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Abstract

Scene interpretation is a fundamental task in both compigean and robotic systems. We deal
with two important aspects of scene interpretation, theysmene reconstruction and scene recog-
nition. Scene reconstruction is determining 3D positiohsvorld points and retrieving camera
poses from images. It has several applications such asvitilding editing in computer aided
architecture, video augmentation in film industry and plagrand navigation in mobile robotics.
Among several approaches to modeling the scene, we dealpigtewise planar modeling due
to several advantages: Man-made environments are oftee-piese-planar, planar modeling has
compact representation and this can be easily modified. Wfgope a convex optimization based,
approach for piecewise planar reconstruction. We showthieatask of reconstructing a piece-wise
planar environment can be set in &g, based Homographic framework that iteratively computes
scene plane and camera pose parameters. Instead of imaug, poé algorithm optimizes over
inter-image homographies. The resultant objective famcis minimized using Second Order Cone
Programming algorithms. Apart from showing the convergeatthe algorithm, we also empir-
ically verify its robustness to error in initialization thugh various experiments on synthetic and
real data. We intend this algorithm to be in between initetion approaches like decomposition
methods and iterative non-linear minimization methods Bundle Adjustment.

Scene recognition in robotics, specifically terrain scezmognition is one of the fundamental
tasks of autonomous navigation. Navigable terrains arenples of planar scenes. The goal of
terrain recognition is to recognize various terrains thetus in urban and rural environments in
an automated fashion. It has applications in various dosnsirch as advanced driver assistance
systems, remote sensing, etc. Various sensing modalitiets as ladars, lasers, accelerometers,
stereo cameras, omni-directional cameras or combinafitimean are used in literature. This thesis
attacks the problem of scene interpretation using a singteeca. This investigation is especially
crucial since cameras are relatively low in cost, consume power, light weight and have the
potential to provide very rich information about the enwinoent. Recent advances in computer
vision, machine learning and improvements in hardware laéipes have greatly increased the
scope of monocular camera, even in unstructured and reddl wavironments. In this thesis, we
start with empirical study of promising color, texture aheit combination with classifiers such as
Support Vector Machines (SVM) and Random Forests. We ptesenparison across features and
classifiers. Then we present a monocular camera basedtezignition scheme called Partition
based classifier. The uniqueness of the proposed schemat i ithherently incorporates spatial
smoothness while segmenting an image, without the reqeineisf any additional post-processing.



The algorithm is fast because it is build on top of a Randonesiatlassifier. The efficacy of the
proposed solution can be seen as we reach low error ratestbrobodataset and other publicly
available datasets.

Further partition classifier is extended to be online andoide. The new scheme consists of
two underlying classifiers. One of which is learnt over btraggped or offline dataset, the second
is another classifier that adapts to changes on the fly. Rasfobabilities of both the static
and online classifiers are fused to assign the eventual fabéhe online image data. The online
classifier learns at frequent intervals of time through asgpand stable set of tracked patches, which
makes it lightweight and real-time friendly. The learningieh is acuted at frequent intervals during
the sojourn significantly improves the performance of thessifier vis-a-vis a scheme that only
uses the classifier learnt offline. The method finds immedipf#ications for outdoor autonomous
driving where the classifier needs to be updated frequemtheth on what shows up recently on the
terrain and without largely deviating from those learntiol
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Chapter 1

Introduction

The ultimate aim of a robotic vision system is to navigate imaald of realistic complexity. This
involves interpreting the scene, objects and events toparippropriate actions. Scene interpre-
tation is a fundamental task in both computer vision and tiobsystems. Though humans and
animals are good at scene interpretation, accurate scempretation is surprisingly difficult. The
difficulty comes mainly due to huge viewpoint changes, elyttariation in illumination caused by
shadows, etc. There are different aspects for scene ietatfum in literature. One aspect deals with
inferencing depth of the scene which answers the questikm$What region of the image is near
and what region is far ?” OR “What region of image is at ground level ?"Yet another branch
deals with the problem of detecting particular object ingbene containing several objects, which
answers the questions likBoes the scene contain car?and“Where is the car in the image ?”
Other aspects of interpretation are related to recognitibith answers the questions likis it the
image of a car?’, “What car is it?”, “Is it a Tata Sumo ?’, etc.

In this thesis, we concentrate on two important aspects efesinterpretation. They are scene
reconstruction and scene recognition. Scene can be iatetpby a variety of methods and this
depends on the kinds of sensors used. Using monocular \dgiosors for scene interpretation is
the main aim of this research.

1.1 Scene interpretation in Computer Vision

In this section, we discuss the scene reconstruction aspecene interpretation in computer vi-
sion. The 3D scene reconstruction of rigid scenes from mhvafthic images is one of the most
challenging problems in Computer Vision and Photogramynethis is a classical problem with
both theoretical and practical interest, for example witouilding editing in computer aided ar-



Input: Multiple views Output:Model

Figure 1.1: On the left side, the input images are shown angth@might side we have the desired
reconstructed model.

chitecture and video augmentation in the film industry. Fégl.1 shows the images of the house
model with markings on planes and the desired reconstructio robotics, the reconstruction or
structure helps the robot to understand what objects orgiahe scene is near and what objects
are far. For a navigating robot it is an essential task. Fangle, consider a robot navigating in an
environment, where the decision of navigating forward aelseon whether the robot has enough
room in front of it. 3D reconstruction is essentially retiigg camera poses and determining the 3D
positions of world points given their images.

There exist a wide variety of approaches to the image-basstbling problem, for example see
[5-19]. The main difference among these methods is the septation of the scene they employ.
For instance, Kutulakos and Seitz use voxels [12], Stretla& use a depth map [18], Gargallo and
Sturm use multiple depth maps [9], Baillard and Zissermanauset of planes [5], while Debevec
et al. use a combination of those [6]. The most appropriate reptaen depends on the type of
scene that is to be reconstructed and the application tiat@nsideration.

The planar model is motivated by the following reasons.tFimsin-made environments are often
composed of piecewise planar (See Figure 1.2 containingaplabjects such as buildings, cars,
indoors, machinery etc.,) or nearly-planar primitives {520] and are thus modeled as such to a
reasonable degree of approximation. Second, this is a \@rgt@ined, compact representation
that is thus very stable, and allows one to make the recantigiruprocess automatic. Third, this
representation allows one to modify the reconstructiory easily, i.e. by adding, removing or
augmenting objects.



Figure 1.2: Few examples of Man-made planar scenes, plaae@saaked with green borders.

Most of the existing systems are semi-automatic, based brea-stage process, e.g. [6, 13, 21].
First, a sparse 3D reconstruction of features (pointsslieéc.) as well as cameras is performed au-
tomatically using Structure-from-Motion techniques [23]. Secondly, scene model is chosen and
final stage is to estimate its parameters. The first stagehis\a by clustering reconstructed fea-
tures into higher level geometric primitives such as cubyes.bh. marking edges in the input images.
The second stage consists of optimizing the quality of thdehparameters by e.g. minimizing the
disparity between marked and predicted edges. This apprbas proven to give highly photo
realistic results, but becomes computationally costlyhasstene considered grows in complexity.

Scene surface is modeled as a set of triangles in [15, 16]. mtet likely triangulation with
respect to the input images is computed using edge swapsanoimitial solution obtained using
a Delaunay triangulation. However the process is not gueeainto converge to the global opti-
mum. Here, piecewise planarity is not considered, whiclhteea non photo realistic reconstruc-
tions. Representing a scene as a collection of planes aneicthese problems. This reduces the
complexity of the model computation as well as its rendednd yields more photo realistic view
synthesis of planar and nearly-planar surfaces. These kainvestigation of planar reconstruction
of scenes as seen most recently in [24]. The idea of usin@plaondeling requires identification



of planes in given images. Layer extraction methods likg 28 used for this purpose. Tracked
features are grouped into planes using the layers extradfedlescribe a method to estimate plane
parameters and camera poses from features tracked froousagslanes.

1.2 Scene interpretation in Robotics

In this section, we discuss the scene interpretation aspeobbotics specially mobile robotics. The
basic goal of mobile robot is to move autonomously througlemrironment from its current posi-
tion to some goal position. There are three important taskisrteeds to be executed in navigation.

1. The first is the task dbcalisation Localisation refers to the task of identifying where the
robot lies with respect to a pre-defined map or global cormtdi system. Localisation is
performed through an inference process over the robot'esgmtation of the environment
and sensor readings from the current location, which is seheg scene recognitian

2. The second task is that pfanning in which the localised robot need to find a path through
the environment which leads it to the goal position. The phttermined by the robot must
be navigable and free from obstacles. Also the path must bmalpin some sense such as
time, speed etc., depending on the purpose of the robot.

3. The third task is that gbath executionin which the robot generates a sequence of control
signals for its actuators, so that robot traverses in therd path.

The second task can alternatively be usedhifiap buildingwhich looks at the task of building a
3D map of the environment, which can be used later for naidigatThere has also been research
on coupling the task of localisation and map building togetiwvhich is refered to as Simultaneous
localisation and mapping (SLAM) [26]. The part of SLAM resga which uses vision sensors is
termed vSLAM [27, 28], and has received much attention. &ndbntext of SLAM, the ability to
recognize a visited place is known as the ‘loop-closure diete’. It is named as so because the
robot needs to perforracene recognitiort the end of a loop so that the uncertainty linked to its
current position will not grow out of bounds. The inability tletect loop closure will mean that
the robot is essentially lost. Hence, scene recognitiondstas an important step in autonomous
robotic navigation.

The power of interpreting the outside world is possible tigio sensors, which helps the robot
to determine what action it should take. Different sensoesused in literature for sensing which
include infrared sensors, sonars, lasers, LIDAR, steremecas, omnidirectional cameras, monoc-
ular cameras etc., The main advantage of using cameras asaapf other sensors is that they are



extremely cost effective, compact and readily availabieytprovide a much cheaper mechanism
of obtaining accurate 3D information about the world and/thee passive sensors. Unlike radar
and sonar that have to generate a lot of information first depto successfully receive information
about the environment, vision systems only receive infdiona they do not transmit any. This
passive feature ensures increased levels of portabilitghidlity etc., Unlike other sensor types, vi-
sion has the potential to provide rich, semantic informatipout an environment. Vision provides
information regarding the appearance of an environmentodjetts embedded in it, not just geo-
metric structure or information about the spatial locatadrobjects. Also vision sensors have the
information of very far range, where as others have their bmitations. The interest in vision for
mobile robotics has been fueled by recent advances in canypiston techniques and the increased
capabilities of computing hardware which makes it possiblanalyze and interpret images within
the time constraints demanded by robotic applications.

Another perspective to view vision sensors based navigadids use for indoor and outdoor en-
vironments. The problem of landmark detection and follayirave been solved quite successfully
in indoor environments. Outdoor navigation is much hardebfem compared to indoor naviga-
tion mainly due to huge variations in view points and illuatiion changes. Navigation in outdoor
terrains is one of the focus of this thesis.

One of the dreams of an autonomous robotic system is to fresfigate on cluttered and unstruc-
tured outdoor environments, specially in Indian contextisTinvolves object detection/avoidance
and path planning. The lack of highly structured componémthe scene introduces new chal-
lenges for autonomous navigation. This navigation systefimportant because, these systems
can be readily employed in military operations and also wilian applications such as wide-
area environment monitoring, disaster recovering, seanthrescue activities, as well as plane-
tary exploration. Though obstacle detection and avoidameeessential tasks, they are not suffi-
cient for a mobile robot to navigate safely in cross-cour@nyironments, because these environ-
ments contain several types of terrains such as mud, roadsgetc., which are hazardous and
should be carefully neglected or navigated based on the dfperrain. Hence an effective de-
scription of outside world should consist of combinationgafometric and terrain type informa-
tion along with control strategies. Terrain type infornoatiextraction is shortly called as terrain
recognition/classification [29, 30] in robotics. Terraiecognition enables the robot to navigate
safely/intelligently and it also helps the path planner éeiding the optimal path and optimal ve-
locity for traversal.

The problem of terrain recognition can be approached by abdawation of various sensing
modalities such as 2D and 3D lasers, multiple cameras, tidbraensors [3, 31, 32] or a combi-
nation of them [4, 29, 33—35], this thesis explores how mudtene interpretation ability is vested



in a single camera. This investigation is especially cilusiiace cameras are often less expensive
and are not power hungry like laser range finders. Also casngogprovide a rich set of visual fea-
tures even at longer distance, which helps the robot in bpéta planning and hence over-coming
the problem of “short-sightedness”. Recent advances irpoben vision [36], machine learning and
hardware computing capabilities also motivates us to sihlegroblem using a single camera.

1.3 Problem statement and Contributions

The goal of this work is to develop solution to some of the pgots associated with a robot navi-
gating reliably and effectively using a monocular cameraulgh outdoor urban environments using
optimization and machine learning techniques. Towardsehi, this thesis presents the following:

1. A robust 3D reconstruction scheme in piece-wise-plamyirenments using convex opti-
mization techniques is presented. The method is formulimieah L., based Homographic
framework that iteratively computes scene plane and capmsea parameters. Existing SVD
based method are proposed only for two views and are verytisernt® noise. On the other
extreme, iterative non-linear methods like Bundle adj#stirare computationally expensive
and there is a high chance that they get stuck in local minitha. proposed method handles
these issues using popular convex optimization technjougish are proved to be robust and
computationally inexpensive. In a sequence of images, Hoaphies induced between inter
images (if available), which are more accurate and inforreare formulated as additional
constraints in the framework to arrive at an optimal solutid he method was tested empir-
ically on synthetic data of several random planes and ondata against SVD and Bundle
adjustment methods.

2. Afast terrain classification algorithm that allows a rbbovehicle to determine various types
of natural terrains using only monocular camera is presenktéost of the existing methods
are either limited to ground plane detection or use laserddt for terrain classification.
We intend to solve the problem using only monocular cameithowrt using power hungry
and costly hardware such as lasers. We introduce our neweatdta conducting various ex-
periments. The dataset was collected by a monocular camawated on top of the vehicle
moving in different speeds over 10km in various illuminaticonditions in urban and rural
roads. We empirically study the problem with existing featuand classifiers. The best clas-
sifier was found to be Random forests. The challenges indokith the existing classifiers is
the missing context information. The algorithm handles thsue using a novel partitioning
scheme. Various aspects of the algorithm importantly tteislcontext, was tested on our



dataset and other publicly available datasets with thdiegislassifiers.

3. An adaptive terrain classification scheme that allowshkotdo determine various natural
terrains, where terrains may change their appearance iovergradually is presented. Ex-
isting methods are memoryless i.e., they assess the tefdhe captured image without
using the previous learned knowledge. Recently, methodshwise these memory are being
proposed, but these methods require either lasers or diereollecting ground truth. The
proposed scheme is based on only a monocular camera. Thespabpcheme effectively uses
the acquired knowledge from previous classification andotmal information. The trained
classifier handles the slow drifts in the natural terrainknen The method was tested on our
dataset and other publicly available datasets in an expetimvhere the vehicle traverses the
same path twice.

1.4 Organization of thesis

The remainder of this thesis is organized as follows:

1. In Chapter 2, we give an overview of the basic mathematioatepts related to this thesis.
First we introduce homography, and its relation to Cameramaters and pose. Next we
briefly describe the SVD based homography decompositiorhodst We then introduce
the problem of Layer extraction and popular solutions to ghablem. We use the Layer
extraction methods for segmenting planes described inalayter 3. Next we give overview
of the standard problem in Computer vision the Structuoeafimotion and we describe the
traditional iterative non-linear optimization method Rilm adjustment. After that, we give
brief introduction to convex optimization which is used iha&pter 3. Next we introduce the
second major research problem that we deal in this thesstetinain recognition. We then
briefly describe its applications. After that we give litena review, which includes a brief
overview of vibration-based methods, near to far learnireihnds and few recent methods.
We then present a summary of promising color and texturaifeatalong with few popular
classifiers that are used in literature for our problem.

2. In Chapter 3, we give an overview of the literature in Conegtimization along with its
utility. This is followed by sensitivity analysis of the ating SVD methods, which is fol-
lowed by convex framework for the problem of planar recamsion. Several experiments,
extensions to the framework is described.

3. In Chapter 4, we present our annotated dataset that wenusar iexperiments. We then
present extensive empirical comparisons of various featand state-of-the-art classifiers in
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machine learning literature. Next we show how various pa&tans of the problem affect the
classifier performance.

. In Chapter 5, we extend the Random forest classifier usaniitipning scheme, which is fol-
lowed by several experiments that test the proposed schEnieis followed by introduction

to the novel adaptive algorithm using optical flow. Next wadact two experiments to test
the algorithm. The results show considerable decreaseraepige error compared to Ran-
dom Forests. Also, the adaptive classifier was able to slad&pt to appearance changes that
occur during the navigation of the vehicle.

. In Chapter 6, we conclude the thesis. We summarize theilsotbns of this thesis and
comment on limitations and future work.



Chapter 2

Background

2.1 Geometry of Planar Scenes

In this section, we give brief overview of several technims and algorithms that we use in the
thesis, which are being popularly used in computer visiothérecent years.

2.1.1 Homography

As shown in the Figure 2.1, associating the two imagasdz’ of a 3D pointX becomes impossible
without the knowledge of the camera parameters and the @élietself. However, when the point
X lies on a plandl, a simple geometric entity suffices to map one image paintd another /).
This geometric entity is called theomographysubtended by plan&, which is represented by
Hsy3. Thus in the case of perspective projection, a homograpltpsroae image point to another
2’, upto a scale factor.

x = %Hm (2.1)

where )\ is the scale factor. Though the homography maifihas 9 elements, due to scale factor
it is parameterized by only 8 parameters. Thus without Idggeaerality, the last elemetf{ (3, 3)
can be assumed to be unity. Since the above equation is, lBemuations are required to solve
for the value ofH in minimal case, which results in 4 image-to-image corresigmces ( each
correspondence giving 2 equations in x and y image coorlfiatn real images, this minimal case
is highly sensitive to errors in correspondences, curreafufre extraction algorithms like SIFT [37]
ensure that the homography estimation is quite accurate teecamera poses aren’t too far apart.
Thus, a RANSAC based approach [1] suffices to weed out incbo@respondences as they are
usually only outliers of the actual function.
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Figure 2.1: Homography induced between two imagesidz’. Image courtesy [1]

Homographies are the best suited tools for reconstructiagap scenes, because they directly
utilize the perspective mapping of planes and thus stayeclwsthe original data than methods,
which start with point-wise sparse 3D reconstruction [3,&hd then segment the resulting point
cloud into planes. Also, extremely robust solutions existampute the homography induced by a
plane in two cameras [40].

In this thesis, we use homographies due to (piecewise) pkoenes. The scene planes im-
pose a strong constraint, which has been used mainly foctameiand motion recovery. Homo-
graphies have several practical applications, for exartipg are used for mosaicing and super-
resolution [38, 41]. If the homography induced by a planewn tmages is known, one can find
the corresponding features on the images of the plane. Esidden used for grouping of coplanar
features in wide-baseline settings [42, 43] and for featnagching and also for transfer of features
off the plane, with the help of known reference planes angeptive invariants [44]. If also bor-
ders of the planes in the images are known, they can be useextare unwraping and for image
compression [45]. The problem of motion recovery [46—48} ba linearized by homographies.
Measurements on scene planes in perspective distortiarsghge through homographie®][ Ho-
mographies also allow reconstruction of non-planar scemsch can be seen as collection of
planes and the deviations from these planes, which is tetheetplane-plus-parallax” approach to
vision [49, 50].
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2.1.2 Homographies and Camera parameters

In this section, we describe the relationship between thedgpaphyH relating two images and the
relative pose between their corresponding cameras. Lessigrae that the two cameras are given
by P, = [I|0] and P, = [R|t]. Where | is identity matrix, R, t) is the relative pose. Lek be
the 3D point belonging to the plane representedlby: [n”'1], and letz andz’ be its projections
respectively. Then

r=DPX =[I0]X (2.2)

X = [a"p]" (2.3)

Different values ofy represent different points on the 3D line joining cameraeefl and 3D point
X (Figure 2.1). Thus the value gfthat satisfies the above Equation 2.3-is:{ ). Substituting
the value ofp in the projection equation for the second image, we get

' =P X = [R|t]X = Rz —tnTz = (R —tnT)x (2.4)

When the internal parameters cannot be assumed to be ydeuatitre known to be different for the
two images, the modified equation of the relationship is Hevic

H=KR-tn")K™! (2.5)

whereK and K’ are the internal parameters of the two cameras respectively

2.1.3 Homography Decomposition

Traditional methods for obtaining the camera pose and planmals from the Homography matrix
rely on the Singular Value Decomposition (SVD) of Homognaph provide solutions [51,52]. In
both the methods, eigenvalues of either the Homographyixmtor H™ H are used to get upto 8
solutions for{ R, t,n} and then 6 solutions are weeded out based on many constraingdly, the
2 remaining solutions may be disambiguated by either cenisig a third view or a second plane.

Faugeras SVD-based decomposition Faugeragt. al[51] algorithm starts with the singular value

decomposition of the Homography matrix, followed by the @&tpn relating the diagonal matrix
thus produced to a new set of variables as

H = UAV' (2.6)
A = R + tan, (2.7
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Computing the components of the rotation matrix, trangtaind normal vectors is simple when
the matrix being decomposed is a diagonal one. Hirstan be easily eliminated from the three
vector equations coming out from Equation (2.7) (one fotheealumn of this matrix equation).
Then, imposing thaR 5 is an orthogonal matrix, we can linearly solve for the comgue ofny,
from a new set of equations relating only these componeritsth three singular values (see [51]
for the detailed development). As a result of the decomjowsialgorithm, we can get up to 8
different solutions for the tripletstR A, ta,na }. Then, assuming that the decomposition of matrix
A is done, in order to compute the final decomposition elemevigust need to use the following
expressions:

R = URAV' (2.8)
t = Uta (2.9)
n = Vnp (2.10)

Zhang SVD-based decomposition Zhanget. al[52] take a different approach by first computing
the eigenvalues dfl " H, and then using it for further computation of the quantii@&s t, n}.

H H = VA2V (2.11)
A = diag(hi, Mo, N3) (2.12)

= [v1,V2, V3] (2.13)
M>h = 1> (2.14)

In the first step, values oft*,n} are computed, wheré" is the normalized translation vec-
tor. Subsequently, the rotation matrix is obtainedRas= H (I + t* nT)_l. Eight solutions are
obtained in the following manner

/ Zl: /
t* = iH (2.15)
/ /
n — i% (2.16)

where equations in numerators and denominators sharertteesign in all variations. The variables
{v, v}, (1, (3}, are functions of the eigenvalués([52].
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2.1.4 SFM and 3D reconstruction

Humans are naturally able to infer the location and strectaithree dimentional world, using only
two dimensional images perceived through eyes. This psogkmferencing depth from images is
seemingly an effortless task, but it is very hard to impletem computer. The task of recovering
the 3D structure of the scene and sensor motion from a set ofm2ige frames obtained from an
optical camera refers to Structure from motion(SfM). SfMiged in various practical applications,
which include 3D model reconstruction, 3D motion matchiceynera caliberation, perceptual com-
puter interfaces, robotics, image mosaicing, etc.

Solutions to the problem of SfM may be broadly divided intaresponded SfM and correspondence-
less SfM. Corresponded SfM requires some kind of featurbs teacked, where as Correspondence-
less SfM is generally based on phase component [53] of Gahosforms of images, where the
phase difference of the gabor images is inversely propmatido the depth of the scene. In this
thesis, we deal with corresponded SfM and we refer it with Stlere are two main assumptions
that are inherit for the task of SfM.(i) The scene is static, ithe objects are rigid. and (ii) There
exists some method to extract a set of 2D features from imaZjedeatures may be points, lines,
curves, etc or combination of them. It is assumed that thBsie&tures are detected and associated
to their corresponding features in the available imagegs€&2D measurements stand as the inputs
to the problem of SfM.

SfM is an active research area from almost 30 years. Unfatély the current literature is still
far away to what human can perceive. Its a hard problem anuerdst to both computer vision and
Al communities. Multiple approaches have been proposeiterature [54-58]. These range from
perspective to orthographic, 2-frame or stereo to videimgal(SVD) to non-linear(Optimization
based methods) etc., Each method has its own advantagessadgahtages with different input
features, different accuracies and different abilitietie Thoice of the framework depends on the
application that we are interested in. In this thesis, oynliagtion of interest is 3D reconstruction
specifically in piece-wise-planar environments, where we homographies for obtaining dense
reconstructions avoiding point-based reconstructions.

In the following we briefly describe the typical solution f8fM.

e 2D features( points or lines or curves or etc.,) are detegheblassociated.
e A projective frame among the available views is initializithe reference frame.

e Projective camera matrices are chosen which satisfy thgated Fundamental matrix from
correspondences.

e Initial solution for the structure of the scene is obtained.
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e Results are refined using bundle adjustment methods. [59].

2.1.5 Bundle Adjustment

Bundle adjustment [59] is a standard iterative non-lingdinoization technique , which uses Levenberg-
Marquardt internally. Bundle adjustment needs initial@a This initialization is used to minimize
the following error over the normals and the translations

T
hi x AZ.Z' )

R,t,n;,d;) = ar min X3 — — 2.17
( i dj) gkR,kt,nj,dj kg Z[hg T Ay ( )
wherex = (1R®,... KR Wl 54T nT o 0 dy, ..., dy) and4; is amatrix s.ta” A,z =

g; andZ is z with the initial SVD estimates of R, *¢,n;, d; substituted. The main disadvantage
of this technique is that they are computationally demama@ind one might end up getting local
optimal solution.

2.2 Layer extraction

Layer extraction in videos is essentially segmenting oregsgnting the images into some number of
sub-image&See Figure 2.2), in such a way that pixels within each suginshare some common

2D parametric transformation. Layer extraction is an atititep in most of the problems related to
the video processing. In the following we give some examples

e In scene reconstruction, one can attain dense reconstnschy using layer representation
based SFM, avoiding sparse reconstructions which are lmaséshture points.

¢ In motion analysis [60—62], the hardest problem of findinglasion relationship is explicitly
a layer extraction problem. Image motion estimation is iehdy an ill-posed problem [63]
due to the aperture problem, in order to estimate the moitioequires additional smoothness
constraints such as parametric model that assumes somne glive@e a common model with
a few parameters [64] or regularization [65, 66]. Howeveis inot necessary to apply such
constraint across motion boundaries, which are not knowor fo the motion estimation. In
layer representation, we can enforce such smoothnessraiomsinly inside each layer, and
explicitly represent the non-smoothness at the boundarieng layers.

e In visual navigation, layer representation can be used taexand represent the ground
layers (roads, terrains), and objects (cars, pedestran)s,Ground layer is useful for obstacle
detection in robotics and estimating the car ego-motiof.[67
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Figure 2.2: Left: Consecutive frames from a garden sequeRiggt: Sub-images or layers in the
video. Image courtesy [2]
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¢ In object detection and recognition, layer representagigas the first cut solution to detecting
several objects. For instance consider a video in which ardog parallel to the motion of
the camera from left to right, in layer representation thg thoone of the layers.

Layer extraction problem has three major issues which ar&dgmentation ( what region of
image belongs to one layer ?) (ii) Motion ( What motion doas¢hmera under went ?) and (iii)
Number of layers ( How many number of layers are present irvitieo ? ). These three issues
are coupled problems, i.e., On one hand, spatial layer stgpfiacluding number of layers) are
required to estimate the motion model for each layer. On therchand, assigning pixels to layers
requires the knowledge of layer motion model.

In the following we briefly summarize few popular approactekyer extraction.

EM approach : A natural approach to solve the coupled problems in layémaetion is the
Expectation Maximization (EM) algorithm [61, 68-71]. Incsuan approach, the likelihood of
the video data is formulated as some mixture model, sucheamtkture of Gaussians, with each
mixture component representing a layer. In EM approachetiadll be an iterative E-step and
M-step, and then MDL principle [72] is used to find the numbElagers in the video, this was
modelled as a search problem in [68],which is a costly opmratinitializing(for example [68])
the number of models and the motion for each model is an irapbtiut difficult step for EM
approach [71, 73]. Without good initialization, EM algdirit may not converge to desired optimal
solutions.

Dominant approach : This approach is one of the top-down approaches for laygaeion
problem. This approach assumes that there is always a dotrimger in the given sequence of
images. The approach consists of several iterations. In ia@tion, the current dominant layer
is extracted using dominant motion estimation [74—76] gisobust estimator [77, 78]. After that,
the detected dominant layer is segmented out, and the whatess is repeated on the remaining
portion of the image until there is only one layer in the imageall the pixels in the image are
assigned layers. The main drawback of this approach is theexastence of the dominant layer,
which might be always present.

Grouping approach : The grouping approach was introduced to overcome the @nablof
dominant approach. Grouping approach is a bottom-up apbrokti is based on the fact that the
2D homography of a computed from several regions of the ptanmins the same(upto a scale
factor). In this approach, the image is first divided into Brbbocks ( sayl6 x 16 ), and the 2D
homograpy is computed between the reference frame andhibefoeames. Here we want to extract
layers in the reference frame. After that the 2D homographre clustered using popular clustering
methods such as k-means [79] and normalized graph cut [&&h Eluster represents a unigue layer
in the image. Blocks corresponding to a cluster are groupeddeclared as one layer. The main
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Figure 2.3: A quasiconvex functid@ onR which is not convex. It is plotted with a convex function
em C. However, any harizontal line slic€an atmost two points, thus creating only convex sublevel
sets.

advantage of this approach is that it does not require théoeuof layers as input and also it doesn'’t
assume anything about the given sequence. However, gpppmely based on local measurements
is highly noisy and it also ignores the global spatial andgeral constraints.

Subspace approach : Subspace approach [2] is an advanced approach to groupprgach,
overcoming the problems with the grouping approach. Theontant issue of grouping in high
dimensional space is handled by the introducing of new sadesgrhich is smaller and hence one
can easily perform clustering. The main problem with theuging approach is the missing global
spatial-temporal constraints. Subspace approach esfetmh constraints by computing a subspace
from homographies intelligently. In this approach, a measwent matrix is constructed by stacking
up the relative affine homographies of small image blocksl then the measurement matrix is
decomposed using SVD to calculate a subspace of size 4 09ash a low dimensional subspace
is possible because it is the measurement matrix is inHgresmk deficit. This approach also
provides a constraint to detect outliers in the local messents, which makes the layer extraction
robust. However, the subspace computation ( factorizatfaneasurement matrix ) is a non-linear
objective function, which may get stuck in local minima.

18



2.3 Convex Optimization

A function f : R™ — R is convexif dom f is a convex set and if for alt, y € dom f, and with
0 <6 <1, wehave

f0z+ (1 =0)y) <O0f(x)+(1—-0)f(y) (2.18)

where a se€ is convexf for any z1, x5 € C and anyd with0 < 6 < 1, we have)z, + (1 —60)z9 €
C. Figure 2.3 shows typical examples of convex and quasicofurections.

A function is defined as quasiconvex [80], if the domain onachiithe function attains any value
less than a given threshold, is a convex set, for any arbitrary value @f Such a set is called

a sublevel set corresponding to the valuexofSome functions, like the linear fractional function

ax+by+cz
dx+ey+fz

concave) under certain conditions (denominatof). As can be seen, many functions like the

where(z, y, z) are variables, are known to be quasi-linear (both quaseoand quasi-

perspective projection function for a pin-hole camera drapoint transfer function using Homo-
graphies, can be modeled as a linear fractional in the Vasalepresenting the camera matrix and
the Homography matrix respectively.

Quasi-convex functions are minimized using what is calleglltisection methgdan iterative
algorithm which solves the problem by finding the smalledileel set that contains the global
minima of the quasiconvex function. This is done by solvingeaofconvex feasibility problems
one in each iteration. If* is the optimal value of a convex functigh: R™ — R, then define
¢r: R" — R,t € Ras

flz) <t<=d(x) <0

such thats(z) < ¢.(x) whenever s > t. Then thebisection methodolves the following feasibility
problem at each iteration

find x (2.19)
subject to oe(z) <0

other constraints

If the above problem is feasible then we have< ¢, and conversely infeasibility denotgs > ¢.
The bisection methodnaintains an upper and a lower bound 61 based on the above feasibility
problem. At every iteration, this bound is halved by chaggime of the two bounds. Convergence
happens when the difference between bounds is sufficiemidyl.s

In order to apply thebisection methodo problems in MVG, we need to first prove that the
underlying objective function is quasiconvex. Althougimdtions like the linear fractional function
is proved to be quasiconvex, typical objective functionMi¥G involve minimization a geometric
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error of the form
d = (y1— f(x)*y2)? (2.20)

where (y1,y2) are typically correspondences (2D or 3D points or both), A * y, is a linear
fractional function function whose parametemneeds to be determined such tilas minimized.
Such a formulation requires the following two concepts verquasiconvexity (repeated from [81]
for completeness):

1. If fi(x),..., fm(z) are quasiconvex functions, themx; f;(z) is also quasiconvex.
2. Letfi(x),i = 1,...,m be affine functionsi.e., f;(z) = a; = + b;. Then

f1(l’)2 + ...+ fm_l(:v)z
fm(2)?

with domain{z | f,,(z) > 0} is quasiconvex.

2.4 Terrain Classification

In mobile robotics, much of the interest has gone in undeditey scenes containing rural and
Urban terrains for many robotic tasks such as navigation@adning. The goal of terrain clas-
sification [30, 82] is to recognize various terrains thatwda urban and rural environments in an
automated fashion. An automated solution to the terraissdiaation is very crucial in various do-
mains such as (i) advanced driver assistance systems {3alitonomous navigation, (iii) remote
sensing, (iv) urban and rural planning. Figure 2.4 showsstirae of the sample images and their
respective desired output.

For instance a mobile robot navigating outdoors comes aarasous terrains such as soft and
slippery terrains, hard and smooth terrains or rocky andulatohg ones. The navigation strategy
for the robot differs greatly based on the kind of terrainréverses, the limits on its velocities
vary according to these surfaces. An algorithm capable iof judgment of the terrain provides
the well needed time for the robot to adapt its velocity pmand thus becomes a vital cog in
outdoor navigation systems. While in this thesis we focughemroblem of classifying terrains for
autonomous outdoor navigation, the broader scope of thalgois indeed evident. For example
one can make use of such algorithms in driver assistancehanel by ensuring safety.

2.4.1 Literature review

One way to determine the terrain type is to directly estinmtateain parameters like cohesion or
slippage from sensor measurements. Another way is to gioeipetrain into classes like asphailt,
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Figure 2.4: First row: Sample frames from our dataset. Sgcow: Desired output

dirt or gravel, and to learn these classes from training gas Once the robot has learned the
different classes, it can classify new terrain data acogytio the learned model.

Various methods have been proposed in literature for thblgno of terrain recognition. They
can be broadly divided into ladar-based methods [84] ( whishlaser, radar etc.,), vibration-based
methods [85] ( which use accelerometers, IMU etc., ) and casnbased methods [29, 86, 87].
Ladar-based methods usually fit a plane on the obtained tatarfor recognizing terrain. They
often focus on segmenting the ground surface from vegetatiaifferent kinds of obstacles (e.g.
rocks) instead of estimating the type of the ground surfesmdfi Other ladar based methods divide
the ground surface into navigable and non-navigable redi8].

Vibration based methods

Among vibration-based methods, usually accelerometersised to measure the vibration perpen-
dicular to the motion of the vehicle. The raw measurementi@éfccelerometers are generally very
similar for different types of terrain ( See Figure 2.5). Bhtis beneficial to transform these data
to a more significant representation. In [3], several regmé&ations are compared, among them the
popular ones are Fast Fourier Transform (FFT) representats suggested by Sadhukhan [31], a
log-scaled power spectral density (PSD) as used by Brookdagmemma [32], and a more com-
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Figure 2.5: Sample raw acceleration data for various difietypes. Observe that except for grass
other terrain record very similar measurements. ImagetesyiWeisset. al.[3]

pact representation based on simple features calculaigdtfre acceleration vector like number of
sign changes. In [89] and [32], Brooks and lagnemma tramstbeir acceleration data to a power
spectral density (PSD) representation. A log-scaling efrttagnitude reduces the dominating effect
of high-magnitude frequency components. Then, they usegrihcipal component analysis (PCA)
to reduce the dimensionality of their feature vectors anskejparate the signal from noise. To sep-
arate feature vectors of different classes, they use lidisariminant analysis (LDA). They train a
set of pairwise classifier, one classifier for each possibleqgf terrain types. These classifiers take
into account both the distribution of feature vectors withisingle class as well as the separation of
the class means, and compute a discrimination vector, tfnuse Mahalanobis distance as their
distance metric. Though these methods are highly reliatdeaae independent of environment and
climatic illumination conditions, the terrain can be cifissl only while the robot traverses it, but
not beforehand.

Near to Far learning methods using lasers or Stereo cameras

There are methods that use a combination of laser and imageereo based data for purpose
of annotation or ground plane extraction and training [4,38-35]. These address the problem
of classifying the terrain into navigable and non navigasetions for further use by a planner
module. These methods follow a canonical form of using canaéwng with lasers or stereo-rig,
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i.e., as the robot navigates through the terrain, dense 3® idaacquired using lasers or stereo
cameras. A groundplane model is fit and subtracted out,theguh an estimate of groundplane
deviation Figure 2.6b. Near-field labels from both the giplane and obstacle classes are extracted
according to small and large groundplane deviation valiespectively Figure 2.6¢. The near-field
stereo labels are sampled to create a balanced traininfpattres are extracted from the image at
these sampled points, and a machine learning model is tkaim¢he resulting training data. Finally
the classifier is evaluated over the remainder of the imagdyding the far field, to arrive at a final
terrain classification Figure 2.6d.

Recent literature

Among the recent literature, we surveyed the work repomg@6] on monocular terrain classifica-
tion comes closest to ours. Dined al [90] trains separate classifiers on data from laser, irdch-r
camera and monocular camera and uses AdaBoost to combioetihg. Bradleyet. al[91] uses
multi-spectral camera to detect chlorophyll content faognizing grass and trees. Recently, Blas
et. al[33] uses pre-segmentation algorithm based on clustesimguBP features before training
phase, Vernazat. al [30] uses Markov random fields framework for training on setheir own
training data and report accuracy in the range 68%-88% ondatasets. Procopiet. al[4] adds
memory to the machine learning model by using ensemble es§ifiars, they report an accuracy of
around 90% on their own publicly available datasets, buy ttansider only two classes they are
traversible vs. non-traversible path.

While the problem can be approached by a combination of vargensing modalities such as
2D and 3D lasers, multiple cameras or a combination of théims,thesis explores how much of
scene interpretation ability is vested in a single camew iarthus different from methods that
use multiple sensing modalities such as those cited abokis. ifvestigation is especially crucial
since cameras do provide a rich set of visual features eviemger distance, which helps the robot
in better path planning and hence over-coming the problefishart-sightedness”. Often mobile
robots are equipped with limited power systems, it is oftenible to use low power consuming
sensors like monocular camera rather than high power cangusensors such as lasers. Also,
cameras are much cheaper compared to ladars or vibrati@orsenThese factors motivates the
use of monocular camera to perform terrain classificatiors. afpart of a larger effort of terrain
evaluation by single camera, we manually annotate the dfiitaeo We use these annotated images
for automated evaluation. Unlike many previous approachdsch deals with the problem of
detection of navigable region, we deal with the complexarariof the problem, which is about
classifying the terrain ahead into commonly observed stena
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(a) RGB Image (b) Groundplane Deviation

(c) Near-field Labels (d) Final Classification

Figure 2.6: Demonstration of near-far learning using ster@mera or lasers to obtain dense data.
Image courtesy Michagalt al. [4]

2.4.2 Features
Color features

For any learning based method selecting meaningful featiarethe classification task is very im-
portant. Color cue has been used in literature in variousgosuch as color histogram [34], [29], [4]
average red and average R+G [86], HSI color space [83] etzeRly, Carlo®t. al[92] use U,V
components in the LUV color space and report better perfoo@aAs representative set of features
based on color, we use three features, they are histogram@faRd B components in the RGB
space, histogram of H,S and | components in HSI space arehhash of L,U and V components
of LUV space. We quantize each component to 60 bins, hencgzbef histogram of color in any
space will be 180.
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Texture features

As second class of features, we choose is texture. Diffdggrts of texture features have been
proposed in literature. Many of them are based on usingdikech as multichannel filtering [93],
LM filter banks [94] etc., We use LM filter banks (see Figuregd.&s our first representative features
for texture. For calculating the histogram of LM features #oimage block, we use a similar
approach used in [95], where we take histogram of maximalaese filter indices’s along with
mean and variance of the maximal filter, by which we have aifeatector of size 52.

Linear binary pattern feature (LBP) ( see Figure 2.7b) isaygcale invariant texture primitive
statistic. For each pixel in the neighborhood of the pixdlirary code is produced by thresholding
with the center pixel. A histogram is created to collect up titcurrences of different binary pat-
terns. A related work [96] on recognizing real-world texdsiwas proposed, in that they experiment
with different LBP based features and report good classifingperformance. Recently Blast.
al [33] used LBP based feature for segmenting the image as shat@p for the problem of terrain
classification. In our experiments we use basic uniform L&&ure as our second texture feature.

Recently texton based features were used in [86], textoadb@presentation considers a texture
as union of features with specific appearances, withoutrdegatheir location [97] and they report
that textons alone can classify the terrain with high acourblowever textons are based on “bag of
words” features, which makes them computationally ventlgod herefore we limit our attention
to LM filter banks and LBP histograms only.

2.4.3 Classifiers

Performance of color, texture and combined descriptorseamduated on a set of popular and
promising classifiers.

Naive Bayes

Naive Bayes classifier is a popular but simple classifiehwgirong independence assumptions
within the features and is based on Bayes reasoning. It kam#in advantage of being able to
handle a large number of features. This classifier is knowhetanathematically optimal under

restricted settings.

Let X be a vector whose class label is unknown. Kebe some given hypothesis, such as
“vector X belongs to a specified class C”. For performing sifisation, we need to find the condi-
tional probability P(A|X) — the probability that the hypothesisholds, given the observed vector
X. P(A|X) is called posterior probability oA conditioned on X. In contrast?’(A) is the prior
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probability. The posterior probability?(A|X) is based on more information (such as background
knowledge) than the prior probability?(A), which is independent ok .

Similarly, P(X|A) is posterior probability ofX conditioned omA. P(X) is the prior probability
of X. Bayes theorem provides a useful way of calculating theepimstprobability, P(A|X), from
P(A), P(X),andP(X|A). Bayes theorem can be stated as:

P(X]A)P(A)

PUAY) = =55

(2.21)

K-Nearest Neighbor

Thek-nearest-neighbor (K-NN) algorithm is one of the simpleatirine learning algorithms. How-
ever, it often performs very well and therefore, it is an irtpat benchmark method. This method
classifies samples based on the closest training samplée ichbsen feature space. Given a test
sample, it selects the closdstraining samples in the training set and reports the dorinigdabel
among the closest training samples. If there is a draw, simply the label of thesest sample

is chosen as the label of the test sample. Generally the eHoick should be an odd number.
In experiments, selecting among the valueg € {1,3,5,9,11, 13} is sufficient. The popular
distance measures used to find the nearest neighbor ar@&arcldistance, Mahalanobis distance,
City block (Manhattan) distance, Chebyshev distance, blirgki distance, Canberra distance, Bray
Curtis distance etc.

Avrtificial Neural Network

Artificial Neural Network (ANN) classifier tries to simulatle structural and functional aspects of
biological neural networks. Artificial Neural Network (ANNMlassifier are used to model complex
non-linear relationships in data. There are two types ahlieg modes for ANN’s, they are batch
mode learning and sequential mode learning, In batch mbtieeatraining samples are used at once
to update the parameters in the objective function, thisemmeduires huge amounts of memory to
train, where as in sequential mode learning, the parametéh® objective function are updated by
learning from a single training sample. If one has to trairhage amount of data, sequential mode
is the natural choise of training. Though ANN'’s takes hugeetin the training phase, the testing
phase is much faster compared to other classifiers such a¥.K-N

SVM’s

Support vector machines(SVMs) have become highly popudasiiers in the recent past. SVM's
are large margin classifiers with high generalization cdipal98]. Initially, SVMs are designed
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for binary classification task assuming the data is lineadparable, SVM constructs a optimal
hyperplane in the input feature space, by maximizing thegmgdistance) between two parallel
hyperplanes which are constructed on each side of the s&wphyperplane. Among the popular
variants of linear multiclass SVM classifiers, we choose 1 waulticlass classifier, where pair-wise
classifiers are created, and at the classification step, #jerity of all the classifiers is chosen as
the final result, which we call as SVM-L. For handling datajettis not linearly separable, SVMs
are extended by using Kernel trick.

Kernel trick transforms the input feature space to higheratisional space, which allows SVM’s
to fit the maximum-margin hyperplane in the transformedueaspace, which relies on basic as-
sumption that non-linear data may be linearly separableighdr-dimensional space. There are
different types of kernels(K) available in literature, Buas Radial-basis kernel, intersection kernel,
laplasian kernel, polynomial kernel etc., In our experitsene use popular Radial-basis function
(RBF) kernel among various available kernels, which we 8a8lM-K. Training an SVM requires
solving the following quadratic optimization problem:

Maximize:

l

l l
ZO&Z' — % ZzaiajyiyjK(whxj) (222)

i=1 i=1 j=1
subject to constraints,; > 0,7 = 1,2,... 1, andzﬁz1 a;y; = 0 whereq; are the Lagrangian
multipliers corresponding to each of the training data fsin.
The decision function is given by:

l
f@) = sgn(d_ cigiK (wi, @) (2.23)
=1
where K is the kernel function.

Random Forests

Random forests (RF) ( see Figure 2.8 ) is a classificationrigthgo that uses an ensemble of un-
pruned decision trees, each of which is built on a bootsteappde of the training data using a
randomly selected subset of feature space dimensions T®@] final output is the mode of class’s
output by individual trees. We use an implementation of tieaRailable in the matlab environ-
ment [100]. This implementation is based on the originati@orcode authored by Leo Breiman,
the inventor of RFs.
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Figure 2.8: Random Forests, containing two types of nodesény tree, at each un-filled node, a
decision functionf(x) is defined on random subspaces X, whereX is feature vector, and the
filled node is the class label. Majority voted label from akkttrees is the final label of the random

forest.
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Chapter 3

Piece-wise planar scene reconstruction

3.1 Introduction

Convex optimization methods have achieved success in timeagi®n of various geometric quanti-
ties like homography, pose, 3D point cloud (triangulatipt), 81] etc. One of the reasons that make
convex optimization an attractive choice for geometriclhiemns is its ability to produce accurate
results even with noisy data. Owing to this property, thay lba used to handle cases with consid-
erable noise where most other methods often perform podriythe other end, these methods have
algorithms that are fast enough to be used for real worldiegtpbns [80]. Moreover, modeling
a given problem in a convex framework could lead to a certiéigan the optimality. Particularly
for cases where the objective function is either convex @sgaonvex, there exists only a single
global minima. A theoretical guarantee reinforces our amice in the estimates derived through
a convex framework. Lack of such theoretical guarantee issue of common occurrence with
most other optimization frameworks that suffer from theptad local minima. They rely heavily
on the quality of the initialization used to run the optintima. Such inability to comment on the
optimality hinders the reliability of the method and itsiggites. Increasing complexity of objective
functions further adds to the unreliability of these altfuris leaving them unusable for practical
use. Such complex surfaces and manifolds are cases of comeoeomnrence in computer vision.
This stresses the need to reformulate the problems in a xdramework.

We approach the problem of reconstruction in piece-wisequ scene using convex optimization
techniques. We describe a method to estimate plane pananazetd camera poses from features
tracked from various planes in a given video.
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3.1.1 Contributions

In this chapter, we make the following contributions.

e We introduce objective functions for producing optimalimsttes of pose and plane parame-
ters, along the lines of [40].

e Since thelL,, norm is known to be sensitive to outliers, we show how addkitaeconstraints
can increase the robustness of our algorithm.

e We show how a Branch and Bound(BnB) algorithm may be forredldibr the computation
of optimal rotation between views [101].

e This work was published iAsian Conference on Computer Vision in 2Q002]

3.1.2 Organization

The rest of this chapter is organized in the following mann8ection 3.3 sets the problem of
pose estimation in a homographic framework and motivatesded for the use of optimization.
Section 3.4 presents our solution and algorithm detailspeEimental analysis on synthetic and
real-world sequences are done in Section 3.5 and finallywwersarize with a discussion on future
directions and applications in Sections 3.6.

In this chapter, we explore the use of the property of conyatitmization for piecewise planar
reconstruction. We show that when the problem of 3D recaostn is posed as the computation
of camera pose and scene plane parameters, the resultiagtiebjfunctions are quasiconvex or
convex in nature, and have good resilience to noise.

Owing to this property, they can be a useful “bridge” betw&&D based initialization methods
like Factorization that are sensitive to noise and the atewesults replacing non-linear minimiza-
tion methods like Bundle Adjustment that require good atitiation.

Also while computation of robust Fundamental Matrices [[L88s been a tricky issue, homo-
graphies are comparatively simpler to compute accuraldig section 2.3 explores background on
convex optimization for building the necessary notaticat thill followed in the rest of the chapter.

3.2 Technical Background

Planar Reconstruction Homographies, like fundamental matrices, can also be esptkas a
function of the camera pose, and can be decomposed using B¥similar manner [52, 101].
Given that now algorithms for automatically ‘recognizinganes in a video exist [104], a robust
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homographic framework for using planar models is worth exph. The reconstruction of a scene
can be viewed as a two step process, where camera posesiaratedtfirst, and 3D quantities
next. The estimation of the camera pose from image sequancessts of optimizing a six pa-
rameter vectop = [ Qp ay o, tp by i, } for every frame , where rotation and translation
are parametrized by three parameters each. Recently,ligl@pimal solutions to pose [101] have
been proposed, that use Second Order Cone Programming (S@€&fimate pose given point cor-
respondences. The next phase is computation of 3D geonk&tnplanes, this corresponds to the
optimization of four parameter% n' d ] wheren represents the normal, addhe perpendicular
distance from world origin. Optimizing over these paramzis relatively less well researched in
the literature as opposed to triangulation for point clouds

Some of the recently introduced quasi-convex objectivetions for estimating quantities like
homography form the inspiration for our approach [81]. Wesoahdopt thd.., framework, moti-
vated by its ability to handle large amounts of data whilenbeible to provide quick solutions to
optimization problems [81, 105].

On the application front, some of the closest works areedl&d 3D tracking [106] and projec-
tive Bundle Adjustment (BA) [107]. Similarity to the tracid work is limited to our motivation to
propose SOCP related objective functions. A more closdbted work is projective BA, where
an iterative technique is proposed, that performs camesectioning and triangulation to recover
structure and pose. However, we differ significantly in oppmach and our objective functions.
Another related work is Bundle Adjustment with constraii88]. Again, we differ in that we com-
pute the reconstruction from homographies directly, nathan using them to impose constraints
on the geometry of 3D points.

Recent study of bi-linear problems in computer vision hdsvance to our work [109], since
the relation between a homography and plane and pose pam@nietessentially a bi-linear one,
with terms involving (R, d) (rotation,plane perpendicular distance) gingdn) (translation, plane
normal). However, the formulation proposed in [109] regsithat the entire set of plane and pose
parameters need to be optimized together. Estimation afioot parameters becomes infeasible in
such a scenario. Thus we do not resort to a formulation aloedines of [109].

The conditions of orthonormality of rotation matrix are utdesome for the problem of pose
estimation. The non-convexity of these constraints suggee use of under-estimators. Since al-
gorithms for this purpose already exist [101], in our expemts, we have set rotation to be constant
and only minimized for the remaining parameters (t, n, d)ilevtieating the issue of rotation in a
separately. Our experiments with initialization accueadiFigure 3.1a), show that SVD decomposi-
tions produce better estimates for rotation in the presefioeise, as compared to translations and
normals. We propose a formulation along the lines of [104} thay be used to optimize rotation,
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while keeping the essential structure of our solution, trae.

3.3 Homographic Framework for Planar Reconstruction

Homographies can be decomposed to estimate camera pospkaadgarameters using singular
value decomposition (SVD) technique. SVD techniques amnknto be sensitive to noise [?].

Further more SVD techniques cannot be used exploit infaondtom multiple planes and views

to make a more reliable and consistent estimate. Such sinairig makes SVD techniques unfit
for large scale applications where images of multiple ptaaeross multiple views are available.
This stresses the need for a unified framework that can méilableeestimates consistent with the
data and robust to noise from a configuration multiple fraamesdimages. In the following section

we analyze performance of various SVD based techniquésjthplementation issues and their
resilience to noise.

3.3.1 SVD based Techniques

Let there bem planes in the world, characterized by the paramefersd’,...,n™, d™]. The
j** plane is characterized by the parameters, d7), wheren’ represents the normal of the plane
and d’ represents the perpendicular distance from world origimt there be two cameras with
external parameterd | 0] and[R | t]. For simplicity, let us assume that the internal paramedérs
the cameras are set to identifi{ (= I). Thus the Homography induced by tt& plane between
the two views is given by
. tn’
HJ:[R—W} (3.1)

Decomposition algorithms for obtaining camera pose andepfeormals from homography ma-
trix using Equation 3.1 are well known [51, 52]. However,cginthe process of pose computation
from correspondences through the homography matrix imgtwo SVDs, a theoretical sensitivity
analysis of such algorithms is difficult and approximate [Hus it is more advantageous to do an
empirical study of the error in the estimation of plane andgparameters, given noise in image
correspondences.

Figures(3.1a-3.1c), depict the poor performance of ond@f3VD based decomposition algo-
rithms [52]. The experiments consisted of adding incraaaimounts of noise to a previously deter-
mined set of normalized image correspondences. Homographiained after a standard RANSAC
routine were then decomposed to obtain estimates of the glad pose parameters. Variances are
plotted against error in pixel coordinates, with a maximuwsmance of 5 pixels which corresponds
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to approximately 1% of the image size. As can be seen, tfamsland normal estimations are
adversely affected by image noise. The errors for the otlgerithm [51], were similar.

The variances in Figures(3.1a) plot the error in estimatibrotation parameters when noise is
introduced into the system. As is seen, the maximum vanaifarotation parameters in the Euler
angle space is 6 degrees, for as high as one percent image @usparison with the translation
and normal errors, which are as high as 40 degrees in the grdae Figures(3.1b-3.1c), show that
the decomposition algorithm produces much more robushes#is of rotation than either translation
or normal parameters. This explains the greater need foetbestimates of translation and normal
parameters compared to that of rotation parameters thahach close to the actual values.

3.3.2 Implementation Issues and Sensitivity Analysis

The implementation of both decomposition algorithms siatth the SVD ofH and thereatfter, a se-
quence of f - el se conditions on the resulting eigenvalues gives rise to warigays of computing
the different parameterR, t, n} from these values. The only point to note is that in the imgem
tation of the algorithm of Faugeras [51], a scaled Homogyaphtrix is passed along with a point
my on the plane such that, = Hm, is an equality and not an equivalence relationship=1).
Ofcourse, both all the quanitites passed as input to botethfgorithms are first normalized with
respect to the internal parameters of the camera.

Sensitivity Analysis

Error in Homographies that are decomposed to obtain posg,bmdrom two sources. The first
one is the well known error in image correspondences, angddhend is the error introduced due
to manual or auto-calibration of the views involved. If thaerslard RANSAC approach [1] is used
to compute Homographies, then the error in Homographiesresudt of error in image correspon-
dences can be approximated by a Gaussian to the first ord&) [[Ais is done by using a theorem
established earlier, that measures the perturbation iritfenvalues and eigenvectors of a matrix,
as a function of the perturbation in the matrix elements tedues [111].

The reason why extending this approach to study error in frose Homographies is infeasible,
is because the computation of pose from image correspoaddahcough the computation of Ho-
mography requires not one but two SVDs. Although in the cd$tomography computation [110],
the Homography is directly the eigenvector with least eighre of the matrix in consideration,
pose and normal values turn out to be non-linear functiorth@tigenvalues dfi. Secondly, the
theorem in [111] only gives a first order approximation of émeor, and so extending it for studying
error in pose is of less practical use. Thirdly, this methodstudying error is only correct when
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a RANSAC based approach is used for Homography estimatimally; calibration errors are not
accounted for in this approach.

Thus it is more advantageous to do an empirical study of thaer @n the estimation of plane
and pose parameters, given noise in image correspondendeskbration. As of now, we restrict
ourselves to study errors arising from image corresporgeraone. Extending it to calibration
errors is a useful topic for future study.

3.4 Convex Framework for Planar Reconstruction

In this section, we formulate the problem of planar recartion using homographies in a convex
optimization framework. We propose an algorithm for plaronstruction in videos, the algorithm
has no constraint that all the planes should be visible ithalframes. We also show how we utilized
the inter-image homographies as additional constraintheralgorithm, which makes the method
robust. We also discuss the issues with the current algorith

3.4.1 Formulation of the Objective Function

We wish to find plane and pose parameters that minimize abdeitariation of the difference
between the L.H.S and R.H.S of Equation 3.1. Observe thateladonship in Equation 3.1 is
non-linear in terms of the quantiti€®R, t,n/, d’), which are the parameters we need to compute.
However, if either the camera pose or the plane parametersnawn, the above equation is linear
in terms of the rest of the unknowns. Thus we define the follgwdbjective functions(in equa-
tions (3.3, 3.5) ) that measures the geometric distancedsgtthe computed plane-pose parameters
and the homography estimated from point correspondencethd j* plane.

. th
Hrt) = [R— dZ] (3.2)
. .
H)  Hrt!
Fry = s AL (3.3)
(R ;(Hg Hrtg,)
Hnd' = [dJ‘RC—tCnJ}) (3.4)
. .
H  Hnd
Fog — S Tind; (3.5)
(n,d) ;(Hg Hndf))

Here(R.,t.,n?, d%) denote constants and letters in bold denote variables wralses need to
be computed, and elements of all homographies are accasseumn major order. There are
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Figure 3.2: Proposed algorithm: Each dot in the above figepeesents a homograplﬂlf . An
iteration for refining i the pose of a single view minimizeseowlata from all the planes, and an
iteration for refining a single planes parameters minimiaesr data from all the views.

two issues to be noted about equations (3.3, 3.5). Firstlyy these equations are linear fractional
equations: both the numerator and denominator are affingtituns of the unknown parameters.
Secondly, it is possible to optimize all the parameters bgating Equation 3.3 and Equation 3.5
alternatively till convergence. This is summarized Algom 1.

3.4.2 Proposed Algorithm

The proposed algorithm traces through two steps for thenesittn of pose parameters given the
Homography. The first step is to acquire an initial estimatmg an SVD-based decomposition.
Then scale issues related to the decomposition are resketibn 3.4.3. The values 6R’, n/, d’)
are used to initialize the search for a global estimaté,afhich is then subsequently used to search
for global estimates ofn’, d7).

The second step using convex optimization, is an iterativegss that refineg in one step and
(n’,d’) in the following step as show in the Figure( 3.2). Since, eaftthe plane parameters
are independent of the other, and the pose parameter forvéawshis independent of the other,
optimizing all the variables together has the same effeopéimizing for each view and each plane
separately. Thus, optimization tiftakes into account information from the homographies ieduc
by all the planedi}™, and similarly optimization ofn?, d’) takes as input all the homographies
H/ .. This is done in a two step process to ensure the quasicapveithe two minimization
problems.
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Algorithm 1 Complete Algorithm Summarized.
1: Input: HomographieéHj forj=1,...,Jandk =1,..., K of planell; between the camera
views” P and reference vieWP = I.
2: SVD-based decomposition: Decompddé; to get* R;, %, Fn;.
3: Initialization: * R = mediary {*R;} andt = median {¥;}.

4: Setto universal scale: Assume each actual camera tramstatbe a unit vector in the direction
T
of L, ie.,|[Ft] = 1. Let*G; = [FR 4

J

Ftn] ks T
Ed. ] and GJ - (917927"'799) .
5: Iterative Minimization:
sy {FHg — kG <6

J

@

7. Update(R, t): (R,t) = argminkpr, ¥ [re — r 220k =1, K.
8: Update(n;,d;): (nj,d;) = arg miny,; 4; EkEi[% - k;’;]QV] =1,...,J

3.4.3 Discussions
Proof of Convergence

We show that the value of the objective function either deses or remains constant at each iter-
ation. The function being minimized |§,)|~, = being the variables over which optimization is
performed. The iterative minimization process (step 5 igokithm 1) is a two step process. In
the first step minimization is oveIR, ¢) and the second step is over, d). Given an initialization
(R;,t;,n’,d?) if we prove that in each iteration the value of the objectimedtion does not change
it would be sufficient to explain that the algorithm convexge the (local) minima. We observe the
following two corollaries.

Corollary ~ Given an initial pointr; = (R;,t;,ny,d;) the value of the functiong ;) and F,, 4
either decreases or remains constant for each iteratidreiminimization i.e..F(xz*) < F(xy).

Note that the objective functions in steps 7 & 8 are the sarnep{or the scale factor that has no
effect on the minimization process. Thus the proof is easalgn, since thé, based quasi-convex
function is minimized to find a global minima in each step. cgithe output of one step is given
as input to the next iteratively, we see that with every iierathe geometric error either increases
or remains constant. However, with the non-linearitieoeisged with rotation parameters and the
fixed point iterative solution suggested, existence of gloptima is not direct.
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Universal Scale

Each decomposition by the algorithms of Faugeras and Zheodypes estimates ¢fR,t,n} as-
suming a coordinate system in which the perpendicular migtdetween the origin and the plane
in consideration is 1. Since we consider all the homograph@mputed with respect to a fixed
reference frame, the origin in all the decompositions otadiis the same. Thus the difference in
the various solutions obtained by SVD decomposition difiex scale factor, which in the presence
of noise has to be computed using optimization.

Let the solutions of translation obtained by decompositisthods be denoted bﬁ/, which is
the translation vector obtained by decomposing the honpxbgrﬂff . Thus the actual translation
vector is represented by = t{dj, whered’ is the optimum of an objective function. Since, es-
timates obtained from the various planes must converge,revinterested in the optimum values
[d*t,d*?,...,d*™] such that

m

k
[, d™ =min ) Y > —tld|, (3.6)
j=11=1 i=1

The above function is quadratic and can be reduced to the [fArsi. However, we wish to not
only find an approximate solution for the perpendicular alises, but also to get an estimate of
the translation of the current frame, which can then be usethitializing the convex optimization
routines. For this task we introduce a new set of varialiles = 1, ..., k) which represent the
actual translation of thei’” view upto scale. The modified functions now becofe(t;, &) =
|ti — t{ d’|2. As can be seen, these set of functions can be re-writtereifotm

fii(ti,d?) = |t; — 7fgdj|2 = |A; 24 5|2 (3.7)
: ti
Aij = |:[3><3 - tﬂ ig = | ] (3.8)

Instead of minimizing the sum of square errors of all the fiows f; ;, a convex formulation
may be obtained by minimizing th@aximumof these functions. Since the functioyfis; can be
thought off as the composition of a norm function and an afiimetion, its easy to show that these
functions are convex in nature. Since convexity is prestv@der point-wise supremum [80], we
can collect the required variables and functions into oamé&work.
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v = [t tpd...d"]" (3.9)

[ti...tpd'...d"] = argmin 0
s.t max fij(Aijzx) <7
ie[l...kl,ke[l...m)]
A;j € R3x3htm (3.10)

In the above formulation, unconstrained optimization wiquioduce the solutiom with all zeros.
Since this is undesirable, wix one of the perpendicular distances (s&tywithout any loss of
generality) to 1. This also sets the overall scale of the mirétion process, and since functions
fi,1 are now reduced to the Euclidean norm functiomdvesthe optimization process away from
the other pitfalls, towards the correct solution.

Algorithm 1 is a consequence of the structure of the relatigm between a homography and
the corresponding plane and pose parameters, and allovesiniegrate information about planes
across views into one minimization framework. A paralleh ¢hus be drawn between the current
framework for planes and the traditional bundle adjustnadgdrithm, for points. However, for this
analogy to be complete, two important issues remain to beidered. First is the estimation of
rotation, which we have sidelined until now. The second ésititlusion of planesot observedn
the firstimage. These related issues are discussed in theawtion.

3.4.4 Additional Constraints

We extend the framework described previously to include important aspects: the estimation
of rotation and the inclusion of inter-image homographiesdditional constraints. An additional
advantage of adding inter-image homographies is the tigieof bounds of the optimization pro-
cess.

In effect, we intend a graph based estimation of homograigkyhes presented in the mosaicing
literature [112] to be a precursor to our algorithm. Thugjieuhomographies can be identified and
thrown away by graph based approaches, and the remainingdraphies can be used to find
optimal solutions to the pose and plane parameters

Consider a homograpﬁﬁ"k that is induced by thg’" plane between th#" and thek! cameras.

It can be broken into the following equation
thnl’

J  _ pk
Hi,k_Ri_—

y (3.11)
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where the subscript denotes that all quantities are measured keeping‘thrame as reference
(origin). These quantities are related to the actual refexecoordinate as

R = RyR/ (3.12)
tf = —RiR/t; +1t; (3.13)
Ilg - R0’ (3.14)

Given thatH{’k can be computed and hence decomposed accurately, the amters provide
additional constraints ofit?, t*, n’} which can be formulated as the minimization of the square
difference between left hand and right hand side quantifid®e most important result of adding
such additional constraints is that it allows us to includditional planes in the optimization process
that arenot visiblein the reference frame. As will be seen later, these comgsraiso provide, much
needed robustness to outliers, since fhe norm is known to be susceptible to them.With these
additional constraints, we now have an algorithm that otsall the tracked planes and views of
a video sequence, robustly.

3.4.5 Issues with Rotation and Normal

The primary issue with rotation and normal parameters irotbjective function are the constraints
associated with them. The norm constraints on the rows ahohes of the rotation matrix, as

well as on the normal are not convex. Thus, at present, owritign solves a relaxed version of
the original problem for normals. In literature [101, 118]is issue has been solved by modifying
the problem with constraints that are under estimators &erd@stimators of the actual non-convex
function, in a Branch and Bound algorithm.

In order to extend this approach to the problem of plane baesaé estimation, we need to
introduce the image coordinates of the planes concerngaithie objective function constraints. To
do this, let us observe that an alternative to the currerdduobjective function Equation 3.3 is
to consider minimizing the angular distances between inpaj&s transferred using the measured
homography, and those transferred due to the homographyutech from pose estimates. More
precisely, let us consider the objective function

. Jj .
Froey = Find(Ri,t:) st Z(HIx), (R, — ti%)x{) < €min (3.15)

which can be alternatively posed as

o Jj o
Firoey = Find(Ri,t;)  st. Z(HIx], Ry(1— t%)x{) < Emin (3.16)
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In the objective function proposed abové, represents the points belonging to ik plane in
the first view. The transfer of points from the first view is eka over the points detected in tile
view primarily to eliminate errors due to the feature ddtattand tracking process, which can be
considered even at the homography estimation stage [?Jurdegts of bounds and in general the
branching strategy of [101] can now be incorporated intocilmeent framework.

3.5 Experimental Analysis

In order to test the proposed algorithm, we have designedrampnts on both synthetic and real-
world data. Synthetic data is obtained by generating paintplanes and projecting them onto
camera matrices. Real world data sets tested include ther@&kfodel House, Corridor, and UNC
datasets. In all these cases, the real world is assumed égbwsated into planes apriom, interest
points and hence correspondences computed are assumecahastezed into planes. However,
there are automatic algorithms to achieve such a clasgificfit04] .

3.5.1 Synthetic Data

Generation Random points are generated on the XY-plane which is thgroséioned at a ran-
dom location. Two random camera matrices are generatechangldrld points of many such planes
are projected using them to generate image points. Gaussise of varying standard deviation is
added to these image points to create synthetic correspoadiata. Homographies are then com-
puted using the RANSAC after normalization [1] which camaiatively be generated by [81]. The
generated Homographies are decomposed using Faugeraghand'’s algorithms [51, 52] to gen-
erate data for both initialization and comparison. Aldamit 1 is then run with this data, to produce
our estimate and is compared with the SVD algorithms and BuAdjustment in the 6-parameter
pose space by plotting the euclidean distance betweenastinand ground truth values.

Experiment 1: Effect of noise Figures (3.3a,3.3b) show the effect of increasing imagsenon
the accuracy of estimation. Two effects can be observeddtr translation and normals. First, the
average error in the estimation of both parameters is less Shdegrees even for a 1% error in the
image coordinates, which is a serious error. This justitiesrobustness of our algorithm to image
noise. The second effect is that the mean errors (averagd@@drials) in all these cases are located
close to the minimum errors represented by the lower endeoéthor bar. Figures (3.4a,3.4b) show
that most of the estimations center around the mean, with @féw deviating towards the higher
end. Another interesting observation is that even theiessié to noise is apparent till about 3 pixel
error after which the maximum error in both cases seems te&se. This can be attributed to the
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Figure 3.3: Plot ofL, and L., norms of the distance in pose space between estimated amadgro

truth quantities from Algorithm 1 against increase in vaga of Gaussian error in point correspon-

dences. Comparison with two SVD based methods is shown.
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Figure 3.4: Plot of minimum, average and maximumi/gfnorms of the distance in pose space

between estimated and ground truth quantities from AlgorifL from 100 trails against increase in

variance of Gaussian error in point correspondences.
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Figure 3.5: Plot ofL,; norm of the distance in pose space between estimated anddytouth
quantities from Algorithm 1 and Bundle adjustment againstease in variance of Gaussian error
in point correspondences.

fact that after a point the algorithm possibly settles intoaal minima because of the inaccurate
initialization. However, this is still far better than th&B decomposition in Figures 3.1b, 3.1c.

Experiment 2. Comparison with Bundle Adjustment We empirically compare our algorithm
with standard iterative non-linear optimization techrdqof Bundle Adjustment [59]( See section
2.1.5), which uses Levenberg-Marquardt internally. Beralfjustment is initialized by the output
of the SVD-based approaches similar to our case.

The improvement in translations is shown in Fig (3.5a) arad ¢f normals in Fig (3.5b). They
are shown for varying levels of variance each of which hastiested for 100 trials. This clearly
shows that our algorithm is better than Bundle Adjustment.

Experiment 3. Effect of planes Figures (3.6a,3.6b) show the effect of the increasing nurobe
planes on the overall result. Contrary to expectation,gasing the number of planes does not seem
to have much effect either on the accuracy in estimatioreofdiation parameters, nor the estimation
of normal parameters.

Experiment 4. Effect of views Figures (3.7a,3.7b) show the effect of increasing the nurabe
views, in this experiment the number of parameters inceagmificantly and hence accuracy in
the translation errors dwindles down . In the case of nornaal®xpected, increasing the number of
views results in a marked improvement in the accuracy of gienated normal values.
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Figure 3.7: The above figures plot the effect of views on tloeieacy in estimation of the translation
and normal parameters respectively. In this experimentavied the number of views from 3 to 15
and the number of planes was set to be 3.
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Figure 3.8: (a) Shows the improvement of estimating trdimsigparameters using additional con-
straints, when a single plane has bad homographies. (b)sSti@estimation accuracy of rotation
parameters, using the branch and bound algorithm. The &&timis accurate and robust.

Experiment 5: Effect of Extensions Figures (3.8a,3.8b) show the effect of adding inter-image
homographies as constraints (Figure 3.8a), and the agcafdlce branch and bound algorithm for
estimation rotation (Figure 3.8b). As expected, intergmaomographies produce tighter bounds
around the global minima of the pose parameters, prevettiggptimization algorithm from fitting
outlier data (Figure 3.9). This results in better accuraogstimation and resilience to noise than the
unconstrained case. The computation of rotation parasietng the modified branch and bound
algorithm [101] produces accurate estimates, with goodswiess to noise.

3.5.2 Real Data

In order to test on data from the real-world, we chose datasétwhich two are Oxford data sets
and the other one is UNC dataset. The House, and Corridorsgédéa(Figures (3.10a,3.11a)) are
accompanied by correspondences and estimates of the cama&iaes produced by other robust
estimation algorithms and hence provide a good benchmahkwkiich to compare our algorithm’s
performance.

Figures 3.10b-3.10c show the comparison between our @stimand that of the decomposition
of Faugeras. Thé, and L, errors between the estimated and ground truth quantiteeglatted.
In order to compare the plane normals, we took the best estiofanormals from the several de-
compositions available. As can be seen from the resultsalgorithm produces far better estimates
for the translation parameters than the correspondingigthgo by Faugeras. We found that Zhangs

46



Constraints
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Figure 3.9: The addition of inter-image homography baseatstraints improves the robustness of
the system. The current cost function is designed to oveufiiess. In the above figure, while
the red circle represents the minima corresponding to ttee &nction, the actual global minima,
the green triangle represents the global minima while tloevhrstar represents the solution with
constraints. Each of the circles represents constraimis,tlee accuracy of the resultant solution
depends on their tightness.
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Figure 3.10:Dataset 1. Oxford-house dataset (a) Sample image from the dataset) Bets of
the L, error between plane and pose parameters with respect tadhedytruth L, error shows

similar plots.

algorithm also produces similar estimates to Faugeras st gases. The same situation is repeated
in the Corridor sequence (Figures 3.11b-3.11c), whereskaéion is very accurately obtained. An
explanation of why certain plane parameters are perturbedvalue of higher error is that since
some of the homographies are erroneous, the error in a plarti bad homography is distributed

across planes.

3.6 Discussion

In this chapter, we have proposed a framework that produsesnstruction of piecewise planar
scenes in much the same way as Bundle Adjustment for pomt ke algorithm incorporates both
multiple planes and views, and does not constrain all thegsldo be visible in any single view.
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Figure 3.12:Dataset 3: Synthetic house (a-b) Sample images from the dataset . |(bslirates
the accuracy of our reconstruction. The ground truth andnisitucted models are overlapping to a
greater extent
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Figure 3.13:Dataset 4: UNC dataset (a-b) Sample images from the dataset . (c-dufertapped
reconstructions of UNC dataset.
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Additionally, the presence of inter-image homographiesspnts useful robustness to outliers, that
may not have been pruned in the initial stages of registraitd homography computation.

The existing framework is not without its drawbacks. Cuthgerthough the objective functions
show robustness to noise, it has not been systematicaltygocated into the objective functions.
Existing literature on robust convex optimization may bedi$or this purpose [114]. Secondly,
constraintdbetweerplanes may help in stabilizing the overall reconstructib®d], like orthogonal-
ity of planes. One other issue related to this algorithmsipiactical applicability. Recent results in
Practical Global Optimization [105, 115] is very relevamtour work, and may be used to improve
the running time of our algorithm, making it suitable fortirscomputation required by videos.
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Chapter 4

Terrain recognition using monocular
camera

4.1 Introduction

In this chapter, our main focus of the study is to perform andlyze various experimental pro-

cedures that suits the problem of terrain extraction andgeition using only monocular camera.

At the top level, our method consists of training phase anestirtg phase, here we study various
parameters that well suits these phases. We experimenththize of the patch, that is optimal

in representing the feature space as well as fast enoughdorbputed. We study popular feature
extraction schemes, their richness in representing thereén minimum possible size. We study
various aspects of the spectrum of classifiers and theiaklity with selected feature extraction

schemes.

4.1.1 Contributions

In this chapter, we make the following contributions.

e We present our own annotated dataset, which contains huigies of scenes with various
changes in environmental conditions. This data set allasw® wonduct various experiments
on our methods and it also allows us to compare with the stiatke-art methods.

o We present extensive empirical comparisons of variousifeatand state-of-the-art classifiers
in machine learning literature.

e We also show how various parameters such as the richnese tddtures and the patch size
that affect the classifier performance.
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e This work along with the Partition-based algorithm in thexinehapter were published in
International Conference on Pattern Recognition 20106]

4.2 Problem Parameters

The problem of terrain characterization is that of esséntt@pturing the appearance of the surface
from the images. This problem is modeled as a classificatioblem of pixels and smaller windows
in the past [34, 90], where the important parameters of thklpm are features and classifiers. We
analyze the relative importance of these parameters onrotated data set and demonstrate that
the problem can be solved with state of the art features assifiers. Though there are many new
(and computationally expensive) features proposed indbent past, we limit our attention to a set
of simple and yet effective features due to their utility aamtness for the terrain characterization
task.

4.2.1 Features

For any learning based method, selecting meaningful featiar the classification task is very im-
portant. We use popular RGB histogram [4,29] and LBP histogf33] as our features considering
the computational cost and performance. We use the optigighted combination of these features
that best suits the classifier.

4.2.2 Classifiers

Performance of selected features are evaluated on a sepafgp@and promising classifiers. The
baseline classifiers which we consider in our experimemtfNaiive Bayes(NB), K-Nearest Neighbor(K-
NN), Artificial Neural Networks(ANN), Support vector mactes(SVMs) and Random Forests(RF) [99].
Random forest is a classification algorithm that uses anngllecof unpruned decision trees, each

of which is built on a bootstrap sample of the training datagisa randomly selected subset of
feature space dimensions. Experiments were conducted dnygety important parameters like
number of epochs and number of nodes in the hidden layers INSANumber of trees and size of
node in RF. In case of SVMs, we conduct experiments with ir&aM using 1 vs 1 multiclass
classifier (SVM-L) and non-linear SVM (SVM-K). From Tablel4 we observe that RFs outper-
formed all other classifiers because of its capability todheatarge number of input variables and
data samples [99]. Additionally RF classifiers are companatly efficient for training and testing,
compared to SVMs. Therefore we choose RF as our classifier.
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Figure 4.1: Monocular camera attached at the top of the Van.

4.3 Data set and Experimental Setting

We argue that monocular camera-based terrain charadterizsolution have reached a state of
acceptance in outdoor navigation. As a first step we do anr@abpstudy on characterization per-
formance and show comparable results on our dataset andentiséng datasets. For consistency
in evaluations, the performance of various features arskiflars, we build an annotated dataset.

4.3.1 Data set

Datasets are very important in determining the state-efatt of any research area. There are sev-
eral datasets ( for example [4,117,118]) introduced indiwgre in several fields of vision and
robotics. However, as far as we know there is no datasetshaiblicly available for the purpose
of terrain classification. This motivates us to build our odataset that is challenging and prac-
tical. Our dataset consists of road and off-road data, whiely be used for terrain classification,
scene segmentation, layer extraction, people detectidrobstacle detection. For collecting data,
monocular camera is mounted on the top of the vehicle ( asmsio®igure 4.1 ), and videos were
recorded by the camera at 7.5 fps and at resoliin 600 on vehicle navigating at various speeds
ranging from 0.2m/s to 4m/s. We set the camera to high apednd high shutter speed, in order
to minimize the artifacts caused by the moving camera likéiandlur etc., We collect the data on
ill-conditioned roads, in and around a radius of 10km, Weeoles that the data is challenging, as
it contains wide variations in illumination. We also obsetthat the data varies from unpaved or
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Figure 4.2: Overview of the dataset.

damaged rural roads to paved urban roads. Data also costatits( like trees, rocks ) and dynamic
obstacles (like moving vehicles). We collected 25 videasheof 1 min. In total, we have collected
11250 frames.

Figure 4.2 shows some of the sample frames from the videomba&rve that the dataset contains
huge variations in appearance. Five distinctly differentains were identified in the data collection
(see Figure 2.4):

Road: This class consists of road patches which are maintleroa of tar or cement, we
annotate these patches with black-grey color.

Muddy-road: This class consists of patches of all kinds ofima constant white light, the
color of the mud ranges from a tint of orange to brown. We aateathese patches with orange
color.

Rough-terrain: This class contain patches which are rougtoaky. Note that the mud in
draught conditions falls into this class. We annotate tipagehes with brown color.

Grass: This class contains only traversible grass or veallgstants, big plants and trees are
considered obstacles. We annotate these patches with gpken

Obstacle: All the patches that doesn't belong to either ofeahentioned four classes falls
into this class. We annotate these patches with black color.
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Figure 4.3: Patches from each of the identified classes.

Figure 4.3 shows random patches from the four identifiedselsisWe observe that the variation
in texture appearance in each class is quite high, simpta dalsed classification is not sufficient.
From all the recorded frames, 200 frames were randomly teldor experiment purposes. These
images are hand labelled at pixel level using Interactlab§l19]. After the labelling each image
has its correponding annotated image as shown in the Figdire 2

4.4 Classification procedure

As discussed in the previous sections, the fundamentabfaskrain characterization can be formu-
lated as an image classification and characterization @nobWWe start by exploring the performance
of various features and classifiers discussed in Sectiane?consider a part of our data set (200
images) for the empirical studies. We use 50% of the datadorihg and the rest for testing. These
images are manually densely annotated at pixel level asigied in Section 4.3.1. From each of
these annotated images, we extract multiple, non-overigppatches of sizé6 x 16. Thus we
have around 185000 patches for training, and a similar numfygatches for testing. The number
of patches in all the five classes is approximately equaliferinitial studies. For all the randomly
picked annotated training patches, we extract the featlgssribed in Section 4.2. We have exper-
imented with various color and texture features mentiomeskiction 4.2. We have chosen one for
each of the color, texture and combined features. We haveechBGB histogram as color feature,
because these are raw features and hence can be computéasteAnd we choose LBP histogram

57



as texture feature considering the computational cost anfdnnance of various texture features.
As a combined feature, we select optimally weighted colat xture features that best suits the
given classifier. The combined feature always outperformdssidual color or texture feature.

4.5 Experiments

In this section, we conduct several experiments to knowithidtions and to get an overview of
the performane of state-of-the-art machine learning ndstor terrain classification. Specifically
we show that monocular camera can provide useful charaatemn of the common terrains that
can help in detection of navigable regions through feataresclassifiers delineated in section 4.2.
We also experiment with few important parameters of the lgrabthat help in solving the problem
to get best possible accuracies.

4.5.1 Experiment 1. Comparison accros classifiers

In this section, we compare the performance of differerdsifeers as well as features on our dataset
and two other publicly available datasets [4]. The clagsifiensidered for the study are NB, ANN,
K-NN, SVM-L, SVM-K and RF. Experimental results are showriTable 4.1. It can be seen that
RF classifier outperformed all other classifiers becausésafdpability of handling large number
of input variables and data samples [99]. The other adventddRF classifiers, is that they are
computationally efficient for training and testing, comgrato SVMs. SVM-K and K-NN performs
moderately well, though training time for SVM-K is high, tieg time is of practical importance,
K-NN on the other hand has a very high classification timeesmlapproximate nearest neighbor
computations are employed. NB performed the worst of al§, @ue to its strong independence as-
sumptions. In cases of certain features, the performang&bf-K and RF are comparable. We also
observe that though K-NN is computationally intensive p#gsformance is sometimes comparable
to SVM-K.

Figures 4.4a, 4.4b and 4.4c shows the typical test imageagrthend truth and the classification

Dataset| NB | ANN | K-NN | SVM-L | SVM-K | RF

Our | 436 356 | 28.3 29.0 28.7 | 255
DS3A | 189 | 32.3 | 33.8 31.2 38.4 | 182
DS3B | 13.7| 26.2 | 17.8 27.9 39.8 | 18.9

Table 4.1: Base line error-rates on Our dataset and twoetata$ Procopio et al. [4].
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Figure 4.4: (a) Test image (b) Ground truth image (c) Lalokilheage using baseline RF classifier

result from the RF classifier respectively, we can obseragttie base line result fails mainly due
to illumination variations within the class, which some ¢istmakes little or no difference between
patches from two different classes. This is mainly causediige, the spatial context is not being
incorporated, we can also observe that the grass samplégiage labelled at the upper portion of
the image, which indicates that the baseline RF classifienaadifferentiate between the patches
of the grass from that of the trees.

Since the data sets and details of the earlier reports amongpletely available, a direct compar-
ison of results may not be applicable. However, it may bedhttat the quantitative results, which
we report in Table 4.1, the performance of these methods taseiadue to [30] are comparable to
to the results reported in literature [4, 30, 120], which nee-visual sensors and stereos along with
appearance clues. We believe that this advantage come$ that fact that monocular cameras in
use now provide much richer sampling in space and dynamigeraand therefore useful for such
tasks. This is specially true in contrast to the achievadd®lution for laser and stereo. We also be-
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Figure 4.5: Experiment with increasing dimensions of camebifeature on various classifiers.

lieve that oureasonableaesults are due to the use of diverse features possible fiogtedrames of
monocular images. We use a diverse and powerful set of fEattaompared to many of the previous
methods. We also show that with increase in features (diyeas well as dimensionality), we can
obtain better classification.

4.5.2 Experiment 2: Effect on number of dimensions

The computational cost of training and testing a classifigfuite dependent on the dimension of
the feature space used. Hence it is important to study tlatigeship between the dimension of
the feature space and the performance of the classifier wsehihe optimal feature space. In our
training or testing phase, from each sample, i.e., from epate extract features that are histogram
of color and texture, histogram can be represented as aréeaictor by quantizing it into fixed
number of bins, the size of the bin depicts the richness offéh&ure vector. An experiment is
conducted with varying the size of the bin. The relationskighown in Figure 4.5. We choose
K-NN, SVM-L and RF classifiers for this purpose, We obsenat s the dimension of the feature
vector increases, the error rate decreases and stabitidéfeeent error rates for different classifiers.

4.5.3 Experiment 3: Effect on patch size

As mentioned earlier, we use color and texture featuresh®itérrain characterization. These fea-
tures are evaluated at a coarse level (like from a patch)ewthé classification results are required
at a finer (pixel) level for reliable navigation. Thus we egld the relationship between the win-
dows at which features are extracted and the performancecm&he experiment was conducted
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Figure 4.6: Error variation with varying window size.

for images of various sizes. The relationship between ttlseeshown in Figure 4.6. We observe that
the optimal size of the patch for the image of sk08 x 600 is around 28, we also observe that we
can get improvement in the error as high as 5% by selectinggtimal sized patch. In general, we
observe that the optimal patch size, that gives reasonalsfermance is approximatelfi /25)*"
the size of the image.

4.6 Discussion

This chapter presented an annotated dataset in outdobandgairban terrains, which contain huge
varieties of scenes with various changes in environmewtaditions. This chapter reports extensive
comparison of various classifiers operating on featureglassification of outdoor terrains using
only monocular camera. This chapter shows how various petensi such as the richness of the
features and the patch size affect the classifier performarikhe chapter reports that Random
forests trained on weighted color cum texture feature gitiesbest baseline result, with an error
of 25.5% compared to other classifiers such as Naive Bayesici neural networks, K-nearest
neighbours and Support vector machines. On other publicilable dataset the baseline error rate
was 18.2%. This chapter conducted various empirical ssudith state-of-the-art machine learning
techniques and various parameters of the problem.
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Chapter 5

Fast and Adaptive Terrain recognition

5.1 Introduction

In the previous chapter, we analyzed various experimentaigaures for terrain classification prob-

lem and we observed that the current state-of-the-art madkarning techniques achieve reason-
able solution. We have observed that Random Forest classifieerforming best among several

baseline classifiers. In this chapter we describe variobhamcements for terrain classification. Ini-

tially we describe our partition based algorithm and sdvexperiments which indicate that, the

algorithm is robust and spatially smooth. Secondly we diesoour label transfer method along

with experiments showing that, it saves considerable atofuoomputation time. Subsequently

we present our adaptive algorithm, which is designed spatlififor videos and experiments show

that it can adapt to slow appearance changes.

5.1.1 Contributions

In this chapter, we make the following contributions.

e We introduce our novel partition-based algorithm, whicluisid on random forest. We also
conduct several experiments for the usability of the atbani

e We also introduce an adaptive-method which uses tempdaahiration effectively using fast
optical flow. The adaptive method is an online algorithm, ahihtan adapt to fairly unseen
terrains.

e This work was published imternational conference on Intelligent Robots and Sys2i§[121]
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5.2 Partition based algorithm

The proposed algorithm partitions the training images aaoh$ different classifiers on different
parts of the image independently. This is repeated fortart of different sizes. Figure 5.1 pic-
torially shows the partitions in the image with respect tifedéent sizes.Training different classifier
from different part of the image handles the problem of pecsipity of the imaging process, i.e., it
learns the fact that near and far image patches show diffeegtural characteristics. Also learning
from fixed partition over several training images has twomadvantages. The first advantage is
that it helps the classifier to learn new facts about asgeitjabf classes, such as occurrences of
grass along with mud is more probable than that of grass aldtingtar road. The second advantage
is that it helps the algorithm to be dependent upon the pwsitf the partition of the image and thus
learns the spatial context. By training a classifier frongdairsized partitions, global properties of
the class are learnt and as the size of the partition deeas®e local properties are learnt. Our
algorithm is a generic framework that can be operated on Esgifier.

In training phase, as summarized in Algorithm 2 we build Nssifier-sets, as the partition size
increases from 1 to N, we hael?, 22, 3%, ... N°} classifiers in each set respectively. Let us call
themsS = {C1,C,, C3,...Cn}. Note that a classifier-sét; containsi? classifiers. To characterize
the terrain of the given image, for each patch of the imagegeteN labels from each of the N
classifier-sets irt. From these N labels, most occurring label is declared aéhélabel of the
patch.

Implementation details. As mentioned before, we have 100 training and 100 testirggéas.
For training Partition based algorithm, we need to build &kslfier sets, each classifier set may be
trained on all the patches from 100 training images. Butdgy create a problem of overfitting
and also it increases the training time, to overcome thiblpro we randomly pick patches from the
training set which are spatially distributed i.e., For egrelning image from the help of its ground
truth image, we calculate the ratio of number of patcheslibiing to each class. Then based on
those ratios we randomly pick patches from all training iemguch that there are approximately
equal number of patches in each class. In our experimentgafth class we approximately have
1000 patches for training.

5.3 Experiments

In this section, we conduct several experiments to deterrtiia capabilities and limitations of the
proposed partition-based algorithm. Specifically we shuat partition-based algorithm is a generic
algorithm, that enhances the accuracy of any classifieror&iy, we experiment with important
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9 16

Figure 5.1: Pictorial representation of partitioning theaiges into 4,9 and 16 partitions respectively.

parameter of the algorithithe number of Classifier-seéd finally we perform another experiment
which shows that the algorithm is capable of classifyingtérein spatially smooth avoiding costly
post processing methods.

5.3.1 Experiment 1: Comparison with baseline classifiers

Figure 5.2a shows the percentage errors of our partiti@edhalgorithm operating on baseline clas-
sifiers SVM and Random Forests. We observe that our algortlwvays decreases the percentage
errors by approximately 10%. This is an appreciable deergathe percentage error. It also shows
that our algorithm is generic, i.e., the algorithm improties performance of classifier irrespective
of the classifier chosen. To show the superiority of our atgor across other databases, we con-
duct an experiment in which our partition-based algorithperating over RF is tested on (i) Our
dataset (i) DS3A and (iii) DS3B datasets of Procoptaal. [4]. We report the percentage errors
in first and second column of Table 5.1, from the table, we oMasthat our algorithm compared to
baseline RF classifier, decreases the percentage errompbgxamately 10% on all three datasets.
We also observe that even without training on any of the imag®S3A or DS3B datasets, we get
percentage error as low as 6.8%, the superiority of our #@hyuris thus clearly evident.

5.3.2 Experiment 2: Effect on number of Classifier-sets (N)

Figure 5.2b shows the effect of increasing number of classsts(N), N is a parameter which
controls both efficacy and speed. We observe that as N iresetige percentages error initially de-
creases and then slowly increases The speed of the algalfuecreases. From our experiments
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Algorithm 2 Partition based algorithm
—Training

1: Goal: To buildN classifier-sets

2: Input: M Training imagesS « 0

3: fork=1to N do

4:  Partition training images intb? parts,C « ()

5. forp=1tok?do

6: Train a Classifier opt* partition over all training images, call K F'
7 C—CU{KF}

8: endfor{ NowC = {KF,,KFy,..KF}2}}

90 S Su{cCc}

10: end for{ Now S contains{C, Cs,...Cny} }
— Characterize Terrain of given image

1. Input: Image |

2: for all patches of Imagedo

33 L0

4. fori=1toN do

5 [ < get the label of the patch from classifier &t

6: L — Lu{l}

7. end for
8:  Majority voted label fromL is declared as final label of the patch.
9: end for

we found that, the optimal choice for N is 5, which has highceffiy and without compromising
speed.
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Dataset| RF PM RF PM | AVG Err
(@] 26.8 17.2| 08.7 01.0| 35.5 05.6
P-A 18.2 07.9/ 06.9 00.6| 42.3 04.3
P-B 18.9 06.8/ 05.2 00.4| 45.1 04.3

Table 5.1:1° and2"¢ column represents percentage errors of RandomForest(RFpar parti-

tion based algorithm(PM®B™¢ and4** column represents smoothness-error, which corresponds to
experiment-35" and6*” column represents the percentage of images, that weréddlpast by us-

ing Temporal-label-transfer method in Section 5.4, whevé&AAverage of percentages of portion

of labels that are transferred over sequence of 100 imageE@nError in label transfer

40

30

20

Error

10

K-NN, PM(K-NN)  SVM, PM(SVM) RF, PM(RF)
@
24t .
S
0 20t .
17F .
0 4 8 12 16

Number of classifier sets

(b)

Figure 5.2: (a) Comparison of base-line classifiers withtiRam-based algorithm operated over

them. (b)Error rates by using multiple classifier sets.
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(b) (©)

Figure 5.3: (a) Test image (b) Characterization by RF digsdic) Characterization by Partition
based method

5.3.3 Experiment 3: Spatial smoothness test

In Table 5.1, third and fourth columns show the smoothnesss of RF and PM operated on
RF(PMRF), on three datasets. Smoothness-error is the diffetagiveeen percentage errors before
and after applying smoothing algorithm (MRF [122]) on thegicted labelled image. We observe
that our algorithm has a negligible smoothness-error coathto RFs, which clearly shows that
PM_RF itself is capable of characterizing the image smoothlgpatial context. Figure 5.3 shows
the superiority of partition based algorithm over baseRteclassifier. We observe that the images
labelled using our method are smooth in spatial context.

5.3.4 Discussion

Figure 5.4 shows sample test cases of the Partition basedthfg. We observe that all the clas-
sifications are smooth in spatial context. The predicte¢ghiuin Figure 5.4a and Figure 5.4b are
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CUTLIER

(© (d)

Figure 5.4: Test images blended with predicted classioati

68



appreciable, as we can see, even the moving vehicle wasassifeéd as traversible path. From
Figure 5.4c and Figure 5.4d we observe that there are big pessent in the scene, which have a
very similar characteristics of grass, yet they were cfassias “Other” class, this was mainly due
to the efficient learning of relationship between positiofiglifferent classes in the Parition-based-
algorithm. The classification on the left side of the Figudcis incomplete, this is mainly because
the patches have the characteristics of both grass and hesk patches look like mud when seen
from far and confusion arises as the camera gets closerse ftetches. These patches can be clas-
sified correctly if one uses the temporal classification rimiation. In the following section 5.5 we
introduce our Adaptive method to handle these problems.

5.4 From Image to Video

Temporal label transfer. Most of the methods in literature deal with single imageeyHo not use
the fact that they are dealing with a sequence of continuddeovstream. When robot navigates
through terrain, the camera captures sequence of framegtwinconsecutive frames have lot of
common image regions. In order to characterize the terrbihevimage using traditional machine
learning based algorithm some kind of feature is extractechfeach patch. The feature vector is
fed to a classifier, which returns the label of the patch. Nlo& in this process, feature extraction
is computationally expensive. In our case, when a new francaptured by the camera, fast coarse
optical flow [123] between the previously captured frame andent frame is calculated. For
each patch of the new frame, if there is flow present, we teartbe corresponding label from the
previous frame to the current frame, else feature is exdthfrom the patch and fed to our partition-
based algorithm. In this way without even extracting feegurom the current frame, we can label
considerable portion of the frame.

We conduct an experiment to see, what portion of the imagéedabelled by just using temporal
label transfer. The average percentage of image that idlédbeorrectly over testing images is
reported in fifth and sixth column of Table 5.1. We observeat thy just using temporal label
transfer, we can label approximately 40% of the image orethia@asets with significantly lower
percentage error. This saves around 40% of the total timent@khich includes feature extraction
time and classification time), such a reduction in time ii@lun real time systems like robots.

5.5 Adaptive method

The canonical offline or memory-less classifiers tend togeerfpoorly in outdoor environments
because these environments contain huge variations miillation. One of the solutions to this
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Figure 5.5: Tracked patch-labels across three frames.

e
Input Frames R e ijl_l_lj‘J 77777777777

proveamnat Labelled frame:

b

Update Online Classifier every P frames

Figure 5.6: Block diagram of the proposed scheme
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Algorithm 3 Adaptive algorithm
—Training

. I. < current image that needs to be classified.
: P — Number of previous frames to use.
. stepSize < Number of frames from which the patches are to be tracked.

. previousFrames = {I._p,I.—pi1,1c—pi2,...1c}

1

2

3

4

5: newTrainingData « ()
6: for i = 1to | P/stepSize] do

7. j=c—1ixstepSize

8:  Track patches from the previous fram@§ 1, [j12, ...Jj+ stepSize } -

9: forall tracked patches; do

10: Label(p;) < {Most repeating label amongepSize labels

11:  end for

12:  UpdatenewTrainingData with tracked patches and their corresponding labels.

13: end for

14: onlinePMmodel «— Get the model from Partition-based-method trained on

newTrainingData.

— Characterize Terrain of given image

1. Input: Imagel.

2: for all patches of Imagé. do

3: P1 « the posterior probabilities from offinePMmodel
4: P2 < the posterior probabilities from onlinePMmodel
5.  P1= P1+ P2 {Fuse the resul}s
6: Label corresponding to maximum probability inis declared as final label of the patch
7: end for
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problem is to train the algorithm on all possible variatiarfsilluminations, which is impracti-
cal.Also, In general, increasing the amount of trainingaddriastically, decreases the performance
of classifier. These motivate us for developing a terraisgifecation scheme, that is capable of
classifying the terrain in dynamic environments. Previmser based solutions [4] for this problem
are appreciable, but our aim is to classify terrain using/ enbnocular camera, where collecting
online ground-truth is impossible. In this section, we déscour scheme for this problem that
would enable the robot to adapt to unseen images.

In the proposed algorithm ( summarized in Algorithm 3 in pdde), let us denote the current
frame withI;. The previousP frames would bd;_p,I;_p_1...I;_1, Which are already labelled by
our scheme. Using the previously computed flow between ssaeeframes in Section 5.4, we track
the patches from previous frames at an intervakdirames. We usé&’ = 5 in our experiments. For
example, Figure 5.5 shows the tracked patches from threxessive frames. These tracked patches
across frames slowly vary in their illumination and perspéty. For each of the tracked patches, we
have K labels associated from th€ frames. We label the tracked patches accurately by sedectin
the most repeating label from th€ labels. We train another Partition-based classifier onethes
tracked patches on previousframes, we call this classifier as online-partition-baskdsifier. We
update the online-partition-based-classifier evérframes.

To characterize the terrain of the current frame, the past@robabilities of Offline partition
based classifier and online-partition-based-classifieladded (see Figure 5.6 in page 70). In case,
two of the posterior probabilities are close, we choose #iell that is most repeated with in the
neighborhood of the patch.

I mplementation details: In our experiments we train online-partition-based-sifiar every 200
frames, note that while training the captured frames arssifiad independently. Hence online
training and classification can be executed in parallel.oAising RFs internally adds another ad-
vantage. In RF, the final posterior probability is fused heefiseveral posterior probabilities of
several trees, here each tree can be used independentlgace ¢an be executed in parallel. These
advantages make our algorithm parallel and can be impledezificiently using GPUs [124].

5.5.1 Performance Gain Due to Adaptive Method

In this section we show both by quantitative and qualitaiixperimental results the advantages of
having an online classifier. Quantitatively we show deaeaasrrors on 6 data sets, including two
publicly available data sets. Qualitatively we show thosgipns in the image where the adaptive
classifier has corrected wrongly classified patches by thitiBa method. We also show results

from an experimental run where the vehicle reaches theitotfiom where it started its journey.
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Dataset| PM | Adaptive | Error-rate-reduction
O-A | 182 12.7 30.2
O-B | 20.2 15.9 21.2
Oo-C |17.0 13.3 21.7
O-D |175 16.1 07.9
P-A | 07.9 05.3 32.9
P-B | 06.8 06.1 10.2

Table 5.2: Comparison of Adaptive algorithm with Offlineriizon-based-method

Quantitative and qualitative results

Table 5.2 shows the percentage errors of Offline-partiiased-method and Adaptive algorithm
on 6 sequences in columns 2 and 3. Since the Offline-paHitim®ed-method already achieves
a reasonably low percentage errors, further improvemeves Offline-partition-based-method by
Adaptive algorithm can be portrayed in terms of rate of dasesin error, which is given by

% error of PM — % error of Adaptive algorithm
% error of PM

The error-rates were presented in column 4 of Table 5.2. Theféiur rows of the table corre-
spond to 4 sequences of our dataset. In these sequencesbthésrnavigated continuously until
800 frames were captured. Adaptive algorithm is applied ondiesequences independently, where
the online-classifier is updated evar§0 frames. The last two rows show the percentage errors on
datasets by Procopio [4], since their data-set is a sequerardy 100 frames, the online-classifier
is updated everg0 frames. 20 randomly picked images from each sequence wedefastesting.
We observe that the Adaptive algorithm has a huge decreasgdnrate of more than 20% on
almost all the sequences. This clearly shows the supgriokithe proposed scheme.

Figure 5.7 shows some of the test images marked with theakxetl-patches from our dataset.
They represent the labels that are correctly labelled bypfida algorithm, which are wrongly
labelled by offline Partition-method.

(5.1)

Error rate reduction =

Closed loop test

The closed loop test is a means to evaluate if the performahttee adaptive algorithm improves
over time, the knowledge embedded in the classifier is ndicséand has adapted with passage
of time. The improved performance comes by exploiting theadhat comes on the fly, while
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Figure 5.7: Test images marked with red-colored-patcheggesenting the labels that are correctly
labelled by Adaptive algorithm but wrongly labelled by afi Partition method.

simultaneously not forgetting what was learned at bogistést the beginning of the run the robot
has learned based on the offline dataset representing taguist knowledge. As the run progresses
the knowledge is expected to be enhanced. By showing imgrpgeormance upon reaching the
starting location after a run of more than 2km we verify thag Dbjective of learning without
forgetting the past is realized.

In this experiment, we test our Adaptive algorithm in a ctbdeop path (see Figure 5.8 in
page 75)i.e., the Adaptive algorithm is applied on data twies collected by navigating the robot
on the same road twice. 20 random images from each loop abdpmately same locations were
used for testing. Note that not even one of these images vem@ in the initial offline training
dataset. We observe that the mean error on the round-1 is\i6@6e as the mean error for round-2
was observed to be 13%. The decrease in percentage errobaawved mainly because, the adap-
tive algorithm slowly adapts itself to the new environmenBecond row of the Figure 5.8 shows
the test image along with the predicted labelled images franfirst and second loops. We observe
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Figure 5.8:1,; row: Path navigated by robot in a closed loop, marked in gosdor. 2,,, row: Test
image with predicted labelled images from the first and sedoaps.

that the wrongly labelled mud(orange) patches in first logpoeing correctly labelled in the second
loop.

5.6 Discussion

This chapter presented a novel partition-based algorittmelssification of outdoor terrains using
monocular camera. The patrtition-based algorithm is fast iasbuild on top of Random Forests.
Three experiments were conducted verifying different atpef the algorithm. The proposed algo-
rithm is generic and enhanced the percentage error of reselhssifiers by approximately 10%.
The partition-based algorithm was extensively tested ardataset and on other publicly available
datasets and its efficacy established.
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Partition-based method was extended to Adaptive algortiirfearning from the data by fruit-
fully exploiting the data that was obtained on the fly. Conts@pay drift over time, offline classifiers
may not adapt to these drift as effectively as a classifidrals® adapts online. The adaptive algo-
rithm was tested on several data sets, where an averageadedreerror rate of around 20% was
observed to portray its advantages. Further we show reshiése a vehicle upon coming back to
the same starting point after traversing a loop of more tHan Enproves its performance during
the second traversal of the loop. This demonstrates thaadbptive classifier is able to adapt to
changes that occur during a traversal while holding on totwes learned at bootstrap or before
the commencement of navigation. The future scope of our Wwimtkikdes much better processing of
the video data using complex temporal clues along with fug@ometric and appearance clues.
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Chapter 6

Conclusions and Future Work

We have put forth new techniques in two different areas ohsdaterpretation namely, scene re-
construction in computer vision and scene recognition ibileaobotics. Our proposed framework
deals with reconstruction of piecewise planar scenes fridfos in much the same way as Bundle
Adjustment for point sets. Multiple planes and views arestalito consideration and algorithm
does not impose the constraint that all the planes shouldsifdersin a single view. Furthermore,
the presence of inter-image homographies present usdfustioess to outliers, that may not have
been pruned in the initial stages of registration and howrgalgy computation. This makes it a useful
“bridge” between initialization approaches and non-linegnimization methods.

Next we addressed the problem of scene recognition in moblietics. Due to unavailability
of existing datasets for experiments and comparisons, @ggped our own dataset. Our annotated
dataset comprises of outdoor rural and urban terrains, wbtinitain huge varieties of scenes un-
der varied environmental conditions. We have reportednskte comparison of various classifiers
operating on features for classification of outdoor tesaising only monocular camera. We have
analysed the performance of different classifiers and stltlie effect of various parameters such
as the richness of the features and the patch size on théfielapsrformance. We reported that
Random forests trained on weighted color cum texture feagiires the best baseline result, with
an error of 25.5% compared to other classifiers such as Naiwye® Artificial neural networks,
K-nearest neighbors and Support vector machines. On othicly available dataset the baseline
error rate was 18.2%. We conducted various empirical sudith state-of-the-art machine learning
techniques and various parameters of the problem.

We presented a novel and fast partition-based algorithnclssification of outdoor terrains
using monocular camera. The speed of partition-baseditigois attributed to Random Forests on
top of which the algorithm is built. Several experiments &eonducted to ascertain the usability
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of our method. Our algorithm is generic and has reduced theep&age error of base-line Random
Forest classifier by approximately 10%. We have tested oditipa-based algorithm extensively

on our dataset and on other publicly available datasets lidata its efficacy. We optimize the

performance of our algorithm by limiting it to regions whettee temporal label transfer is not
applicable.

Partition-based method was extended to Adaptive algortiirfearning from the data that was
obtained on the fly. The adaptive algorithm was tested orrakdata sets and an average decrease
in error rate of around 20% demonstrated its advantages.|$ecanducted experiments in which
a vehicle comes back to the same starting point after trimges loop of more than 2km. An
improved performance is observed during the second tralvefghe loop. This indicates that the
adaptive classifier is capable of adapting to changes thatraturing a traversal while retaining
what was learned at bootstrap or before the commencemeatigfation.

6.1 Future work

The proposed framework consists of quasi-convex objeétimetions, though quasi-convex prob-
lems have a guaranteed optimal solution, they are iteraiiveature. One could investigate in de-
signing convex objective functions, which would have anesad&ige of non-iterative(fast) solutions,
making them much suitable for faster computation requirgdvideos. The proposed objective
functions show robustness to noise, they may be still madghmabust using existing literature on
convex optimization [114] One important concern with argagithm is its ability to handle outliers.
Currently our algorithm handles only the noise in the ddte gxisting framework could be extended
to handle outliers withl.., horm using convex formulations. This investigation mayadaielp in
solving other problems of geometric vision. Investigatthg design of a hybrid algorithm which
is based on objective functions from both Bundle adjustra@dtConvex optimization frameworks
also stands as important extension. Recent literature actiPal Global Optimization [105, 115]
may be utilized to improve the running time of our algorithitVe however believe that our work
lays down new and important directions for the problem ohplareconstruction.

In partition-based algorithm, currently the output préidics from different classifier sets are
fused by using simple statistical mode operator. This cbelénhanced by using weighted-map for
each classifier set followed by integrating the results femoh classifier set. Also we could decrease
the computational time of the partition-based algorithnubing the classifier sets dynamicailg.,
one could use few classifier sets to start and use otherfidassts only if the predicted labels are
different. The Adaptive algorithm could be enhanced ushegrtewly introduced semi-supervised
machine learning techniques especially the semi-supghRandom Forests. We could process the
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video data using complex temporal clues and then integeengtric and appearance clues in an
optimization framework.
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