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Abstract

Scene interpretation is a fundamental task in both computervision and robotic systems. We deal

with two important aspects of scene interpretation, they are scene reconstruction and scene recog-

nition. Scene reconstruction is determining 3D positions of world points and retrieving camera

poses from images. It has several applications such as virtual building editing in computer aided

architecture, video augmentation in film industry and planning and navigation in mobile robotics.

Among several approaches to modeling the scene, we deal withpiecewise planar modeling due

to several advantages: Man-made environments are often piece-wise-planar, planar modeling has

compact representation and this can be easily modified. We propose a convex optimization based,

approach for piecewise planar reconstruction. We show thatthe task of reconstructing a piece-wise

planar environment can be set in anL∞ based Homographic framework that iteratively computes

scene plane and camera pose parameters. Instead of image points, the algorithm optimizes over

inter-image homographies. The resultant objective function is minimized using Second Order Cone

Programming algorithms. Apart from showing the convergence of the algorithm, we also empir-

ically verify its robustness to error in initialization through various experiments on synthetic and

real data. We intend this algorithm to be in between initialization approaches like decomposition

methods and iterative non-linear minimization methods like Bundle Adjustment.

Scene recognition in robotics, specifically terrain scene recognition is one of the fundamental

tasks of autonomous navigation. Navigable terrains are examples of planar scenes. The goal of

terrain recognition is to recognize various terrains that occur in urban and rural environments in

an automated fashion. It has applications in various domains such as advanced driver assistance

systems, remote sensing, etc. Various sensing modalities such as ladars, lasers, accelerometers,

stereo cameras, omni-directional cameras or combination of them are used in literature. This thesis

attacks the problem of scene interpretation using a single camera. This investigation is especially

crucial since cameras are relatively low in cost, consume low power, light weight and have the

potential to provide very rich information about the environment. Recent advances in computer

vision, machine learning and improvements in hardware capabilities have greatly increased the

scope of monocular camera, even in unstructured and real world environments. In this thesis, we

start with empirical study of promising color, texture and their combination with classifiers such as

Support Vector Machines (SVM) and Random Forests. We present comparison across features and

classifiers. Then we present a monocular camera based terrain recognition scheme called Partition

based classifier. The uniqueness of the proposed scheme is that it inherently incorporates spatial

smoothness while segmenting an image, without the requirement of any additional post-processing.



The algorithm is fast because it is build on top of a Random Forest classifier. The efficacy of the

proposed solution can be seen as we reach low error rates on both our dataset and other publicly

available datasets.

Further partition classifier is extended to be online and adaptive. The new scheme consists of

two underlying classifiers. One of which is learnt over bootstrapped or offline dataset, the second

is another classifier that adapts to changes on the fly. Posterior probabilities of both the static

and online classifiers are fused to assign the eventual labelfor the online image data. The online

classifier learns at frequent intervals of time through a sparse and stable set of tracked patches, which

makes it lightweight and real-time friendly. The learning which is acuted at frequent intervals during

the sojourn significantly improves the performance of the classifier vis-a-vis a scheme that only

uses the classifier learnt offline. The method finds immediateapplications for outdoor autonomous

driving where the classifier needs to be updated frequently based on what shows up recently on the

terrain and without largely deviating from those learnt offline.
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Chapter 1

Introduction

The ultimate aim of a robotic vision system is to navigate in aworld of realistic complexity. This

involves interpreting the scene, objects and events to perform appropriate actions. Scene interpre-

tation is a fundamental task in both computer vision and robotic systems. Though humans and

animals are good at scene interpretation, accurate scene interpretation is surprisingly difficult. The

difficulty comes mainly due to huge viewpoint changes, clutter, variation in illumination caused by

shadows, etc. There are different aspects for scene interpretation in literature. One aspect deals with

inferencing depth of the scene which answers the questions like “What region of the image is near

and what region is far ?” OR “What region of image is at ground level ?”. Yet another branch

deals with the problem of detecting particular object in thescene containing several objects, which

answers the questions like“Does the scene contain car?”and“Where is the car in the image ?”.

Other aspects of interpretation are related to recognitionwhich answers the questions like“Is it the

image of a car?”, “What car is it?” , “Is it a Tata Sumo ?”, etc.

In this thesis, we concentrate on two important aspects of scene interpretation. They are scene

reconstruction and scene recognition. Scene can be interpreted by a variety of methods and this

depends on the kinds of sensors used. Using monocular visionsensors for scene interpretation is

the main aim of this research.

1.1 Scene interpretation in Computer Vision

In this section, we discuss the scene reconstruction aspectof scene interpretation in computer vi-

sion. The 3D scene reconstruction of rigid scenes from photographic images is one of the most

challenging problems in Computer Vision and Photogrammetry. This is a classical problem with

both theoretical and practical interest, for example virtual building editing in computer aided ar-
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Input: Multiple views Output:Model

Figure 1.1: On the left side, the input images are shown and onthe right side we have the desired

reconstructed model.

chitecture and video augmentation in the film industry. Figure 1.1 shows the images of the house

model with markings on planes and the desired reconstruction. In robotics, the reconstruction or

structure helps the robot to understand what objects or partof the scene is near and what objects

are far. For a navigating robot it is an essential task. For example, consider a robot navigating in an

environment, where the decision of navigating forward depends on whether the robot has enough

room in front of it. 3D reconstruction is essentially retrieving camera poses and determining the 3D

positions of world points given their images.

There exist a wide variety of approaches to the image-based modeling problem, for example see

[5–19]. The main difference among these methods is the representation of the scene they employ.

For instance, Kutulakos and Seitz use voxels [12], Strechaet al. use a depth map [18], Gargallo and

Sturm use multiple depth maps [9], Baillard and Zisserman use a set of planes [5], while Debevec

et al. use a combination of those [6]. The most appropriate representation depends on the type of

scene that is to be reconstructed and the application that isin consideration.

The planar model is motivated by the following reasons. First, man-made environments are often

composed of piecewise planar (See Figure 1.2 containing planar objects such as buildings, cars,

indoors, machinery etc.,) or nearly-planar primitives [5–7, 20] and are thus modeled as such to a

reasonable degree of approximation. Second, this is a very constrained, compact representation

that is thus very stable, and allows one to make the reconstruction process automatic. Third, this

representation allows one to modify the reconstruction very easily, i.e. by adding, removing or

augmenting objects.

3



Figure 1.2: Few examples of Man-made planar scenes, planes are marked with green borders.

Most of the existing systems are semi-automatic, based on a three-stage process, e.g. [6, 13, 21].

First, a sparse 3D reconstruction of features (points, lines, etc.) as well as cameras is performed au-

tomatically using Structure-from-Motion techniques [22,23]. Secondly, scene model is chosen and

final stage is to estimate its parameters. The first stage is achieved by clustering reconstructed fea-

tures into higher level geometric primitives such as cubes by e.g. marking edges in the input images.

The second stage consists of optimizing the quality of the model parameters by e.g. minimizing the

disparity between marked and predicted edges. This approach has proven to give highly photo

realistic results, but becomes computationally costly as the scene considered grows in complexity.

Scene surface is modeled as a set of triangles in [15, 16]. Themost likely triangulation with

respect to the input images is computed using edge swaps froman initial solution obtained using

a Delaunay triangulation. However the process is not guaranteed to converge to the global opti-

mum. Here, piecewise planarity is not considered, which creates a non photo realistic reconstruc-

tions. Representing a scene as a collection of planes overcomes these problems. This reduces the

complexity of the model computation as well as its renderingand yields more photo realistic view

synthesis of planar and nearly-planar surfaces. These led to an investigation of planar reconstruction

of scenes as seen most recently in [24]. The idea of using planar modeling requires identification

4



of planes in given images. Layer extraction methods like [25] are used for this purpose. Tracked

features are grouped into planes using the layers extracted. We describe a method to estimate plane

parameters and camera poses from features tracked from various planes.

1.2 Scene interpretation in Robotics

In this section, we discuss the scene interpretation aspects in robotics specially mobile robotics. The

basic goal of mobile robot is to move autonomously through anenvironment from its current posi-

tion to some goal position. There are three important tasks that needs to be executed in navigation.

1. The first is the task oflocalisation. Localisation refers to the task of identifying where the

robot lies with respect to a pre-defined map or global co-ordinate system. Localisation is

performed through an inference process over the robot’s representation of the environment

and sensor readings from the current location, which is somewhatscene recognition.

2. The second task is that ofplanning, in which the localised robot need to find a path through

the environment which leads it to the goal position. The pathdetermined by the robot must

be navigable and free from obstacles. Also the path must be optimal in some sense such as

time, speed etc., depending on the purpose of the robot.

3. The third task is that ofpath execution, in which the robot generates a sequence of control

signals for its actuators, so that robot traverses in the planned path.

The second task can alternatively be used formap buildingwhich looks at the task of building a

3D map of the environment, which can be used later for navigation. There has also been research

on coupling the task of localisation and map building together, which is refered to as Simultaneous

localisation and mapping (SLAM) [26]. The part of SLAM research, which uses vision sensors is

termed vSLAM [27, 28], and has received much attention. In the context of SLAM, the ability to

recognize a visited place is known as the ‘loop-closure detection’. It is named as so because the

robot needs to performscene recognitionat the end of a loop so that the uncertainty linked to its

current position will not grow out of bounds. The inability to detect loop closure will mean that

the robot is essentially lost. Hence, scene recognition stands as an important step in autonomous

robotic navigation.

The power of interpreting the outside world is possible through sensors, which helps the robot

to determine what action it should take. Different sensors are used in literature for sensing which

include infrared sensors, sonars, lasers, LIDAR, stereo cameras, omnidirectional cameras, monoc-

ular cameras etc., The main advantage of using cameras as opposed to other sensors is that they are
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extremely cost effective, compact and readily available, they provide a much cheaper mechanism

of obtaining accurate 3D information about the world and they are passive sensors. Unlike radar

and sonar that have to generate a lot of information first in order to successfully receive information

about the environment, vision systems only receive information; they do not transmit any. This

passive feature ensures increased levels of portability, durability etc., Unlike other sensor types, vi-

sion has the potential to provide rich, semantic information about an environment. Vision provides

information regarding the appearance of an environment andobjects embedded in it, not just geo-

metric structure or information about the spatial locationof objects. Also vision sensors have the

information of very far range, where as others have their ownlimitations. The interest in vision for

mobile robotics has been fueled by recent advances in computer vision techniques and the increased

capabilities of computing hardware which makes it possibleto analyze and interpret images within

the time constraints demanded by robotic applications.

Another perspective to view vision sensors based navigation is its use for indoor and outdoor en-

vironments. The problem of landmark detection and following have been solved quite successfully

in indoor environments. Outdoor navigation is much harder problem compared to indoor naviga-

tion mainly due to huge variations in view points and illumination changes. Navigation in outdoor

terrains is one of the focus of this thesis.

One of the dreams of an autonomous robotic system is to freelynavigate on cluttered and unstruc-

tured outdoor environments, specially in Indian context. This involves object detection/avoidance

and path planning. The lack of highly structured componentsin the scene introduces new chal-

lenges for autonomous navigation. This navigation system is important because, these systems

can be readily employed in military operations and also in civilian applications such as wide-

area environment monitoring, disaster recovering, search-and-rescue activities, as well as plane-

tary exploration. Though obstacle detection and avoidanceare essential tasks, they are not suffi-

cient for a mobile robot to navigate safely in cross-countryenvironments, because these environ-

ments contain several types of terrains such as mud, road, grass, etc., which are hazardous and

should be carefully neglected or navigated based on the typeof terrain. Hence an effective de-

scription of outside world should consist of combination ofgeometric and terrain type informa-

tion along with control strategies. Terrain type information extraction is shortly called as terrain

recognition/classification [29, 30] in robotics. Terrain recognition enables the robot to navigate

safely/intelligently and it also helps the path planner in deciding the optimal path and optimal ve-

locity for traversal.

The problem of terrain recognition can be approached by a combination of various sensing

modalities such as 2D and 3D lasers, multiple cameras, vibration sensors [3, 31, 32] or a combi-

nation of them [4,29,33–35], this thesis explores how much of scene interpretation ability is vested
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in a single camera. This investigation is especially crucial since cameras are often less expensive

and are not power hungry like laser range finders. Also cameras do provide a rich set of visual fea-

tures even at longer distance, which helps the robot in better path planning and hence over-coming

the problem of “short-sightedness”. Recent advances in computer vision [36], machine learning and

hardware computing capabilities also motivates us to solvethe problem using a single camera.

1.3 Problem statement and Contributions

The goal of this work is to develop solution to some of the problems associated with a robot navi-

gating reliably and effectively using a monocular camera through outdoor urban environments using

optimization and machine learning techniques. Towards this end, this thesis presents the following:

1. A robust 3D reconstruction scheme in piece-wise-planar environments using convex opti-

mization techniques is presented. The method is formulatedin anL∞ based Homographic

framework that iteratively computes scene plane and camerapose parameters. Existing SVD

based method are proposed only for two views and are very sensitive to noise. On the other

extreme, iterative non-linear methods like Bundle adjustment are computationally expensive

and there is a high chance that they get stuck in local minima.The proposed method handles

these issues using popular convex optimization techniques, which are proved to be robust and

computationally inexpensive. In a sequence of images, Homographies induced between inter

images (if available), which are more accurate and informative are formulated as additional

constraints in the framework to arrive at an optimal solution. The method was tested empir-

ically on synthetic data of several random planes and on realdata against SVD and Bundle

adjustment methods.

2. A fast terrain classification algorithm that allows a robot or vehicle to determine various types

of natural terrains using only monocular camera is presented. Most of the existing methods

are either limited to ground plane detection or use lasers orIMU for terrain classification.

We intend to solve the problem using only monocular camera, without using power hungry

and costly hardware such as lasers. We introduce our new dataset for conducting various ex-

periments. The dataset was collected by a monocular camera mounted on top of the vehicle

moving in different speeds over 10km in various illumination conditions in urban and rural

roads. We empirically study the problem with existing features and classifiers. The best clas-

sifier was found to be Random forests. The challenges involved with the existing classifiers is

the missing context information. The algorithm handles this issue using a novel partitioning

scheme. Various aspects of the algorithm importantly the spatial context, was tested on our
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dataset and other publicly available datasets with the existing classifiers.

3. An adaptive terrain classification scheme that allows a robot to determine various natural

terrains, where terrains may change their appearance over time gradually is presented. Ex-

isting methods are memoryless i.e., they assess the terrainof the captured image without

using the previous learned knowledge. Recently, methods which use these memory are being

proposed, but these methods require either lasers or stereofor collecting ground truth. The

proposed scheme is based on only a monocular camera. The proposed scheme effectively uses

the acquired knowledge from previous classification and temporal information. The trained

classifier handles the slow drifts in the natural terrains online. The method was tested on our

dataset and other publicly available datasets in an experiment, where the vehicle traverses the

same path twice.

1.4 Organization of thesis

The remainder of this thesis is organized as follows:

1. In Chapter 2, we give an overview of the basic mathematicalconcepts related to this thesis.

First we introduce homography, and its relation to Camera parameters and pose. Next we

briefly describe the SVD based homography decomposition methods. We then introduce

the problem of Layer extraction and popular solutions to theproblem. We use the Layer

extraction methods for segmenting planes described in nextchapter 3. Next we give overview

of the standard problem in Computer vision the Structure-from-motion and we describe the

traditional iterative non-linear optimization method Bundle adjustment. After that, we give

brief introduction to convex optimization which is used in Chapter 3. Next we introduce the

second major research problem that we deal in this thesis, the terrain recognition. We then

briefly describe its applications. After that we give literature review, which includes a brief

overview of vibration-based methods, near to far learning methods and few recent methods.

We then present a summary of promising color and texture features along with few popular

classifiers that are used in literature for our problem.

2. In Chapter 3, we give an overview of the literature in Convex optimization along with its

utility. This is followed by sensitivity analysis of the existing SVD methods, which is fol-

lowed by convex framework for the problem of planar reconstruction. Several experiments,

extensions to the framework is described.

3. In Chapter 4, we present our annotated dataset that we use in our experiments. We then

present extensive empirical comparisons of various features and state-of-the-art classifiers in
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machine learning literature. Next we show how various parameters of the problem affect the

classifier performance.

4. In Chapter 5, we extend the Random forest classifier using partitioning scheme, which is fol-

lowed by several experiments that test the proposed scheme.This is followed by introduction

to the novel adaptive algorithm using optical flow. Next we conduct two experiments to test

the algorithm. The results show considerable decrease in percentage error compared to Ran-

dom Forests. Also, the adaptive classifier was able to slowlyadapt to appearance changes that

occur during the navigation of the vehicle.

5. In Chapter 6, we conclude the thesis. We summarize the contributions of this thesis and

comment on limitations and future work.
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Chapter 2

Background

2.1 Geometry of Planar Scenes

In this section, we give brief overview of several technicalterms and algorithms that we use in the

thesis, which are being popularly used in computer vision inthe recent years.

2.1.1 Homography

As shown in the Figure 2.1, associating the two imagesx andx′ of a 3D pointX becomes impossible

without the knowledge of the camera parameters and the valueof X itself. However, when the point

X lies on a planeΠ, a simple geometric entity suffices to map one image point (x) to another (x′).

This geometric entity is called thehomographysubtended by planeΠ, which is represented by

H3×3. Thus in the case of perspective projection, a homography maps one image pointx to another

x′, upto a scale factor.

x′ =
1

λ
Hx (2.1)

whereλ is the scale factor. Though the homography matrixH has 9 elements, due to scale factor

it is parameterized by only 8 parameters. Thus without loss of generality, the last elementH(3, 3)

can be assumed to be unity. Since the above equation is linear, 8 equations are required to solve

for the value ofH in minimal case, which results in 4 image-to-image correspondences ( each

correspondence giving 2 equations in x and y image coordinates). In real images, this minimal case

is highly sensitive to errors in correspondences, current feature extraction algorithms like SIFT [37]

ensure that the homography estimation is quite accurate when the camera poses aren’t too far apart.

Thus, a RANSAC based approach [1] suffices to weed out incorrect correspondences as they are

usually only outliers of the actual function.

10



Figure 2.1: Homography induced between two imagesx andx′. Image courtesy [1]

Homographies are the best suited tools for reconstructing planar scenes, because they directly

utilize the perspective mapping of planes and thus stay closer to the original data than methods,

which start with point-wise sparse 3D reconstruction [38, 39] and then segment the resulting point

cloud into planes. Also, extremely robust solutions exist to compute the homography induced by a

plane in two cameras [40].

In this thesis, we use homographies due to (piecewise) planar scenes. The scene planes im-

pose a strong constraint, which has been used mainly for structure and motion recovery. Homo-

graphies have several practical applications, for examplethey are used for mosaicing and super-

resolution [38, 41]. If the homography induced by a plane in two images is known, one can find

the corresponding features on the images of the plane. This has been used for grouping of coplanar

features in wide-baseline settings [42,43] and for featurematching and also for transfer of features

off the plane, with the help of known reference planes and projective invariants [44]. If also bor-

ders of the planes in the images are known, they can be used fortexture unwraping and for image

compression [45]. The problem of motion recovery [46–48] can be linearized by homographies.

Measurements on scene planes in perspective distortion is possible through homographies [?]. Ho-

mographies also allow reconstruction of non-planar scenes, which can be seen as collection of

planes and the deviations from these planes, which is termedthe “plane-plus-parallax” approach to

vision [49,50].
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2.1.2 Homographies and Camera parameters

In this section, we describe the relationship between the homographyH relating two images and the

relative pose between their corresponding cameras. Let us assume that the two cameras are given

by P1 = [I|0] andP2 = [R|t]. Where I is identity matrix,(R, t) is the relative pose. LetX be

the 3D point belonging to the plane represented byΠ = [nT 1], and letx andx′ be its projections

respectively. Then

x = P1X = [I|0]X (2.2)

X = [xT ρ]T (2.3)

Different values ofρ represent different points on the 3D line joining camera centerC and 3D point

X (Figure 2.1). Thus the value ofρ that satisfies the above Equation 2.3 is (−nT x). Substituting

the value ofρ in the projection equation for the second image, we get

x′ = P2X = [R|t]X = Rx− tnTx = (R − tnT )x (2.4)

When the internal parameters cannot be assumed to be identity but are known to be different for the

two images, the modified equation of the relationship is as follows

H = K ′(R− tnT )K−1 (2.5)

whereK andK ′ are the internal parameters of the two cameras respectively.

2.1.3 Homography Decomposition

Traditional methods for obtaining the camera pose and planenormals from the Homography matrix

rely on the Singular Value Decomposition (SVD) of Homography to provide solutions [51, 52]. In

both the methods, eigenvalues of either the Homography matrix H or H⊤H are used to get upto 8

solutions for{R, t,n} and then 6 solutions are weeded out based on many constraints. Finally, the

2 remaining solutions may be disambiguated by either considering a third view or a second plane.

Faugeras SVD-based decompositionFaugeraset. al[51] algorithm starts with the singular value

decomposition of the Homography matrix, followed by the equation relating the diagonal matrix

thus produced to a new set of variables as

H = UΛV
⊤ (2.6)

Λ = RΛ + tΛn
⊤

Λ (2.7)
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Computing the components of the rotation matrix, translation and normal vectors is simple when

the matrix being decomposed is a diagonal one. First,tΛ can be easily eliminated from the three

vector equations coming out from Equation (2.7) (one for each column of this matrix equation).

Then, imposing thatRΛ is an orthogonal matrix, we can linearly solve for the components ofnΛ,

from a new set of equations relating only these components with the three singular values (see [51]

for the detailed development). As a result of the decomposition algorithm, we can get up to 8

different solutions for the triplets:{RΛ, tΛ,nΛ}. Then, assuming that the decomposition of matrix

Λ is done, in order to compute the final decomposition elements, we just need to use the following

expressions:

R = U RΛ V
⊤ (2.8)

t = U tΛ (2.9)

n = V nΛ (2.10)

Zhang SVD-based decomposition Zhanget. al [52] take a different approach by first computing

the eigenvalues ofH⊤
H, and then using it for further computation of the quantities{R, t,n}.

H
⊤

H = V Λ
2
V

⊤
(2.11)

Λ = diag(λ1, λ2, λ3) (2.12)

V = [v1,v2,v3] (2.13)

λ1 ≥ λ2 = 1 ≥ λ3 (2.14)

In the first step, values of{t∗,n} are computed, wheret∗ is the normalized translation vec-

tor. Subsequently, the rotation matrix is obtained asR = H (I + t
∗
n
⊤)

−1
. Eight solutions are

obtained in the following manner

t
∗ = ±

v
′
1 ± v

′
3

ζ1 ± ζ3
(2.15)

n = ±
ζ1v

′
1 ± ζ3v

′
3

ζ1 ± ζ3
(2.16)

where equations in numerators and denominators share the same sign in all variations. The variables

{v′
1,v′

3, ζ1, ζ3}, are functions of the eigenvaluesΛ [52].
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2.1.4 SFM and 3D reconstruction

Humans are naturally able to infer the location and structure in three dimentional world, using only

two dimensional images perceived through eyes. This process of inferencing depth from images is

seemingly an effortless task, but it is very hard to implement in a computer. The task of recovering

the 3D structure of the scene and sensor motion from a set of 2Dimage frames obtained from an

optical camera refers to Structure from motion(SfM). SfM isused in various practical applications,

which include 3D model reconstruction, 3D motion matching,camera caliberation, perceptual com-

puter interfaces, robotics, image mosaicing, etc.

Solutions to the problem of SfM may be broadly divided into corresponded SfM and correspondence-

less SfM. Corresponded SfM requires some kind of features tobe tracked, where as Correspondence-

less SfM is generally based on phase component [53] of Gabor transforms of images, where the

phase difference of the gabor images is inversely proportional to the depth of the scene. In this

thesis, we deal with corresponded SfM and we refer it with SfM. There are two main assumptions

that are inherit for the task of SfM.(i) The scene is static i.e., the objects are rigid. and (ii) There

exists some method to extract a set of 2D features from images. 2D features may be points, lines,

curves, etc or combination of them. It is assumed that these 2D features are detected and associated

to their corresponding features in the available images. These 2D measurements stand as the inputs

to the problem of SfM.

SfM is an active research area from almost 30 years. Unfortunately the current literature is still

far away to what human can perceive. Its a hard problem and of interest to both computer vision and

AI communities. Multiple approaches have been proposed in literature [54–58]. These range from

perspective to orthographic, 2-frame or stereo to videos, linear(SVD) to non-linear(Optimization

based methods) etc., Each method has its own advantages and disadvantages with different input

features, different accuracies and different abilities. The choice of the framework depends on the

application that we are interested in. In this thesis, our application of interest is 3D reconstruction

specifically in piece-wise-planar environments, where we use homographies for obtaining dense

reconstructions avoiding point-based reconstructions.

In the following we briefly describe the typical solution forSfM.

• 2D features( points or lines or curves or etc.,) are detectedand associated.

• A projective frame among the available views is initializedas the reference frame.

• Projective camera matrices are chosen which satisfy the computed Fundamental matrix from

correspondences.

• Initial solution for the structure of the scene is obtained.
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• Results are refined using bundle adjustment methods. [59].

2.1.5 Bundle Adjustment

Bundle adjustment [59] is a standard iterative non-linear optimization technique , which uses Levenberg-

Marquardt internally. Bundle adjustment needs initialization. This initialization is used to minimize

the following error over the normals and the translations

(R, t, nj , dj) = arg min
kR,kt,nj ,dj

ΣkΣjΣi[
hi

h9
−

xT Aix

xT A9x
]2 (2.17)

where,x = (1Rs, . . . , KRs, 1tT , . . . , KtT , nT
1 , . . . , nT

J , d1, . . . , dJ ) andAi is a matrix s.t.xT Aix =

gi andx is x with the initial SVD estimates ofkR, kt, nj , dj substituted. The main disadvantage

of this technique is that they are computationally demanding and one might end up getting local

optimal solution.

2.2 Layer extraction

Layer extraction in videos is essentially segmenting or representing the images into some number of

sub-images(See Figure 2.2), in such a way that pixels within each sub-image share some common

2D parametric transformation. Layer extraction is an initial step in most of the problems related to

the video processing. In the following we give some examples:

• In scene reconstruction, one can attain dense reconstructions by using layer representation

based SFM, avoiding sparse reconstructions which are basedon feature points.

• In motion analysis [60–62], the hardest problem of finding occlusion relationship is explicitly

a layer extraction problem. Image motion estimation is inherently an ill-posed problem [63]

due to the aperture problem, in order to estimate the motion,it requires additional smoothness

constraints such as parametric model that assumes some pixels share a common model with

a few parameters [64] or regularization [65, 66]. However, it is not necessary to apply such

constraint across motion boundaries, which are not known prior to the motion estimation. In

layer representation, we can enforce such smoothness constraint only inside each layer, and

explicitly represent the non-smoothness at the boundariesamong layers.

• In visual navigation, layer representation can be used to extract and represent the ground

layers (roads, terrains), and objects (cars, pedestrians,etc). Ground layer is useful for obstacle

detection in robotics and estimating the car ego-motion [67].
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Figure 2.2: Left: Consecutive frames from a garden sequence, Right: Sub-images or layers in the

video. Image courtesy [2]
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• In object detection and recognition, layer representationgives the first cut solution to detecting

several objects. For instance consider a video in which a dogruns parallel to the motion of

the camera from left to right, in layer representation the dog is one of the layers.

Layer extraction problem has three major issues which are (i) Segmentation ( what region of

image belongs to one layer ?) (ii) Motion ( What motion does the camera under went ?) and (iii)

Number of layers ( How many number of layers are present in thevideo ? ). These three issues

are coupled problems, i.e., On one hand, spatial layer supports (including number of layers) are

required to estimate the motion model for each layer. On the other hand, assigning pixels to layers

requires the knowledge of layer motion model.

In the following we briefly summarize few popular approachesto layer extraction.

EM approach : A natural approach to solve the coupled problems in layer extraction is the

Expectation Maximization (EM) algorithm [61, 68–71]. In such an approach, the likelihood of

the video data is formulated as some mixture model, such as the mixture of Gaussians, with each

mixture component representing a layer. In EM approach, there will be an iterative E-step and

M-step, and then MDL principle [72] is used to find the number of layers in the video, this was

modelled as a search problem in [68],which is a costly operation. Initializing(for example [68])

the number of models and the motion for each model is an important but difficult step for EM

approach [71, 73]. Without good initialization, EM algorithm may not converge to desired optimal

solutions.

Dominant approach : This approach is one of the top-down approaches for layer extraction

problem. This approach assumes that there is always a dominant layer in the given sequence of

images. The approach consists of several iterations. In each iteration, the current dominant layer

is extracted using dominant motion estimation [74–76] using robust estimator [77, 78]. After that,

the detected dominant layer is segmented out, and the whole process is repeated on the remaining

portion of the image until there is only one layer in the imageor all the pixels in the image are

assigned layers. The main drawback of this approach is the very existence of the dominant layer,

which might be always present.

Grouping approach : The grouping approach was introduced to overcome the problems of

dominant approach. Grouping approach is a bottom-up approach. It is based on the fact that the

2D homography of a computed from several regions of the planeremains the same(upto a scale

factor). In this approach, the image is first divided into small blocks ( say16 × 16 ), and the 2D

homograpy is computed between the reference frame and the other frames. Here we want to extract

layers in the reference frame. After that the 2D homographies are clustered using popular clustering

methods such as k-means [79] and normalized graph cut [73]. Each cluster represents a unique layer

in the image. Blocks corresponding to a cluster are grouped and declared as one layer. The main
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Figure 2.3: A quasiconvex functionQ onR which is not convex. It is plotted with a convex function

em C. However, any horizontal line slicesQ in atmost two points, thus creating only convex sublevel

sets.

advantage of this approach is that it does not require the number of layers as input and also it doesn’t

assume anything about the given sequence. However, grouping purely based on local measurements

is highly noisy and it also ignores the global spatial and temporal constraints.

Subspace approach : Subspace approach [2] is an advanced approach to grouping approach,

overcoming the problems with the grouping approach. The important issue of grouping in high

dimensional space is handled by the introducing of new subspace which is smaller and hence one

can easily perform clustering. The main problem with the grouping approach is the missing global

spatial-temporal constraints. Subspace approach enforces such constraints by computing a subspace

from homographies intelligently. In this approach, a measurement matrix is constructed by stacking

up the relative affine homographies of small image blocks, and then the measurement matrix is

decomposed using SVD to calculate a subspace of size 4 or less. Such a low dimensional subspace

is possible because it is the measurement matrix is inherently rank deficit. This approach also

provides a constraint to detect outliers in the local measurements, which makes the layer extraction

robust. However, the subspace computation ( factorizationof measurement matrix ) is a non-linear

objective function, which may get stuck in local minima.
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2.3 Convex Optimization

A function f : Rn −→ R is convexif dom f is a convex set and if for allx, y ∈ dom f , and with

0 ≤ θ ≤ 1, we have

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y) (2.18)

where a setC is convexif for any x1, x2 ∈ C and anyθ with 0 ≤ θ ≤ 1, we haveθx1 +(1−θ)x2 ∈

C. Figure 2.3 shows typical examples of convex and quasiconvex functions.

A function is defined as quasiconvex [80], if the domain on which the function attains any value

less than a given thresholdα, is a convex set, for any arbitrary value ofα. Such a set is called

a sublevel set corresponding to the value ofα. Some functions, like the linear fractional function
ax+by+cz
dx+ey+fz

where(x, y, z) are variables, are known to be quasi-linear (both quasiconvex and quasi-

concave) under certain conditions (denominator> 0). As can be seen, many functions like the

perspective projection function for a pin-hole camera and the point transfer function using Homo-

graphies, can be modeled as a linear fractional in the variables representing the camera matrix and

the Homography matrix respectively.

Quasi-convex functions are minimized using what is called the bisection method, an iterative

algorithm which solves the problem by finding the smallest sublevel set that contains the global

minima of the quasiconvex function. This is done by solving aset ofconvex feasibility problems,

one in each iteration. Ifp∗ is the optimal value of a convex functionf : Rn −→ R, then define

φt : Rn −→ R, t ∈ R as

f(x) ≤ t⇐⇒ φt(x) ≤ 0

such thatφs(x) ≤ φt(x) whenever s ≥ t. Then thebisection methodsolves the following feasibility

problem at each iteration

find x (2.19)

subject to φt(x) ≤ 0

other constraints

If the above problem is feasible then we havep∗ ≤ t, and conversely infeasibility denotesp∗ ≥ t.

Thebisection methodmaintains an upper and a lower bound forp∗, based on the above feasibility

problem. At every iteration, this bound is halved by changing one of the two bounds. Convergence

happens when the difference between bounds is sufficiently small.

In order to apply thebisection methodto problems in MVG, we need to first prove that the

underlying objective function is quasiconvex. Although functions like the linear fractional function

is proved to be quasiconvex, typical objective functions inMVG involve minimization a geometric
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error of the form

d = (y1 − f(x) ∗ y2)
2 (2.20)

where(y1, y2) are typically correspondences (2D or 3D points or both), andf(x) ∗ y2 is a linear

fractional function function whose parameterx needs to be determined such thatd is minimized.

Such a formulation requires the following two concepts to prove quasiconvexity (repeated from [81]

for completeness):

1. If f1(x), . . . , fm(x) are quasiconvex functions, thenmaxi fi(x) is also quasiconvex.

2. Letfi(x), i = 1, . . . ,m be affine functions,i.e., fi(x) = a⊤i x + bi. Then

f1(x)2 + . . . + fm−1(x)2

fm(x)2

with domain{x | fm(x) > 0} is quasiconvex.

2.4 Terrain Classification

In mobile robotics, much of the interest has gone in understanding scenes containing rural and

Urban terrains for many robotic tasks such as navigation andplanning. The goal of terrain clas-

sification [30, 82] is to recognize various terrains that occur in urban and rural environments in an

automated fashion. An automated solution to the terrain classification is very crucial in various do-

mains such as (i) advanced driver assistance systems [83], (ii) autonomous navigation, (iii) remote

sensing, (iv) urban and rural planning. Figure 2.4 shows thesome of the sample images and their

respective desired output.

For instance a mobile robot navigating outdoors comes across various terrains such as soft and

slippery terrains, hard and smooth terrains or rocky and undulating ones. The navigation strategy

for the robot differs greatly based on the kind of terrain it traverses, the limits on its velocities

vary according to these surfaces. An algorithm capable of prior judgment of the terrain provides

the well needed time for the robot to adapt its velocity planner and thus becomes a vital cog in

outdoor navigation systems. While in this thesis we focus onthe problem of classifying terrains for

autonomous outdoor navigation, the broader scope of the problem is indeed evident. For example

one can make use of such algorithms in driver assistance and there by ensuring safety.

2.4.1 Literature review

One way to determine the terrain type is to directly estimateterrain parameters like cohesion or

slippage from sensor measurements. Another way is to group the terrain into classes like asphalt,
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: First row: Sample frames from our dataset. Second row: Desired output

dirt or gravel, and to learn these classes from training examples. Once the robot has learned the

different classes, it can classify new terrain data according to the learned model.

Various methods have been proposed in literature for the problem of terrain recognition. They

can be broadly divided into ladar-based methods [84] ( whichuse laser, radar etc.,), vibration-based

methods [85] ( which use accelerometers, IMU etc., ) and cameras based methods [29, 86, 87].

Ladar-based methods usually fit a plane on the obtained ladardata for recognizing terrain. They

often focus on segmenting the ground surface from vegetation or different kinds of obstacles (e.g.

rocks) instead of estimating the type of the ground surface itself. Other ladar based methods divide

the ground surface into navigable and non-navigable regions [88].

Vibration based methods

Among vibration-based methods, usually accelerometers are used to measure the vibration perpen-

dicular to the motion of the vehicle. The raw measurements ofthe accelerometers are generally very

similar for different types of terrain ( See Figure 2.5). Thus it is beneficial to transform these data

to a more significant representation. In [3], several representations are compared, among them the

popular ones are Fast Fourier Transform (FFT) representation as suggested by Sadhukhan [31], a

log-scaled power spectral density (PSD) as used by Brooks and Iagnemma [32], and a more com-
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Figure 2.5: Sample raw acceleration data for various different types. Observe that except for grass

other terrain record very similar measurements. Image courtesy Weisset. al. [3]

pact representation based on simple features calculated from the acceleration vector like number of

sign changes. In [89] and [32], Brooks and Iagnemma transform their acceleration data to a power

spectral density (PSD) representation. A log-scaling of the magnitude reduces the dominating effect

of high-magnitude frequency components. Then, they used the principal component analysis (PCA)

to reduce the dimensionality of their feature vectors and toseparate the signal from noise. To sep-

arate feature vectors of different classes, they use lineardiscriminant analysis (LDA). They train a

set of pairwise classifier, one classifier for each possible pair of terrain types. These classifiers take

into account both the distribution of feature vectors within a single class as well as the separation of

the class means, and compute a discrimination vector, then they use Mahalanobis distance as their

distance metric. Though these methods are highly reliable and are independent of environment and

climatic illumination conditions, the terrain can be classified only while the robot traverses it, but

not beforehand.

Near to Far learning methods using lasers or Stereo cameras

There are methods that use a combination of laser and images or stereo based data for purpose

of annotation or ground plane extraction and training [4, 29, 33–35]. These address the problem

of classifying the terrain into navigable and non navigablesections for further use by a planner

module. These methods follow a canonical form of using camera along with lasers or stereo-rig,
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i.e., as the robot navigates through the terrain, dense 3D data is acquired using lasers or stereo

cameras. A groundplane model is fit and subtracted out, resulting in an estimate of groundplane

deviation Figure 2.6b. Near-field labels from both the groundplane and obstacle classes are extracted

according to small and large groundplane deviation values,respectively Figure 2.6c. The near-field

stereo labels are sampled to create a balanced training set,features are extracted from the image at

these sampled points, and a machine learning model is trained on the resulting training data. Finally

the classifier is evaluated over the remainder of the image, including the far field, to arrive at a final

terrain classification Figure 2.6d.

Recent literature

Among the recent literature, we surveyed the work reported in [86] on monocular terrain classifica-

tion comes closest to ours. Dimaet. al [90] trains separate classifiers on data from laser, infra-red

camera and monocular camera and uses AdaBoost to combine theoutput. Bradleyet. al [91] uses

multi-spectral camera to detect chlorophyll content for recognizing grass and trees. Recently, Blas

et. al [33] uses pre-segmentation algorithm based on clustering using LBP features before training

phase, Vernazaet. al [30] uses Markov random fields framework for training on set of their own

training data and report accuracy in the range 68%-88% on four datasets. Procopioet. al [4] adds

memory to the machine learning model by using ensemble of classifiers, they report an accuracy of

around 90% on their own publicly available datasets, but they consider only two classes they are

traversible vs. non-traversible path.

While the problem can be approached by a combination of various sensing modalities such as

2D and 3D lasers, multiple cameras or a combination of them, this thesis explores how much of

scene interpretation ability is vested in a single camera and is thus different from methods that

use multiple sensing modalities such as those cited above. This investigation is especially crucial

since cameras do provide a rich set of visual features even atlonger distance, which helps the robot

in better path planning and hence over-coming the problem of“short-sightedness”. Often mobile

robots are equipped with limited power systems, it is often desirable to use low power consuming

sensors like monocular camera rather than high power consuming sensors such as lasers. Also,

cameras are much cheaper compared to ladars or vibration sensors. These factors motivates the

use of monocular camera to perform terrain classification. As a part of a larger effort of terrain

evaluation by single camera, we manually annotate the data offline. We use these annotated images

for automated evaluation. Unlike many previous approaches, which deals with the problem of

detection of navigable region, we deal with the complex variant of the problem, which is about

classifying the terrain ahead into commonly observed scenarios.
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(a) RGB Image (b) Groundplane Deviation

(c) Near-field Labels (d) Final Classification

Figure 2.6: Demonstration of near-far learning using stereo-camera or lasers to obtain dense data.

Image courtesy Michaelet al. [4]

2.4.2 Features

Color features

For any learning based method selecting meaningful features for the classification task is very im-

portant. Color cue has been used in literature in various forms, such as color histogram [34], [29], [4]

average red and average R+G [86], HSI color space [83] etc., Recently, Carloset. al [92] use U,V

components in the LUV color space and report better performance. As representative set of features

based on color, we use three features, they are histogram of R,G and B components in the RGB

space, histogram of H,S and I components in HSI space and histogram of L,U and V components

of LUV space. We quantize each component to 60 bins, hence thesize of histogram of color in any

space will be 180.
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Texture features

As second class of features, we choose is texture. Differenttypes of texture features have been

proposed in literature. Many of them are based on using filters such as multichannel filtering [93],

LM filter banks [94] etc., We use LM filter banks (see Figure 2.7a) as our first representative features

for texture. For calculating the histogram of LM features for a image block, we use a similar

approach used in [95], where we take histogram of maximal response filter indices’s along with

mean and variance of the maximal filter, by which we have a feature vector of size 52.

Linear binary pattern feature (LBP) ( see Figure 2.7b) is a gray-scale invariant texture primitive

statistic. For each pixel in the neighborhood of the pixel, abinary code is produced by thresholding

with the center pixel. A histogram is created to collect up the occurrences of different binary pat-

terns. A related work [96] on recognizing real-world textures was proposed, in that they experiment

with different LBP based features and report good classification performance. Recently Blaset.

al [33] used LBP based feature for segmenting the image as the first step for the problem of terrain

classification. In our experiments we use basic uniform LBP feature as our second texture feature.

Recently texton based features were used in [86], texton based representation considers a texture

as union of features with specific appearances, without regard to their location [97] and they report

that textons alone can classify the terrain with high accuracy. However textons are based on “bag of

words” features, which makes them computationally very costly. Therefore we limit our attention

to LM filter banks and LBP histograms only.

2.4.3 Classifiers

Performance of color, texture and combined descriptors areevaluated on a set of popular and

promising classifiers.

Näıve Bayes

Naı̈ve Bayes classifier is a popular but simple classifier with strong independence assumptions

within the features and is based on Bayes reasoning. It has the main advantage of being able to

handle a large number of features. This classifier is known tobe mathematically optimal under

restricted settings.

Let X be a vector whose class label is unknown. LetA be some given hypothesis, such as

“vector X belongs to a specified class C”. For performing classification, we need to find the condi-

tional probabilityP (A|X) – the probability that the hypothesisA holds, given the observed vector

X. P (A|X) is called posterior probability ofA conditioned on X. In contrast,P (A) is the prior
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Figure 2.7: (a) LM filters has a total of 48 filters, which are 2 Gaussian derivative filters at 6

orientations and 3 scales, 8 Laplacian of Gaussian filters and 4 Gaussian filters. (b) Basic Linear
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probability. The posterior probability,P (A|X) is based on more information (such as background

knowledge) than the prior probability,P (A), which is independent ofX.

Similarly, P (X|A) is posterior probability ofX conditioned onA. P (X) is the prior probability

of X. Bayes theorem provides a useful way of calculating the posterior probability,P (A|X), from

P (A), P (X), andP (X|A). Bayes theorem can be stated as:

P (A|X) =
P (X|A)P (A)

P (X)
(2.21)

K-Nearest Neighbor

Thek-nearest-neighbor (K-NN) algorithm is one of the simplest machine learning algorithms. How-

ever, it often performs very well and therefore, it is an important benchmark method. This method

classifies samples based on the closest training samples in the chosen feature space. Given a test

sample, it selects the closestk training samples in the training set and reports the dominating label

among the closestk training samples. If there is a draw, simply the label of the closest sample

is chosen as the label of the test sample. Generally the choice for k should be an odd number.

In experiments, selectingk among the valuesk ∈ {1, 3, 5, 9, 11, 13} is sufficient. The popular

distance measures used to find the nearest neighbor are Euclidean distance, Mahalanobis distance,

City block (Manhattan) distance, Chebyshev distance, Minkowski distance, Canberra distance, Bray

Curtis distance etc.

Artificial Neural Network

Artificial Neural Network (ANN) classifier tries to simulatethe structural and functional aspects of

biological neural networks. Artificial Neural Network (ANN) classifier are used to model complex

non-linear relationships in data. There are two types of learning modes for ANN’s, they are batch

mode learning and sequential mode learning, In batch mode all the training samples are used at once

to update the parameters in the objective function, this mode requires huge amounts of memory to

train, where as in sequential mode learning, the parametersof the objective function are updated by

learning from a single training sample. If one has to train onhuge amount of data, sequential mode

is the natural choise of training. Though ANN’s takes huge time in the training phase, the testing

phase is much faster compared to other classifiers such as K-NN.

SVM’s

Support vector machines(SVMs) have become highly popular classifiers in the recent past. SVM’s

are large margin classifiers with high generalization capability [98]. Initially, SVMs are designed
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for binary classification task assuming the data is linearlyseparable, SVM constructs a optimal

hyperplane in the input feature space, by maximizing the margin (distance) between two parallel

hyperplanes which are constructed on each side of the separating hyperplane. Among the popular

variants of linear multiclass SVM classifiers, we choose 1 vs1 multiclass classifier, where pair-wise

classifiers are created, and at the classification step, the majority of all the classifiers is chosen as

the final result, which we call as SVM-L. For handling data, which is not linearly separable, SVMs

are extended by using Kernel trick.

Kernel trick transforms the input feature space to higher dimensional space, which allows SVM’s

to fit the maximum-margin hyperplane in the transformed feature space, which relies on basic as-

sumption that non-linear data may be linearly separable in higher-dimensional space. There are

different types of kernels(K) available in literature, such as Radial-basis kernel, intersection kernel,

laplasian kernel, polynomial kernel etc., In our experiments we use popular Radial-basis function

(RBF) kernel among various available kernels, which we callSVM-K. Training an SVM requires

solving the following quadratic optimization problem:

Maximize:

l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjK(xi, xj) (2.22)

subject to constraintsαi ≥ 0, i = 1, 2, . . . , l, and
∑l

i=1 αiyi = 0 whereαi are the Lagrangian

multipliers corresponding to each of the training data points xi.

The decision function is given by:

f(x) = sgn(
l

∑

i=1

αiyiK(xi, x)) (2.23)

where K is the kernel function.

Random Forests

Random forests (RF) ( see Figure 2.8 ) is a classification algorithm that uses an ensemble of un-

pruned decision trees, each of which is built on a bootstrap sample of the training data using a

randomly selected subset of feature space dimensions [99].The final output is the mode of class’s

output by individual trees. We use an implementation of the RF available in the matlab environ-

ment [100]. This implementation is based on the original Fortran code authored by Leo Breiman,

the inventor of RFs.
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Figure 2.8: Random Forests, containing two types of nodes inevery tree, at each un-filled node, a

decision functionf(x) is defined on random subspacex ∈ X, whereX is feature vector, and the

filled node is the class label. Majority voted label from all the trees is the final label of the random

forest.
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Chapter 3

Piece-wise planar scene reconstruction

3.1 Introduction

Convex optimization methods have achieved success in the estimation of various geometric quanti-

ties like homography, pose, 3D point cloud (triangulation)[40,81] etc. One of the reasons that make

convex optimization an attractive choice for geometric problems is its ability to produce accurate

results even with noisy data. Owing to this property, they can be used to handle cases with consid-

erable noise where most other methods often perform poorly.On the other end, these methods have

algorithms that are fast enough to be used for real world applications [80]. Moreover, modeling

a given problem in a convex framework could lead to a certificate on the optimality. Particularly

for cases where the objective function is either convex or quasi-convex, there exists only a single

global minima. A theoretical guarantee reinforces our confidence in the estimates derived through

a convex framework. Lack of such theoretical guarantee is anissue of common occurrence with

most other optimization frameworks that suffer from the trap of local minima. They rely heavily

on the quality of the initialization used to run the optimization. Such inability to comment on the

optimality hinders the reliability of the method and its estimates. Increasing complexity of objective

functions further adds to the unreliability of these algorithms leaving them unusable for practical

use. Such complex surfaces and manifolds are cases of commonoccurrence in computer vision.

This stresses the need to reformulate the problems in a convex framework.

We approach the problem of reconstruction in piece-wise-planar scene using convex optimization

techniques. We describe a method to estimate plane parameters and camera poses from features

tracked from various planes in a given video.
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3.1.1 Contributions

In this chapter, we make the following contributions.

• We introduce objective functions for producing optimal estimates of pose and plane parame-

ters, along the lines of [40].

• Since theL∞ norm is known to be sensitive to outliers, we show how adding extra constraints

can increase the robustness of our algorithm.

• We show how a Branch and Bound(BnB) algorithm may be formulated for the computation

of optimal rotation between views [101].

• This work was published inAsian Conference on Computer Vision in 2009[102]

3.1.2 Organization

The rest of this chapter is organized in the following manner. Section 3.3 sets the problem of

pose estimation in a homographic framework and motivates the need for the use of optimization.

Section 3.4 presents our solution and algorithm details. Experimental analysis on synthetic and

real-world sequences are done in Section 3.5 and finally, we summarize with a discussion on future

directions and applications in Sections 3.6.

In this chapter, we explore the use of the property of convex optimization for piecewise planar

reconstruction. We show that when the problem of 3D reconstruction is posed as the computation

of camera pose and scene plane parameters, the resulting objective functions are quasiconvex or

convex in nature, and have good resilience to noise.

Owing to this property, they can be a useful “bridge” betweenSVD based initialization methods

like Factorization that are sensitive to noise and the accurate results replacing non-linear minimiza-

tion methods like Bundle Adjustment that require good initialization.

Also while computation of robust Fundamental Matrices [103] has been a tricky issue, homo-

graphies are comparatively simpler to compute accurately.The section 2.3 explores background on

convex optimization for building the necessary notation that will followed in the rest of the chapter.

3.2 Technical Background

Planar Reconstruction Homographies, like fundamental matrices, can also be expressed as a

function of the camera pose, and can be decomposed using SVD in a similar manner [52, 101].

Given that now algorithms for automatically ‘recognizing’planes in a video exist [104], a robust
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homographic framework for using planar models is worth exploring. The reconstruction of a scene

can be viewed as a two step process, where camera poses are estimated first, and 3D quantities

next. The estimation of the camera pose from image sequencesconsists of optimizing a six pa-

rameter vectorp =
[

αx αy αz tx ty tz

]

for every frame , where rotation and translation

are parametrized by three parameters each. Recently, globally optimal solutions to pose [101] have

been proposed, that use Second Order Cone Programming (SOCP) to estimate pose given point cor-

respondences. The next phase is computation of 3D geometry.For planes, this corresponds to the

optimization of four parameters
[

n⊤ d
]

wheren represents the normal, andd the perpendicular

distance from world origin. Optimizing over these parameters is relatively less well researched in

the literature as opposed to triangulation for point clouds.

Some of the recently introduced quasi-convex objective functions for estimating quantities like

homography form the inspiration for our approach [81]. We also adopt theL∞ framework, moti-

vated by its ability to handle large amounts of data while being able to provide quick solutions to

optimization problems [81,105].

On the application front, some of the closest works are related to 3D tracking [106] and projec-

tive Bundle Adjustment (BA) [107]. Similarity to the tracking work is limited to our motivation to

propose SOCP related objective functions. A more closely related work is projective BA, where

an iterative technique is proposed, that performs camera resectioning and triangulation to recover

structure and pose. However, we differ significantly in our approach and our objective functions.

Another related work is Bundle Adjustment with constraints[108]. Again, we differ in that we com-

pute the reconstruction from homographies directly, rather than using them to impose constraints

on the geometry of 3D points.

Recent study of bi-linear problems in computer vision has relevance to our work [109], since

the relation between a homography and plane and pose parameters is essentially a bi-linear one,

with terms involving(R, d) (rotation,plane perpendicular distance) and(t, n) (translation, plane

normal). However, the formulation proposed in [109] requires that the entire set of plane and pose

parameters need to be optimized together. Estimation of rotation parameters becomes infeasible in

such a scenario. Thus we do not resort to a formulation along the lines of [109].

The conditions of orthonormality of rotation matrix are troublesome for the problem of pose

estimation. The non-convexity of these constraints suggests the use of under-estimators. Since al-

gorithms for this purpose already exist [101], in our experiments, we have set rotation to be constant

and only minimized for the remaining parameters (t, n, d), while treating the issue of rotation in a

separately. Our experiments with initialization accuracies (Figure 3.1a), show that SVD decomposi-

tions produce better estimates for rotation in the presenceof noise, as compared to translations and

normals. We propose a formulation along the lines of [101] that may be used to optimize rotation,
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while keeping the essential structure of our solution, the same.

3.3 Homographic Framework for Planar Reconstruction

Homographies can be decomposed to estimate camera poses andplane parameters using singular

value decomposition (SVD) technique. SVD techniques are known to be sensitive to noise [?].

Further more SVD techniques cannot be used exploit information from multiple planes and views

to make a more reliable and consistent estimate. Such shortcoming makes SVD techniques unfit

for large scale applications where images of multiple planes across multiple views are available.

This stresses the need for a unified framework that can make reliable estimates consistent with the

data and robust to noise from a configuration multiple framesand images. In the following section

we analyze performance of various SVD based techniques,their implementation issues and their

resilience to noise.

3.3.1 SVD based Techniques

Let there bem planes in the world, characterized by the parameters
[

n1, d1, . . . , nm, dm
]

. The

jth plane is characterized by the parameters(nj , dj), wherenj represents the normal of the plane

and dj represents the perpendicular distance from world origin. Let there be two cameras with

external parameters[I | 0] and[R | t]. For simplicity, let us assume that the internal parametersof

the cameras are set to identity (K = I). Thus the Homography induced by the jth plane between

the two views is given by

Hj =

[

R −
tnj

dj

]

(3.1)

Decomposition algorithms for obtaining camera pose and plane normals from homography ma-

trix using Equation 3.1 are well known [51, 52]. However, since, the process of pose computation

from correspondences through the homography matrix involves two SVDs, a theoretical sensitivity

analysis of such algorithms is difficult and approximate [?]. Thus it is more advantageous to do an

empirical study of the error in the estimation of plane and pose parameters, given noise in image

correspondences.

Figures(3.1a-3.1c), depict the poor performance of one of the SVD based decomposition algo-

rithms [52]. The experiments consisted of adding increasing amounts of noise to a previously deter-

mined set of normalized image correspondences. Homographies obtained after a standard RANSAC

routine were then decomposed to obtain estimates of the plane and pose parameters. Variances are

plotted against error in pixel coordinates, with a maximum variance of 5 pixels which corresponds
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to approximately 1% of the image size. As can be seen, translation and normal estimations are

adversely affected by image noise. The errors for the other algorithm [51], were similar.

The variances in Figures(3.1a) plot the error in estimationof rotation parameters when noise is

introduced into the system. As is seen, the maximum variation of rotation parameters in the Euler

angle space is 6 degrees, for as high as one percent image noise. Comparison with the translation

and normal errors, which are as high as 40 degrees in the polarspace Figures(3.1b-3.1c), show that

the decomposition algorithm produces much more robust estimates of rotation than either translation

or normal parameters. This explains the greater need for better estimates of translation and normal

parameters compared to that of rotation parameters that aremuch close to the actual values.

3.3.2 Implementation Issues and Sensitivity Analysis

The implementation of both decomposition algorithms startwith the SVD ofH and thereafter, a se-

quence ofif-else conditions on the resulting eigenvalues gives rise to various ways of computing

the different parameters{R, t, n} from these values. The only point to note is that in the implemen-

tation of the algorithm of Faugeras [51], a scaled Homography matrix is passed along with a point

m1 on the plane such thatm2 = Hm1 is an equality and not an equivalence relationship (λ = 1).

Ofcourse, both all the quanitites passed as input to both these algorithms are first normalized with

respect to the internal parameters of the camera.

Sensitivity Analysis

Error in Homographies that are decomposed to obtain pose, may be from two sources. The first

one is the well known error in image correspondences, and thesecond is the error introduced due

to manual or auto-calibration of the views involved. If the standard RANSAC approach [1] is used

to compute Homographies, then the error in Homographies as aresult of error in image correspon-

dences can be approximated by a Gaussian to the first order [110]. This is done by using a theorem

established earlier, that measures the perturbation in theeigenvalues and eigenvectors of a matrix,

as a function of the perturbation in the matrix elements themselves [111].

The reason why extending this approach to study error in posefrom Homographies is infeasible,

is because the computation of pose from image correspondences through the computation of Ho-

mography requires not one but two SVDs. Although in the case of Homography computation [110],

the Homography is directly the eigenvector with least eigenvalue of the matrix in consideration,

pose and normal values turn out to be non-linear functions ofthe eigenvalues ofH. Secondly, the

theorem in [111] only gives a first order approximation of theerror, and so extending it for studying

error in pose is of less practical use. Thirdly, this method for studying error is only correct when
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Figure 3.1: (a,b,c) Plot theL2 andL∞ errors in the rotation angles, translation direction and nor-

mal direction respectively. Also are plotted the maximum error ranges for these quantities. The

translation and normal direction errors are computed as Euclidean distances in polar space.
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a RANSAC based approach is used for Homography estimation. Finally, calibration errors are not

accounted for in this approach.

Thus it is more advantageous to do an empirical study of the error in the estimation of plane

and pose parameters, given noise in image correspondences and calibration. As of now, we restrict

ourselves to study errors arising from image correspondences alone. Extending it to calibration

errors is a useful topic for future study.

3.4 Convex Framework for Planar Reconstruction

In this section, we formulate the problem of planar reconstruction using homographies in a convex

optimization framework. We propose an algorithm for planarreconstruction in videos, the algorithm

has no constraint that all the planes should be visible in allthe frames. We also show how we utilized

the inter-image homographies as additional constraints onthe algorithm, which makes the method

robust. We also discuss the issues with the current algorithm.

3.4.1 Formulation of the Objective Function

We wish to find plane and pose parameters that minimize a suitable variation of the difference

between the L.H.S and R.H.S of Equation 3.1. Observe that therelationship in Equation 3.1 is

non-linear in terms of the quantities(R, t, nj , dj), which are the parameters we need to compute.

However, if either the camera pose or the plane parameters are known, the above equation is linear

in terms of the rest of the unknowns. Thus we define the following objective functions(in equa-

tions (3.3, 3.5) ) that measures the geometric distance between the computed plane-pose parameters

and the homography estimated from point correspondences, for the jth plane.

Hrtj =

[

R−
tn

j
c

d
j
c

]

(3.2)

F(R,t) =

8
∑

i=1

(
Hj

i

Hj
9

−
Hrtji

Hrtj9
) (3.3)

Hndj =
[

d
j
Rc − tcn

j
]

) (3.4)

F(n,d) =
8

∑

i=1

(
Hj

i

Hj
9

−
Hndj

i

Hndj
9

) (3.5)

Here(Rc, tc, n
j
c, d

j
c) denote constants and letters in bold denote variables whosevalues need to

be computed, and elements of all homographies are accessed in column major order. There are
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Figure 3.2: Proposed algorithm: Each dot in the above figure represents a homographyHj
i . An

iteration for refining i the pose of a single view minimizes over data from all the planes, and an

iteration for refining a single planes parameters minimizesover data from all the views.

two issues to be noted about equations (3.3, 3.5). Firstly, both these equations are linear fractional

equations: both the numerator and denominator are affine functions of the unknown parameters.

Secondly, it is possible to optimize all the parameters by iterating Equation 3.3 and Equation 3.5

alternatively till convergence. This is summarized Algorithm 1.

3.4.2 Proposed Algorithm

The proposed algorithm traces through two steps for the estimation of pose parameters given the

Homography. The first step is to acquire an initial estimate using an SVD-based decomposition.

Then scale issues related to the decomposition are resolvedSection 3.4.3. The values of(Rj , nj, dj)

are used to initialize the search for a global estimate ofti, which is then subsequently used to search

for global estimates of(nj , dj).

The second step using convex optimization, is an iterative process that refinesti in one step and

(nj , dj) in the following step as show in the Figure( 3.2). Since, eachof the plane parameters

are independent of the other, and the pose parameter for eachview is independent of the other,

optimizing all the variables together has the same effect asoptimizing for each view and each plane

separately. Thus, optimization ofti takes into account information from the homographies induced

by all the planesH1...m
i , and similarly optimization of(nj, dj) takes as input all the homographies

Hj
1...k. This is done in a two step process to ensure the quasiconvexity of the two minimization

problems.
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Algorithm 1 Complete Algorithm Summarized.

1: Input: HomographieskHj for j = 1, . . . , J andk = 1, . . . ,K of planeΠj between the camera

viewskP and reference view0P = I.

2: SVD-based decomposition: DecomposekHj to getkRj,
ktj
kdj

, knj.

3: Initialization: kR = medianj {kRj} andt = medianj{ktj}.

4: Set to universal scale: Assume each actual camera translation to be a unit vector in the direction

of
kt
dj

, i.e.,‖kt‖ = 1. Let kGj = [kR +
ktnT

j
kdj

] andkGs
j = (g1, g2, . . . , g9)

T .

5: Iterative Minimization:

6: ΣkΣj

{

kHs
j −

kGs
j

}

≤ δ

7: Update(R, t): (R, t) = arg minkR,kt ΣjΣi[
khi
kh9

−
kgi
kg9

]2∀k = 1, . . . ,K.

8: Update(nj , dj): (nj, dj) = arg minnj ,dj
ΣkΣi[

khi
kh9

−
kgi
kg9

]2∀j = 1, . . . , J .

3.4.3 Discussions

Proof of Convergence

We show that the value of the objective function either decreases or remains constant at each iter-

ation. The function being minimized is|F(x)|∞, x being the variables over which optimization is

performed. The iterative minimization process (step 5 in Algorithm 1) is a two step process. In

the first step minimization is over(R, t) and the second step is over(n, d). Given an initialization

(Ri, ti, n
j , dj) if we prove that in each iteration the value of the objective function does not change

it would be sufficient to explain that the algorithm converges to the (local) minima. We observe the

following two corollaries.

Corollary Given an initial pointxI = (Ri, ti, nj, dj) the value of the functionsF(t) andF(n,d)

either decreases or remains constant for each iteration in the minimization i.e.,F(x∗) ≤ F(xI).

Note that the objective functions in steps 7 & 8 are the same except for the scale factor that has no

effect on the minimization process. Thus the proof is easilyseen, since theL∞ based quasi-convex

function is minimized to find a global minima in each step. Since the output of one step is given

as input to the next iteratively, we see that with every iteration the geometric error either increases

or remains constant. However, with the non-linearities associated with rotation parameters and the

fixed point iterative solution suggested, existence of a global optima is not direct.
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Universal Scale

Each decomposition by the algorithms of Faugeras and Zhang produces estimates of{R, t, n} as-

suming a coordinate system in which the perpendicular distance between the origin and the plane

in consideration is 1. Since we consider all the homographies computed with respect to a fixed

reference frame, the origin in all the decompositions obtained is the same. Thus the difference in

the various solutions obtained by SVD decomposition differin a scale factor, which in the presence

of noise has to be computed using optimization.

Let the solutions of translation obtained by decompositionmethods be denoted bytji , which is

the translation vector obtained by decomposing the homography Hj
i . Thus the actual translation

vector is represented byti = tjid
j , wheredj is the optimum of an objective function. Since, es-

timates obtained from the various planes must converge, we are interested in the optimum values
[

d∗1, d∗2, . . . , d∗m
]

such that

[

d∗1, . . . , d∗m
]

= min
k

∑

j=1

k
∑

l=1

m
∑

i=1

|tjid
j − tlid

l|2 (3.6)

The above function is quadratic and can be reduced to the form|Ax|. However, we wish to not

only find an approximate solution for the perpendicular distances, but also to get an estimate of

the translation of the current frame, which can then be used for initializing the convex optimization

routines. For this task we introduce a new set of variables(ti, i = 1, . . . , k) which represent the

actual translation of theith view upto scale. The modified functions now becomefi,j(ti, d
j) =

|ti − tjid
j |2. As can be seen, these set of functions can be re-written in the form

fi,j(ti, d
j) = |ti − tjid

j |2 = |Ai,jxi,j|2 (3.7)

Ai,j =
[

I3×3 − tji

]

, xi,j =

[

ti

dj

]

(3.8)

Instead of minimizing the sum of square errors of all the functions fi,j, a convex formulation

may be obtained by minimizing themaximumof these functions. Since the functionsfi,j can be

thought off as the composition of a norm function and an affinefunction, its easy to show that these

functions are convex in nature. Since convexity is preserved under point-wise supremum [80], we

can collect the required variables and functions into one framework.
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x =
[

t1 . . . tk d1 . . . dm
]⊤

(3.9)
[

t∗1 . . . t∗k d1 . . . dm
]

= arg min γ

s.t max
i,j

fi,j(Ai,jx) ≤ γ

i ∈ [1 . . . k] , k ∈ [1 . . . m]

Ai,j ∈ R
3×3k+m (3.10)

In the above formulation, unconstrained optimization would produce the solutionx with all zeros.

Since this is undesirable, wefix one of the perpendicular distances (sayd1 without any loss of

generality) to 1. This also sets the overall scale of the minimization process, and since functions

fi,1 are now reduced to the Euclidean norm function, itmovesthe optimization process away from

the other pitfalls, towards the correct solution.

Algorithm 1 is a consequence of the structure of the relationship between a homography and

the corresponding plane and pose parameters, and allows us to integrate information about planes

across views into one minimization framework. A parallel can thus be drawn between the current

framework for planes and the traditional bundle adjustmentalgorithm, for points. However, for this

analogy to be complete, two important issues remain to be considered. First is the estimation of

rotation, which we have sidelined until now. The second is the inclusion of planesnot observedin

the first image. These related issues are discussed in the next section.

3.4.4 Additional Constraints

We extend the framework described previously to include twoimportant aspects: the estimation

of rotation and the inclusion of inter-image homographies as additional constraints. An additional

advantage of adding inter-image homographies is the tightening of bounds of the optimization pro-

cess.

In effect, we intend a graph based estimation of homography like ones presented in the mosaicing

literature [112] to be a precursor to our algorithm. Thus, outlier homographies can be identified and

thrown away by graph based approaches, and the remaining homographies can be used to find

optimal solutions to the pose and plane parameters

Consider a homographyHj
i,k that is induced by thejth plane between theith and thekth cameras.

It can be broken into the following equation

Hj
i,k = Rk

i −
tki n

j⊤
i

dj
i

(3.11)
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where the subscripti denotes that all quantities are measured keeping theith frame as reference

(origin). These quantities are related to the actual reference coordinate as

Rk
i = RkR

⊤

i (3.12)

tki = −RkR
⊤

i ti + tk (3.13)

nj
i = Rin

j (3.14)

Given thatHj
i,k can be computed and hence decomposed accurately, the above equations provide

additional constraints on{ti, tk,nj} which can be formulated as the minimization of the square

difference between left hand and right hand side quantities. The most important result of adding

such additional constraints is that it allows us to include additional planes in the optimization process

that arenot visiblein the reference frame. As will be seen later, these constraints also provide, much

needed robustness to outliers, since theL∞ norm is known to be susceptible to them.With these

additional constraints, we now have an algorithm that optimizesall the tracked planes and views of

a video sequence, robustly.

3.4.5 Issues with Rotation and Normal

The primary issue with rotation and normal parameters in theobjective function are the constraints

associated with them. The norm constraints on the rows and columns of the rotation matrix, as

well as on the normal are not convex. Thus, at present, our algorithm solves a relaxed version of

the original problem for normals. In literature [101, 113],this issue has been solved by modifying

the problem with constraints that are under estimators and over estimators of the actual non-convex

function, in a Branch and Bound algorithm.

In order to extend this approach to the problem of plane basedpose estimation, we need to

introduce the image coordinates of the planes concerned, into the objective function constraints. To

do this, let us observe that an alternative to the currently used objective function Equation 3.3 is

to consider minimizing the angular distances between imagepoints transferred using the measured

homography, and those transferred due to the homography computed from pose estimates. More

precisely, let us consider the objective function

F(Ri,ti) ≡ Find(Ri, ti) s.t. ∠(Hj
i x

j
1, (Ri − ti

nj

dj
)xj

1) < ǫmin (3.15)

which can be alternatively posed as

F(Ri,ti) ≡ Find(Ri, ti) s.t. ∠(Hj
i x

j
1,Ri(I− ti

nj

dj
)xj

1) < ǫmin (3.16)
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In the objective function proposed above,x
j
1 represents the points belonging to thejth plane in

the first view. The transfer of points from the first view is chosen over the points detected in theith

view primarily to eliminate errors due to the feature detection and tracking process, which can be

considered even at the homography estimation stage [?]. Arguments of bounds and in general the

branching strategy of [101] can now be incorporated into thecurrent framework.

3.5 Experimental Analysis

In order to test the proposed algorithm, we have designed experiments on both synthetic and real-

world data. Synthetic data is obtained by generating pointson planes and projecting them onto

camera matrices. Real world data sets tested include the Oxford Model House, Corridor, and UNC

datasets. In all these cases, the real world is assumed to be segmented into planes apriorii.e, interest

points and hence correspondences computed are assumed to beclustered into planes. However,

there are automatic algorithms to achieve such a classification [104] .

3.5.1 Synthetic Data

Generation Random points are generated on the XY-plane which is then re-positioned at a ran-

dom location. Two random camera matrices are generated and the world points of many such planes

are projected using them to generate image points. Gaussiannoise of varying standard deviation is

added to these image points to create synthetic correspondence data. Homographies are then com-

puted using the RANSAC after normalization [1] which can alternatively be generated by [81]. The

generated Homographies are decomposed using Faugeras’ andZhang’s algorithms [51, 52] to gen-

erate data for both initialization and comparison. Algorithm 1 is then run with this data, to produce

our estimate and is compared with the SVD algorithms and Bundle Adjustment in the 6-parameter

pose space by plotting the euclidean distance between estimated and ground truth values.

Experiment 1: Effect of noise Figures (3.3a,3.3b) show the effect of increasing image noise on

the accuracy of estimation. Two effects can be observed for both translation and normals. First, the

average error in the estimation of both parameters is less than 5 degrees even for a 1% error in the

image coordinates, which is a serious error. This justifies the robustness of our algorithm to image

noise. The second effect is that the mean errors (averaged for 100 trials) in all these cases are located

close to the minimum errors represented by the lower end of the error bar. Figures (3.4a,3.4b) show

that most of the estimations center around the mean, with only a few deviating towards the higher

end. Another interesting observation is that even the resilience to noise is apparent till about 3 pixel

error after which the maximum error in both cases seems to increase. This can be attributed to the
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(a) Translation (b) Normal

Figure 3.3: Plot ofL2 andL∞ norms of the distance in pose space between estimated and ground

truth quantities from Algorithm 1 against increase in variance of Gaussian error in point correspon-

dences. Comparison with two SVD based methods is shown.
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Figure 3.4: Plot of minimum, average and maximum ofL2 norms of the distance in pose space

between estimated and ground truth quantities from Algorithm 1 from 100 trails against increase in

variance of Gaussian error in point correspondences.
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Figure 3.5: Plot ofL2 norm of the distance in pose space between estimated and ground truth

quantities from Algorithm 1 and Bundle adjustment against increase in variance of Gaussian error

in point correspondences.

fact that after a point the algorithm possibly settles into alocal minima because of the inaccurate

initialization. However, this is still far better than the SVD decomposition in Figures 3.1b, 3.1c.

Experiment 2: Comparison with Bundle Adjustment We empirically compare our algorithm

with standard iterative non-linear optimization technique of Bundle Adjustment [59]( See section

2.1.5), which uses Levenberg-Marquardt internally. Bundle adjustment is initialized by the output

of the SVD-based approaches similar to our case.

The improvement in translations is shown in Fig (3.5a) and that of normals in Fig (3.5b). They

are shown for varying levels of variance each of which has been tested for 100 trials. This clearly

shows that our algorithm is better than Bundle Adjustment.

Experiment 3: Effect of planes Figures (3.6a,3.6b) show the effect of the increasing number of

planes on the overall result. Contrary to expectation, increasing the number of planes does not seem

to have much effect either on the accuracy in estimation of translation parameters, nor the estimation

of normal parameters.

Experiment 4: Effect of views Figures (3.7a,3.7b) show the effect of increasing the number of

views, in this experiment the number of parameters increases significantly and hence accuracy in

the translation errors dwindles down . In the case of normals, as expected, increasing the number of

views results in a marked improvement in the accuracy of the estimated normal values.
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(a) (b)

Figure 3.6: The above figures plot the effect of planes on the accuracy in estimation of the translation

and normal parameters respectively. In this experiment we varied the number of planes from 2 to

10 and the number of views was kept constant at 10

(a) (b)

Figure 3.7: The above figures plot the effect of views on the accuracy in estimation of the translation

and normal parameters respectively. In this experiment we varied the number of views from 3 to 15

and the number of planes was set to be 3.
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(a) (b)

Figure 3.8: (a) Shows the improvement of estimating translation parameters using additional con-

straints, when a single plane has bad homographies. (b) Shows the estimation accuracy of rotation

parameters, using the branch and bound algorithm. The estimation is accurate and robust.

Experiment 5: Effect of Extensions Figures (3.8a,3.8b) show the effect of adding inter-image

homographies as constraints (Figure 3.8a), and the accuracy of the branch and bound algorithm for

estimation rotation (Figure 3.8b). As expected, inter-image homographies produce tighter bounds

around the global minima of the pose parameters, preventingthe optimization algorithm from fitting

outlier data (Figure 3.9). This results in better accuracy in estimation and resilience to noise than the

unconstrained case. The computation of rotation parameters using the modified branch and bound

algorithm [101] produces accurate estimates, with good robustness to noise.

3.5.2 Real Data

In order to test on data from the real-world, we chose datasets, of which two are Oxford data sets

and the other one is UNC dataset. The House, and Corridor datasets (Figures (3.10a,3.11a)) are

accompanied by correspondences and estimates of the cameramatrices produced by other robust

estimation algorithms and hence provide a good benchmark with which to compare our algorithm’s

performance.

Figures 3.10b-3.10c show the comparison between our estimation and that of the decomposition

of Faugeras. TheL2 andL∞ errors between the estimated and ground truth quantities are plotted.

In order to compare the plane normals, we took the best estimate of normals from the several de-

compositions available. As can be seen from the results, ouralgorithm produces far better estimates

for the translation parameters than the corresponding algorithm by Faugeras. We found that Zhangs
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Figure 3.9: The addition of inter-image homography based constraints improves the robustness of

the system. The current cost function is designed to overfit outliers. In the above figure, while

the red circle represents the minima corresponding to the error function, the actual global minima,

the green triangle represents the global minima while the brown star represents the solution with

constraints. Each of the circles represents constraints, and the accuracy of the resultant solution

depends on their tightness.
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(a)

(b) (c)

Figure 3.10:Dataset 1: Oxford-house dataset (a) Sample image from the dataset. (b-c) Plots of

theL∞ error between plane and pose parameters with respect to the ground truthL2 error shows

similar plots.

algorithm also produces similar estimates to Faugeras in most cases. The same situation is repeated

in the Corridor sequence (Figures 3.11b-3.11c), where translation is very accurately obtained. An

explanation of why certain plane parameters are perturbed to a value of higher error is that since

some of the homographies are erroneous, the error in a particularly bad homography is distributed

across planes.

3.6 Discussion

In this chapter, we have proposed a framework that produces reconstruction of piecewise planar

scenes in much the same way as Bundle Adjustment for point sets. The algorithm incorporates both

multiple planes and views, and does not constrain all the planes to be visible in any single view.
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(a)

(b) (c)

Figure 3.11:Dataset 2: Oxford-corridor dataset (a) Sample image from the dataset .(b-c) Plots of

theL∞ error between plane and pose parameters with respect to the ground truthL2 error shows

similar plots.
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(a) (b)

(c) (d)

Figure 3.12:Dataset 3: Synthetic house (a-b) Sample images from the dataset . (c-d)Illustrates

the accuracy of our reconstruction. The ground truth and reconstructed models are overlapping to a

greater extent
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(a) (b)

(c) (d)

Figure 3.13:Dataset 4: UNC dataset (a-b) Sample images from the dataset . (c-d) Texture mapped

reconstructions of UNC dataset.
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Additionally, the presence of inter-image homographies presents useful robustness to outliers, that

may not have been pruned in the initial stages of registration and homography computation.

The existing framework is not without its drawbacks. Currently, though the objective functions

show robustness to noise, it has not been systematically incorporated into the objective functions.

Existing literature on robust convex optimization may be used for this purpose [114]. Secondly,

constraintsbetweenplanes may help in stabilizing the overall reconstruction [108], like orthogonal-

ity of planes. One other issue related to this algorithm is its practical applicability. Recent results in

Practical Global Optimization [105, 115] is very relevant to our work, and may be used to improve

the running time of our algorithm, making it suitable for faster computation required by videos.
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Chapter 4

Terrain recognition using monocular

camera

4.1 Introduction

In this chapter, our main focus of the study is to perform and analyze various experimental pro-

cedures that suits the problem of terrain extraction and recognition using only monocular camera.

At the top level, our method consists of training phase and a testing phase, here we study various

parameters that well suits these phases. We experiment withthe size of the patch, that is optimal

in representing the feature space as well as fast enough to becomputed. We study popular feature

extraction schemes, their richness in representing the feature in minimum possible size. We study

various aspects of the spectrum of classifiers and their suitability with selected feature extraction

schemes.

4.1.1 Contributions

In this chapter, we make the following contributions.

• We present our own annotated dataset, which contains huge varieties of scenes with various

changes in environmental conditions. This data set allows us to conduct various experiments

on our methods and it also allows us to compare with the state-of-the-art methods.

• We present extensive empirical comparisons of various features and state-of-the-art classifiers

in machine learning literature.

• We also show how various parameters such as the richness of the features and the patch size

that affect the classifier performance.
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• This work along with the Partition-based algorithm in the next chapter were published in

International Conference on Pattern Recognition 2010[116]

4.2 Problem Parameters

The problem of terrain characterization is that of essentially capturing the appearance of the surface

from the images. This problem is modeled as a classification problem of pixels and smaller windows

in the past [34, 90], where the important parameters of the problem are features and classifiers. We

analyze the relative importance of these parameters on an annotated data set and demonstrate that

the problem can be solved with state of the art features and classifiers. Though there are many new

(and computationally expensive) features proposed in the recent past, we limit our attention to a set

of simple and yet effective features due to their utility andaptness for the terrain characterization

task.

4.2.1 Features

For any learning based method, selecting meaningful features for the classification task is very im-

portant. We use popular RGB histogram [4,29] and LBP histogram [33] as our features considering

the computational cost and performance. We use the optimal weighted combination of these features

that best suits the classifier.

4.2.2 Classifiers

Performance of selected features are evaluated on a set of popular and promising classifiers. The

baseline classifiers which we consider in our experiments are Naı̈ve Bayes(NB), K-Nearest Neighbor(K-

NN), Artificial Neural Networks(ANN), Support vector machines(SVMs) and Random Forests(RF) [99].

Random forest is a classification algorithm that uses an ensemble of unpruned decision trees, each

of which is built on a bootstrap sample of the training data using a randomly selected subset of

feature space dimensions. Experiments were conducted by changing important parameters like

number of epochs and number of nodes in the hidden layers in ANNs, number of trees and size of

node in RF. In case of SVMs, we conduct experiments with linear SVM using 1 vs 1 multiclass

classifier (SVM-L) and non-linear SVM (SVM-K). From Table 4.1, we observe that RFs outper-

formed all other classifiers because of its capability to handle large number of input variables and

data samples [99]. Additionally RF classifiers are computationally efficient for training and testing,

compared to SVMs. Therefore we choose RF as our classifier.
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Figure 4.1: Monocular camera attached at the top of the Van.

4.3 Data set and Experimental Setting

We argue that monocular camera-based terrain characterization solution have reached a state of

acceptance in outdoor navigation. As a first step we do an empirical study on characterization per-

formance and show comparable results on our dataset and other existing datasets. For consistency

in evaluations, the performance of various features and classifiers, we build an annotated dataset.

4.3.1 Data set

Datasets are very important in determining the state-of-the-art of any research area. There are sev-

eral datasets ( for example [4, 117, 118]) introduced in literature in several fields of vision and

robotics. However, as far as we know there is no dataset that is publicly available for the purpose

of terrain classification. This motivates us to build our owndataset that is challenging and prac-

tical. Our dataset consists of road and off-road data, whichmay be used for terrain classification,

scene segmentation, layer extraction, people detection and obstacle detection. For collecting data,

monocular camera is mounted on the top of the vehicle ( as shown in Figure 4.1 ), and videos were

recorded by the camera at 7.5 fps and at resolution800×600 on vehicle navigating at various speeds

ranging from 0.2m/s to 4m/s. We set the camera to high aperture and high shutter speed, in order

to minimize the artifacts caused by the moving camera like motion blur etc., We collect the data on

ill-conditioned roads, in and around a radius of 10km, We observe that the data is challenging, as

it contains wide variations in illumination. We also observe that the data varies from unpaved or

55



Figure 4.2: Overview of the dataset.

damaged rural roads to paved urban roads. Data also containsstatic ( like trees, rocks ) and dynamic

obstacles (like moving vehicles). We collected 25 videos, each of 1 min. In total, we have collected

11250 frames.

Figure 4.2 shows some of the sample frames from the videos. Weobserve that the dataset contains

huge variations in appearance. Five distinctly different terrains were identified in the data collection

(see Figure 2.4):

• Road: This class consists of road patches which are mainly made up of tar or cement, we

annotate these patches with black-grey color.

• Muddy-road: This class consists of patches of all kinds of mud. In constant white light, the

color of the mud ranges from a tint of orange to brown. We annotate these patches with orange

color.

• Rough-terrain: This class contain patches which are rough or rocky. Note that the mud in

draught conditions falls into this class. We annotate thesepatches with brown color.

• Grass: This class contains only traversible grass or very small plants, big plants and trees are

considered obstacles. We annotate these patches with greencolor.

• Obstacle: All the patches that doesn’t belong to either of aforementioned four classes falls

into this class. We annotate these patches with black color.
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Figure 4.3: Patches from each of the identified classes.

Figure 4.3 shows random patches from the four identified classes. We observe that the variation

in texture appearance in each class is quite high, simple color based classification is not sufficient.

From all the recorded frames, 200 frames were randomly selected for experiment purposes. These

images are hand labelled at pixel level using Interactlabeller [119]. After the labelling each image

has its correponding annotated image as shown in the Figure 2.4

4.4 Classification procedure

As discussed in the previous sections, the fundamental taskof terrain characterization can be formu-

lated as an image classification and characterization problem. We start by exploring the performance

of various features and classifiers discussed in Section 4.2. We consider a part of our data set (200

images) for the empirical studies. We use 50% of the data for training and the rest for testing. These

images are manually densely annotated at pixel level as discussed in Section 4.3.1. From each of

these annotated images, we extract multiple, non-overlapping, patches of size16 × 16. Thus we

have around 185000 patches for training, and a similar number of patches for testing. The number

of patches in all the five classes is approximately equal for the initial studies. For all the randomly

picked annotated training patches, we extract the featuresdescribed in Section 4.2. We have exper-

imented with various color and texture features mentioned in section 4.2. We have chosen one for

each of the color, texture and combined features. We have chosen RGB histogram as color feature,

because these are raw features and hence can be computed veryfast. And we choose LBP histogram

57



as texture feature considering the computational cost and performance of various texture features.

As a combined feature, we select optimally weighted color and texture features that best suits the

given classifier. The combined feature always outperforms individual color or texture feature.

4.5 Experiments

In this section, we conduct several experiments to know the limitations and to get an overview of

the performane of state-of-the-art machine learning methods for terrain classification. Specifically

we show that monocular camera can provide useful characterization of the common terrains that

can help in detection of navigable regions through featuresand classifiers delineated in section 4.2.

We also experiment with few important parameters of the problem, that help in solving the problem

to get best possible accuracies.

4.5.1 Experiment 1: Comparison accros classifiers

In this section, we compare the performance of different classifiers as well as features on our dataset

and two other publicly available datasets [4]. The classifiers considered for the study are NB, ANN,

K-NN, SVM-L, SVM-K and RF. Experimental results are shown inTable 4.1. It can be seen that

RF classifier outperformed all other classifiers because of its capability of handling large number

of input variables and data samples [99]. The other advantage of RF classifiers, is that they are

computationally efficient for training and testing, compared to SVMs. SVM-K and K-NN performs

moderately well, though training time for SVM-K is high, testing time is of practical importance,

K-NN on the other hand has a very high classification time, unless approximate nearest neighbor

computations are employed. NB performed the worst of all, itis due to its strong independence as-

sumptions. In cases of certain features, the performance ofSVM-K and RF are comparable. We also

observe that though K-NN is computationally intensive, itsperformance is sometimes comparable

to SVM-K.

Figures 4.4a, 4.4b and 4.4c shows the typical test image, theground truth and the classification

Dataset NB ANN K-NN SVM-L SVM-K RF

Our 43.6 35.6 28.3 29.0 28.7 25.5

DS3A 18.9 32.3 33.8 31.2 38.4 18.2

DS3B 13.7 26.2 17.8 27.9 39.8 18.9

Table 4.1: Base line error-rates on Our dataset and two datasets of Procopio et al. [4].
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(a)

(b) (c)

Figure 4.4: (a) Test image (b) Ground truth image (c) Labelled image using baseline RF classifier

result from the RF classifier respectively, we can observe that the base line result fails mainly due

to illumination variations within the class, which some times makes little or no difference between

patches from two different classes. This is mainly caused because, the spatial context is not being

incorporated, we can also observe that the grass samples arebeing labelled at the upper portion of

the image, which indicates that the baseline RF classifier cannot differentiate between the patches

of the grass from that of the trees.

Since the data sets and details of the earlier reports are notcompletely available, a direct compar-

ison of results may not be applicable. However, it may be noted that the quantitative results, which

we report in Table 4.1, the performance of these methods on dataset due to [30] are comparable to

to the results reported in literature [4,30,120], which usenon-visual sensors and stereos along with

appearance clues. We believe that this advantage comes out of the fact that monocular cameras in

use now provide much richer sampling in space and dynamic range, and therefore useful for such

tasks. This is specially true in contrast to the achievable resolution for laser and stereo. We also be-
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Figure 4.5: Experiment with increasing dimensions of combined feature on various classifiers.

lieve that ourreasonableresults are due to the use of diverse features possible form single frames of

monocular images. We use a diverse and powerful set of features compared to many of the previous

methods. We also show that with increase in features (diversity as well as dimensionality), we can

obtain better classification.

4.5.2 Experiment 2: Effect on number of dimensions

The computational cost of training and testing a classifier is quite dependent on the dimension of

the feature space used. Hence it is important to study the relationship between the dimension of

the feature space and the performance of the classifier to choose the optimal feature space. In our

training or testing phase, from each sample, i.e., from a patch, we extract features that are histogram

of color and texture, histogram can be represented as a feature vector by quantizing it into fixed

number of bins, the size of the bin depicts the richness of thefeature vector. An experiment is

conducted with varying the size of the bin. The relationshipis shown in Figure 4.5. We choose

K-NN, SVM-L and RF classifiers for this purpose, We observe that as the dimension of the feature

vector increases, the error rate decreases and stabilizes at different error rates for different classifiers.

4.5.3 Experiment 3: Effect on patch size

As mentioned earlier, we use color and texture features for the terrain characterization. These fea-

tures are evaluated at a coarse level (like from a patch), while the classification results are required

at a finer (pixel) level for reliable navigation. Thus we explored the relationship between the win-

dows at which features are extracted and the performance metric. The experiment was conducted
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for images of various sizes. The relationship between them is shown in Figure 4.6. We observe that

the optimal size of the patch for the image of size800 × 600 is around 28, we also observe that we

can get improvement in the error as high as 5% by selecting theoptimal sized patch. In general, we

observe that the optimal patch size, that gives reasonable performance is approximately(1/25)th

the size of the image.

4.6 Discussion

This chapter presented an annotated dataset in outdoor rural and urban terrains, which contain huge

varieties of scenes with various changes in environmental conditions. This chapter reports extensive

comparison of various classifiers operating on features forclassification of outdoor terrains using

only monocular camera. This chapter shows how various parameters such as the richness of the

features and the patch size affect the classifier performance. The chapter reports that Random

forests trained on weighted color cum texture feature givesthe best baseline result, with an error

of 25.5% compared to other classifiers such as Naive Bayes, Artificial neural networks, K-nearest

neighbours and Support vector machines. On other publicly available dataset the baseline error rate

was 18.2%. This chapter conducted various empirical studies with state-of-the-art machine learning

techniques and various parameters of the problem.
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Chapter 5

Fast and Adaptive Terrain recognition

5.1 Introduction

In the previous chapter, we analyzed various experimental procedures for terrain classification prob-

lem and we observed that the current state-of-the-art machine learning techniques achieve reason-

able solution. We have observed that Random Forest classifier is performing best among several

baseline classifiers. In this chapter we describe various enhancements for terrain classification. Ini-

tially we describe our partition based algorithm and several experiments which indicate that, the

algorithm is robust and spatially smooth. Secondly we describe our label transfer method along

with experiments showing that, it saves considerable amount of computation time. Subsequently

we present our adaptive algorithm, which is designed specifically for videos and experiments show

that it can adapt to slow appearance changes.

5.1.1 Contributions

In this chapter, we make the following contributions.

• We introduce our novel partition-based algorithm, which isbuild on random forest. We also

conduct several experiments for the usability of the algorithm.

• We also introduce an adaptive-method which uses temporal information effectively using fast

optical flow. The adaptive method is an online algorithm, which can adapt to fairly unseen

terrains.

• This work was published inInternational conference on Intelligent Robots and Systems2010[121]
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5.2 Partition based algorithm

The proposed algorithm partitions the training images and trains different classifiers on different

parts of the image independently. This is repeated for partitions of different sizes. Figure 5.1 pic-

torially shows the partitions in the image with respect to different sizes.Training different classifier

from different part of the image handles the problem of perspectivity of the imaging process, i.e., it

learns the fact that near and far image patches show different textural characteristics. Also learning

from fixed partition over several training images has two main advantages. The first advantage is

that it helps the classifier to learn new facts about associativity of classes, such as occurrences of

grass along with mud is more probable than that of grass alongwith tar road. The second advantage

is that it helps the algorithm to be dependent upon the position of the partition of the image and thus

learns the spatial context. By training a classifier from larger sized partitions, global properties of

the class are learnt and as the size of the partition decreases, more local properties are learnt. Our

algorithm is a generic framework that can be operated on any classifier.

In training phase, as summarized in Algorithm 2 we build N classifier-sets, as the partition size

increases from 1 to N, we have{ 12, 22, 32, ... N2} classifiers in each set respectively. Let us call

themS = {C1, C2, C3, ...CN}. Note that a classifier-setCi containsi2 classifiers. To characterize

the terrain of the given image, for each patch of the image, weget N labels from each of the N

classifier-sets inS. From these N labels, most occurring label is declared as thefinal label of the

patch.

Implementation details: As mentioned before, we have 100 training and 100 testing images.

For training Partition based algorithm, we need to build N classifier sets, each classifier set may be

trained on all the patches from 100 training images. But thismay create a problem of overfitting

and also it increases the training time, to overcome this problem we randomly pick patches from the

training set which are spatially distributed i.e., For eachtraining image from the help of its ground

truth image, we calculate the ratio of number of patches thatbelong to each class. Then based on

those ratios we randomly pick patches from all training images such that there are approximately

equal number of patches in each class. In our experiments, for each class we approximately have

1000 patches for training.

5.3 Experiments

In this section, we conduct several experiments to determine the capabilities and limitations of the

proposed partition-based algorithm. Specifically we show that partition-based algorithm is a generic

algorithm, that enhances the accuracy of any classifier. Secondly, we experiment with important
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Figure 5.1: Pictorial representation of partitioning the images into 4,9 and 16 partitions respectively.

parameter of the algorithmthe number of Classifier-setsand finally we perform another experiment

which shows that the algorithm is capable of classifying theterrain spatially smooth avoiding costly

post processing methods.

5.3.1 Experiment 1: Comparison with baseline classifiers

Figure 5.2a shows the percentage errors of our partition-based algorithm operating on baseline clas-

sifiers SVM and Random Forests. We observe that our algorithmalways decreases the percentage

errors by approximately 10%. This is an appreciable decrease in the percentage error. It also shows

that our algorithm is generic, i.e., the algorithm improvesthe performance of classifier irrespective

of the classifier chosen. To show the superiority of our algorithm across other databases, we con-

duct an experiment in which our partition-based algorithm operating over RF is tested on (i) Our

dataset (ii) DS3A and (iii) DS3B datasets of Procopioet al. [4]. We report the percentage errors

in first and second column of Table 5.1, from the table, we observe that our algorithm compared to

baseline RF classifier, decreases the percentage error by approximately 10% on all three datasets.

We also observe that even without training on any of the images of DS3A or DS3B datasets, we get

percentage error as low as 6.8%, the superiority of our algorithm is thus clearly evident.

5.3.2 Experiment 2: Effect on number of Classifier-sets (N)

Figure 5.2b shows the effect of increasing number of classifier-sets(N), N is a parameter which

controls both efficacy and speed. We observe that as N increases, the percentages error initially de-

creases and then slowly increases The speed of the algorithmalso decreases. From our experiments
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Algorithm 2 Partition based algorithm
– Training

1: Goal: To buildN classifier-sets

2: Input: M Training images,S ← ∅

3: for k = 1 to N do

4: Partition training images intok2 parts,C ← ∅

5: for p = 1 to k2 do

6: Train a Classifier onpth partition over all training images, call itKF

7: C ← C ∪ {KF}

8: end for{ Now C = {KF1,KF2, ...KFk2} }

9: S ← S ∪ {C}

10: end for{ Now S contains{C1, C2, ...CN} }

– Characterize Terrain of given image

1: Input: Image I

2: for all patches of Image Ido

3: L← ∅

4: for i = 1 to N do

5: l ← get the label of the patch from classifier setCi

6: L← L ∪ {l}

7: end for

8: Majority voted label fromL is declared as final label of the patch.

9: end for

we found that, the optimal choice for N is 5, which has high efficacy and without compromising

speed.

65



Dataset RF PM RF PM AVG Err

O 26.8 17.2 08.7 01.0 35.5 05.6

P-A 18.2 07.9 06.9 00.6 42.3 04.3

P-B 18.9 06.8 05.2 00.4 45.1 04.3

Table 5.1:1st and2nd column represents percentage errors of RandomForest(RF) and our parti-

tion based algorithm(PM).3rd and4th column represents smoothness-error, which corresponds to

experiment-3.5th and6th column represents the percentage of images, that were labelled just by us-

ing Temporal-label-transfer method in Section 5.4, where AVG: Average of percentages of portion

of labels that are transferred over sequence of 100 images and Err: Error in label transfer

K−NN, PM(K−NN) SVM, PM(SVM) RF, PM(RF)
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Figure 5.2: (a) Comparison of base-line classifiers with Partition-based algorithm operated over

them. (b)Error rates by using multiple classifier sets.
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(a)

(b) (c)

Figure 5.3: (a) Test image (b) Characterization by RF classifier (c) Characterization by Partition

based method

5.3.3 Experiment 3: Spatial smoothness test

In Table 5.1, third and fourth columns show the smoothness-errors of RF and PM operated on

RF(PM RF), on three datasets. Smoothness-error is the differencebetween percentage errors before

and after applying smoothing algorithm (MRF [122]) on the predicted labelled image. We observe

that our algorithm has a negligible smoothness-error compared to RFs, which clearly shows that

PM RF itself is capable of characterizing the image smoothly inspatial context. Figure 5.3 shows

the superiority of partition based algorithm over baselineRF classifier. We observe that the images

labelled using our method are smooth in spatial context.

5.3.4 Discussion

Figure 5.4 shows sample test cases of the Partition based algorithm. We observe that all the clas-

sifications are smooth in spatial context. The predicted output in Figure 5.4a and Figure 5.4b are
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(c) (d)

Figure 5.4: Test images blended with predicted classifications
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appreciable, as we can see, even the moving vehicle was not classified as traversible path. From

Figure 5.4c and Figure 5.4d we observe that there are big trees present in the scene, which have a

very similar characteristics of grass, yet they were classified as “Other” class, this was mainly due

to the efficient learning of relationship between positionsof different classes in the Parition-based-

algorithm. The classification on the left side of the Figure 5.4c is incomplete, this is mainly because

the patches have the characteristics of both grass and mud, these patches look like mud when seen

from far and confusion arises as the camera gets closer to these patches. These patches can be clas-

sified correctly if one uses the temporal classification information. In the following section 5.5 we

introduce our Adaptive method to handle these problems.

5.4 From Image to Video

Temporal label transfer. Most of the methods in literature deal with single image. They do not use

the fact that they are dealing with a sequence of continuous video stream. When robot navigates

through terrain, the camera captures sequence of frames. Any two consecutive frames have lot of

common image regions. In order to characterize the terrain of the image using traditional machine

learning based algorithm some kind of feature is extracted from each patch. The feature vector is

fed to a classifier, which returns the label of the patch. Notethat in this process, feature extraction

is computationally expensive. In our case, when a new frame is captured by the camera, fast coarse

optical flow [123] between the previously captured frame andcurrent frame is calculated. For

each patch of the new frame, if there is flow present, we transfer the corresponding label from the

previous frame to the current frame, else feature is extracted from the patch and fed to our partition-

based algorithm. In this way without even extracting features from the current frame, we can label

considerable portion of the frame.

We conduct an experiment to see, what portion of the image canbe labelled by just using temporal

label transfer. The average percentage of image that is labelled correctly over testing images is

reported in fifth and sixth column of Table 5.1. We observed that by just using temporal label

transfer, we can label approximately 40% of the image on three datasets with significantly lower

percentage error. This saves around 40% of the total time taken (which includes feature extraction

time and classification time), such a reduction in time is crucial in real time systems like robots.

5.5 Adaptive method

The canonical offline or memory-less classifiers tend to perform poorly in outdoor environments

because these environments contain huge variations in illumination. One of the solutions to this
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Figure 5.5: Tracked patch-labels across three frames.

Offline

Update Online Classifier every P frames

Input Frames Labelled frames

Online

+

class

pr
ob

.

class

pr
ob

.

class

pr
ob

.

 

Figure 5.6: Block diagram of the proposed scheme
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Algorithm 3 Adaptive algorithm
– Training

1: Ic ← current image that needs to be classified.

2: P ← Number of previous frames to use.

3: stepSize← Number of frames from which the patches are to be tracked.

4: previousFrames = {Ic−P , Ic−P+1, Ic−P+2, ...Ic}

5: newTrainingData← ∅

6: for i = 1 to ⌊P/stepSize⌋ do

7: j = c− i ∗ stepSize

8: Track patches from the previous frames{Ij+1, Ij+2, ...Ij+stepSize}.

9: for all tracked patchespj do

10: Label(pj)← {Most repeating label amongstepSize labels}

11: end for

12: UpdatenewTrainingData with tracked patches and their corresponding labels.

13: end for

14: onlinePMmodel ← Get the model from Partition-based-method trained on

newTrainingData.

– Characterize Terrain of given image

1: Input: ImageIc

2: for all patches of ImageIc do

3: P1← the posterior probabilities from offlinePMmodel

4: P2← the posterior probabilities from onlinePMmodel

5: P1 = P1 + P2 {Fuse the results}

6: Label corresponding to maximum probability inP is declared as final label of the patch

7: end for
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problem is to train the algorithm on all possible variationsof illuminations, which is impracti-

cal.Also, In general, increasing the amount of training data drastically, decreases the performance

of classifier. These motivate us for developing a terrain classification scheme, that is capable of

classifying the terrain in dynamic environments. Previouslaser based solutions [4] for this problem

are appreciable, but our aim is to classify terrain using only monocular camera, where collecting

online ground-truth is impossible. In this section, we describe our scheme for this problem that

would enable the robot to adapt to unseen images.

In the proposed algorithm ( summarized in Algorithm 3 in page71 ), let us denote the current

frame withIi. The previousP frames would beIi−P ,Ii−P−1...Ii−1, which are already labelled by

our scheme. Using the previously computed flow between successive frames in Section 5.4, we track

the patches from previous frames at an interval ofK frames. We useK = 5 in our experiments. For

example, Figure 5.5 shows the tracked patches from three successive frames. These tracked patches

across frames slowly vary in their illumination and perspectivity. For each of the tracked patches, we

haveK labels associated from theK frames. We label the tracked patches accurately by selecting

the most repeating label from theK labels. We train another Partition-based classifier on these

tracked patches on previousP frames, we call this classifier as online-partition-based-classifier. We

update the online-partition-based-classifier everyP frames.

To characterize the terrain of the current frame, the posterior probabilities of Offline partition

based classifier and online-partition-based-classifier are added (see Figure 5.6 in page 70). In case,

two of the posterior probabilities are close, we choose the label that is most repeated with in the

neighborhood of the patch.

Implementation details: In our experiments we train online-partition-based-classifier every 200

frames, note that while training the captured frames are classified independently. Hence online

training and classification can be executed in parallel. Also using RFs internally adds another ad-

vantage. In RF, the final posterior probability is fused result of several posterior probabilities of

several trees, here each tree can be used independently and hence can be executed in parallel. These

advantages make our algorithm parallel and can be implemented efficiently using GPUs [124].

5.5.1 Performance Gain Due to Adaptive Method

In this section we show both by quantitative and qualitativeexperimental results the advantages of

having an online classifier. Quantitatively we show decrease in errors on 6 data sets, including two

publicly available data sets. Qualitatively we show those portions in the image where the adaptive

classifier has corrected wrongly classified patches by the Partition method. We also show results

from an experimental run where the vehicle reaches the location from where it started its journey.
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Dataset PM Adaptive Error-rate-reduction

O-A 18.2 12.7 30.2

O-B 20.2 15.9 21.2

O-C 17.0 13.3 21.7

O-D 17.5 16.1 07.9

P-A 07.9 05.3 32.9

P-B 06.8 06.1 10.2

Table 5.2: Comparison of Adaptive algorithm with Offline-partition-based-method

Quantitative and qualitative results

Table 5.2 shows the percentage errors of Offline-partition-based-method and Adaptive algorithm

on 6 sequences in columns 2 and 3. Since the Offline-partition-based-method already achieves

a reasonably low percentage errors, further improvements over Offline-partition-based-method by

Adaptive algorithm can be portrayed in terms of rate of decrease in error, which is given by

Error rate reduction =
% error of PM − % error of Adaptive algorithm

% error of PM
(5.1)

The error-rates were presented in column 4 of Table 5.2. The first four rows of the table corre-

spond to 4 sequences of our dataset. In these sequences, the robot is navigated continuously until

800 frames were captured. Adaptive algorithm is applied on these 4 sequences independently, where

the online-classifier is updated every100 frames. The last two rows show the percentage errors on

datasets by Procopio [4], since their data-set is a sequenceof only 100 frames, the online-classifier

is updated every20 frames. 20 randomly picked images from each sequence were used for testing.

We observe that the Adaptive algorithm has a huge decrease inerror-rate of more than 20% on

almost all the sequences. This clearly shows the superiority of the proposed scheme.

Figure 5.7 shows some of the test images marked with the red-colored-patches from our dataset.

They represent the labels that are correctly labelled by Adaptive algorithm, which are wrongly

labelled by offline Partition-method.

Closed loop test

The closed loop test is a means to evaluate if the performanceof the adaptive algorithm improves

over time, the knowledge embedded in the classifier is not static and has adapted with passage

of time. The improved performance comes by exploiting the data that comes on the fly, while
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Figure 5.7: Test images marked with red-colored-patches, representing the labels that are correctly

labelled by Adaptive algorithm but wrongly labelled by offline Partition method.

simultaneously not forgetting what was learned at bootstrap. At the beginning of the run the robot

has learned based on the offline dataset representing bootstrapped knowledge. As the run progresses

the knowledge is expected to be enhanced. By showing improved performance upon reaching the

starting location after a run of more than 2km we verify that the objective of learning without

forgetting the past is realized.

In this experiment, we test our Adaptive algorithm in a closed loop path (see Figure 5.8 in

page 75)i.e., the Adaptive algorithm is applied on data which was collected by navigating the robot

on the same road twice. 20 random images from each loop at approximately same locations were

used for testing. Note that not even one of these images were used in the initial offline training

dataset. We observe that the mean error on the round-1 is 16%,where as the mean error for round-2

was observed to be 13%. The decrease in percentage error was observed mainly because, the adap-

tive algorithm slowly adapts itself to the new environments. Second row of the Figure 5.8 shows

the test image along with the predicted labelled images fromthe first and second loops. We observe
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Figure 5.8:1st row: Path navigated by robot in a closed loop, marked in greencolor. 2nd row: Test

image with predicted labelled images from the first and second loops.

that the wrongly labelled mud(orange) patches in first loop are being correctly labelled in the second

loop.

5.6 Discussion

This chapter presented a novel partition-based algorithm for classification of outdoor terrains using

monocular camera. The partition-based algorithm is fast asit is build on top of Random Forests.

Three experiments were conducted verifying different aspects of the algorithm. The proposed algo-

rithm is generic and enhanced the percentage error of base-line classifiers by approximately 10%.

The partition-based algorithm was extensively tested on our dataset and on other publicly available

datasets and its efficacy established.
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Partition-based method was extended to Adaptive algorithmby learning from the data by fruit-

fully exploiting the data that was obtained on the fly. Concepts may drift over time, offline classifiers

may not adapt to these drift as effectively as a classifier that also adapts online. The adaptive algo-

rithm was tested on several data sets, where an average decrease in error rate of around 20% was

observed to portray its advantages. Further we show resultswhere a vehicle upon coming back to

the same starting point after traversing a loop of more than 2km improves its performance during

the second traversal of the loop. This demonstrates that theadaptive classifier is able to adapt to

changes that occur during a traversal while holding on to what was learned at bootstrap or before

the commencement of navigation. The future scope of our workincludes much better processing of

the video data using complex temporal clues along with fusing geometric and appearance clues.
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Chapter 6

Conclusions and Future Work

We have put forth new techniques in two different areas of scene interpretation namely, scene re-

construction in computer vision and scene recognition in mobile robotics. Our proposed framework

deals with reconstruction of piecewise planar scenes from videos in much the same way as Bundle

Adjustment for point sets. Multiple planes and views are taken into consideration and algorithm

does not impose the constraint that all the planes should be visible in a single view. Furthermore,

the presence of inter-image homographies present useful robustness to outliers, that may not have

been pruned in the initial stages of registration and homography computation. This makes it a useful

“bridge” between initialization approaches and non-linear minimization methods.

Next we addressed the problem of scene recognition in mobilerobotics. Due to unavailability

of existing datasets for experiments and comparisons, we prepared our own dataset. Our annotated

dataset comprises of outdoor rural and urban terrains, which contain huge varieties of scenes un-

der varied environmental conditions. We have reported extensive comparison of various classifiers

operating on features for classification of outdoor terrains using only monocular camera. We have

analysed the performance of different classifiers and studied the effect of various parameters such

as the richness of the features and the patch size on the classifier performance. We reported that

Random forests trained on weighted color cum texture feature gives the best baseline result, with

an error of 25.5% compared to other classifiers such as Naive Bayes, Artificial neural networks,

K-nearest neighbors and Support vector machines. On other publicly available dataset the baseline

error rate was 18.2%. We conducted various empirical studies with state-of-the-art machine learning

techniques and various parameters of the problem.

We presented a novel and fast partition-based algorithm forclassification of outdoor terrains

using monocular camera. The speed of partition-based algorithm is attributed to Random Forests on

top of which the algorithm is built. Several experiments were conducted to ascertain the usability
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of our method. Our algorithm is generic and has reduced the percentage error of base-line Random

Forest classifier by approximately 10%. We have tested our partition-based algorithm extensively

on our dataset and on other publicly available datasets to validate its efficacy. We optimize the

performance of our algorithm by limiting it to regions wherethe temporal label transfer is not

applicable.

Partition-based method was extended to Adaptive algorithmby learning from the data that was

obtained on the fly. The adaptive algorithm was tested on several data sets and an average decrease

in error rate of around 20% demonstrated its advantages. We also conducted experiments in which

a vehicle comes back to the same starting point after traversing a loop of more than 2km. An

improved performance is observed during the second traversal of the loop. This indicates that the

adaptive classifier is capable of adapting to changes that occur during a traversal while retaining

what was learned at bootstrap or before the commencement of navigation.

6.1 Future work

The proposed framework consists of quasi-convex objectivefunctions, though quasi-convex prob-

lems have a guaranteed optimal solution, they are iterativein nature. One could investigate in de-

signing convex objective functions, which would have an advantage of non-iterative(fast) solutions,

making them much suitable for faster computation required by videos. The proposed objective

functions show robustness to noise, they may be still made much robust using existing literature on

convex optimization [114] One important concern with any algorithm is its ability to handle outliers.

Currently our algorithm handles only the noise in the data, the existing framework could be extended

to handle outliers withL∞ norm using convex formulations. This investigation may also help in

solving other problems of geometric vision. Investigatingthe design of a hybrid algorithm which

is based on objective functions from both Bundle adjustmentand Convex optimization frameworks

also stands as important extension. Recent literature on Practical Global Optimization [105, 115]

may be utilized to improve the running time of our algorithm.We however believe that our work

lays down new and important directions for the problem of planar reconstruction.

In partition-based algorithm, currently the output predictions from different classifier sets are

fused by using simple statistical mode operator. This couldbe enhanced by using weighted-map for

each classifier set followed by integrating the results fromeach classifier set. Also we could decrease

the computational time of the partition-based algorithm byusing the classifier sets dynamically,i.e.,

one could use few classifier sets to start and use other classifier sets only if the predicted labels are

different. The Adaptive algorithm could be enhanced using the newly introduced semi-supervised

machine learning techniques especially the semi-supervised Random Forests. We could process the
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video data using complex temporal clues and then integrate geometric and appearance clues in an

optimization framework.
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Related Publications

The following publications resulted from work in and related to this thesis

• Visesh Chari, Anil Nelakanti, Chetan Jakkoju and C. V. Jawahar. “Piecewise Planar Recon-

struction using Convex Optimization.” In proceedings of Asian Conference on Computer

Vision (ACCV’09).

• Chetan J., Madhava Krishna and C. V. Jawahar. “Fast and Spatially-smooth Terrain Classi-

cation using Monocular Camera.”In proceedings of International Conference on Pattern

Recognition. ( ICPR 2010 )

• Chetan J., Madhava Krishna and C. V. Jawahar. “An Adaptive Outdoor Terrain Classifica-

tion Methodology using Monocular Camera”In proceedings of International Conference on

Intelligent Robots and Systems. ( IROS 2010 )
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