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Abstract

The past decade has witnessed the emergence of participatory Web and social media, bringing to-
gether people in many creative ways. Millions of users are playing, tagging, working, and socializing
online, demonstrating new forms of collaboration, communication, and intelligence that were hardly
imaginable just a short time ago. Social Media refers to interaction among people in which they cre-
ate, share and exchange information and ideas in virtual communities and networks. Social Media also
helps reshape business models, sway opinions and emotions, and opens up numerous possibilities to
study human interaction and collective behavior in an unparalled scale.

In the study of complex networks, a network is said to have community structure if the nodes can
be easily grouped into sets of nodes (even overlapping) such that each set of nodes is densely con-
nected internally. Community structure are quite common in real networks. Social Networks often
include community groups based on common location, interests, occupation etc. Metabolic Networks
have communities based on functional groupings. Citation Networks form communities by research
topic. Being able to identify these sub-structures within a network can provide insight into how network
function and topology affect each other.

In this thesis, we design an end-to-end framework for identifying communities from raw, noisy
social media data. The framework is composed of two important phases. First, we introduce a new
method of converting the raw, noisy social media data into a weighted entity-entity co-occurrence based
consistency network. This includes a simple iterative noise removal procedure for cleaning the entity
consistency network by removing noisy entity pairs. Secondly, we propose an approach for identifying
coherent communities from the weighted entity network, by introducing novel notions of community-
ness and community, based on eigenvector centrality.

We use this framework to solve three different problems from two distinct domains. The first problem
involves detecting communities from raw social media data and showing the application of the commu-
nities discovered in a recommendation engine setting. We use the framework for converting the raw data
into a clean network and propose a highly parallelizable seed based greedy algorithm to detect as many
communities as possible from the weighted entity consistency network. Our framework for commu-
nity detection is unsupervised, domain agnostic, noise robust, computationally efficient and can be used
in different Web Mining applications like Recommendation Systems, Topic Detection, User Profiling
etc. We also design an recommendation system to evaluate our framework with existing state-of-art

xi



xii

frameworks [79, 23, 107] on a variety of large real-world social media data - Flickr, IMDB, Wikipedia,
Bibsonomy, Medline. Our results outperform other frameworks by a huge margin.

The second problem is, given a set of communities of discovered by traditional community detection
methods [76, 47], we need to identify loose communities among them and partition them into compact
ones. Here, we use the second phase of our framework to identify such loose communities using our no-
tion of community-ness and propose an algorithm for partitioning such loose communities into compact
ones. We illustrate the results of our algorithm over Amazon Product and Flickr Tag data and compare
its superiority over the traditional community detection methods in a recommendation engine setting.

The third problem is about showing the application of such framework in an Image Annotation sce-
nario in presence of noisy labels. The problem of image annotation is defined to be, given an unknown
image, we need to predict labels which best describes the semantics of the image. This problem is best
solved in a supervised nearest neighbor setting, and we show how our framework can be used to address
this problem, when the labels associated with training images can be noisy and redundant.
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Chapter 1

Introduction

1.1 Motivation

Networks are omnipresent on the Web. The most profound Web network is the Web itself comprising
billions of pages as vertices and their hyperlinks to each other as edges [46]. Moreover, collecting and
processing the input of Web users (e.g. queries, clicks) results in other forms of networks, such as
the query graph [5]. Finally, the widespread use of Social Media applications, such as Bibsonomy1,
IMDB2, Flickr3 and YouTube4, is responsible for the creation of even more networks, ranging from
folksonomy networks [64] to rich media social networks [57]. Since networks originating from Social
Media data are of particular interest to this study, we shall collectively refer to them as Social Media
networks. Figure 1.1 shows example of different social media companies, which focus of different
aspects of social media.

Despite the differences of Social Media networks with respect to the entities and the type of relations
they model, they present a significant source of intelligence since they encode the online activities and
inputs of masses of Social Media participants. Not only is it possible by analyzing such networks to gain
insights into the social phenomena and processes that take place in our world, but one can also extract
actionable knowledge that can be beneficial in several information management and retrieval tasks, such
as online content navigation and recommendation. However, the analysis of such networks poses serious
challenges to data mining methods, since these networks are almost invariably characterized by huge
scales and a highly dynamic nature. Figure 1.2 shows the most popular social networks of the world as
of December 2010. It could seen that most of globe is connected to each other by one or more these
social media channels.

A valuable tool in the analysis of large complex networks is community detection. The problem that
community detection attempts to solve is the identification of groups of vertices that are more densely
connected to each other than to the rest of the network. Detecting and analyzing the community structure

1http://bibsonomy.org
2http://imdb.com
3http://flickr.com
4http://youtube.com
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Figure 1.1 Social Media Landscape, showing the different aspects of social media.
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Figure 1.2 World Map showing the most popular social networks different parts of the world.
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of networks has led to important findings in a wide range of domains, ranging from biology to social
sciences [33] and the Web [46, 26]. Such studies have shown that communities constitute meaningful
units of organization and that they provide new insights in the structure and function of the whole
network under study. Recently, there has been increasing interest in applying community detection on
Social Media networks not only as a means of understanding the underlying phenomena taking place in
such systems, but also to exploit its results in a wide range of intelligent services and applications, e.g.
recommendation engines, automatic event detection in Social Media content.

In this thesis, we present a robust end-to-end framework for mining coherent communities from
social media data of different domains like Bibsonomy, Flickr, IMDB, Medline and Wikipedia. We
illustrate the application of the communities discovered by our framework to tasks of recommendation
and image annotation.

1.2 Challenges

The major challenges usually encountered in the problem of community detection in social media
data are highlighted below:

• Scalability
The amount of online social media content over the internet is rising everyday at a tremendous
rate. Currently, the size of social networks are in scale of billions of nodes and connections. As
the network is expanding, both the space requirement to store the network and time complexity
to process the network would increase exponentially. This imposes a great challenge to the con-
ventional community detection algorithms. Traditional community detection methods often deals
with thousands of nodes or more.

• Heterogeneity
Raw social media networks comprise multiple types of edges and vertices. Usually, they are
represented as hypergraphs or k-partite graphs. Majority of community detection algorithms are
not applicable to hypergraphs or k-partite graphs. For that reason, it is common practice to extract
simplified network forms that depict partial aspects of the complex interactions of the original
network.

• Evolution
Due to highly dynamic nature of social media data, the evolving nature of network should be taken
into account for network analysis applications. So far, the discussion on community detection has
progressed under the silent assumption that the network under consideration is static. Time-
awareness should be incorporated in the community detection approaches.

• Evaluation
The lack of reliable ground-truth makes the evaluation extremely difficult. Currently the perfor-
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mance of community detection methods is evaluated by manual inspection. Such anecdotal eval-
uation procedures require extensive manual effort, are non-comprehensive and limited to small
networks.

• Privacy
Privacy is a big concern in social media. Facebook, Google often appear in debates about privacy.
Simple annoymization does not necessarily protect privacy. As private information is involved, a
secure and trustable system is critical. Hence, lot of valuable information is not made available
due to security concerns.

1.3 Key Contributions

The key contributions of this thesis are:

• Developing an end-to-end framework for detecting communities from noisy social media data.
Over this process, we propose a simple noise removal procedure for cleaning raw social media
network as well as introduce novel notion of community-ness and community in weighted net-
works.

• Designing a community-based recommendation system to show the superiority of our framework
over other community detection methods.

• Building an algorithm for identifying loose communities discovered by traditional community
detection methods and partitioning them into compact communities.

• Showing application of community detection framework in the task of image annotation.

1.4 Thesis Overview

The remainder of the thesis is organized as follows. In the next chapter, we give background on what
social media is, how networks are created and also on the definition of community, and some of the
recent works in community detection in social networks. We also talk about some application of com-
munities in several social network analysis tasks. Chapter 3 presents our complete framework of mining
communities from social media data. The framework contains two major modules: (i) First module
describes the process of converting raw social media data into a weighted entity-entity co-occurrence
consistency network. Here, we also introduce an iterative parametric noise removal procedure, which
contributes as an important part of the framework. (ii) In the second module, we describe our mecha-
nism of mining coherent communities from the weighted entity network. For this, we first introduce our
measure of community-ness called coherence and our notion of community called Soft Maximal Clique,
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based on coherence. We also propose a greedy grow-shrink algorithm for exhaustively discovering al-
most all soft maximal cliques from the weighted network. Detailed evaluations of different modules
of the complete framework is discussed in chapter 4, along with application to naive community-based
entity recommendation on five different collaborative and expert tagging systems of different nature.
In chapter 5, we propose an algorithm for compacting large and loose communities discovered by tra-
ditional community detection methods and show its effectiveness over Amazon and Flickr data. In
chapter 6, we exclusively illustrate the application of coherence-based concept detection model in the
task of image annotation in presence of noisy labels. Finally, in chapter 7 we draw conclusions from
this thesis and also explore some of the possible avenues for future work.
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Chapter 2

Background

2.1 Social Media

Social media refers to the means of interactions among people in which they create, share, and
exchange information and ideas in virtual communities and networks. Andreas Kaplan and Michael
Haenlein define social media as “a group of Internet-based applications that build on the ideological and
technological foundations of Web 2.0, and that allow the creation and exchange of user-generated con-
tent.” [43]. Furthermore, social media depends on mobile and web-based technologies to create highly
interactive platforms through which individuals and communities share, co-create, discuss, and mod-
ify user-generated content. It introduces substantial and pervasive changes to communication between
organizations, communities, and individuals [45].

Social media differentiates from traditional/industrial media in many aspects such as quality, reach,
frequency, usability, immediacy, and permanence. There are many effects that stem from internet usage.
According to Nielsen, internet users continue to spend more time with social media sites than any other
type of site. At the same time, the total time spent on social media in the U.S. across PC and mobile
devices increased by 37 percent to 121 billion minutes in July 2012 compared to 88 billion minutes in
July 2011 [72]. For content contributors, the benefits of participating in social media have gone beyond
simply social sharing to building reputation and bringing in career opportunities and monetary income,
as discussed in Tang, Gu, and Whinston [94].

2.1.1 Classification of Social Media

Social media technologies take on many different forms including magazines, Internet forums, we-
blogs, social blogs, microblogging, wikis, social networks, podcasts, photographs or pictures, video,
rating and social bookmarking. Technologies include: blogs, picture-sharing, vlogs, wall-postings,
music-sharing, crowdsourcing and voice over IP, to name a few. Many of these services can be inte-
grated via social network aggregation platforms. By applying a set of theories in the field of media re-
search (social presence, media richness) and social processes (self-presentation, self-disclosure) Kaplan
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and Haenlein created a classification scheme in their Business Horizons (2010) article, with six different
types of social media: collaborative projects (for example, Wikipedia), blogs and microblogs (for exam-
ple, Twitter), content communities (for example, YouTube and DailyMotion), social networking sites
(for example, Facebook), virtual game worlds (e.g., World of Warcraft), and virtual social worlds (e.g.
Second Life). However, the boundaries between the different types have been increasingly blurred. For
example, Shi, Rui and Whinston (2013) argues that Twitter, as a combination of broadcasting service
and social network, is better to be classified as a ”social broadcasting technology.” [88]

2.1.2 Elements of a Social Media Network

The ecosystem of Social Media applications comprises a wide range of objects that are associated
to each other through numerous types of interactions and relations. Social Media networks provide an
elegant representation of Social Media data, containing online objects as their vertices and the rela-
tions/interactions among them as edges. The vertices of Social Media networks can represent different
types of actors, such as users, content items (e.g. blog posts, photos, videos), and even meta-data items
(e.g. topic categories, tags). In addition, the edges of Social Media networks can be of different types,
such as simple, weighted, directed and multi-way (i.e. connecting more than two entities) depending on
the network creation process (discussed below).

In terms of notation, Social Media networks employ the typical graph notationG = (V,E), whereG
stands for the whole network, V stands for the set of all vertices and E for the the set of all edges. Due
to the different types of vertices and edges in such networks, it is common to consider sets of vertices
and edges within V and E that contain vertices and edges of the same type. For instance, in the case
of a photo sharing and tagging network, one can consider the set of vertices V to comprise the users,
photos and tags of the system, i.e. V = {U,P, T}. Similarly, the set of edges in such an application
would comprise the set of user-photo, photo-tag and user-tag associations, E = {UP,PT,UT}.

2.1.3 Social Media Network Creation

In practice, the creation of Social Media networks starts from a set of transactions that are performed
and recorded in Social Media applications. Every such transaction typically involves different entities;
for instance a tag assignment in Flickr involves a user, a photo and a tag, while a comment on a blog
article involves the commenter, the blog article and the comment text. In that way, an association (edge)
is formed between the items of the same transaction on an underlying network, so that the resulting
Social Media network constitutes a direct representation of a subset of online transactions.

Since raw Social Media networks comprise multiple types of vertices and edges(some of which can
be multi-way, i.e. link more than two vertices), they are mathematically represented by hypergraphs.
Alternatively, if each hyper-edge of the graph is reduced to the pairwise connections among the k dif-
ferent types of nodes, the hypergraph is reduced to a k-partite graph. The majority of network analysis
methods, and community detection in particular, are not applicable to hypergraphs or k-partite graphs.

8



Recorded 
Transactions

Raw Social Media 
Network

Clean Simplified 
Network

Figure 2.1 Typical lifecycle of a Social Media network: A set of transactions involving users, content
and meta-data lead to the formation of a raw Social Media network. Typically, this network is simplified
before any sophisticated analysis (e.g. community detection) takes place.

For that reason, it is common practice to extract simplified network forms that depict partial aspects of
the complex interactions of the original network. Such networks are typically one- or two-mode (i.e.
contain only one or two vertex types) and contain simple edges (i.e. connecting two vertices), which
makes possible the application of numerous network analysis techniques. In summary, the typical life-
cycle of a Social Media network (Figure 2.1) involves its creation from a set of recorded transactions
and its transformation into some suitable form for the analysis that follows.

Folksonomies constitute an extensively studied example of Social Media networks. A folksonomy
comprises three types of entities, namely users, resources and tags [64]. Starting from the tag assign-
ments of users, i.e. transactions involving a user, a resource and a tag, a raw folksonomy network is
formed, comprising three types of vertices and three-way relations among them. Subsequently, simpler
(two-mode or one-mode) network representations are derived by use of projection operations [64, 84].
The raw tri-partite folksonomy network is transformed to a simple tag association network by consider-
ing an edge between two tags when they are used to tag the same resource. Other variants of deriving tag
association networks from folksonomies are described in the works by Cattuto et al. [16], and Yeung et
al. [109].

A more sophisticated paradigm for Social Media networks, termed meta-graph, is presented by Lin
et al. [57]. The vertices of a meta-graph are organized in facets and interactions among different facets,
which can be multi-way, constitute the edges of the meta-graph. Another network model is proposed by
Agichtein et al. [1] for representing users, questions and answers in a community question-answering
application. In conclusion, different forms of Social Media networks are possible depending on the
transactions of the Social Media application under study, the modelling requirements of the problem, as
well as the capabilities of the network analysis method at hand.

2.2 Communities

Due to the abundance of related works and the variety of adopted perspectives, there is no unique
and widely accepted definition of community. Community definitions are formulated with reference
to the network structure of the system under study and are commonly bound to some property either
of some set of vertices (local definitions) or of the whole network (global definitions). However, at a
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different level, one should also define a community with respect to the domain under study, which in this
survey comprises the realm of Social Media systems. For that reason, we will first provide a qualitative
definition of Social Media communities and subsequently we will link this definition to established
network-based definitions of quantitative nature.

At the most abstract level, given a Social Media network G = (V,E), a Social Media community
can be defined as a subgraph of the network comprising a set VC ⊆ V of Social Media entities that are
associated with a common element of interest. This element can be as varied as a topic, a real-world
person, a place, an event, an activity or a cause. For instance, in a blogging network, the set of all
bloggers, articles, tags and comments related to the topic of renewable energy constitutes the respective
community. Similarly, in a photo sharing application, the set of users, photos and tags that are associated
with the island of Crete form a distinct community.

Social Media communities can further be described as explicit or implicit. Explicit communities
are created as a result of human decision and acquire members based on human consent. Examples of
explicit Social Media communities are Facebook and Flickr Groups. Implicit communities, on the other
hand, are assumed to exist in the system and wait to be discovered. Implicit communities are particularly
important for two reasons: (a) they do not require human effort and attention for their creation and (b)
they enable the study of emerging phenomena within Social Media systems.

2.2.1 Community Structure and Attributes

Across all community definitions, a set-based view of communities is as follows: community was
seen as a set of vertices and the membership of each vertex in a network was implicitly assumed to be
the result of a boolean decision. In reality, and especially in the context of Social Media, the concept of
community and community membership may be more complicated. For instance, in several of the above
community definitions, e.g., most of the local ones [19, 60], the one based on Clique Percolation [76],
and others [35, 17], it is possible for communities to overlap (Figure 2.2(a)). Community overlap is
important for Social Media networks since it is common for Social Media entities to participate in
multiple communities; for instance, a user may be affiliated to his/her family, friends and professional
community.

In addition, there are other attributes that vertices of a network may have in relation to communi-
ties. For instance, different vertices may participate with varying degrees in a community depending
on their centrality within it (Figure 2.2(b)). Moreover, vertices may have discrete roles: for example,
Xu et al. [104] define two roles (hubs and outliers) for vertices that are not assigned to any commu-
nity. Hubs are connected to multiple communities and act as liaisons, thus enabling interactions among
communities. Outliers are connected to a single community through a single link, therefore they are
usually considered as noise. Community-based vertex roles are also discussed by Scripps et al. [85].
Specifically, the roles roles of loners, big fish, bridges and ambassadors are defined (Figure 2.2(c)).

Finally, it is possible to impose hierarchical (Figure 2.2(d)) or multi-scale structures on communities.
Community organization may be considered at different scales in a variety of systems. For instance, a
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Figure 2.2 Several attributes that may characterize community structure: (a) overlap,(b) weighted mem-
bership, (c) vertex roles within/across communities,(d) hierarchical organization.

set of users of a Social Media application may be organized in a community focused on a very specific
topic (e.g. fans of a particular indie-rock band) and at the same time they may be considered as members
of a broader community (rock music). For Social Media systems, the consideration of multiple levels
of community organization typically does not involve any kind of hierarchical organization since the
constraints imposed by the hierarchical model are too restrictive for modelling the uncontrolled and
emerging nature of Social Media phenomena.

2.2.2 Community Detection Methods

Community Detection is a broad field with many applications and approaches. An in-depth discus-
sion on community detection can be found in Fortunato’s work [27] and in a more recent survey by
[102]. Various types of communities, communityness, and approaches for finding communities have
been proposed in [78].

The key to a community detection algorithm is its definition of community-ness, the strength of a
community. The main definitions of community-ness proposed in the literature can be broadly classi-
fied into four categories: (i) Internal Community scores such as Number of edges, Within Edge density,
Average degree [80], and Intensity [74] (for weighted networks). They all use an aggregate property of
the edges within the community. (ii) External Score such as Expansion [80], Cut Ratio [27], and be-
tweenness centrality [33, 70]. These use an aggregate property of the edges connecting the community
with the rest of the network, (iii) Internal + External scores such as Conductance [87], Normalized
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Cut [87], etc. that combine properties of both the internal edges and external edges of the community,
and (iv) Network model based scores such as Modularity [66] and its variants such as local modular-
ity [18], and subgraph modularity [60]. These use a null hypothesis such as a random network with
similar macro properties as the actual network. Most of these can be applied to both unweighted and
weighted networks. Almost all of these measures have been built directly using edge weights and cap-
ture some property of the edge structure in the sub-network. Our community-ness measure coherence,
is based on the relative importance of the nodes in the sub-network, which is calculated indirectly using
edge-weights.

The state-of-art clique percolation algorithm (CPM) of Palla et al. [76] finds overlapping commu-
nities by identifying the most densely connected parts. Farkas et al. [23] extended CPM for weighted
graphs by considering only those k-cliques, whose sub-graph intensity [74] exceeds a threshold during
the percolation step.

Newman [66] introduced the notion of modularity as a measure of profoundness of community
structure in a network. This spawned a whole class of modularity maximization methods for community
detection [68, 19, 62, 21, 69]. A general problem with these methods is their tendency to produce
clusters with a high skewed size distribution, leading to the conclusion that communities of small scales
are likely to be undetected using modularity maximization [32].

Methods based on label propagation [81, 103], in which nodes with same label form a community,
had been extended to overlapping community detection by allowing a node to have multiple labels.
Local objective maximization based approaches like LFM [47], EAGLE [86], GCE [52], OSLOM [48],
expands a community from a random seed node to form a natural community until the fitness function is
locally maximal, also exist. Most of them rely on a local benefit function that characterizes the quality
of densely connected group of nodes. his usually results in significant number of outliers or singleton
communities.

Ahn et al. [4] proposed clustering links instead of nodes using line graph of an undirected graph for
community detection. They chose the jaccard index of the neighbourhoods of two nodes for analyzing
links, which brought a whole new perspective for overlapping community study. Recently proposed
community affiliation network models [105, 107] claim that the community overlaps are more densely
connected than the non-overlapping parts and build models on bipartite node-community affiliation
networks and can capture densely overlapping, non-overlapping and hierarchical nested communities in
massive networks.

2.3 Applications of Communities

2.3.1 Topic Detection in Collaborative Tagging Systems

The huge amount of tags attached to online content by users of Social Media applications creates the
need for imposing organization on the flat tag spaces of collaborative tagging applications. This can be

12



directly achieved by grouping tags based on the topic they are associated with. There have been several
recent works that attempt to derive meaningful clusterings of tags that correspond to topics of social
interest. For instance, Begelman et al. [6] were among the first to apply community detection methods,
namely spectral modularity maximization, to identify interesting tag clusters. Similarly, tag clustering
is pursued by means of a variant of the modularity maximization method of Newman [74] on enterprise
folksonomies [89].

2.3.2 Tag Disambiguation

Due to the unrestricted and informal nature of tagging, there are numerous cases where the use of a
single tag in isolation is not sufficient to convey the intended semantics. For that reason, tags need to
be considered in context in order to disambiguate their meaning. Recently, several research efforts (Au
Yeung et al. [109], Specia and Motta [90]) attempted to address the problem of tag disambiguation by
use of community detection. Starting from a particular tag, Au Yeung et al. [109] derive several Social
Media networks, e.g. a network of documents that have been tagged with the particular tag by the same
user, and the community detection method of Newman [67] is applied to extract communities of tags or
documents (that eventually lead to tags) that correspond to the different senses of a tag. This approach
was demonstrated to yield superior performance compared to consulting some static external source of
information such as WordNet.

2.3.3 User Profiling

Personalized search and recommendation constitute an additional information retrieval problem that
can benefit from the use of community detection. More specifically, clusters of tags have been demon-
strated to act as effective proxies of users’ interests. Gemmell et al. [30] base the ranking performance
of a personalized search mechanism on tag clusters outperforming conventional ranking schemes. The
tag clusters were extracted by use of a variant of hierarchical agglomerative clustering. However, since
this scheme requires manual parameter tuning that may have significant impact on performance (as
remarked by the authors), a viable alternative would be to use some community detection to identify
tag clusters. Tsatsou et al. [95] integrate the results of tag community detection in a personalized ad
recommendation system and compared against conventional nearest-neighbor tag expansion schemes.

2.3.4 Event Detection

Events constitute an important unit of organization for Social Media content, since a large part of user
contributed content revolves around real-world events. Community detection has found applications in
the detection and tracking of events from social text streams. For instance, the framework presented by
Zhao et al. [111] incorporates textual, social and temporal aspects of blog feeds with the goal of tracking
events. The N-cut graph partitioning method of Shi and Malik [87] is used twice in this framework: once
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to cluster a graph of blog posts connected by their textual similarity into topics, and at a second level, to
cluster a graph of temporal activity profiles among users (created by their comments) into communities
that correspond to real-world events.
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Chapter 3

COOCMINER: Mining Coherent Communities in Entity-set Data

Entity-set data, such as market baskets in retail or tagsets in text, is growing at a tremendous rate in
many domains. A retail market basket comprises of products purchased by a customer in a store visit.
A tagset comprises of a set of keywords describing an object (e.g. YouTube video, Flickr image, or
a movie, etc.). Entity-set data mining attempts to discover novel patterns, create actionable insights,
engineer predictive features, and drive intelligent decisions from such data.

More than a decade ago, Frequent Itemset Mining (FISM) [2] powered by the Apriori algorithm [3]
became the standard for finding large and frequent itemsets in entity-set data. As the vocabulary and
data size grew, scaling the original Apriori algorithm became the primary focus of research. This
lead to a number of innovations in scalable data structures and algorithms, some of which are FP-
Growth [37], Eclat algorithm [110], Apriori by Borgelt [8], kDCI algorithm [59], and lcm [96]. Several
other paradigms such as rare itemset mining [91, 92], indirect association mining [98], etc, emerged to
address limitations of, and expand applications of the original FISM framework.

A common observation in traditional (direct) FISM is that it generates a very large number of noisy
itemsets of which very few are really useful, novel, or actionable. In case of indirect association mining,
where (potentially noisy) direct links are used to induce indirect associations, there is always a danger
that the noise gets exaggerated and spurious indirect associations get created.

We start with the following definitions, observations and assumptions:

• Define Logical concept as a set of items that completes a customer intent in retail domain or
semantic concept in a text or vision domain.

• These logical concepts are latent in the data and the goal of LISM is to discover them in a
completely unsupervised fashion.

• The observed entity-set data may be best described as a mixture-of, projections-of, latent logical
concepts, i.e. it has two fundamental properties: the mixture property and the projection property.

– Mixture property: In retail, each market basket might contain more than one customer
intent. Similarly, in text domain, each tagset might contain more than one semantic concept.
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Figure 3.1 A hypothetical market basket (solid black circle) composed of items from two logical con-
cepts (red dotted circles), representing latent customer intentions.

– Projection property: In retail, each market basket contains only a subset of products asso-
ciated with a customer intent. Similarly, in text domain, each tagset contains only a subset
of keywords associated with a semantic concept. In other words, a complete logical concept
is rarely present in its entirety in the entity-set data.

Figure 3.1 shows a hypothetical example of the mixture-of, projections-of, latent customer intents
in retail. Consider a market basket with four products (shown in solid black circle). These products
come from two different customer intents, each represented by a logical group of products (shown in
red dotted circles). In other words, (a) the market basket is composed of products from more than one
customer intent (mixture property) and, (b) the market basket does not contain all products in either of
the two intents (projection property). It only contains a subset of products associated with each intent.
This could happen for various reasons: the customer already has the other items in those intents, she
might purchase the remaining items in the intents elsewhere or at some other time, or she might not even
be aware that the other items complete her intents, etc.

The noise due to the mixture property and the incompleteness due to the projection property make it
challenging to discover the latent logical concepts from entity-set data. A complete logical concept will
have a very low support as it hardly occurs in the data - thanks to the projection property. Also, each
frequent itemset discovered by the traditional FISM framework might have sufficient noise in it - thanks
to the mixture property. Finally, also note that some logical items might occur more rarely in the data
than others. In fact in some cases it might be more useful to find rare itemsets [91] rather than frequent
itemsets.

It should be fairly obvious from this discussion as to why frequent itemset framework is not a natural
framework for discovering logical concepts and why we need a radically different framework for finding
logical concepts in such data. It should also be obvious that unless we effectively deal with the mixture-
of-intents noise, in the entity-set data, any indirect association mining will suffer from the propagation
of this noise to higher order associations.

16



They are broadly two major approaches for finding logical concepts from entity-set data. One ap-
proach is the traditional topic modelling LDA [79], a very well known method in the text/web-mining
community. But they may not be directly applicable to entity-set data for several reasons: (i) LDA is
more suitable when the entity-set data is much larger as in bag-of-words in text or bag-of-visual-words
in images, (ii) LDA depends on the weight (term frequency of a term in the document) of each entity
in the entity-set but entity-sets inherently do not have such weights - an entity is either present or not
present in the entity-set. (iii) The scaling and convergence properties of LDA will make it prohibitively
costly to apply on such thin data, where the number of entity-sets is typically much larger than the size
of each entity-set, and (iv) finally, LDA requires us to specify apriori the number of latent concepts to
discover - something that is already hard in the text domain and is even harder in the retail domain.

The other approach is to convert the raw entity-set data into an entity-entity network and mine over-
lapping communities from this network. Community detection is a well studied paradigm and is used in
a variety of domains such as physics, biology, computer science, social networks analysis, etc. It can be
used to discover contextually or semantically related entities in co-occurrence data and borrows ideas
from multiple disciplines such as information theory, graph theory, data mining, and social network
analysis. Detecting communities [82, 27] in real-world networks is a hard and important problem, and
has received a lot of attention.

Detecting communities [82, 27] in real-world networks is a hard and important problem, and has
received a lot of attention. Real world networks contain overlapping communities where an entity (an
ambiguous keyword in a tag network) might belong to multiple communities. Maximal cliques are a
fundamental notion of tight overlapping communities in unweighted networks as they represent largest
possible communities with the greatest possible edge density. Another consideration in community
detection methods is their ability to work on weighted networks as the weights might contain significant
information that should not be lost by thresholding them to unweighted networks.

Community-based approaches also face some issues while discovering concepts from entity-set data.
First, the process of converting raw entity-set data into a robust entity network is not given enough im-
portance. Usually, the entity-entity co-occurrences are directly used in the network generation process,
and the projection and mixture properties of entity-set data is ignored. Second, while most community
detection methods [87, 66, 81] can be naturally extended to weighted networks, there has been limited
exploration of the notion of maximal clique on weighted graphs fundamentally, because cliques are
defined only on unweighted graphs. Yang et. al. [106], as part of their SNAP library, proposed some
benchmark entity networks along with ground truth communities. But, these networks were unweighted.

In this thesis, we propose a simple and intuitive end-to-end framework called COOCMINER (Co-
occurrence Miner) which addresses the mixture and projection properties in a novel fashion and discov-
ers logical concepts from entity-set data by (a) systematically generating a noise-robust weighted entity
co-occurrence network from possibly noisy annotated entity-set data, and (b) detecting communities in
such weighted networks, using a novel definition of community, Soft Maximal Cliques (SMC). The
SMCs discovered by COOCMINER constitute the logical concepts.
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3.1 Generating Weighted Entity Consistency Network

COOCMINER first starts by first converting the raw entity-set data into robust entity network, some-
thing that most community detection methods do not give importance. It aggressively and systemati-
cally, removes noise in the network by (i) ignoring edges with low co-occurrence counts, (ii) normal-
izing edge weights by node priors to get more meaningful measures of co-occurrence strength between
entities, and most importantly, (iii) applying a novel iterative denoising step that further cleans the
entity co-occurrence noise.

3.1.1 Counts Statistics

Let V = {vm}Mm=1 denote the vocabulary of all unique entities in the data. Let X denote the entity-
set data with N data points: X =

{
x(1),x(2), ...,x(N)

}
, where x(n) = {x(n)1 , x

(n)
2 , ..., x

(n)
Ln
} and Ln is

the size of the nth entity-set, x(n). Three types of count statistics are computed from the entity-set data:

Co-occurrence counts defined over each pair of entities, (α, β) ∈ V×V and denoted by ψ (α, β) =

ψ (β, α) is the number of entity-sets in which both entities “co-occur”:

ψ (α, β) =
N∑
n=1

δ
(
α ∈ x(n)

)
δ
(
β ∈ x(n)

)
, (3.1)

(where δ(bool) is 1 if bool is true and 0 otherwise). The resulting M ×M (M = |V| = vocabulary size)
co-occurrence counts matrix, Ψ = [ψ(α, β)] is sparse and symmetric.

Marginal counts, ψ (α), for all unique entities α ∈ V is defined as the number of co-occurrence
pairs in which entity α occurred with some other entity in the entity-sets data. This is obtained simply
by adding each row of the full co-occurrence counts matrix.

ψ(α) =
∑
β∈V

ψ(α, β). (3.2)

Total Counts, ψ0 is defined as the total number of pairs in which some entity co-occurred with some
other entity in the entity-set data. This is obtained by adding all the elements in the upper triangular
co-occurrence counts matrix1.

ψ0 =
1

2

∑
α∈V

ψ(α) =
1

2

∑
α∈V

∑
β∈V

ψ(α, β) (3.3)

Co-occurrence and marginal probabilities are computed from these counts as2:

P (α, β) =
ψ(α, β)

ψ0
, P (α) =

ψ(α)

ψ0
(3.4)

1Note that we divide this sum by 2 to only take the upper triangular part of the symmetrical matrix to avoid double counting.
2Smoothing may also be applied at this stage.
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(a) Bibsonomy (b) Flickr

Figure 3.2 Correlation between 17 different consistency measures observed in Bibsonomy and Flickr
datasets. The definitions of these measures can be found in [93, 31]. These measures were partitioned
into 3 clusters based on their correlation.

3.1.2 Co-occurrence Consistency

The raw co-occurrence counts is not the best measure to quantify entity co-occurrence strength. It
may happen that two very frequent entities (say Chris and Eiffel tower) might co-occur a lot
compared to two relatively rare entities (say global warming and green house emissions)
since frequent entities have a propensity to occur highly with other frequent entities just out of ran-
dom chance rather than out of real association compared to a rare pair of entities. In order to discard
the co-occurrence between Chris and Eiffel tower as noise and keep the co-occurrence between
global warming and green house emissions as signal, we need to first transform their raw
co-occurrence probabilities by normalizing with priors of the two entities in the pair. Instead of using
raw co-occurrence counts, we use co-occurrence consistency measures that quantify how likely the
entities are to co-occur in a entity-set vs. random chance. In other words, if the actual joint proba-
bility, P (α, β), is more compared to their random chance (e.g. P (α)P (β)), then the two entities are
said to have co-occurred with high consistency. This has precisely the effect we want - it gives high
co-occurrence consistency between real (albeit low support) associations and reduces co-occurrence
consistency between spurious (albeit high support) associations.

There are a number of measures that could be used here. We list the measures, which we have con-
sidered, as follows: Added Value, Certainty Factor, Chi Square, Normalized Mutual Information,
Conviction, Cosine, Jaccard, J-Measure, Kappa, Klosgen, Laplace, Leverage, Lift, Odds Ratio,
Yules Q, Yules Y. These definitions of all these measures can be found in [93, 31]. Using all these
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Measure Formula
AV max(P (B|A)− P (B), P (A|B)− P (A))

NMI
log(

P (A,B)
P (A)P (B)

)

− logP (A,B)

J P (A,B)
P (A)+P (B)−P (A,B)

Table 3.1 Different Types of Consistency Measures for Association Patterns. AV = Added Value, NMI
= Normalized Point-wise Mutual Information, J = Jaccard.

measures would be a tedious task, hence, we cluster the different consistency measures based on their
correlation and pick one representative measure from each cluster for all further work. We found the
Spearman Rank Correlation between the different measures and clustered the measures using METIS
graph partitioning algorithm[44] into 3 clusters. Interestingly, we found the clusters to be similar for
all datasets. Figure 3.2 shows an image representation of the correlation matrix, with the intensity rep-
resenting correlation value (varying from black at the weakest correlation to white at strongest). We
picked Added Value, Jaccard and Normalized Mutual Information to represent each of the three clus-
ters respectively. Table 3.1 shows their definitions. We experimentally found Normalized Point-wise
Mutual Information (NMI) [9] to be the most best performing (Section 4.3). NMI has some desirable
properties like, it is in the range [-1, 1] and addresses the basic problem with another favourite measure,
point-wise mutual information, which favors rare joint probabilities more.

We apply a threshold (θconsy) on the co-occurrence consistency matrix also to remove the long tail
low consistencies representing noise. Note that, unlike in other community detection methods, we do not
binarize the graph, but keep all the co-occurrence consistencies, whenever they are above the threshold.

3.1.3 Noise Removal Procedure

Conversion of raw co-occurrence counts to co-occurrence consistencies does not guarantee that all
noise is removed. In this section, we present an intuitive and novel iterative procedure to further de-
noise the co-occurrence consistency matrix. The intuition for this procedure is as follows: Consider
a entity-set {London, UK, Olympic, ceremony, bus, transportation}. In the first
pass through the data, there is insufficient knowledge to know whether a certain pair of entities in a
entity-set is noise {London, bus} or signal {bus, transportation}. Hence, the initial co-
occurrence between both noisy and signal pairs within each entity-set are counted equally. But, after
computing co-occurrence consistencies between all pairs of entities, it is clear that certain entity pairs
{London, bus} are noise because their co-occurrence consistencies are lower than θconsy and certain
other entity pairs {bus, transportation} are signal because their co-occurrence consistencies
are higher than θconsy. In the second pass, this knowledge can be use to ignore the noisy pairs within the
entity-set (and not increment their co-occurrence counts) and only increment the co-occurrence counts
of signal pairs of the entity-set.
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Note that, multiple passes through the data are not required in this iterative method. The original
co-occurrence counts matrix is masked by the co-occurrence consistency matrix in each iteration, new
marginal and total counts are computed based on this masking, and the next co-occurrence consistency
is reached. As denoising happens, mutual information [20] in the resulting consistency matrix improves.
Mutual information [20] is measured in each denoising iteration k, as follows :

Q(Φ(k)) =
∑

(α,β)∈V×V

P (k)(α, β)φ(k)(α, β). (3.5)

Figure 4.1 shows the effect of denoising on the co-occurrence consistencies across Bibsonomy,
IMDB and Flickr datasets. A significant improvement was seen in mutual information of both the
consistency matrix, measured by Equation (3.5), and also in the the final communities obtained after the
denoising procedure. The complete entity consistency network generation process along with the noise
removal procedure is described in Algorithm 1.

Algorithm 1 NetworkGeneration([ψ(α, β)])

1: Iteration t← 0
2: ψ(t)(α, β)← ψ(α, β)
3: ψ(t)(α)←

∑
β∈V ψ

(t)(α, β)

4: ψ
(t)
0 ← 1

2

∑
α∈V

∑
β∈V ψ

(t)(α, β)

5: P (t)(α, β) = ψ(t)(α,β)

ψ
(t)
0

, P (t)(α) = ψ(t)(α)

ψ
(t)
0

6: φ(t)(α, β)← Consistency(ψ(t)(α, β), ψ(t)(α), ψ(t)(β),

ψ
(t)
0 )

7: Q(Φ(t)) =
∑

(α,β)∈V×V P
(t)(α, β)φ(t)(α, β)

8: while Q(Φ(t)) converges do
9: ψ(t+1)(α, β)← ψ(t)(α, β)δ

(
φ(t)(α, β) > θconsy

)
10: ψ(t+1)(α)←

∑
β∈V ψ

(t+1)(α, β)

11: ψ
(t+1)
0 ← 1

2

∑
α∈V

∑
β∈V ψ

(t+1)(α, β)

12: P (t+1)(α, β) = ψ(t+1)(α,β)

ψ
(t+1)
0

, P (t+1)(α) = ψ(t+1)(α)

ψ
(t+1)
0

13: φ(t+1)(α, β)← Consistency(ψ(t+1)(α, β), ψ(t+1)(α),

ψ(t+1)(β), ψ
(t+1)
0 )

14: Q(Φ(t+1)) =
∑

(α,β)∈V×V P
(t+1)(α, β)φ(t+1)(α, β)

15: t← t+ 1
16: end while

Table 3.2 shows how the iterative procedure affects the consistency of tag wedding with some
other tags in Flickr dataset. Note how its consistency with related tags such as dress & reception

increases after the first iteration itself while it decreases to zero for unrelated tags, chris & jason.
Table 3.3 shows examples of top related tags found for some random tags after the denoising procedure
for both IMDB and Flickr datasets.
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Tag Before Denoising After Denoising
bride 0.3257 0.5750

reception 0.3720 0.5728
marriage 0.3195 0.5658

cake 0.1699 0.3629
love 0.0148 0.2449

honeymoon 0.0183 0.2262
jason 0.2081 0
chris 0.1461 0

Table 3.2 Effect of noise removal on the consistencies of tags associated with tag wedding in Flickr
dataset, with θconsy = 0.001.

(a) IMDB

Tag Most consistent tags
food lifestyle, money, restaurant, drinking, cooking
road truck, motorcycle, car, road-trip, bus

singer singing, song, dancing, dancer, musician
suicide suicide-attempt, hanging, depression, mental-illness

(b) Flickr

Tag Most consistent tags
art painting, gallery, paintings, sculpture, artist

france paris, french, eiffeltower, tower, europe
island tropical, islands, newzealand, thailand, sand

airplane flying, airshow, fly, miltary, aviation

Table 3.3 Top 5 most consistent tags from the IMDB and Flickr datasets.
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3.2 Community Detection in Weighted Entity Consistency Network

After the aggressive noise removal, it is expected that the final entity consistency graph Φ = [φ(α, β)]

between all pairs of entities has high within community consistencies i.e. the higher the edge strength
between a pair of entities, the more likely are they to belong to a community, and low across community
consistencies i.e. two entities that are not connected strongly in it are most likely going to be part of
different communities.

Maximal Cliques are a classical and well defined notion of tight overlapping communities on un-
weighted networks. But it cannot be used directly to find communities in weighted networks because
cliques are defined on unweighted graphs only. One approach is to binarize the weighted graph by a
threshold and then apply maximal cliques to find communities in it. This has several problems: first,
it leads to a significant loss of edge weight information. Second, the binarization process is sensitive
to the threshold. A small change in threshold could lead to a significantly different unweighted graph
resulting in very different set of communities. Third, finding all maximal cliques is NP-hard [12].

The second stage of COOCMINER presents a novel definition of community called Soft Maximal
Cliques (SMCs), which keep the weights intact and extends the notion of maximal cliques to weighted
graphs. It major advantages are: no loss of edge weight information, no parameters, a more robust
notion of community-ness based on a continuum of weights rather than the binary presence or absence
of edges, and a scalable greedy algorithm that can be biased because of the weights, to explore the space
of all combinations of nodes more systematically and efficiently to find communities.

At a high level SMC defines a new notion of community-ness called Coherence (Section 3.2.2) on
a weighted subgraph. Unlike most community-ness measures that are defined directly in terms of edge
weights [66, 74], coherence is defined in terms of node weights that we call Local Node Centrality
(Section 3.2.1), which in-turn are computed from edge weights. SMCs are now defined as those sub-
graphs whose coherence is higher than all its “neighbors” (Section 3.2.3). We then present a seed based
greedy grow-shrink algorithm for finding as many SMCs in the graph as possible through exhaustive
seeding (Section 3.2.4).

3.2.1 Local Node Centrality

Most community-ness measures are direct aggregates over edge weights. For example, local density
takes the arithmetic mean of all the edges or intensity [74] takes a geometric mean of all its edges,
and modularity simply aggregates the difference between the actual and expected edge weight distribu-
tion [66]. Coherence, on the other hand, is defined indirectly. First we use the edge weights to derive
node weights that capture how “important” a node is within a community. Then we aggregate these
node weights into the coherence of the community.

To motivate node weights, consider the weighted network in Figure 3.3 and two subgraphs A= {rain,
storm, cloudy, umbrella, chocolate} and B = {candy, cocoa, chocolate, kid, milk}. It is pretty obvious
that the entity chocolate “belongs” more in entity-set B and perhaps not at all in entity-set A. In other
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Figure 3.3 Example of a weighted network. Entity chocolate belongs more to {candy, cocoa, chocolate,
kid, milk} than to {rain, storm, cloudy, umbrella, chocolate}.

words, if we were to assign a weight to each entity in the entity-set, we would assign a low weight to
chocolate in A and a high weight in B. We do this because intuitively the weight of the entity should
depend on the other entities it is present with. This intuition is captured in our node importance measure
called Local Node Centrality (LNC) which is recursively defined as:

A node is central to a community if it is strongly connected to other central nodes in the
community.

Node centrality [75] is a well known concept in graph theory for capturing the global importance of a
node in a (weighted) network. We adapt this abstract concept in three ways to define our local node
centrality:

1. Localization: The first adaptation we do is to define node centrality locally w.r.t. each community,
instead of globally for the entire graph since we need to capture the importance of a node within
the community. So if a node belongs to multiple communities, it might get different centrality
scores for each community - a desirable property.

2. Eigenvector: There are a number of measures of centrality to choose from: degree centrality,
closeness centrality, betweenness centrality, eigenvector centrality [75]. We adopt eigenvector
centrality which measures the influence of a node in the network such that, a node is more impor-
tant if it is highly connected(in the weighted sense) to other influential nodes in the network. The
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Dataset Communities with LNC scores of entities
IMDB courtroom:0.92, lawyer, trial, judge, perjury, lawsuit, false-accusation:0.53
IMDB africa:1.00, lion, elephant, safari, jungle, chimpanzee, rescue:0.36
IMDB hospital:0.98, doctor, nurse, wheelchair, ambulance, car-accident:0.43
Flickr wimbeldon:1.02, lawn, tennis, net, court, watching, players:0.81
Flickr airplane:0.85, plane, aircraft, flight, aviation, flying, fly:0.72
Flickr singer:0.84, singing, musician, guitar, band, drums, music:0.72

Table 3.4 Examples of communities along with the LNCs of entities within the community, in order of
centrality scores.

PageRank [11] is a variant of the eigenvector centrality. We use this for our purpose as it captures
the essence of our definition perfectly.

3. Unnormalization: With the above two adaptations, the localized node centrality of a node in a
community is the first eigenvector of its weight matrix. The L2 normalization of eigenvectors is
undesirable as it introduces community-size bias in a node’s centrality scores - small communities
will tend to get higher node centrality scores and large communities will tend to get smaller
node centrality scores. To avoid this bias, we use unnormalized first eigenvector obtained by
multiplying the first eigen-value to each element of the first eigenvector.

We now define LNC mathematically and tie it to the above definition. Let x = {x1, x2, ..., xm} be a
set ofm nodes in a subgraph and W(x) = [w(xi, xj)] be the weight matrix associated with this subgraph,
where w(xi, xj) is the edge weight between nodes xi and xj . Let ρt(xi|W(x)) denote the LNC of node
xi w.r.t. the subgraph in iteration t. Initialize all LNCs to be 1 (i.e. ρ0(xi|W(x)) = 1 ∀i = 1...m).
Then, the LNCs are updated in each iteration until convergence:

ρt+1(xi|W(x)))←
∑m

j=1 ρt(xj |W(x))× w(xi, xj)√∑m
j=1 (ρt(xj |W(x)))2

(3.6)

This converges to the first unnormalized eigenvector of W(x) i.e. if λ1(W(x)) is the first eigen-
value and v1(W(x)) is the first (normalized) eigenvector of this matrix then converged ρ(x|W(x)) =

λ1(W(x))× v1(W(x)).
Table 3.4 shows few examples of communities found by SMC sorted by their centrality scores in

entity networks. Note how, the earlier entities are more “central” to the community than latter entities.

3.2.2 Coherence of a Community

We propose a new heuristic measure called coherence loosely defined as follows:

A community is coherent if each of its nodes belongs with all other nodes in the community.

In other words, coherence is high if every node in the community has a high “belongingness” score.
Even if one node is “peripheral” to it, the coherence goes down. According to our definition, all the
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nodes in the community must have a high LNC score in order for the community to have a high coher-
ence score. So the most conservative definition of coherence would be to take the minimum of all LNC
scores. This essentially makes sure that even if one of the nodes does not belong in the community,
the community’s coherence score goes down, no matter how high the LNC scores of other nodes in the
community are. The “all-inclusive” nature of the minimum aggregation function resembles that of a
clique in an unweighted graph. Therefore, minimum aggregated coherence score can also be referred
to as soft cliqueness score of the community. Various aggregation functions in decreasing order of con-
servativeness (or cliqueness) are: minimum, harmonic mean, geometric mean, arithmetic mean, and
maximum. Of these minimum is used by SMC as it matches the conservative nature of our definition of
coherence. Mathematically, coherence is defined in terms of LNCs, as in Equation (3.7).

π(W(x)) = min
i=1...m

{ρ(xi|W(x))} (3.7)

Empirical evidence (Table 4.3) over these coherence measures support the intuition that using more
conservative aggregation functions such as minimum, harmonic mean, and geometric mean gives better
overall communities than the less conservative ones.

3.2.3 Soft Maximal Cliques (SMC)

We now describe the notion of Soft Maximal Clique in terms of these coherence values. Consider
a network of four nodes: {a, b, c, d} with some weighted edges among them. We are interested in
knowing which subgraph(s) of this graph i.e. which subset(s) of these four nodes (and their edges)
are communities. Figure 3.4 shows a lattice representing the powerset of the four vertices, i.e. the
set of all subsets of the vertices. Each element in this lattice is a subgraph comprising of those nodes
(and implicitly all the edges among them) and is a potential candidate for a community depending on
its coherence score and the coherence score of all its “neighbors”. We first define neighborhood of a
subgraph (or an element in the lattice) as follows.

A subgraph y is said to be a neighbor of a subgraph x if y is obtained by either removing a
single node from x or by adding a single node to x.

Let N (x) = N+(x) ∪ N−(x) denote the neighborhood of subgraph x where N+(x) denotes the up-
neighbors obtained by adding a node currently not in x andN−(x) are all the down-neighbors obtained
by removing a node currently in x (note: V is the set of all nodes)3:

N+(x) = {y = v ⊕ x,∀v ∈ V\x} (3.8)

N−(x) = {y = x\v,∀v ∈ x} (3.9)

Note that |N+(x)| = |V| − |x| and |N−(x)| = |x|, therefore, |N (x)| = |V| for all x ∈ 2V, the
powerset of V. In the lattice structure (Figure 3.4), the down-neighbor of {a, c, d}, N− ({a, c, d}) =

3It is implicit that when a node is added or removed, all the relevant edges are also added or removed.
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Figure 3.4 Entity-set {a, c, d} is a SMC, if the coherence of the entity-set {a, c, d} is higher
than the coherence of all its up-neighbors ({{a, b, c, d}}) and all its down-neighbors, {{a, c},
{a, d}, {c, d}}.

[{a, c}, {a, d}, {c, d}] as each of these subgraphs are obtained by removing exactly one node from {a,
c, d} and its up-neighbor , N+ ({a, c, d}) = [{a, b, c, d}] obtained by adding a node to it.

Let’s assume that we have already computed the coherence of each subgraph or lattice element.
In terms of coherence and neighborhood of a subgraph, we define a Soft Maximal Clique (SMC) as
follows:

A subgraph x∗ is a SMC if its coherence is higher than the coherence of all its neighbors.

More precisely, x∗ is a SMC if: π(x∗) ≥ π(y), ∀y ∈ N (x∗). All such subgraphs are considered
communities. Note that [47] also defines neighborhood in a similar way but uses local maximization of
modularity to find “natural” communities.

3.2.4 Grow-Shrink Greedy Algorithm

Clearly finding all SMCs in a weighted network is a computationally expensive task, as it would
require that we evaluate each of the O(2|V|) subgraphs to see if they are SMC or not i.e. their coherence
is higher than all their neighbors or not. Instead, in this section we present a systematic greedy algo-
rithm that grows a community from a seed, does this for all possible seeds, and then removes duplicate
communities. Unlike [47], however, we not just keep growing the community from the seed, we also
allow the subgraph to shrink if that helps improve the coherence score of the subgraph. We now define
the grow and shrink steps used in our greedy algorithm.

The Grow step finds the highest coherence up-neighbor of x in N+(x). The basic grow step tries to
exhaustively find the best node from V−x, to add to x. We reduce this complexity from O(|V−x|) to
O
(∣∣⋂

v∈xN(v)
∣∣) by maintaining a Grow Candidate List, C(x) = {x′ ∈ V−x|w(v, x′) > 0 ∀v ∈ x}

of only those nodes that are connected to all nodes in x, and search over this list for the best candidate.
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Note that as the subgraph grows, its Grow Candidate List keeps shrinking. This leads to a significant
speed-up without loss in quality.

The Shrink step finds the highest coherence down-neighbor of x in N−(x). Again the basic shrink
step tries to exhaustively find the best node to remove from x. We reduce this complexity from O(|x|)
toO(1) by picking the node in x with the least LNC, since removal of this node will maximally increase
the coherence of the resulting down-neighbor. There is no guarantee that the most optimal node will be
removed using this heuristic, but we found empirically that it is true more than 95% of the times.

A Soft Maximal Clique x∗ is defined as the subgraph whose coherence is greater than both its Grow
and Shrink:

π(x∗) ≥ max
{
π(x+ = Grow(x∗)), π(x− = Shrink(x∗))

}
(3.10)

The overall algorithm for finding soft maximal cliques, given an initial seed x0, is shown in Algo-
rithm 2. It has two phases. In the Grow Phase, (lines 3-7 in Algorithm 2), we greedily keep adding the
next node (and its relevant edges) until the coherence keeps increasing. This gives us the largest possible
Candidate Set, starting from the original seed x0. The second stage is the Grow-Shrink Phase, (lines
9-24 in Algorithm 2) that can potentially alternate between a grow and a shrink depending on which
step leads to the highest increase in the coherence value. The algorithm converges when neither a grow
nor a shrink results in a subgraph with a higher coherence. Since, we want to find as many SMC com-
munities as possible, we seed this with every pair of nodes x0 = (α, β) whose consistency φ(α, β) > 0.
Also note that, multiple seeds might lead to the same community, so we finally remove all duplicate
communities.

Figures 3.5 shows how the algorithm runs on a seed tagsets {baby, wedding} and {waltdisneyworld, florida}
of IMDB and Flickr datasets respectively. Note that, due to the shrink stage, it is possible that the final
community may not contain any or all nodes in the original seed used to create it.
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Algorithm 2 SoftMaximalClique(x0,Φ)
1: x← x0

2: A. Grow Phase
3: x+ ← Grow(x|Φ)
4: while π(x+) > π(x) do
5: x← x+

6: x+ ← Grow(x|Φ)
7: end while
8: B. Grow-Shrink Phase
9: loop

10: x+ ← Grow(x|Φ) {Best possible up-neighbor.}
11: x− ← Shrink(x|Φ) {Best possible down-neighbor.}
12: if π(x+) > π(x−) then
13: xnext ← x+ {Grow is better than shrink}
14: πnext ← π(x+)
15: else
16: xnext ← x− {Shrink is better than grow}
17: πnext ← π(x−)
18: end if
19: if πnext > π(x) then
20: x← xnext {Not reached local maxima yet.}
21: else
22: return x {Reached local maxima.}
23: end if
24: end loop

(a) IMDB (b) Flickr

Figure 3.5 Actual example runs of grow-shrink algorithm starting with an edge seed in IMDB and Flickr
data. Tags within a sub-graph are sorted in descending order of their LNC scores. x-axis is the size of
the tagset and y-axis is the coherence of the sub-graph. Each grow step (green) shows tags highlighting
(bold) the new tag added. Each shrink step removes the last tag in the previous iteration.
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Chapter 4

Experimental Evaluation

We study the effectiveness of our framework in two parts: (a) by evaluating the importance of noise
removal step during the network generation phase and, (b) by comparing the quality of the communities
obtained by SMC with two popular algorithms, Weighted CPM (WCPM) [23] and BIGCLAM [107].
We start by describing the datasets and the metrics used for evaluation. Then, we examine the impor-
tance of noise removal step in the process of generating weighted entity networks from raw entity-set
data. To understand the significance of our SMC algorithm for the task of community detection, we do
a comparative study of the structural properties of the communities discovered by SMC and two other
popular algorithms and show the effectiveness of SMC over other methods in an application-oriented
community-based entity recommendation task. Finally, we analyse the role of parameter θconsy in the
performance of the complete framework.

4.1 Datasets

Weighted networks were generated from five real world collaborative tagging systems where an
object (e.g. an image or movie) is annotated by a set of entities/tags.

1. BIBSONOMY1: tags for 40K bookmarks and publications.

2. FLICKR2: collection of 2 million social-tagged images randomly collected from Flickr.

3. IMDB3: Keywords associated with about 300K movies.

4. MEDLINE4: containing references and abstracts on about 14 million life sciences and biomedical
topics. We use the Mesh terms associated with the topics as entities.

5. WIKIPEDIA: where the wikipedia pages were treated as entities and the out-links of a page were
used to create entity-set of that page. We used around 1.8 million pages to create our dataset.

1ECML-PKDD Discovery Challenge 2009
2http://staff.science.uva.nl/ xirong/index.php?n=DataSet.Flickr3m
3www.imdb.com
4http://www.ncbi.nlm.nih.gov/pubmed
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T N D(%)
BIBSONOMY 43,114 12,215 0.262

IMDB 280,833 5,000 21.42
WIKIPEDIA 1,782,857 5,000 31.00

FLICKR 2,134,760 5,000 18.56
MEDLINE 14,036,218 5,000 30.49

Table 4.1 Properties of the weighted networks generated using the collaborative tagging datasets. T,
N and D denotes the Number of Entity-sets, Number of Nodes (Entities) and Initial Network Density
respectively.

Each node in the network is a entity and the weight between two nodes quantifies how likely the two
entities will co-occur relative to random chance. The process of generating weighted networks from
these entity-sets is described in chapter 3 section 3.1. Table 4.1 shows some basic statistics i.e. the
number of entity-sets, number of unique entities used, and entity network density of the initial networks
(before noise removal).

4.2 Evaluation Metrics

Like in any other unsupervised learning task it is not obvious how to objectively evaluate and com-
pare the quality of communities obtained by various methods. In this chapter, we use two previously
proposed methods for such evaluations: Modularity - a direct, unsupervised metric and Community
based Entity Prediction - an indirect, supervised metric for evaluating communities.

Overlapping Modularity [71] extends the classical notion of modularity [66] defined for non-
overlapping communities to overlapping communities, by introducing notion of belonging coefficients.
For our experiments, we have used the weighted version of this modularity and set the belonging co-
efficients of a vertex v to 1

c(v) , where c(v) is number of communities the vertex is participating. Even
though modularity maximization is used as a criteria for evaluating many community detection meth-
ods, it need not always coincide with the correct or best communities, as pointed in [34]. What we want
to evaluate is not how well a graph measure is maximized, but how good is our community discovery
algorithm in describing real world knowledge about the entities being grouped. Therefore we use an-
other measure also to evaluate communities. Any further use of the term modularity in this thesis refers
to the overlapping modularity definition.

Community based Entity Prediction [77] uses a simple entity prediction system built on top of
communities to objectively evaluate their quality. First, split the entire entity-set data into training
and test sets. Second, use training set to build the weighted network and find communities in it using
various methods. Third, build a prediction system using these communities, and finally evaluate the
quality of the prediction system on the test set. The basic prediction system, via communities, works as
follows: (i) From each test entity-set, remove all other entities, except 1. The goal is to see how well we
predict the removed (target) entities from the remaining (input) entity, via communities. (ii) Find all the
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Bibsonomy Flickr
NMI AV J NMI AV J

P(%) 18.04 17.15 17.71 13.28 12.19 12.82
R(%) 14.48 8.4 6.8 11.96 8.14 6.47
F(%) 16.07 11.27 9.82 12.59 9.76 8.6

Table 4.2 IR performance of communities discovered using Normalized Mutual Information (NMI),
Added Value (AV) and Jaccard (J) as consistency measures in entity recommendation. P, R, F denotes
Precision, Recall and F-measure respectively.

communities that contain the input entity. Lets call these the recommended communities. (iii) Take the
union of all entities in these recommended communities. These form the predicted entities. Score each
predicted entity by the number of recommended communities in which it is present. Lets call this the
recommendation score for each predicted entity. (iv) Sort all predicted entities by this recommendation
score and find the ranks of the target entities in this list. (v) Evaluations were done by calculating
precision, recall and f-measure. Precision is defined as the fraction of correct predictions relative to
the total number of predictions made. Recall is defined as the fraction of correction predictions relative
to the total number of entities in the ground-truth. F-measure is the harmonic mean of Precision and
Recall.

We used 70-30 training test splits with 5-fold cross-validation. Also, the test set was cleaned up as
follows: First, top 5% of the entities were removed otherwise predicting them itself would give high
performance. Second, entities not present in the training set were removed from the test set also.

4.3 Study of Different Consistency Measures

In Section 3.1.2, we had talked about 16 different consistency measures, which can be used to model
pairwise relationships between entities in the data. For each dataset, we found correlation between
these measures and clustered them into three groups. We used one measure from each of these clusters,
to represent each cluster. We used the following three interestingness measures : NMI, Added Value
and Jaccard. Since, qualitative comparison of the communities discovered, using each of the three
measures, would be inappreciable, we do quantitative comparison of the communities discovered, by the
significance of their IR performance in entity recommendation. Table 4.2 compares the Precision, Recall
and F-measure of each of the three consistency measures for entity recommendation in Bibsonomy and
Flickr datasets. Recall using Added value and Jaccard is low compared using NMI, whereas precision
is about the same using these measures.
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(a) Mutual Information (b) F-measure

Figure 4.1 Effect of noise-removal procedure in weighted entity network generation phase across Bib-
sonomy, Flickr and IMDB datasets. We compare networks generated without denoising and networks
generated after applying denoising. Evaluations have been done over (a) Mutual Information [20] of the
network, (b) the F-measure in entity recommendation. For noise-removal θconsy = 0.001 was used and
communities were discovered using SMC.

4.4 Effect of Noise Removal in Entity Network Generation Phase

Most entity networks use pair-wise raw entity co-occurrence counts to exemplify the relationships
between entities. However, due to deceptive high co-occurrence counts between noisy entity-pairs and
low co-occurrences between rare entity-pairs, consistency-based measures [93, 31] have been used in-
stead of raw counts. Usually, this consistency-based entity network is thresholded to remove spurious
entity-pairs and the remaining weighted entity network is used for community detection. However, a
threshold-based approach is not the most efficient way to remove noisy links. We propose an iterative
noise removal procedure to remove such spurious links, described in Section 3.1.3.

To understand the significance of our noise removal procedure, we compare the consistency-thresholded
networks and the consistency networks after applying noise removal step, using (a) direct measure :
Mutual Information [20] of the consistency networks and, (b) indirect measure : Entity Prediction per-
formance of the communities derived from the networks. We used θconsy = 0.001 for noise-removal
procedure and SMC for community detection.

Figure 4.1 illustrates the experimental findings on Bibsonomy, Flickr and IMDB datasets. For Bib-
sonomy, there is 177.78% increase in mutual information of the networks after applying noise-removal,
whereas for networks like Flickr and IMDB, there is significantly high 228.57% and 333.33% increase
respectively. To understand the impact of noise removal over the complete framework, we compare
the performance of the two networks in the task of community-based entity recommendation. For Bib-
sonomy and IMDB, there is 5.92% and 4.32% increase in F-measure, whereas for user-collaborative
network Flickr, there is exceptionally high increase of 22.72% in F-measure. In any case, our noise-
removal procedure doesn’t deteriorate the performance of the framework, rather tries to improve its
effectiveness, wherever possible as in case of Flickr.
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Min HMean GMean AMean Max
N 7359 7228 7250 7168 7083
S 4.69 4.21 4.13 4.12 3.88

M 0.54 0.56 0.55 0.50 0.47
F 16.07 15.51 15.43 15.39 15.29

Table 4.3 Comparison of different functions of aggregating Local Node Centralities into Coherence on
Bibsonomy Dataset. N = number of communities, S = average community size, M = modularity [23],
and F = F-measure on entity recommendation

.

4.5 Aggregation Function for Soft Maximal Cliques Coherence

In section 3.2.2, coherence of a community was defined as an aggregation of the Local Node Central-
ity (LNC) of all nodes in it. We argued that using a conservative aggregation function such as minimum
or harmonic mean better captures the notion of community compared to more loose aggregation func-
tions such as maximum or arithmetic mean. Table 4.3 compares different aggregation functions in terms
of both Modularity and F-measure on Community based Entity Prediction metrics on Bibsonomy dataset
(results on all datasets were consistent). As the aggregation function becomes less conservative from
minimum, to harmonic mean to geometric mean, to arithmetic mean, to maximum, the quality of com-
munities detected decreases - Minimum performs the best and the Maximum performs the worst. Both
the number and size of communities also increases as the coherence measure becomes less conservative.
Hence, we used Minimum of the LNCs as our definition of Coherence.

4.6 Comparing SMC with other Community Detection Methods

Here, we compare the communities discovered by SMC with two other popular overlapping commu-
nity detection algorithms over all 5 datasets, namely Bibsonomy, Flickr, IMDB, Medline and Wikipedia.

• Weighted Clique Percolation Method (WCPM) 5 [23], an extension of the state-of-art CPM [76]
for weighted networks, based on the concept of percolating k-cliques with high intensity [74].
The algorithm allows overlaps between the communities. In our experiments, we tried different
values of the percolation factor (k) and reported results corresponding to the best value of k.

• BIGCLAM 6 [107], a recently proposed fast overlapping community detection method based on
non-negative matrix factorization [53, 40, 56], for undirected networks. It is built on the model of
affiliation networks [10, 49] and communities arise due to shared community affiliations of nodes.

5Implementation available at http://cfinder.org/
6Implementation available at http://snap.stanford.edu/snap/
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(a) Bibsonomy (b) Flickr (c) IMDB (d) Medline (e) Wikipedia

Figure 4.2 The number of communities discovered by different methods (Weighted CPM [23], BIG-
CLAM [107] and SMC) over networks of different sizes across all datasets. (WCPM - Red, BIGCLAM
- Blue, SMC - Yellow)

(a) Bibsonomy (b) Flickr (c) IMDB (d) Medline (e) Wikipedia

Figure 4.3 Average size of communities discovered by different methods (Weighted CPM [23], BIG-
CLAM [107] and SMC) over networks of different sizes across all datasets. (WCPM - Red, BIGCLAM
- Blue, SMC - Yellow)

We first understand the structural properties of the communities discovered by all these algorithms
and show the effectiveness of SMC over the other two methods in terms of both modularity [66] and
community-based entity recommendation task.

4.6.1 Structural Properties of the Communities Discovered

We study the structural properties of the communities discovered by SMC along with the commu-
nities discovered by WCPM [23] and BIGCLAM [107]. The entity networks were generated using the
procedure described in Chapter 3, with a θconsy = 0.001 for noise removal step. To do a fine-grained
analysis, we build entity networks of different sizes (in terms of number of nodes/entities), find com-
munities over these networks and study their properties. For bibsonomy, we build entity networks with
1000, 2500, 5000, 7500, 10000 and 12215 entities, whereas for all other datasets, we use entity net-
works of 1000, 2500 and 5000 entities, due to computational constraints. We compare the structure

(a) Bibsonomy (b) Flickr (c) IMDB (d) Medline (e) Wikipedia

Figure 4.4 Average Coherence of communities discovered by different methods (Weighted CPM [23],
BIGCLAM [107] and SMC) over networks of different sizes across all datasets. (WCPM - Red, BIG-
CLAM - Blue, SMC - Yellow)
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(a) Bibsonomy (b) Flickr (c) IMDB (d) Medline (e) Wikipedia

Figure 4.5 Modularity [66] of communities discovered by different methods (Weighted CPM [23], BIG-
CLAM [107] and SMC) over networks of different sizes across all datasets. (WCPM - Red, BIGCLAM
- Blue, SMC - Yellow)

of communities discovered by the different methods in terms of their number, their average size, their
average coherence and their modularity.

Figures 4.2 and 4.3 shows the number of communities discovered by the different methods and their
average size for entity networks of different sizes over all datasets. It can be seen that SMC discovers
large number of communities, each of small size, in comparison to WCPM and BIGCLAM. The number
of SMC communities are in multiples of thousands, whereas WCPM and BIGCLAM communities are in
multiples of tens and hundreds. On the contrary, the average size of SMC communities are in the range
of 3-10 whereas those of WCPM and BIGCLAM are atleast 5-10 times bigger than SMC communities.
Unlike other methods, SMC, being a greedy approach, aims to find coherent communities in a restricted
search space and hence its communities are small in size. The number of communities discovered by
SMC can be modulated by choosing the appropriate seeds, to be given as input for the grow-shrink
algorithm. Here, we have used all possible edges (entity-pairs) in the network as seeds for discovering
communities. Duplicate communities were removed for all the experiments.

Next, we look at two important properties, which help us understand the structure of the communities
discovered. First one is coherence, which captures the quality of a community in terms of importance
scores of the entities constituting the community. The SMC algorithm is based on optimizing coher-
ence as its objective function. Second one is well-known modularity [66], which captures the structural
information within the community relative to a null model of a random graph with the same degree dis-
tribution. Many standard community detection algorithms [68, 19, 62, 21, 69] are based on optimizing
modularity.

Figure 4.4 shows the average coherence of the communities discovered by different methods over all
datasets. In general, SMC communities were found to have high coherence (> 0.5) as it their objective
function. Surprisingly, WCPM communities were also found to have coherence comparable to SMC
communities. Like in SMC, the fundamental notion of cliqueness used in WCPM can be attributed to
high coherence scores of communities discovered by WCPM. But the percolation factor (k) of WCPM
loosens up the tightness of the communities being discovered, leading to small number of coherent
communities of large size, which causes serious drawbacks of using WCPM communities in applications
like entity recommendation (Section 4.6.2). Coherence of BIGCLAM communities was found to be
very low. One possible reason for this could be that BIGCLAM was built for unweighted networks,
unlike WCPM and SMC which used the weight information for finding coherent communities.
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(a) Community Distribution (b) Average Coherence Distribution (c) Frequency Distribution

Figure 4.6 Figure shows the distribution of SMC communities, their average coherence and their fre-
quency (in entity-set data) by size over all datasets. As the size of communities increase the coherency
of the communities increase, even though the number of such large communities and their presence in
the dataset decreases.

We show the modularity of communities discovered in Figure 4.5. SMC communities were found
to have high modularity than communities of WCPM and BIGCLAM over all datasets. In Bibsonomy,
BIGCLAM communities had significantly higher modularity than WCPM communities, whereas over
other datasets, their modularity scores were comparable (slightly in favour of BIGCLAM). On average,
communities of SMC were found to have modularity greater than> 0.5, which represents good partition
of network. However, modularity is strictly and exclusively dependent on the graph structure and, as
pointed in [34], the peak value of modularity does not in general coincide with the correct or best
communities.

Another important structural property of SMC communities discovered is shown in Figure 4.6. Ex-
cept in wikipedia, more than 90% of SMC communities are in the size range of 2-5. In wikipedia, the
distribution is more even. Interestingly, as the communities size increase the coherency of the commu-
nities also increase, but the number of such communities and their presence in the entity-sets decrease.
Hence, using frequency as a criteria for finding coherent communities [2] would not be a correct choice.

4.6.2 Community-based Entity Recommendation

In Table 4.4, we illustrate the community based entity prediction performances of all methods across
all entity networks. Entity networks with 5000 nodes and θconsy = 0.001 were used for experiments,
except in Bibsonomy where entity network with 12215 nodes were used. Results of WCPM reported
here correspond to the best value of k. Communities generated by SMC significantly outperform those
obtained by WCPM and BIGCLAM in all aspects of the evaluation. We make the following detailed
observations on the empirical evaluations.

Number, average size and modularity of Communities: We could see that the SMC produces a
large number of communities compared to WCPM and BIGCLAM. In terms of size, SMC produces
communities of relatively small size compared to WCPM and BIGCLAM. In Flickr, IMDB and Med-
line, SMC produces more than 10,000 communities, whereas other methods produce less than 1000.
Also, average size of SMC communities was about 5 compared to others which had significantly larger
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Bibsonomy Flickr IMDB
WCPM BC SMC WCPM BC SMC WCPM BC SMC

N 113 429 7359 452 917 17023 85 516 27538
S 15.37 22.06 4.69 14.13 29.26 3.56 7.21 6.21 6.39
M 0.13 0.42 0.54 0.25 0.28 0.55 0.20 0.15 0.59

P(%) 1.27 2.43 18.04 0.33 0.26 13.28 1.07 1.53 11.29
R(%) 0.78 1.84 14.48 0.30 0.25 11.96 0.13 0.64 10.07
F(%) 0.97 2.09 16.07 0.31 0.26 12.59 0.24 0.90 10.64

P@1(%) 0.34 1.37 16.84 0.15 0.13 12.37 0.12 0.12 13.22
P@5(%) 1.66 3.49 23.27 0.29 0.29 16.75 1.73 1.38 15.04

Medline Wikipedia
WCPM BC SMC WCPM BC SMC

N 98 429 13956 154 201 6405
S 50.07 32.1 4.37 22.01 33 7.36
M 0.25 0.33 0.58 0.17 0.29 0.69
P 0.19 0.17 8.76 1.24 0.83 25.66
R 0.08 0.07 3.20 0.64 0.52 6.04
F 0.11 0.10 4.69 0.84 0.64 9.78

P@1 0.06 0.08 5.96 0.24 0.33 10.72
P@5 0.21 0.17 9.10 0.41 0.62 31.32

Table 4.4 IR performance of WCPM [23], BC (BIGCLAM) [107] and SMC-based communities in
entity prediction. N, S, M, P, R, F denotes No. of Communities, Average size of Communities, Mod-
ularity [66] of the communities, Precision, Recall and F-measure respectively and P@1, P@5 denotes
precision at one and five predictions respectively. Networks with 5000 nodes and θconsy = 0.001 were
used for experiments, except in Bibsonomy where network with 12215 nodes were used. Results of
WCPM reported here correspond to the best value of k.
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average size (> 15). Also, in terms of modularity, SMC was found be produce highly modular commu-
nities (> 0.5) compared to other methods. A complete discussion on this can be found in Section 4.6.1.

Precision, Recall and F-measure: SMC performs exceptionally better than other methods over
all entity networks. Over all datasets, the average precision of SMC communities is 15.41% compared
to WCPM and BIGCLAM which have 0.82% and 1.04% respectively. Similarly, the average recall of
SMC is 9.15% compared to 0.39% and 0.684% of WCPM and BIGCLAM communities. As a result,
the average F-measure of SMC, BIGCLAM and WCPM communities are 10.74%, 0.80% and 0.49%
respectively, which is a stupendous improvement compared to other methods in a application-oriented
task of entity recommendation. The first reason for such improvement is the restricted search space
of the grow-shrink algorithm along with the highly conservative notion of coherence as the objective
function which lead to the discovery of meaningful and strong entity concepts. The second reason is
the degree of exhaustiveness of the method. SMC by design is completely exhaustive in the way it uses
the seeds. The overall precision and recall is low because communities by themselves are not enough
for recommending entities in a recommendation system. We use the recommendation system only as
an evaluation metric for comparing methods. Significant improvements could also be seen on the Preci-
sion@1 and Precision@5 scores also, which are very important metrics in the task of recommendation.

Overall from the quality of communities as well as the time taken to find the communities, SMC is
shown to be a competitive alternative. The new cohesiveness measure and the notion of local node cen-
trality are comparable or sometimes better measures of community-ness compared to modularity [66]
or other measures.

4.6.3 Examples of SMC Communities

To illustrate the quality of the communities, we show some examples of some communities discov-
ered by SMC over all datasets in Table 4.5. We assigned context name to each community for ease of
browsing the results. In general, these communities are quite compact, precise, and meaningful. Due
to the highly conservative definitions of the coherence (minimum of importance) and Soft Maximal
Cliques (local maxima of coherence), these communities turn out to be highly compact and addition of
even one entity might bring the coherence down.

4.7 Comparison with LDA

Latent Dirichlet Allocation (LDA) [79] is a very prominent topic-modelling method with applications
to document classification/clustering, document summarization, and text/web mining community in
general. The communities detected by SMC can also be described as semantic concepts discovered
from entity-set data. We make a qualitative comparison of the communities of SMC and topics of LDA
on the task of entity recommendation. We use the same experimental setup of entity recommendation
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(a) Bibsonomy

Context Entity Communities
Medical Jour-
nals

journals, medicine, medical, reviews, peerreviewed, studies, biomedical, physi-
cians.

Operating Sys-
tem

linux, debian, ubuntu, unix, opensource, os, software, freeware, microsoft, win-
dows, mac, computer.

Recommenders
personalization, recommender, collaborative, tagging, folksonomy, recommender-
systems, ecommerce, filtering, usermodels, clustering.

(b) IMDB

Context Entity Communities

Photo-shoot
appearance, elimination, criticism, makeover, style, challenge, modeling, clothing,
fashion, magazine, makeup, photo-shoot, winner, model, photography.

Film
movie-studio, movie-set, movie-producer, movie-director, film-making, holly-
wood, actor, actress, movie-star, hollywood-california.

Family rela-
tionships

father-daughter-relationship, mother-daughter-relationship, brother-sister-
relationship, sister-sister-relationship, family-relationships

(c) Flickr

Context Entity Communities
Fire-
Department

firefighter, firemen, fireman, firetruck, fire, engine, smoke, feuer- wehr, firefighters,
department, flames.

Airplanes airplane, aircraft, plane, aviation, airbus, boeing, aeroplane, flight, airlines.
Sketch drawing, pencil, sketch, ink, illustration, draw, pen.

(d) Medline

Context Entity Communities

Mycoses
Aspergillosis, Antifungal Agents, Amphotericin B, Candidiasis, Immunocompro-
mised Host, Lung Diseases Fungal, Mycoses, Dermatomycoses.

Bone Marrow
Bone Marrow Cells, Bone Marrow, Hematopoietic Stem Cells, Hematopoiesis,
Colony-Forming Units Assay.

Peptic Ulcer
Helicobacter pylori, Helicobacter Infections, Gastritis, Dyspepsia, Peptic Ulcer,
Duodenal Ulcer, Gastroscopy.

(e) Wikipedia

Context Entity Communities

Automobiles

Automotive industry, Internal combustion engine, Car body style, Car classifi-
cation, Transmission (mechanics), Wheelbase, Automobile, Automobile layout,
Sedan (car), Sports car, Ford Motor Company, Straight-4, Toyota, BMW, Chevro-
let, Porsche, Mercedes-Benz, Honda.

Ivy League
Yale University, Harvard University, Columbia University, Princeton University,
Dartmouth College, Cornell University, Brown University.

IT
Amazon.com, Yahoo!, EBay, Google, Sony, Apple Inc., Sun Microsystems, Mi-
crosoft, Information technology, Electronic Arts, Sega, Nintendo.

Table 4.5 Examples of Communities discovered by SMC
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Figure 4.7 Comparison of F-measures of SMC communities with LDA [79] topics in the task of entity
recommendation over Bibsonomy, IMDB and Wikipedia datasets of size 1000. The number of topics
is kept same as the number of communities discovered by SMC. The average entity-set size of each
dataset is provided in brackets.

for LDA also. Considering every entity-set as a document of entity 7 and the vocabulary of entities as
the vocabulary of terms, we apply LDA of training documents and learns topics from them. For a fair
comparison, the number of topics is kept same as the number of communities discovered by SMC. Due
to computation requirements of LDA, we perform this experiment on Bibsonomy, IMDB and Wikipedia
networks of size 1000. Figure 4.7 compares the F-measures of the SMC communities and LDA topics
in the task of entity recommendation. We could see that as performance of LDA is low for datasets of
low entity-set size compared to LDA. In Bibsonomy where the average entity-set size is 5.4, there is
135.47% improvement in F-measure of SMC compared to LDA, whereas in IMDB where the average
entity-set is 12.9, there is 67.44% decrease in F-measure of SMC compared to LDA. Hence, LDA would
not be the right choice for semantic concept modelling in tagging systems, where the average length of
entity-set (document) is very low and the entity (term) frequencies in entity-sets (documents) is either
zero or one.

4.8 Effect of Consistency Threshold

Consistency score defines the magnitude of associativity between entities in entity-set data. Here,
we study the effect of consistency threshold in the formation of communities, in terms of F-measure
with respect to task of entity recommendation. As the threshold is increased, the number of edges in
the co-occurrence consistency graph would decrease, resulting in drop in density of graph as well as
decrease in size and number of communities discovered from the graph. As a result, the precision-recall

7Every term in the document has a frequency of one, unlike in usual scenarios.
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θconsy N S P(%) R(%) F(%)
0.001 7053 3.89 17.15 13.61 15.18
0.005 7029 3.87 17.02 13.52 15.07
0.01 6969 3.84 17.1 13.57 15.13
0.05 6224 3.6 16.39 12.98 14.49
0.1 5088 3.37 15.03 11.79 13.21
0.2 3039 3.21 13.01 8.57 10.34
0.25 2185 3.30 14.61 7.41 9.84

Table 4.6 Comparison of SMC communities entity recommendation performance on Bibsonomy
Dataset (Network Size = 12215) over different values of consistency threshold (θconsy). N, S, P, R,
F denotes No. of Communities, Average size of Communities, Precision, Recall and F-measure respec-
tively

in the entity recommendation task also decreases, resulting in low F-measure scores. Table 4.6 supports
our claim.
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Chapter 5

Compacting Large and Loose Communities

Detecting compact overlapping communities in large networks is an important pattern recognition
problem with applications in many domains. Most community detection algorithms trade-off between
community sizes, their compactness and the scalability of finding communities. Clique Percolation
Method (CPM) [76] and Local Fitness Maximization (LFM) [47] are two prominent and commonly
used overlapping community detection methods that scale with large networks. However, significant
number of communities found by them are large, noisy, and loose. In this chapter, we propose a general
algorithm that takes such large and loose communities generated by any method and refines them into
compact communities in a systematic fashion. We use a new measure of community-ness based on
eigenvector centrality [75], identify loose communities using this measure and propose an algorithm for
partitioning such loose communities into compact communities. We refine the communities found by
CPM and LFM using our method and show their effectiveness compared to the original communities in
a recommendation engine task.

5.1 Introduction

Unsupervised pattern recognition tasks such as clustering, density estimation, outlier detection, di-
mensionality reduction, etc. are used to understand the underlying nature of the data, find latent struc-
tures within the data, and derive useful features from it. One such important unsupervised learning task
on network or graph data is to find compact overlapping communities i.e. groups of nodes in the graph
that are tightly connected to each other. This has applications in many domains such as Biology, Social
Networking [33], Web Mining [26], etc. Also, communities in networks often overlap as nodes can be-
long to multiple communities at once. For example, researchers might belong to more than one research
community.

Most community detection algorithms strive to strike a balance between community size and their
compactness. Oversized communities might contain unnecessary noise while undersized communities
might not generalize the concept well enough. Another trade-off in community detection is that of
compactness and scalability. Finding large number of compact communities such as maximal cliques
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is an NP-hard problem [82], making them impractical for large networks. Because of these trade-offs,
existing community detection algorithms find several communities that are large, noisy, and loose, which
pose significant problems in using them in many applications of communities like recommendation
systems [83], semantic retrieval, semantic user profiling, conceptual browsing [30] etc.

In this chapter, we address this problem of compacting and cleaning such large and loose communi-
ties generated by any method into small and compact communities. We use the novel and natural mea-
sure of community-ness called coherence, defined in section 3.2.2, to determine whether a community is
compact and if not, it is greedily partitioned into smaller communities until each of the sub-communities
are compact. Our greedy algorithm, called hereafter the Loose Community Partition (LCP) algorithm,
iterates over two phrases: (i) Shrink Phase that removes the most noisy nodes in the current community
and generates a compact candidate seed community, and (ii) Grow Phase that enriches this candidate
seed community by adding the most related nodes (if any) to it. Note that LCP does not partition every
large-size community, but only loose communities as explained in section 5.5.

Extensive evaluations on large real world datasets like Amazon [106] and Flickr [55], show that
the proposed algorithm significantly cleans up these large noisy communities into compact and high
precision communities. We robustly evaluate LCP using an unsupervised metric that measures the
“average overlapping community modularity” [71]. We also show application of our method in real
world, by building a community based product/tag recommendation system and measure the precision
and recall as our supervised metric for evaluation.

The rest of the chapter proceeds as follows. In next section, we describe two popular and state-of-
art community detection methods in detail. Section 5.3 illustrates the problem with these community
detection methods with illustrations. In section 5.5 we introduce our LCP algorithm for compacting
communities and explain it in detail. The experimental evaluations are presented in section 5.6.

5.2 Popular Community Detection Methods

Two popular and commonly used overlapping community detection algorithms are the Clique Per-
colation Method (CPM) and the Local Fitness Maximization (LFM). CPM by Palla et al. [76], is based
on the belief that communities are unions of adjacent k-cliques (complete graphs with k nodes) and that
inter-community regions of the network do not possess such strong edge density. LFM [47] is a well
known greedy algorithm that grows a seed node into a community by maximizing the modularity [66]
of the community. In the following subsections, we describe these two popular community detection
methods in detail.

5.2.1 Clique Percolation Method

The Clique Percolation Method [76] is a popular approach for analyzing the overlapping community
structure of networks. It builds up the communities from k-cliques, which correspond to complete (fully
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Figure 5.1 Illustration of k-clique communities at k = 4. Communities are color-coded and the overlap
between them is emphasized in red.

connected) sub-graphs of k nodes. For example, a k-clique at k = 3 is equivalent to a triangle. Two k-
cliques are considered adjacent if they share k-1 nodes. A community is defined as the maximum
union of k-cliques that can be reached from each other through a series of adjacent k-cliques. Such
communities can be best represented with the help of a k-clique template (an object isomorphic to a
complete graph of k nodes). Such a template can be placed onto any k-clique in the graph, and rolled to
an adjacent k-clique by relocating one of its nodes and keeping its other k-1 nodes fixed. Thus, the k-
clique communities of a network are all those sub-graphs that can be fully explored by rolling a k-clique
template in them, but cannot be left by this template.

This definition allows overlaps between the communities in a natural way, as illustrated in Figure 5.1,
showing four k-clique communities at k = 4. The communities are color-coded and the overlap between
them is emphasized in red. The definition above is also local: if a certain sub-graph fulfills the criteria to
be considered as a community, then it will remain a community independent of what happens to another
part of the network far away. In contrast, when searching for the communities by optimizing with respect
to a global quantity, a change far away the network can reshape the communities in the unperturbed
regions as well. Furthermore, it has been shown that global methods suffer from a resolution limit
problem [28], where the smallest community that can be extracted is dependant on the system size. A
local community definition such as here circumvents the problem automatically.

Since even small networks can contain a vast number of k-cliques, the implementation of this ap-
proach is based on locating the maximal cliques rather than the individual k-cliques. Thus, the complex-
ity of this approach in practice is equivalent to that of the NP-hard maximal clique finding [12]. This
means that although networks with few million nodes have already been analyzed successfully with this
approach, no prior estimate can be given for the runtime of the algorithm based simply on the system
size.
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Figure 5.2 Schematic example of natural community for a node (sky-blue point in the figure) according
to our definition. The blue nodes are the other members of the group and have positive fitness within
the group, while the red nodes have all negative fitness with respect to the group.

5.2.2 Local Fitness Maximization

The Local Fitness Maximization method [47] performs a local exploration of the network, searching
for the natural community of each node. The basic assumption is that communities are essentially
local structures, involving the nodes belonging to the modules themselves plus atmost an extended
neighborhood of them. Here, a community is a subgraph identified by the maximization of a property
or fitness of its nodes. The fitness used here, is defined as:

fG =
kGin

(kGin + kGout)
α (5.1)

where kGin and kGout are the total internal and external degrees of the nodes of module G, and α is a
positive real-values parameter, controlling the size of the communities. The internal degree of a module
equals double the number of internal links of the module. The external degree is the number of links
joining each member of the module with the rest of the graph. The aim of this work is to determine
a subgraph starting from a node, say A, such that inclusion of a new node, or elimination of one node
from the subgraph would lower fG. They call such a subgraph the natural community of node A. This
amounts to determining local maxima for the fitness function for a given α.

Given the fitness function fG, the fitness of a node A with respect to a subgraph G, fAG , is defined as
the variation of the fitness of the subgraph G with and without node A, i.e.

fAG = fG+{A} − fG−{A} (5.2)

In equation (5.2), the symbol G+ {A} (G−{A}) indicates the subgraph obtained from module G with
node A inside (outside). The natural community of node A is identified with the following procedure.
Let us suppose that we have covered a subgraph G including node A. Initially, G is identified with node
A (kGin = 0). Each iteration of the algorithm consists of the following steps:

1. a loop is performed over all neighboring nodes of G not included in G.
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Figure 5.3 Figure shows example of our LCP algorithm on a CPM community of books, in Amazon
dataset. The CPM community contains sub-communities of books, of two related electrical engineering
topics: (i) One on Signal Processing and, (ii) Other on Telecommunications. The Shrink Phase of our
LCP algorithm partitions the CPM community into two compact sub-communities. The Grow Phase
enriches the sub-communities by adding related books to the sub-communities, like Signal, Systems and
Transforms and The Essential Guide to Telecommunications, respectively.

2. the neighbor with the largest fitness is added to G, yielding a larger subgraph G′.

3. the fitness of each node of G′ is recalculated.

4. if a node turns out to have negative fitness, it is removed from G′, yielding a new subgraph G′′.

5. if step 4 occurs, repeat from step 3, otherwise repeat from step 1 for subgraph G′′.

The process stops when the nodes examined in step 1 all have negative fitness (Figure 5.2). This proce-
dure corresponds to a sort of greedy optimization of the fitness function, as at each move one looks for
the highest possible increase.

5.3 Problem with Existing Community Detection Methods

A problem with communities discovered using CPM [76] and LFM [47] is that a significant number
of them are large in size and loosely associated. Figure 5.3 (left part of the figure) shows example of
a community of books discovered by CPM in Amazon dataset, which is reasonably large and loose as
it contains sub-communities of two highly related electrical engineering topics. To appreciate the seri-
ousness of the problem, we show the community frequency distribution across various community size
buckets for two datasets, Amazon and Flickr (Figure 5.4(a)). On average, 23.17% of CPM communities
and 33.66% of LFM communities are of size >= 13 in both datasets. This shows the scope and signifi-
cance of the large community size problem. Figure 5.4(b) shows the average community density across
various community size buckets for the two datasets. Edge density of a community typically is a good
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(a) Community Frequency Distribution by size (b) Average community density by size

Figure 5.4 Community frequency distribution and average community density based on size using
CPM [76] (k = 3) and LFM [47] (α = 1) on Amazon and Flickr data. Significant number of com-
munities (> 25%), which are typically large in size (>= 13), have very low edge density(≈ 10%).

metric for measuring the structure within a community. Low edge density scores indicate loose structure
within the community. As expected, there is a strong inverse correlation between community size and
their densities. The point to note here is that the average density of the large size communities (>= 13)
is 12.59% for CPM and 9.04% for LFM, which is almost three times less than the average densities of
smaller communities, illustrating the looseness in the community structure of large communities. This
is primarily because, in real-world networks, there is a lot of density variations in different regions of
the graph and existing community detection methods have no mechanism to adapt their parameters to
different regions of the network based on the network densities. Note that not every large-size commu-
nity is loose, only experimentally (Figure 5.4) it has been observed that more often than not large-sized
communities are typically loose.

5.4 Compactness and Neighborhood of a Community

Before we introduce the LCP algorithm, we first need to define the compactness of a community.
Most of the existing community-ness measures [74, 66] involve optimization of some local objective
function and the communities discovered by optimizing them are usually loose and large in size. We
use the concept of eigenvector centrality [75] to define the compactness of a community. In chapter 3
(sections 3.2.1 and 3.2.2), we introduced the notions of local node centrality and coherence to define
the importance of a node within the community and community-ness of the community respectively.
We make use of these notations and define the compactness of a community as its the coherence. On
similar terms, we use the neighborhood definition of a community as described in section 3.2.3, in terms
of up-neighbors and down-neighbors, to explain the LCP algorithm for partitioning loose communities.
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5.5 LCP Algorithm for Partitioning Loose Communities

As we have defined our notions of coherence and the neighborhood of a community, here we discuss
our LCP algorithm for partitioning loose communities into compact communities. We start by defining
two important operations of our greedy algorithm: (i) grow operation and (ii) shrink operation. The
grow operation finds the highest coherence up-neighbor of x in N+(x), by finding the best node (and
relevant edges) from V−x, to add to x. The shrink operation finds the highest coherence down-neighbor
of x in N−(x). Detailed discussions of the grow and shrink operations along with illustrations can be
found in section 3.2.4.

Our algorithm for partitioning communities is iterative and involves three major phases:

• Shrink Phase, where we iteratively apply the shrink operation on the input community, until the
coherence of the community keeps increasing. Each shrink operation will result in removal of
least important node from the community. As output, we will have (i) a set of nodes left in the
input community (candidate set) and, (ii) a set of nodes removed during the shrink operations on
the input community (residue set).

• Grow Phase, where we iteratively apply the grow operation on the candidate set, until the co-
herence of the candidate set keeps increasing. Each grow operation will result in addition of a
correlated node (if any) to the candidate set. The output of this phase would be a strong and
compact community.

• Final Phase, where we send the residue set as input to shrink phase, until there is no residue set
left or no further shrink is possible.

Given a loose community x0 and a network Φ, our greedy iterative method for partitioning loose com-
munities is shown in Algorithm 3. Figure 5.3 shows an example of partition of a loose community into
two compact sub-communities by the shrink phase and the further enhancement of the sub-communities
by the grow phase. Given the strong intuition behind the coherence measure and the dependency of our
algorithm on coherence at each step, the possibility of partition of strong, clean communities reduces
by large extent, even if the community is of large size.

5.6 Experimental Evaluation

Here, we compare the communities obtained using CPM and LFM, with communities obtained af-
ter applying the LCP algorithm on the CPM and LFM communities (LCP-CPM and LCP-LFM), on
different metrics over two real world datasets.
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Algorithm 3 Loose Community Partition (x0,Φ)
1: x← x0

2: xcompact = [ ]
3: loop
4: [xcandidate,xresidue] = ShrinkPhase(x,Φ)
5: xcompact = [ xcompact GrowPhase(xcandidate,Φ) ]
6: x← xresidue
7: end loop
8: return xcompact
9: A. ShrinkPhase(x,Φ)

10: loop
11: xresidue = [ ]
12: [x−,xremoved]← Shrink(x,Φ) {Best down-neighbor.}
13: if π(x−) > π(x) then
14: x← x− {Not reached maximum coherence yet.}
15: xresidue = [ xresidue xremoved ]
16: else
17: return [x, xresidue] {maximum coherence.}
18: end if
19: end loop
20: B. GrowPhase(x,Φ)
21: x+ ← Grow(x,Φ) {Best up-neighbor.}
22: while π(x+) > π(x) do
23: x← x+

24: x+ ← Grow(x,Φ)
25: end while
26: return x
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Dataset Nodes Edges
Amazon 548,552 925,872
Flickr 5,000 30,006

Table 5.1 Statistical properties of Amazon and Flickr datasets

Datasets CPM LCP-CPM LFM LCP-LFM
Amazon 0.27 0.33 0.38 0.48
Flickr 0.31 0.37 0.43 0.52

Table 5.2 Overlapping modularity scores of the communities discovered by CPM [76] (k = 3), LFM [47]
(α = 1), our LCP-CPM and LCP-LFM in Amazon and Flickr network.

5.6.1 Datasets & Evaluation Metrics

We use the unweighted Amazon product network and the weighted Flickr tag network for finding
communities. The Amazon product co-purchasing network1 [106] is obtained by crawling Amazon
website and contains product metadata and review information of about 548,552 different products.
Ground-truth communities are available for this network. The Flickr tag network2 [54] is created using
a random subset of 800,000 images from a collection of 3.5 million social-tagged images from Flickr.
The weighted tag network is created by computing the statistically significant co-occurrences among
tags. Since, ground truth communities are not available for this network, we divide the data into training
and testing tagsets. The training tagsets are used to derive the tag network and communities are detected
on this weighted tag network. The testing tagsets are used in the recommendation task. Table 5.1 shows
statistical properties like the number of nodes, edges in the graph for both Amazon and Flickr networks.

We use two different types of methods for evaluations: overlapping modularity - a standard, unsuper-
vised metric and product/tag recommendation - an application-oriented supervised metric for evaluating
communities, described in detail in section 4.2.

5.6.2 Comparison of LCP communities with CPM and LFM communities

Table 5.2 shows the overlapping modularity [71] of the communities discovered by CPM, LFM and
our LCP-CPM, LCP-LFM on Amazon and Flickr networks. In the Amazon network, LCP leads to
22.2% increase in modularity over CPM communities and 26.31% increase over LFM communities.
Similarly, in Flickr network, there is an 19.35% increase in modularity over CPM communities and
20.92% increase over LFM communities. These significant improvements are due to the use of LCP
algorithm. Also note that LFM is primarily a modularity maximization method and even on that, LCP
leads to a significant improvement in the modularity metric.

1http://snap.stanford.edu/data/com-Amazon.html
2http://staff.science.uva.nl/ xirong/index.php?n=DataSet.Flickr3m
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(a) Amazon

CPM LCP-CPM LFM LCP-LFM
N 28,402 38,040 10,318 18,482
S 10.36 6.54 14.27 6.17

P(%) 34.13 38.74 24.36 27.58
R(%) 8.97 10.91 6.12 8.83
F(%) 14.21 17.02 9.78 13.37

P@1(%) 19.54 20.23 12.58 15.19
P@5(%) 37.91 47.07 25.39 38.21

(b) Flickr

CPM LCP-CPM LFM LCP-LFM
N 1138 1342 712 1023
S 11.81 5.19 13.87 6.37

P(%) 17.72 22.29 13.53 18.12
R(%) 15.48 18.98 9.54 13.13
F(%) 16.53 20.5 11.19 15.22

P@1(%) 13.59 24.61 7.21 15.45
P@5(%) 22.70 36.1 17.17 30.51

Table 5.3 Performance of CPM [76](k = 3), LFM [47](α = 1), LCP-CPM and LCP-LFM communities
in product/tag recommendation. N, S, P, R, F denotes Number of Communities, Avg. size of Com-
munity, Precision, Recall and F-measure respectively and P@1, P@5 denotes precision at one and five
predictions respectively.
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(a) Community Frequency Distribution by size (b) Average community density by size

Figure 5.5 Community frequency distribution and the average community edge density, after applying
LCP algorithm on the communities obtained using CPM and LFM on both Amazon and Flickr.

In Table 5.3, we compare the community based product/tag recommendation performances of CPM
and LFM communities with its LCP counterparts over Amazon product and Flickr tag networks. Com-
munities discovered using LCP significantly outperform CPM and LFM in all aspects of the evaluation.
While the average size of LCP communities (≈ 6.06) are significantly smaller than the average size
of their non-LCP counterparts (≈ 12.57), the number of communities increases significantly (25.92%
for CPM, 61.39% for LFM). This is because each large, loose community is partitioned by LCP into a
number of small but compact communities. Significant improvement is also seen over precision, recall
and F-measure, in task of product/tag recommendations. Compared to CPM and LFM communities,
we observe, on average, 19.65% and 23.57% increase in precision, 22.11% and 40.95% increase in re-
call, thus resulting in 21.89% and 36.35% increase in F-measure respectively. This partitioning of loose
communities into compact ones improves their productivity, which is exemplified by their performances
in the task of recommendation. Improvements could also be seen on the Precision@1 and Precision@5
scores. The overall precision and recall is low because communities by themselves are not enough for
recommending products/tags in a recommendation system. We use the recommendation system only as
an evaluation metric for comparing methods.

Figure 5.5 shows the community frequency distribution and average community edge density of
LCP-CPM and LCP-LFM communities on Amazon and Flickr networks. Compared to the correspond-
ing statistics of CPM and LFM-based communities, shown in Figure 5.4, we see substantial reduction
in the number of large-sized communities(90.26% for CPM, 82.02% for LFM) as well as significant
increase in the average community density(17.88% for CPM, 24.14% for LFM).

Hence, from compactness to recommendation performances, it can be seen that LCP improves the
quality of the communities discovered by CPM and LFM by partitioning them into compact and seman-
tically strong communities.
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Chapter 6

Application to Image Annotation

Labels associated with social images are valuable source of information for tasks of image annota-
tion, understanding and retrieval. These labels are often found to be noisy, mainly due to the collabo-
rative tagging activities of users. Existing methods on annotation have been developed and verified on
noise free labels of images. In this chapter, we propose a novel and generic framework that exploits
the collective knowledge embedded in noisy label co-occurrence pairs to derive robust annotations. We
compare our method with a well-known image annotation algorithm and show its superiority in terms
of annotation accuracy on benchmark Corel5K and ESP datasets in presence of noisy labels.

6.1 The Task of Image Annotation

Over the years, the Internet has become the largest database for multimedia content and is orga-
nized in a rich and complex way through tagging activities. One such example is collaborative tagging
websites, such as Flickr, which collects millions of photos per month from tens of thousands of users.
Well-known commercial systems including Google and Yahoo rely on surrounding descriptions of im-
ages embedded in the web pages for the image retrieval. Images without clear context descriptions will
either be returned as false positives or be totally discarded during the retrieval. Image auto-annotation
techniques provide an attainable way to associate the “visuality” of the images with their semantics,
which can be used to search unlabeled image collections, and return more relevant images to the users.

Given an input image, the goal of automatic image annotation is to assign a few relevant text key-
words to the image that reflect its visual content. Utilizing image content to assign a richer, more
relevant set of keywords would allow one to further exploit the fast indexing and retrieval architecture
of Web image search engines for improved image search. This makes the problem of annotating images
with relevant text keywords of immense practical interest. Consequently, there is immense research
interest in producing efficient image annotation techniques for labelling social images to cope with the
continuously growing amount of social image data.

Image annotation is a difficult task for two main reasons: First is the well-known pixel-to-predicate or
semantic gap problem, which points to the fact that it is hard to extract semantically meaningful entities
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using just low level image features, e.g. color and texture. Doing explicit recognition of thousands of
objects or classes reliably is currently an unsolved problem. The second difficulty arises due to the lack
of correspondence between the keywords and image regions in the training data. For each image, one
has access to keywords assigned to the entire image and it is not known which regions of the image
correspond to these keywords. This makes difficult the direct learning of classifiers by assuming each
keyword to be a separate class.

6.2 Prior Work

Image annotation has been a topic of on-going research for more than a decade and several in-
teresting techniques have been proposed. Most of these treat annotation as translation from image
instances to keywords. The translation paradigm is typically based on some model of image and text
co-occurrences [39, 22]. The translation approach of [22] was extended to models that ascertain associa-
tions indirectly, through latent topic/aspect/context spaces [7, 65]. One such model, the Correspondence
Latent Dirichlet Allocation (CorrLDA) [7], considers associations through a latent topic space in a gen-
eratively learned model. Despite its appealing structure, this class of models remains sensitive to the
choice of topic model, initial parameters, prior image segmentation, and more importantly the inference
and learning approximations to handle the typically intractable exact analysis.

Cross Media Relevance Models (CMRM) [41], Continuous Relevance Model (CRM) [50], and Mul-
tiple Bernoulli Relevance Model (MBRM) [24] assume different, nonparametric density representa-
tions of the joint word-image space. Alternative approaches based on graph representation of joint
queries [63], and cross-language LSI [38], offer means for linking the word-image occurrences, but still
do not perform as well as the non-parametric models.

Among the supervised learning approaches, K-nearest neighbour (or KNN) based methods [24, 61,
36, 97] have been found to give some of the best results despite their simplicity. The intuition is that
“similar images share common labels” [61]. In most of these approaches, this similarity is determined
only using image features.

6.3 Nearest Neighbour Model for Annotation

K-nearest neighbour (or KNN) based methods [61, 97, 36] have been found to give some of the best
results on the task of image annotation. The intuition behind them is that similar images share common
labels. Most relevant KNN-based annotation methods are (i) JEC [61] which treats image annotation
as retrieval problem. Using multiple global features, a greedy algorithm is used for label transfer from
neighbours. They also performed metric learning in the distance space but it could not do any better
than using equal weights. This is because they used a classification-based metric learning approach
for the annotation task which is multi-label classification by nature. Though JEC looks simple at the
modelling level, it reported the best results on benchmark annotation datasets when it was proposed. (ii)
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Figure 6.1 Figure illustrates example of the well known K-Nearest Neighbour(K-NN) model used in
image annotation. For each query image, the top 4 visually similar images are shown, along with the
labels associated with them. The labels of the nearest neighbours are transferred to the query image for
annotation.

TagProp [36], a weighted KNN based method that transfers labels by taking weighted average of labels
present among the neighbours, and (iii) 2PKNN [97], where a class-wise semantic neighbourhood is
defined and only samples within this neighbourhood are used for annotation of unseen image. Since
JEC is the essential backend method for modern successful techniques [97, 36], we compare our results
with JEC [61] and show that our method is robust under noisy labels.

Let I = { I1, . . . , IN } denote the collection of images and V = { v1, . . . , vm } denote the vocabulary of
m labels. The training set T = { (I1,V1) . . . (IN ,VN ) } consists of pairs of images and their corresponding
label sets, with each Vi ⊆ V . Given an unannotated image J, the task of annotation is to predict a set of
labels that semantically describe J . In a typical NN-setting, we pick the top K visually similar images
TJ = { (TJ,1,γJ,1) . . . (TJ,K ,γJ,K) }. Here, γJ,K denotes the visual similarity score of image J with its
Kth neighbour and is defined as:

γJ,K = V isualSimilarity(IJ , TJ,K) (6.1)

This score is generated as a function of distance between the images in visual feature space (SIFT [58],
Color Histograms, GIST [73]). Then, the labels of the nearest neighbours are ranked on basis of a label
scoring function, κJ,vi and the top L labels are used to annotate the test image J. This label scoring
function is usually based on frequency [61] or distance [36]. Figure 6.1 shows illustration of KNN
model for image annotation.
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Figure 6.2 Figure shows example images and corresponding labels from both Corel5K datasets and
Flickr images.

6.4 Noisy Labels

In photo sharing websites, such as Flickr and Picasa, the labels of the images are collectively an-
notated by large group of heterogeneous users. It is believed that most of the labels are correct, al-
though there are many incorrect and redundant labels. Figure 6.2 shows examples of images from both
expert-annotated Corel5K dataset and user tagged Flickr images. Labels of Flickr images like love, life,
emotions, excited etc. are large in number and also irrelevant to the image content, whereas labels of
Corel5K are often small in number and precisely describe the content of the image. It can be observed
that around 40-50% of the labels of Flickr images are irrelevant and are out-of context of the concept
which the image represents. In this chapter, we address this problem of image annotation in presence of
noisy labels.

Previously, both generative models [25] and supervised classification methods [29, 15] have been
applied to improve the performance of image annotation. Such methods rely heavily on the quality of
the training set. In the web image annotation, one feasible way to obtain sufficient training data is to
parse the web content automatically. However, due to the well-known problem of complexity and variety
of the web pages, it is difficult to keep the quality of the training data high. Although some efforts have
been made to parse the web content intelligently, such as [14, 13]. However, the light weight methods,
such as DOM, SAX are more widely used in real applications. Due to their unsupervised acquiring
processes, the training set obtained automatically is usually impurer than what is required for traditional
annotation problems
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Existing annotation methods [61, 97, 101, 36] consider the labels associated with the images to be
devoid of errors and belonging to a small fixed vocabulary, and hence, can be directly used for designing
annotation schemes. They make an inherent assumption that labels present in the training set are reliable
and correct, and hence can be directly used for training. In contrast, the labels collected by collaborative
tagging websites are noisy i.e misspelled, redundant, irrelevant to content, and unlimited in numbers.
These methods do not have an implicit mechanism of handling noisy labels and would not be suitable
for annotation task in collaborative systems. Thus, an interesting problem to address is, on how to use
the noisy information available for annotating unlabelled images reliably.

6.5 Image Annotation in Presence of Noisy Labels

We address the task of image annotation on noisy data using concept-modelling, a very popular no-
tion in Information Retrieval community. The intuition is that, a specific meaning or aspect of an image
can be well described by a group of highly related labels, referred to as label concept. Accordingly,
each image can be organized into groups, each of which matches one label concept. This type of image
organization not only removes noisy labels associated with an image, but also predicts additional labels
that are actually depicted in the image but missing in the ground-truth annotations.

Methods like WSABIE [101], which learn a low dimension embedding space for images and an-
notations, address this issue in an indirect way. Even Wordnet-based approach [42] has been used to
remove irrelevant labels. In MLFDA [99], image annotation is posed as a multi-modal multi-class clas-
sification problem, where the noisy data is treated as a special kind of modal of the class and separating
hyperplanes between classes are learned by kernel-based LFDA.

In this chapter, we first present a graph-based approach for exemplifying the relationships between
labels along with a noise removal algorithm to remove most of the semantically-unrelated links among
the labels. We then make use of this label network to infer the semantic concepts associated with images.
Finally we illustrate how these concepts could be used for image annotation in a KNN-based setting.
Figure 6.3 summarizes our approach.

lion, forest, 
hunt, deer

jungle, safari, 
africa, tour 

Training Images                 Label Network                                                   Label-Based                                                     KNN-based 
   and Labels                        Construction                                               Concept Extraction                                              Label Transfer                                                       

Figure 6.3 An overview of our approach, which includes label network construction based on their
co-occurrence, semantic concept identification using image labels and a KNN-based approach for trans-
ferring labels of concepts to unannotated image.
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To show the utility of concepts over noisy systems, we compare its annotation performance with a
baseline annotation method JEC [61], with noisy labels on Corel5K and ESP datasets. Our experimental
results suggest that the proposed concept-based method leads to superior image annotation performance
compared to JEC in presence of noisy labels.

6.5.1 Label Network Construction and Noise Removal

The label network generation process along with noise removal step is very similar to the entity-
network generation procedure described in section 3.1. Here, we briefly describe the process in the
context of image labels and semantic concepts associated with them.

For label network creation, first the label co-occurrence counts, ψ (α, β) α, β ∈ V , are calculated.
But, this is not the best measure to quantify label co-occurrence strength as it may happen that two very
frequent but uncorrelated tags might co-occur a lot compared to two relatively rare but correlated tags.
Hence, we use consistency, φ(α, β), to quantify associativity between labels, which is loosely defined
as how much more likely is it to see the two labels together than random chance. We start by computing
three types of raw statistics from the labels of training images : (i) Co-occurrence Counts ψ(α, β), (ii)
Marginal Counts ψ(α), and (iii) Total Counts ψ0 (defined in Step 3 of Algorithm 1). Joint probabilities
P (α, β) = ψ(α,β)

ψ0
and marginal probabilities P (α) = ψ(α)

ψ0
are computed from these counts. These

statistics are used for computing pair-wise consistencies between labels. We use Normalized Point-Wise
Mutual Information1 [9], defined as

φ(α, β) =
log
(

P (α,β)
P (α)P (β)

)
− logP (α, β)

∀ψ (α, β) > 0 (6.2)

to exemplify this consistency between labels, as it is a well-bounded quantity and suitably satisfies the
definition of consistency.

Iterative Noise Removal : Initially, there is insufficient knowledge to identify which label-pairs are
noise. After computing consistencies, label pairs with consistencies lower than a threshold θconsy can
be declared noise and are removed from the network. The marginal and total counts are then updated
and consistencies are recomputed in the next iteration. The label network generation algorithm along
with the iterative noise removal method is described in Algorithm 1.

Table 6.1 shows effect of noise removal on the pair-wise consistencies of labels associated with label
water in Corel5K data. It can be seen that consistencies of label water with correlated labels like sea,
ocean, beach, lake increases significantly, whereas with irrelevant labels like hills, grass decreases to
zero. By the end of this phase, we obtain a clean noise-free label network with pair-wise consistencies
between labels as the edge weights, which we will call the label consistency network.

1http://en.wikipedia.org/wiki/Pointwise mutual information

62



Label sea ocean beach lake pool hills grass
Before Denoising 0.127 0.172 0.219 0.1099 0.017 0.118 0.126

After Denoising 0.275 0.378 0.468 0.263 0.259 0 0

Table 6.1 Effect of noise removal on the consistencies of labels associated with label water in noisy
Corel5K dataset, with θconsy = 0.01.

6.5.2 Label-based Concept Extraction

Here, we use the label consistency network for identifying semantic concepts associated with training
images, using the image labels as seed. We define concepts as local maximal subgraphs in the label
consistency network, based on a novel measure of concept strength, which is in-turn defined in terms of
label strength.

In a systematic way, we first define label strength of a node (label) in a subgraph as a measure
that captures the connectivity of the node with rest of the nodes in the subgraph. This essentially is the
eigenvector centrality [75] of the subgraph. If x = {x1, x2, ..., xm} be a set ofm nodes in a subgraph and
W(x) = [φ(xi, xj)] be the label consistency submatrix associated with this subgraph, then by eigenvector
centrality, the label strengths converge to the first unnormalized eigenvector of W(x).

If λ1(W(x)) is the first eigenvalue and v1(W(x)) is the first (normalized) eigenvector of this matrix,
then label strengths, ρ(x|W(x)), are defined by :

ρ(x|W(x)) = λ1(W(x))× v1(W(x)) (6.3)

π(x|Φ) = min
i=1...m

{ρi} (6.4)

To capture the tightness of an arbitrary subgraph, we define concept strength, π(x|Φ), to be minimum
of the label strengths of all nodes (labels) of the subgraph (Equation 6.4). We now define concepts,
as all those subgraphs in the label network, whose concept strength is higher than all its “neighbours”.
Neighbours of a subgraph, x, is defined as all the subgraphs which can be obtained either by adding a
single node (N+(x)) or removing a single node (N−(x)) from the given subgraph.

N+(x) = {y = v ⊕ x|∀v ∈ V\x} N−(x) = {y = x\v|∀v ∈ x} (6.5)

We propose a greedy label-based approach to find such concepts, using the two atomic operations of
grow and shrink. The grow operation tries to exhaustively find the best subgraph inN+(x), which will
have maximum concept strength, whereas the shrink operation finds the best subgraph in N−(x).

Algorithm 4 explains how we extract multiple concepts associated with an image, using their labels
as seed. The algorithm iterates over two phases : (i) Shrink Phase, which reduces labelset into a
candidate subset of highly correlated labels, and (ii) Grow Phase, which adds more correlated labels to
the candidate set making it a complete concept. The residue of the shrink phase is then again used as
input over the next iteration to identify more concepts. Over this recursive process, multiple concepts
associated with an image are identified.

63



Algorithm 4 Label Based Concept Extraction(x0,Φ)
1: x← x0

2: xconc = [ ]
3: while x do
4: [xcand,xrem] = ShrinkPhase(x|Φ)
5: xconc = [ xconc GrowPhase(xcand|Φ) ] {Concepts extracted are concatenated}
6: x← xrem
7: end while
8: A. ShrinkPhase(x|Φ)
9: loop

10: [x−,xrem]← Shrink(x|Φ) {Best possible down-neighbor.}
11: if π(x−) > π(x) then
12: x← x− {Not reached local maxima yet.}
13: else
14: return [x, xrem] {Reached local maxima.}
15: end if
16: end loop
17: B. GrowPhase(x|Φ)
18: x+ ← Grow(x|Φ) {Best possible up-neighbor.}
19: while π(x+) > π(x) do
20: x← x+

21: x+ ← Grow(x|Φ)
22: end while
23: return x+
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6.5.3 Label Transfer for Annotation

Now, we illustrate how concepts can be used for the task of image annotation algorithm in an NN-
setting. As a pre-processing step, we first use the training image labels to create a label consistency
network and concepts associated with individual training images are extracted.

Given a test image J , we first find the top K-visually similar training images using features and
distance metrics discussed below:

Features and Distances: We extract different types of features commonly used for image search and
categorisation. We use two types of global image descriptors: Gist features [73], and color histograms
with 16 bins in each color channel for RGB, LAB, HSV representations. Local features include SIFT
as well as a robust hue descriptor [100], both extracted densely on a multiscale grid or for Harris-
Laplacian interest points. Each local feature descriptor is quantized using k-means on samples from
the training set. Images are then represented as a bag-of-words histogram. All descriptors but Gist
are L1-normalised and also computed in a spatial arrangement [51]. We compute the histograms over
three horizontal regions of the image, and concatenate them to form a new global descriptor, albeit
one that encodes some information of the spatial layout of the image. To limit color histogram sizes,
here, we reduced the quantization to 12 bins in each channel. Note that this spatial binning differs
from segmented image regions, as used in some previous work. This results in 15 distinct descriptors,
namely one Gist descriptor, 6 color histograms and 8 bag-of-features (2 features types x 2 descriptors x
2 layouts). To compute the distances from the descriptors we follow previous work and use L2 as the
base metric for Gist, L1 for global color histograms, and χ2 for the others.

Combining Distances: Distance from different descriptors are combined using Joint Equal Contri-
bution (JEC) framework, as proposed in [61]. Since, in JEC, each feature contributes equally towards
the image distance, we first need to find the appropriate scaling terms for each feature. These scaling
terms can be determined easily if the features are normalized in some way (e.g., features that have unit
norm), but in practice this is not always the case. We can obtain estimates of the scaling terms by ex-
amining the lower and upper bounds on the feature distances computed on some training set. We scale
the distances for each feature such that they are bounded by 0 and 1. If we denote the scaled distance as

d̃k(i,j), we can define the comprehensive image distance between images Ii and Ij as
N∑
k=1

d̃k
(i,j)

N . We refer

to this distance as Joint Equal Contribution (JEC).

Then, the labels associated with the concepts of the nearest training images are ranked based on a
label scoring function, κJ,vi , defined as :

κJ,vi = γJ,K · π(x|Φ) · ρvi(x) (6.6)

This score is computed as product of visual similarity of the training image to the test image, concept
strength of the concept associated with the training image and the label strength of the label within the
concept. The individual components of the scoring function are first normalized before computing the
scores. The labels are ranked based on this score and top L unique labels are assigned to the test image.
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lion, water, grass, 
forest

elephant, river,       
           trunk

desert, pyramid,     
    sun, sand, 

bay, water, bridge

lion, water, grass, 
forest, river

elephant, clouds, 
river, sky, trunk

pyramid, desert, 
sand, sun, dunes

sea, water, bridge, 
bay, hills 

lion, grass, forest,        elephant, river, water,     pyramid, sun, desert.   water, ocean, sea 
birds, hills                           sky, clouds                     beach, sunrise            bridge, clouds 

Figure 6.4 Annotation of test images from noisy Corel5K dataset. The second, third and fourth rows
show the ground truth labels, the labels predicted by JEC and the labels predicted by our method re-
spectively. The labels in red are those, though depicted in the corresponding images, are missing in the
ground-truth annotations and are predicted by our method.

Please note same label could have multiple scores, due to presence of same label in multiple concepts
or images.

6.6 Experiments

We present both qualitative and quantitative results, showing comparisons of our method with a very
popular baseline method JEC [61], on benchmark annotation datasets : Corel5K and ESP [61].

• Corel5K [22] has become a de-facto evaluation benchmark in the image annotation community. It
contains 5,000 images collected from the larger Corel CD set, split into 4,500 training and 500 test
examples. Each image is annotated with an average of 3.5 keywords, and the dictionary contains
260 words that appear in both the train and the test set.

• ESP Game 2 consists of a set of 21,844 images collected in the ESP collaborative image labeling
task. In ESP game [108], two players assign labels to the same image without communicating.
Only common labels are accepted. As an image is shown to more teams, a list of taboo words is
accumulated, increasing the difficulty for future players and resulting in a challenging dataset for
annotation. The set we obtained 3 contains a wide variety of images annotated by 269 keywords,
and is split into 19,659 train and 2,185 test images. Each image is associated with up to 15
keywords, and on average 4.6 keywords.

2http://www.espgame.org
3http://hunch.net/ ji/
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(a) Corel-5K (b) ESP

Figure 6.5 Comparison of annotation performance of our method and JEC[61] on noisy Corel5K and
ESP datasets. Q denotes the number of noisy labels added per training image.

As the motivation of our work is to show the effectiveness of our method on data with noisy labels, we
create a parameter modulated noisy dataset by adding noisy labels to the training images of Corel5K
and ESP. The noisy labels are taken from a vocabulary which has no overlap with the ground-truth vo-
cabularies. We perform modulated experiments by regulating the degree of noise added to training data,
using a parameter Q, which denotes the number of noisy labels added per training image. It is ensured
that there is no overlap between the candidate noisy tags and dictionary of the dataset. Annotation
models are created using both, our method and JEC [61]. Evaluations are done using popular metric
of mean F1-score over all the labels in the original vocabulary of the dataset. F1-score is defined as
the harmonic mean of the mean precision and recall rates obtained by different models. Precision and
recall are defined in the standard way: the annotation precision for a keyword is defined as the number
of images assigned the keyword correctly divided by the total number of images predicted to have the
keyword. The annotation recall is defined as the number of images assigned the keyword correctly,
divided by the number of images assigned the keyword in the ground-truth annotation. Similar to other
approaches, we assign top 5 keywords to each image using label transfer. The F1-scores reported by our
method correspond to label networks with threshold θconsy = 0.01, which was experimentally observed
to be giving best results.

Figure 6.4 shows some qualitative results obtained using our method and JEC on noisy Corel5K
data. The second row shows the ground-truth annotations, while the third and forth rows show the
labels predicted by JEC and our method respectively. It can be seen that some labels predicted by
JEC are irrelevant and, also some ground truth annotations are missing in the predictions, whereas our
method predicts all ground-truth annotations along with labels, which are depicted in the image but
missing in the ground-truth annotation.

To analyze our method’s performance quantitatively, we compute the F1-score of each label in the
ground-truth. The mean F1 scores using our method as well as those obtained by JEC [61] are reported
in Figure 6.5. In both Corel5K and ESP datasets, as noise increases, F1-score of both the methods
decrease. It can also be seen that as the degree of noise (Q) increases, the relative performance of our
method, in comparison to JEC, increases. In case of Corel5K, when only one noisy label is added per
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training image (Q = 1), there is about 6% improvement in F1-score. As we increase Q to 4, there
is around 150% increase in the F1-score, which is a very significant improvement. This shows the
effectiveness of using concepts in the task of image annotation, especially when the amount of noise is
too high.

Experimentally we found that as θconsy increases, the F1 scores also increase upto to a saturation
point, and then start decreasing. This happens because once θconsy reaches its saturation value, even
relevant label-pairs in the network are considered as noise and discarded in the noise removal step. Our
method takes more processing time compared to JEC, which typically has negligible training time.

6.7 Summary

In this chapter, we propose a novel knowledge-based approach for image annotation that exploits the
semantic label concepts, derived based on the collective knowledge embedded in label co-occurrence
based consistency network. We first define the notion of concept strength of a subgraph as a measure
which captures the connectivity of nodes within the subgraph, by introducing a novel notion of concept
strength of a subgraph, as a indirect function of the edge weights of the subgraph. Local Concepts
are defined as those subgraphs whose concept strength is higher than all its neighbors. Our proposed
semantic concept based framework is generic in nature. In particular, the noise removal stage during
the label network construction and the strict notion of defining concepts allowed us to perform well in
noisy datasets. An important future work to pursue is to build a hierarchy of Concepts and utilize them
to learn useful insights for the tasks of image annotation and retrieval.
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Chapter 7

Conclusions

In this thesis, we presented COOCMINER, an end-to-end framework for mining socila media data.
It generates highly noise-robust weighted entity co-occurrence network addressing the fundamental
mixture of concept properties in entity-set data and mines “tight” overlapping communities from this
weighted network using novel notions of coherence as community strength and soft maximal cliques
as communities. COOCMINER has very few highly interpretable parameters, it can scale to very large
networks due to the inherent parallelism in the way seed based community detection methods work and
the nature of the greedy algorithm it uses. The joint effect of the aggressive noise removal and use of
weights in defining and detecting communities leads to the discovery of a large number of small but
very meaningful communities compared to a small number of large and noisy communities obtained
by traditional methods that become even worse as we apply them to more noisy datasets (e.g. Flickr,
Wikipedia). Moreover, COOCMINER significantly outperforms other community detection methods and
LDA in an application-oriented task of tag recommendation.

We also present an algorithm for identifying large and loose communities discovered by any commu-
nity detection method and partition them into compact and meaningful communities, if needed. We use
coherence for defining compactness of community and propose iterative method for partitioning loose
communities.

We also proposed a novel knowledge-based approach for image annotation that exploits the semantic
label concepts, which are derived based on the collective knowledge embedded in label co-occurrence
based consistency network.

In the future COOCMINER can also be extended to discovering a hierarchy of communities by anno-
tating the entity-set data at each level with the communities found and then applying the same algorithm
to find co-occurrences among communities at the next level. The other extension of COOCMINER is for
weighted tagsets such as Bag-of-words in text data.
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[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items in large databases.

In SIGMOD, pages 207–216, 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB,

pages 487–499, 1994.

[4] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link communities reveal multiscale complexity in networks.

Nature, 466(7307):761–764, 2010.

[5] R. A. Baeza-Yates. Graphs from Search Engine Queries. In SOFSEM 2007: Theory and Practice of

Computer Science, volume 4362/2007, pages 1–8, 2007.

[6] G. Begelman. Automated tag clustering: Improving search and exploration in the tag space. In In Proc. of

the Collaborative Web Tagging Workshop at WWW06, 2006.

[7] D. M. Blei and M. I. Jordan. Modeling annotated data. In SIGIR, page 127134, 2003.

[8] C. Borgelt. Recursion pruning for the apriori algorithm. In FIMI, 2004.

[9] G. Bouma. Normalized (pointwise) mutual information in collocation extraction. Biennial GSCL, 2009.

[10] R. L. Breiger. The duality of persons and groups. Social forces, 53(2):181–190, 1974.

[11] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Computer Networks,

30(1-7):107–117, 1998.

[12] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph. Commun. ACM,

16(9):575–577, 1973.

[13] D. Cai, X. He, Z. Li, W.-Y. Ma, and J.-R. Wen. Hierarchical clustering of www image search results using

visual, textual and link information. In ACM Multimedia, pages 952–959, 2004.

[14] D. Cai, S. Yu, J. rong Wen, W. ying Ma, D. Cai, S. Yu, J. rong Wen, and W. ying Ma. Vips: a vision-based

page segmentation algorithm, 2003.

[15] G. Carneiro. Formulating semantic image annotation as a supervised learning problem. In CVPR, 2005.

[16] C. Cattuto, D. Benz, A. Hotho, and G. Stumme. Semantic grounding of tag relatedness in social book-

marking systems. In ISWC, pages 615–631, 2008.

73



[17] J. Chen, O. R. Zaı̈ane, and R. Goebel. A visual data mining approach to find overlapping communities in

networks. In ASONAM, pages 338–343, 2009.

[18] A. Clauset. Finding local community structure in networks. Physical Review, E(72), 2005.

[19] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large networks. Physical

Review, E(70), 2004.

[20] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-Interscience, New York, NY, USA,

1991.

[21] J. Duch and A. Arenas. Community detection in complex networks using extremal optimization. Physical

Review, E(72), 2005.

[22] P. Duygulu, K. Barnard, J. F. G. d. Freitas, and D. A. Forsyth. Object recognition as machine translation:

Learning a lexicon for a fixed image vocabulary. In ECCV, pages 97–112, 2002.

[23] I. J. Farkas, D. Abel, G. Palla, and T. Vicsek. Weighted network modules. New Journal of Physics, 186(9),

2007.

[24] S. L. Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for image and video

annotation. In CVPR, pages 1002–1009, 2004.

[25] S. L. Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for image and video

annotation. In CVPR, pages 1002–1009, 2004.

[26] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web communities. SIGKDD, pages

pp 150–160, 2000.

[27] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75174, 2010.
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