure shows how the mean

square error function decreases steadily as the number of collection of the similar components

increases. We see that the number of similar components is directly related to the accuracy of

the result. The step-by-step changes in the output of the image is shown in Fig. 4.4 where the

image in the left is the degraded image and image in the extreme right is the restored image. If

there are sufficient number of similar components then we get a high-quality restored image.

We examined effectiveness of the proposed method for improving OCR accuracy. Binary

images in 400dpi were generated from input images in 200dpi by the proposed method, and
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Figure 4.8 The document page on the left suffers from degradation and low-resolution. The
second image on the right shows the content restored using the algorithm presented in Algo-
rithm 1
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egottsrn

Table 4.2 OCR recognition output for few of the degraded words using a commercial
OCR(CuneiForm OCR).

the OCR accuracy using these images as input was compared with the results using bilinear

interpolation. Gray-scale images in 400dpi generated from input images in 200dpi by bilinear

interpolation which gives around 82% accuracy as shown in Table 4.1. Few of the words

incorrectly recognized during the whole process are listed in Table 4.2. Our method gives

around 100% accuracy. The page level output to our algorithm is shown in Figure 4.8.

4.6 Limitations of this approach

In this work, we exploit the repetitive behaviour and propose a reconstruction framework for

degraded low-resolution document images. This assumes that we focus on locating characters

and segmenting them. The document image acquisition process consists of making a (discrete)

digital image out of a paper document. However in practice, the acquired image is corrupted

by noise and blur. This makes the whole segmentation process inaccurate. The higher the

degradation or noise the greater is the unpredictability of the segmentation process. Hence, the

limitation of this work is that the work is built on top of character segmentation, which can be a

bottle-neck in the whole process. Moreover character segmentation is not a completely solved

problem [51].
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4.7 Summary

To improve quality and OCR accuracy for degraded low-resolution text images, a new

method has been presented for restoring high-quality binary text images from a set of low-

resolution degraded image. The initially restored image is improved by MAP based approach

where a suitable a priori information is used to guide the restoration, resolution enhancement

being the byproduct. The proposed method can deal with various scripts, and entails relatively

simple computation. Through experiments, it has been validated that the proposed method

improves both OCR accuracy and image quality. But excessive dependence on character seg-

mentation still remains a problem. In the next chapter we shall see how to overcome the

dependency on character segmentation. We shall look for a restoration approach that does

not perform a explicit character segmentation, but still uses the repetitive component nature of

document images.

70



Chapter 5

Contextual Restoration of Text Images

5.1 Introduction

Degradations in document images result from poor quality of paper, the printing process,

ink blot and fading, document aging, extraneous marks, noise from scanning, etc. The goal

of document restoration is to remove some of these artifacts and recover an image that is

close to what one would obtain under ideal printing and imaging conditions. The ability to

restore a degraded document image to its ideal condition would be highly useful in a variety

of fields such as document recognition, search and retrieval, historic document analysis, law

enforcement, etc.

Images with certain known noise models can be restored using traditional image restoration

techniques such as Median filtering, Weiner filtering, etc. [34]. However, in practice, degra-

dations arising from phenomena such as document aging or ink bleeding cannot be described

using popular image noise models. Document processing algorithms improve upon the generic

methods by incorporating document specific degradation models [83] and text specific content

models [99, 21].

In image restoration the goal is to recover an image that has been corrupted or degraded.

There are several techniques in image restoration, some use frequency domain concepts, others

attempt to model the degradation and apply the inverse process. e.g. the blurred image that is

the result of convolving a Gaussian filter with the original image, is the effect which is similar

to the one observed when a photograph is taken with a camera in motion. In document images

71



(a) Degraded (b) Restored

Figure 5.1 Portion a vandalized degraded document and the result of our restoration process.

it is quite possible that the same character image at different physical location in a document

may be degraded differently. Inverse restoration process, in this case may not possibly generate

the desired result. Further, due to our excessive familiarity of document images, even a small

variation in the text from the expected image will quickly draw our attention. The increased

expectation and unavailability of an inverse restoration process in the case of document images,

motivates us to use a patch based approach where a degraded patch is replaced by a noise free

rendered patch.

5.2 Related Work

Approaches that deal with highly degraded documents (see figure 5.1) take a more focused

approach by modeling specific types of degradations. For instance, ink-bleeding or backside

reflection is one of the main reasons for degradation of historic handwritten documents. Huang

et al. [41]. The success of their approach is in combining the degradation model and the

document model into a powerful MRF-based optimization framework [33, 59]. To achieve

generic restoration of carbon copy documents, Cao and Govindaraju [13] used a document

content model. The model consisted of a set of 5× 5 binary patches, trained using high quality

data, which is used for restoring noise and removal of rulings on the paper. Gupta et al. [36]

used a patch based alphabet model to remove blurring artifacts for license plate images using a

camera. The authors use an MRF based optimization to find the most likely noise free patch that
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generated the observations. All the above approaches consider specific instances of restoration

of a single document image, and are solved by combining prior knowledge of documents with

noisy observations.

In this chapter, we approach document restoration in a different, and useful setting. We

consider the problem of restoration of a degraded ‘collection of documents’ such as those from

a single book. Such a collection of documents, arising from the same source, is often highly

homogeneous in the script, font and other typesetting parameters. The availability of such a

uniform collection of documents for learning allows us to:

• Do robust learning of a tight model of the document content even in presence of severe

degradations, as one can discard data that is potential noise.

• Do accurate parameter estimation from multiple evidences, as the amount of data avail-

able after discarding highly noisy parts is still considerable.

• Adapt to a large varieties of documents in various fonts, styles and scripts, as our model

is exclusively learned from the input collection itself.

Given that we can learn an accurate and exact model of the documents content, we leverage

it to compute the most probable estimate of the underlying content during document restora-

tion. We frame the restoration process as a maximum a posteriori estimate computed from the

learned document model prior and the noisy observed data in a Markov Random Field frame-

work. Our formulation enables us to incorporate a larger context into the inferencing process,

thus providing us with the ability to restore highly degraded documents.

The proposed approach is far more powerful than traditional approaches in restoring highly

degraded documents as it relies on learning of a document model specific to the input. It can

handle severe degradations including cuts, merges, ink blobs, or even vandalized documents.

To achieve this, we address the problems of learning high quality priors and that of robust

restoration in a flexible MRF-based optimization framework [30].
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5.3 List of Contributions

Here are the list of contribution in this chapter

• We would like to replace the patches in the degraded image with exact noise free origi-

nal patch, based on the neighboring patches. To make our algorithm efficient, we choose

larger patch size and restrictive number of labels. This gives rise to serious correspon-

dence related issues. We propose a novel overlapping markov random framework which

allows us to establish the correspondences.

• An algorithmic approach, is proposed to exploits the contextual relation between image

patches. This allows the system to update the constraints by reasoning about their validity

in the context of an image description. Using the topological/spacial constraints between

the image patches, local constraints are formulated.

• We formulate the document restoration as a labeling problem in a relaxation framework.

An likelihood function encodes any particular labeling into an objective function and

the value of that objective function becomes a quantitative measure of the goodness

of the various labeling. An solution to the objective function is obtained using Belief

Propagation [30].

5.4 Restoration by Learning

The process of restoration proceeds in two stages. In the first stage, a set of ideal patches,

xi, that can occur in the restored document are estimated, along with the spatial relationship

between them. This constitutes a probabilistic document model that is specific to the input. The

most likely set of patches that generated the observed patches, yi, is estimated in the second

stage, using an MRF framework. Figure 5.4 shows the construction of the patch-based MRF

for a degraded word image.

The ideal (restored) patch at x5 depends not only on the observed patch at y5, but also on

the context of x5, given by its neighbors, x2, x4, x8, and x6. For example, in figure 5.4, the

restoration of y6 depends on whether the underlying character (b, h, n, p), which is indicated by
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Figure 5.2 Patch-based MRF for a degraded word image (Tip).

its neighboring patches. The goal of the restoration stage can be thought of that of estimating

the most likely set of patches, xi, that could generate the observations, yi, while being in their

respective neighborhoods. Based on the restoration goal, the problem in the first stage is to find

a set of ideal prototypes X , that are possible in a specific document, along with the probabilities

of their neighborhood values, p(xi, xj) for each of the four neighbors.

The first stage involves the estimation of ideal prototypes from degraded ones. The primary

goal as mentioned before is to identify the consistent primitives (patches in our case) in the

document collection. As we have a collection of documents at our disposal, we try to estimate

the model from multiple observations. The process proceeds as follows: A given document

image is approximately segmented into words and characters. One could make errors in this

stage. The resulting segments are clustered to identify consistent shapes in the document.

Errors in segmentation or highly degraded characters are eliminated from the learning phase.

The consistent, probably noisy, segments are used to compute their most probable restoration.

The restored segments are then covered with patches to learn their shaped and neighborhood

relations.
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The challenge here is to deal with the large number of possible patches at the patch size we

chose, as well as to deal with the severe degradations of characters present in the document. We

refer to this step as prototype generation. One should also be able to generate the neighborhood

relationships from the prototypes. Note that using a generic MRF model as shown in figure 5.4

will lead to a dramatic increase in the number of possible patches. Hence the second challenge

is to come up with a formulation for the restoration phase, that makes the prototype generation

phase easier, and the restoration, efficient. We will first look into the restoration formulation

and then return to the prototype generation phase.

5.4.1 Markov Model for Restoration

The input image is segmented into words, and each word is restored independently. How-

ever, we do not assume that the word segmentation is always correct. Each word is assumed

to be divided into a set of possibly overlapping patches, yi, as shown in figure 5.4. Given a

set of observed patches, yi, form an input document image, I , we aim to compute the MAP

(maximum a posteriori) estimate of the corresponding underlying labels, xi ∈ X .

Let P (x̄, ȳ) = P (x1, . . . , xN , y1, . . . , yN) be the joint probability of observing y1, . . . , yN

when the corresponding underlying labels are x1, . . . , xN . Let ψ(xi, xj) denote the pairwise

compatibility of two neighboring labels, xi and xj , and φ(yk|xk), the likelihood that the label

xk generates the observed patch, yk. The joint probability can now be written as:

P (x̄, ȳ) = P (x1, . . . , xN , y1, . . . , yN)

=
∏

(i,j)

ψ(xi, xj)
∏

k

φ(yk|xk), (5.1)

The first product is over all neighboring pairs of nodes, i and j. To compute the MAP estimate,

we solve the MRF using the belief propagation framework [76, 29]. The belief-propagation

algorithm updates messages, mij , from node i to node j, which are used to infer the state at

node j. The state of a node is updated based on the messages it receives, and the process is

repeated until convergence. Let mt
kj be the message being sent from the node k to j at time
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instant t. The MAP estimate at node j over all label candidates xj is:

x̂jMAP = argmax
xj

φ(xj, yj)
∏

k

mt
kj, (5.2)

where k runs over all neighbors of node j. We calculate mt
kj as

mt
j↑ = max

[xk]

~ψ(xj, xk)φ(xk, yk)m
t−1
k→mt−1

k↑ mt−1
k← ,

mt
j← = max

[xk]

~ψ(xj, xk)φ(xk, yk)m
t−1
k↑ mt−1

k←mt−1
k↓ ,

mt
j↓ = max

[xk]

~ψ(xj, xk)φ(xk, yk)m
t−1
k←mt−1

k↓ mt−1
k→ ,

mt
j→ = max

[xk]

~ψ(xj, xk)φ(xk, yk)m
t−1
k↓ mt−1

k→mt−1
k↑ . (5.3)

mt−1
lk is mt

lk from the previous iteration. The initial m0
kjs are set to column vectors of 1’s, of

the dimensionality of the variable xj . Spatial constraints are imposed through the formulation

of ~ψ(xj, xk) function. Here, ψ is not a symmetric function and depends on the orientation of

xj and xk, enabling the prior being stronger than smoothness prior [91].

5.4.2 Localizing the Patches

As noted before, one of the main constraints in the patch based formulation is that the

location of structures within a patch can vary, changing the observation probabilities,φ(xk, yk).

To deal with this, we allow the patches to slide around and settle at a location that best matches

the underlying label. The spirit of our approach is similar to [7]. However, we note that the

label itself is unknown and further depends on its neighboring nodes. Hence we need to carry

out the optimization procedure described above for all possible patch locations for each of the

patches. Let each patch, yk be offset in the horizontal and vertical directions by ∆pk and ∆qk

respectively, from their initial uniformly spaced locations. The function to optimize becomes:

P (x̄, ȳ) = max
∆pk,∆qk

∏

(i,j)

ψ(xi, xj)
∏

k

φ(yk,δpk,δqk
|xk) (5.4)

The direct optimization of equation 5.4 over all patch locations turns out to be prohibitively

expensive. To overcome the difficulty, we enforce left-to-right and top-to-bottom orderings on

the centroids of the patches and formulate a dynamic programming solution to carry out the
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Figure 5.3 A patch can be located anywhere within a window of m×n within the word image.

computation. We further observe that the vertical sliding of a patch within a word is limited and

hence for each horizontal position for a patch, we compute the best matching vertical position

for every interpretation of the underlying label.

The problem is now reduced to finding the best horizontal shift for each patch. To achieve

this, we apply a Viterbi decoder for every row of nodes, while keeping the patches in other

rows rooted to their locations. The process is repeated, sequentially, until convergence. Note

that we need to carry out an MRF optimization at every step in the Viterbi algorithm. The

initialization of the patches is carried out using independent maximum likelihood estimates for

the patches over all possible labels and locations within the limits. We can further improve

the computation speed by restricting the range of sliding for each patch to a specific limit,

restricting the most likely path (horizontal locations) within a diagonal band, referred to as the

Sakoe-Chiba band [82].

A lighter version of the optimization can be obtained if we assume that the position of a

patch is within one window width around its initial location. This makes the computation of

path locations independent of its neighbors, and the resulting optimization function would be:
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Figure 5.4 Collection of Characters and their Prototypes. A collection of 10 characters are
used to generate the prototype.

P (x̄, ȳ) =
∏

(i,j)

ψ(xi, xj)
∏

k

max
δp,δq

φ(yk,∆p,∆q|xk) (5.5)

=
∏

(i,j)

ψ(xi, xj)
∏

k

φ′(yk|xk) (5.6)

Note that the above equation leads to a regular MRF formulation. In most practical cases,

we found that the direct MRF formulation using equation 5.6 leads to the same solution as the

more complex Viterbi optimization using equation 5.4.

5.5 Learning the Labels and Context

To generate the label set, we generate a collection of similar characters by segmentation

and clustering. Outliers in each cluster are usually errors in segmentation process or highly

corrupted samples and are removed [39]. These similar characters are used to generate high

quality prototypes, by bitmap averaging and restoration. Similarly, prototypes are generated

from all the clusters. Figure 5.4 shows examples of two prototypes, corresponding to characters

‘a’ and ‘d’ being generated from the noisy samples.

To learn the context relationship, each character prototype is divided into collection of

patches. Different characters have different dimensions. They are divided into equal N × N

sized labels. Similarly labels are extracted from other character prototypes. The collection of

patches from all the characters form the possible set of labels. These patches are typically of
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size 25 × 25 for a 600 dpi image. Large patch size means that the prior is defined on large

neighborhood, making it more powerful.

We sample the patches so that they overlap with each other by few pixels. In the overlap

region, the pixel values of compatible neighboring patches should agree. We measure d(xi, xj),

the sum of squared differences between patch candidates xi and xj in their overlap regions at

nodes i and j. The compatibility matrix between nodes i and j is then

~ψ(xi, xj) = exp

(

−
~d(xi, xj)

2σ2

)

, (5.7)

where σ is a noise parameter [31]. We use a correlation based penalty on differences between

the observed degraded image patch, yi, and the candidate label patch, xi, found from the pro-

totype to specify φ(yk|xk).

5.5.1 Document Image Super-resolution

One of the advantages of our formulation of learning ideal patches from multiple degraded

or low-resolution patches is that we can directly estimate the ideal patches at high resolution,

thus combining document restoration and super-resolution into one process. We propose the

use of a MRF-based MAP estimation to generate the super-resolved prototypes. The overall

process proceeds as follows:

• Upsample the low-resolution, degraded prototypes using cubic spline interpolation.

• Register the prototypes at high resolution using correlation and compute mean proto-

types.

• Obtain the super-resolved patches by computing the MAP estimate of the underlying

high resolution prototype.

To achieve the third step, we use a text specific prior and formulate the estimation in an

MRF framework. Images of text are usually smooth in both the foreground and background,

with sharp transitions only at the edges. Thus, text images typically have bimodal distributions,

with large black and white peaks [21]. The peak occurs at µwhite for the background (white),
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(a) (b) (c) (d)

Figure 5.5 Super-resolution by a factor of 3: (a) original high-resolution image, (b) low-
resolution input (c) cubic spline interpolation of (b), and (d) super-resolved prototype.

since the majority of pixels on a text page is background. There is a second peak at µblack,

representing the text. Additionally, there are a small number of gray values occurring between

the two peaks, which represent the gray pixels that exist at transitions from white to black.

The amount of these intermediate gray levels is related to the amount of blur in the document

image. In order to obtain an unblurred image, we wish to obtain a sharp bimodal distribution,

pushing the intermediate gray level towards their nearest peaks. To incorporate this property

we define the conditional probability as

ζ(yk|z) = (yk − µwhite)
2(yk − µblack)

2, (5.8)

where ζ(yk|z) is the cost of assigning label xk to pixel yk, effecting the (bimodal) distribution

z, and is referred to as the bimodal cost prior.

We would also like the label xk to be as close to the gray value yk, for a pixel. Thus, the

conditional probability is defined as

φ(yk|xk) = (yk − xk)
2ζ(yk|z) (5.9)

where φ(yk|xk) is the cost of assigning label xk to pixel yk, which is referred to as the data

cost. We use the edge stopping function to ensure sharp edges. Thus we use Lorentzian edge

penalty function [65] which determines the penalty between the two nodes of a MRF:

ψ(xi, xj) = log

{

1 +
1

2

(xi − xj)
2

σL

}

, (5.10)
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where σL is called the contrast parameter, which controls the shape of the edge stopping func-

tion [65]. The quality of a labeling in general restoration problem is given by an probability

estimate in equation 5.1. Thus, unlike Luong et al. [65], we formulate the problem as MRF

that provides us with a better optimum. The belief propagation [29] based optimization is both

fast and robust for the purpose.

5.6 Experimental Results and Discussions

We conducted extensive experiments that analyze the performance of the algorithms as well

as give insights into its working and potential applications. We now discuss some of the quan-

titative and qualitative results on various input documents.

5.6.1 Restoration of Degraded Documents

We have carried out a variety of restoration experiments with different document images

and differing levels of degradation. For the first experiment, we selected a degraded English

book containing 40 pages with close to 50, 000 words and 237, 000 characters. The pages of

the book were scanned using an HP flatbed scanner at 600dpi. A document model was learned

for the complete book after segmentation, and restoration was performed on all the pages.

Figure 5.6 shows a selection of 10 words from the book containing cuts, merges, blobs and

erosion artifacts, along with the restoration output of our algorithm.

The first class of degradations that we notice is ink blobs and smears, as present in the word

surely, convening, permitting, etc. We note that our algorithm is able to handle most of the

cases very well. Especially, the word little, which had three of its characters connected by an

ink smear was restored correctly. Sever and minor cuts and erosion were also present in the

dataset. For example, the word several has a severe cut in the character v and the character

m in imprisonment is separated into three parts due to erosion. As the overall shape of all the

characters are discernible in spite of these degradations, the restoration algorithm is able to

replace the noisy regions with the correct ideal patches.
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Figure 5.6 Restoration of words containing cuts, merges, blobs and erosion.

However, we note that for the word vindictive, the ink smear on the character v is so severe

that the resultant patches were not correctly matched. As the restoration always tries to find a

set of patches whose neighborhood relations are correct as per the document model, we notice

the patch replacements have resulted in replacements by patches of character a.

The restoration should also improve the recognition results of any off-the-shelf OCR system.

To verify this, we ran the Tesseract-2.01 OCR from Google on all the pages of the above book,

which resulted in an error rate of 3.7%. We note that the modern day OCRs are trained to

perform well even in presence of common types of noise, and the accuracy on the original

document is already very good. However, after restoration by our proposed algorithm, the

error rate further reduced to 1.9%. The accuracy was measured at character level and the book

contained 236, 861 characters.

Figure 5.8 shows a portion of an input page and the restored version, along with the OCR

results. We note that the recognition of the restored document is in fact highly accurate, and

most of the errors are introduced during the rectification process. Two types of errors are of

interest here. The first one is due to the erroneous restoration of the word vindictive, where the

ink-blotted v was restored as an a. The second set of errors is due to missing punctuation marks.
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Figure 5.7 Distance-Reciprocal Distortion Measure for a word “last”.

This is primarily because of the assumption of heavy noise in documents during prototype

learning, which discards small marks. One can tune the restoration to the noise levels present

in the document to avoid this.

To study the effect of the size of the document on the restoration results, we analyze the

restoration quality with increasing number of prototypes available in each cluster. To measure

the restoration quality, we use distance-reciprocal distance measure [64], defined as: DRD =

(
∑S

k=1 DRDk)/NUBN , where NUBN is the estimate the nonempty area in the image and

DRDk is the weighted sum of the pixels in the block of the original image that differ from

the flipped pixel in the degraded image. We select one word from the above book and plot the

DRD score as the number of prototypes used in the learning stage increases. We note that with

around 7 prototypes, the DRD score is already very low, which keeps improving further over

iterations. We also show a sample restored word if performed at different stages of the learning

process for illustration purposes. One can clearly notice the increase in visual quality of the

sample word as the number of prototypes in a cluster increases.
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5.6.2 Script Independence

As mentioned before, the restoration process does not make the assumption that the docu-

ment contains a specific font or script. We can perform restorations of multiple scripts using the

same approach. As the learning happens at a patch level, and the document priors are generic

to text, the algorithm is directly applicable to any script or font. The result of restoration of

the proposed algorithm on a document containing Greek text is shown in figure 5.9. Several

touching and broken characters are effectively corrected by our restoration algorithm.

5.6.3 Restoration of Vandalized Documents

One of the main strength of the approach is that it models the contents of the document

image. This allows us to discard any additions to the document that do not follow the learned

document model. We are able to restore even severely degraded and vandalized documents,

as long as the actual content is discernible. As the learning is done at a patch level, one can

learn the document model from the degraded/vandalized document itself, assuming parts of

the document has segmentable patches that can be used for learning. Figure 5.10 shows an

example document that has severe scratches/overwriting on the original document. We notice

that our approach is able to completely recover the original document. Restoration results of

document images from a magazine with degradations and vandalization is given in figure 5.11.

It is interesting to note that even in presence of severe degradations, our algorithm is able to

perform extremely well, as long as the overall shape of a patches in a character or its neighbors

are visible.

5.6.4 Restoration with Super-resolution

Another aspect of the approach of using multiple degraded prototypes to learn the ideal one

is that one can infer super-resolved prototypes for patch models and restoration. Figure 5.12

shows a sample document at 100dpi that is super-resolved to 300dpi. Comparison with the

original document scanned at 300 dpi reveals that while the super-resolved text is close to the

original, the process has achieved its intended goal of restoration (noise removal) also.
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5.7 Summary

We presented a novel approach to document restoration, that builds a tight model of the

document content from the input document itself, and uses it to restore severe degradations,

including cuts, merges, blobs and erosion. Modeling the document as an MRF on larger patches

allows us to use a larger context for restoration. As the approach works on a generic model of

the document content, we are able to handle vandalized documents as well as multiple scripts

and fonts. The estimation of the content model can also incorporate generation of high quality

prototypes, leading to super-resolution of the restored document.

The current approach primarily uses a content model that is learned from the input docu-

ment. Integration of the approach with a complementary mechanism that models the nature of

degradations could further improve the restoration performance. Another potential direction is

to combine recognition with restoration in an iterative fashion.
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(a) Input Paragraph

(b) OCR Result of (a)

(c) Output Paragraph

(d) OCR Result of (c)

Figure 5.8 Result on a portion of image from the book.
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(a) Input Document

(b) Restored Document

Figure 5.9 Restoration of text in Greek using the proposed approach.

Figure 5.10 Restoration results of a page with overwritten scratches and ink spray marks.
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(a) A Magazine Page

(b) Restoration Result

Figure 5.11 Restoration results of document images from a magazine.

(a) Original High-res. Image (300dpi) (b) Low-res. Image (100dpi)

(c) Cubic Spline Image (300dpi) (d) Proposed Method (300dpi)

Figure 5.12 Text super-resolved by a factor of 3 times.
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Chapter 6

Conclusions

In this thesis, we have described a robust reconstruction technique to enhance the quality

of document images. Image restoration using resolution expansion is important in many ar-

eas of image processing. This work introduces a restoration method for low-resolution text

images which produces expanded images with improved definition. An implicit edge-directed

super-resolution algorithm for document images is proposed. Edge direction information is

incorporated in the formulation of the energy function in the MRF model. This technique cre-

ates a strongly bimodal image with smooth regions in both the foreground and background,

while allowing for sharp discontinuities at the edges. The restored image, which is constrained

by the given low-resolution image, is generated by iteratively solving a nonlinear optimization

problem. Low-resolution text images restored using this technique are shown to be both quan-

titatively and qualitatively superior to images expanded using the standard methods. The algo-

rithm is an instance of a general non training based approach that can be useful for document

image-processing, that extracts a single high-resolution frame from a single low-resolution

image, where the priors are derived from same image.

Exploiting the multiple occurrence of characters brings more information at our disposal,

which leads to much better estimates of the unknown pixel values. In order to take advantage

of this repetitive behaviour in a practical way, we divide the image into character segments.

The character segmentation reduces the computation time drastically in two ways: the algo-

rithm only has to focus on these regions of interests and the search space for possible matching

candidates is enormously reduced. Matching between the character segments filters relevant
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information before the reconstruction. Information originating from other similar characters

are combined and the characters are reconstructed in a Bayesian framework. Results of dif-

ferent experiments show the effectiveness of our proposed technique: characters and symbols

are reconstructed very well and OCR results show a significant improvement of our method

compared to other reconstruction methods. A trivial extension to our method is to take multi-

ple pages of the same document, journals or book into account or to combine our method with

multi-frame restoration techniques (for video applications). This would produce even better

results because there is more repetitive information available. The initially restored image is

improved by MAP based approach where a suitable a priori information is used to guide the

restoration, resolution enhancement being the byproduct. The proposed method can deal with

various scripts, and entails relatively simple computation. Through experiments, it has been

validated that the proposed method improves both OCR accuracy and image quality. The lim-

itation of this work is that the work is built on top of character segmentation, which can be a

bottle-neck and is not a completely solved problem [51].

To overcome this problem we propose an approach to restore severely degraded document

images using a probabilistic context model. Unlike traditional approaches that use previously

learned prior models to restore the image, we are able to learn the text model from the de-

graded document itself, making the approach independent of script, font, style, etc. We model

the contextual relationship using an MRF. The ability to work with larger patch sizes allows

us to deal with severe degradations including cuts, blobs, merges and vandalized documents.

This approach can also integrate document restoration and super-resolution into a single frame-

work, thus directly generating high quality images from degraded documents. Experimental

results show significant improvement in image quality on document images collected from var-

ious sources including magazines and books, comprehensively demonstrate the robustness and

adaptability of the approach.

In short, we presented a novel approach to document restoration, that builds a tight model of

the document content from the input document itself, and uses it to restore severe degradations,

including cuts, merges, blobs and erosion. Modeling the document as an MRF on larger patches

allows us to use a larger context for restoration. As the approach works on a generic model of
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the document content, we are able to handle vandalized documents as well as multiple scripts

and fonts. The estimation of the content model can also incorporate generation of high quality

prototypes, leading to super-resolution of the restored document.

The proposed method can also deal with documents irrespective to their exotic font type,

it even preserves the font type and is not restricted to characters of a particular alphabet. The

strategy of using the repetitive symbol property is not restricted to the reconstruction of doc-

ument images which suffer from noise, compression artefacts, low resolution scanning, wear

processes (e.g. in old manuscripts), etc., but can also be applied in an example-based search

engine and combined with an efficient document compression scheme. The latter is useful for

the storage of large digital libraries or for transmitting documents. Repetitive characters con-

tain redundant information, this redundancy can be removed for compression by constructing

a prototype for each class/cluster of characters and encode the remaining reconstruction errors.

Future Work - The current approach primarily uses a content model that is learned from

the input document. Future work could focus on the integration of the approach with a comple-

mentary mechanism that models the nature of degradations could further improve the restora-

tion performance. Another potential direction is to combine recognition with restoration in an

iterative fashion.

Our work is is an attempt of applying stochastic method to the preprocessing of badly de-

graded document data. The restriction of our model might be that it is essentially based on

document image, but does not handle intense illumination variation, complicated background,

and blurring that are common in low resolution video or pictures. However it is possible to

generalize the model for more applications. Besides, there are some other issues concerning

speeding-up the MRF, training multiple models to deal with different degradations.

The degradations in document images are quite complex in nature. We treat the restoration

and recognition as two separate fields. But a overlap might be more effective to extract better

results, for example, based the outcome of the recognition stage we can better the restoration

process. This may significantly improves the restoration. To simultaneously address restora-

tion and recognition problems for object class specific images could be a good idea. This

problem cannot be consistently solved using normal MRFs due to the lack of strong priors
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and the computational challenges of learning large datasets. It is also highly unlikely that pure

recognition methods would work in the cases of severely blurred images. This work has poten-

tially very interesting extensions. One of them is to overcome the need for manually segmented

images by performing the segmentation jointly with recognition and restoration. This would be

a potentially significant contribution to the active area of joint recognition and segmentation.
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