
REAL TIME RENDERING OF IMPLICIT

SURFACES ON THE GPU

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science (by Research)

in
Computer Science

by

Jag Mohan Singh

200507013

jagmohan@research.iiit.ac.in

International Institute of Information Technology
Hyderabad, India

July 2008

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY

Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Real time Rendering of Implicit

Surfaces on the GPU” by Jag Mohan Singh, has been carried out under my supervision and

is not submitted elsewhere for a degree.

Date Advisor: Dr. P. J. Narayanan

Copyright c© Jag Mohan Singh, 2008

All Rights Reserved

To my parents

Acknowledgements

I would like to thank Professor P. J. Narayanan for his support and guidance during the

past three years. I gratefully acknowledge Prof. P. J. Narayanan for long hours of discussion

on the problems presented in the thesis.

I am also grateful to fellow lab mates at the CVIT, IIIT Hyderabad for their stimulating

company during the past years. These include technical discussion on problems with Vishesh,

Paresh, Pulkit, Sunil Mohan Ranta, Suryakant, Shiben, Avinash Kumar and Tarun. Also,

I would like to thank other lab mates Pooja, Pradhee, Sachin, Avinash Sharma, Santosh,

Jyotirmoy, Vibhav, Prachi, Chayya, Mihir and Dileep.

Abstract

Generating visually realistic looking models is one of the core problems of Computer

Graphics. Rasterization or scan converting the primitives used such as triangles is one

method to render them. This method suffers from problems of an inexact representation as

triangles themselves are an approximation of the underlying geometry. Ray tracing primitives

is another method of rendering the objects. This method delivers exact representation of the

underlying geometry and looks visually realistic. We thus use ray tracing of implicit surfaces

rather than polygonizing them. The programmable graphics processor units (GPUs) have

high computation capabilities but relatively limited bandwidth for data access. Compact

representation of geometry using a suitable procedural or mathematical model and a ray-

tracing mode of rendering fit the GPUs well, consequently. An implicit surface can be

represented as S(x, y, z) = 0 and the ray dependent equation is Ff(t) = 0. Ray tracing

S(x, y, z) = 0 is root computation of Ff (t) = 0 for all the pixels on the screen. Analytical

methods can be used in surfaces up to order 4. We compute interval extension of functions

exactly by computing the function at points of maxima and minima and end points. Since, we

can compute roots of functions up to order 4 we can compute points of maxima and minima

of functions up to order 5. We use interval arithmetic for surfaces up to order 5 using

Mitchell’s algorithm. Interval methods provide a robust way for root isolation. Marching

points algorithm marches in equal stepsizes until the root is found which is detected by a

sign change in the function. Marching points wastes computation by computing the function

values at many points. Adaptive marching points algorithm marches adaptively to find the

root. Though only fourth or lower order surfaces can be rendered using analytical roots,

our adaptive marching points algorithm can ray-trace arbitrary implicit surfaces exactly, by

sampling the ray at selected points till a root is found. Adapting the sampling step size based

on a proximity measure and a horizon measure delivers high speed. The horizon measure

helps in silhouette adaptation and provides good quality silhouettes. We also provide a taylor

test which has flavours of interval arithmetic and helps in robust rendering of surfaces using

adaptive marching points algorithm. While computing the function S(x, y, z) = 0 we never

compute the ray dependent Ff(t) = 0 by using coefficients of t. We save lot of computational

vi

overhead by computing S(x, y, z) = 0 directly instead as there are O(d3) coefficients for t

where d is the degree of the surface. In our method we don’t need coefficients of t which

are expensive to compute we only need the value S(x, y, z) = 0. The derivative F ′
f(t) can

also be calculated efficiently using the gradient of S() as ~∇S(x, y, z) · Df . The Barth decic

can be evaluated using about 30 terms as S(x, y, z) but needs to evaluate 1373 terms to

compute all 11 coefficients of the tenth order polynomial Ff (t). We render Dynamic Implicit

Surfaces which vary with time. Overall, a simple algorithm that fits the SIMD architecture

of the GPU results in high performance. We ray-trace algebraic surfaces up to order 18 and

non-algebraic surfaces including a Blinn’s blobby with 30 spheres at better than interactive

frame rates. Our adaptive marching points is an ideal match for the SIMD model of GPU

due to low computational cost required per operation.

We use analytical methods for ray tracing surfaces up to order 4. We achieve fps of 3750 on

a cubic surface and 1400 on a quartic surface. We use the robust Mitchell method on surfaces

up to order 5 and achieve fps up to 400 on a torus quartic and 85 on a quintic surface. Our

adaptive marching points method renders high order implicit surfaces at interactive frame

rates. We render surface of order 18 at an fps of 158. These experiments used NVIDIA 8800

GTX at a resolution of 512×512. Our GPU Objects renders Bunny with 35,947 spheres at

57 fps, 99,130 spheres is rendered at 30 fps and Hyperboloid with reflection and refraction

at 300 fps. NVIDIA 6600 GTX was used in experiments related to GPU Objects and the

viewport was of the size 512×512.

vii

Contents

1 Introduction 1

1.1 Contributions of the thesis . 4

1.2 Organization of thesis . 4

2 Related Work 6

2.1 Root Finding . 6

2.2 Rendering Implicit Surfaces . 8

2.3 Ray-Tracing Implicit Surfaces . 9

2.4 Ray-Tracing on the GPU . 13

2.5 Our Work in Context . 14

3 GPU Ray-Tracing using Analytic Roots 16

3.1 Ray Tracing Quadrics . 16

3.2 CSG of Quadric Objects . 16

3.2.1 Rendering of a Product Term . 18

3.3 Ray Tracing Cubics and Quartics . 19

4 Interval-Based Root Isolation 22

5 Marching Points and Adaptive Marching Points 26

5.1 Iterative Root-Finding: Outline . 26

5.2 Computing S(x, y, z) vs Ff (t) . 27

5.3 Marching Points Algorithm . 28

5.4 Adaptive Marching Points Algorithm . 30

viii

6 Experimental Results 38

6.1 Overall Algorithm: Implementation Issues 38

6.2 Self Shadowing . 40

6.3 Rendering Times . 40

6.4 Comparison with Affine Arithmetic Ray-tracing and Marching Tetrahedra . 41

6.5 Dynamic Implicit Objects . 42

6.6 Limitations . 43

7 Ray-Tracing on the GPU: Discussion 48

8 Conclusions & Future Work 52

8.1 Directions for Future Research . 53

A Implicit Equations 57

A.0.1 Non-Algebraic Surfaces Equation . 60

ix

List of Figures

1.1 Ray Intersection with an Implicit Surface S(x, y, z) = 0 Red dots show the

real roots. 2

1.2 Ray-traced Blinn’s blobby with 30 spheres with environment-mapping and

shading (34 fps), Chmutov dodecic with four light sources (90 fps), and Barth

decic with one light source (100 fps). 5

2.1 Twisted Superquadric rendered using Mitchell’s algorithm [30] 11

2.2 An animated sinusoid-kernel surface [23] . 11

2.3 A surface with fine features rendered using LG technique 13

2.4 A logo for zeno using sphere tracing technique 13

2.5 Torus (Left) and Steiner(Right) visualized using Loop and Blinn’s technique.

Steiner shows some problems which are shown in the inset. 13

3.1 Ray Intersection with a product term(a) Initial Membership Vector (b) Mem-

bership Vector after combining uncomplemented terms (c) Membership Vector

after intersection with front face of A (d) Final Product Term which shows

the product surface filled in red . 19

3.2 Left: Ray-traced Bunny model containing 36k spheres at 57 fps Middle: Hy-

perboloid ray traced with reflection and refraction at 300 fps Right: Four

primitive CSG at 22 fps. 20

3.3 Left: Cayley cubic at 3300 fps Right: Tooth quartic at 1100 fps 21

x

4.1 Interval extension methods. Roots in ranges [A, B], [B, C], and [C, D] can

be found using the natural extension involving the function values at the

end points only, which will not work for [A, C] or [B, D]. The first-order

Taylor expansion based extension can work for [A, C]. All critical points of

the function need to be evaluated to detect the root in the range [B, D]. The

first-order extensions for [A, C] are i and j and for [B,D] are k and l. 23

4.2 Left: Steiner quartic at 235 fps Right: Kiss quintic at 77 fps 25

5.1 Marching points algorithm samples uniformly in the ray parameter t. The

sign test identifies the first interval where the function changes sign at the

endpoints (darker shaded region on the left). Sign test will fail as the step

size increases (right). Roots will be isolated in intervals [A, B] and [B, C].

If the step size doubles again, the roots in [A, C] will be missed by the sign

test. Taylor test detects the root in [A, C] by including points q and r into

the calculations. 29

5.2 Adapting the step size to the distance to the surface. Region IV will have

the largest step size and the region I will have the smallest, based on the

proximity measure |S(x, y, z)|. The step size is further reduced for when the

horizon condition is true (the darkened region V) as the surface normal is

nearly perpendicular to the viewing direction. 31

5.3 Top row: Barth tenth order surface without silhouette adaptation (left) and

with it (right). The zoomed views in the middle show great reduction in

the aliasing for the internal silhouettes. Bottom row: Superquadric surface

without (left) and with (right) silhouette adaptation with zoomed views in

the middle. 32

xi

5.4 Number of steps taken along each ray for a Barth tenth order surface darker

colour indicates less number of steps. Left to Right: Marching Points(mp),

Adaptive Marching Points(amp), Adaptive Marching Points with silhouette

adaptation Scaled difference image between mp and amp with silhouette adap-

tation, and Scaled difference image between amp and amp with silhouette

adaptation. 32

5.5 Top row: Steiner, Cross Cap, Miter and Kiss surfaces ray-traced using the

adaptive marching points method with the sign test. Multiple roots are missed

by it. Second row: Surfaces shifted by 0.01 using AMP and sign test. Region

of multiple roots tend to be fattened. Third row: Same surfaces rendered

using the AMP algorithm and the Taylor test for root containment. The

performance is more robust for multiple roots. Bottom row: Same surfaces

rendered using Mitchell’s interval-based method (Section 4) which also pro-

duces robust roots. 34

5.6 Left: Chmutovquaddecic at 125 fps Right:Sartidodecic at 86 fps 35

6.1 Chmutov octdecic, Chmutov quaddecic, Sarti dodecic, Kiss quintic, and a

Blobby surface with self shadows and highlights. 40

6.2 Left to right: Steiner quartic surface rendered with marching tetrahedra and

with adaptive marching points. Hunt’s sextic surface with marching tetrahe-

dra and adaptive marching points. Marching tetrahedra was computed for a

643 voxel grid and AMP for a 2562 × 64 grid and rendered at a 256 × 256

resolution. 42

6.3 Dynamic objects: Two views of an evolving object with 30 Blinn’s blobbies

rendered at over 34 fps (left) and of twisting superquadric rendered at over

100 fps (right). 43

8.1 Pictures of various algebraic surfaces with the order of the surface shown

within square brackets and the FPS using the adaptive marching points algo-

rithm shown within parenthesis for a 512 × 512 window. 55

xii

8.2 Pictures of the non-algebraic surfaces rendered by us with the FPS using the

adaptive point sampling algorithm given in parenthesis for a 512× 512 window. 56

xiii

List of Tables

3.1 Frame rates for different surfaces using analytic root-finding for a 512 × 512

window on an Nvidia 8800 GTX. 21

4.1 Number of iterations and the frame rate using the interval-based method for

a 512 × 512 window. 24

5.1 Maximum number of steps and the frame rate using the marching points

method for a 512 × 512 window. 36

5.2 Maximum number of steps and the frame rate using the adaptive marching

points method for a 512 × 512 window. 37

6.1 Rendering time results for several algebraic and non-algebraic surfaces for

different algorithms. Frame rates without shadows is given in A columns

and with shadows is shown in B columns for a 512 × 512 window on an

Nvidia 8800 GTX. The order of each algebraic surface appears within square

brackets. The timings on the left half for AMP are for step-sizes adjusted

manually. The right half uses a conservative formula (see Section 6.6) for the

maximum number of iterations. 45

6.2 Frame rates for several algebraic and non-algebraic surfaces using our algo-

rithm for a 512×512 window on an Nvidia 280 GTX. NS columns are without

shadows and S columns are with shadows. The order of each algebraic surface

appears within square brackets. The number of steps used is given in second

column. 46

xiv

6.3 Comparison of frame rates for different surfaces using Knoll’s affine arithmetic

method on a GPU and our AMP method on the GPU on common surfaces. . 47

6.4 Rendering times in milliseconds for the GPU marching tetrahedra for 643

resolution and marching points and adaptive marching points for 1282 × 64

and 2562 × 64 resolutions on an Nvidia 8800 GTX. 47

7.1 Ray-tracing times for different surfaces on CPU and GPU for the AMP

method and the interval-based methond and for different distances to the

camera. The speedup of the GPU for each of the method is also shown for

each surface. 49

xv

Chapter 1

Introduction

Current Graphics Processor Units (GPUs) are optimized to render polygons. Programma-

bility in the vertex, geometry, and pixel stages has made it possible for them to go beyond

polygon rendering. They have been used for graphics effects like per-pixel lighting, ray-

tracing, toon rendering as well as to general purpose computing. Ray-tracing is of particular

interest as each fragment can be considered to be dealing with an imaging ray. Surfaces

defined procedurally or implicitly can be rendered directly using ray-tracing on the GPUs, if

the resulting functional form can be solved on the fragment processor. Procedural geometry

is evaluated on the fly and has many benefits over polygonal geometry. Computationally,

the overhead of tessellation is removed and visually, the geometry is rendered exactly at all

resolutions. Procedural geometry is also compact in representation needing less bandwidth

to send to the GPU. General, recursive ray-tracing is difficult on the GPUs. Simple algo-

rithms that fit their restricted architecture will have higher performance than those that are

efficient on a general purpose processor.

Implicit and procedural geometry has been studied well by the graphics community, in

spite of the dominance of polygonal geometry. Implicit geometry is defined by an equation

S(x, y, z) = 0. Different forms of S(·) are possible including polynomial, sinusoidal, tran-

scendental, etc. An algebraic surface is defined as the roots of the polynomial S(x, y, z) =
∑

m

amximyjmzkm = 0 and its order is max
m

(im+jm+km) over all terms. Non-algebraic surfaces

can be of different functional forms. Implicit surfaces are popular in fluid simulation, scien-

tific computing, weather modelling, etc. They are often used to visualize high-dimensional

1

data after fitting them with a suitable implicit function. Lower-order algebraic and simple

non-algebraic functions have been used for visualization previously, but the use of higher-

order surfaces is not common due to the difficulty in rendering them.

The fragment processors do most of the work in GPU-based ray-tracing. The ray param-

eters and the surface equation are needed at each fragment shader program. The points on

the ray for a fragment f are given in the parametric form by P = O+ tDf , where t is the ray

parameter, O the camera center, and Df the direction of the ray (Figure 1.1). Substituting

for x, y, z from the ray equation into the surface equation S(x, y, z) = 0, we get

Ff (t) = 0. (1.1)

The smallest, real, positive solution for t gives the point of intersection of the ray with the

object if there are multiple roots. Each fragment shader can independently find the root

using a suitable method. The normal of the surface at the point of intersection can also be

computed as the gradient ~∇S(x, y, z) for exact lighting and shadows. Figure 1.1 shows eye

ray intersecting with a surface, both the roots (P1, P2) are positive in this case and smaller

(P1) is the solution in this case where the normal is computed for shading.

������

��

O

P1

P2
Df

S(x,y,z) = 0

Figure 1.1: Ray Intersection with an Implicit Surface S(x, y, z) = 0 Red dots show the real

roots.

Polygonization is the most common method of rendering implicit surfaces [5]. Particle-

rendering have also been used for this task [53]. Dynamic implicit surfaces with changing

topology pose great challenges to this process. The implicit form allows compact and ex-

act defintion of surfaces. Converting them to triangles or particles compromises on both

2

compactness and exactness. Exactness can be retained by the use of large numbers of micro-

triangles, but at the total loss of compactness. Direct rendering using ray tracing performed

on the GPU can retain both advantages. The computing power of the GPUs is growing at

over double the rate predicted by Moore’s law, while the bandwidth from the CPU to the

GPU is lagging behind seriously. Thus, compact representations that are light on communi-

cations and ray-tracing like techniques that are heavy on computations will suit them ideally.

Computationally simple methods for ray-tracing are needed for today’s GPUs due to their

constrained architecture and SIMD (Single Instruction, Multiple Data) programming model.

Multicore and manycore computing is the current mechanism to take advantage of the

continued developments in chip technology. Ray-tracing is projected as an application ide-

ally suited to the high computing and low memory performance of such architectures [39].

Woop et al. argue for a programmable ray-tracing unit much like the GPUs and show an

implementation using FPGAs [54]. Whitted and Kajiya propose using only procedural el-

ements in a graphics pipeline to match the high computation power and the low external

bandwidth of the GPUs [51]. They suggest extensions to the graphics hardware including

a programmable sampler to replace the rasterizer. Our work strongly endorses this line of

thinking by extending exact and high-quality ray-tracing to arbitrary implicit surfaces on the

GPUs. The future of high-performance graphics is likely to be in modelling using procedural

or implicit techniques and rendering using ray-tracing.

We explore real-time ray-tracing of arbitrary implicit surfaces on a modern GPU, beyond

the low-order algebraic and simple non-algebraic surfaces reported in the literature. The

basic idea is to reduce the surface S(x, y, z) = 0 to the form Ff (t) = 0 using the ray equation

for the fragment f , where t is the ray-parameter. Each fragment can then solve for t and

perform per-pixel lighting, shadowing, etc., based on the exact intersection. Solution to the

equation Ff (t) = 0 depends on its form. Interactive ray-tracing has been achieved only

for simpler implicit forms. These include algebraic surfaces up to order 4 using analytical

roots on the GPU [26] and selected algebraic surfaces up to order 6 and some non-algebraic

surfaces using interval-analysis on the SSE hardware [22].

3

1.1 Contributions of the thesis

We present fast ray tracing of algebraic surfaces of order less than five using closed-form,

analytic solutions at higher frame rates – exceeding 1000 per second on an Nvidia 8800

GTX – than reported before. We also present the first adaptation of the Mitchell’s interval-

based method to the GPU using exact interval extension and ray trace algebraic surfaces

of order less than 6 at frame rates that are at least an order of magnitude more than

reported before. We introduce ray-tracing algorithms that sample the ray to find an interval

containing the intersection with the surface. The marching points algorithm that samples

each ray uniformly in t to find solutions of the equation S(x, y, z) = S(p(t)) = 0 and the

adaptive marching points that samples each ray non-uniformly based on the distance to the

surface and the closeness to a silhouette. These methods have the flavour of brute-force

linear searching but are fast due to the low computational requirements and better match

with the SIMD architecture of the GPUs. They can also handle arbitrary implicit surfaces

easily, needing only to evaluate S(x, y, z) at the sample points. In fact, a key finding of this

thesis is that simple and seemingly non-promising algorithms that suit the architecture well

can deliver very high performance on the GPUs. We also present a root-containment test

that combines the simplicity of ray sampling with the robustness of interval analysis using

a first-order Taylor expansion of the function. This results in a fast, versatile, and robust

ray-tracing scheme. We ray-trace algebraic surfaces of order up to 18 and non-algebraic

surfaces like super-quadrics, sinusoids, and blobbies with exact lighting and shadowing at

significantly better than real-time rates. Figure 1.2 presents some of the surfaces ray-traced

using our method.

1.2 Organization of thesis

Chapter 2 reviews the previous work related to the topic of this thesis. GPU implementa-

tions of analytic root finding is dealt in Chapter 3. Interval-based root-finding is presented

in Chapter 4. Chapter 5 presents our sampling based methods that provide speed and versa-

tility. Results of our algorithm on different algebraic and non-algebraic surfaces is presented

4

in Chapter 6. Chapter 7 presents a comparison and a discussion on ray-tracing on the GPUs

and the CPU. Conclusions and directions for future work are presented in Chapter 8. Ap-

pendix A presents the equations of the implicit surfaces used in the thesis along with simple

screenshots.

Figure 1.2: Ray-traced Blinn’s blobby with 30 spheres with environment-mapping and shad-

ing (34 fps), Chmutov dodecic with four light sources (90 fps), and Barth decic with one

light source (100 fps).

5

Chapter 2

Related Work

We review the related work divided into four sections: root finding for general functions,

rendering implicit surfaces, ray-tracing implicit surfaces, and ray-tracing on the GPU.

2.1 Root Finding

Iterative root finding methods are used widely to solve general implicit equations in one

variable. Analytical solutions exist for polynomials of order four or lower; only iterative

solutions exist for higher order polynomials [3, 4] and other implicit forms. Loop and Blinn

compute the analytical roots of equations up to fourth order [26]. We describe their method

in detail. It mainly consists of the following steps: (a) The polynomial coefficients are

computed in Bernstein bases as they allow for more robust root computation. (b) The real

roots are computed to determine if the surface is visible. (c) Then they determine whether

the visible surface is inside tetrahedron. (d) Then they compute surface normal and apply

shading.

An algebraic surface of degree d can be defined by a Bezier tetrahedron as follows

∑

i+j+k+l=d

bijkl





d

ijkl



 risjtkul = 0 (2.1)

In tensor notation, a degree d Bezier tetrahedron is defined as d contractions

rα1· · ·rαdBα1···αd
= 0 (2.2)

6

where B is a symmetric rank d tensor containing Bezier weights, and r = [r s t u]. They

transform both the Bezier tetrahedron vertices T and weights B to screen space for rendering.

Transforming the bounding tetrahedron T and weight tensor B to screen space for rendering

has the advantage that all viewing rays become parallel to z axis. They take clever advantage

of the linear interpolation of vertex attributes at each pixel to interpolated coefficients of

B. Thus, they arrive at the equation whose roots are required at each pixel in Bernstein

bases. They then depress the polynomial by translating it in parameter space to make

a new polynomial with ai coefficients but ad−1 is zero. This is done by a simple matrix

transformation. After this the quartic roots are found out by the Ferrari technique and

cubic roots are found out using discriminant which are described in Chapter 3.

Iterative methods critically depend on good initialization of the roots, which is difficulty

for complex equations. An alternative to initialization is to bracket the roots to an interval

in t [36, 40] and then solve it using an iterative technique. Newton-Raphson, Newton-

Bisection, and Laguerre’s method are popular for ray tracing [36, 20, 29, 55]. Newton

Raphson iterations approximate root as xn+1 = xn − f(xn)
f ′(xn)

. The convergence of this method

for the root is generally quadratic. However, if the initial approximation is too far from

the actual root it will fail to converge. Also, if the derivative is discontinuous at the root

it will fail to converge. Newton-Bisection starts with an interval [a, b] in which root exists

and creates two new intervals [a, (a+ b)/2] and [(a+ b)/2, b] and recurses into the one where

function changes sign. Newton-Bisection method has slower convergence to the root than

Newton Raphson method. However, it is guaranteed to converge to the root if it exists in

the initial interval.

Laguerre methods is as follows: Compute G = f ′(xk)
f(xk)

. Compute H = G2− f”(xk)
f(xk)

. Compute

a = n

G±
√

(n−1)(nH−G2)
where sign is chosen such that it results in maximum absolute value

of the denominator. Compute xk+1 = xk − a. For a single root, Laguerre’s method con-

verges cubically whereas for multiple roots the convergence is only linear. One advantage of

Laguerre’s method is that it is guaranteed to converge to the root irrespective of the initial

value given. Extensions of these to use interval arithmetic have also been used [16, 24], which

are more robust at critical regions.

Interval analysis has been used for robust root finding [16]. Consider an interval X that

7

contains the root x∗ of f, where f is continuously differentiable. Let F’ be interval extension

of f’ and assuming F’(X) does not contain zero. x∗ ∈ N(x, X) ≡ x− f(x)
F ′(X)

x∗ ∈ X∩N(x, X).

Thus, interval version of Newton’s method is : Start with X(0) containing x∗ and compute

a nested set of intervals X(1), X(2), · · · by the formula: X(s+1) = X(s) ∩ N(x(s), X(s)) with

x(s) ∈ X(s), s = 0, 1, · · · . Krawczyk’s method is similar and the operator is: K(x, X) ≡
x − Hf(x) + (I − HJ(X))(X − x) where H is an arbitrary matrix in Rn×n. H is generally

set to 1/f ′(x). If we start with X(0) containing the root x∗, then the formula: X(s+1) =

X(s) ∩ K(x(s), X(s)) with x(s) ∈ X(s), s = 0, 1, · · · . Interval version of Newton’s method

demands that 0 6∈ F ′(X(s)) whereas Krawczyk method only demands that f ′(x(s)) 6= 0.

Krawczyk’s method has better convergence properties than the interval version of Newton’s

method. Auxiliary polynomials [42] and Sturm sequences [52, 32] have also been used to

find roots of polynomials of various degrees. Most of these methods cannot be implemented

easily on the SIMD architecture of the GPUs, however.

2.2 Rendering Implicit Surfaces

Polygonization can convert implicit surfaces into triangulated model prior to rendering them

using traditional graphics [5]. The marching cubes algorithm can be used to create polygonal

models from implicit functions [28]. Marching cubes algorithm proceeds through the scalar

field , taking eight neighbor locations at a time (thus forming an imaginary cube), then

determining the polygons needed to represent the part of the isosurface that passes through

this cube. This is done by creating an index to a precalculated array of 256 possible polygon

configurations (28 = 256) within the cube, by treating each of the 8 scalar values as a bit

in an 8-bit integer. The precalculated array of 256 cube configurations can be obtained

by reflections and symmetrical rotations of 15 unique cases. The gradient of the scalar

field at each grid point is also the normal vector of a hypothetical isosurface passing from

that point. Therefore, we may interpolate these normals along the edges of each cube

to find the normals of the generated vertices which are essential for shading the resulting

mesh with some illumination model. However, marching cubes fails to polygonize on many

pathological surfaces on which our method works. This is particularly true for surfaces having

8

discontinuous or complex gradients. Green et al. released a high-performance, marching

tetrahedra package on the GPU recently [14], which can be used to polygonalize and render

arbitrary surfaces. In practice, this method is much slower than our approach and does not

produce good results on complex surfaces due to severe resolution problems (Chapter 6.4).

Twinned meshes were introduced recently to triangulate dynamic implicit surfaces with

changing topology using a mechanical mesh and a geometric mesh [6]. Point or particle-

based sampling and rendering of implicit surfaces have also been popular [53, 49]. They

distribute particles on the surface and apply attractive and repulsive forces to distribute

them evenly on the surface. These methods are typically demonstrated on metaball or

blobby surfaces used widely for fluid simulations and do not extend to arbitrary implicit

surfaces well. Triangulation and point-sampling go against the strengths of the GPU by

increasing the size and the bandwidth needs of the representation.

2.3 Ray-Tracing Implicit Surfaces

Ray-tracing of implicit surfaces is about finding the smallest positive root of an appropriate

equation in the ray-parameter t. Hanrahan demonstrated ray tracing of algebraic surfaces up

to the fourth order using Descartes rule of signs for root isolation and Newton’s bisection for

root refinement [15]. Kajiya reduces ray tracing of spline surfaces to a globally convergent

method resulting in root finding of an 18th degree polynomial using the Laguerre’s method

[20]. Kajiya’s method treats the ray as intersection of two planes. Thus, intersection of ray

and a spline reduces to intersection of intersection of two spline curves which are formed by

intersecting the spline surface with the planes forming the ray. These two spline curves are

intersected using Bezout determinant form which reduces to finding roots of a univariate

18th degree polynomial. The roots are found out by intersecting two cubic curves. Once

all the points of intersection of two curves are found out the nearest point of intersection is

reported. This point corresponds to the intersection of ray with the bicubic surface.

Interval arithmetic treats numbers as within some range thus t0 is represented as [t0 −
δ, t0 + δ]. It has specific rules for addition, subtraction, multiplication and division of two

interval based numbers. Let A = [a, a] and B = [b, b] be two intervals. Then the arithmetic

9

operations between them are as follows:

A + B = [a + b, a + b] (2.3)

A − B = [a − b, a − b] (2.4)

A ∗ B = [min(ab, ab, ab, ab), max(ab, ab, ab, ab)] (2.5)

A/B = A ∗ [1/b, 1/b] (2.6)

It is more robust than normal arithmetic. There are different types of methods by which

one can interval extend normal functions these include natural interval extension and more

robust taylor series based interval extensions. Interval-analysis has also been used for robust

root isolation by many [30, 11, 7, 41, 12, 22]. Caprani et al. use robust methods which are

obtained with interval inclusions in a variant of Alefeld-Hansens globally convergent method

for computing and bounding all the roots of a single equation [10]. Alefeld-Hansens method

has been modified so instead of searching for all roots, a recursive depth-first search is carried

out to obtain the smallest non-negative root. When compared to other methods suggested,

it is found that this variant of Alefeld-Hansens method is not only robust but also an efficient

method for finding the ray intersections [7].

Florez et al. use trimming algorithm which uses interval analysis to perform rejection

tests in a set of pixels simultaneously, instead of individual pixels at each time. With

this approach, the presented algorithm by them runs faster than the traditional interval

ray tracing algorithm. Also, an interval algorithm to remove aliasing in the rendering of

implicit surfaces is introduced by them. Their algorithm obtains better visualizations than

the traditional point sampling [12].

The interval extension of a function gives a bound in its range given an interval in its

domain. Mitchell isolates the root using repeated bisections till the interval in t contains

a single root [30]. Mitchell algorithm computes the interval extension of the function and

it’s dervitaive. The condition for single root which can be found out using different root

refinement methods according to Mitchell is that interval extension of the function contains

a zero whereas the interval extension of the derivative does not contain a zero. The condition

for multiple roots is that interval extension of the function and interval extension of the

10

Figure 2.1: Twisted Superquadric rendered using Mitchell’s algorithm [30]

Figure 2.2: An animated sinusoid-kernel surface [23]

derivative both contain a zero. In case of multiple roots the interval is recursively subdivided

into left subinterval and right subinterval. The right subinterval is chosen only in the case

interval extension of the function in left subinterval does not contain a zero. The recursive

subdivision proceeds until width of subinterval crosses some lower limit. This scheme gives

robust roots as it uses interval arithmetic as compared to normal arithmetic. Figure 2.1

shows robust rendering of twisted superquadric.

Reliable interval-extensions, however, are difficult to compute for large intervals in the

domain of complex functions. Subintervals, branch and bound schemes, octree grids, etc.,

have been used to increase the reliability of interval-based methods. Sherstyuk ray traces

implicit surfaces by approximating Ff(t) using piecewise Hermite polynomials of order 4 or

lower and solving them using analytical methods [44]. Snyder poses problems including ray

tracing implicit surfaces and CSG as constraint minimization and performs a numerically

stable global minimization using an interval analysis based method [46]. These results have

been on the CPU mostly and involve low-order algebraic surfaces or small blobbies. Knoll

et al. achieve 30 fps on a superquadric and 6 fps on a few sextic surfaces using the CPU and

the SSE hardware [22]. The interval-based methods can be adapted to the GPU for faster

11

ray tracing, as we show in Section 4, but are limited in scope due to the difficulty of reliable

interval extensions for higher order algebraic and non-algebraic surfaces. Simple methods

that suit the GPU deliver high performance on them.

Affine arithmetic provides tighter inclusions on the function than their interval arithmetic

counterparts. Knoll et al. achieve 121 fps on teardrop quintic surface, 88 fps on Barth sextic

and 15.6 fps on Barth decic surface [23](2.2. They use combination of rejection test and

bisection to arrive at the correct root. They compute the affine arithmetic based extension

of the function (F). If 0 ∈ F the rejection test succeeds and there is a root in this interval.

In case the rejection test succeeds they compute maximum depth of bisection (dmax) based

on user specified precision ε. If the test succeeds they hit the surface if they have reached

maximum depth of bisection d = dmax or recurse to the next level by setting the stepsize

tincr = tincr/2 and incrementing the depth d. The back recursion step decrements the depth

and goes to other unvisited nodes of the bisection tree. In the worst case their scheme can

lead to visiting all the nodes in the bisection tree and the algorithm can be very slow.

Sampling points along the ray and looking for intersections is a simple and intuitive way to

isolate the smallest positive root. This approach has been used for procedural hypertextures

[33] and other implicit surfaces [21, 17]. Kalra and Barr ray-traced LG-implicit surfaces

using Lipschitz constants, L for the function S(x, y, z) and G for its derivative along the ray

F ′(t), for efficient sampling of the rays [21]. A positive real number L is called a Lipschitz

constant on a function f(x) in a region R, if given any two points x1 and x2 the following

condition holds

||f(x1) − f(x2)|| < L||x1 − x2|| (2.7)

L is equal to greater than the maximum rate of change of f(x) in R i.e. L ≥ maxR|∇f(x)|
Given a one dimensional closed interval τ ∈ [t1, t2], Lipschitz constant G for g(t) in τ to be

equal to or greater than the maximum rate of change of g(t) in τ i.e. G ≥ maxτ |dg

dt
|. For

surfaces with known L and G the algorithm has no problem rendering the finest features

Figure 2.3.

Hart used variable step sizes in sphere tracing based on a geometric distance function eval-

uated at the current point [17]. It is able to handle surfaces defined by functions with

discontinuous or undefined derivatives. In order to achieve this it requires bounds on the

12

Figure 2.3: A surface with fine features rendered using LG technique

Figure 2.4: A logo for zeno using sphere tracing technique

magnitude of the derivative. Figure 2.4 shows logo for zeno rendered using sphere tracing

technique. The Lipschitz theory or geometric distances do not extend easily to complex

surfaces, however. Our algorithms also follow the point sampling approach, but change the

step size using simpler measures that suit the GPU than optimal ones from Lipschitz theory.

2.4 Ray-Tracing on the GPU

The traditional ray-tracing technique has been adapted to the GPU for general polygonal

models. Purcell et al. performed multipass ray tracing [37] and Carr et al. combined CPU and

GPU computations for a variety of tasks including recursive ray tracing [8]. These methods

work for general objects but are slow. Non-linear beam tracing on the GPU was demonstrated

by Liu et al. for regular geometry [25]. Spheres and other quadric primitives were ray-traced

Figure 2.5: Torus (Left) and Steiner(Right) visualized using Loop and Blinn’s technique.

Steiner shows some problems which are shown in the inset.

13

on the GPU using per-fragment ray-quadric intersection and optimized bounding boxes

[48, 45, 38]. Loop and Blinn showed resolution independent rendering of quadratic and

cubic-spline curves on the GPU [27]. They evaluate quadratic and cubic curves in a space

similar to the texture space. They also apply operations for antialiasing the curves using a

signed distance expression. Incase, of overlapping curves they subdivide the the control point

triangle of the one having larger area and get rid of the overlapping regions. They extended

it to render piecewise algebraic surfaces up to fourth order defined over tetrahedral bases

using analytical roots [26]. Figure 2.5 shows the rendering of torus and steiner quartics. The

steiner quartic has some problems due to self intersections.

Bajaj et al. used cubic A-patches using Bernstein-Bezier bases within a tetrahedron as a

way to approximate scattered points [2]. Seland and Dokken rendered algebraic surfaces up

to order five on the GPU [43] by computing the blossom of the function with respect to each

ray as a univariate Bernstein polynomial. This will not extend easily to higher order surfaces

as the complexity of computing coefficients of the univariate polynomial increases rapidly

with its degree. Computing coefficients occupies the majority of work done in root finding

in their case. Our method keeps the process simple to match the GPU by not evaluating

the coefficients of the complex univariate polynomials. Our method does not require this

expensive coefficient computation.

2.5 Our Work in Context

The analytical root-finding and Mitchell’s interval-based method are adapted to the GPU

(Chapter 3). The analytical roots are computed directly on the GPU without subdivisions

and achieve faster ray-tracing framerates on quartics and cubics than reported before. We

present the first interval-based ray-tracing on the GPU with an exact interval-extension,

which can ray-trace algebraic surfaces up to order 5 without any subdivisions or octrees and

achieves frame-rates that are at least an order of magnitude higher than reported previously.

The ray sampling methods we present (Chapter 5) steps along each ray till a step covers

a root. Step size is adapted using the algebraic distance to the surface and the angle the

ray makes with the local normal so that smaller steps are taken in regions that need greater

14

attention. For robustness, we use simple interval analysis to test root-containment. Eval-

uating the multivariate S(x, y, z) polynomials instead of the complex and ray-dependent

univariate F (t) polynomials reduces the computation effort per pixel. The methods also

work on arbitrary implicit surfaces since only samples of it are needed. The simplicity of

the methods is the key to achieving high performance on the restricted parallel architecture

of the GPU. We can ray-trace algebraic surfaces up to order 18 and several non-algebraic

surfaces at framerates upwards of 100. The method works on dynamic implicit surfaces also

as the equation is evaluated directly in each frame with no precomputations.

15

Chapter 3

GPU Ray-Tracing using Analytic

Roots

In this section, we present the GPU implementation of analytic root-finding method and use

it ray-trace quadratic, cubic and quartic surfaces.

3.1 Ray Tracing Quadrics

Quadratic surfaces are defined by pT Qp = 0 where Q is a 4×4 matrix. Substituting p =

O + tDf , the Ff (t) = 0 reduces to At2 + Bt + C = 0. Each fragment or ray has a different

equation, which can be solved independently. We solve the quadratic equation At2+Bt+C =

0 using discriminant D = B2 − 4AC to get the roots as −B±
√

D
2A

. The smaller positive of

these two roots gives the rays intersection with surface. All quadrics can be ray-casted by

solving a quadratic equation. We demonstrate results using ray casting large number of

quadrics. We also demonstrate results on ray casting quadrics with reflection and refraction

and environment mapping[38].

3.2 CSG of Quadric Objects

A CSG object is defined by a set of solid primitives and an expression tree in which leaf

nodes are the primitives and non leaf nodes are set operations. The set operations which we

16

use in our CSG tree are intersection (∩), union (∪) and difference (\). The CSG tree defines

a sequence in which these set operations must be performed to get the desired CSG object.

An arbitrary CSG tree can be transformed to produce a new tree which is the normal form

of the tree.

The normalized tree produces an expression which is in sum-of-products form. This can be

expressed as union of products P1 ∪ · · · ∪ Pm where each Pi is a product of primitives. Each

product term can be expressed as X0op1X1op2 · · · opkXk where each Xi is a primitive and

opi is either \ or ∩. We use Goldfeather et. al’s approach [13] to normalize the CSG tree. A

single product can rewritten as intersection of primitives where each can be uncomplemented

or complemented as for primitives A, B and A \B is same as A ∩B. Thus, the rendering of

CSG expression reduces to rendering of union of products. The CPU normalizes the CSG

expression using Goldfeather et. al’s approach into union of products. Thus, we have a sum

of products which has to be rendered. This is done in two steps first each product term

which is passed from CPU is sent to GPU to be rendered. Then union of these product

terms has to be computed. Render CSG Object procedure is described in Algorithm 1.

Algorithm 1 Render CSG Object

1: Convert the CSG expression to normalized form which is in sum-of-products using Gold-

feather et. al’s [13] approach.

2: Render each product term using Algorithm 2.

3: Combine them using z-buffering. This is done by using the depth test which will provide

us with nearest product term for each pixel with correct depth and colour which were

computed during rendering of each individual product.

We render procedural objects in such a way that bounding box is computed in vertex

shader. The intersection is computed in the pixel shader for each pixel, given the param-

eters of the object being rendered. This step is essentially the conventional ray casting

implemented on the pixel shader. The points on the ray in parametric form can be repre-

sented as P = O + tD, where t is the parameter along the ray, O the camera center and D

the direction of the ray. If the current pixel is accepted then its 3D position and normal are

computed for per-pixel lighting. The primitives include 3D Shapes such as include Quadric,

17

Parallelepiped and Tetrahedron. The main advantage of procedural rendering is resolution

independence which means that curved objects look curved at all resolutions independent of

zooming.

3.2.1 Rendering of a Product Term

Now consider the product containing i terms where some may be in complemented form.

We initialize the membership vector of the product by a bit vector of length i. We assume

that the origin is outside all the objects being considered. Render Product Term procedure

is described in Algorithm 2.

Algorithm 2 Render Product Term

1: Initialize membership vector to ”outside” which is assumed to be 0 for the uncomple-

mented primitives and 1 for complemented primitives. This is stored in a boolean vector

Int. The length of membership vector is equal to number of complemented terms+1.

2: Compute front and back intersection with each primitive procedurally tf , tb.

3: Now for the uncomplemented primitives find tu
f , t

u
b where tuf = max(tf) and tub = min(tb).

4: If tuf > tub exit product term is not true for the given ray.

5: Sort tf
i, tb

i for all complemented primitives i and tu
f , t

u
b .

6: From front, if Int[j] i.e. intersection is with j ′th object, toggle j ′th bit.

7: if membership vector is all 1′s then

8: Use normal of j for lighting. Light using material and other surface properties. Set

the colour and depth

9: else

10: Proceed to the next intersection in the front to back order.

11: end if

Algorithm 2 is illustrated for the product term ABC Figure 3.1 then the membership

vector is initialized to 01 this is by assuming the terms in membership vector to be 0 for

all uncomplemented primitives and 1 for the complemented primitives. We denote the t

parameters for intersection with each object by tf
1, tb

1, tf
2, tb

2 and tf
3, tb

3 where first is the

smaller of the two parameters for each object. Now, for the uncomplemented primitives we

18

t 2

t

f

1
f

bt2
tf
3

t1b

tb
3

C

A

B

AB − C
01

t1f
bt2
tf
3

tb
3

C

A

B

AB − C

01
t1f

bt2
tf
3

tb
3

C

A

B

AB − C

11

(a) (b) (c) (d)

Figure 3.1: Ray Intersection with a product term(a) Initial Membership Vector (b) Member-

ship Vector after combining uncomplemented terms (c) Membership Vector after intersection

with front face of A (d) Final Product Term which shows the product surface filled in red

take the maximum of all entering intersections which in this case is tf
1 and minimum of all

exit intersections tb
2. Thus after sorting the itersections for the ray we get the objects in the

following order ABCC and the intersection parameters tf
1, tb

2, tf
3, tb

3. Then the membership

vector goes through following transitions 01, 11 thus the ray intersects the product. The

intersection point is given by the parameter tf
1 and normal is the normal of A. Thus, the

membership vector is toggled at most 2i times where i is the number of terms in the product

which is number of uncomplemented primitives +1.

3.3 Ray Tracing Cubics and Quartics

Analytic solutions to the ray dependent equation exists only for simple forms of Ff(), such

as polynomials of order less than five. Root-finding for quadric surfaces have been used for

ray-tracing [48, 45, 38]. Results on cubics and quartics have been reported using tetrahedral

bases to limit the search range for the roots [26].

We solve the cubic equation using the method given by Blinn [3, 4]. For a cubic equation

Ax3 + 3Bx2w + 3Cxw2 + Dw3 = 0, compute δ δ1 = AC − B2, δ2 = AD − BC, and

δ3 = BD − C2. The discriminant is defined as δ = 4δ1δ3 − δ2
2. The sign of the discriminant

19

and the values of δis determine if it has one triple root, one double and a single real root,

three distinct real roots, or one real root and one complex conjugate pair as roots. These

can be worked out for each fragment independently for fast rendering of the shapes. We are

able to achieve over 3000 fps on cubics as shown in Table 3.1.

We use the Ferrari method described by Herbison-Evans for the fourth order polynomials

[18]. The equation is first depressed by removing the cubic term to the form t4 + pt2 +

qt + r = 0. If r is zero, the roots are 0 and the roots of the cubic equation. If r is non-

zero, the equation can be written as a product of two quadric equations. This is done by

rewriting it as (t2 + p)2 + qt + r = pt2 + p2. This is followed by a substitution y such

that the right hand side (RHS) becomes a perfect square. The equation then transforms to

(t2 + p + y)2 = (p + 2y)t2 − qt + (y2 + 2yp + p2 − r). Now, for the RHS to be a perfect

square its discriminant must be zero which leads to a cubic equation in y whose root is found

as described before. Table 3.1 shows the frame rates for representative cubic and quartic

surfaces for a resolution of 512 × 512 on an Nvidia 8800 GTX. Techniques specialized for

spheres or ellipsoids achieve 15-30 fps on a scene with 99K tiny spheres but do not give

the rendering time of a single primitive [45, 38]. Loop and Blinn report an fps of 1200 on

single quadratics and about 500 on single quartics. Our results are 2-4 times faster than

theirs on a 8800 GTX compared to the 7800 GTX they used. While most quartics work

perfectly, surfaces with self intersections or multiple roots like Steiner, Cross-Cap, and Miter,

have small holes from a few viewpoints. Multiple roots are hard for root-finding methods

Figure 3.2: Left: Ray-traced Bunny model containing 36k spheres at 57 fps Middle: Hyper-

boloid ray traced with reflection and refraction at 300 fps Right: Four primitive CSG at 22

fps.

20

Surface FPS Surface FPS

Steiner Quartic 1400 Miter Quartic 1045

Torus Quartic 1200 Cross Cap Quartic 1025

Tooth Quartic 1100 Clebsch Cubic 3400

Goursat Quartic 1175 Cayley Cubic 3300

Cassini Quartic 1103 Ding-Dong Cubic 3750

Piriform Quartic 1082 Sphere Quadric 5821

Cylinder Quadric 4358

Table 3.1: Frame rates for different surfaces using analytic root-finding for a 512 × 512

window on an Nvidia 8800 GTX.

Figure 3.3: Left: Cayley cubic at 3300 fps Right: Tooth quartic at 1100 fps

in general. The analytical methods may be able to detect degenerate situations based on

the determinants and take suitable action. Figure 3.3 shows a quartic and cubic rendered

analytically.

21

Chapter 4

Interval-Based Root Isolation

Interval-based methods have been used for robust root-finding [1, 31]. The basic idea is to

extend a function to an interval in its domain, with the result being an interval in its range.

If x̃ is an interval [a, b], the interval extension f̃(x̃) is an interval [p, q] that encloses the

minimum and maximum values of f(x) for x ∈ [a, b]. Interval extensions of iterative root-

finding methods produce more robust roots because they don’t deal with possibly singular

values.

Mitchell’s algorithm for root finding recursively isolates an interval that contains the root

by halving it, using interval arithmetic [30]. The interval extension of the function Ff(t)

and its derivative F ′
f (t) are used for this. If the interval extension of the function does not

contain 0, then the corresponding interval does not have a root inside the interval. The

interval contains one or more roots otherwise. If the interval extension of its derivative does

not contain 0, then the function is monotonic in the interval and contains a single root.

Otherwise (i.e., the interval extensions of the function and its derivative contain 0), the

function has multiple roots in the interval. The interval is then bisected and the procedure

is applied on both intervals recursively, starting with the lower half.

We adapted this algorithm for the GPU for root isolation (Algorithm 3). Since we are

interested in the smallest positive real root, we check the second half of the interval only if

the first does not contain a root. Algorithm 3 is executed on the GPU independently for

each ray. We exploit the vector operations of the GPUs to implement interval arithmetic

operations. The bisection at each step results in a running time that is logarithmic in the

22

length of the starting interval. We render several algebraic surfaces of order up to 5 and a few

non-algebraic surfaces using the above algorithm. Table 4.1 shows the frame rate achieved

on different surfaces. The average number of iterations vary from 18 for the Ding Dong

cubic to 85 for the Dervish quintic using this method. The rendering speed is affected by

this, but better than interactive rates is achieved on all these surfaces. The previous interval

based methods on the CPU were limited to 4th order algebraic surfaces, superquadrics,

Steiner surface, and blobbies. Recently, a sixth order surfaces was ray-traced at 6 fps and a

superquadric at 30 fps using the CPU plus the SSE hardware [22]. Ours is the first reported

attempt at implementing the interval-based ray tracing on the GPUs.

A B C D

y = 0

j k

l

t

y = F(t)
i

Figure 4.1: Interval extension methods. Roots in ranges [A, B], [B, C], and [C, D] can be

found using the natural extension involving the function values at the end points only, which

will not work for [A, C] or [B, D]. The first-order Taylor expansion based extension can work

for [A, C]. All critical points of the function need to be evaluated to detect the root in the

range [B, D]. The first-order extensions for [A, C] are i and j and for [B,D] are k and l.

The effectiveness of interval-based methods depends critically on the interval extension

used. Finding the bounds in range of a function given an interval in its domain is a hard

problem for arbitrary functions. Figure 4.1 illustrates the difficulty involved. Common

methods like the natural and the centered interval extension [19] use the values of the function

and/or its derivative at both ends of the interval. These can miss the root if an even number

of roots are in the interval. Another option is to interval extend each argument independently

and evaluate the function using interval-based addition, subtraction, multiplication, etc. The

bounds generated by this method tend to overestimate the true bounds and can result in

23

Surface No. of Frames Surface No. of Frames

[order] iterations per second [order] iterations per second

Dervish [5] 86 60 Nordstrands [4] 47 220

Kiss [5] 65 77 Kummer [4] 45 225

Peninsula [5] 60 85 Steiner [4] 45 235

Cushion [4] 53 170 Piriform [4] 42 230

Cross-Cap [4] 52 195 Torus [4] 32 400

Miter [4] 52 186 Cayley [3] 27 580

Tooth [4] 50 195 Clebsch [3] 25 590

Cassini [4] 48 215 Ding-Dong [3] 18 965

Goursat [4] 47 210

Table 4.1: Number of iterations and the frame rate using the interval-based method for a

512 × 512 window.

false roots when the domain interval is large, as is well known [22].

The bounds in the range of a function can be computed exactly only if all critical points in

the interval are known. For algebraic surfaces, this reduces to finding all roots of a polynomial

of order less by one. Consequently, we can only render algebraic surfaces of order 5 or less

(Table 4.1). It should be noted that rendering a quintic surface involves solving for all roots

of a 4th order polynomial to compute the interval extension of the function and solving for all

roots of a 3rd order polynomial to do the same for its derivative, per fragment. Interval-based

methods, thus, incur heavy computations and achieve lower framerates as a result.

The total interval [ts, te] is typically too large in practice for bisections to work using

an inexact interval extension for complex surfaces. Subdivision of the interval can enable

the reliable use of a simpler interval extension method. However, for arbitrary functions,

such subdivision based on a proper analysis is difficult. The considerations are similar to

those used in setting the optimal step-size of the marching points method. The Taylor series

expansion based interval extension (Section 5.4) is one that works on smaller sub-intervals.

Figure 4.2 shows a quintic and a quartic rendered using Mitchell’s algorithm.

24

Figure 4.2: Left: Steiner quartic at 235 fps Right: Kiss quintic at 77 fps

Algorithm 3 Interval-Based Root Isolation (f, a, b)

1: Compute the interval extensions F̃f ([a, b]) and F̃ ′
f [a, b].

2: if 0 /∈ F̃f([a, b]) then

3: Declare no root

4: else if 0 ∈ F̃f ([a, b]) and 0 /∈ F̃ ′
f([a, b]) then

5: Single root. Return [a, b]

6: else if 0 ∈ F̃f ([a, b]) and 0 ∈ F̃ ′
f([a, b]) then

7: Multiple roots. Invoke the algorithm for the interval [a, a+b
2

].

8: If no root, invoke algorithm for [a+b
2

, b].

9: Until a root is isolated or the width of interval is less than ε.

10: end if

25

Chapter 5

Marching Points and Adaptive

Marching Points

In this chapter, we describe our method to ray-trace arbitrary implicit surfaces, beyond those

described earlier in this thesis. Our approach is ideally suited to the SIMD architecture of

the GPU.

5.1 Iterative Root-Finding: Outline

Most interesting surfaces do not admit closed-form solutions and must be solved iteratively.

Iterative methods need to be used with caution on implicit surfaces as the equation Ff(t)

may have many solutions. Standard iterative methods like Newton-Raphson, Laguerre, etc.,

need good initialization for convergence. A two-step process with root isolation followed by

root refinement works better in the general case. Root isolation returns a bracket or interval

in the domain in which a root is present. Root refinement isolates the root within that

bracket. The total search range is [ts, te], the intersection of the ray with the near and far

planes.

We present two root isolation methods in this section based on sampling the ray and

another method in the next section based on interval analysis. A simple bisection method

is used to refine the isolated root in all cases. The bisection method divides the given

bracket [t1, t2] into two sub-intervals [t1, tm] and [tm, t2] using the midpoint tm. The smaller

26

Algorithm 4 Root-Finding: Overview

1: Isolate the first interval [t1, t2] that contains a root for the ray corresponding to each

fragment f .

2: Refine the root in [t1, t2] using repeated bisections.

half that contains the root is identified and explored further recursively. We perform 10

bisections after root isolation, but a condition based on the value of |Ff(t)| can be used

instead. Bisection method is robust and succeeds in all cases, if the bracketing is correct

[36]. It also guarantees that the solution gets closer to a real root with more iterations.

Other iterative methods (like the Newton-Raphson method) that base the next estimate on

the secant or the gradient converge faster in theory than the bisection method. However,

they are computationally more expensive due to need for derivatives and do not suit the

SIMD computation model of the GPUs well. In practice, the root refinement step is less

critical for all surfaces. In our experience, only about 15% of the total time is spent on

the second step for all surfaces with the percentage dropping below 10% for higher order

algebraic surfaces.

5.2 Computing S(x, y, z) vs Ff(t)

Root finding may need the values of the function Ff (t) and possibly the first derivative F ′
f(t)

and higher order ones at several points. The function can be evaluated for a given t using

the univariate polynomial Ff (t) directly or using the multivariate polynomial S(x, y, z) =

S(p(t)) after computing (x, y, z) = p(t) from t using the ray equation. The computational

implications of each could be very different. The expression Ff(t) typically has many terms

for higher order polynomials. Note that the coefficients of Ff() depend on the viewpoint

and the pixel coordinates and cannot be precomputed. For example, a single sixth order

expression x3y3 of S() maps to (a + bt)3(c + dt)3 in Ff(t) and expands to 16 terms for the 7

coefficients of the sixth order polynomial in t, requiring 44 multiplications and 9 additions

to evaluate. On the other hand, x and y can be computed using 2 multiplications and 2

additions and x3y3 can be evaluated using 5 more multiplications.

27

The Barth decic (Section 6) can be evaluated using about 30 terms as S(x, y, z) but needs

to evaluate 1373 terms to compute all 11 coefficients of the tenth order polynomial Ff (t). The

derivative F ′
f (t) can also be calculated efficiently using the gradient of S() as ~∇S(x, y, z) ·Df .

The univariate expression for the derivative is as cumbersome as the expression for Ff (t).

Loop and Blinn use GPU’s interpolation hardware to evaluate the coefficients of the poly-

nomial [26]. They evaluate the polynomial using a tensor contraction in a Bezier-Bernstein

tetrahedral basis. This is achieved by sending a symmetric tensor of rank d − 1 with
(

d+2
d−1

)

unique elements from the vertex shader for each of the 4 vertices of the tetrahedra. The

rasterization hardware on the GPU interpolates the tensor values after which, the fragment

shader computes the coefficients efficiently using dot products. While this method is very

clever, it will be computationally expensive for higher-order polynomials as O(d3) elements

need to be sent for an algebraic surface of order d. This will also not extend easily for other

non-algebraic surfaces. Since their goal was to render piecewise low order algebraic objects,

streaming the coefficients down the pipeline was essential and delivered decent speed.

A balanced computation load is critical to good performance on the GPUs, given their

SIMD model and limits on the length of the shader programs. Methods that use the S(x, y, z)

values are likely to be faster than those that use Ff (t) values. Root finding schemes that

use Bezier-Bernstein bases, Sturm sequences, singular value decomposition of the compan-

ion matrix, etc., operate primarily in the space of the Ff(t) polynomial and will be quite

inefficient on the GPU for higher order surfaces.

5.3 Marching Points Algorithm

Short and simple computations achieve the best performance on GPUs. An exceedingly

simple root-isolation scheme is to march a point along the ray till the function Ff (t) crosses

zero between two samples. The point needs to march between bounds in t given by the view

frustum or the bounding volume of the object. The computation complexity is low as only

Ff(t) = S(p(t)) needs to be evaluated at the sample points. This suits the SIMD model of

the GPU and can exploit its high computing power. We call this the marching points (MP)

algorithm (Algorithm 5). This algorithm can be used for arbitrary implicit surfaces, even

28

Figure 5.1: Marching points algorithm samples uniformly in the ray parameter t. The sign

test identifies the first interval where the function changes sign at the endpoints (darker

shaded region on the left). Sign test will fail as the step size increases (right). Roots will be

isolated in intervals [A, B] and [B, C]. If the step size doubles again, the roots in [A, C] will

be missed by the sign test. Taylor test detects the root in [A, C] by including points q and

r into the calculations.

those with difficult derivatives or for general piecewise algebraic surfaces without derivatives

at boundaries. The performance of the algorithm depends on the marching or sampling

step-size. The optimal step-size may differ from one surface to another.

Algorithm 5 Marching Points (f, N)

1: Find the bounds ts and te of the ray for fragment f .

2: Divide [ts, te] into N equal intervals

3: for i = 0 to N − 1 do

4: if rootExistsIn (ti, ti+1) then

5: Return [ti, ti+1] as containing a root

6: end if

7: end for

The root-containment test used in step 4 is the critical operation in the above procedure.

The test can be implemented in different ways. Two promising root-containment tests are

the following.

1. Sign test: rootExistsIn (ti, ti+1) = (S(p(ti))∗S(p(ti+1)) < 0). Root exists if the function

changes sign between the end points of the step. This test is simple to implement as

only the function values at the sample points are needed. It is also a strict test that

29

does not produce false roots. It may, however, miss roots if an even number of roots

are in the step.

2. Taylor test: rootExistsIn (ti, ti+1) = (0 ∈ F̃ ([ti, ti+1])), a test for containment of a zero

within a step. Interval arithmetic gives bounds of functions for a range in its domain as

seen earlier. Exact interval extension is impractical in general, but acceptable ones can

be found if the interval is small enough. We use an interval extension employing the

function values at the endpoints as well as the first order Taylor series approximation

of the function at the middle of the interval computed from both endpoints (Figures

5.1 and 4.1). This works adequately for moderate lengths of intervals. The interval

extension in the interval [ti, ti+1] is defined as

F̃ ([ti, ti+1]) = [min {p, q, r, s}, max {p, q, r, s}] where

p = F (ti), q = F (ti) + F ′(ti)
(ti+1 − ti)

2
, r = F (ti+1)−F ′(ti+1)

(ti+1 − ti)

2
, s = F (ti+1).

(5.1)

This test is slower than the sign test because of the derivatives but larger step-sizes

can be used. In practice, the running time doesn’t change much on the average though

the higher order surfaces suffer more due to the derivative calculations. This test can

produce false roots, but works robustly in practice and can handle multiple roots well.

The worst case running time of marching points is linear in the size of the total range in

t. However, it is fast in practice and can render a large number and type of surfaces. Table

5.1 gives the running time performance for algebraic surfaces up to order 18 and for several

non-algebraic surfaces using both tests. The step-size is chosen so as to not miss any root.

The interval [ts, te] is divided equally into the number of steps shown the table, ranging from

25 to 400 steps. Algebraic and non-algebraic implicit surfaces as complex as these have never

been ray-traced at interactive rates before to the best of our knowledge.

5.4 Adaptive Marching Points Algorithm

The marching points algorithm takes fixed size steps in empty space as well as near the

surface. The step-size has to be small enough to handle the worst-case, which occurs near

30

the silhouette of the surface. Larger step-sizes suffice in empty space if small step sizes can

be used close to the surface. The adaptive marching points (AMP) algorithm uses a step size

that depends on the closeness of the point to the surface and to its silhouette. We need a

proximity measure to determine how close the current point on the ray is to the surface and

a horizon measure to determine how close it is to a silhouette of the surface. The step-size

should be small when near the surface and smaller near silhouettes.

Figure 5.2: Adapting the step size to the distance to the surface. Region IV will have the

largest step size and the region I will have the smallest, based on the proximity measure

|S(x, y, z)|. The step size is further reduced for when the horizon condition is true (the

darkened region V) as the surface normal is nearly perpendicular to the viewing direction.

Geometric distances are reliable measures of proximity to a surface. They are, however,

surface dependent and not available for arbitrary implicit surfaces. Lipschitz bounds can

be used to estimate the optimum step size for efficient ray-tracing [21, 17]. The Lipschitz

constant can be defined as the maximum absolute value of a the derivative of the function in

an interval. Unfortunately, it is hard to compute for the higher order algebraic and general

implicit surfaces. Taubin suggests the use of the ratio F (t)
|F ′(t)| as a measure for signed geometric

distance to the function F (t) [47]. However, the measure is useful only for low-order algebraic

surfaces and for points close to the surface. Most areas of the surface are missed on most

higher-order surfaces with this distance function, in practice. Extending the definitions for

geometric distance and Lipschitz bounds to arbitrary algebraic and non-algebraic surfaces

will be a fruitful research direction for the future.

The magnitude of S(x, y, z) gives the algebraic distance from a point to the surface. We

use it as the proximity measure and vary the step-size as a monotonic function of it. In

31

practice, we use a piecewise constant approximation of this function and vary the step size

piecewise constant approximation of this function and vary the step size in octaves, starting

with a base step size of δ. The base step size is multiplied by 2 if the current point is far away

from the surface and halved if close to it, using two thresholds τ1 and τ2. Thus, different

step sizes can be used in regions of different colour/shade shown in Figure 5.2. The same

base step as the marching points algorithm is used and the thresholds are set based on the

coefficients of S().

Figure 5.3: Top row: Barth tenth order surface without silhouette adaptation (left) and

with it (right). The zoomed views in the middle show great reduction in the aliasing for

the internal silhouettes. Bottom row: Superquadric surface without (left) and with (right)

silhouette adaptation with zoomed views in the middle.

Figure 5.4: Number of steps taken along each ray for a Barth tenth order surface darker colour

indicates less number of steps. Left to Right: Marching Points(mp), Adaptive Marching

Points(amp), Adaptive Marching Points with silhouette adaptation Scaled difference image

between mp and amp with silhouette adaptation, and Scaled difference image between amp

and amp with silhouette adaptation.

It is also important to adapt the step-size to the view-dependent silhouettes. We decrease

32

the step-size near the silhouettes of the surface, using |F ′
f (t)| as a horizon measure. Note that

the complex implicit surfaces may have many internal silhouettes that need to be handled

carefully. We use |F ′
f(t)| ≤ ε as a horizon condition, which works fine for surfaces with

continuous gradients. This is a reliable horizon measure if p(t) is close to the surface, being

the cosine of the angle between the ray and the local surface gradient. The step size is

reduced near the silhouettes based on |F ′
f(t)|. In practice, we halve the step-size further

when the horizon condition is met (Algorithm 6). Thus, the darker, oval region of Figure 5.2

will have further reduced step sizes in order to render silhouettes well. The use of multiple

thresholds ε1, ε2, and additional piecewise constant levels can provide greater adaptation to

difficult silhouettes, but the single threshold suffices in practice for the kind of surfaces we

dealt with. Olievera et al. also used the angle between the viewing direction and the surface

normal to control the step size while ray-tracing height-fields on the GPU [35, 34].

Marching points and adaptive marching points can, however, miss multiple roots or pro-

duce false roots based on the specific test used, as explained earlier. A comparison of different

tests for multiple roots is shown in Figure 5.5. The sign-change test can miss the root when

the interval contains multiple roots. We can offset the surface by a small value to render

S(x, y, z) = ε to alleviate proble (Figure 5.5). Strictly speaking, we are rendering a different

surface, but the results can be close enough. Offsetting is similar to the S(x, y, z) ≤ ε test

for roots used by sphere tracing [17]. The Taylor test usign the first order interval extension

produces robust results similar to the interval-based method given in Section 4 (Figure 5.5),

confirming that it is a decent interval extension method in small intervals. The adaptive

marching points method (Algorithm 6) achieves better rendering speeds without losing the

versatility or quality of the basic marching points method (Table 5.2). Figure 5.3 shows the

effect of silhouette adaptation. The aliasing at the silhouettes reduces sharply with silhouette

adaptation. The superquadrics have the most challenging silhouettes as the surface is not

C1 continuous. The aliasing effects can be seen occasionally on these surfaces on the video.

Figure 5.4 shows the number of iterations used for each pixel as a measure of the work done

for the Barth decic surface. Adaptive marching points does less work than marching points

almost everywhere. The extra effort near the silhouettes can be observed when silhouette

adaptation is used. Figure 5.6 shows a quaddecic and a dodecic rendered at interactive

33

Figure 5.5: Top row: Steiner, Cross Cap, Miter and Kiss surfaces ray-traced using the

adaptive marching points method with the sign test. Multiple roots are missed by it. Second

row: Surfaces shifted by 0.01 using AMP and sign test. Region of multiple roots tend to

be fattened. Third row: Same surfaces rendered using the AMP algorithm and the Taylor

test for root containment. The performance is more robust for multiple roots. Bottom

row: Same surfaces rendered using Mitchell’s interval-based method (Section 4) which also

produces robust roots.

frame rates.

34

Figure 5.6: Left: Chmutovquaddecic at 125 fps Right:Sartidodecic at 86 fps

Algorithm 6 Adaptive Marching Points (f, b)

1: Find the intersections ts and te of the ray for fragment f with the near and far planes.

2: Initialize s to the basic step size b; t to starting point ts

3: while t < te do

4: s =































b/4 if |S(p(t))| ≤ τ1 and |~∇S(p(t)) · Df | ≤ ε

b/2 if |S(p(t))| ≤ τ1

2b if |S(p(t))| > τ2

b otherwise

5: if rootExistsIn (t, t + s) then

6: Return [t, t + s] as containing a root

7: end if

8: t = t + s

9: end while

35

Surface Max Frames per second Surface Max Frames per second

[order] steps Sign Taylor [order] steps Sign Taylor

Algebraic Surfaces

Chmutov [18] 400 85 38 Kleine [6] 400 285 290

Chmutov [14] 400 55 48 Dervish [5] 300 285 275

Sarti [12] 300 60 53 Peninsula [5] 85 370 447

Barth [10] 300 92 105 Piriform [4] 55 520 305

Chmutov [9] 200 125 135 Cushion [4] 75 390 305

Endrass [8] 300 140 179 Torus [4] 50 410 430

Chmutov [8] 250 185 195 Cassini [4] 55 405 375

Chmutov [7] 175 138 206 Cross-Cap [4] 50 400 465

Labs [7] 200 115 120 Goursat [4] 50 580 515

Barth [6] 125 300 310 Cayley [3] 60 460 475

Heart [6] 120 265 260 Clebsch [3] 55 470 500

Hunt [6] 400 230 225 Ding-Dong [3] 25 825 560

Non-Algebraic Surfaces

Superquadric 150 105 125 Scherk’s 250 200 315

Blobby 250 160 305 Diamond 250 260 306

Blinn’s Blobby 75 380 460

Table 5.1: Maximum number of steps and the frame rate using the marching points method

for a 512 × 512 window.

36

Surface Max Frames per second Surface Max Frames per second

[order] steps Sign Taylor [order] steps Sign Taylor

Algebraic Surfaces

Chmutov [18] 100 98 60 Kleine [6] 48 435 385

Chmutov [14] 100 125 95 Dervish [5] 45 285 280

Sarti [12] 100 86 75 Peninsula[5] 35 512 435

Barth [10] 100 150 115 Piriform [4] 32 552 315

Chmutov [9] 81 185 165 Cushion [4] 32 420 335

Endrass [8] 96 190 208 Cassini [4] 32 525 506

Chmutov [8] 64 215 216 Cross-Cap[4] 32 530 540

Chmutov [7] 63 242 233 Torus [4] 24 555 525

Labs [7] 77 232 310 Goursat [4] 24 635 605

Hunt [6] 84 240 325 Cayley [3] 33 600 652

Barth [6] 60 325 310 Clebsch [3] 21 585 555

Heart [6] 48 420 325 Ding-Dong[3] 15 920 665

Non-Algebraic Surfaces

Superquadric 100 185 155 Scherk’s 100 358 322

Blobby 50 329 300 Diamond 100 360 330

Blinn’s Blobby 40 456 545

Table 5.2: Maximum number of steps and the frame rate using the adaptive marching points

method for a 512 × 512 window.

37

Chapter 6

Experimental Results

In this section, we present the complete rendering results on several algebraic and non-

algebraic surfaces. We could render algebraic surfaces up to order 18 including all surfaces

shown in the MathWorld site and several non-algebraic and transcendental objects. Screen-

shots of these surfaces appear in Figures 8.1 and 8.2. The equations of the corresponding

surfaces is given in the Appendix A. First, we display the overall ray-tracing algorithm and

some of its implementation issues.

6.1 Overall Algorithm: Implementation Issues

The overall ray-tracing program for implicit surfaces is given in Algorithm 7. The imple-

mentation is in OpenGL/GLSL for the SM4.0 architecture of the Nvidia 8800 GTX GPU.

Here we give a few points to be kept in mind for efficiency and applicability.

1. Analytical root-finding (Section 3.3) can be used for surfaces of order less than 5.

Adaptive marching points (Section 5.4) performs the best otherwise.

2. The shaders are compiled on the fly under current programming environments including

GLSL and Cg. The function to evaluate the expression S(p(t)) and its gradient (if

necessary) can be synthesized on the fly by the CPU for the specific surface.

3. Computing S(p(t)) and its gradient ~∇S(p(t)) together in one function is more efficient

than evaluating them separately as many calculations can be shared. The gradient is

38

Algorithm 7 ImplicitSurface Render (f)

CPU:

1: Setup equations in the shader program.

2: Send a dummy quad to the OpenGL pipeline.

Vertex Shader:

1: Pass through vertices without any modification and camera center to the geometry

shader.

Geometry Shader:

1: Transform the dummy quad to screen-facing quad and pass parameters like the ray

direction to the vertices, the camera center, near, and far plane distances to the pixel

shader.

Fragment Shader:

1: Intersect each ray with the near and far planes to get the range [ts, te].

2: Isolate the root using one of the described algorithms.

3: Refine the root using 10 steps of Newton’s Bisection method.

4: Shoot a ray from the intersection point towards the light source(s). Perform root-isolation

for it. If root is found, the point is under shadow.

5: Compute per-pixel colour and depth using the position, normal, and shadowing at the

intersection point.

needed only in some cases, like the interval-based methods and for silhouette adapta-

tion.

4. Products of vectors are used to compute x2, y2, z2, x3, y3, z3, etc., simultaneously within

the shaders. Dot products are used wherever possible.

5. All timing given in this thesis are for ray-tracing all 512 × 512 rays of the screen.

Simple optimizations involving bounding boxes of the objects, octree partitioning, etc.,

can increase the timing performance greatly as reported earlier [21, 17]. Most of the

complex surfaces are not bounded easily, however.

39

6. The vertex and geometry shaders jointly perform initializations of the common param-

eters and drawing a screen-sized quad. The root finding is performed on the fragment

shader using single precision floating point arithmetic.

6.2 Self Shadowing

Though the single-bounce ray-tracing was described so far, secondary rays can be spawned

from points of intersection for shadowing, reflections, transparency, etc. General recursive

ray-tracing will require extensive book-keeping to perform on the shader and will be difficult

on the GPUs. Shooting secondary rays to the light sources to compute per-pixel shadowing

is practical, however. A point is shadowed if the ray from it to the light source hits the

surface before the light source. We only need to know if a point is shadowed; we needn’t

know the intersection of the secondary ray with the surface. Thus, only root isolation (step 2

of Algorithm 4) is needed. Figures 1.2 and 6.1 show the shadowing effects on a few surfaces,

including from multiple light sources. The video contains more interactive shots. Table 6.1

shows the performance of each algorithm with and without shadows. The rendering rate

suffers a little due to shadowing, while comfortably being above the real-time rates in all

cases.

Figure 6.1: Chmutov octdecic, Chmutov quaddecic, Sarti dodecic, Kiss quintic, and a Blobby

surface with self shadows and highlights.

6.3 Rendering Times

Table 6.1 presents the comprehensive frame rates for all methods discussed in the thesis on

several algebraic and non-algebraic surfaces for both with shadow rays and without them

40

on an Nvidia 8800 GTX for a resolution of 512 × 512. Table 6.2 presents results of AMP

method on Nvidia 280 GTX for a resolution of 512 × 512. The interval-based method has

low applicability but shows the least drop in fps due to shadowing. Marching points and its

adaptive versions are versatile and fast. They have difficulty with surfaces with a long locus

of multiple roots as explained earlier. The rendering times are orders of magnitude better

than anything reported in the literature. We also report real-time results on surfaces much

more complicated than have been reported before.

6.4 Comparison with Affine Arithmetic Ray-tracing and

Marching Tetrahedra

Complex implicit surfaces like the ones we used have not been ray-traced before on the GPUs

to provide comparison. The best reported effort by Knoll et al. achieve a frame rate of 101

on a sextic surface, 16 on a decic surface and up to 108 on superquadric-like surfaces on

a CPU with the SIMD extensions [23]. Our method is faster as seen in Table 6.3. Their

method involves an affine arithmetic on GPU and is slower than our AMP method based on

adaptive point sampling.

Implicit surfaces can, however, be polygonized using an algorithm like the Marching Cubes

algorithm [28] as the iso-surface of S(x, y, z). An efficient implementation of the marching

tetrahedra method – a variation on the marching cubes – was made available recently for

the GPUs by Nvidia [14]. It works in a voxelized space of resolution m × n × p and finds

the triangles on the iso-surface. We adapted the code to render the triangles with per-

pixel lighting and tried it on different implicit surfaces. Table 6.4 lists the running times of

marching tetrahedra and our method on comparable resolutions and Figure 6.2 provides the

visual rendering results. The 64×64×64 configuration of the marching tetrahedra produces

nearly the same visually quality as the 128×128×64 configuration of marching points when

rendering to a 128×128 window. We had difficulty getting higher resolutions of marching

tetrahedra to work on GPU. Our method is 20 to 50 times faster than marching tetrahedra.

The marching tetrahedra algorithm is also not able to handle more complex surfaces than

41

Figure 6.2: Left to right: Steiner quartic surface rendered with marching tetrahedra and

with adaptive marching points. Hunt’s sextic surface with marching tetrahedra and adaptive

marching points. Marching tetrahedra was computed for a 643 voxel grid and AMP for a

2562 × 64 grid and rendered at a 256 × 256 resolution.

those shown in the table. The coarse sampling of marching tetrahedra also produces more

artifacts on difficult areas as can be seen in Figure 6.2.

6.5 Dynamic Implicit Objects

A dynamic implicit object changes its form over time. The rayskip algorithm ray-traces

dynamic implicits by exploiting the temporal and spatial coherence of ray-implicit intersec-

tions [9]. Knoll et al. render dynamic implicits as 4D implicits in an (x, y, z, t) space [22].

The algorithms presented in this thesis ray-trace the implicit surface independently in each

frame without any precomputations or subdivisions. Thus, the equation can change each

frame without affecting the performance in anyway. Temporal coherence can be used but

the additional book-keeping slows down the process in practice on the GPUs. Figure 6.3

shows a few views from two dynamic objects. The first is a Blinn’s Blobby object with 30

spheres. As spheres fuse together when proximate, the topology of the object changes from

each being independent spheres to a single fused object. The positions of the spheres change

with time to create the segment in the video. The AMP method renders this object at a

framerate of 34 fps or more. The second is a superquadric with a twist term that changes

with frame. The video shows the twist being changed continuously, resulting in a continuous

deformation of the object. The AMP method renders the object at over 100 fps.

42

Figure 6.3: Dynamic objects: Two views of an evolving object with 30 Blinn’s blobbies

rendered at over 34 fps (left) and of twisting superquadric rendered at over 100 fps (right).

6.6 Limitations

We ray-traced algebraic and non-algebraic surfaces of high complexity using different meth-

ods in this thesis. However, each has its limitations. The interval-based method is robust but

difficult on more complex surfaces due to the lack of good interval extensions. The marching

points and its variations are versatile and fast but the performance depends on the sampling

rate, which was set by hand for each surface for most of the results in this thesis. A conser-

vative sampling step-size can produce correct results with some drop in the frame rate. The

last four columns of Table 6.1 present results for the adaptive marching points algorithm

when the maximum number of steps for the range [ts, te] is set to be max(100, 15 + 2k2),

where k is the order of the algebraic surface.

Multiple roots create difficulty for all methods. The interval-inspired Taylor test reduced

the problem for some of the surfaces, though the false-root problem makes it slower than

sign-test for some surfaces (e.g., Cushion, Piriform). All methods fail on surfaces with ex-

treme self-intersections such as the minimal surfaces [50]. Among the non-algebraic minimal

surfaces, our method was able to render only Scherk’s surface correctly (Table 6.1, Figure

8.2).

The GPUs primarily support only single precision arithmetic. This has not been a problem

in the wide class of algebraic and non-algebraic surfaces we tried. The computation of high

order polynomials, however, needs to be done carefully as numerical instabilities can produce

wrong results. The Chmutov surfaces of higher orders have serious artifacts due to false roots

near ±1 when the Chebyshev polynomial equations were evaluated directly, using the powers

of x, y, and z. This was not due to lower precision as the CPU implementation using double

43

precision had the same artifacts. However, the problems disappear when the recursive or the

sinusoidal definitions of the Chebyshev polynomial is used. The rendering speed suffers as

the iterative evaluation is computationally expensive for higher orders. The computational

load is nearly a constant independent of the order using the sinusoidal formulation as seen

in Table 6.2. The direct evaluation of the polynomial is the quickest for orders upto 18. See

the Appendix A for the iterative and sinusoidal definitions of the Chmutov surfaces.

Since ray-tracing relies on sampling the space in terms of the rays and we further sample

the surface along the ray, aliasing is an important issue. Adapting the sampling rate based on

the proximity to the surface and the view-dependent curvature of the surface provides good

results as shown earlier. The problem is very hard for surfaces without continuous gradients

like superquadrics with fractional powers (Figure 5.3). The straightforward approach we

employed provide adequate quality in practice but some view-dependent aliasing effects are

visible at places in the video. Extending these techniques to general GPU ray-tracing is a

challenging topic of research by itself.

44

Interval Adaptive Marching Points Algorithm
Surface Based #Steps: Hand-Tuned #Steps: Fixed Formula
[order] Algorithm Sign test Taylor test Sign test Taylor test

A B A B A B A B A B

Algebraic Surfaces
Chmutov [18] - - 98 70 60 45 98 70 45 38
Chmutov [14] - - 125 95 95 75 125 95 66 59

Sarti [12] - - 86 78 75 49 86 78 69 60
Barth [10] - - 150 110 115 79 150 110 82 75

Chmutov [9] - - 185 150 165 120 168 129 106 90
Endrass [8] - - 190 140 208 140 185 135 133 105
Chmutov [8] - - 215 175 216 161 165 160 145 110
Chmutov [7] - - 242 180 233 175 200 164 158 125

Labs [7] - - 232 165 310 155 220 150 125 105
Chmutov [6] - - 418 280 325 235 265 225 165 133

Hunt [6] - - 240 182 310 155 240 172 139 102
Barth [6] - - 325 270 325 230 316 225 175 139
Heart [6] - - 420 280 300 225 275 235 185 133
Kleine [6] - - 435 267 385 245 285 240 195 165
Dervish [5] 60 54 285 250 280 175 215 195 178 135

Kiss [5] 77 71 428 325 435 265 405 295 270 230
Peninsula [5] 85 78 520 326 535 295 380 285 306 235
Steiner [4] 235 215 645 420 516 315 405 365 270 240
Cassini [4] 215 208 510 320 506 285 396 305 285 240
Tooth [4] 195 190 617 425 542 287 440 375 345 260

Piriform [4] 230 222 552 450 315 246 345 275 291 240
Cross-Cap[4] 195 188 530 305 540 285 325 265 251 215

Miter [4] 186 176 535 325 528 285 345 285 245 225
Kummer [4] 225 219 555 405 302 245 318 245 195 155
Goursat [4] 210 198 635 420 605 325 420 365 315 265
Cushion [4] 170 163 420 320 335 225 329 250 186 145

Nordstrands [4] 220 211 458 305 324 235 336 285 245 170
Cayley [3] 580 572 600 365 652 315 452 345 391 200
Clebsch [3] 590 588 585 355 555 235 425 335 340 205

Ding-Dong [3] 965 960 918 482 665 475 605 485 450 325

Non-Algebraic Surfaces
Torus - - 540 350 515 295 540 350 515 295

Superquadric - - 185 145 155 105 185 145 155 105
Blobby - - 329 265 300 195 329 265 300 195

Blinn’s Blobby - - 456 344 545 325 456 344 545 325
Scherk - - 358 222 322 185 358 222 322 185

Diamond - - 360 208 330 199 360 208 330 199

Table 6.1: Rendering time results for several algebraic and non-algebraic surfaces for different
algorithms. Frame rates without shadows is given in A columns and with shadows is shown
in B columns for a 512 × 512 window on an Nvidia 8800 GTX. The order of each algebraic
surface appears within square brackets. The timings on the left half for AMP are for step-
sizes adjusted manually. The right half uses a conservative formula (see Section 6.6) for the
maximum number of iterations.

45

Surface Stepsize Sign Test Taylor Test
[order] NS S NS S

Algebraic Surfaces
Chmutov [50] 0.01 65 41 41 30
Chmutov [22] 0.01 160 71 113 49
Chmutov [18] 0.01 344 170 194 144
Chmutov [14] 0.01 457 287 262 224
Chmutov [12] 0.01 462 295 280 232

Sarti [12] 0.015 380 130 200 104
Barth [10] 0.015 573 252 286 176

Chmutov [9] 0.015 521 234 334 187
Endrass [8] 0.01 244 167 215 102
Nonisol [8] 0.01 1035 578 548 386

Chmutov [8] 0.02 1053 575 622 413
Chmutov [7] 0.02 787 256 545 228

Labs [7] 0.015 595 235 311 157
Chmutov [6] 0.02 1289 712 717 539

Hunt [6] 0.01 152 134 78 62
Barth [6] 0.02 836 377 557 247
Heart [6] 0.02 840 703 477 436
Kleine [6] 0.02 1024 356 633 287

High Silhouette[6] 0.02 1143 814 655 523
Dervish [5] 0.02 814 288 466 229

Kiss [5] 0.02 1297 644 774 573
Peninsula [5] 0.03 1349 590 832 489
Steiner [4] 0.02 1210 953 678 540
Cassini [4] 0.02 1147 517 699 371
Tooth [4] 0.03 1500 684 871 521

Piriform [4] 0.02 1450 1349 831 781
Cross-Cap[4] 0.02 1200 948 606 530

Miter [4] 0.02 1660 1140 891 645
Kummer [4] 0.02 1400 436 823 371
Goursat [4] 0.04 1700 930 1014 700
Cushion [4] 0.02 880 587 460 358

Nordstrands [4] 0.03 945 281 596 249
Cayley [3] 0.03 1519 481 844 405
Clebsch [3] 0.03 940 264 633 212

Ding-Dong [3] 0.03 1924 943 1188 739

Non-Algebraic Surfaces
Chmutov [50] 0.01 207 124 145 87
Chmutov [22] 0.01 217 130 152 91
Chmutov [18] 0.01 244 147 171 102
Chmutov [14] 0.01 254 152 178 106

Torus 0.04 1650 915 922 628
Superquadric 0.02 900 751 394 366

Blobby 0.05 1226 509 780 418
Blinn’s Blobby 0.05 1304 1022 691 620

Scherk 0.03 1112 449 718 390
Diamond 0.04 1300 309 983 272

Table 6.2: Frame rates for several algebraic and non-algebraic surfaces using our algorithm
for a 512 × 512 window on an Nvidia 280 GTX. NS columns are without shadows and
S columns are with shadows. The order of each algebraic surface appears within square
brackets. The number of steps used is given in second column.

46

Surface FPS using FPS using

[23] our method

Steiner 38 212

Teardrop 121 178

Tangle 71 196

Barth Sextic 88 120

Kleine 101 170

Mitchell 60 176

Barth Decic 16 94

Superquadric 108 544

Table 6.3: Comparison of frame rates for different surfaces using Knoll’s affine arithmetic

method on a GPU and our AMP method on the GPU on common surfaces.

Surface Marching Marching Points Adaptive March. Pts

Name Tetrahedra 643 1282 × 64 2562 × 64 1282 × 64 2562 × 64

DingDong [3] 14 0.468 0.810 0.445 0.751

Steiner [4] 14 0.586 0.924 0.513 0.797

Peninsula[5] 16 0.537 0.890 0.539 0.738

Chmutov [7] 16 0.634 1.154 0.610 1.109

Chmutov [8] 32 0.689 1.323 0.653 1.353

Chmutov [9] 46 0.757 1.343 0.730 1.398

Table 6.4: Rendering times in milliseconds for the GPU marching tetrahedra for 643 res-

olution and marching points and adaptive marching points for 1282 × 64 and 2562 × 64

resolutions on an Nvidia 8800 GTX.

47

Chapter 7

Ray-Tracing on the GPU: Discussion

The performance of a GPU ray-tracing algorithm depends on three of its aspects: the algo-

rithmic complexity, the per-pixel computational load, and the match with the SIMD archi-

tecture of the GPUs.

1. Algorithmic Complexity: The convergence rate determines the computational complex-

ity for iterative root-finders. Among the methods we presented, the marching points

methods have a linear behaviour due to its front-to-back sampling. The interval-based

method has a logarithmic behaviour due to the repeated subdivision of the interval. Ta-

ble 7.1 presents the ray-tracing times of a few surfaces for different depths or distances

from the camera. The timings of the CPU version and the GPU version of the AMP

method and the interval-based method are given. Clearly, the interval-based method

is not affected by the distance to the camera while the AMP algorithm needs more

time for farther surfaces. The behaviour for CPU and GPU versions are essentially

same, suggesting that the interval-based method has lower algorithmic complexity as

expected.

2. Computational Load: The running time depends on the the number of shader compu-

tations needed for each ray. The marching points methods need to evaluate only the

function at each sample point and have a lower computation load than the interval-

based method. The interval-based method uses exact interval-extension that needs to

find all critical points of the function and its derivative as explained earlier for each

48

Rendering time in milliseconds
Method for different distances to surface

z = 0 z = 1 z = 4 z = 5

Sphere (Quadratic)
Adaptive Marching Points (GPU) 0.770 0.931 1.144 1.195
Adaptive Marching Points (CPU) 760.4 791.7 1082.2 1195.2

GPU Speedup 987.5 850.4 946.0 1000.2
Interval Based (GPU) 0.519 0.519 0.520 0.520
Interval Based (CPU) 463.8 463.9 464.0 464.2

GPU Speedup 893.6 893.8 892.3 892.7

Ding Dong (Cubic)
Adaptive Marching Points (GPU) 1.092 1.169 1.844 1.979
Adaptive Marching Points (CPU) 986.9 994.2 1289.0 1410.3

GPU Speedup 903.8 850.5 699.0 712.6
Interval Based (GPU) 1.035 1.038 1.039 1.040
Interval Based (CPU) 878.5 878.9 879.4 879.9

GPU Speedup 848.8 846.7 846.4 846.1

Nordstrands (Quartic)
Adaptive Marching Points (GPU) 2.183 2.448 3.072 3.345
Marching Points on (CPU) 3159.5 3361.5 4092.1 4385.2

GPU Speedup 1447.3 1373.2 1332.1 1311.0
Interval Based (GPU) 4.544 4.545 4.546 4.548
Interval Based (CPU) 6210.2 6211.3 6211.9 6212.4

GPU Speedup 1366.7 1366.6 1366.5 1366.0

Dervish (Quintic)
Adaptive Marching Points (GPU) 3.355 3.593 3.995 4.115
Adaptive Marching Points on (CPU) 4152.3 4495.7 5365.0 5874.6

GPU Speedup 1237.6 1251.2 1342.9 1427.6
Interval Based (GPU) 16.528 16.529 16.530 16.530
Interval Based (CPU) 8320.4 8321.6 8322.4 8322.7

GPU Speedup 503.4 503.5 503.5 503.5

Table 7.1: Ray-tracing times for different surfaces on CPU and GPU for the AMP method
and the interval-based methond and for different distances to the camera. The speedup of
the GPU for each of the method is also shown for each surface.

49

sample that it evaluates. Table 7.1 compares the ray-tracing times of the two meth-

ods for a few surfaces. The interval-based method is faster than AMP for lower order

surfaces. The advantage is nullified for higher order surfaces due to the greater compu-

tational load incurred on them, even for larger distances to the surface. The behaviour

is the same on the CPU and the GPU as it is based on the inherent computational

load.

3. SIMD Architecture of the GPU: The constraints of the SIMD architecture can also

affect the running time beyond the above factors. Conditional branching is inefficient

under SIMD if different pixels have to take different branches. The interval-based

method has conditional branching during the computation of the interval extensions.

It also branches based on the change in sign of the function and its derivative. The

AMP algorithm has no conditional branching and suits the SIMD architecture of the

GPU well. The effect of branching may be less pronounced if all rays of the group that

are scheduled together take the same branches. Table 7.1 also gives the speedup of

the GPU version over the CPU version for each algorithm. The GPU is able to achive

higher speedups for the AMP algorithm than the interval-based one due to the better

match with the SIMD architecture. The difference is more pronounced at higher order

surfaces as there is more scope for divergence on them.

Overall, the modern GPU is well suited for single-bounce ray-tracing using the ray sam-

pling methods presented in this thesis. The algebraic surfaces shown in this thesis are rich

enough for most tasks. The single precision of the GPUs is quite adequate for most sur-

faces, though higher numerical precision could help with the ray-tracing of more complex

ones. The impact of the match with the SIMD architecture seems to grow with the order

or complexity of the surface. The simple and seemingly non-promising methods can achieve

very high performance on the GPUs as a result. This is in conformance with the experience

with algorithms like sorting on the GPU, where the simpler bitonic sort came out faster on

the GPU than more optimal sequential algorithms.

Recursive ray-tracing is essential to produce complex inter-reflections and other effects.

The current generation of GPUs provide no support for it. Some support for stacks within

50

the GPU memory can enable limited recursive ray-tracing and other similar applications on

the GPU.

51

Chapter 8

Conclusions & Future Work

We presented a few schemes to ray-trace complex algebraic and non-algebraic implicit sur-

faces on the GPU at very high frame rates. The analytic and interval-based methods give

robust and fast solutions for algebraic surfaces, but are limited in its applicability. The

adaptive marching points method provides the best performance for arbitrary algebraic or

non-algebraic surfaces. Sign-test based root isolation will suffice for most surfaces in practice

but the first-order interval based root isolation can be used if multiple roots are likely. The

simplicity of the method is the key factor behind the high performance on current GPUs.

The single-precision of current GPUs prevents easy adaption of this method to algebraic sur-

faces of order greater than twenty. The very high-order algebraic surfaces may not occur in

practice today in graphics and visualization. However, the ability to ray-trace such surfaces

provides scientists and other practitioners the freedom to choose whatever model they want

for their data and use a uniform method for rendering. The performance of the lower order

surfaces is significantly better than the higher order ones.

Whitted and Kajiya propose the use of fully procedural graphics to exploit the high

compute power of the GPUs using the low external bandwidth they possess [51]. We believe

this will be the direction of the high-performance graphics of tomorrow. General implicit

surfaces are expressive and can be ray-traced fast on the GPUs using our scheme. Ray-

tracing can produce exact images independent of the resolution and can exploit the high

compute power of the GPUs effectively. Implicit or procedural description of geometry

provides high quality without increasing the representational complexity. Simplicity of the

52

underlying algorithm is critical to extracting high performance from the SIMD architecture

of the current GPUs.

8.1 Directions for Future Research

The following lines of research can help push the ray-tracing of implicit surfaces on GPUs

and other multi-core platforms based on the experience gained by this work.

1. Arbitrary implicit surfaces lack good geometric distance measures. This prevents the

adoption of efficient techniques like sphere tracing [17] to them. Lipschitz continuity

theory can provide insights into this problem thought the measures suggested in the

literature do not easily apply to arbitrary surfaces. More study is needed to arrive at

reasonable bounds based on a normalized form of the implicit equation.

2. The effects of limited numerical precision on higher order surfaces need to be explored

further. Are there normalizing methods that can exploit the precision to the maximum?

Double precision arithmetic is likely to be available on future GPUs, but perhaps at a

premium on computation time. Mixing single and double precision operations in the

right proportion for a single ray and across adjacent rays will be critical to get high

performance.

3. The inherent coherence between adjacent rays can also be exploited for faster and more

accurate results. The best direction may be to bring in the ideas from beam-tracing

into this problem. GPUs schedule execution of several pixels together based on image-

space adjacency and the availability of fragment hardware. Thus, beam tracing that

combines image-space and object-space coherence can give maximum performance on

the GPUs.

4. Anti-aliasing may be an important issue for such complex surfaces which could have

internal silhouettes in addition to external ones (Figure 5.3). The adaptive marching

points algorithm already differentiates points near the silhouettes from other points.

This can form the basis for selective oversampling, i.e., increasing the number of rays

53

traced near the silhouettes. These rays can be produced on the fly by the shader

programs or marked for rendering in a separate pass. A good geometric distance

measure and a good horizon condition are essential for high performance.

5. Beam-tracing and sharing results of the computation across rays require more general-

purpose communication between adjacent rays of the rendered image. A programming

model that treats the GPU as a general parallel programming device is likely to pro-

vide better performance than the traditional graphics-pipeline approach. The CUDA

programming model provided on the Nvidia GPUs and others similar to that may then

achieve higher performance for ray-tracing on the same hardware.

6. Texture mapping general implicit surfaces is an interesting problem on which very little

work has gone on. The surfaces used in this thesis can have multiple parts and arbitrary

genus. Parameterizing them consistently as a single piece is challenging. They could

be paramterized locally using Monge patches which are either parabolic, ellipsoidal or

hyperbolic in shape depending on the curvature of the point. Another approach could

be to locally parametrize parts of the surface having genus zero.

7. Ray-tracing parametric surfaces is largely an open problem today. The 18th degree

polynomial that results from applying Kajiya’s technique [20] to bicubic surfaces is

dense and cannot be solved easily using an extension of our method as all roots are

needed. A solution using an extension of bracketing to two-dimensional intervals in

the (u, v) parameter space and bisection within the parameter rectangle needs to be

explored.

Overall, handling procedural and implicit geometry directly on fast GPUs will be more

common in the future. The GPUs themselves may need to provide additional features in

hardware to make this easy. This can include higher precision arithmetic, programmable

rasterizers, etc. Procedural elements can also be applied to other aspects such as textures,

normals, shading, etc. We expect the GPUs will evolve to support this natively and effi-

ciently.

54

Chmutov [18] Chmutov [14] Sarti [12] Barth [10] Chmutov [9] Endreass [8]

(98) (125) (86) (150) (185) (190)

Chmutov [8] Chmutov [7] Labs [7] Chmutov [6] Hunt [6] Barth [6]

(215) (242) (232) (418) (240) (325)

Heart [6] Kleine [6] Dervish [5] Kiss [5] Peninsula [5] Steiner [4]

(420) (435) (285) (428) (520) (645)

Cassini [4] Tooth [4] Cross Cap [4] Miter [4] Kummer [4] Goursat [4]

(510) (617) (530) (535) (555) (635)

Cushion [4] Nordstrands [4] Piriform [4] Cayley [3] Clebsch [3] Ding-Dong [3]

(420) (458) (552) (600) (585) (918)

Figure 8.1: Pictures of various algebraic surfaces with the order of the surface shown within

square brackets and the FPS using the adaptive marching points algorithm shown within

parenthesis for a 512 × 512 window.

55

Torus Blinn’s Blobby Blobby Scherk Diamond Superquadric

(540) (456) (329) (358) (360) (185)

Figure 8.2: Pictures of the non-algebraic surfaces rendered by us with the FPS using the

adaptive point sampling algorithm given in parenthesis for a 512 × 512 window.

56

Appendix A

Implicit Equations

Cubic Surfaces

1. Ding-Dong: x2 + y2 = z(1 − z2).

2. Clebsch: 81(x3 + y3 + z3)− 189(x2(y + z) + y2(x + z) + z2(x + y)) + 54xyz + 126(xy +

yx + xz) − 9(x2 + y2 + z2) − 9(x + y + z) + 1 = 0.

3. Cayley: −5(x2(y + z) + y2(x + z) + z2(x + y)) + 2(xy + yx + xz) = 0.

Quartic Surfaces

1. Torus: (x2 + y2 + z2 + R2 − r2)2 − 4R2(x2 + y2) = 0.

2. Nordstrands: 25(x3(y+z)+y3(x+z)+z3(x+y))+50(x2y2 +y2x2 +x2z2)−125(x2yz+

y2xz + xyz2) − 4(xy + yx + xz) + 60xyz = 0.

3. Cushion: z2x2−z4−2zx2 +2z3 +x2−z2−(x2−z)2−y4−2x2y2−y2z2 +2y2z+y2 = 0.

4. Goursat: x4 + y4 + z4 − 1 = 0.

5. Kummer: x4 + y4 + z4 − x2 − y2 − z2 − x2y2 − y2z2 − z2x2 + 1 = 0.

6. Miter: 4x2(x2 + y2 + z2) − y2(1 − y2 − z2) = 0.

7. Cross Cap: 4x2(x2 + y2 + z2 + z) + y2(y2 + z2 − 1) = 0.

8. Piriform: x4 − x3 + y2 + z2 = 0.

57

9. Tooth: x4 + y4 + z4 − x2 − y2 − z2 = 0.

10. Cassini: ((x + a)2 + y2)((x − a)2 + y2) = z2 where a is the radius of the circle.

11. Steiner: x2y2 + x2z2 + y2z2 − 2xyz = 0.

Quintic Surfaces

1. Peninsula: x2 + y3 + z5 − 1 = 0.

2. Kiss: x2 + y2 = z(1 − z4).

3. Dervish: 64(x− 1)(x4 − 4x3 − 10x2y2 − 4x2 +16x− 20xy2 +5y4 +16− 20y2)− 5a(2z −
a)(4(x2 + y2 + z2) + (1 + 3

√
5))2 = 0 where a =

√

5 −
√

5.

Sextic Surfaces

1. Barth: 4(φ2x2 − y2)(φ2y2 − z2)(φ2z2 − x2) − (1 + 2φ)(x2 + y2 + z2 − 1)2 = 0 where

φ = (1 +
√

5)/2 is the golden ratio.

2. Hunt: 4(x2 + y2 + z2 − 13)3 + 27(3x2 + y2 − 4z2 − 12)2 = 0

3. Kleine: (x2+y2+z2+2y−1)(x2+y2+z2−2y−1)2−8z2]+16xz(x2+y2+z2−2y−1) = 0

represents a 3D impression of the Kleine bottle.

4. Chmutov: T6(x) + T6(y) + T6(z) = 0 where T6(x) = 2x2(3− 4x2)2 − 1 = 32x6 − 48x4 +

18x2 − 1 is the Chebyshev polynomial of the first kind of degree 6.

5. Heart: (2x2 + 2y2 + z2 − 1)3 − 0.1x2z3 − y2z3 = 0.

6. High Silhouette: x6 − y5 − 2x3y + y2 = 0

Septic Surfaces

1. Chmutov: T7(x) + T7(y) + T7(z) + 1 = 0 where T7(x) = 64x7 − 112x5 + 56x3 − 7x is

the Chebyshev polynomial of the first kind of degree 7.

58

2. Labs P − Uα = 0 where P = x7 − 21x5y2 + 35x3y4 − 7xy6 + 7z((x2 + y2)3 − 8z2(x2 +

y2)2+16z4(x2 +y2))−64z7, Uα = (z+a5)((z+1)(x2+y2)+a1z
3 +a2z

2 +a3z+a4)
2,a1 =

(−12/7)α2−384/49α−8/7,a2 = (−32/7)α2+24/49α−4,a3 = (−4)α2+24/49α−4,a4 =

(−8/7)α2 + 8/49α − 8/7,a5 = 49α2 − 7α + 50 and α = −0.14010685

Octic Surfaces

1. Nonisol: x8 − y8 − 2x4y + y2 = 0

2. Chmutov: T8(x) + T8(y) + T8(z) = 0 where T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1.

3. Endrass: 64(x2 − 1)(y2 − 1)(ab) − (c + d + e)2 = 0 where a = (x + y)2 − 2, b =

(x − y)2 − 2, c = −4(1 −
√

2)(x2 + y2)2, d = 8(2 −
√

2)z2 + 2(2 − 7
√

2)(x2 + y2) and

e = −16z4 + 8(1 + 2
√

2)z2 − (1 − 12
√

2). Like many higher order algebraic surfaces,

the Endrass octic appears like a collection of surfaces.

Nonic Surfaces

1. Chmutov: T9(x)+T9(y)+T9(z)+1 = 0 where T9(x) = 256x9−576x7+432x5−120x3+9x

is the Chebyshev polynomial of the first kind of degree 9.

Surfaces of order more than 10

1. Barth Decic: Barth decic is a tenth order surface with the equation 8(x2 − φ4y2)(y2 −
φ4z2)(z2−φ4x2)(x4 +y4 +z4 −2x2y2−2x2z2 −2y2z2)+(3+5φ)(x2 +y2 +z2−1)2(x2 +

y2 + z2 − 2 + φ)2 = 0 where φ = (1 +
√

5)/2 is the golden ratio.

2. Sarti Dodecic: This surface which is of order twelve with the equation 243 S−22 Q = 0,

where Q = (x2 + y2 + z2 + 1)6 and S = 33
√

5(s−2,3 + s−3,4 + s−4,2) + 19(s+
2,3 + s+

3,4 + s+
4,2) +

10s2,3,4 − 14s1,0 + 2s1,1 − 6s1,2 − 352s5,1 + 336l25l1 + 48l2l3l4 with l1 = x4 + y4 + z4 +

1, l2 = x2y2 + z2, l3 = x2z2 + y2, l4 = x2 + y2z2, l5 = xyz, s1,0 = l1(l2l3 + l2l4 + l3l4),

s1,1 = l21(l2 + l3 + l4), s1,2 = l1(l
2
2 + l23 + l24), s2,3,4 = l32 + l33 + l34, s±2,3 = l22l3 ± l2l

2
3,

s±3,4 = l23l4 ± l3l
2
4, s±4,2 = l24l2 ± l4l

2
2, and s5,1 = l25(l2 + l3 + l4).

3. Chmutov of Higher Orders: Tn(x) + Tn(y) + Tn(z) = 0 for n = 14, 18, 22 and 50 and

Tn is Chebyshev polynomial of first kind of degree n.

59

Recursive Definition: T0(x) = 1, T1(x) = x and Tn+1(x) = 2xTn(x) − Tn−1(x)

Sinusoidal Definition:

Tn(x) =



















cos(n arccos(x)) x ∈ [−1, 1]

cosh(ncosh−1(x)) x > 1

(−1)n cosh(ncosh−1(−x)) x < −1

A.0.1 Non-Algebraic Surfaces Equation

1. Torus: (c −
√

x2 + y2)2 + z2 = a2.

2. Blinn’s Blobby:
∑N

i=1
r2

i

||x−ci||2+ε
− 1.0 = 0.

3. Blobby: x2 + y2 + z2 + sin(4x) − cos(4y) + sin(4z) − 1.0 = 0.

4. Scherk’s Minimal: exp(z) ∗ cos(y) − cos(x) = 0.

5. Diamond: sin(x) ∗ sin(y) ∗ sin(z) + sin(x) ∗ cos(y) ∗ cos(z) + cos(x) ∗ sin(y) ∗ cos(z) +

cos(x) ∗ cos(y) ∗ sin(z) = 0.

6. Superquadrics: Superquadric surfaces are given by the equation |x|m+|y|m+|z|m−1.0 =

0 for different values of m. Fractional values produces concave sides. The shape

approximates a cube with rounded edges for high values of m.

60

Bibliography

[1] D. W. Arthur. The use of interval arithmetic to bound the zeros of real polynomials.

In J. Inst. Math. Appl., volume 10, pages 231–237, 1972.

[2] Chandrajit L. Bajaj, Jindon Chen, and Guoliang Xu. Modeling with cubic a-patches.

ACM Trans. Graph., 14(2):103–133, 1995.

[3] James F. Blinn. How to solve a cubic equation, part 1: The shape of the discriminant.

IEEE Comput. Graph. Appl., 26(3):84–93, 2006.

[4] James F. Blinn. How to solve a cubic equation, part 3: General depression and a new

covariant. IEEE Comput. Graph. Appl., 26(6):92–102, 2006.

[5] Jules Bloomenthal and Keith Ferguson. Polygonization of non-manifold implicit sur-

faces. In SIGGRAPH ’95, pages 309–316, 1995.

[6] Antoine Bouthors and Matthieu Nesme. Twinned meshes for dynamic triangulation of

implicit surfaces. In Graphics Interface, Montréal, may 2007.

[7] O Caprani, L Hvidegaard, M Mortensen, and T Schneider. Robust and efficient ray

intersection of implicit surfaces. Reliable Computing, 6(1):9–21, 2000.

[8] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. In Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 37–46.

Eurographics Association, 2002.

[9] Erwin de Groot and Brian Wyvill. Rayskip: faster ray tracing of implicit surface

animations. In GRAPHITE ’05: Proceedings of the 3rd international conference on

61

Computer graphics and interactive techniques in Australasia and South East Asia, pages

31–36. ACM Press, 2005.

[10] Olivier Didrit, Luc Jaulin, Michel Kieffer, and Eric Walter. Applied Interval Analysis,

with Examples in Parameter and State Estimation, Robust Control and Robotics. 2001,

Springer-Verlag.

[11] Tom Duff. Interval arithmetic recursive subdivision for implicit functions and construc-

tive solid geometry. SIGGRAPH Comput. Graph., 26(2):131–138, 1992.

[12] Jorge Florez, Mateu Sbert, Miguel Angel Sainz, and Josep Vehi. Improving the interval

ray tracing of implicit surfaces. In Computer Graphics International, pages 655–664,

2006.

[13] Jack Goldfeather, Jeff P M Hultquist, and Henry Fuchs. Fast constructive-solid geom-

etry display in the pixel-powers graphics system. In SIGGRAPH ’86, pages 107–116,

1986.

[14] Simon Green, Yury Urlasky, and Evan Hart. Nvidia opengl sdk isosurface extraction

using marching tetrahedra. http://developer.nvidia.com/, 2007.

[15] Pat Hanrahan. Ray tracing algebraic surfaces. In SIGGRAPH ’83, pages 83–90, 1983.

[16] Eldon Hansen and William Walster. Global Optimization Using Interval Analysis. Mar-

cel Dekker, 2003.

[17] John C. Hart. Sphere tracing: a geometric method for the antialiased ray tracing of

implicit surfaces. The Visual Computer, 12(10):527–545, 1996.

[18] D. Herbison-Evans. Solving quartics and cubics for graphics. In Graphics Gems V,

pages 3–15. Academic Press, 1995.

[19] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Applied Interval Analysis.

Springer, 2001.

[20] James T. Kajiya. Ray tracing parametric patches. In SIGGRAPH ’82, pages 245–254,

1982.

62

[21] D. Kalra and A. H. Barr. Guaranteed ray intersections with implicit surfaces. In

SIGGRAPH ’89, pages 297–306. ACM Press, 1989.

[22] Aaron Knoll, Younis Hijazi, Charles D Hansen, Ingo Wald, and Hans Hagen. Interac-

tive ray tracing of arbitrary implicit functions. In Proceedings of the 2007 Eurograph-

ics/IEEE Symposium on Interactive Ray Tracing, 2007.

[23] Aaron Knoll, Younis Hijazi, Andrew Kensler, Mathias Schott, Charles D Hansen, and

Hans Hagen. Fast and robust ray tracing of general implicits on the gpu. Technical

Report 2007-014, University of Utah, 2007.

[24] R. Krawczyk. Newton-algorithmen zur bcstimmung yon nullstellen mit fehlerschranken.

Computing, 4:187–201, 1969.

[25] Baoquan Liu, Li-Yi Wei, Xu Yang, Ying-Qing Xu, and Baining Guo. Nonlinear beam

tracing on a gpu. Microsoft Research Technical Report MSR-TR-2007-34, March 2007.

[26] Charles Loop and Jim Blinn. Real-time GPU rendering of piecewise algebraic surfaces.

In SIGGRAPH, pages 664–670, 2006.

[27] Charles T. Loop and James F. Blinn. Resolution independent curve rendering using

programmable graphics hardware. In SIGGRAPH, pages 1000–1009, 2005.

[28] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface

construction algorithm. In SIGGRAPH ’87, pages 163–169. ACM Press, 1987.

[29] William Martin, Elaine Cohen, Russell Fish, and Peter Shirley. Practical ray tracing of

trimmed NURBS surfaces. J. Graph. Tools, 5(1):27–52, 2000.

[30] D. P. Mitchell. Robust ray intersection with interval arithmetic. In Proceedings on

Graphics interface ’90, pages 68–74, 1990.

[31] R. E. Moore and S. T. Jones. Safe starting regions for iterative methods. In SIAM J.

Numer. Anal., volume 14, pages 1051–1065, 1988.

[32] David Nister. An efficient solution to the five-point relative pose problem. IEEE Trans.

Pattern Anal. Mach. Intell., 26(6):756–777, 2004.

63

[33] K. Perlin and E. M. Hoffert. Hypertexture. In SIGGRAPH ’89, pages 253–262, 1989.

[34] Fabio Policarpo and Manuel M. Oliveira. Relaxed cone stepping for relief mapping.

chapter 18. GPU Gems 3, pages 409–428, 2007.

[35] Fabio Policarpo, Manuel M. Oliveira, and Joao L. D. Comba. Real-time relief mapping

on arbitrary polygonal surfaces. ACM Trans. Graph., 24(3):935–935, 2005.

[36] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.

Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press,

1992.

[37] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray tracing on

programmable graphics hardware. In SIGGRAPH ’02, pages 703–712, 2002.

[38] Sunil Mohan Ranta, Jag Mohan Singh, and P. J. Narayanan. GPU Objects. In Proceed-

ings of ICVGIP, volume 4338 of Lecture Notes in Computer Science, pages 352–363.

Springer, 2006.

[39] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level ray tracing algo-

rithm. ACM Trans. Graph., 24(3):1176–1185, 2005.

[40] Fabrice Rouillier and Paul Zimmermann. Efficient isolation of polynomial’s real roots.

J. Comput. Appl. Math., 162(1):33–50, 2004.

[41] J. F. Sanjuan-Estrada, Leocadio G. Casado, and Inmaculada Garćıa. Reliable algo-

rithms for ray intersection in computer graphics based on interval arithmetic. In Brazil-

ian Symposium on Computer Graphics and Image Processing (SIBGRAPI), pages 35–

44, 2003.

[42] T. W. Sederberg and Geng-Zhe Chang. Isolating the real roots of polynomials using

isolator polynomials. In Algebraic Geometry and Applications. Springer Verlag, 1993.

[43] J.S. Seland and Tor Dokken. Real time algebraic surface visualization. In Supercomput-

ing ’06 Workshop: General-Purpose GPU Computing: Practice And Experience, 2006.

64

[44] Andrei Sherstyuk. Fast ray tracing of implicit surfaces. Computer Graphics Forum,

18(2):139–147, 1999.

[45] Christian Sigg, Tim Weyrich, Mario Botsch, and Markus Gross. Gpu-based ray-casting

of quadratic surfaces. In Proceedings of Eurographics Symposium on Point-Based Graph-

ics 2006, pages 59–65, 2006.

[46] John M. Snyder. Interval analysis for computer graphics. In SIGGRAPH ’92, pages

121–130, 1992.

[47] Gabriel Taubin. Distance approximations for rasterizing implicit curves. ACM Trans.

Graph., 13(1):3–42, 1994.

[48] Rodrigo Toledo and Bruno Levy. Extending the graphic pipeline with new gpu-

accelerated primitives. Technical report, INRIA, 2004.

[49] Kees van Kooten, Gino van den Bergen, and Alex Telea. Point-based visualization of

metaballs on a gpu. chapter 7. GPU Gems 3, pages 123–148, 2007.

[50] Eric Weisstein. Wolfram research. http://mathworld.wolfram.com/.

[51] T. Whitted and J. Kajiya. Fully procedural graphics. In HWWS ’05: Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 81–90,

2005.

[52] J. J. VAN WIJK. Ray tracing objects defined by sweeping a sphere. In Eurographics’

84 Conference, pages 73–82, 1984.

[53] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control implicit

surfaces. In SIGGRAPH, pages 269–277, 1994.

[54] Sven Woop, Jörg Schmittler, and Philipp Slusallek. Rpu: a programmable ray processing

unit for realtime ray tracing. ACM Trans. Graph., 24(3):434–444, 2005.

[55] G. Wyvill and A. Trotman. Ray-tracing soft objects. In CG International ’90, pages

469–476, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

65

