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Abstract

Digital documents are now omnipresent. Techniques and algorithms to process and understand
these documents are still evolving. This thesis focuses on the non-textual documents of textual
content. Example of this category are online handwritten documents and scanned printed books.
Algorithms for accessing such documents at the content-level are still missing, specially for In-
dian Languages. This thesis addresses two fundamental problems in this area – Annotation and
Retrieval. Annotated datasets of handwriting are a prerequisite for the design and training of hand-
writing recognition algorithms. Retrieval from annotated data sets is relatively straightforward.
However retrieval from unannotated datasets is still an open problem. We explore algorithms which
make these two tasks possible.

Annotation of large datasets is a tedious and expensive process. The problem becomes com-
pounded for handwritten documents, where the characters correspond to one or more strokes. We
have developed a versatile, robust annotation tool for online handwriting data. This tool is aimed
at supporting the emerging UPX/hwDataset schema, a promising successor of the UNIPEN. We
provide easy-to-use interface for the annotation tool. However, still the annotation is highly man-
ual. We then propose a novel, automated method for annotation of online handwriting data at the
character level, given a parallel corpus of online handwritten data and typed text. The method
employs a model-based handwriting synthesis unit to map the two corpora to the same space. An-
notation is then propagated to the word level and finally to the individual characters using elastic
matching. The initial results of annotation are used to improve the handwriting synthesis model
for the user under consideration, which in turn refine the annotation. The method takes care of
errors in the handwriting such as spurious and missing strokes and characters. The output is stored
in the UPX format.

Search and retrieval of online handwriting is gaining importance due to the increase in availability
of such data. However, the problem is challenging due to variations in handwriting between various
writers, digitizers and writing conditions. We propose a retrieval mechanism for online handwriting,
which can handle different writing styles, specifically for Indian languages. The proposed approach
provides a keyboard-based search interface, enabling the search of handwritten data from any
computer, in addition to pen-based and example-based queries. Textual queries are supported for
handwritten data sets with the help of a handwriting synthesis module. Synthesis of handwriting
has a variety of applications including generation of personalized documents, study of writing
styles, automatic generation of data for training recognizers, and matching of handwritten data
for retrieval etc. Most of the existing algorithms for handwriting synthesis deal with English,
where the spatial layout of the components are relatively simple, while the cursiveness of the script
introduces many challenges. We present a synthesis model for generating handwritten data for
Indian languages, where the layout of characters is complex while the script is fundamentally non-
cursive. The retrieval framework, which employs handwriting synthesis and holistic matching of
online words, also allows for cross-lingual document retrieval across Indian languages.

We also demonstrate the retrieval scheme on a set of offline printed documents. The system for
retrieval of relevant documents from large document image collections is developed by adapting
existing search engines. We achieve effective search and retrieval from a large collection of printed
document images by matching image features at word-level. For representations of the words,
profile-based and shape-based features are employed. Our scheme groups together similar words



during the indexing process. The system supports cross-lingual search using OM-Trans transliter-
ation and a dictionary-based approach. System-level issues for retrieval (eg. scalability, effective
delivery etc.) are the focus.

Digitized books and manuscripts in digital libraries are often stored as images or graphics.
They are not searchable at the content level due to the lack of OCRs or poor quality of the
scanned images. Portable Document Format (PDF) has emerged as the most popular document
representation schema for wider access across platforms. When there is no textual (eg. UNICODE,
ASCII) representation available, scanned images are stored in the graphics stream of a PDF file.
We propose a novel solution to search the textual data in the graphics stream of the PDF files
at content level. The proposed solution is demonstrated by enhancing an opensource PDF viewer
(Xpdf). Indian language support is also provided. Users can type a word in Roman (ITRANS),
view it in a font, and search in textual and graphics stream of PDF documents simultaneously.

In short, the contributions of this thesis are:

1. Development of a versatile annotation tool for online handwriting data and to store the
annotation in UPX/hwDataset format, which is considered as the successor to the popular
UNIPEN standard.

2. Development of an algorithm to annotate the online handwriting data with the help of an
unaligned parallel text.

3. A synthesis scheme is proposed for online handwriting in Indian languages by addressing spe-
cialties of the Indian scripts. Given a text, corresponding realistic handwriting is synthesized.

4. A document retrieval system is presented for online handwriting, which does not require a
recognizer. It accepts textual queries, synthesizes the handwriting and then does a word level
elastic matching for finding the most similar words.

5. Scalability of recognition-free retrieval systems is verified by adapting an existing opensource
search engine for large collection of document images.

6. Portable document format (PDF) representation of document images are not content-level
accessible if the data is stored in the graphics stream of the PDF. We find the application of
the recognition-free retrieval scheme in the graphics stream of PDF and verify the performance
by integrating it into an opensource PDF reader.
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Chapter 1

Introduction

1.1 Introduction

The “Digital Divide” describes the gap between individuals and communities with greater and
lesser access to technology resources and training. This gap needs to narrow down at a very fast
rate. For this it is increasingly becoming important to provide people with regular and effective
access to the information. Computer systems share a major part in the digital technology systems.
Developing document understanding system has become the major challenge ahead. For textual
documents, summarization and translation issues are still open. For non-textual documents, many
more fundamental problems are unsolved even now. In this thesis, we limit our interest to non-
textual documents of textual content. Throughout the thesis, document is primarily used in this
context.

1.1.1 Document categories

When we refer to a paper document or a papyrus document it is distinguished by the fact that it is
on paper. However the notion of “digital document” is one which digital systems can understand
and present to the user in an articulated manner. There are several types of documents which
present information to a person that can be conceived and comprehended. Documents can be
primarily divided into three different categories [5], and they are:

• Online: Documents that fall into the online paradigm consist of online handwriting (digital
ink), that consist handwriting data captured by a digitizer that captures handwriting of a
writer. These digitizers are specialized devices that capture a writer’s ink information, his
speed, the pressure applied etc. which can be later used for further processing (refer Figure 1.1
(a)). Digitizers typically include the TabletPC, Palmtops, and many other handled devices.

• Offline: The least common denominator for handwriting is the paper and pen. Offline
documents consist of scanned copies of handwriting information that were a priori written
on a sheet of paper. Scanner assumes the role of the digitizer here and since we scan the
document after the writer has written his content, we do not access to information such the
speed or pressure with which the writer must have written. Handwriting data in both Online
and Offline could be either cursive, discrete or mixed (refer Figure 1.1 (b)). Handwritten
letters, personal notes and handwritten diaries, historical manuscripts are some examples of
Offline documents.
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• Printed: Printed documents contain textual information which are scanned copies from a
book. The textual content in books are in the Printed form following a specific font style,
font size and maintaining a standard uniformity across all pages. These are typically referred
to as document images and could also contain images or pictures in addition to textual
content (refer Figure 1.1 (c)). OCRs are used to extract the textual content from these
documents. Books, journals, articles, newspapers, magazines are some of the examples of a
Printed document. Some of the popular digitizers for both Offline and Printed documents
include the digital cameras, hand-held and flat-bed scanners etc.

(a) (b) (c)

Figure 1.1: Sample Documents for (a) Online (b) Offline (c) Printed

Most of these documents that are available are typically in very large numbers and to manually
group and file these documents is a very taxing procedure. At the same time it is of paramount
importance that these documents are made accessible to the users who would in fact like to search
them with relative ease. All of Online, Offline, Printed documents do not contain searchable text
as is, but contain their image or ink information which cannot be searched by existing text search
engines. Conventional text search is based on matching or comparison of textual description (say
in ASCII/UNICODE) These techniques can not be used to access content at the image/ink level,
where text is represented as pixels but not as ASCII/UNICODE. We extend the conventional
textual search to image/ink representation of these documents.

1.2 Background

This thesis builds on two ongoing activities for annotation and retrieval of documents.

1.2.1 UPX Format as a Successor to UNIPEN [1, 2, 3]

In order to create and evaluate recognition engines for online handwriting, significant resources in
the form of annotated datasets are required. Many of the existing representation schemes cater only
to a subset of requirements. UNIPEN [6] is one of the popular standard for annotated datasets.
Over time, XML has evolved as an effective standard for representation of information. UPX [2],
which is a new evolving standard represents the digital ink as a separate representation and the
annotation as another representation. This is because, independent of annotation, digit ink by
itself can be a standard representation for efficient storage and transfer of ink for a wide variety
of applications. InkML [7] is an XML-based standard for representation of digital ink which the
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UPX has adopted as its underlying representation of handwritten data. The UPX representation
includes several elements for detailed annotation of handwriting.

There are several shortcomings in the UNIPEN format which the UPX tries to fill. Some of
these are: (a) UNIPEN is unstructured, as there is no standard way of organizing information
into well-defined classes, (b) UNIPEN does not enforce any strict constraints, and (c) There is
no standard order in which UNIPEN keywords can appear. On the other hand the UPX, an
XML-based successor to UNIPEN address the above mentioned shortcomings of the UNIPEN and
provides for a path for migrating existing UNIPEN data into the new representation. In addition,
UPX effort is to create a standard representation for handwriting datasets so that it supports all
scripts and allows semantic interpretation of the writing at user-defined logical levels, captures
information about writers and the data capture environment and supports automatic generation of
annotation using recognizers, and subsequent manual validation processes. One more finer aspect
being that UPX keeps handwriting data separate from its semantic interpretations.

UNIPEN has been the result of a large effort in which numerous institutes and commercial
organizations have provided data. In fact, because of the heterogeneity of the data (different
writers, different recording conditions, different languages and writing setup), UNIPEN provides
an excellent test case for the assessment for UPX. Actually, it was one of the goals of the UNIPEN
collection efforts to provide such variety. Since UNIPEN and hwDataset have very similar goals,
they are functionally quite similar though they might accomplish the same ends differently.

Handwriting Annotation Tool In order to support and build UPX datasets, we developed
a handwriting annotation tool in collaboration with HP labs, Bangalore, India. The handwriting
annotation tool is a graphical tool that supports InkML and UPX representations. While the tool
is designed to read and write UPX documents, it is also capable of importing digital ink in input
formats such as InkML, UNIPEN, and simple ASCII encoding of stroke data. The tool supports
input and output viewing, editing and annotation of UPX files. The tool is supplemented by a
library of basic functions that can be used to access and extract handwriting data from UPX
documents based on user-specific criteria.

1.2.2 Retrieval without Recognition [4]

Large digital libraries, such as Digital Library of India (DLI) [8] are emerging for archiving large
collection of printed documents. Much of the books scanned in DLI are in Indian languages, where
robust OCRs are not yet available for converting these scanned images into textual form. Therefore,
these books can only be searched based on the metadata of the books, and not by the content within
it. Indexing and retrieval from document image collections were studied by different researchers.
Success of these procedures depends on the performance of the OCRs, which convert the document
images into text. For Indian, African and many other oriental languages, we need alternate methods
to retrieve relevant documents from the digital libraries containing scanned images.

Matching and Retrieval

Generic content-based image retrieval systems use colour, shape or/and texture features for charac-
terizing the content. In the case of document images, features can be more specific to the domain as
they contain image description of the textual content in it. Word images, particularly from news-
papers and books, are of extremely poor quality. Common problems in such document database
will have to be analyzed before identifying the relevant features. Popular artifacts in printed doc-
ument images include: (a) Excessive dusty noise, (b) Large ink-blobs joining disjoint characters or
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components, (c) Vertical cuts due to folding of the paper, (d) Cuts in arbitrary direction due to
paper quality or foreign material, (d) Degradation of printed text due to the poor quality of paper
and ink, and (e) Floating ink from facing pages.

An effective representation of the word images will have to take care of these artifacts for success-
ful indexing and retrieval. Million et al [4, 9] found out that there are broadly three categories of
features that are needed to address these artifacts: word profiles, structural features and transform
domain representations. More information about these features can be found in Appendix E.3. Mil-
lion [4] also observed that these representations work well for popular fonts, but only with limited
success for fancy fonts. Document images are preprocessed in an offline mode to threshold, skew-
correct, remove the noise and thereafter to segment into words. Then the features are extracted
for individual words. They are also normalized such that the word representations become insen-
sitive to variations in size, font and various degradations popularly present in the text documents.
For proper search, we need to identify the similar words. Distance or dissimilarity between words
is computed using the features discussed above. Similarity of words are computed based on two
components: (a) A sequence alignment score computed using a Dynamic Time Warping (DTW)
procedure (for details refer Appendix E.4). (b) Structural similarity of word images by comparing
the shapes.

Word Spotting The word spotting technique involves the segmentation of each document into
its corresponding lines and then into words. Each document is indexed by the visual image features
of its words. Word level matching has been attempted for printed [10] , offline [11] and online [12]
documents. They are useful for locating similar occurrences of the query word. There have been
successful attempts on locating a specific word in a handwritten text by matching image features for
historical documents [11]. Word spotting approach [11, 13] has been extended to searching queried
words from printed document images of newspapers and books. Dynamic time warping based
word-spotting algorithm for indexing and retrieval of online documents is also reported in [12].
Features for matching words are computed from the constituent strokes. None of these matching
schemes are designed to address partial matches, which is very important for addressing word-form
variations for effective search.

Information Retrieval Measures On the other hand, Million et al [9], have addressed the issue
for partial matching for printed documents along with the issues of retrieval. This work extends it
to cross-lingual retrieval by transliteration among Indian languages and a table-lookup translation
for other languages. Million [4] has also proposed information retrieval measures such as term
frequency (TF) and inverse document frequency (IDF) in the context of document images. More
information can be found in Appendix E.5.

1.3 Annotation and Retrieval

The need for annotating documents is increasingly getting important. Annotated datasets of hand-
writing are a prerequisite to attempt a variety of problems such as building recognizers, segmenta-
tion algorithms, writer identification algorithms etc. Annotated datasets of handwriting covering a
variety of writing styles are essential for development and evaluation of handwriting recognition en-
gines. Lack of linguistic resources for many scripts, in the form of annotated handwriting datasets
has been one of major hurdles to research in these scripts. Manual annotation of handwriting
datasets is laborious and error-prone, especially if one were to annotate at the character or stroke
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level. This brings about the need for automatic annotation. Annotation by alignment is studied,
provided a parallel corpus of text is given.

1.4 Problem Statement

This thesis addresses the problem of annotation and retrieval of documents with special emphasis
on Indian Language documents. We explore the specific algorithms, and verify the schemes by
building prototype systems. The specific problems of interest are:

• Development of a tool for annotating online handwriting data in UPX/hwdataset format,
which is considered as a successor to the popular UNIPEN format. Special issues related
to the Indian Languages are kept in mind during design and implementation. Extensive
evaluations are done keeping in mind the popular use.

• Development of a model-driven annotation scheme for highly automated annotation of online
handwritten data. This addresses the need of developing huge annotated corpora for building
recognizers. Recognition engines need annotation at the character/akshara level.

• Model driven annotation starting from the parallel unaligned corpora needs the synthesis of
handwriting. We propose a synthesis scheme for online handwriting in this Thesis.

• Retrieval is a relatively straightforward process when the data is annotated. Often the docu-
ment collections are unannotated. We investigate a retrieval scheme for online handwriting,
without depending on a recognition algorithms. User prefers to query in text, while retrieval
of documents are digital ink.

• Similar techniques could also be applied for offline printed documents. However for making
large collections of documents accessible, we need scalable systems. We propose a scheme
which helps in adapting the existing search engines suitable for efficient indexing and retrieval
of document images.

• In the final problem, we explore the access to the graphics stream of PDF files, where the
textual documents are represented as graphics in the PDFs due to the unavailability of text
during the PDF generation. We propose a retrieval scheme without explicit recognition in
the graphics stream of the PDF files with support for Indian languages.

The thesis address the above problems in a general recognition free framework. However, the
results of this thesis could be highly useful for developing recognition engines.
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1.5 Related Work

Related articles to this thesis are referred and discussed in detail in the relevant parts of the next
three chapters. However, a brief sketch of the related work is provided to give the background of
the thesis.

1.5.1 Related Work in Online Handwriting Annotation

• First TabletPC, GRiD pad was introduced in September 1989, by GRiD systems. It had
MS-DOS as the underlying operating system.

• Jot [14] was introduced as a specification for an ink storage and interchange format in 1993.

• UNIPEN [6] format was introduced by Guyon et al [15] in 1994 and is a standard for repre-
sentation of online handwriting ink.

• INKML [7] slowly evolved as the standard for ink representation and transfer. It is stored in
XML format.

• hwDataSet [3] was proposed as a new annotation storage format for online handwriting data
in 2004.

• Simultaneously [3], an annotation tool for online handwriting that stores the ink information
in UPX format was built. There have been similar tools [16, 17] for offline cursive documents
that can be annotated at word-level prior to our tool.

• UPX [1, 2] was proposed as a successor to UNIPEN in 2006. UPX evolved from hwDataSet.

• As regards to annotation by alignment is concerned, Zimmer et al [18] have studied the
problem of alignment of parallel handwritten and text corpora for offline documents in 2000.

• Korn et al [19] matched word images to text based on global properties of the word extracted
from both the handwritten word images as well as text words that are rendered using a
specific font.

• Anand et al [20] use annotation by alignment for online handwriting data in 2006.

1.5.2 Related Work in Online Handwriting Synthesis and Retrieval

Synthesis of Handwriting

• Isabelle Guyon [21] started the synthesis work for online handwriting as back as 1996.

• In 1997, Guyonet al [22] then gave an overview and synthesis of online cursive handwriting
recognition techniques.

• Later, Wang et al [23] proposed synthesis for online cursive handwriting.

• In 2002, Wang et al [24] also proposed learning-based cursive handwriting synthesis for offline
handwriting datasets.

• Recently, in 2005, Zheng and Doermann [25] worked on handwriting matching and its appli-
cation to handwriting synthesis.

• Jawahar and Balasubramaian [26] proposed handwriting synthesis for Indian languages for
the first time.
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Handwriting Matching and Retrieval

• Manmathaet al [27] pioneered the work of word spotting approach in as early as 1996.

• Plamondon et al [28] published a comprehensive survey on online and offline handwriting
recognition in 2000.

• Rath et al [29] have explored the problem of retrieval in the context of offline historic word
images for a single writer document collections in 2002.

• Russell et al [30] have worked with the help of a recognizer for indexing and retrieval for
multi-user and single script collections in 2002.

• Jain and Anoop [31] have worked on inline ink matching and retrieval for a single writer
document collections in 2003.

• Srihari et al [32] have studied context of “Forensic document retrieval” in 2004.

• In 2006, Balasubramanian et al [33] attempted for printed words for digital library collections.
The Indexing process is little slow as its an offline activity.

1.5.3 Related Work in Document Retrieval Systems

• In 1925, AT&T produced wire photo, the first commercial image scanning system.

• First color scanner was patented by Alexander Murray and Richard Morse in 1937,

• One million book scanning activity [34, 8] gets started.

• Now even web search engine giants like Google, Yahoo and MSN are involved in archiving
books more than a million.

• In 1998, Doermann [35] published a survey on “The Indexing and Retrieval of Document
Images”.

• Rath et al [11, 36] worked on feature selection and matching for scanned handwritten docu-
ments.

• In 2003, Chaudhury et al [37] worked on devising interactive access techniques for Indian
language document images.

• Greenstone slowly [38] evolved as a popular opensource search engine.

• PDF [39] becomes the default standard for document printing and document transfer.

• Hitherto, PostScript [40] was the de facto standard, upon which PDF was built.

• On the PDF viewer front, Xpdf [41] became the most popular opensource PDF viewer.

• OCR-based search for latin scripts in PDF files is made available in Acrobat Professional 7.0.

• Avinash Chopde proposed ITRANS [42] for transliteration of Indian languages.

• Later OMTRANS [43] from Carnegie Mellon was proposed, which not case-sensitive unlike
ITRANS.
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1.6 Organization of the Thesis

Annotation of online handwriting data is described in Chapter 2, and annotation procedures such
manual annotation, automatic and semi-automatic annotation procedures are also extensively cov-
ered. Annotation for the purpose archival, retrieval, and recognition are also well covered in Chapter
2. Annotation representation formats like UNIPEN and UPX are presented in lieu with the require-
ments for storage of online handwriting. Chapter 2 also covers our tool that supports annotation
of online handwriting and compares it with existing annotation tools that are available. Finally
Chapter 2 presents the Model-based Annotation framework for automatic annotation of online
handwriting data.

Chapter 3 describes in detail, the retrieval of online handwriting by synthesis and matching
procedures. The primary solution to handling online handwritten data is to employ a HWR (hand-
writing recognizer) to convert the ink into text, and use the results to search and retrieve documents.
However, this approach is suited only where the handwritten data is purely text and where robust
HWR is available for the language contained in the document. Chapter 3 describes an alternative
approach wherein matching and retrieval are done in ink domain itself. Chapter 3 also discusses
the challenges involved due to the large amount of variations that is present in online handwriting.
This chapter also covers the handwriting synthesis that is used to generate handwritten data for
a given input text, which is used as a template for matching. The synthesis has been achieved for
Indian language scripts and is also used for cross-language retrieval.

Building an effective access to the document images requires designing a mechanism for effective
search and retrieval of textual data from these collections. Chapter 4 describes the issues asso-
ciated with the implementation of a scalable system for Indian language document images. We
demonstrate the development of document retrieval systems for printed documents by modifying
an existing opensource search engine and demonstrating the document word image search. For the
first time, the objects in the graphics stream of PDFs are shown to be content-level accessible with
the help of word spotting technique. Chapter 4 elaborates the implementation of the proposed
solution in an opensource PDF reader (Xpdf) to demonstrate that textual search is possible in the
graphics stream.

Finally in Chapter 5, we conclude and summarize our work by giving a direction to the future
work that can be pursued.
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Chapter 2

Annotation of Online Handwritten
Data

2.1 Introduction to Annotation of Online Handwritten Data

Annotation is the process of identifying an object with a textual description that precisely de-
scribes the object or entities that make up the object. The need for annotating documents is
increasingly getting important. Annotated datasets of handwriting are a prerequisite to attempt a
variety of problems related to recognition algorithms, segmentation algorithms, writer identification
algorithms etc.

Annotated datasets of handwriting covering a variety of writing styles are essential for the de-
velopment and evaluation of handwriting recognition engines, especially those which utilize the
data-driven learning approaches [3]. Lack of linguistic resources for many scripts, in the form of
annotated handwriting datasets has been one of the major hurdles to research in these scripts.
Manual annotation of handwriting datasets is laborious and error-prone process, especially if one
were to annotate handwriting at the character or stroke level. There have been approaches that
do automatic and semi-automatic annotation of handwriting data. Annotation can also be used
for offline content, primarily the document images. Document image annotation has been widely
studied, especially in the context of giving textual captions to image patches in a document image.
These captions are then subjected to indexing so that these document images can be retrieved
when a textual query is given. Annotation has also been studied in the context of CBIR, where a
correlation is established between textual words and image features. Prior to annotation, typically
there is a data collection process that is carried out in a variety of settings and then the collected
data is correspondingly annotated depending on the data collection was carried out.

2.1.1 Annotation of Online Documents

Online handwriting devices are finding wide spread applications in everyday life. This necessitates
effective representation of handwritten data meeting the relevant objectives. For example, the de-
velopment of online handwriting recognition technology requires significant resources in the form of
annotated datasets, in order to support the creation and evaluation of recognition engines. Though
representation schemes have been already proposed for storage and manipulation of handwritten
data [44, 45, 7, 46], many of them cater only to a subset of the requirements of the current hand-
writing applications. Early standards for digital ink such as ITU-T 150 (1988) and Jot(1992) [14]
focused on the representation of digital ink, and did not address the issue of annotation of hand-
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written data for research and development of recognition engines. Recently, XPEN(2003) [44] was
proposed for representing the handwritten data which primarily needs to be exchanged over the
network with distributed recognition systems. The lack of a common annotation standard often
resulted in duplication of data collection efforts for individual research. This made systematic eval-
uation and comparison of different recognition algorithms difficult. UNIPEN [6, 46] was proposed
in early 1990s as one such common standard for annotated datasets of online handwritten data.

Over time, XML has evolved as an effective standard for representation of information with
extensibility, flexibility and simplicity. The creation of annotated datasets of handwriting requires
two constituent representations, one for digital ink and the other for its annotation. Independent
of annotation, digital ink by itself required a standard representation that can support efficient
storage and transmission in a wide variety of integrated and distributed ink applications.

InkML is a recent XML-based standard which was proposed for the interchange of handwritten
data within various software applications. Digital Ink Markup Language or InkML [7], a W3C draft
standard, is being drafted to meet the requirements of representation of Digital Ink. The markup
is designed to support input, storage and processing of handwriting, gestures, sketches, music and
other notational languages in Web-based applications. The purpose of InkML is to define a common
format for the exchange of ink data between various software modules, which is different from the
UNIPEN’s objective. InkML is a representation standard for the ink data and needs extension to
store annotations.

The hwDataset representation proposed in this chapter uses the emerging InkML as the under-
lying representation of handwritten data. This representation incorporates the annotation func-
tionalities needed for the handwriting recognition research. The specific requirements for such an
annotation scheme are discussed in Section 2.4. The proposed method for storage of ink data along
with its corresponding annotation using an XML based standard, is presented in Section 2.5. The
advantages of the proposed model is discussed in Section 2.7 along with comparisons with similar
standards. The standard is built on InkML using the core InkML for representation of the trace
data. It incorporates the annotation storage functionalities from the UNIPEN standard, and also
enhances it by adding more flexibility. This standard is proposed as an improved scheme for stor-
age of online data for online handwriting applications. Creation of significant annotated corpora
for building or evaluating recognition engines, needs effective tools. A tool for easy annotation is
proposed in Section 2.6. The annotation can be done at various levels, catering to the futuristic
applications. User interface is designed in such a way that annotation can be done close to the
typing speed of the user.

Annotated datasets of handwriting are a prerequisite for the design and training of handwrit-
ing recognition algorithms. However, the annotation of large datasets is a tedious and expensive
process, especially at the character or stroke level. Here we propose a novel, automated method
for annotation at the character level, provided a parallel corpus of online handwritten and typed
text. The method employs a model-based handwriting synthesis unit to map the two corpora to
the same space and the annotation is propagated to the word level and then to the individual
characters using elastic matching. The initial results of annotation are used to improve the hand-
writing synthesis model for the user under consideration, which in turn can refine the annotation.
The method can take care of errors in the handwriting such as spurious and missing strokes and
characters. The output is stored in the UPX format which is a new representation for storing
annotation of handwriting.
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2.1.2 Annotation Procedures

Annotated datasets of handwriting covering a variety of writing styles are essential for the de-
velopment and evaluation of handwriting recognition engines, especially those which utilizes the
data-driven learning approaches [3].

Manual Annotation Scheme

During manual annotation, users spend time annotating huge corpus of documents manually. Every
region of interest that needs to be annotated, that could be typically, an image, a text region.
Similar objects and other elements need to be manually identified one after another using graphic
selection tools and are annotated appropriately. Handwriting data can also be annotated in a
similar manner where the region of interest, that needs to be annotated could a paragraph, line
or word of a handwritten text. However, annotation of large corpus of handwritten data is a
time-consuming and error-prone process, especially at the character level.

Semi-Automatic and Automatic schemes

On the other hand, to bypass manual annotation, there are Semi-Automatic and Automatic schemes
of annotation that reduces the manual effort considerably. Plain transcripts of handwritten data
can be made available due to two factors: i) one could hire an experienced typist in a language to
generate transcripts of available handwritten data, and ii) many handwritten datasets are collected
based on text that is already available in the electronic form.

However, such a text need not exactly align with the handwriting due to errors in the hand-
writing or the transcription process. We propose a model-based annotation framework, where the
handwriting style of the writer is learned and used to propagate the transcription to words and
characters. The method automatically aligns the handwritten data with the text data and thus
generate annotation of handwritten data at character level.

Figure 2.1: Alignment of Handwritten Data to Synthesized Handwriting.

The problem of propagation might seem relatively easy to solve since we have parallel corpora
in the handwritten and text formats. However, this is true only if: i) we have an error free
segmentation of the handwritten data at the word and character levels, and ii) the transcription
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strictly matches the handwriting, without any errors. Both these assumptions are often violated
in real world handwritten datasets and their transcriptions. Hence the process of alignment of the
handwritten data with a corresponding corpus includes the identification of the word and character
boundaries of the handwritten data as well as the mapping of the handwritten strokes to the
characters in the text (see Figure 2.1).

2.2 Related Work

2.2.1 Document Annotation Tools

There have been many studies on automatic document image annotation. There have been doc-
ument annotation tools that have been designed to handle online and offline content. A truthing
tool for generating a database of cursive words was studied in [16].Their data set consisted of
around nine hundred sheets of cursive writing. The segmentation was done based on the word
spacing and annotation was carried out at word level. PerfectDoc [17], is a suite of tools for manual
groundtruthing. The suite consists of tools to create highly accurate ground truth, and also mech-
anisms to deliver output suitable for web based viewing (XML/HTML). This was suite was meant
for annotating printed documents. Manmtha et al [47] annotated most of the historical manuscript
images manually. As these historical documents are handwritten, conventional recognizers seem to
produce accuracies as low as 50% and thus they have to be annotated manually. Manual annota-
tion is labour intensive, and there have been efforts for automatic and semi-automatic annotation
of documents. In [47] automatic annotation involving probabilistic annotation models have been
studied. Chaudhury et al [10] have built tools to annotate word images in a document so that they
can be indexed and retrieved using text based search engine methodologies. Hua et al [48] have used
the OCR to annotate text content in a video, which can be used for video retrieval. Firstly text
detection modules identify the presence of text, and then after finding the location of the text, the
text is sent to OCR after initial pre-processing techniques. GroundsKeeper [49] is an X-windows
based tool that allows a user to display a document image, draw zones of various types around the
different page features, and all these drawing zones are fully editable. Each of these zones could
be a text (or word) region or an image region within a document image that can be annotated
manually. This tool was further used to benchmark segmentation algorithms. Vind(x) [50] is an-
other system that annotates the handwriting information using its recognizer dScript that labels
the handwritten data. Vind(x) system was fundamentally meant for pen based annotation and
implements concepts like query-by-drawing, query-by-example and text-based querying.

2.2.2 UNIPEN and Annotation Schema

The aim of UNIPEN was to provide the online handwriting community with a common format
for facilitating the data exchange [15]. In other pattern recognition fields, such as speech and
OCR, significant progress have been made since large corpora of training and test data are publicly
available and public competitions are organized to compare recognition techniques on a fair basis.
There haven’t been similar efforts on the online handwriting recognition front though many com-
panies and universities started collecting data on their own for their internal use. To remedy this
problem, the emergence of UNIPEN came into being. UNIPEN format was developed and tested in
collaboration with a work group that consisted of members from the online handwriting recognition
community. It is an ASCII format designed specifically for data collected with any touch sensitive,
resistive or electromagnetic device providing discretized pen trajectory information. Coordinate
information such as X and Y are to be provided bare minimum, and there is a provision to extract
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additional information such as pen angle and pressure information. The UNIPEN format was not
meant for optimized data storage or real time data transmission unlike Jot [14]. It also does not
handle color, image rotation, scaling and others which typical ink manipulating applications han-
dle. UNIPEN can handle lots of meta information pertaining to the ink, like the information about
writers, segmentation, layout, data quality, labeling and recognition results.

The format is a series of instructions consisting of a keyword followed by arguments. Keywords
are reserved words that starts with a dot at the first coloumn in a line. Arguments on the other
hand are strings or numbers that are separated by whitespaces. All variables are global, that is,
declared variable hold until the next similar declaration. Most of the elements in UNIPEN are
optional providing a way to create simple data sets. The pen trajectory is encoded as a sequence
of components within the keywords .PEN DOWN and .PEN UP containing pen coordinates X
and Y (eg. XY or XYT as described by the .COORD keyword). Segmentation and labeling are
provided by .SEGMENT instruction, while .HIERARCHY specifies a segmentation hierarchy (such
as SENTENCE WORD CHARACTER).

Unipen Tools To facilitate viewing and generation of UNIPEN data, the UNIPEN foundation
have released some software tools. Upview is a UNIPEN viewer that can display UNIPEN data in
various hierarchies as described in UNIPEN file. The user can navigate across multiple files and
through hierarchies and can view the segment information including annotation information for that
particular stroke or group of strokes in that hierarchy. Most of the UNIPEN files typically have a
.dat extension. With Upworks the output looks much nicer and more colorful. More specifically, the
colors allow for visualizing the subsegments within a current segment by the use of color. Upworks
was built using Tcl/Tk which uses extensive system resources when the large files are presented
to them that have bigger segment sizes. There are several limitations in the UNIPEN format.
There is no standard way of organizing information in UNIPEN and it does not enforce any strict
constraints and it has a scope proble. In order to safeguard the public academic distribution of the
UNIPEN data, the International Unipen Foundation (iUF) was raised.

Our Tool We deveoped a which allows for both annotation and visualization of online handwrit-
ing data. Several limitations that Upview had, have beem well covered. Our tool is meant to read
and write UPX file format for online handwriting data. We also additionally support UNIPEN file
formats and map the meta information present in the UNIPEN file into the UPX format. The tool
supports input and output viewing, editing and annotation of UPX files. The tool is supplemented
by a library of basic functions that can be used to access and extract handwriting data from UPX
documents based on user-specific criteria.

All these tools help is in building annotated datasets for online handwriting. Manual annotation
requires immense efforts and paramount concentration in annotating handwritten data. This leads
us to need the need for automatic annotation which is described in the next section in detail.

2.2.3 Annotation by Alignment

The problem of alignment of parallel handwritten and text corpora has been addressed before in
the context of segmentation of text lines to words by Zimmerman and Bunke [18]. However, this
method assumes the presence of a reliable recognition engine, which is the goal of our annotation
process. Tomai et al. [51] proposes a similar approach to annotate words of historic handwritten
data, where the recognizer is constrained to output the words in the transcript.

The work that is closest to our approach is by Kornfield et al [19], where word images are matched
to text based on global properties of the word extracted from both the handwritten word images as
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well as text words that are rendered using a specific font. The matching is done using dynamic time
warping (DTW). Rothfeder et al. Rath [52] extends this approach to use an HMM for matching
the words, that handles a limited amount of errors in the segmentation as well as transcription
process.

The problem of representation of the annotation or ground truth has been studied before.
Bhaskarbhatla et al [3] presented an XML-based representation scheme for annotation of online
handwritten data called hwDataset and also created a tool based on the proposed representation.
Although the tool attempts to address the requirements of creation of annotated data sets of hand-
written data in different scripts, the process still requires selection and annotation of individual
characters.

In this chapter, we propose a model-based synthesis and annotation framework, that automati-
cally segments and aligns transcripts for online handwritten documents. In this sense, our approach
combines the advantages of the segmentation algorithm in [18] and the alignment capabilities of [19].
Moreover, we do not assume the availability of a recognizer and the algorithm is robust towards
noise in the handwriting, as well as errors in the transcription process. The frameworks allows us to
learn and update the handwriting model for a writer from the initial annotated data, which in turn
can improve the annotation. Our algorithm is tested on a dataset containing multiple writers with
varied writing styles as opposed a the single writer collection used by previously reported works.
Moreover, the approach can produce annotations at the character level for Indian languages. We
use the InkML representation to store the annotation information generated by our algorithm.

2.3 Applications of Annotation

2.3.1 Annotation for Archival

Annotation for archival is one of the major application areas for annotation. Digital libraries,
tend to maintain a huge resource archive of digital documents, as the number of such documents
typically run into a very huge number. The documents thus are not only to be archived based
on their content but in fact for quick indexing must be archived at the meta content level. Meta
information could be the, the genre of the document, its author, publisher, ISBN number if its a
digitized books, year of publication, edition. To summarize one needs to annotate information at
the meta level the ontology information pertaining to that document or sets of documents that
share a common meta annotation.

This way of indexing and archiving documents is much more efficient as people tend to search
documents based on such meta information mentioned above and is ideal for a digital library
application. The Digital Library of India [8] uses a similar mechanism to produce meta information
during its archival activity where librarians manually enter/annotate meta information.

Similarly people have created digital archive infrastructure for video and other multimedia data.
The challenge of proper retrieval become more difficult for archives containing documents and data
that are semantically mixed and search terms are ambiguous. This can be controlled by adding
more fields in the meta section that can reduce the ambiguity. Meta information can also be
produced using an OCR. Typically document images are converted to text using an OCR, and this
in turn can be used as a meta information or an automatic form of annotation for archival.

Annotation has also extensively applied in the field of forensic applications, especially for archiv-
ing fingerprint data. Annotation information is extremely helpful in such situations when the
amount of fingerprint information runs typically into a large number, and retrieving them becomes
a tedious task. Annotation for archival is also well explored in the field of Biometrics, Medical
Images.
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2.3.2 Annotation for Retrieval

Libraries have traditionally used manual image annotation for indexing and then later retrieving
their image collections. There have been automatic image annotation and retrieval methods [53]
that have been successfully used. Annotation for retrieval is used not only for images, but also
for handwriting documents, video and other multimedia data. Manmatha et al [47] built a search
engine for historical manuscript images, wherein the retrieval system was trained using an annotated
set of 100 pages of George Washington’s manuscripts and is used to query a dataset containing
images from the same collection. The current approach is to use meta data or indices, which are
manually created. This makes automatic approaches to searching and accessing the content very
attractive. Another approach to such a problem is to use handwriting recognizers followed by a
text search engine. However, in real time the documents, especially the historical documents, are
poor of quality which makes the handwriting recognizers vulnerable to poor results. [47] used an
alternative approach bypassing explicit recognition.

We applied a similar methodology [9] to retrieve printed document images. In this case, the
documents were chosen from the Digital Library of India [8], and were subjected to an offline
activity, that pre-processed these images, segmented them into word images, and their features were
extracted. Then all these segmented word images were clustered based on their similarity, and the
clustered word images were annotated manually giving it a text representation and thereby indexing
the whole document image collection for the printed texts. Laverko et al [54] used annotation for
retrieval video data. The video data primarily consisted of news videos, which needed to be
annotated. After the annotation process, similar approaches of using text based retrieval methods
were applied as described earlier. In general, annotation based retrieval techniques are widely
applied for many multimedia data.

2.3.3 Annotation for Recognition

As seen earlier, annotation has been used widely for retrieval purposes. Annotation plays a vital
role in recognition based applications too. Annotation information, which acts as ground truth
will be vital in OCR applications that learn and improve classification based on the annotated text
and the recognized text. Large amounts of ground truth data that would be suitable as training
data for building an OCR with degradations and can be used for testing an OCR and performing
analysis of its errors in the form of confusion matrices that is useful for OCR fine tuning.

There are many ways of generating the ground truth, and as seen in the previous section ground
truth data for recognition purposes, like the OCR generally are accompanied along with their
original documents. Ground truth information, in other words, the annotation can be associated
with the document images at various hierarchies. That is, we can have corresponding text associated
at the page level, the paragraph level, the sentence level, the word level, and up until the character
or stroke level. Typically these annotation information is also very useful for segmentation based
routines that can also build upon their segmentation results so that they can further accuracies.

Handwriting recognizers are not known to have high accuracies, with the main constraint being
that every individual has his unique style of writing which is the biggest impediment during recog-
nition. Once these styles of handwriting are annotated, then one can group together all handwriting
samples at a particular hierarchy. This initial grouping is very important during the initial training
phase. Since we already know the text label of the handwriting cluster, we can further extract
features that are common across varied samples within that cluster. In this way one can extract a
common style information across all writers for a particular chunk of ink that belong to a cluster.

Annotation has widely been used in the area of speech recognition [55] as well. During the
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training phase various phonetic sounds are tagged using various tagging techniques that enhance
the recognition of a speech recognition system. Sphinx [56] is a popular speech recognition engine
from the Carnegie Mellon University, while Festival [57] from University Edinburgh is a popular
speech synthesis system.

2.4 Requirements for Annotation of Online HW Data

2.4.1 Desirabilities of the Representation Schema

UNIPEN is a versatile standard for online data storage. However the annotation information is
stored as plain text which makes it difficult for any application without a specific parser to un-
derstand the contents in it. InkML solves this problem by using an XML based representation
which can be understood currently by a large number of applications. InkML is built to represent
the trace information for diverse online handwriting applications. Annotation information is not a
part of InkML. This leads to the requirement of a standard which can store additional information
about the ink, (like the writer, content source, etc) along with the trace data in an InkML frame-
work. Annotations may be needed at various levels of the document structure hierarchy. Some
information may pertain to the whole document, where as some information may pertain only to
the traces in the document. Thus, a standard which can support the annotations at various levels
in the document structure hierarchy is necessary.

Groundtruthing of documents is a key step which allows the developers to evaluate the perfor-
mance of many document understanding algorithms [58]. Facility should be thus provided in the
standard for storing annotations at various levels of the hierarchy. Specific script related issues
will have to be kept in mind while working with such a standard. Often recognition engines for
non-Roman scripts suffer due to lack of sufficient data and effective representation [58]. The ex-
tensibility in XML provides a very convenient way to add more elements if need arises with certain
languages.

The creation of annotated datasets on a global scale requires a standard representation for anno-
tation that supports the following requirements (i) script-independence (ii) semantic interpretation
of the writing at various user-defined logical levels (e.g. Word, Character) (iii) capture of in-
formation about script, writing style, quality (iv) capture of information about writers and data
capture environment (v) support for automatic generation of annotation using recognizers, and
subsequent manual validation (vi) separation of handwritten data from its semantic interpretations
(vii) support for planned as well as casual data collection, among others.

2.4.2 Desirabilities of the Annotation Tool

A tool that confirms to the standard is necessary to create documents in the current UPX format.
Tools are required to annotate, manipulate, store and access the online handwritten data. Provision
to add the meta information as specified in the standard has to be included. User needs to have a
convenient interface for annotating or correcting the annotation at various levels of the document
hierarchy. The following lists some basic desirabilities of the annotation tool.

1. Ease of browsing: the annotation tools must be designed such that it provides easy use while
navigating through documents and flexibility to browse across files either sequentially one
after another or in a batch mode.

2. File formats: The annotation tool must be able to handle various kinds of ink input formats.
Popular formats such as the UNIPEN format, the InkML format, formats from popular
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digitizers and pure raw ink information must be handled. This would greatly help in using
already available ink data. The annotation tool has to save the ink information with the
annotation information in a custom format, so that they partially annotated files can be later
opened and can be further annotated accordingly.

3. Hierarchy views: The tool must provide ways and easier mechanisms fore viewing multi-
ple hierarchies of the handwritten documents, such as the Paragraph, Sentence, Words and
Characters such that are easily discernible to the end user.

4. Manual segmentation and editing: As most of the handwriting segmentation routines are not
perfect, the tool must provide ways in which errors in segmentation can be corrected and at
the same time group chunk of inks according to the desired hierarchy. Special keys from the
keyboard are reserved for editing ink information.

5. Ease of annotation: As the main objective is annotation, the tool must provide appropriate
keyboard and mouse interfaces such that the ink information can be properly labeled. It
has to be designed so that people proficient in typing can annotate chunk of ink fast and
effectively.

6. Display of annotation label: As the user keeps annotating chunk of ink, the label identi-
fying the ink has to be displayed appropriately. This being manual annotation, the user
keeps checking of what the ink information convey and the label he has assigned. This is
of paramount importance especially when it comes to Indian scripts which are typed in Ro-
man (ITRANS [42]) and are displayed as Unicode characters (fonts) on the screen. Typing
in ITRANS is more intuitive rather than using pre-allocated character positions for Indian
scripts. INSCRIPT [59] keyboard is one such example. But the annotation tool must also
provide for such a facility, if the annotator is familiar with such keyboard scheme.

7. Meta data: There must also be a form filling mechanism to enter meta information related
to the ink, such as the writer, his skill sets, about the annotator, the script in which it was
written, segmentation and hierarchy information and others pertaining to ink.

8. Ink display: The tool must support zoom facility so as to view ink strokes according to a
users wish. Additional image processing related to stroke thickness, smoothness, location,
flipping should be configurable according to user choice.

2.5 UPX Representation [1, 2, 3]

Our representation for annotated datasets of handwriting is called hwDataset, and it includes
several elements for detailed annotation of handwriting, which extend the basic traceRefGroup
element of the core InkML. The hwDataset element is the root of the XML document and captures
meta-data about the dataset under datasetInfo, various definitions as part of datasetDefs, and
hierarchical annotation of handwritten data under hwData These elements are described briefly in
the following paragraphs.

DatasetInfo: The datasetInfo element captures metadata related to the dataset as a whole. It
contains the following elements: (a) name - name for referring to the dataset (b) category - type of
dataset (c) version - version number and/or datestamp of publication (d) contact - contact info for
dataset-related queries (e) source - source of collected data (f) setup - physical conditions in which
data was collected (g) dataInfo - information about the data
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The dataInfo element in turn contains the following sub-elements: (a) script - language/script
captured in dataset (b) quality - quality of handwritten data captured in dataset (c) truth - truth of
what is captured (d) methodology - design of data and collection procedure (e) annotationScheme
- description of annotation scheme

datasetDefs The datasetDefs element captures information about different writers and sources
of labels (annotation) represented in the dataset, and provides the means for referring to them later
in the document. It contains the following elements:

• writerDefs - declarations of writers as a sequence of writer elements

• labelSrcDefs - declarations of sources of annotation as a sequence of labelSrc elements

The writer element in turn contains the following elements: (a)date - date when writing occurred
(meant as a coarse description as opposed to the trace timestamps in the core InkML) (b) personal-
personal information including (c) hand - left/right handedness (d) gender - gender (e)age - age
at the time of capture (f) skill - level of skill with script (g) style - predominant writing style (h)
region - native region

The labelSrcDefs element contains the following elements: (a) name - name of the human or
automated source of labels (b) source - organization that this label source represents (c) time - date
and time of annotation (d) contact - contact details of label source (e) labelTypes is an attribute
and describes the categories of labels generated by the source (e.g. truth, quality, script, style, etc)
and their character encoding (e.g. Unicode).

The above elements provide a mechanism for representing the writing of different writers in the
same dataset, as well as multiple sources and categories of annotation for the same handwritten
data. An algorithm for script identification might be used as a source of script labels, while a
human annotator may provide labels for truth as well as script, style and quality of writing. Of
course, the representation can also accommodate multiple label sources for the same category of
label information, e.g. one or more recognition engines for truth labels and a human annotator for
their validation.

hwData The hwData element allows hierarchical organization of annotation. It typically contains
the root of the annotation hierarchy defined by the user, denoted by the element H1 Each level of
hierarchy H(i) contains a label element that captures annotation information at that level. H(i)
also contains either one or more H(i + 1) elements or hwTraces, the leaf element of the hierarchy
that refers to raw ink traces represented using InkML.

The H(n) elements are meant to be used to indicate the hierarchical structure of handwriting, and
assigned meaningful names such as PARAGRAPH and WORD using the corresponding attributes
of the hwData element.

The label element at each level can be used to capture alternative choices of label with confidence
values if any, and the time of annotation. Although primarily intended to describe the truth value
of a particular set of ink traces, it may also be used for describing other characteristics such as
writing style, quality and script. The timestamp can be used to generate the history of annotation
spanning different label sources of a particular unit of writing. The alternates can be used to
facilitate the process of manual validation by prompting options for human validation.

Formally, the attributes of label are (a) id - identification of label (b) labelSrcRef - reference
to label source defined earlier. This holds good for sub-levels of the current level except where
explicitly overridden (c) category - category of label (e.g. truth, quality, script, style, etc) (d)
timestamp - time when the act of annotation is performed.
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2.6 Annotation Tool

2.6.1 Requirement Analysis

Standards Compliance

The toolkit complies to standard ink formats, such as the UNIPEN, InkML, and raw strokes
separated by a delimiter. The toolkit produces the UPX format as the output which is in an XML
format. The tool has to adhere and extract common attributes that are present in the UPX format
and are available in the above mentioned input formats. The faithfully reproduces all the input
file formats into UPX format without altering the original stroke information. The tool further
supports batch operations for opening files for all the supported formats so as to enable a user
to annotate files at one complete go. The tool gracefully handles unknown file formats, standard
versions unfamiliar to the tool and maintains the compliance feature.

Functionality

The tool has many functionalities, and they have been enumerated below.

1. Segmentation: The tool provides the user with an important functionality of segmenting
(grouping) chunks of ink according to the desired hierarchy (viz. Paragraph, Words, Char-
acters or Strokes). There are some custom segmentation routines provided to the user to
segment ink information at word and line level that will reduce the effort needed to be put in
by annotators when annotating large data. The tool also provides for methods for manually
correcting/editing errors that arise due to these segmentation routines.

2. Annotation: The tool supports easier and faster ways of annotation. This is the most desired
functionality of tool wherein the user annotates the chunks of ink thereby tagging them
depending on its current hierarchy.

3. Editing the UPX: The tool can open partially annotated UPX files, so that the use can start
editing and annotating the files from the point it was previously left. This functionality
helps users immensely as annotators need to annotate files completely, rather can annotate
in sessions or fixed intervals of their choice.

4. Meta Data: The UPX format carries enough meta data that is part of its schema speci-
fications. Some of these information are automatically populated while others need to be
specifically supplied by users. The form based interface allows the user to enter mandatory
data that is needed for the UPX format. The tool does not produce a UPX file unless all
the necessary form fields necessary for the faithful reproduction of the UPX format is not
supplied.

Statistical Analysis and Visualization

As the users keep annotating scores of pages, the statistical analysis provides information to the
user on the number pages annotated during the current session, number hierarchies and its elements
annotated for the current document and others statistical information as an information tab that
helps the user in further analysis. These information snippets can also be visually seen. The tool
also provides for a video demonstration that plays the manner in which the strokes were originally
written by the writer and maintains the stroke order intact. This functionality helps the annotator
to study the writing habits of the writer and his style.
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User Categories

The tool has a login mechanism, with Admin having all the privileges. Only some functionalities are
supported for guest or other annotators, and they cannot change the meta information. User cate-
gories are defined by the Admin who grants specific permissions to annotators and their capabilities.
Usually one annotator cannot modify an another annotators meta or annotation information.

Interoperability

1. Common code: The tool has a common code base, so that the same code can be complied and
executed in both Linux and Windows XP operating systems. This makes sure that the tool
can accessed by a variety of users depending on their familiarity with the operating system
and the same look and feel is adopted across operating systems. C++ has been used the
programming language throughout.

2. Source code documentation The source code has been documented throughly, and the com-
ments are written following the specifics of Doxygen [60], that generates documentation for
the complete toolkit. The documentation is supplied in HTML and PDF with appropriate
UML diagrams where ever necessary.

Usability

Usability of this tool has been widely and extensively studied as this is the crucial part that is
critical from an end-user’s perspective. The location of every GUI element (viz. buttons, drop-
down boxes, check boxes, radio buttons, stroke drawing area) have been well thought and is the
outcome after extensive deliberations and rationale.

1. Installation Procedures: Standard installers, like setup.exe, which is a wizard like interface
for Windows XP was provided, and source and binary files in the form of RPM packages for
Linux were provided. Static binaries and source code, compressed by ZIP was also provided
for the end users. Users who wanted to compile and use the source code from scratch were
provided with a standard makefile that can be used across operating systems. Utility such as
make for Linux and nmake for Windows XP are required to make compile the sources, while
QT-3.1 [61] or above needs to be installed prior to compiling of this code. Theses were also
provided to users.

2. User Manual: The user manual consisted a step-by-step detailed presentation on how to use
the tool and what every feature in the tool was meant for. Ranging from a novice user to an
expert user, the content int he manual was appropriately divided and written.

3. UI Features: The GUI, which was primarily built on QT had loads of functionality to offer.
On the usability front from the UI interface point of view, the drawing area, where the ink
information was displayed always had to be a static area that was always to be seen and this
occupies around 80% of the main display panel. The panel towards the right consisted of
most frequently used functionalities, typically the segmentation, annotation, hierarchy views,
and the annotator information in addition to some UI functionalities like Zoom and others.
The Menu bar consisted of other functionalities that were less frequently used, such as the
statistical information, language selection, stroke video, meta data and others.

4. Display: The display features, such as the Zooming facility gives the user that extra capability
to view the strokes at sizes which he desires. Initially when a file is opened by the tool, all
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the contents of the ink are scaled so that they fit well within the bounding box of the display
canvas so that the user can quickly get a feel of how the contents in the file are arranged.
Furthermore, the tool can reduce the width of the strokes, can flip them both ways (horizontal
and vertical) and can smoothen them by applying some image processing routines over the
entire range of ink strokes. These visual effects only are used during the display and the
original content is never altered when the file is saved in the UPX format.

Testing

Standard testing procedures were adopted and followed, as the tool went through various modes of
testing that included both the white-box testing and black box testing.

1. Crash Testing: The tool was subjected to severe crash testing procedures. As the stability of
the tool was the top priority, several user’s first priority was to crash test it and observations
pertaining to the tool’s behavior was recorded according to strict testing guidelines that
emphasized on various behavioral aspects of th tool.

2. Use Cases: Several use case scenarios were presented, and the tools functionality was then
checked with the desired functionality and was documented and reported accordingly. Typical
use case scenarios include, handing over the tool to users from various backgrounds and
different levels of expertise in computers, their reactions and suggestions, providing a set of
input files and comparing the annotation outputs from various annotators.

3. Standard annotation use cases: Since annotation output, which is the UPX format was the
most crucial, standard annotation use cases pertaining to annotation were made so that the
output was clearly checked with a standard UPX schema so that basic things like conformity
to the UPX format, annotation information in proper encoding, meta information and others
were properly and completely verified. The input files typically included of files from various
formats, various languages, different writing styles from different users across a varied age
group.

4. Memory Profiling: Standard memory profile software (eg. memprof) were used to study and
eliminate any memory leak the tool consisted. Profiling information also provides information
on the overall performance of the tool and its stability.

5. Robustness: The Robustness and stability of the tool was ensured before it was deployed in
both the operating systems and was tested in various hardware architectures.

2.6.2 Indian Language Support

The tool is primarily meant for annotating Indian language handwriting. Indian scripts are not
easy or direct to annotate. The tool supports ITRANS [42] based annotation. Indian languages
are phonetic in nature. Indian languages share a common alphabet and this is what ITRANS
primarily exploits. ITRANS has a roman equivalent for every Indian language alphabet so as to
enable users to type in Roman and visualize in the corresponding Indian language. In order to
view the alphabet in the corresponding Indian language, we need a font. Instead of making the
output of annotation dependent on Font for a particular Indian language, we have adopted the
Unicode [62] encoding scheme. The primary advantage of using Unicode encoding is that Unicode
is the de facto encoding standard which is primarily inherited from ISCII [63]. Also the fact that
Unicode Fonts takes care of the compounded alphabets, all our ITRANS converters render output
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in UTF-8 encoding. Figure 2.2 shows where the ITRANS and Indian language content appear on
the GUI.

The toolkit displays the Indian language text in Unicode at the bottom as the user keeps typing
in ITRANS and the conversion happens on the fly. On the other hand, users proficient in using
standard keyboard layouts, like the INSCRIPT [59] keyboard, that allows the users to type in
Unicode directly is also well supported by the toolkit.

Annotate Mode

Unicode Output in Hindi

Current Ink being
Annoatted Current Annotation

Hierarchy(Indicated by Gray)

(Indicated by Red)

ITRANS
Input

Figure 2.2: Figure Illustrating the Various Regions of Interest in Our Toolkit.

2.6.3 Design

Software Architecture

The software uses a plugin-based architecture, facilitating extensibility with the existing set of
functionalities provided. The annotation process can be made semi-automatic or automatic by
plugging in the corresponding recognizer of the script being annotated. The tool comes with a
basic set of stroke signal processing routines. Users may write their own plugins using the simple
interface provided and can see the outputs of the routines using the tool.

The tool is designed in such a way that the UI details are kept separate and independent of the
core implementation. The Document class, as shown in Figure 2.3, offers the core implementation,
that contains the data structure that entails the UPX schema, and contains sub-classes comprising
of the Stroke and Hierarchy data structure. The rest of them form core implementation of the com-
ponents that comprise the UPX format with the root node being the HWDataSet. The Document
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Figure 2.3: Figure Illustrating The Various Classes of the Document Class

class is basically a Singleton class, so that it can be used anywhere in the UI with essentially only
one instance of its object existing.

User Interface

A screenshot of the tool’s GUI is shown in the Figure 2.5. It has two components, working space
is on the left side of the tool window occupying a major portion, and the right side has a toolbox
with buttons for all the key functionalities. When a file is opened, false coloring of the hierarchical
elements (like word, sentence, etc) is done based on the hierarchy selection made by the user,
where neighboring elements are shown with different colors. If a hierarchy is already segmented
(for example, automatic word segmentation and line segmentation), the elements of that hierarchy
are false colored. If the selected level is not yet segmented either automatically or manually, stroke
level false coloring is shown. This will allow the user to improve the segmentation, if needed.

Figure 2.4 shows the various components that comprise the GUI, with the base class being the
HWDisplay that is derived from QMainWindow. All the class names that start with Q are es-
sentially QT [61] classes. Qt sets the standard for high-performance, cross-platform application
development. It includes a C++ class library and tools for cross-platform development and in-
ternationalization. As can be seen, various GUI styles like, Tabs, ScrollViews, Canvas, Plugins
were used all throughout the GUI building. Figure 2.4 also contains the Singleton class, Docu-
ment, which is used as an interface for accessing the core routines that are independent of the User
Interface. Plugins such as Segmentation and Recognition provides a convenient mechanism for
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Figure 2.4: Figure Illustrating the Various Classes of the HWDisplay Class of the GUI

developers to add their own routines without actually recompiling or modifying the original source
code. The Canvas (Figure 2.5 (b)) area is sued to draw the ink information, while the meta data
is added through a Tabbed interface (Figure 2.5 (a)) that is divided in fashion that is convenient
to annotator to add meta information in lieu with the UPX format.

Directory Structure The directory structure is structured so as to contain all files with similar
functionalities at one place depending on the operating system it would be used. The common
directory contains all files that are operating system independent, while win and linux contains
files that are Windows XP and Linux dependent. The lib directory contains all the shared libraries
(dynamic linked library, DLL) and plugins, and the bin directory contains all the executables. The
resources directory contains the map files for Indian languages, the necessary Unicode fonts and
other resource files useful for the tool.

2.6.4 Annotation Procedure

Annotation methods are provided with the tool with various levels of automation. Manual an-
notation can be done where the user may directly key in the annotation at the specified level.
Semi-automatic annotation is achieved with designed text, wherein the annotations can be propa-
gated. Also a recognizer can be plugged into the tool for automatic annotation. A generic interface
is provided for this purpose.
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Easy annotation at multiple levels

Automatic segmentation is provided for stroke, word and line levels. User can improve the seg-
mentations if needed. For annotation, user could select the level of annotation-hierarchy. ( eg. line
level, word level or stroke level.) User selects next element with a selection-key and annotates the
element. Note that the overhead of annotation is only one selection key press. The annotation
is possible in various formats like ISCII, ASCII, ITRANS etc, although a display map has to be
supplied to the system by the user in order to see what is being typed in the language in which it
is being typed.

Annotation propagation for designed text

Annotation propagation is another key aspect of the tool. In cases of collecting the data with
repetition (eg: signature verification dataset), the annotation for one element may be ’propagated’
to the specified number of elements. The propagation may involve copying of the annotation at
that particular hierarchy, or copying the whole tree of annotation involving all the lower levels.
For example, propagation of word level annotation may mean propagation of word and stroke level
annotations. Annotation propagation can be naively done by counting the number of strokes and
assigning the labels corresponding to the strokes with same indices. More intelligent way of doing
this would be to use sequence matching algorithms based on Dynamic Time Warping to properly
identify the associations at stroke level between two words. Both of them are provided in the tool
allowing the user to choose between them based on the requirements.

2.7 Discussions on UPX Vs UNIPEN

The hwDataset representation by design attempts to satisfy the requirements laid out in the first two
sections. Script-independence is achieved by supporting different encoding standards for the truth
values, and use of an XML based file format. The representation supports semantic interpretation
of the writing at various user-defined logical levels and captures information about script, style,
quality at these levels. In addition, these attributes may also be associated with the dataset as a
whole, or with specific writers. The representation captures meta data related to capture conditions
and the writer as part of writer and datasetInfo. The label and labelsrc elements provide the means
to capture recognition alternates along with confidences, thus supporting the use of multiple sources
of annotation for the automatic generation of annotation and subsequent manual validation.

2.7.1 Comparison

While the proposed representation is inspired by the UNIPEN standard, there are some important
differences between the two. hwDataset is an XML representation (currently instantiated as a
schema) unlike UNIPEN which uses a custom text format. Unlike UNIPEN, hwDataset contains
only annotation and does not contain any information about the raw ink data or the digitizer
used. These are left to the core InkML schema. This allows the separation of ink from annotation,
which are combined in the same document in UNIPEN. hwDataset does not include support for
evaluation of recognition engines, although it does support their use in the annotation process.
As a consequence, UNIPEN elements relating to alphabet used, inline lexicons, characterization
of dataset as being training, test or adaptation set and recognition results do not have an analog
in hwDataset. UNIPEN is based on the ASCII format and has been used for significant data
collection, primarily for cursive English. Though there have been attempts to use UNIPEN format
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for creating datasets in Kanji and Arabic, such representations have limitations. The data design
and word-lists used for planned data collection are supported only as references in the hwDataset
representation.

Comparison of tools The HWAT (Hand Writing Annotation Toolkit is primarily an annotation
tool, while the Upviews is meant to view annotation and hierarchy information. HWAT provides
additional functionalities for segmenting ink data according to their hierarchies and view them,
while Upviews can only display ink based on the hierarchy. In addition, annotation information
in various encoding such as Unicode and font level can be viewed and annotated in HWAT. Meta
information pertaining to ink can also be populated in HWAT which are typically unavailable in
UNIPEN tools. HWAT also provides for annotation propagation across chunks of inks.

(a) (b)

Figure 2.5: (a) A Section of the Tabbed Interface for Collection of Metadata Related to the UPX
(b) Telugu Text Being Annotated at Character Level After Automatic Character Segmentation.

2.7.2 Other Advantages

Additional advantages of the proposed representation include:

• The hwDataset uses predefined XML standard elements for defining certain parts of the
standard wherever possible, eg. address of the writer, annotation software description (Eg.
OSD [64]). This enables software not concerning to the handwriting applications also to
understand certain portions of the data.

• Since the hwDataset document contains only the annotation of digital ink data, annotation is
kept strictly separate from the digital ink that it describes. This arrangement allows different
kinds of annotation referring to the same ink to be added over time

• The separation of ink and annotation also allows casual data collection involving one or more
writers, i.e., annotation of ink generated in the course of an ink application such as ink chat.
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• The representation also supports multiple hwData blocks of annotation distinguished by their
trialId attribute - a feature designed to support planned data collection.

• Some of the elements can take two kinds of values – one being the value from a fixed set
of strings, and the second being any textual description of the attribute as the value. A
dual annotation scheme for certain attributes is thus suggested, where their quantified parts
are machine understandable, and description parts store more information for the human
understanding.

• Support for variable hierarchies is provided. The hierarchies can be defined by the user in the
hierarchyDefs section according to the hierarchy required to represent the current document.

• The hwDataset has been designed to incorporate as much information as possible that can
be obtained from a handwritten document keeping in view of futuristic applications.

2.8 Model-based Annotation

The overall approach is illustrated in figure 2.6. The input to the algorithm is a sequence of
online handwritten data referred to as the input handwriting and the corresponding transcription,
referred to as the text sequence. A synthesis module is used to convert the text sequence to
the corresponding handwritten form using a model of handwriting of the writer. This forms the
reference handwriting, where the segmentation and ground truth is accurately known. The input
handwriting is then matched with the reference handwriting using a two-stage elastic matching
module. Once the best match is identified, the ground truth is propagated to the words and
characters of the input handwriting.

Once the annotation is available, the handwriting synthesis module can refine the parameters of
the handwriting model of the writer and repeat the annotation process using the updated hand-
writing synthesizer. Thus the framework allows us to refine the annotation information over time.
We will now describe the process formally.

2.8.1 Definitions

Online handwritten data is represented as a sequence of strokes: 〈s1, s2, · · · , sK〉, where a stroke
is defined as the trace of the pen staring from a pen-down to the following pen-up. A word, wi,
forms a contiguous sub-sequence, 〈sj , sj+1, · · · , sj+k〉, where sj is the starting stroke of the word wi.
Hence the data may also be represented as a sequence of words: W = 〈w1, w2, · · · , wN 〉. The text
corpus that corresponds to the handwritten data is a sequence of characters, that are separated by
a blank character at the word boundaries: T = 〈t1, bl, t2, bl, · · · , tM 〉. Each ti corresponds to a text
word, which is a sequence of characters: 〈c1, c2, · · · , cJ〉.

The input handwriting, is a sequence of strokes, which could be grouped into a sequence of words.
the problem of segmentation or grouping of strokes into words is often difficult because there might
not be a clear spatial separation between the last stroke of a word and the first stroke of the next.
We utilize the blank character information present in the text data to aid the word segmentation
process. During the segmentation process, the stroke sequences are also aligned with the characters
in the text, thus generating a word-level and character-level annotation of the handwritten data.
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Figure 2.6: Block Diagram of the Model-based Annotation Process.

An important assumption in our implementation is that a character is always composed of an
integral number of strokes. Thus the problem of character level annotation is reduced to finding
out the set of strokes that correspond to a particular character in the text representation. The
approach could also be extended to work with cursive writing, where a single stroke might span
multiple character.

A primary requirement to do alignment, either at the word level or character level is that there
is a way to match a text word/character with a handwritten stroke. However such a matching is
not trivial due to the variations that are possible within a single character class in the handwritten
data. The next section describes a handwriting generation approach that can be used to generate a
handwritten word from text word, which is then used for matching with the handwritten sequence.

2.8.2 Handwriting Synthesis

The process of generating a handwritten equivalent of a given text word is referred to as handwriting
synthesis. Depending on the application, the synthesis could generate a handwritten word in the
writing style of a specific user or a generic one. Our approach to synthesis of handwritten words is
as follows.

The synthesis module consists of two three parts: i) Conversion of a text word into a sequence
of handwritten stroke classes, ii) Computation of candidate strokes that could be used for each
stroke class, and iii) Computing the spatial layout of the candidate strokes to arrive at the final
handwritten word.

The set of stroke classes that constitute a word or character is learned from a corpus of training
samples that are annotated at the character and stroke levels. The learning could be writer specific
or writer independent as the application mandates. Template strokes are also identified for each
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stroke classes in this process. To synthesize the strokes for a particular word, we use a deformation
model that takes the template strokes and modifies them within the parameters of the desired
writing style. A third step learns the spatial bi-gram distribution of the strokes from the training
corpus. This is used to combined the synthesized handwritten strokes into a single word. Details
of the handwriting synthesis algorithm used in this work can be found in [65]. Figure 2.7 shows a
sample word in Telugu, that is converted to handwriting using our approach.

Figure 2.7: Figure Illustrating the Synthesis.

Once the handwritten word is generated, the strokes are mapped to a feature space representation
for matching.

2.8.3 Matching Handwritten Strokes

Distance or dissimilarity between two scribbles (sets of strokes) is computed using a set of features
extracted from the group of strokes. Each stroke consists of a sequence of sample points, (x, y)
that describes the trace of the pen during writing. The strokes are first converted into a sequence
of feature vectors, extracted from each of the sample points. The feature vector consists of:

1. The direction, θ, of the tangent to the stroke curve

2. The curvature, c, of the stroke at the sample point, and

3. The height, h, of the sample point from the word baseline

Figure 2.8 illustrates the computation of the three features.

Theta = Direction
yp

p
p

p
p

p

−

+Curvature

Figure 2.8: The Curvature, Height and Direction Features, Extracted from the Sample Points on
the Curves.
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The distance between two feature vectors F1 = 〈θ1, c1, h1〉 and F2 = 〈θ2, c2, h2〉 is defined as the
weighted Euclidean distance between the two vectors:

D2 = kθ ∗ (θ1 − θ2)
2 + kc ∗ (c1 − c2)

2 + kh ∗ (h1 − h2)
2,

where ks are the weighting factors. A sequence alignment score computed using a Dynamic Time
Warping (DTW) procedure. The use of the total cost of Dynamic Time Warping as a similarity
measure is helpful to group together strokes that are related to their root character by partial
match. Dynamic Time Warping is a dynamic programming based procedure to align two sequences
of signals. This can also provide a similarity measure. Figure 2.9 shows the DTW based matching
of two strokes in Telugu.

Let the strokes (say their curvatures) are represented as a sequence of vectors F = F1,F2,. . . ,FM

and G = G1,G2,. . . ,GN . The DTW-cost between these two sequences is Ds (M,N), which is
calculated using dynamic programming is given by:

Ds(i, j) = min







Ds(i − 1, j − 1)
Ds(i, j − 1)
Ds(i − 1, j)

+ d(i, j)

where, d (i, j) is the cost in aligning the ith element of F with jth element of G and is computed
using squared Euclidean distance:

Figure 2.9: DTW-based Matching of Two Strokes.

Using the given three values Ds(i, j − 1), Ds(i − 1, j) and Ds(i − 1, j − 1) in the calculation of
Ds(i, j) realizes a local continuity constraint, which ensures no samples left out in time warping.
As in Figure 2.10, we also imposed global constraint using Sakoe - Chiba band [4] so as to ensure
the maximum steepness or fatness of the DTW path. Score for matching the two sequences F and
G is considered as Ds (M,N), where M and N are the lengths of the two sequences.
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2.8.4 Character and Word Level Annotation

We use the stroke matching module to come up with the best alignment of the strokes to the
corresponding characters and hence words. As we pointed out earlier, we assume that each character
in the text corresponds to one or more strokes in the input handwriting. Hence, annotation is
the process of mapping a sequence of strokes from the input handwriting to the corresponding
character. Once the characters are mapped, the segmentation and annotation of the words are
straight forward. However, computing the best assignment of strokes to characters is not trivial as
multiple strokes can form a character.

We employ a modifier version of the elastic matching or dynamic time warping (DTW) algorithm
to solve this problem. With the assumption that multiple strokes might map to a single character,
we formulate the problem as follows:

Let S = 〈s1, s2, · · · , sn〉 be the stroke sequence in a word and let C = 〈c1, c2, · · · , cm〉 be the
corresponding handwritten characters synthesized from the transcript. The problem is to find the
best alignment, where n > m. The cost of the best alignment is computed as:

Dw(ci, sj) = min































Dw(ci, sj−1) + Penalty(sj)
Dw(ci−1, sj) + Penalty(ci)
Dw(ci−1, sj−1) + Ds(ci, sj,j)
Dw(ci−1, sj−2) + Ds(ci, sj−1,j)
Dw(ci−1, sj−3) + Ds(ci, sj−2,j)
Dw(ci−1, sj−4) + Ds(ci, sj−3,j)

where, Ds (ci, sj,k) is the matching score obtained from the stroke alignment routine in aligning
the ith character of C with jth through kth strokes of S. The feature vectors of the jth through kth

strokes are concatenated to compute this matching score. The score for matching the two sequences
C and S is considered as Dw (M,N), where M and N are the lengths of the two sequences.

Detecting Word Boundaries: It may be noted that the above algorithm assumes that the
word boundaries are known for the input handwriting sequence. However, this is not the case
as we described in the introduction. Hence we modify the above DTW algorithm to account for
word boundaries. To compute the ending of a given word, wi, in the text sequence, we augment
the characters of wi with one or more characters from the following word, wi+1, at the end of the
characters of wi. Once the matching is performed, we identify the minimal distance of matching
the augmented sequence with any sequence of strokes and then remove the strokes that mapped to
the augmented characters. This method was found to be robust enough to detect the word endings
in the experiments that we performed.

2.8.5 Updating the Handwriting Model

Once the annotation is performed at the character level, we update our handwriting model by
replacing the stoke models for the writer with samples from the current document, where the
matching scores are high. Note that the replacement can be performed only for those characters
that are present in the document. However, this is sufficient as the updated model is only used for
the document under consideration.

Once the handwriting model is updated, we use the updated model to carry out the annotation
process. We repeat the cycle until there are no more changes to the result of annotation or a
threshold is reached for the number of cycles.
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Figure 2.10: Figure (Matrix) Illustrating the Word-level DTW.

2.9 Experimental Results and Discussions

2.9.1 Performance of the Annotation Tool

Performance of the tool is done using average number of key strokes made for annotating various
documents at various hierarchical levels. Documents containing 200 characters on average are
taken for the analysis. Average number of words in the documents taken is 50. Character level
annotations took around 450 key strokes for annotation and word level annotation took around 250
key strokes on average. The time taken to annotate a page of 50 words at word level, was around
2 minutes for a person with average typing speed of 40-50 words per minute.

2.9.2 Access of the data

The data collection phase collects a large amount of information from an ink document, all of which
may not be relevant to all the problems. One would like to have an access to the data for developing
applications. The core function in the access library is a method that retrieves the information
based on element and attribute names. This function is provided with a set of specific and generic
wrapper functions for the convenience of the developers. Also facility is provided for the user to
develop his own wrappers specific to his applications if the provided set is insufficient.

2.9.3 Annotation of non-Roman Scripts

Representing non-roman languages is a challenging task when building a standard. They are
structurally very complex, and the number of strokes involved in making a character is very huge.
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(a) (b) (c) (d)

Figure 2.11: Sections of Sample Documents (a) Devanagari(Indian script) Text Viewed at Line
Level (b) Telugu(Indian Script) Text Viewed at Stroke Level (c) Amharic(Ethiopian Script) Text
Viewed at Stroke level (d) English Text Viewed at Stroke Level

For example, in Devanagari script, sirorekha(a bar above the strokes) forms a part of the word,
but independently does not have any meaning or existence. Also, it exists only at the word level
in usual text. For many non-Roman scripts, the ’text’ or ’codes’ for annotation are either not
properly defined or they are not as standard as the ASCII representation. This arises the need
for support for various other annotation ’codes’ and their display. The proposed schema could
incorporate multiple encoding schemes. We have experimented with ASCII, Unicode and ISCII
encodings. Some of the scripts tested for annotation are shown in Figure 2.11.

2.9.4 Results on Model-based Annotation

The experimental data for the annotation experiments were collected using a CrossPad and a
TabletPC. The data collected included 25 pages of handwritten data in Telugu, Hindi, Tamil,
Malayalam and Bengali scripts. The data was transcribed using ITRANS encoding to form a
parallel text corpus. User models for synthesis were learned from part of the input data and the
remaining were chosen for experiments on synthesis.

The text input is first converted into handwritten data using the synthesis module with the
model of the user under consideration. The synthesized handwriting will contain the annotation
information at the character level. The word is then aligned with the original handwritten input
and the annotations are propagated from the synthesized word to the original input word. In the
process, word boundaries are also identified (see Figure 2.12).

In addition to the word boundaries, the annotation is propagated at the character level from
the synthesized to to the original data. Figure 2.13 shows examples of a Telugu words that were
correctly annotated using our method.

The algorithm also allows for correction of errors that occur during the writing or transcription
process. For example if the transcription was corrupted by a spurious character that changes the
word form in the synthesized handwriting, the matching process often assigns no match to the
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Figure 2.12: Word Boundaries Identified During the Matching Process.

spurious character, effectively removing the transcription error from getting into the annotation.
Figure 2.14 shows an example of an incorrectly transcribed word that was corrected during the
matching process.

However, the matching process can also make errors in the case of similar looking strokes that
are to be matched. Figure 2.15 shows an example of a word that is incorrectly matched.

To compute a quantitative measure of accuracy of the proposed annotation scheme, we manually
annotated our training corpus using the annotation toolkit [3]. The propagated annotations from
the synthesis module was then compared with the manual annotation to find out the error rate in
transcription. The error rate at the word level was 26.5%, tested over 425 words. However, the
number is slightly misleading due to fact that word-level errors often arise due to an error in a
single stroke being mislabeled in the data. The character-level annotation gives a better picture of
the accuracy. The error-rate of character level annotation was 3.6% when tested on a set of over
3500 characters. In other words, most of the word errors were essentially single character errors.

2.10 Discussions

In this chapter, we propose a model-based framework for annotation of non-cursive online handwrit-
ten data when a parallel text corpus is present for the data. The approach employs a handwriting
synthesis scheme that generates the handwritten equivalent of the transcription. An elastic match-
ing is used to propagate the annotation from the synthesized words to the original handwritten
words. The annotation can be improved further by using the current annotation (partially cor-
rect) to refine the handwriting model of the writer under consideration, and then repeating the
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(a) (b)

Figure 2.13: Annotation at Character Level Achieved through Matching.

annotation process. The algorithm achieves an annotation accuracy of 96.4% on a set of 3500
characters.

Currently we are extending this work to incorporate partially cursive scripts under the same
framework. Work is also being done to extend the labeling to stroke level. This would enable one
to handle various stroke orders within the handwriting of a person. Currently it is assumed that a
person has a consistent stroke order.
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Figure 2.14: Correction of Transcription: The Synthesized Word in Hindi at the Bottom Contains
an Extra Stroke, which is Discarded by the Matching.

(a) (b)

Figure 2.15: Errors in Matching: a) and b) Shows Examples of Two Words, where Strokes in the
Synthesized Word (Top) were Not Matched With any in the Original Handwriting (Bottom).
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Chapter 3

Retrieval of Online Handwriting by
Synthesis and Matching

3.1 Introduction to Retrieval of Online Handwriting

Pen-based interfaces are gaining popularity due to the flexibility and popularity of pen as an inter-
face as well as compactness of online handwriting that enables efficient storage and communication.
Moreover, handwriting has more expressive power as compared to typed text due to the possibility
of annotations and sketches, that makes it an effective medium of communication. The pen tech-
nologies have also matured over the last twenty years starting from touch screen based sensors with
limited resolution to highly accurate and robust technologies such as electromagnetic and sonic
sensors. Due to its capabilities, applications that treat handwriting or ink as the primary data type
are also on the rise. However, as the amount of data available in the form of handwriting increases,
access to specific documents becomes an issue due to the inability of current indexing and retrieval
algorithms to efficiently handle such data.

The primary solution to handling online handwritten data is to employ a HWR (handwriting
recognizer) to convert the ink into text, and use the results to search and retrieve the documents.
However, this approach is suited only where the handwritten data is purely text and where a
robust HWR is available for the language contained in the document. An alternate solution is to
do matching and retrieval in the ink domain itself. The problem is very challenging due to the
large amount of variation that is present in online handwriting. The sources of these variations
include: i) differences in writing styles of various users, and inconsistency in writings of a single
user, ii) differences in writing surfaces and capabilities of different digitizers, iii) noise introduced
by the digitizers and representation, etc. In addition to the above, online handwriting also contain
variations due to differences in writing speeds as the temporal information is also captured in the
digitization process. Figure 3.1 shows search for relevant documents from a collection of handwritten
documents. The input could be a handwriting using a pen/stylus, a sample word from a document,
or even text typed from a keyboard. Users expect the most relevant documents to be retrieved
from a database and presented to them in a meaningful way.

The level of complexity of the search increases as the diversity and size of the document collection
increases. However, the range of applications also varies accordingly.

1. Single Writer Collections: These are typical in scenarios like the archived notes taken by
the user of a pen-based device. The matching and retrieval of online documents are not easy
even with such a collection of homogeneous writings [31]. Such collections usually contain a
single script or language.
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Figure 3.1: An Effective Online Handwritten Database Should Accept Queries based on Keyboard,
Pen or a Sample Handwritten Word.

2. Multi-Writer Single Script: As the number of writers increase, the variability of hand-
writing also increases dramatically. Such document collections come about in applications
that communicate handwritten documents across users, such as a mailing application.

3. Multi-Writer Multi-Script: As digital communications span across continents, the docu-
ments transmitted are likely to contain a large variety of languages and scripts. Dealing with
such documents would be essential for email processing applications such as spam filters or
searches in the archives of an organization. The search in such large collections have to be
efficient in addition to being able to handle the different languages used in the documents.
The problem is commonplace in a country like India, where there are 18 official languages,
most having their own scripts.

4. Digital Libraries: Applications such as digital libraries add one more level of complexity
to the problem due to an increase in the order of magnitude of the database as well as the
varieties in devices that are used for digitization of handwriting.

3.2 Overview of the Previous Work

Approaches to searching handwritten documents can be divided into recognition-based and recognition-
free approaches. Depending on the application and digitization process, the data could be either
word images (offline) or traces of pen motion (online). Recognition of online data has the advantage
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Work Data Approach Pros Cons Applications

Rath et
al [29]

Offline,
His-
toric

Word Im-
age Match-
ing

Accuracy Single
Writer

Single writer
document col-
lections

Srihari et
al [32]

Offline Writer
Matching

Multi-User Lower ac-
curacy

Forensic docu-
ment retrieval

Russell et
al [30]

Online Recognition
results

Multi-User,
Fast

Needs
Recog-
nizer

Indexing and re-
trieval for multi-
user and single
script collections

Kamel
[66]

Online KLT-
based,
RTree

Multi-User,
Fast

Limited
Datasize,
Lower
accuracy

Online docu-
ment retrieval

Jain and
Anoop[31]

Online Ink Match-
ing

Accurate Single
User

Search in single-
writer document
collections

Balasubra-
manian
et al [33]

Offline,
printed

Word
Matching

Accurate,
Robust

Slow to In-
dex

Search in large
printed docu-
ment collections

Current
Work

Online Synthesis
and
Match-
ing

Multi-user,
Accurate

Slow to In-
dex

Search, Index
multi-user docu-
ment collections

Table 3.1: Overview of Existing and Current Work in the Area of Document Retrieval.

of using the additional temporal information present in the data. Recognition of handwritten data
has received a lot of research attention in the past. Initial attempts in this direction were to recog-
nize images of handwritten characters (offline handwriting recognition) and is useful in applications
such as postal address recognition [67], handwritten form recognition [68], etc. However, in the case
of HCI for pen-based devices, one can utilize the additional writing order, direction and velocity
information to aid the recognition process. This is referred to as online handwriting recognition.
The strokes in the word could be modeled using statistical models such as HMMs [69]. Such mod-
els are often tuned for a particular writer’s handwriting. On the other hand, writer independent
handwriting recognition is an extremely difficult problem due to the amount of variation between
writing styles of different writers. Such variations require the recognition engines to be trained to
a particular user’s handwriting style. Adaptation of a recognizer to a specific writers handwriting
[70] has been the most promising solution in this regard.

A second approach is to represent the handwritten words using a set of features and match two
words by comparing the corresponding feature vectors. This approach is referred to as word spotting,
and is quite effective when compared to recognition-based search for poor quality documents. Rows
1 and 5 of Table 3.1 show examples of the word spotting technique applied to offline and online
handwritten documents.

The approach proposed here consists of three major steps: i) Synthesis of handwritten data from
the query, ii) Matching of the query to words in the database, and iii) Computation of relevance
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scores of documents to order the results of matching. The synthesis is primarily aimed at Indian
scripts, which are non-cursive in nature. The synthesized handwritten word is then matched with
all the words in the database and those with scores below a threshold qualifies as matches. The
matching documents are then ranked according the the frequency of the search term in the document
(TF) and the inverse of the number of documents containing the word (IDF), and presented to the
user.

The following are the characteristic differences of the current work, when compared to other
approaches to retrieval of online handwriting data.

1. Use of Synthesis: Our approach employs a handwriting synthesis module to map the query
text into the ink domain. Matching is done at the ink level rather than on the recognition
output. This enables the use of a keyboard, pen or example word for query input.

2. Use of IR Measures: The proposed approach extends the concepts of TF/IDF and word-
form variations into the ink domain and integrates it with the search and retrieval module.
This enables us to have better page rank computations. This part is an extension of our work
that uses a similar approach for printed documents [33].

3. Cross-Lingual Retrieval: The synthesis module, when combined with the transliteration
properties of Indian languages enables us to do cross-lingual retrievals for a single query word.

4. Indian Language Search: The state of both OCR and handwriting recognition for Indian
languages are still in its infancy and there are no commercial OCR or HWR programs available
even on platforms like the Tablet PCs. A recognition-free approach is extremely useful in this
context. To the best of our knowledge, this is the first attempt at the problem of document
retrieval from Indian language online data.

The bottleneck of most recognition-free approaches is the fact that one is trying to match the
content of the query word with that of the words in a document. The matching algorithm pro-
posed by Jain and Namboodiri [31] achieves excellent results for word matching. However, the
performance of the algorithm drops drastically when one tries to compare the words written by
two different writers. In general, ink-matching based algorithms work well only for single user
document collections. Moreover, the user interface for the method described in [31] is restricted
to pen-based input and hence is not convenient in all settings. We solve both of the problems by
generating a handwritten sample of the query word in the writing style used by the document. In
other words, matching is done using a synthesized sample of the query in the style of the writer
under consideration, which is generated from typed text.

Figure 3.2 describes the entire process of synthesis and retrieval of the handwritten documents.
The input query is entered either in ITRANS or in Unicode. The query word is then synthesized and
the corresponding handwritten word is rendered by the Word Rendering module. Features are then
extracted from the rendered word and is matched against all the feature values of the handwritten
words that are stored in the database. Then the handwritten documents are appropriately fetched
based on their relevance scores.

3.3 Handwriting Synthesis

Given an input text, the problem of handwriting synthesis is to generate data that is close to how
a human would write the text. The characteristics of the generated data could be that of a specific
writer or that from a generic model. Even with a given model, the synthesis method should not be
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Figure 3.2: Block Diagram Explaining the Entire Process of Synthesis and Retrieval

deterministic since the variations that are found in human handwriting are inherently stochastic.
However, if we need to generate data that is similar to a particular writer’s handwriting, we need
to identify, model, and preserve the basic characteristics of his/her handwriting. The problem
of maintaining the writing style while introducing variability [71] makes the problem of synthesis
very difficult. A handwriting synthesis solution has a variety of applications including automatic
creation of personalized documents [21], generation of large quantities of annotated handwritten
data for training recognizers [72][73], and writer-independent matching and retrieval of handwritten
documents.

Traditionally, handwriting synthesis has been dealt within the realm of offline handwriting [25],
where the handwritten data is a scanned image of a paper document. Online handwriting is stored
as a sequence of strokes, where each stroke is defined as the trace of the pen tip from a pen-down
to the next pen-up. Devices with pen-based interfaces facilitate storing of the handwritten ink in
the digital format and thus enabling a variety of applications such as search and retrieval of large
sets of handwritten notes [74] as well as efficient communication across the Internet. In the context
of digital ink, the technique of handwriting synthesis is extremely useful as it leads to applications
that preserve the compactness of online data, while being natural.

3.3.1 Characteristics of Indian Scripts

The problems associated with handwriting synthesis are different depending upon the nature of
the script that one is trying to synthesize. Languages that use the Roman script contain a small
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set of symbols that are arranged in a linear fashion to create a word. The complexity of these
scripts arises due to the cursive nature of the script, where the individual characters are connected
together. In fact, real-world handwriting is a mixture of cursive and non-cursive parts, which makes
the problems of recognition and synthesis, more difficult.

Indian language scripts are fundamentally non-cursive in nature, where the aksharas (equivalent
to characters) are written independently, separated by space or pen-lifts. An akshara can be
combination of one or more (upto 3) consonants with a vowel. However, these scripts often contain
a large number of characters that have complex spatial layout of strokes. Indian scripts have
compound characters, which are combinations of multiple consonants and vowels. The handwriting
synthesis process should hence model all the possible variations of characters and their combinations
to be able to generate any given text. This makes the problem of synthesis, extremely complex in
the case of Indian language scripts.

There are many other properties of the Indian scripts that are not seen in Roman. This arises
due to a variety of factors:

• Alphabets of Indian scripts have far more complex shapes and varied writing styles.

• The size of the alphabets is typically high. In addition, the presence of samyuktaksharas
(compound characters) makes modeling of Indian scripts more difficult.

• The basic stroke shapes in Roman scripts are often unambiguous in their meaning. However,
this is not the case with the Indian scripts, where a single stroke shape can acquire different
meanings depending on its position and size.

• Indian scripts are non-cursive in nature and thus the available models need not be the most
suitable.

• The spatial location of an akshara is dependent on the previous akshara in some Indian
language scripts.

Along with the spatial complexity, the variance in writing styles also increases for Indian scripts.
For example, Figure 3.3 shows the handwritten Telugu word EdainA (means anything) written by
two different writers. As it is evident from Figure 3.3, the second writer’s handwriting (Figure 3.3
(b)) is readable and clean when compared to that of the first writer (Figure 3.3 (a)), whose hand-
writing sample is composed of several pen lifting movements, stroke discontinuities, slant and other
deformities. Also note the fact that the stroke order is not unique for every writer for a given word
and sometimes even the same writer has different stroke order when writing the same word.

(a) (b)

Figure 3.3: Telugu Word EdainA Written by (a) Writer 1, and (b) Writer 2.
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As pointed out before, the scripts of Indian languages are more complex than Roman script.
Following is a list of interesting characteristics of Indian scripts that are relevant to the synthesis
problem.

• Words in many of the Indian language scripts have Shirorekha (horizontal bar on the top).
Figure 3.4 (a) shows how characters of Bangla script are joined on the top with the Shirorekha
to form a word. After writing the individual characters, Shirorekha is drawn to connect them
and describe the word boundaries. This need not be considered as a sign of cursiveness. Some
of the Indian languages that have Shirorekha are Hindi, Bangla, Marathi, and Gurumukhi
(Punjabi).

• Figure 3.4 (b) shows the cast of the vowel modifiers in Telugu and Hindi. The consonant ka
when combined with the vowel e gives a compound akshara ki. Vowels often get converted as
augmented shape modifiers to consonants in most Indian scripts. Vowels could also appear
in isolation.

• Figure 3.4 (c) is an example from the Devanagari script which shows how the word raastr is
formed from the basic consonants and vowels. Here the variant is further more complex with
the last akshara str being formed by the following three consonants sh , tt and ra. This is
called the Samyuktakshara which could contain multiple consonants and a vowel.

• Figure 3.4 (d) shows an example from the Tamil script where we have a vowel u and a
consonant lla. The vowel sound uu shown at the right side is a concatenation of the symbols
of u and lla.

• In Figure 3.4 (e) we have the consonant ka, which when combined with the vowel uu results
in kuu and when combined with the vowel e results in ke. One has to note that both the vowel
modifiers for uu and e have similar looking strokes, however their positions are different.

One may observe that for Indian scripts, spatial positioning of the strokes is equally important
as their shapes.

3.3.2 Synthesis of Non-Roman Scripts

Broadly there are two basic approaches in synthesizing the handwriting. Earlier attempts employ
the motor model based synthesis of handwriting [75]. Singer and Tishby [76] model the handwrit-
ing process as modulation of oscillatory motions of the pen. The modulation parameters decide
the shape and variations of the generated data. The Delta LogNormal Model by Guerfali and
Plamondon [75] is based on movement simulation techniques, and may be defined as a curvilinear
stroke generator made up of two parallel neuromuscular networks, which control the agonist and
the antagonist [77] activities associated with a specific movement. The second approach is based on
the mathematical model of an algebraic curve whose shape is controlled by parameters, typically
direction and time [21][75][24]. There have been other attempts like the vector-matrix of successive
strokes by Kondo [78], and use allograph codes as input by Schomaker et al. [79].

Roman script was the primary focus in the motor model based synthesis techniques [75][77]. On
the other hand there has been no concrete model available for the oriental languages. Some oriental
characters need many pen-tip lifting steps due to the presence of large number of short segments.
Scripts such as the Korean has been studied before for the purpose of synthesis [80, 81]. The
Beta-Velocity model was proposed for Kanji scripts by Lee and Cho [80] to simulate cursiveness
with a letter or a word. This model was an improvised version of the Delta LogNormal model, the

43



bha

ka

(b)

Hindi

Telugu

(c) Hindi

(d) Tamil

(e) Hindi

ka

(a) Bangla
a thra bhaarath

ka ki

i

i

ki

shara tt ra raashtra

u lla uu

uu kuu

ka e ke

Figure 3.4: Some of the Special Cases in Indian Language Scripts.
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main difference being that the Beta-Velocity model uses asymmetric curves, whose skewness can
be controlled by variables.

The work presented in this chapter is primarily aimed at Indian language scripts, which are
different from both western and other oriental scripts. As per our knowledge, this is the first such
attempt on the synthesis of Indian language scripts. We develop a stroke shape and layout model
for Indian language scripts that can be learnt from labeled samples. Hence we can use the model for
generation of a specific writer’s handwriting or develop a generic writer model. The proposed model
captures both the shape and temporal aspects of the strokes as well as their order information.
Hence we can generate either online or offline data using the learnt parameters.

3.4 Modeling Handwritten Data

Figure 3.4 gives the outline of the learning and synthesis steps of our method. The handwriting
model consists of two parts, a stroke model, which captures the shapes and variations in the
basic strokes that form the characters, and a layout model, which controls the spatial layout of
the individual strokes. The individual models can be learnt from online handwritten data that is
collected from a writer or multiple writers. The training data needs to be annotated manually.
Examples of strokes corresponding to each stroke class is used to learn the stroke model. The
spatial distribution of strokes are learnt by the layout model.

Stroke
Model

Alignment
Model

Stroke Selection

Stroke Alignment

Word Rendering

Annotation Input as
Unicode/ITRANS

Text

Text

Online Handwriting Data

of strokes
Spatial distribution

Clustered Strokes

Figure 3.5: Block diagram for Handwriting Synthesis. The Modules to the Left of the Dotted Line
Forms the Training Phase, while those to the Right Form the Synthesis.

3.4.1 Stroke Model

Each script contains a set of basic strokes that are used to form all the characters in the script. For
example, Hindi consists of around 200 basic strokes, while Telugu consists of more than 300 basic
strokes. The stroke model consists of a representation for each of these basic strokes. We have used
two different models for representation of the strokes:

1. Normalized Template Model: In this model, we represent each basic stroke class using a
set of training strokes, that are normalized in size. The stroke selector will randomly select
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one of the samples for the required class and scale it to the appropriate size determined by
the position of the stroke in the character. This model is appealing in many applications due
to its simplicity and is useful in cases where the training data is limited. It can also provide
high quality synthesis in presence of limited training samples. However the range of variations
that are present in the results could be limited with smaller training samples. The model M ,
could be represented by a set of k stroke models, each containing a set of stroke samples:

M = {S1, S2, .., Sk}

Si = {s1, s2, .., sni
}

si = [(x1, y1)(x2, y2)..(xm, ym)],

where Si represents the model of the ith stroke class containing ni stroke samples, and each
si is a sample that consists of a sequence of (x, y) coordinate pairs.

2. Mean Trace Model: A more complex model that is capable of generating a large set
of stroke samples is the mean trace model. Here we compute the mean of all the traces
(or strokes) of each of the given stroke classes during the training phase. To compute the
mean trace, the strokes are normalized and the points are aligned using an elastic matching
technique. The distribution of the samples of the strokes are estimated using the means and
covariance matrices of the aligned sample points and are stored in the order in the trace.
The stroke selector module will generate random samples from each of the distributions to
create a new stroke of a given class, assuming a Gaussian distribution. The alignment and
estimation steps make sure that outliers are not included in the training phase, so that the
learnt model is close to the supplied handwriting.

M = [X̄1, X̄2, .., X̄k]T

X̄ip =
1

ni

ni
∑

j=1

(xpj , ypj),

where X̄i represents the mean of the pth point of the ith stroke class containing ni stroke
samples, and each sample point of the strokes model is the mean of the corresponding points
((x, y) coordinate pairs) after alignment and outlier removal. The mean model estimate is
hence the maximum likelihood estimate of the sample sequence, assuming each sample comes
from a multivariate Gaussian distribution.

One could also employ generative models such as HMMs to learn the stroke structure and
generate samples of a person’s handwriting. However, we noticed that such models tend to
allow a lot of variation in the writing style, and the individuality information is lost in the
training phase. Hence they are not best suited for synthesis applications in their basic form.

Note that the stroke models that we employ are relatively simple compared to the motor model
based approaches employed for Roman scripts. However, since the strokes themselves are only
parts of characters in the Indian language scripts, their spatial distribution, captured by the layout
model, can generate realistic renderings of handwriting.
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3.4.2 Layout Model

The most important part of our synthesis model is the layout model that is capable of capturing the
spatial relationship between stroke classes. As noted before the spatial layout between the strokes
in an akshara can be very complex. A straight forward approach is to learn the spatial distribution
of strokes within each akshara. However, the number of possible aksharas in Indian languages
are very large when considering the samyuktaksharas or compound characters. The total number
of aksharas can run into many thousands. Moreover learning such a model does not exploit the
redundancy in information present between similar characters. For example, all the modifications
of a multi-stroke character will have the basic set of strokes repeated in some form. To exploit this
redundancy, we model the spatial layout as a set of pairwise spatial distributions between stroke
classes.

Let ωi and ωj be two stroke classes that are modeled using the stroke model defined in Section
3.4.1. We describe the layout model as the spatial relationship between the two strokes ωi and ωj

in terms of distance, r, and direction, θ. The distance and direction could be measured using the
centroids of the strokes or based on the bounding boxes. In this experiment we use the top left
corner of the bounding boxes to compute the relative distance and direction.

Let p(r, θ|ωiωj) represent the spatial distribution of the class ωj with respect to the class ωi,
where r is the radial distance and the θ is the angle between the two classes. We represent the
spatial layout DL of a language L, as a set of such pairwise spatial distributions of the strokes:

DL = {p(r, θ|ωiωj)|ωi and ωj are neighbors in L}

The total number of possible stroke pairs in Indian languages can be very high since the number
of stroke classes range from 200 to 350. However, not all stroke pairs will appear in proximity to
each other in any character in the language. Hence the typical number of parameters that we need
to estimate is around 1000. Here we assume that the parameters r, θ form a distribution for each
stroke class pair, which can be modeled as a multivariate Gaussian distribution. The mean and
covariance matrices are estimated using MLE, similar to that in the stroke model.

Each character in the script could compose of multiple strokes and its number can differ based
on the writing style. Hence, in addition to the spatial layout, we also need to learn the set of
stroke classes that are used to write a particular character by specific a writer. This information is
identified and stored for each character class during the training phase. In Figure 3.4, the estimation
of the model is depicted to the left of the dotted line. Once the model parameters are estimated
from the annotated samples, we can synthesize any given text based on the synthesis procedure
(shown to the right of the dotted line in Figure 3.4).

3.5 Synthesis from Spatial Layout

Let ω1, ω2, ..., ωk be the k primitive classes that compose the entire script. These primitive classes
consist of strokes extracted from the stroke model. Let xi be a particular stroke in the training
samples of ωj. Conventional algorithms model p(xi|ωj) (denoted as pωj

(xi)) based on a set of
parameters that control the shape of xi [24], and the primitives used are characters. In our model,
pωj

(xi) is controlled by the stroke model.
The word is synthesized using the individual primitive classes, and the distribution of samples

within the classes. The synthesis proceeds as follows:

• Given a text word, create a sequence of stroke classes that constitute the handwriting equiv-
alent of the input word. This information was learnt during the training of the layout model.
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• For each stroke class, we select/generate a sample stroke using the stroke model for the writer
under consideration.

• The layout model is used to arrange the sample strokes to generate the final word.

• The word could be rendered in appropriate form, depending on the application or could be
passed to the next phase in applications such as retrieval and training of recognizers and also
can be used for other applications.

Stroke Selection: The stroke selection module selects a sample stroke from the set of training
samples in the case of normalized template model. For the mean trace model, we generate a
sample stroke based on the learnt distribution of the sample points within the stroke. One can
introduce variations in the synthesis by generating random samples from each sample distribution.
Alternately, the mean of the sample points would give the most likely stroke sample for each stroke
class.

Stroke Alignment: Given two consecutive primitives, We compute the most likely direction
between the two classes using the layout model. To introduce writing variations, one could generate
random sample from the spatial relation distribution that was estimated in the training phase.

The probability of the synthesized word with m stroke classes can be computed according to the
stroke and layout models as follows:

P (word) = p(x1|ω1)
m
∏

i=2

p(ri, θi|ωi−1ωi)p(xi|ωi),

where ri and θi are the distance and direction, generated by the layout model for the ith stroke
sample.

3.6 Matching Handwritten Words

Once a handwritten word is synthesized from the query word, we can use it to search the database of
handwritten documents using elastic matching. Since every online handwritten word is a collection
of strokes, we need to define a matching technique to compare two strokes as well as to compare two
words. Distance or dissimilarity between two strokes is computed using a set of features extracted
from the group of strokes. Each stroke consists of a sequence of sample points, (x, y) that describes
the trace of the pen during writing. The strokes are first converted into a sequence of feature
vectors, extracted from each of the sample points. The feature vector consists of:

1. The direction, θ, of the tangent to the stroke curve

2. The curvature, c, of the stroke at the sample point, and

3. The height, h, of the sample point from the word baseline

Figure 3.6 illustrates the computation of the three features. The angle, curvature and height of a
point on the stroke completely characterizes the local neighborhood. Moreover, these features have
been demonstrated to be effective for online word spotting for single user datasets [31].

The distance between two feature vectors F1 = 〈θ1, c1, h1〉 and F2 = 〈θ2, c2, h2〉 is defined as the
weighted Euclidean distance between the two vectors:

D2 = kθ ∗ (θ1 − θ2)
2 + kc ∗ (c1 − c2)

2 + kh ∗ (h1 − h2)
2,
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Figure 3.6: Features Computed for Stroke Matching: Direction, Height and Curvature.

where ks are the weighting factors. A sequence alignment score is then computed using a Dynamic
Time Warping (DTW) procedure. The use of the total cost of Dynamic Time Warping as a
similarity measure is helpful to group together strokes that are related to their root character by
partial match. Dynamic Time Warping is a dynamic programming based procedure to align two
sequences of signals. This can also provide a similarity measure.

Let the strokes (say their curvatures) are represented as a sequence of vectors F = F1,F2,. . . ,FM

and G = G1,G2,. . . ,GN . The DTW-cost between these two sequences is D (M,N), which is calcu-
lated using dynamic programming is given by:

D(i, j) = min







D(i − 1, j − 1)
D(i, j − 1)
D(i − 1, j)

+ d(i, j)

where, d (i, j) is the cost in matching the ith element of F with jth element of G and is computed
using a weighted Euclidean distance:

Figure 3.7: The Dynamic Time Warping Matching.

Using the given three values D(i, j−1), D(i−1, j) and D(i−1, j−1) in the calculation of D(i, j)
realizes a local continuity constraint, which ensures no samples left out in time warping.In Figure
3.7, we also imposed global constraint using Sakoe - Chiba band [4] so as to ensure the maximum
steepness or fatness of the DTW path. Score for matching the two sequences F and G is considered
as D (M,N), where M and N are the lengths of the two sequences.

The distance between two words are computed similar to the inter-stroke distance. However, in
this case, the primitives becomes strokes (unlike feature vectors in stroke matching) and D(i, j) is
used as the distance measure between strokes. The DTW algorithm used at the word level allows
us to handle spurious or missing strokes in a word. It also allows us to do partial matching of words
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as will be seen in the next section.

3.7 Information Retrieval Measures for Document Retrieval

Most of the document retrieval algorithms mentioned in Section 2, focus on spotting of similar
looking word and retrieving documents containing such instances. However, with widespread use
of textual search engines with powerful information retrieval techniques, one naturally look for
mimicking these ideas, even in the absence of an explicit recognition engine. We have developed
a computationally efficient procedure for the indexing and retrieval of offline printed documents
in [33]. Here, we extend the same idea for the online data.

In the case of ASCII encoded text documents, the retrieved documents are ranked according to
a relevance score. The relevance scores are computed as follows: i) stop words in the query are
removed to avoid spurious documents being retrieved, ii) morphological variations of the word are
identified and discarded, and iii) relevance of the document to a query rank is computed based on
factors such as term frequency (TF) and inverse document frequency (IDF). An important process
in speeding up the retrieval of documents is that of indexing. During indexing, the unique words
in a document are identified and a table is created with them, where each index term points to
all the instances of that term in the document. Hence one can search only in the index table to
locate any document containing the query. For efficient indexing, we first hierarchically cluster the
words using a scheme such as Minimum Spanning Tree based clustering. The clusters form sets
of words that are similar to each other. The statistical distribution of the words across clusters
is used for detecting stop words and also for computing a pseudo-TF/IDF. Once similar words
are clustered, we analyze the clusters for their relevance. A measure of the uniformity of the
presence of similar words across the documents is computed. This acts as an inverse document
frequency. If a word is common in all the documents, this word is less meaningful to characterize
any of the documents. Given a query, the corresponding handwriting is synthesized and the cluster
corresponding to this word is identified. In each cluster, documents with highest occurrence of
similar words are ranked and listed. The process of computation of relevance of the word as well
as the counting of word frequencies does help to index document images similar to TF/IDF(Term
frequency inverse document frequency) for text indexing.

One of the main problems in document search using keywords is that of word-form variations.
The exact word that is present in the document being searched is a variant of the keyword. There
are two types of variations that are possible for a word: i) variation of the form of the word
and ii) alternate word with the same meaning. For example, let the keyword being searched is
compute. Word-form variants include words such as computer, computing, computation, etc., where
as, alternate words could include calculate and determine in specific contexts. Addressing the
second type of variation needs knowledge of the meaning of the word and its context and is beyond
the scope of this work. We address the problem of dealing with the first class of variations, namely
word-form variations. To match variants of a word, we note that word form varies mostly as changes
in the prefix or suffix of a word, both in English and in Indian languages. Figure 3.8 shows an
example of partial matching for the Hindi words having root word ”gyan” (meaning ”knowledge”).
As can be seen, the word ”Agyanta” (on the top of Figure 3.8) is matched with the word ”gyan”
(to the left of Figure 3.8). We thus modify our matching algorithm to minimize the penalty for not
matching the initial and final parts of a word.
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Figure 3.8: Figure Illustrating Partial Matching.

3.8 Experimental Results

The proposed search and retrieval scheme is tested on online handwriting data sets in Indian scripts,
primarily in Telugu. The data for the experiments were collected using an IBM Crosspad and a
Tablet PC. For convenience of description, we divide our dataset into two: Dataset 1, consists
of 100 pages of data from 20 different writers in Telugu script. The writers were chosen from
varied backgrounds based on attributes such as script familiarity, educational qualification, age,
and gender. The data contains over 12, 000 words. Dataset 2, consists of 15 pages each in Bangla,
Hindi, Malayalam, Tamil, and Telugu scripts, collected from a total of 5 writers. The Telugu pages
are common in both sets. The scripts mentioned above were selected for the following reasons: i)
Telugu, which has one of the most complex layouts among all of the Indian languages, ii) Hindi,
which has shirorekha, iii) Malayalam which has long and complex strokes, and iv) Bangla, which is
similar to Hindi and v) Tamil, which has the smallest set of alphabets in Indian languages. A larger
Telugu dataset (Dataset 1) was collected due to its complexity in spatial layout of characters.

3.8.1 Modeling and Synthesis of Handwriting:

The first set of experiments were to evaluate the performance of the synthesis algorithm. The
experimental framework consists of i) an annotation tool that can annotate the handwritten data at
the stroke level, ii) a handwriting model and synthesis module and iii) an ITRANS-based encoding
module for processing the text input. The data was annotated manually using the annotation
toolkit [82] in ITRANS [42]. In this toolkit, handwritten data can be displayed simultaneously
with the annotation, which is dynamically updated as the user types the annotation.

Figure 3.9 shows two original samples of the Telugu word EdainA from two different writers
and the corresponding synthesized words. As can be seen, the synthesized words for two different
writers (Figure 3.9 (b) and (d)) are very similar to their original forms (Figure 3.9 (a) and (c)).
As noted from the example, our model is able to generate natural and realistic words that are
very close to the original ones. Also shown in Figure 3.9 (e)-(j) the word ”manushya” in their
synthesized and original forms in Malayalam, Bengali and Tamil scripts respectively.

Figure 3.10 shows the synthesis results of the same set of words written by three different writers.
Characteristics such as the inter-character spacing, relative size of loops and other matras (diacriti-
cal marks) of the three writers vary greatly. The mean trace model allows us to generate variations
in handwriting of a specific writer, while maintaining the characteristics traits of the individual.

During synthesis the user input is typically in the form Unicode or ITRANS [42] encoded text,
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Figure 3.9: Some Synthesized Words in and their Original Forms Written by Various Writers in
Telugu, Malayalam, Bengali and Tamil

which are the two popular encodings for Indian language scripts. The input encoder converts the
ITRANS or Unicode text string into a sequence of stroke classes. The specific stroke classes that
are generated depend on the character in the input as well as the writing style of the writer under
consideration. The stroke selector module generates a sequence of strokes using the stroke model
that are needed to generate the input text. Stroke alignment module is then used to compute the
spatial positioning of the generated strokes based on the information from the alignment model
and finally the word is rendered.

A quantitative evaluation of the synthesis algorithm is not feasible without a similarity measure
between the generated word and the writing style of the writer under consideration. However, the
writing style is a subjective quantity, that has not yet been quantified in the literature. Hence we
use the effectiveness of the synthesis module in the retrieval experiments to gauge the correctness
of our synthesis algorithm.

To run the retrieval experiments, we identify a set of query words that are present in the doc-
uments in the database, and the corresponding online handwriting samples are synthesized. The
features from the synthesized word are extracted as described before and compared against the
words in the document. Those words with a matching (distance) score that is lower than a pre-
specified threshold were assumed to match the query. Retrieved documents are ranked based on
the relevance to the query using TF/IDF scores.

Figure 3.11 shows the retrieved documents with the matching words placed inside the bounding
box for the query in Figure 3.12. We note that all the documents that contained the word were
retrieved and the top three matches were all relevant documents. Figure 3.11(a) has three matches
where the first two matches are for the word “roojulaku” a variant of “roojulu”, while the last
match is a direct match with the word “roojulu”. The match with the variant occurs due to the
first sequence of strokes in all the three matches are similar and constitute the root word “rooju”
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Figure 3.10: Sample Words Synthesized for three Different Writers

(meaning “day”). Figure 3.11 (b) also has similar results for the word “roojulu” written by a
different writer. As can be seen from the result, the search is able to retrieve words written by
different writers based on the synthesized words, which shows the effectiveness of the synthesis
based retrieval scheme.

(a) (b)

Figure 3.11: Search Result for the Input Word “roojulaku” in Telugu Written by (a) Writer 1, (b)
Writer 2.

Figure 3.12 takes a closer look at the retrieved words, which contain both writer differences and
word form variations. The results clearly indicate that the partial matching scheme can effectively
handle word form variations.

We also quantified the overall performance of the system on the complete database using the
measures of precision and recall. The precision refers to the proportion of the retrieved entities
that are relevant, while recall refers to the proportion of relevant entities in the database that were
retrieved. As the threshold used for matching is varied, one gets various values for precision and
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Input Text in ITRANS

(a) (d)(c)(b)

roojulu

Figure 3.12: Synthesized Telugu Word “roojulu” and Retrieved words (a,b) “roojulaku” by Writer
1, (c) “roojulu” by Writer 2, and (d) “roojulaku” by Writer 2.

recall. However, it may be noted that as the threshold is made tighter, the precision increases,
while the recall decreases, and vice versa.
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Figure 3.13: Precision-vs-Recall Plot for the Experiment.

Figure 3.13 shows the results of the retrieval experiment as a precision-recall curve. It is clear that
even in a multi-writer databases, our algorithm is able to achieve very good retrieval performances.
Comparable algorithms are those by Lopresti and Tompkins [83] and Jain and Namboodiri [31],
both of which do not handle the multi-writer cases well. The equal error rate is the point at which
the precision equals the recall, which is 25.2% on Dataset 1. A direct comparison of the numbers
are meaningless as the databases are not the same. However, based on the dataset size and its
complexity, the performance is quite comparable to the reported work, while adding the capability
of searching in multi-writer databases.
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3.8.2 Multi-Script Synthesis and Retrieval

In addition to the multi-writer case, our algorithm is also able to handle multi-script databases
using a single query, especially in Indian scripts. For multi-script synthesis, the input data is either
translated or transliterated into the target script. Transliteration is possible for proper nouns in
Indian languages due to the fact that all the scripts share a common alphabets although the shape
of scripts themselves are very different (see Figure 3.14), which is used for cross-lingual search as
shown in Figure 3.14.

Figure 3.14: Shared Alphabets of Multiple Scripts.

Once the query word is converted to the representation in the required script, a synthesizer in
the corresponding script is employed to generate the corresponding handwritten data (see Figure
3.15).

Given an input word in ITRANS, one can generate the corresponding strokes in any of the Indian
scripts and use the corresponding language model to generate the handwriting for a particular user.
This capability is essential for applications such as cross-lingual search, where one would like to
search for a word in different scripts, simultaneously.

Each of the generated query string is then compared with the words in the database (or index)
to retrieve the corresponding documents. The results are identical to providing separate queries
for each script, and hence is very effective. The query results on the multi-script database yields
a precision of 94.3% at a recall rate of 89.1%. The results are comparable to the single script case
and hence shows the effectiveness of the framework.
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Figure 3.15: Multi-script Query Expansion.

3.9 Discussions

We have proposed a writer-independent recognition-free approach for retrieval of handwritten data
in Indian language scripts. The proposed approach uses handwriting synthesis to do matching in
the ink domain as opposed to the use of a recognizer. Synthesis results using the model learnt from
training samples produces natural looking words. The framework also incorporates information
retrieval measures such as TF/IDF to rank the retrieved documents. The approach also supports
multi-lingual queries, which is especially useful for Indian languages. On the other hand, there
needs to be further investigation on writer independence, stroke ordering, a complex stroke model
and a way to quantify performance. We are currently working on modeling the handwritten data
as a mixture distribution, which will be able to incorporate more writing variations within the data
of a single user. Another interesting directions that we are currently pursuing is the study of stroke
shape variations when it is in the proximity of other strokes or when the position of the stroke in
the word changes.
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(a) in Hindi (b) in Tamil

(c) in Malayalam (d) Telugu

Figure 3.16: The Word haidaraabaad Synthesized in Various Indian Languages
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Chapter 4

Development of Document Retrieval
Systems

4.1 Introduction to Document Retrieval Systems

Document retrieval is about matching of some user stated query against useful parts of text records
and presents the retrieved results to the user. These records could be any type of mainly unstruc-
tured text, such as bibliographic records, newspaper articles, or paragraphs in a manual, images,
audio and video records and other multimedia data. User queries could range from multi-sentence
full descriptions of an information need to a few words.

4.1.1 Adapting Search Engines for Document Images

A search engine or search service is a program designed to help find information stored on a com-
puter system such as the World Wide Web, inside a corporate or proprietary network or a personal
computer. The search engine allows one to ask for content meeting specific criteria (typically those
containing a given word or phrase) and retrieves a list of references that match those criteria. Search
engines use regularly updated indexes to operate quickly and efficiently. Without further qualifi-
cation, search engine usually refers to a Web search engine, which searches for information on the
public Web. Other kinds of search engine are enterprise search engines, which search on intranets,
personal search engines, which search individual personal computers, and mobile search engines.
However, while different selection and relevance criteria may apply in different environments, the
user will probably perceive little difference between operations in these. Search engines do not
always provide the right information, but rather often subject the user to a deluge of disjointed
irrelevant data.

Search engines in the context of digital libraries have assumed an even more critical role. The
number of users accessing a digital library search are increasing constantly at a higher rate. Digital
libraries consist of millions of scanned document images and it is of utmost importance that each
and every page in a digital library is searchable. Typical search engines are designed for textual
documents and needs special care to adapt to document images. Scalability of these search engines
to adapt to the ever growing size of digital libraries, adaptation of language processing modules in
the context of document images and many other search areas still remain in an open area.
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4.1.2 Document Viewer and Portable Document Format

There are a variety of document formats that are available and each document format has a different
file structure and has to be treated individually. Some of the widely used document formats are
HTML, PDF, DOC, RTF, etc. A document viewer typically might support many formats to render
them faithfully or there may be document viewers that are built specifically for a particular type
of document format, for instance, the Xpdf [41] viewer supports only PDF documents, while the
MS Word can handle many different formats, ranging from DOC and RTF to HTML.

The following are some of the important roles of a document viewer.

• Faithful reproduction of the content in the document

• To provide/display content in a conceivable manner to the end-user

• Ease of navigation within and among documents

• Ability to locate (find) parts of a document and present them to the user

Portable Document Format, the PDF, is the default standard for electronic exchange of docu-
ments, and also an industry standard for intermediate representation of printed material. The goal
for developing PDF is to enable users exchange and view electronic documents easily and reliably,
independently of the environment in which they were created. Digital libraries contain a variety
of documents in different storage formats, and PDF files are available in large amounts, especially
most of the scientific literature gets published in PDF format which the digital libraries indexes.

Limitations Though digital libraries contain a plethora of PDF files, search in PDF documents,
especially within the graphics stream that contain document images is currently not possible. Most
of the PDFs are generally a scanned a copy of the original hard copy, and since these are stored
as images within a PDF file, their textual content is inaccessible. Also, Indian language content
cannot be searched within a PDF file in both text and graphics stream. This is because most of
Indian language content in PDF files are encoded in a particular font-encoding and the text stored
inside images cannot be OCR’ed as we do not have an OCR for Indian languages that claims a
high accuracy. This leads us to a recognition-free approach to solve the search in document images
by matching directly at the word image level.

4.2 Scalable Search Engines for Document Images

Large digital libraries, such as Digital Library of India (DLI) [34] are emerging for archiving large
collection of printed and handwritten documents. The DLI aims at digitizing all literary, artistic,
and scientific works of mankind so as to create better access to traditional materials, easier preser-
vation, and make documents freely accessible to the global society. More than 25 scanning centers
all over India are working on digitization of books and manuscripts. The mega scanning center we
have, has around fifty scanners, each one of them capable of scanning approximately 5000 pages in
8 hours. As on September 2005, close to 100 thousand books with 25 million pages were digitized
and made available online by DLI (http://dli.iiit.ac.in) as document images.

Building an effective access to these document images requires designing a mechanism for effective
search and retrieval of textual data from document image collections. Document image indexing
and retrieval were studied with limited scope in literature [35]. Success of these procedures mainly
depends on the performance of the OCRs, which convert the document images into text. Much of
the data in DLI are in Indian languages. Searching in these document image collections based on
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Figure 4.1: Conceptual Diagram of the Searching Procedure from Multilingual Document Image
Database.

content, is not presently possible. This is because OCRs are not yet able to successfully recognize
printed texts in Indian languages. We need an alternate approach to access the content of these
documents [37]. A promising alternate direction is to search for relevant documents in image
space without any explicit recognition. We have been motivated by the successful attempts on
locating a specific word in handwritten English documents by matching image features for historical
documents [11, 36].

We have already addressed algorithmic challenges for effective search in document images [84]
. This chapter describes the issues associated with the implementation of a scalable system for
Indian language document images. A conceptual block diagram of our prototype system is shown
in Figure 4.1. Our system accepts textual query from users. The textual query is first converted to
an image by rendering, features are extracted from these images and then search is carried out for
retrieval of relevant documents. Results of the search are pages from document image collections
containing queried word sorted based on their relevance to the query.

4.2.1 Greenstone

Greenstone [38] is a suite of software for building and distributing digital library collections. It
provides a new way of organizing information and publishing it on the Internet or on CD-ROM.
Greenstone is produced by the New Zealand Digital Library Project at the University of Waikato,
and developed and distributed in cooperation with UNESCO and the Human Info NGO.

The core of our system is the Greenstone, an open source search engine for digital libraries, which
indexes and stores text information about all documents. Greenstone is a comprehensive system
for constructing and presenting collections of thousands or millions of documents. including text,
images, audio and video.
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Collections

A typical digital library built with Greenstone will contain many collections, individually organized
though they bear a strong family resemblance. Easily maintained, collections can be augmented and
rebuilt automatically. There are several ways to find information in most Greenstone collections.
For example, you can search for particular words that appear in the text, or within a section of a
document. You can browse documents by title or you can browse documents by subject and many
other categories.

Indexing

Greenstone constructs full-text indexes from the document text that is, indexes that enable search-
ing on any words in the full text of the document. Indexes can be searched for particular words,
combinations of words, or phrases, and results are ordered according to how relevant they are to
the query.

Users can browse interactively around lists, and hierarchical structures, that are generated from
the metadata that is associated with each document in the collection. Metadata forms the raw
material for browsing. It must be provided explicitly or be derivable automatically from the docu-
ments themselves. Different collections offer different searching and browsing facilities. Indexes for
both searching and browsing are constructed during a ”building” process, according to information
in a collection configuration file. Greenstone creates all index structures automatically from the
documents and supporting files: nothing is done manually. If new documents in the same format
become available, they can be merged into the collection automatically. Indeed, for many collec-
tions this is done by processes that awake regularly, scout for new material, and rebuild the indexes
all without manual intervention.

Document formats

Source documents come in a variety of formats, and are converted into a standard XML form for
indexing by ”plugins”. Plugins distributed with Greenstone process plain text, HTML, WORD
and PDF documents, and Usenet and E-mail messages. New ones can be written for different
document types. To build browsing structures from metadata, an analogous scheme of ”classifiers”
is used. These create browsing indexes of various kinds: scrollable lists, alphabetic selectors, dates,
and arbitrary hierarchies. Again, Greenstone programmers can create new browsing structures.

Multimedia and multilingual documents

Collections can contain text, pictures, audio and video. Non-textual material is either linked into
the textual documents or accompanied by textual descriptions (such as figure captions) to allow full-
text searching and browsing. Unicode, which is a standard scheme for representing the character
sets used in the world’s languages, is used throughout Greenstone. This allows any language to
be processed and displayed in a consistent manner. Collections have been built containing Arabic,
Chinese, English, French, Maori and Spanish. Multilingual collections embody automatic language
recognition, and the interface is available in all the above languages.

4.2.2 Challenges in Design and Implementation of the System

Search and retrieval from large collection of document images is a challenging task, specially when
there is no textual representation available. To design and implement a successful search engine in
image domain, we need to address the following issues.
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Search in images: Search in image space requires appropriate representational schemes and
similarity measures. Success of content-based image retrieval(CBIR) schemes were limited by the
diversity of the image collections. Digital libraries primarily archive text images, but of varying
quality, script, style, size and font. We need to come up with appropriate features and matching
schemes, which can represent the content (text), while invariant to the popular variations.

Degradations of documents: Documents in digital libraries are extremely poor in quality.
Popular artifacts in printed document images include (a) Excessive dusty noise, (b) Large ink-
blobs joining disjoint characters or components, (c) Vertical cuts due to folding of the paper, (d)
Cuts of arbitrary direction due to paper quality or foreign material, (e) Degradation of printed
text due to the poor quality of paper and ink, (f) Floating ink from facing pages etc. We need to
design an appropriate representational scheme and matching algorithm to accommodate the effect
of degradation.

Need for cross-lingual retrieval: Document images in digital libraries are from diverse lan-
guages. Relevant documents that users need may be available in different languages. Most educated
Indians can read more than one language. Hence, we need to design a mechanism that allows users
to retrieve all documents related to their queries in any of the Indian languages.

Computational speed: Searching from large collection of document images pass through many
steps: image processing, feature extraction, matching and retrieval of relevant documents. Each
of these steps could be computationally expensive. In a typical book, there could be around
90,000 words and processing all of them online is practically impossible. We do all computationally
expensive operations during the offline indexing (Section 4.2.4) and do minimal operations during
online retrieval (Section 4.2.5).

Indian languages: Indian languages pose many additional challenges [85]. Some of these are:
(i) lack of standard representation for the fonts and encoding, (ii) lack of support from operating
system, browsers and keyboard, and (iii) lack of language processing routines. These issues add to
the complexity of the design and implementation of a document image retrieval system.

4.2.3 Representation and Matching of Word Images

Word images extracted from documents in digital libraries are of varying quality, script, font, size
and style. An effective representation of the word images will have to take care of these artifacts for
successful searching and retrieval. We combined two categories of features to address these effects:
word profiles and structural features. We use many features that are used for matching the word
images that cater to font size, style and script variations. Explicit definitions of these features may
be seen in [84]. These features typically are the Word Profiles, Structural Features and others. A
detailed description of these features are explained in Appendix E.3.

Spotting a word from handwritten images is attempted by pairwise matching of all the words [36].
However for proper search and retrieval, one needs to identify the similar words and group them
based on their similarity, and evaluate the relative importance of each of these words and word
clusters. Matching is used to compute dissimilarity between word images. We use a simple squared
Euclidean distance while computing the dissimilarity. For matching word images we use Dynamic
Time Warping (DTW) that computes a sequence alignment score for finding the similarity of
words [84]. The use of the total cost of DTW as a distance measure is helpful to cluster together
word images that are related to their root word, which is discussed in Section 4.2.4.
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Figure 4.2: Dynamic Time Warping (DTW) Plot during Matching.

DTW is a dynamic programming based procedure [36] to align two sequences of signals and
compute a similarity measure. Let the word images (say their profiles) are represented as a sequence
of vectors F = F1,F2, . . .FM and G = G1,G2, . . . ,GN. The DTW-cost between these two
sequences is D(M,N), which is calculated using dynamic programming is given by:

D(i, j) = min







D(i − 1, j − 1)
D(i, j − 1)
D(i − 1, j)

+ d(i, j)

where d(i, j) =
N

∑

k=1

(F (i, k) − G(j, k))2 (the cost in aligning the ith element of F with jth element

of G). Using the given three values D(i, j − 1),D(i − 1, j) and D(i− 1, j − 1) in the calculation of
D(i, j) realizes a local continuity constraint, which ensures no samples are left out in time warping.
Score for matching the two sequences F and G is considered as D(M,N), where M and N are the
lengths of the two sequences. Structural features can also be incorporated into the framework by
computing them for the vertical strips. Detailed discussion of the algorithms is available in [84].

4.2.4 Offline Indexing

The simple matching procedure described in Section 4.2.3 may be efficient for spotting or locating a
selected word-image. However the indexing process for a good search engine is more involved than
the simple word-level matches. A word usually appears in various forms. Variation of word forms
may obey the language rules. Text search engines use this information while indexing. However
for text-image indexing process, this information is not directly usable.

We take care of simple, but very popular, word form variations taking place at the beginning
and end. For this, once sequences are matched, we backtrack the optimal cost path. During the
backtracking phase, if the dissimilarity in words is concentrated at the end, or in the beginning, they
are deemphasized. For instance, for a query “garden”, the matching scores of the words “Gardener”
and “garden” are only the matching of the six characters, ’g-a-r-d-e-n’, of both words. Once an
optimal sub-path is identified, a normalized cost corresponding to this segment is considered as the
matching score for the pair of words. With this we find that a large set of words get grouped into
one cluster. We expect to extend this for more general variations of words.
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The optimal warping path is generated by backtracking the DTW minimal score in the matching
space. As shown in Figure 4.2, extracted features (using upper word profile) of the two words
’Gardener’ and ’garden’ are aligned using DTW algorithm. Also, note that the starting letter, “g”

and “G”, at the image level are different. It can be observed that for word variants the DTW
path deviates from the diagonal line in the horizontal or vertical direction from the beginning or
end of the path, which results in an increase in the matching cost. In the example Figure 4.2, the
path deviates from the diagonal line at the two extreme ends. This happened during matching
the two words, that is, the root word (garden) and its variant (Gardener). Profiles of the extra
character (’er’) have minimal contribution to the matching score and hence subtracted from the
total matching cost so as to compute the net cost. Such word form variations are very popular in
most languages.

For the indexing process, we propose to identify the word set by clustering them into different
groups based on their similarities. This requires processing the page to be indexed for detection of
relevant words in it. Many interesting measures are proposed for this. We propose the following
steps for effective retrieval at image level.

Detection of Common Stop Words: Once similar words are clustered, we analyze the clusters
for their relevance. A very simple measure of the uniformity of the presence of similar words across
the documents is computed. This acts as an inverse document frequency. If a word is common in
most of the documents, this word is less meaningful to characterize any of the document.

Document Relevance Measurement: Given a query, a word image is generated and the cluster
corresponding to this word is identified. If a cluster is annotated, matching query word is fast and
direct. For other clusters, query word image and prototype of the cluster are compared in the
image domain. In each cluster, documents with highest occurrence of similar words are ranked and
listed.

Clustering: Large number of words in the document image database are grouped into a much
smaller number of clusters. Each of these clusters are equivalent to a variation of the single word
in morphology, font, size, style and quality. Similar words are clustered together and characterized
using a representative word. We follow a hierarchical clustering procedure [86] to group these words.
Clusters are merged until the dissimilarity between two successive clusters become very high. This
method also provides scope for incremental clustering and indexing.

Annotation: After the clustering process has been completed offline, we have a set of similar
words in each cluster. These clusters are annotated by their root word to ease searching and
retrieval. Suppose a cluster contains words such as ’programmer’, ’programmers’, ’programming’,
’programs’ and ’program’. Then, we annotate the cluster with the root word ”program”. Likewise
all clusters are manually annotated. If the annotation is not available, we identify an image-
representative for the cluster. However, presence of image-prototype can slow down the search
process. During searching, cluster prototypes are accessed and checked for their similarity with the
query word. This makes sure that search in image domain is as fast as search in text domain.

4.2.5 Online Retrieval

A prototype web-based system for searching in document images, is also developed. This is presently
available at http://cvit.iiit.ac.in/wordsearch.html. The system has many basic features as discussed
below.
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Figure 4.4: Sample Entries of the Transliteration Map Built for Cross-lingual Retrieval in English,
Devanagari and Telugu

Web-based GUI: The web interface allows the user to type in Roman text and simultaneously
view the text in one of the Indian languages of his choice. Users can also have the option to search
with cross lingual retrieval and can specify the kind of retrieval they want to use. Many retrieval
combinations are also provided in the advanced search options such as case insensitivity, boolean
searching using !, &, | and parenthesis, displaying up to 50 search results per page, and various
others. There is on the fly character transliteration available. The user can first choose a particular
language (such as Hindi, Telugu, etc.) and then see the text in the corresponding language as he
keeps typing the query in Roman (OM-Trans).

Delivery of Images: In order to facilitate users access to the retrieved document images, there
is a need to control image size and quality. When a book is typically scanned at a resolution of 600
dpi, the original scanned size of a single page is around 12MB as a PNG file. Viewing such page
is too slow and needs network resources. It is wise to make these images available in a compressed
form. We compress the above image to a size ranging between 30 to 40 KB in TIFF format, by
reducing the size of the image. This makes sure that the delivery of images are faster over the
Internet. TIFF image format helps us in general for achieving the trade-off between image size
and quality. It keeps the quality of the image during the compression process over JPG and BMP
formats.

Speculative Downloading: Our system also supports speculative downloading, where some
related pages with the currently retrieved page are prefetched for quick viewing during searching
and retrieval as per users query. This mechanism is helpful especially when the user is viewing a
collection, page by page, with the assumption that he might view the next page also. Speculative
downloading is a background process.

Dynamic Coloring: When a user searches for relevant pages to a given query, our system
searches and displays the result with dynamic coloring of all the words in the page that are similar
to the queried word. This helps users to easily evaluate relevance of the retrieved page to their
need. We adopt false coloring mechanism such that each word in a query carries a unique color in
a document image. All this coloring happens at runtime (Figure 4.5) at image level.

Scalability: DLI is a one million book scanning project. Hence it archives huge collection of
document images. Searching in this situation raises the question of scalability.

The current prototype system searches in three books, that are a mixture of English and other
Indian Languages (Hindi and Telugu). Each book on the average consists of 350 pages, and each
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Figure 4.5: Search Result with Dynamic Coloring for Query Word ’Arjuna’ seen Both in English
and Devanagari

page with 300 words. This brings the total number of words to 360,000. This is relatively a small
number. The system should aid in searching the huge one million book collection and thus the
scalability issues come to forth. Indexing this large collection takes immense time. For us indexing
is an offline activity. Searching and retrieval is the only online process. That is why the system
manages to run fast in the above sample database. Because it only checks keywords of the index to
search for similar words with the query. Even with an increase in the size of document images we do
not expect much increase in the number of clusters. Because, words are limited in every language
and they are only the morphological variants of the root word. The system handles addition of
new books without re-indexing every time. This saves much time and creating new indexes will be
a smooth process. However, we need to deal with delivery of the document images. An increase in
the number of pages viewed may slow the transfer process. A good compression technique needs
to be applied.

Cross-lingual Search Our system can also search for cross-lingual documents for a given query.
As shown in Figure 4.3 we achieve this in two ways: transliteration and dictionary-based approaches.
Figure 4.3 is an expanded view of the cross-lingual block diagram presented in Figure 4.1.

Since Indian scripts share a common alphabet (derived from Brahmi), we can transliterate the
words across languages. This helps us to search in multiple languages at the same time. We use
OM-Transliteration scheme [43]. In OM-Trans scheme, there is a Roman equivalent for all the basic
Indian language characters.

Figure 4.4 shows a sample transliteration map built for this purpose. For Example, ”Bhim ”
can be typed in its Roman equivalent using OM-trans as ”Bhima”. Then the transliteration table
is looked up for searching in Hindi (Devanagari script) and Telugu pages. Their cumulative result
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(a) (b)Figure 4.6: Screenshots of Implementation Results for Cross-lingual Search. (a) An Interface where
Users Enter their Query, (b) View of Result of the Search as Thumbnails

is finally displayed back to the user. A screenshot showing implementation result is presented in
Figure 4.6.

We also have a dictionary-based translation for cross-lingual retrieval. In this approach, every
English word has an equivalent word in the corresponding Indian and other oriental languages. If
a user queries for the word ’India’, the dictionary lookup points to ’Baarta’ in Hindi for searching
relevant documents across languages. This table is extended also for other Indian languages. The
result of the search are documents that contain the query word ’India’ in all the languages.

We tried searching in scanned documents from the book ‘Bhagavat-Gita’. Pages from this book
contain English and Devanagari text. These pages are of poor quality. We search for the occurrences
of the word ‘arjuna’. It fetched pages which contain ‘Arjuna’ in both English and Devanagari. Sam-
ple results are shown in Figure 4.7 (b). In this respect, we need to exploit the available technology
at WordNet Project [87] and Universal Language Dictionary Project [88]. WordNet is a lexical
database that has been widely adopted in artificial intelligence and computational linguistics for a
variety of practical applications such as information retrieval, information extraction, summariza-
tion, etc. The Universal Language Dictionary is an attempt to create a list of concepts along with
words to express those concepts in several ”natural” and ”artificial” (constructed) languages.

4.2.6 Discussions

We have a prototype system for retrieval of document images. This system is integrated with
’Greenstone search engine’ for digital libraries [38]. Greenstone is a suite of software for building
and distributing digital library collections via the Internet. Given a textual query, we convert it to
image by rendering. Features are extracted from these images and then search is carried out for
retrieval of relevant documents in image space. We extend the search to cross-lingual retrieval by
transliteration among Indian languages and a table-lookup translation for other languages. Results
of the search are presented to the user in a ranked manner based on their relevance to the query
word.

We evaluated the performance of the system on data sets from languages such as English and
Hindi. Pages of Hindi and English are taken from digital library of India collections. The system
is extensively tested on all these data sets. Sample words retrieved are shown in Figure 4.7 (a).
We measure the speed of the system so as to see its practicality. The system takes 0.16 seconds to
search and retrieve relevant documents from image databases and 0.34 seconds to transfer that page
for viewing by users over the intranet. In comparison, Greenstone text search takes 0.13 seconds
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Figure 4.7: Results: (a) Sample Word Images Retrieved for the Queries Given in Special Boxes.
Examples are from English and Hindi Languages. The Proposed Approach Takes Care of Variations
in Word-form, Size, Font and Style Successfully. (b) Example Result for Cross-lingual Search from
Bhagavat Gita Pages.

to search and retrieve relevant documents from image databases and 0.31 seconds to transfer that
page for viewing by users over the intranet. The speed of our system is almost comparable with
the Greenstone text search. This shows the effectiveness of the system. The strategy we followed is
to perform text processing and indexing offline. The search then takes place on the representative
words indexed. Compressing the image (to a size of few KB) also help us a lot during the transfer
of the document image for viewing.

Quantitative performance of the matching scheme is computed on sample document image
databases of size more than 2500 words. Around 15 query words are used for testing. During
selection of query words, priority is given to words with many variants. We computed recall and
precision for these query words. Percentage of relevant words which are retrieved from the entire
collection is represented as recall, where as, percentage of retrieved words which are relevant is
represented as precision. It is found that a high precision and recall (close to 95%) is registered
for all the languages. High recall and precision is registered in our experiment. This may be be-
cause of the limited dataset we experimented with, that are similar in font, style and size. We are
working towards a comprehensive test on real-life large datasets. Our existing partial matching
module controls morphological word variants. We plan to make the module more general so that it
addresses many more variations of words encountered in real-life documents. We are also working
on avoiding the manual annotation and still retaining the same performance.

4.3 Textual Search in Graphics Stream of PDF

4.3.1 Portable Document Format

More than 200 million Portable Document Format (PDF) [39] documents on the web today serve
as evidence of the number of organizations that rely on PDF to store information. Today, PDF
is the de facto standard for electronic exchange of documents, and also an industry standard for
intermediate representation of printed material. The goal for developing PDF was to enable users
to exchange and view electronic documents easily and reliably, independent of the environment in
which they were created. Origins of the PDF [39] dates back to the nineties. During those days,
PostScript page description language was the widely accepted standard for printing purposes. PDF
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was built on top of the PostScript, so that not only it supported printing but also supported viewing
capability. PDF document is a collection of objects. These objects can be located in a PDF file
in any arbitrary order, but are connected to each other by a reference mechanism. Therefore, a
viewer application should process a PDF file by following references from object to object, instead
of processing object sequentially. Hence, every PDF file contains a cross-reference table, stored at
the end of the file. Cross-reference makes sure that a PDF file containing very large number of
documents can be accessed efficiently with almost no time constraints. A PDF document can be
regarded as a hierarchy of objects contained in the body section of a PDF file. At the root of the
hierarchy is the document’s catalog dictionary. Most of the objects in the hierarchy are objects
named dictionaries. For example, each page of the document is represented by a page object, a
dictionary that includes references to the page’s contents. The individual page objects are tied
together in a structure called Page Tree.

4.3.2 Challenges in Design and Implementation

The challenges in using an existing opensource PDF viewer are manifold. In order to understand
how a document viewer (Xpdf in this case) supports a particular document format (PDF in this
case), one also should have insights and understanding of that particular document format. For
example, a movie player software must understand and decipher how a typical movie file would
be structured, so as to play the movie and give access controls to the user for navigation. As a
software designer, one must also understand how the frames are arranged in a standard movie file,
its resolution and other specifics so as to render the movie faithfully onto the display. Similarly,
one must understand the nuances of the PDF file format before one could start using an existing
opensource implementation of the same. We extend the conventional textual search to graphics
(image) representation of documents. Conventional text search is based on matching or comparison
of textual description (say in UNICODE). These techniques can not be used to access content at
the image/graphics level, where text is represented as pixels but not as UNICODE. We have
implemented the proposed solution in an open source PDF reader (Xpdf) to demonstrate that the
textual search is possible in the graphics stream. We illustrate the challenges involved, starting
from the understanding of the PDF file format till its implementation using the Xpdf viewer.

• Understanding the PDF file format: The PDF file format is an open format and a vast
one that is being constantly upgraded. Unlike other document file formats, PDF has some
programming language constructs, though not in its entirety and must not be read sequentially
but by following references using a cross-reference table present in it. One has to clearly
understand each of the PDF file format details and map them to the Xpdf source code. This
mapping is not a direct one as it involves finding code fragments and stubs that are split
across various source files across directories. There are 106 header files and 87 source files
that comprise of the Xpdf application. The display has been developed using Motif, an X-
windows based User Interface builder to achieve faithful rendering of a PDF file onto the
display.

• The Graphics framework: The graphics stream hitherto has only been used for rendering
purposes. Locating images, and more importantly document images in the graphics stream
was of utmost priority. All the images had to be extracted in its entirety (original size) so that
they can be subjected to document processing operations such as thresholding, segmentation
and feature extraction. We had to accomplish this task during a PDF file read operation
without disturbing the rendering activity. Fragments of code were added appropriately so as
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to fork out the activity of extracting images and their features, and then the feature vectors
were stored in a separate data structure that was always contained in the memory.

• Transparency in search: Transparency in search was one of the main motivations, because
from a user’s perspective he is finding a ”word” irrespective of this result comes from a text
region or a graphics region. The search in graphics region is little more elaborate as opposed
to text search which is handled well within the existing opensource viewer Xpdf. We had
to combine the existing text search framework into the graphics stream search framework in
order to achieve this transparency.

• Indian language support: One of the main goals is to search Indian language content present
in the graphics stream. Providing an intuitive interface to type in Indian language text
was necessary. Our solution also allows the query word to be entered as Roman, using the
ITRANS notation, and simultaneously view the chosen Indian language content that is being
typed. This text must then be converted to an image so that matching in the graphics stream
takes place at the word image level. Opensource image library, ImageMagick [89] was used to
convert the input text into an image using a standard font in that particular Indian language.
All the image reading and writing operations involved in this entire process was performed by
using this library effectively. Present implementation supports Indian languages documents
in Hindi and Telugu.

4.3.3 Word Search in a PDF file

A PDF file encapsulates a complete description of the document that includes the text, fonts, im-
ages, and 2D vector graphics. Importantly, PDF files do not encode information that is specific to
the application software, hardware, or operating system used to create or view the document. This
feature ensures that a valid PDF will render exactly the same regardless of its origin or destination.
A PDF document is a data structure essentially made of Objects. A Content Stream is a PDF
stream object whose data consists of sequence of instructions describing the graphical elements to
be painted on a page. Each page object is represented by one or more content streams. Content
streams are also used to package sequence of instructions as self-contained graphical elements, such
as forms, patterns, certain fonts, and annotation appearances. PDF serves purpose for fundamen-
tally two kinds of applications: the Producer (PDF generator) and the Consumer (PDF reader).
Today, we have many opensource PDF viewers available, the popular among them are the Xpdf,
Ghostscript and KPDF for Linux platforms and proprietary viewer such as the Adobe Acrobat for
the Windows operating system. Each of these applications implement the textual query search,
with additional functionalities such as searching a sequence of pages, specific selected pages, case-
sensitive search, searching as a regular expression and provide navigating functionalities such as
forward and backward search.

Figure 4.8 shows the entire procedure that a typical PDF reader application does when handling a
PDF file for viewing and searching purposes. As shown in Figure 4.8, the PDF file structure consists
of a one-line header identifying the version of the PDF specification to which the file conforms, a
body containing Text and Graphic stream objects that make up the PDF, a Cross-reference table
containing references to indirect object, a trailer giving the location of the cross-reference table and
certain other special objects. A user typically presents a search string, and the Text Search module
looks into all the Text Stream objects in a PDF file and displays the results to the user. This is
how conventional PDF search works. We used an existing PDF reader application and modified it
so as to implement the Word Image Search (within double rectangle) that looks into the Graphics
Stream objects in a PDF file to match word images. The modules indicated by a double rectangle
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Figure 4.8: PDF Search Procedure. Our Proposed Search Scheme Integrates the Conventional
Textual Search in a Transparent Manner.

in Figure 4.8 are the routines plugged inside a conventional PDF reader application to handle word
image search. The results from both the search modules are integrated and is presented to the user
making the whole process of searching transparent to the user.

4.3.4 Text Search in a PDF file

Most of the PDF readers/viewers support search (find) of query text. This search mechanism is
handled page by page in a PDF file providing a means for inline searching. Whenever the user
searches for a particular word, the word has to be searched in all the available pages of a PDF file.
Typically, the search starts from the current page till the last page in the file and then continues
from the first page. Every block (Text Block) in a page, is searched in a top-down sequential
order. Text from every line in a block is extracted and is then compared with the input search
string. The comparison is not straightforward, as the text extracted from these lines are read
character by character (including spaces) from a line and then matched with the input search
string. Additional information on search is handled appropriately during the search, like ignoring
the case while searching. In this case, both the input search string and the text characters in the
line are both converted to lower case (or upper case) and then compared. Information such as
searching forward in a page or backward in page are also explicitly handled by the PDF reader
applications. These search operations are PDF reader application dependent as some of them are
capable of handling search at multiple lines and across blocks, while some of them handle only at
the line level. Once a match has been found, the search string in the PDF file is shown in reverse
video. The display related functionalities are handled separately and they are dependent on the
user coordinates, which typically is dependent on the resolution of the display, the current zoom of
the reader application and other such device dependent features.
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4.3.5 Searching in the Graphics Stream

OCR-based Search: We often find PDF files that contain document images stored in the graph-
ics stream. Document image contains textual information in the form of an image. Most of these
images are scanned copies of technical reports, papers, journals or books. A PDF reader cannot
extract text from an image and thus making it impossible to search within document images em-
bedded in the graphics stream. During a typical text search in PDF documents, the image area is
now ignored as it is not the region of interest, and is handled only during display related operations.
It is sometimes in the interest of the user to search words within an image. One solution to the
above problem is to use an Optical Character Recognizer (OCR) to convert the image data into
text so that this text is available to the user to search. OCR indeed looks like a veritable solution
and some applications (Adobe Acrobat 7.0 Professional) have used such techniques to search text
inside images in a PDF file. This solution is better suited for languages that use the Latin Script.
The fact that we have commercial OCRs for English with high accuracies makes the above approach
possible. OCRs for Indian languages and other oriental scripts are not known for high accuracies
and this makes the approach less effective for word search in PDF files that contain document
images in Indian or oriental languages. Also the fact that Indian language text is non-standard
(represented in custom fonts) makes even the textual search a difficult problem.

Recognition-Free Search Word level matching has been attempted for printed [10] documents.
They are useful for locating similar occurrences. None of these matching schemes are designed to
do partial matching, which is very important for addressing word-form variations. There have been
successful attempts on locating a specific word in a handwritten text by matching image features
for historical documents [11]. Word Spotting [13] is a technique wherein word images are matched
using various image matching techniques. Dynamic Time Warping is a dynamic programming
based procedure [11] to align two sequences of feature vectors. This can also provide a similarity
measure. This is a popular technique in speech analysis and recognition. Indexing and retrieval
from document image collections were studied by converting the images to text [35]. Success of these
procedures depends on the performance of the OCRs, which convert the document images to text.
Manmatha et al. [47] built a search engine for historical manuscript images, wherein the retrieval
system was trained using an annotated set of 100 pages of George Washington’s manuscripts and
is used to query a dataset containing images from the same collection. The current approach is
to use meta data or indices, which are manually created. This makes automatic approaches to
searching and accessing the content very attractive. Another approach to such a problem is to use
handwriting recognizers followed by a text search engine. However, in real life, the documents,
especially the historical documents, are of poor quality which makes the handwriting recognizers
vulnerable to poor results. Manmatha et al. [47] used an alternative approach bypassing explicit
recognition. We [33] employed a similar methodology to retrieve printed document images using
word matching techniques without recognition.

4.3.6 Recognition-Free Search in PDFs

We employ a similar idea for searching within the graphics stream of PDF files. This involves the
following steps

• Extraction of graphic streams: Document images are extracted from the graphics stream
of a PDF file in its entirety.

• Word Segmentation: The pre-processed image is then subjected to word-level segmentation
and all the word images in a document image are then extracted.
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Figure 4.9: Block Diagram Illustrating our Approach

• Feature Extraction: Feature values are extracted from these segmented word images that
are used for matching purposes.

• Matching: Word Image matching techniques are employed to match word images using their
feature values.

4.3.7 Structure of the Implementation

The graphics stream of a PDF file has been only used for viewing purposes and thus making it
inaccessible to search. We have used the existing text search framework in PDF files to locate and
then search graphic stream objects (refer Figure 4.8). The entire process of locating the graphics
stream objects in a PDF file and then searching and matching is explained below. As can be seen
from Figure 4.9, there are two stages: the PDF file load stage and immediately after loading, the
search stage, separated by the horizontal dashed lines at the middle. During the load stage, a PDF
file is read as it is normally read. All images in the PDF file are then extracted in the Read PDF
file module. In this routine we extract all images in its entirety (full size) and some additional
information such as, its width, height, location in the page of a PDF document, and page number
are extracted and stored in a separate data structure. Since every image in a PDF file need not be
a document image, the Extract Document Image module determines whether the current image is
a document image or not. If the current image is not a document image, then it is ignored while
document images are subjected to further processing. The extracted document image then goes
through the Pre-processing module that does various preprocessing operations like Skew-correction,
Thresholding and Binarization. This pre-processed image is then sent to the Word Segmentation
module that segments the pre-processed image into word images. These word images are then sent
to the Feature Extraction routine that extracts feature values from the word images. We have used
features [9] such as the horizontal profile, the vertical profile, and the background to ink transition.
All these features are normalized so that variations due to font size are taken into account. This
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process is repeated for all the document images in the PDF file. This entire offline process should
not interfere with the PDF readers loading and displaying contents of a PDF file, which is very
fast. Keeping this in mind, we fork out the entire offline activity in order to facilitate the user to
query the text content until the features are extracted for all the document images in a PDF file.

During the search phase, the input text is processed along with the language information. There
are two kinds of input, the ASCII and the ITRANS [42]. In the ASCII mode, the English text is
handled (Latin scripts) as is. While in the ITRANS input mode, the user chooses a target Indian
language in which he has to search. ITRANS is a transliteration scheme wherein the user types
input search text in Roman characters while the output is in the particular Indian language. After
determining the input mode (ASCII or ITRANS) and language, the input text is rendered as a word
image. This word image is then subjected to Feature Extraction process. In the Matching stage,
the features of the rendered input word image is matched with all the features of the word images
that were extracted during the load process. We use the Dynamic Time Warping (DTW) [13] based
matching technique to match the input word image with every other word image in the PDF file.
Partial matching [9] is accommodated so that word form variations are also searched and taken care
of. The resultant matches are restricted according to a threshold and the matched word images are
grouped according to their page numbers. The display is also in reverse video, with appropriate
conversion from the image coordinate space to the display coordinate space. The load process is
initiated every time a user opens a new PDF file or updates the PDF document. This search is
integrated within the text search (refer Figure 4.8), so that the search result is transparent to the
user irrespective of whether the search result was from a Text stream or Image stream.

4.3.8 Open Source Implementation and Indian Language Support

We integrated our algorithm into an opensource PDF reader (Xpdf) [41]. Implementation integrates
the textual and image (graphics) search in a transparent manner. Xpdf is designed to be small
and efficient. The Xpdf source code implementation clearly separates out the front-end (User
Interface) from its core which is the back-end. This independence of the User Interface from the
core is of major advantage to users who are interested to extract text and images from a PDF
file without having to view it. The User Interface has been developed using Motif, an X Windows
based user interface builder in Linux, while the core implementations concerning the PDF file has
been implemented using C++. All the above operations are achieved using Xpdf by appropriately
adding and modifying code snippets into the Xpdf source code. The textual search operations are
handled well within the Xpdf code, while our module of word image search is integrated within the
text search module of the Xpdf source code. Integration process is explained in Figure 4.8. Indian
language scripts have complex layout. That is why OCR for Indian languages do not claim of high
accuracies similar to Latin scripts. Indian language content is often stored as images (graphics) in
the PDF files. To search we need an input mechanism which can be compatible with the Roman
script. To enter an Indian language text as UNICODE, ISCII or font is a cumbersome process.
The alphabet set for Indian languages are typically high when compared to English. The presence
of Samyuktakshar (compounded letter) in Indian languages makes the rendering process of the
word images all the more difficult. It is very difficult to enter a search string for Indian languages
following a specific font encoding for that particular language. This makes it contingent for the
user to be well-versed with font encoding for every Indian language. This process is not intuitive
and ITRANS [42] fits in as a perfect workaround. ITRANS is a transliteration scheme wherein the
user enters the text in Roman such that the scheme is common across Indian languages. ITRANS
text is then converted to UNICODE, and compatible fonts are used to render word images for the
UNICODE text. Though there have been attempts for Indian language keyboard layout, known as
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Figure 4.10: Screenshots of Find Dialog Box in Xpdf. User can Enter the Query Word in Roman
(ITRANS), View the Script and See the Results in Reverse Video.

INSCRIPT, its support at the operating system level is not satisfactory. One also needs mapping
information to convert the ITRANS text to a specific language UNICODE. Word image rendering
is handled by an image rendering routine, which takes a font-encoded text, its font name, its size,
and its color as input and then renders the word image.

Figure 4.10 shows the Find dialog box in Xpdf, which has been modified to show Indian language
content depending on the language chosen (e.g.,: Hindi or Telugu). The user chooses the ITRANS
check box in the Find dialog in order to search Indian language content. As the user keeps typing
in the search Text Box, the corresponding text in the chosen Indian language (Hindi in the above
example) will appear. As can be seen from Figure 4.10, the example shows the search word ”amitaa”
that was queried. Figure 4.11 (a) shows the results highlighted in the reverse video. One has to
take note of the fact that the content displayed in the PDF is a document image, but not a textual
(ASCII) content. The modified Xpdf code also contains facility to search in Telugu document
images (Figure 4.11 (b)) other than Hindi. All that the user has to do is to select the Telugu check
box in order to search Telugu PDF files. The converters have been written from ITRANS to a
specific font. The same interface is used to search both inline text and word images. Essentially
all the available and existing functionalities of Xpdf are preserved.

4.3.9 Discussions

Here we have demonstrated a word spotting based PDF search for document word images using
an existing open source PDF viewer, Xpdf. We have effectively handled the issues arising out of
Indian languages and have supported all the functionalities well within the existing source code of
Xpdf and have demonstrated it for PDF files containing Hindi and Telugu document images. This
solution can help the readers of Digital library by giving access to the textual content stored in
the graphics stream. For other Indian languages, appropriate fonts and converter maps have to be
added appropriately.
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Figure 4.11: Screenshots of Word Image Search results in Xpdf in Hindi and Telugu PDF Files.
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Chapter 5

Conclusions

5.1 Summary and Conclusions

We have presented techniques for document annotation and retrieval. Our contributions are in
building over a proof-of-concept approach in building scalable search systems and addressing Indian
language issues involved in the entire process.

We proposed and demonstrated a search system for retrieval of relevant documents from large
collection of document images. Our search is accomplished by matching word images without
explicit recognition. This method of search will be important in using large digitized manuscript
data sets in Indian languages. Our system is capable of searching across languages for retrieving
relevant documents from multilingual document image database. Also, our retrieval mechanism for
online handwriting can handle different writing styles and variations.

We proposed a model based framework for annotation of non-cursive online handwritten data
when a parallel text corpus is present for the data. The approach employs a handwriting synthesis
scheme that generates the handwritten equivalent of the transcription. An elastic matching is used
to propagate the annotation from the synthesized words to the original handwritten words.

In lieu with our work for printed documents, we extended our work to online handwriting doc-
uments and proposed a writer-independent recognition-free approach for retrieval of handwritten
data in Indian language scripts. The proposed approach uses handwriting synthesis to do matching
in the ink domain as opposed to the use of a recognizer. The synthesis model that learns the
handwriting of a writer from the trained samples produces natural looking words. The framework
also incorporates information retrieval measures such as TF/IDF to rank retrieved documents and
also supports multilingual queries, which is especially useful for Indian languages. The system for
retrieval of relevant documents from large document image collections is developed by adapting an
existing search engine.

5.2 Future Scope

This work opens up many interesting problems in document understanding in the Indian language
context.

• The Model-based framework for annotation of online handwriting data can be extended for
printed documents, taking care of font variations in order to create huge ground truth data
for the OCRs.
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• One direction is to Model the handwritten data as a mixture distribution, which will be able
to incorporate more writing variations within the data of a single user.

• Another interesting direction that can be pursued is the study of the stroke shape variations
when it is in the proximity of other strokes or when the position of the stroke in the word
changes.

• Many other opensource image/PDF viewer applications can extend this word image search
without explicit recognition.
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Appendix A

Fonts and Indian Language Specific
Details

A.1 Fonts

What is a Font?

A font is a complete set of characters in a particular size and style of type. This includes the letter
set, the number set, and all of the special character and diacritical marks you get by pressing the
shift, option, or command/control keys.

Types of Fonts?

There are essentially two types of fonts.

• BITMAP FONTS: Also known as RASTER fonts. These typically contain a bitmap (image)
for every character.

• OUTLINE FONTS: Also known as TRUE TYPE FONTS and the OPEN TYPE FONTS.

The advantage of using a Vector font (Outline Font) is enlisted below.

• Vector fonts implemented Vector Graphics, i.e. it has information on line segments and curves
that have to be rendered.

• This gives a better scaling and small file size.

• Unlike Bitmap fonts , no image is stored, instead points are stored.

Difference between TTF and OTF?

TTF and OTF both are reffered to as TrueType fonts, with OTF also referred to as OpenType
fonts. OTF are 16 bit fonts with extra space to accomodate more glyphs and have hidden hints for
rendering certains set of glyphs.

8-bit and 16-bit fonts

TTF are generally 8-bit fonts while OTF are 16-bit fonts. Note that both of them have the same
file extension (.ttf).
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Type I and Type II fonts

Type I and Type II are fonts are specifically used by PDF generating applications. Their strucutre
is little different from the TTF fonts and have different mechanism for rendering.

Unicode fonts ?

Most of the 16-bit fonts (OTF) are Unicode fonts. These fonts typically render fonts for Unicode
(UTF8) range to which it belongs to. For example the Unicode font Raghindi (raghu.ttf) renders
Hindi glyphs for Hindi (Devanagiri) Unicode range.

CDAC Fonts (ISFOC fonts)

CDAC Fonts, also popularly known as ISFOC (Indian Standard Font Coding), was an attempt to
standardize Indian language fonts. They are TrueType (8 bit) fonts.

Installing Fonts

One of the easiest way to install fonts in Linux (Redhat 9 and above) is to create a directory ”.fonts”
in a user’s home directory (typically /home/USER/.fonts) and copy all the TrueType font (*.ttf)
files to that directory. This will make the fonts available only to the USER. In order to make the
fonts available for use to all the users in that machine, do the following below

• Login as ”root”

• cd /usr/X11R6/lib/X11/fonts/ (or /usr/share/fonts)

• One can create a directory inside the fonts directory so as to group all the related fonts. For
example create a directory called ”indic” (mkdir indic) and then copy all the *.ttf files into
indic directory.

• open the ”XF86Config” file (usually in /etc/X11/) and the following line in the FontPath.
FontPath “/usr/X11R6/lib/X11/fonts/indic” (or add /usr/share/fonts)

• Next, in order to make use of the OpenType font you have, load the ”freetype” module at
startup. You can achieve this by adding the following line in the Module section of XF86Config
file. Load ”freetype”

• Type mkfontdir in the /usr/X11R6/lib/X11/fonts/indic directory and then type xset fp re-
hash

• Typically one might have to restart the X for the effects to take place.

In case you want to place your new Indic fonts in some other directory, you must use xset to add
the new FontPath. Please see the xset man-page for further assistance. You can check the new
installed fonts by running the xlsfonts command. In case you don’t see any Indic fonts using this
command, you may need to restart X.
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How do I see Unicode fonts (UTF-8) in a Linux console

The user need to install LOCALE in order to view Indian language content in a Linux console.
(http://www.cse.iitk.ac.in/users/isciig/downloads/downloads.html#locales) LOCALE support Uni-
code (UTF8). The user after the font instalaltion, has to set the envirnoment variables, typically
the LANG variable. The default would like this LANG=en US.UTF-8

For Hindi, the user has to set, LANG=hi IN.UTF-8. From now on the ”console” would display it
in Hindi. This can be repeated for other Indian langugaes in a similar manner.

How to do it in Windows ?

Most of the Windows XP operating systems come with pre-installed Indian Language fonts (Unicode
fonts). Optionally one might download fonts and would have to copy them into the c:
windows
fonts directory.

Fonts for Latex

Using TTF in latex so as to use fonts for Indian Languages
(Reference link: http://www.radamir.com/tex/ttf-tex.htm)

• Create a temporary directory (say, mkdir tmp) and copy the TTF file (say times.ttf) into it

• and Encoding file, T1-WGL4.enc there. (This file is availble in most of the Linux instalations
typically)

• Creating TeX Font Metrics (tfm)

• Please download the ttf2tfm converter, as this utility will be used to convert the ttf files to
tfm

• ttf2tfm times.ttf -q -T T1-WGL4.enc -v ectimes.vpl rectimes.tfm >> ttfonts.map

• This will create a tfm files of raw fonts and vpl files of virtual fonts. To generate slanted
versions of regular and bold font, command should be extended like this: ttf2tfm times.ttf -q
-T T1-WGL4.enc -s .167 -v ectimeso.vpl rectimeso.tfm ¿¿ ttfonts.map

• Creating Virtual Fonts (vf)

• vptovf ectimes.vpl ectimes.vf ectimes.tfm

• This creates vf and tfm files for virtual fonts. After that you can delete vpl files: rm *.vpl

• Locate the texmf directory (/usr/share/texmf/) and move all vf files to /usr/share/texmf/fonts/vf/times/.
, and nd all tfm files to /usr/share/texmf/fonts/tfm/times/ (create times directory if it doesn’t
exist at both the places). The times directory is not mandatory, you can leave them in their
parent directories.

• Now open the ttfonts.map in /usr/share/texmf/ttf2tfm/ and copy all the contents into it
from the ttfonts.map that was created in the tmp directory.

• This is sufficient for generating DVI file, but to view or print it, there should be a raster (pk)
font.
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• Latex will attempt to generate it automatically with new utility: ttf2pk. For successful
generation ttf2pk should find both TrueType font and encoding file. It happens that ttf2pk
can find ttf files, if they are installed and are in a system fonts directory, and it looks for
encoding files in a directory /usr/share/texmf/pdftex (among others). Therefore you have to
copy T1-WGL4.enc to /usr/share/texmf/pdftex.

• Testing the installation in TeX

• tex testfont

• It will ask about a font to test. Enter ”ectimes”. It will ask about a command. Enter ”
table
eject
init”. After all fonts are tested, enter a command ”
bye”. This will create a file testfont.dvi in current directory.

• dvips testfont.dvi

• Using new fonts in TeX

• {\font\myfont=ectimes

\font\mybigfont=ectimes at 36pt

\myfont Hello, I am being typeset in Times New Roman

\mybigfont Me too...}

Unicode in latex

Unicode can be used in latex by using a Unicode complaint font, and being subjected to the above
process.

A.2 Encoding

What is encoding?

A set of characters (letters, logograms, digits, punctuation, symbols, control characters, and so on)
that have been mapped to numeric values (called code points) that can be used by computers. The
code points are assigned to the characters in the character set by applying an encoding method.
Some examples of encodings are wlatin1, wcyrillic, and shift-jis. Below is a summary of the complete
rendering process from a character to a glyph.

• Character is an entity used in a data exchange

• Glyph is a particular shape of a character

• Character set, ordered set of characters

• Font, ordered collection of glyphs

• Encoding, ordered collection
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Different Types of Encoding

• ASCII - 7 bit

• ISO-8859-1(Extended Ascii) - 8 bit (Western Characters). Latin-1,2,3,..

• ISCII- 8 bit - Indian Script code for Information interchange

• EBCDIC - IBM (before ASCII)

• UNICODE - 16 bit (now up to 21 bits)

• UCS -32 bit (Universal Character set)

What is a character set?

These above encoding schemes are also referred to as Character set.

Unicode font for all Unicode values

Arial MS Unicode is one huge font that typically covers almost all the sripts in the Unicode range,
and is single font that can display all the glyphs within the range of Unicode.

UTF-8?

Below is the UTF-8 sequence for the Unicode ranges given. The one represented by ”x” are to be
filled by the bits of the UNICODE value.

0x00000000 - 0x0000007F: 0xxxxxxx

0x00000080 - 0x000007FF: 110xxxxx 10xxxxxx

0x00000800 - 0x0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx

0x00010000 - 0x001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

0x00200000 - 0x03FFFFFF: 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

0x04000000 - 0x7FFFFFFF: 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

The Unicode character copyright sign character

0xA9 = 1010 1001 is encoded in UTF-8 as: 11000010 10101001 = 0xC2 0xA9

”not equal” symbol character
0x2260 = 0010 0010 0110 0000
11100010 10001001 10100000 = 0xE2 0x89 0xA0
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ISCII ?

INDIAN SCRIPT CODE FOR INFORMATION INTERCHANGE - ISCII. This Indian Standard
was adopted by the Bureau of Indian Standards fter the draft finalied by the Computer Media Sec-
tional Committee has been approved by the Electronics and Telecommunication Division Council.
This standard conforms to IS 10401:1982, ”8-bit coded character set for information interchange”
(equivalent to ISO 4873). It is intended for use in all computer and communication media which
allow usage of 7 or 8 bit-character set - code extension techniques”. In an 8-bit environment, the
lower 128 characters are the same as defined in IS 10315:1982 (ISO 646 IRV) ”7-bit coded character
set for information interchange” also known as ASCII character set. The top 128 characters cater
to all the 10 Indian scripts based on the ancient Brahmi script. In a 7-bit environment the control
code SI can be used for invocation of the ISCII code set, and control code SO can be used for
reselection of the ASCII code set. There are 15 officially recognized languages in India: Hindi,
Marathi, Sanskrit, Punjabi, Gujarati, Oriya, Bengali, Assamese, Telugu, Kannada, Malayalam,
Tamil, Urdu, Sindhi and Kashmiri. Out of these, Urdu, Sindhi and Kashmiri are primarily written
in Perso-Aabic scripts, but get written in Devanagari too (Singhi is also written in the Gujarati
script). Apart from Perso-Arabic scripts, all the othe 10 scripts used for Indian languages have
evolved from the ancient Brahmi script and have a common phonetic structure, making a common
character set possible. The Northern scripts are Devanagari, Punjabi, Gujarati, Oriya, Bengali
and Assamese, while the Southern script are Telugu, Kannada, Malayalam and Tamil. The official
language of India, Hindi is written in the Devanagari script. Devanagari is also used for writing
Marathi and Sanskrit. It is also the official script of Nepal. As Perso-Arabic scripts have a different
alphabet, a different standard is envisaged for them. An attribute mechanism has been provided
for selection of different Indian script font and display attributes. An Extension mechanism allows
use of more characters along with the ISCII code. These are only meant for the environment where
no other alternative selection mechanism is available. The ISCII code table is a super-set of all
the characters required in the ten Brahmi-based Indian scripts. For convenience, the alphabet of
the official script Devanagari (with diacritic marks for non-Devanagari alphabets) ha been used in
the standard. For notational simplicity, elsewhere, the term Indian scripts implies Brahmi-based
Indian scripts. Figure A.1 shows an ISCII chart for Devanagiri script.

Unicode

Unicode provides a unique number for every character, no matter what the platform, no matter
what the program, no matter what the language. Table A.1 shows the unicode ranges for Indic
Scripts.

A.3 INSCRIPT - Keyboards Layouts

Figure A.2 shows Inscript keyboard layout for Devanagiri (Hindi). Similarly keyboard layouts for
other Indian scripts can be designed. Figure A.3 and Figure A.4 are for Telugu and Malayalam
respectively.

A.4 Transliteration

Figure A.5 showd the transliteration table for ITRANS for Hindi. The same Roman notation can
be extended to other Indian languages. Figure A.6 displays the vowels in some Indian languages
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Figure A.1: ISCII chart for Devanagiri.

and Figure A.7 displays some consonants in some Indian languages for ITRANS transliterations
scheme.

A.5 Font Converters

Font converters play an important role, especially when there are so many vendor-specific fonts
available for Indian languages. Since there has been no specific or standard scheme which these
vendors adhere to, Indian language text is available in plenty but in a non-standard form. Also
there is a lot of Indian language content available in either ISCII and other encoding which are
not viewable. In order to view this content one needs to convert ISCII to a font encoding. Also its
intutive to type in english and deriable to view the Indian langauge content in a font encoding. This
also requires a converter and we have developed custom font converters from ISCII and ITRANS
encodings to CDAC-fonts such as Hemalatha (Telugu), Yogesh (Hindi) and Karthika (Malayalam).

This is a laborious activity as it involves mapping of every possible Akshara to a font glyph
or group of font glyphs. The presence of Samyuktakshara (compound characters) also makes this
mapping even more combersome, as typically these Samyuktaksharas run into several thousands
and there are no general rules to map them in the font domain. Figure A.8 is a typical example of
a font conveter from ITRANS to Unicode (Unicode compliant font for Devanagiri).
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Script Unicode Range Major Languages

Devanagari U+0900 to U+097F Hindi,Marathi,Sanskrit

Bengali U+0980 to U+09FF Bengali,Assamese

Gurumukhi U+0A00 to U+0A7F Punjabi

Gujarati U+0A80 to U+0AFF Gujarati

Oriya U+0B00 to U+0B7F Oriya

Tamil U+0B80 to U+0BFF Tamil

Telugu U+0C00 to U+0C7F Telugu

Kannada U+0C80 to U+0CFF Kannada

Malayalam U+0D00 to U+0D7F Malayalam

Table A.1: Indic Scripts in Unicode

Figure A.2: INSCRIPT keyboard layout for Devanagiri.

A.6 Existing text editing tools

Some of the exisiting text editors that support Unicode are Yudit and Gedit in Linux, while for
Windows XP MS word and Wordpad have in built support.

A.7 Browsers

Mozilla, Opera, Firefox all typically support Unicode. Mozilla and firefox have rendering issues for
Unicode for Indian languages. When integrated with pango engine (a font rendering engine), the
rendering issues are solved, though this adds additional burden on the CPU. On the other hand,
Internet Explorer (IE) has the best support for Unicode in Windows XP.

A.8 Font based Image Libraries

Imagemagick is a standard library that is used for many Image related operations, such as read,
write, and other image editing operations. It can also be used for rendering text images, given a
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Figure A.3: INSCRIPT keyboard layout for Telugu.

Figure A.4: INSCRIPT keyboard layout for Malayalam.

font-encoded text and its font file to a specific size and thickness. QT can also be used for many
Image related operations using the QImage and QPixmap class.
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Figure A.5: ITRANS Encoding Table.
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Figure A.6: ITRANS Encoding Table for vowels for some Indian languages.
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Figure A.7: ITRANS Encoding Table for vowels for some Indian languages.
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Figure A.8: Converter map file from ITRANS to Unicode Devanagiri.
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Appendix B

Details of the PDF format

B.1 The PDF format

Origins of the PDF [39] dates back as early as the nineties, and at that time PostScript [40] page
description language was the widely accepted standard for printing purposes.

PDF was built on top of the PostScript, so that not only it supported printing but also supported
viewing capability. Today, PDF is the de facto standard for electronic exchange of documents,
and also an industry standard for intermediate representation of printed material. The goal for
developing PDF is to enable users exchange and view electronic documents easily and reliably,
independently of the environment in which they were created.

PDF document is a collection of objects. These objects can be located in a PDF file in any
arbitrary order, but are connected with each other by a reference mechanism. Therefore, a viewer
applications should process a PDF file by following references from object to object, instead of
processing object sequentially. Hence, every PDF file contains a cross-reference table, stored at
the end of the file. Cross-reference makes sure that a PDF file containing very large number of
documents can be accessed efficiently with almost no time constraints.

In addition, PDF also includes objects, such as annotation and hypertext links, and can also con-
tain interactive form fields which all are useful for interactive viewing and document interchange.
These annotations are useful for storing applications specific content. PDF serves purpose for fun-
damentally two kinds of applications, the Producer (PDF generator) and Consumer (PDF reader).
Today you will find many open-source PDF viewers (Consumer applications) available, and XPDF
is one among the many popular PDF viewers in the open-source community. PDF file is a sequence
of 8-bit bytes. It is advised to create PDF file as a binary one instead of text, to avoid end-of-line
and other custom conventions that are operating system dependent.

Interestingly, PDF allows modifications to be appended to a file. This makes sure that, any new
changes to the current PDF need not require the whole document to be reprocessed or saved again,
saving us valuable time. This is a useful feature, if your PDF file typically runs into thousands of
pages, and to add or modify a particular page shouldn’t warrant for the whole PDF to be saved
from the first page to the last page. So essentially the time consumed is more or less the time one
spends on editing or modifying the PDF document. Below shows a very basic example of a PDF
file.

%PDF-1.5

% âaÏÓ

%EOF
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PDF file contains binary data, and it is recommended that the header line be immediately
followed by comment line containing at least four binary characters (ASCII code greater than 127)
so as to ensure proper behaviour of file transfer applications that inspect the data in the near
beginning of a file to determine whether to treat the file’s content as text or binary as shown in the
second line of the above example. Comments in a PDF file starts with %, while comments other
than the two (PDF-1.5 and EOF) in the above example have no semantics.

B.2 PDF Syntax

Content Stream
File Structure

Objects

Document

Structure

Figure B.1: Components of PDF.

Figure B.1 shows the various components that make up a PDF file.

Objects

A PDF document is a data structure essentially made of Objects. PDF implicitly has a close
resemblance to a programming language paradigm, though not in entirety as PostScript. PDF
supports eight boolean objects; Boolean values, Integer and real numbers, Strings, Names, Arrays,
Dictionaries, Streams and the Null Object. Objects may be labeled so that they can be referred by
other objects. A labeled object is called an indirect object. This gives the object a unique identifier
by which other objects refer to it. The definition of an Object in a PDF file consists of its object
number and generation number, followed by the values of the object itself within braces between
the keywords obj and endobj.

12 0 obj

(IIIT Hyderabad)

endobj

Here the object number is 12, with generation number 0 with value ”IIIT Hyderabad”. This
Object can be referred to from elsewhere from the file as shown below.

12 0 R
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File Structure

Header

Body

Cross−reference Table

Trailer

Figure B.2: Structure of PDF.

Figure B.2 shows the PDF file structure. A PDF file consists of the following:

• A one-line header identifying the version of the PDF specification to which the file conforms

• A body containing objects that make up the PDF

• A Cross-reference table containing references to indirect object

• A trailer giving the location of the cross-reference table and certain other special objects
within the body of the while

Cross-reference table Cross-reference table contains information that permits random access
to indirect objects within the file, so that entire file need not be read to locate any particular
object. The table contains a one line entry for each indirect object, specifying the location of that
object within the body of the file. The cross-reference table is the only part of a PDF file with a
fixed format. The table contains one or more cross reference sections that begin with the keyword
xref. Following it are one or more cross-reference subsections which may appear in any order. This
subsection is useful for incremental updates. So for a file that has never been updated, the cross-
reference section contains only one subsection whose object numbering begins at 0. The subsection
begins with a line containing two numbers separated by a space. Example,

29 3

which means that it is a subsection that contains three objects, numbered consecutively from
29 to 31. Following this line is the cross-reference entries themselves, one per line and exactly 20
bytes long that includes the end-of-line marker.

Example:
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nnnnnnnnnn ggggg n eol

where,

nnnnnnnnnn is a 10-digit byte offset
ggggg is a 5-digit generation number
n is a literal keyword identifying this as an in-use entry
eol is a 2-character end-of-line sequence

The cross-reference entry for a free object has the keyword f instead of n.
nnnnnnnnnn ggggg f eol

The byte offset is a 10-digit number, padded with leading zeros if necessary, giving the number
of bytes from the beginning of the file to the beginning of the object.

Example:

xref

0 6

0000000003 65535 f

0000000017 00000 n

0000000081 00000 n

0000000000 00007 f

0000000331 00000 n

0000000409 00000 n

The above example shows an example of a single subsection with six entries starting from 0.
Four of them are in use (objects number 1,2,4,and 5) and two of them are free (objects number 0
and 3). Object number 3 has been deleted, and the next object created with that object number
will be given a generation number of 7.

The below example shows a cross-reference section with four subsections,containing a total of
five entries. The first subsection contains one entry, for object number 0, which is free. The second
subsection contains one entry,for object number 3, which is in use. The third subsection contains
two entries,for objects number 23 and 24, both of which are in use. Object number 23 has been
reused, as can be seen from the fact that it has a generation number of 2. The fourth subsection
contains one entry, for object number 30, which is in use.

xref

0 1

0000000000 65535 f

3 1

0000025325 00000 n

23 2

0000025518 00002 n

0000025635 00000 n

30 1

0000025777 00000 n
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Trailer Trailer section quickly enables a PDF to locate the cross-reference table and certain spe-
cial objects.

trailer

$$<<$$ key1 value1

key2 value2

...

keyn valuen

$$>>$$

startxref

{Byte\_offset\_of\_last\_cross-reference\_section}

%%EOF

Here the startxref keyword is preceded by the trailer dictionary consisting of the keyword trailer
followed by a series of key-value pairs enclosed within << and >>. The line just before the EOF
marker, has the byte offset of the last cross-reference section from the beginning of the file until
the xref keyword of the last cross-reference section.

Incremental Updates The contents of the PDF can be updated incrementally, without rewriting
the entire file. Changes are appended to the end of file leaving its original content intact. The main
advantage being that the contents of large file can be updated quickly.

Every time there are new objects added or changes, a cross-reference section is added, and trailer
is inserted. Deleted objects are left unchanged in the file, but are marked as free via their cross-
reference entries. The added trailer contains all the entries from the previous trailer, as well as a
Prev entry giving the location of the previous cross-reference section. Also note that each trailer
is terminated by its own end-of-file (%%EOF) marker.

That is why, applications must read a PDF file from the end.

Document Structure

A PDF document can be regarded as a hierarchy of objects contained in the body section of a PDF
file. At the root of the hierarchy is the document’s catalog dictionary. Most of the objects in the
hierarchy are dictionaries. For example, each page of the document is represented by a page object,
a dictionary that includes references to the page’s contents. The individual page objects are tied
together in a structure called Page Tree.

Page Tree

The pages of a document are accessed through a structure known as the page tree, which defines
their ordering within the document. The tree structure allows PDF viewer applications to quickly
open a document containing thousands of pages using only limited memory. The tree contains
nodes of two types–intermediate nodes, called page tree nodes, and leaf nodes, called page objects.

Page Objects

The leaves of a page tree are page objects - each of which is dictionary specifying the attributes of
a single page of a document.
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Entries in a page object Type is Page for a Page Object. Page Tree Node is its immediate
Parent. MediaBox is of type Rectangle, defining the boundaries of the physical medium on which
the page is intended to be displayed or printed , while CropBox is also of the type Rectangle,
wherein the contents of a page are clipped to this rectangle useful for output medium for use in
some implementation defined manner.

Thumb is of the type stream and used to display the thumbnail image for a page. Dur is of the
type number and is used as duration time in seconds in presentations, where a particular page will
displayed, while ”Trans” is used for transition effects and PZ is the page’s preferred zoom.

Content Streams

They are the primary means of describing the appearance of pages and graphical objects. A content
stream depends on information contained in an associated resource dictionary; in combination, these
two objects form a self-contained entity. This section describes these objects.

A content stream is a PDF stream object whose data consists of a sequence of instructions
describing the graphical elements to be painted on a page.The instructions are represented in the
form of PDF objects,using the same object syntax as in the rest of the PDF document. However,
whereas the document as a whole is a static, random-access data structure, the objects in the
content stream are intended to be interpreted and acted upon sequentially.

Each page of a document is represented by one or more content streams. Content streams are
also used to package up sequences of instructions as self-contained graphical elements, such as
forms, patterns, certain fonts, and annotation appearances A content stream, after decoding with
any specified filters,is interpreted according to the PDF syntax rules. It consists of PDF objects
denoting operands and operators.

The operands needed by an operator precede it in the stream. An operand is a direct object
belonging to any of the basic PDF data types except a stream. Dictionaries are permitted as
operands only by certain specific operators. Indirect objects and object references are not permitted
at all.

An operator is a PDF keyword that specifies some action to be performed, such as painting a
graphical shape on the page. An operator keyword is distinguished from a name object by the
absence of an initial slash character (/).Operators are meaningful only inside a content stream.

Operand and Operators

Operand is a direct PDF data type (except streams , Object references and indirect objects)
Operator specifies some action to be performed, such as painting a graphical element onto the

page. Operators assume role within a content stream.

B.3 Graphics

Graphic state operators includes a Current Transformation Matrix (CTM), which maps a user
space coordinates used within a PDF content stream into output device coordinates.

Path Construction and Painting

Paths define shapes, trajectories, and regions of all sorts. They are used to draw lines, define the
shapes of filled areas,and specify boundaries for clipping other graphics. The graphics state includes
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a current clipping path that defines the clip- ping boundary for the current page. At the beginning
of each page, the clipping path is initialized to include the entire page.

A path is composed of straight and curved line segments, which may connect to one another or
may be disconnected. A pair of segments are said to connect only if they are defined consecutively,
with the second segment starting where the first one ends. Thus the order in which the segments
of a path are defined is significant. A path is made up of one or more disconnected subpaths, each
comprising a sequence of connected segments. The topology of the path is unrestricted, i.e. it may
be concave or convex,may contain multiple subpaths representing disjoint areas, and may intersect
itself in arbitrary ways. There is an operator, h, that explicitly connects the end of a subpath back
to its starting point;such a subpath is said to be closed. A subpath that has not been explicitly
closed is open.

This also includes Path construction and painting operators.

1. Path construction operators define the geometry of a path.A path is constructed by sequen-
tially applying one or more of these operators.

2. Path-painting operators end a path object, usually causing the object to be painted on the
current page in any of a variety of ways.

3. Clipping path operators,invoked immediately prior to a path painting operator, cause the
path object also to be used for clipping of subsequent graphics objects.

In content stream, the operands and operators are written sequentially in postfix notation.

Coordinate system

This defines the canvas on which all the painting occurs. Coordinate space encompasses

1. Location of Origin

2. The Orientation of X and Y axes

3. The length of the units along each axis

If the coordinates in a PDF file were specified in a device space, the file would be device dependent
and would be rendered differently on different environments. User Space is a device independent
space. Here the length of unit along both the X and Y axes in 1/72 inch. (also a point, term widely
used in printing industry).

1. The transformation from user space to device space is defined by Current Transformation
Matrix (CTM). The coordinates of text are specified in text space and the transformation is
through a text matrix (text positioning operators)

2. Character glyphs in a font are defined by the glyph space. Glyph space to text space conversion
is defined by font matrix.

3. All sampled images are defined by image space. Transformation from image space to user
space is predefined and cannot by changed.

4. Similarly we have, Form space for XObject and form matrix for form space to user space
conversion, and Pattern Space for patterns
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Graphics state

An internal data structure that hold the current graphics state or graphics controlled parameters.
The graphics state is initialized at the beginning of each, using default values of graphic state
parameters that are device independent. A well-structured PDF document typically contains many
graphical elements that are essentially independent of each other and sometimes nested to multiple
levels. The graphics state stack allows these elements to make local changes to the graphics state
without disturbing the graphics state of the surrounding environment.

The q operator pushes the copy of the entire graphics state onto the stack while the Q operator
restores the entire the graphics state to its former value by popping it from the stack.

Images

PDF’s painting operators include general facilities for dealing with sampled images, which is a two
dimensional array for values representing the color information. In PDF, images can be specified
by an XObject or as an inline image (generally for very small images).

To paint an image, four interrelated items must be specified:

1. the format of image - number of coloumns, number rows and number color components per
sample.

2. the sample data constituting the image

3. user space and image internal coordinate space.

4. Color component mapping

All these are specified by an image XObject or an inline image. Sample data, is represented
by a stream of bytes, interpreted as 8-bit unsigned integers in the range 0-255. Image Coordinate
system is known as the image space. Here Coordinate origin (0,0) is at the upper left corner. The
below example shows an XObject based declaration.

/Type /XObject

/Subtype /Image

/Width

/Height

Inline Images are for small images (typically 4KB or less). It is delimited in the content stream
by operators BI (begin image), ID (image data), and EI (end image). Below example shows an
inline declaration.

BI

/W 17

/H 17

/CS /RGB

ID

EI
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B.4 Text

A Glyph is a graphical shape and is subject to all graphical manipulations. (eg Coordinate Trans-
forms)

How Glyphs from Fonts are painted on the page ?

A Character is an abstract symbol, while glyph is a specific graphical rendering of a character.
Glyphs are organized into fonts. Fonts define a glyphs for a particular character set; like Helvetica
and Times for the Latin Character set.

The below example illustrates the most straightforward use of a font. It places the text ABC 10
inches from the bottom of the page and 4 inches from the left edge,using 12-point Helvetica.

BT

/F13 12 Tf

288 720 Td

(ABC)Tj

ET

BT means, Begin a Text Object. Tf operator specifies the name of a font resource (identified by
F13). Here 12 is the font size. Td operator adjusts the current text position. Tj operator takes a
string operand and paints the corresponding glyphs using the current font and other text related
parameters present in the graphics state. ET meaning, End the Text Object.

/Resources

$$<<$$/Font $$<<$$/F13 23 0 R $$>>$$

$$>>$$

23 0 obj

$$<<$$/Type /Font

/Subtype /Type1

/BaseFont /Helvetica

$$>>$$

endobj

The above is a sample Font Resource which specifies Font related parameters.
Default colour is black, but other color specific operator can be used for font colors and other

graphic effects.
Tr is for rendering mode that outlines whether the glyph boundaries are to be filled, stroked or

other such effects.

Glyph Positioning and Metrics

A glyph’s width, is the amount of space it occupies along baseline of a line of text that is written
horizontally. In some fonts, the width is constant, i.e all glyphs have the same width, and these
are called fixed-pitch or monospaced. Fonts having variable glyph width are known as proportional
or variable-pitch fonts. The Tj operator positions the consecutive glyphs according to the width
operator (or the widths of the glyphs)
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Transformation from a Glyph space to a text space is specified by a Font Matrix. The Glyph
displacement is the distance from the glyph’s origin to the point at which the origin of the next
glyph should normally be placed when painting consecutive glyphs.

Writing mode instructs whether the text has to be written in a Horizontal(mode 0) or Vertical
manner. Spacing adjustments between glyphs based on context.

Text State Parameters, such as

1. Tc is used for character spacing,

2. Tw Word Spacing

3. Th Horizontal scaling

4. Tmode Text rendering mode

5. Tf text font

6. Tfs text font size

Text Rise (Trise) parameters are useful for superscript and subscript text placement.
Text Space is the coordinate system, in which the text is shown, defined by the Text Matrix

Tm and text state parameters Tfs, Tf and Trise that together determine the transformation from
text space to user space. Text Positioning operators include Td, Tm and Text Showing operator
includes Tj.

Multiple bytes can represent a single character. The Code and lengths and mappings from code
to glyphs are defined in a data structure called CMap. Type 0 are called Composite fonts, and
others are called simple fonts.

Composite fonts are consists of multiple bytes, that refer to a set of glyphs of a single character.

B.5 PDF and PostScript Language

1. Unlike PostScript, PDF is not a full-scalable programming language

2. Difference

(a) Contains Font information for viewing facility

(b) PDF enforces a strictly defined file structure that can be accessed in arbitrary order

(c) Can contain additional information such hyperlinks etc. for interactive viewing

3. Though the conversion is not direct into PS format, but can be achievable.
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Appendix C

Details of UNIPEN and UPX

C.1 Unipen Representation

Below shows a sample Unipen file. The stroke (ink) information is stored between in .PEN DOWN
and .PEN UP.

.VERSION 0.6

.DATA_SOURCE ATT

.DATA_ID SAMPLE

.COMMENT ###################

### INFORMATION ###

###################

.DATA_CONTACT

Name: Dept 11359 - Adaptive Systems Research

Affiliation: AT&T Bell Laboratories

Address: 101 Crawfords Corner Rd

Holmdel, NJ, 07733 , USA

Phone: 1 (908) 949-2783 (secty.)

Fax: 1 (908) 949-7722

Tech Contacts: Don Henderson 908-949-4591

Isabelle Guyon 415-442-5937

.DATA_INFO

Alphabet: Latin, uppercase, lowercase, punct

Lexicon: The text from "Alice In Wonderland"

Quantity: very small sample

Quality: ?

Distribution: Given by .LEXICAL_FREQ

Number of writer(s): 1

Writing style: Natural - no constraints....

Segmentation: Words written in boxes in

upper area of form. Last line on

the form is a unseg’d sentence.

.SETUP

Site: AT&T Bell Laboratories

Holmdel cafeteria, New Jersey, USA

Time:
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Conditions: Supervised recording conditions

People sitting at a desk

Writers: Volunteer staff members

Form layout: 1 form containing 1 segmented

word area (1-12 words) and a second

area having a sentence made up of these

words.

.PAD

Machine name: WACOM HD-648A LCD Digitizer &

386 PC

Display: Backlit LCD

Matrix 640 x 480 points

VGA standard, black on white, monochrome

Sensor: Electromagnetic resonance sensor

Pen: Untethered pen, tip switch and

side button

Driver: PC driver developed in house..

.COMMENT ###################

### DATA LAYOUT ###

###################

.X_DIM 4160

.Y_DIM 3200

.H_LINE 450 1900 2300

.COMMENT ###################

### UNIT SYSTEM ###

###################

.X_POINTS_PER_INCH 508

.Y_POINTS_PER_INCH 508

.POINTS_PER_SECOND 200

.COMMENT ####################

### DECLARATIONS ###

####################

.COORD XY

.HIERARCHY PAGE TEXT_CHUNK WORD

=============== End file ATT.DOC ===================

=============== File ATT.DAT =======================

.COMMENT Most of the point have been

removed to shorten the

example.

.INCLUDE ATT.DOC

.DATE 9 20 93

.WRITER_ID 08171408_14804

.STYLE MIXED

.START_BOX

.SEGMENT PAGE 0-58

.SEGMENT TEXT_CHUNK 0-29 ?

"that nothing more happened ,"
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.SEGMENT WORD 0-6 ? "that"

.PEN_DOWN

707 2417

707 2424

590 2319

.PEN_UP

.DT 151

.PEN_DOWN

588 2377

586 2377

695 2393

.PEN_UP

.DT 231

.PEN_DOWN

772 2456

771 2456

745 2343

.PEN_UP

.DT 231

.PEN_DOW

827 2384

826 2384

827 2340

.PEN_UP

.DT 201

.PEN_DOWN

818 2362

819 2362

871 2361

.PEN_UP

.DT 231

.PEN_DOWN

929 2411

929 2411

902 2340

.PEN_UP

.DT 151

.PEN_DOWN

882 2370

882 2370

995 2384

.PEN_UP

.SEGMENT WORD 7-15 ? "nothing"

.PEN_DOWN

1778 2366

1778 2366

1778 2366

.PEN_UP
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(a) (b)

Figure C.1: (a) The document root element (hwDataset) and its sub-elements (b) datasetInfo
element capturing metadata about the dataset

C.2 UPX Representation

Our representation for annotated datasets of handwriting is called hwDataset, and it includes several
elements for detailed annotation of handwriting, which extend the basic traceRefGroup element of
the core InkML. The hwDataset element is the root of the XML document and captures meta-data
about the dataset under datasetInfo, various definitions as part of datasetDefs, and hierarchical
annotation of handwritten data under hwData (Fig C.1(a)). These elements are described briefly
in the following paragraphs.

DatasetInfo: The datasetInfo element (Fig C.1(b)) captures metadata related to the dataset
as a whole. It contains the following elements: (a) name - name for referring to the dataset (b)
category - type of dataset (c) version - version number and/or datestamp of publication (d) contact
- contact info for dataset-related queries (e) source - source of collected data (f) setup - physical
conditions in which data was collected (g) dataInfo - information about the data

The dataInfo element in turn contains the following sub-elements: (a) script - language/script
captured in dataset (b) quality - quality of handwritten data captured in dataset (c) truth - truth of
what is captured (d) methodology - design of data and collection procedure (e) annotationScheme
- description of annotation scheme

datasetDefs The datasetDefs element (Fig C.3(a)) captures information about different writers
and sources of labels (annotation) represented in the dataset, and provides the means for referring
to them later in the document. It contains the following elements:

• writerDefs - declarations of writers as a sequence of writer elements

• labelSrcDefs - declarations of sources of annotation as a sequence of labelSrc elements

The writer element in turn contains the following elements: (a)date - date when writing occurred
(meant as a coarse description as opposed to the trace timestamps in the core InkML) (b) personal-

107



(a) (b)

Figure C.2: (a) hwData element capturing annotation (b) Annotation hierarchy

(a) (b)

Figure C.3: (a) datasetDefs Element capturing dataset definitions (b) label element with alternates

personal information including (c) hand - left/right handedness (d) gender - gender (e)age - age
at the time of capture (f) skill - level of skill with script (g) style - predominant writing style (h)
region - native region

The labelSrcDefs element contains the following elements: (a) name - name of the human or
automated source of labels (b) source - organization that this label source represents (c) time - date
and time of annotation (d) contact - contact details of label source (e) labelTypes is an attribute
and describes the categories of labels generated by the source (e.g. truth, quality, script, style, etc)
and their character encoding (e.g. Unicode).

The above elements provide a mechanism for representing the writing of different writers in the
same dataset, as well as multiple sources and categories of annotation for the same handwritten
data. An algorithm for script identification might be used as a source of script labels, while a
human annotator may provide labels for truth as well as script, style and quality of writing. Of
course, the representation can also accommodate multiple label sources for the same category of
label information, e.g. one or more recognition engines for truth labels and a human annotator for
their validation.

hwData The hwData element allows hierarchical organization of annotation. It typically contains
the root of the annotation hierarchy defined by the user, denoted by the element H1 (Fig C.2(a)).
Each level of hierarchy H(i) contains a label element that captures annotation information at that
level. H(i) also contains either one or more H(i + 1) elements or hwTraces, the leaf element of the
hierarchy that refers to raw ink traces represented using InkML (Fig C.2 (b)).

The H(n) elements are meant to be used to indicate the hierarchical structure of handwriting, and
assigned meaningful names such as PARAGRAPH and WORD using the corresponding attributes
of the hwData element.

The label element (Fig C.3(b)) at each level can be used to capture alternative choices of label
with confidence values if any, and the time of annotation. Although primarily intended to describe
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the truth value of a particular set of ink traces, it may also be used for describing other character-
istics such as writing style, quality and script. The timestamp can be used to generate the history
of annotation spanning different label sources of a particular unit of writing. The alternates can
be used to facilitate the process of manual validation by prompting options for human validation.

Formally, the attributes of label are (a) id - identification of label (b) labelSrcRef - reference
to label source defined earlier. This holds good for sub-levels of the current level except where
explicitly overridden (c) category - category of label (e.g. truth, quality, script, style, etc) (d)
timestamp - time when the act of annotation is performed.

A sample UPX file

<hwDataset schemaVersion="0.5">

<datasetInfo id="ID0" datasetId="1">

<name>Thanigai</name>

<category>Skilled</category>

<version pubDate="2006-01-21">1.0</version>

<contact>HP Bangalaore</contact>

<source>HP Bangalaore</source>

<setup>JNU Data</setup>

<dataInfo>

<contentDesc>Hindi Word</contentDesc>

<numWriters>1</numWriters>

</dataInfo>

</datasetInfo>

<datasetDefs>

<writerDefs id="ID1">

<writer id="ID2">

<personal>

<hand>r</hand>

<educationLevel>high school</educationLevel>

<gender>m</gender>

<profession>Student</profession>

<region>Bangalore</region>

<dateofBirth>1977-08-05</dateofBirth>

</personal>

<skillDevice>average</skillDevice>

<skillScript script="Hindi" native="false">

<style>discrete</style>

<usageFreq>everyday</usageFreq>

<proficiency>average</proficiency>

</skillScript>

</writer>

</writerDefs>

<labelSrcDefs id="ID3">

<labelSrc id="ID4" type="human">

<name>Balu</name>
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<source>HP Bangalaore</source>

<contact>IIIT</contact>

<desc>Hindi Word level data</desc>

<labelTypes>

<labelType encoding="unicode">truth</labelType>

</labelTypes>

</labelSrc>

</labelSrcDefs>

<annotationDefs id="ID5">

<annotationScheme id="ID6">

<annotationLevel rank="1" name="WORD">WORD definition </annotationLevel>

<annotationLevel rank="2" name="CHARACTER">CHARACTER definition </annotationLevel>

</annotationScheme>

</annotationDefs>

</datasetDefs>

<hwData id="0" annotationSchemeRef="/descendant::annotationScheme[attribute::id=ID6]">

<H1 id="ID7" writerRef="/descendant::writer[attribute::id=ID2]">

<label id="ID8" labelSrcRef="/descendant::labelSrc[attribute::id=ID4]"

labelType="truth" timestamp="2006-04-13T11:03:52.0Z">

<alternate rank="1" score="100">abhyaas</alternate>

</label>

<H2 id="ID9" writerRef="/descendant::writer[attribute::id=ID2]">

<label id="ID10" labelSrcRef="/descendant::labelSrc[attribute::id=ID4]"

labelType="truth" timestamp="2006-04-13T11:03:58.0Z">

<alternate rank="1" score="100">a</alternate>

</label>

<hwTraces>

<traceref>/descendant::trace[attribute::id=ID0]</traceref>

<traceref>/descendant::trace[attribute::id=ID1]</traceref>

<traceref>/descendant::trace[attribute::id=ID2]</traceref>

<traceref>/descendant::trace[attribute::id=ID3]</traceref>

</hwTraces>

</H2>

<H2 id="ID11" writerRef="/descendant::writer[attribute::id=ID2]">

<label id="ID12" labelSrcRef="/descendant::labelSrc[attribute::id=ID4]"

labelType="truth" timestamp="2006-04-13T11:04:00.0Z">

<alternate rank="1" score="100">bh</alternate>

</label>

<hwTraces>

<traceref>/descendant::trace[attribute::id=ID4]</traceref>

</hwTraces>

</H2>

<H2 id="ID13" writerRef="/descendant::writer[attribute::id=ID2]">

<label id="ID14" labelSrcRef="/descendant::labelSrc[attribute::id=ID4]"

labelType="truth" timestamp="2006-04-13T11:04:02.0Z">

<alternate rank="1" score="100">ya</alternate>
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</label>

<hwTraces>

<traceref>/descendant::trace[attribute::id=ID5]</traceref>

<traceref>/descendant::trace[attribute::id=ID6]</traceref>

<traceref>/descendant::trace[attribute::id=ID7]</traceref>

</hwTraces>

</H2>

<H2 id="ID15" writerRef="/descendant::writer[attribute::id=ID2]">

<label id="ID16" labelSrcRef="/descendant::labelSrc[attribute::id=ID4]"

labelType="truth" timestamp="2006-04-13T11:04:04.0Z">

<alternate rank="1" score="100">sa</alternate>

</label>

<hwTraces>

<traceref>/descendant::trace[attribute::id=ID8]</traceref>

<traceref>/descendant::trace[attribute::id=ID9]</traceref>

</hwTraces>

</H2>

<H2 id="ID17" writerRef="/descendant::writer[attribute::id=ID2]">

<label id="ID18" labelSrcRef="/descendant::labelSrc[attribute::id=ID4]"

labelType="truth" timestamp="2006-04-13T11:04:07.0Z">

<alternate rank="1" score="100">---</alternate>

</label>

<hwTraces>

<traceref>/descendant::trace[attribute::id=ID10]</traceref>

</hwTraces>

</H2>

</H1>

<uiInfo yDim="0" xDim="0" yOrigin="Text" xOrigin="Text">

<hLines>0</hLines>

<vLines>0</vLines>

</uiInfo>

</hwData>

</hwDataset>

Sample InkML file

<ink>

<traceFormat id="ID00">

<regularChannels>

<channel name="X" type="decimal" />

<channel name="Y" type="decimal" />

<channel name="T" type="decimal" />

</regularChannels>

</traceFormat>

<captureDevice id="ID01" manufacturer="" model="pad" sampleRate="sampleRate" uniform="" latency="">
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<channelList id="ID02">

<channelDef id="ID03">

</channelDef>

</channelList>

</captureDevice>

<trace id="ID1">

783 707 0

783 707 0

783 707 0

689 1199 0

658 1187 0

637 1178 0

</trace>

<trace id="ID2">

1023 1044 0

1026 1044 0

1038 1040 0

1059 1037 0

1092 1034 0

1132 1028 0

</trace>

<trace id="ID3">

1402 748 0

1399 741 0

1390 1047 0

1393 1084 0

1393 1118 0

</trace>

</ink>

Figure C.4 displays the Hindi word ”abhyaas” in the tool for the above UPX files. The Hindi
word present in the UPX files is ”abhyaas”, annotated in ITRANS and displayed in Unicode as
shown in Figure C.4.
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Figure C.4: Toolkit displaying the Hindi word abhyaas
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Appendix D

Greenstone, an Open Source Search
Engine

D.1 Greensotne

Greenstone is a suite of software for building and distributing digital library collections. It provides
a new way of organizing information and publishing it on the Internet or on CD-ROM. Greenstone is
produced by the New Zealand Digital Library Project at the University of Waikato, and developed
and distributed in cooperation with UNESCO and the Human Info NGO. It is open-source software,
available from http://greenstone.org under the terms of the GNU General Public License.

D.2 Overview of Greenstone

Greenstone is a comprehensive system for constructing and presenting collections of thousands or
millions of documents, including text, images, audio and video.

Collections

A typical digital library built with Greenstone will contain many collections, individually organized
though they bear a strong family resemblance. Easily maintained, collections can be augmented and
rebuilt automatically. There are several ways to find information in most Greenstone collections.
For example, you can search for particular words that appear in the text, or within a section of a
document. You can browse documents by title: just click on a book to read it. You can browse
documents by subject. Subjects are represented by bookshelves: just click on a bookshelf to look
at the books. Where appropriate, documents come complete with a table of contents: you can
click on a chapter or subsection to open it, expand the full table of contents, or expand the full
document into your browser window (useful for printing). The New Zealand Digital Library website
(nzdl.org) provides numerous example collections.

On the front page of each collection is a statement of its purpose and coverage, and an explanation
of how the collection is organized. Most collections can be accessed by both searching and browsing.
When searching, the Greenstone software looks through the entire text of all documents in the
collection (this is called full-text search). In most collections the user can choose between indexes
built from different parts of the documents. Some collections have an index of full documents, an
index of paragraphs, and an index of titles, each of which can be searched for particular words or
phrases. Using these you can find all documents that contain a particular set of words (the words
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may be scattered far and wide throughout the document), or all paragraphs that contain the set
of words (which must all appear in the same paragraph), or all documents whose titles contain the
words (the words must all appear in the document’s title). There might be other indexes, perhaps
an index of sections, and an index of section headings. Browsing involves lists that the user can
examine: lists of authors, lists of titles, lists of dates, hierarchical classification structures, and so
on. Different collections offer different browsing facilities.

Finding information

Greenstone constructs full-text indexes from the document text that is, indexes that enable search-
ing on any words in the full text of the document. Indexes can be searched for particular words,
combinations of words, or phrases, and results are ordered according to how relevant they are to
the query. In most collections, descriptive data such as author, title, date, keywords, and so on,
is associated with each document. This information is called metadata. Many document collec-
tions also contain full-text indexes of certain kinds of metadata. For example, many collections
have a searchable index of document titles. Users can browse interactively around lists, and hier-
archical structures, that are generated from the metadata that is associated with each document
in the collection. Metadata forms the raw material for browsing. It must be provided explicitly
or be derivable automatically from the documents themselves. Different collections offer different
searching and browsing facilities. Indexes for both searching and browsing are constructed during
a ”building” process, according to information in a collection configuration file.

Greenstone creates all index structures automatically from the documents and suppporting files:
nothing is done manually. If new documents in the same format become available, they can be
merged into the collection automatically. Indeed, for many collections this is done by processes that
awake regularly, scout for new material, and rebuild the indexes all without manual intervention.

Document formats

Source documents come in a variety of formats, and are converted into a standard XML form
for indexing by plugins. Plugins distributed with Greenstone process plain text, HTML, WORD
and PDF documents, and Usenet and E-mail messages. New ones can be written for different
document types (to do this you need to study the Greenstone Digital Library Developer’s Guide).
To build browsing structures from metadata, an analogous scheme of classifiers is used. These
create browsing indexes of various kinds: scrollable lists, alphabetic selectors, dates, and arbitrary
hierarchies. Again, Greenstone programmers can create new browsing structures.

Multimedia and multilingual documents

Collections can contain text, pictures, audio and video. Non-textual material is either linked into
the textual documents or accompanied by textual descriptions (such as figure captions) to allow full-
text searching and browsing. Unicode, which is a standard scheme for representing the character
sets used in the world’s languages, is used throughout Greenstone. This allows any language to
be processed and displayed in a consistent manner. Collections have been built containing Arabic,
Chinese, English, French, Mori and Spanish. Multilingual collections embody automatic language
recognition, and the interface is available in all the above languages (and more).
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Distributing Greenstone

Collections are accessed over the Internet or published, in precisely the same form, on a self-
installing Windows CD-ROM. Compression is used to compact the text and indexes. A Corba
protocol supports distributed collections and graphical query interfaces. The New Zealand Digital
Library (nzdl.org) provides many example collections, including historical documents, humanitarian
and development information, technical reports and bibliographies, literary works, and magazines.
Being open source, Greenstone is readily extensible, and benefits from the inclusion of GNU-
licensed modules for full-text retrieval, database management, and text extraction from proprietary
document formats. Only through international cooperative efforts will digital library software
become sufficiently comprehensive to meet the world’s needs with the richness and flexibility that
users deserve.

D.3 Understanding the collection-building process

End users of Greenstone can build collections using the Collector. This makes it very easy to build
collections modelled after existing ones but with new content. However, it is not really feasible
to use the Collector to create collections with completely new structures. It does invite you to
edit the collection configuration file, which governs the collection’s structure, but you need to
know quite a lot about Greenstone to make radical yet effective changes. This section tells you
what you need to know to do this. It also describes the Greenstone directory structure and the
format in which documents are stored internally. We assume throughout this manual that you have
installed Greenstone on your computer, be it Windows or Unix. If you have not yet done this you
should consult the Greenstone Digital Library Installer’s Guide. The name GSDLHOME is used
throughout to refer to the Greenstone home directory, which is called $GSDLHOME on Unix ones.
You set this directory during the installation procedure.

Building collections from the command line

the commands typed to produced the bhgita collection (a BhagvadGita collection) are:

cd ~/gsdl # assuming default Greenstone in home directory

source setup.bash # if you’re running the BASH shell

source setup.csh # if you’re running the C shell

mkcol.pl creator balu@students.iiit.net dlpeople

cd $GSDLHOME/collect/bhgita

mount /cdrom # assuming this is where CD-ROM is mapped to

cp -r /cdrom/collect/bhgita/* import/

umount /cdrom

import.pl bhgita

buildcol.pl bhgita

rm -r index/*

mv building/* index

Configuration file

creator balu@students.iiit.net

maintainer balu@students.iiit.net
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public true

beta true

indexes document:text

defaultindex document:text

plugin ZIPPlug

plugin GAPlug

plugin TEXTPlug

plugin HTMLPlug

plugin EMAILPlug

plugin ArcPlug

plugin RecPlug

classify AZList -metadata "Title"

collectionmeta collectionname "dlpeople"

collectionmeta iconcollection ""

collectionmeta collectionextra ""

collectionmeta .document:text "documents"

A sample meta file

<?xml version="1.0" ?>

<!DOCTYPE GreenstoneArchive SYSTEM

"http://greenstone.org/dtd/GreenstoneArchive/1.0/GreenstoneArchive.dtd">

<Section>

<Description>

<Metadata name="gsdlsourcefilename">ec158e.txt</Metadata>

<Metadata name="Title">Freshwater Resources in Arid Lands</Metadata>

<Metadata name="Identifier">HASH0158f56086efffe592636058</Metadata>

<Metadata name="gsdlassocfile">cover.jpg:image/jpeg:</Metadata>

<Metadata name="gsdlassocfile">p07a.png:image/png:</Metadata>

</Description>

<Section>

<Description>

<Metadata name="Title">Preface</Metadata>

</Description>

<Content>

This is the text of the preface

</Content>

</Section>

<Section>

<Description>

<Metadata name="Title">First and only chapter</Metadata>

</Description>

<Section>

<Description>

<Metadata name="Title">Part 1</Metadata>

</Description>

<Content>
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This is the first part of the first and only chapter

</Content>

</Section>

<Section>

<Description>

<Metadata name="Title">Part 2</Metadata>

</Description>

<Content>

This is the second part of the first and only chapter

</Content>

</Section>

</Section>

</Section>
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Appendix E

Word Spotting and Searching

E.1 Overview of Word Spotting

Text has always been the primary source of information in conventional, and more recently digital
libraries. If the text is in machine readable form (ASCII), it can be indexed using standard text
retrieval engines. However, much of the text in both historical and even current collections is
contained in paper documents. One solution is to use Optical Character Recognition (OCR) to
convert scanned paper documents into ASCII. Existing OCR technology works well with standard
machine printed fonts. It works poorly if the documents are of poor quality or if the text is
handwritten. Indexing and Searching such documents thus becomes difficult. Word Spotting idea
provides an alternative approach. Word Spotting was first applied in the context of indexing
handwriting data [47] and it is analogous to the word spotting in the speech processing. Word
spotting is a content-based information retrieval task to find relevant words within a repository
of scanned document images. The retrieval of matching words finds applications in several areas
like forensics, historical documents, personal records, etc. In these applications it is of interest to
retrieve words from a large database of documents based on the visual and the textual content.

The word spotting technique involves the segmentation of each document into its corresponding
lines and then into words. Each document is indexed by the visual image features of its words.
Below outlines the a word spotting procedure.

1. A scanned greylevel image of the document is obtained.

2. The graylevel image is then binarized by thresholding the image.

3. The binary image is then segmented into words.

4. A given word image (i.e. the image of a word) is used as a template, and matched against all
the other word images. This is repeated for every word in the document.

5. Matching is done against the features extracted from the word images.

E.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is used to compute a distance between two time series. A time
series is a list of samples taken from a signal, ordered by the time the respective samples were
obtained. A naive approach to calculating a matching distance between two time series could be to
resample one of them and then compare the series sample-by-sample. The drawback of this method
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is that it does not produce intuitive results, as it compares samples that might not correspond well
(Figure E.1 (a)). Dynamic Time Warping solves this discrepancy between intuition and calculated
matching distance by recovering optimal alignments between sample points in the two time series.
The alignment is optimal in the sense that it minimizes a cumulative distance measure consisting of
”local” distances between aligned samples. Figure E.1 (b) shows such an alignment. The procedure
is called Time Warping because it warps the time axes of the two time series in such a way that
corresponding samples appear at the same location on a common time axis. DTW has been widely
used in speech processing, bio-informatics, and also in the online handwriting communities to match
the 1D signal.

(a) (b)

Figure E.1: Alignment of two time series using (a) linear stretching and (b) Dynamic Time Warping.

The DTW-distance between two time series x1,x2,. . . ,xM and y1,y2,. . . ,yN is D (M,N), which
is calculated using dynamic programming is given by:

D(i, j) = min







D(i − 1, j − 1)
D(i, j − 1)
D(i − 1, j)

+ d(xi, yj)

where, d (i, j) is the cost in matching the ith element of X with jth element of Y and is computed
using a weighted Euclidean distance. Using the given three values D(i, j − 1), D(i − 1, j) and
D(i − 1, j − 1) in the calculation of D(i, j) realizes a local continuity constraint, which ensures no
samples left out in time warping. Backtracking along the minimum cost index pairs (i, j) starting
from (M, N) yields the DTW warping path. We use the Sakoe-Chiba band constraint [90] to ensure
this path stays close to the diagonal of the matrix which contains the D(i, j).

A worked out example

Let us consider the problem of comparing two strings. For example, how do we compare ”exercise”
and ”exirsais”? First of all, they are not the same. They might sound similar, but we are talking
about how they are written.

As can be seen, Figure E.2 shows the DTW path for the words exercise and exirsais. The local
dsitance here is a simple string comaprision operator, i.e., whenever there is a character level match,
the edit ditance (d (i, j)) will be zero, and if there is no match the distance is given a value a one.
Similarly for word images, the feature values are compared using Eucledian edit distance.

Below we sumamrize some of the characterisitics of the DTW:

• Dynamic time warping (DTW) has been suggested as a technique to allow more robust
distance calculations, however it is computationally expensive.

• Dynamic time warping (DTW) is the favoured technique for non-linear time alignment.

• DTW uses dynamic programming to find the optimal alignment of two sequences of data of
different lengths.
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Figure E.2: A DTW example for the words exercise and exirsais.

• The DTW algorithm used at the word level allows us to handle spurious or missing strokes
in a word.

• It also allows us to do partial matching of words.

• DTW can also handle variations, such as the font-style for a word image.

E.3 Word Image Matching

Representation of Word Images

Building an appropriate description is critical to the robustness of the system against signal noise.
Generic content-based image retrieval systems use colour, shape or/and texture features for char-
acterising the content. In the case of document images, features can be more specific to the domain
as they contain image-description of the textual content in it. We find that many of the popular
structural features work well for good quality documents. Word images, particularly from newspa-
pers and old books, are of extremely poor quality. Common problems in such document database
will have to be analysed before identifying the relevant features.

Popular artifacts in printed document images include (a) Excessive dusty noise, (b) Large ink-
blobs joining disjoint characters or components, (c) Vertical cuts due to folding of the paper, (d)
Cuts in arbitrary direction due to paper quality or foreign material, (e) Degradation of printed
text due to the poor quality of paper and ink, (f) Floating ink from facing pages. An effective
representation of the word images will have to take care of these artifacts for successful indexing
and retrieval.
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We found that three categories of features are effective to address these artifacts. The features
could be a sequential representation of the word shape or a structural representation of the word
image.

Word Profiles: Profiles of the word provide a coarse way of representing a word image for match-
ing. Upper word, lower word, projection, density and ink-to-background transition profiles
are used here for word representation. Upper and lower word profiles capture part of the
outlining shape of a word, while projection and transition profiles capture the distribution of
ink along one of the two dimensions in a word image.

Structural Features: Structural features of the words are used to match two words based on
image similarities. Features employed in image processing literature for shape recognition
are adopted for this. Normalised moments, such as first-order moments (M00, M01), central
moment (CM01), and statistical moments (mean, standard deviaition, skew) are employed in
this work for describing the structure of the word. For artifacts like pepper and salt noise,
structural features are found to be very robust.

Transformed Domain Representations: A compact representation of a series of observations
(such as profiles) is based on Fourier Transform. Fewer set of coefficients are enough to
represent a word robustly in a transformed domain, and these coefficients are matched at
a coarse level for recognition. We used five predominant Fourier coefficients for the word
representation.

E.4 Matching and Grouping of Words

For proper search, we need to identify the similar words, group them and evaluate the relative
importance of each of these words and word clusters. For the indexing process, we identify the
similar word set by clustering them into different groups based on similarities between words.
Distance or dissimilarity between words are computed using the features discussed in the previous
section. For this, we use a simple Euclidean distance.

In this paper, we find the similarity of words based on two components:

• A sequence alignment score computed using a Dynamic Time Warping (DTW) procedure.

• Structural similarity of word images by comparing the shapes.

The use of the total cost of Dynamic Time Warping as a distance measure is helpful to cluster
together word images that are related to their root word by partial match as explained in the next
section.

Dynamic Time Warping is a dynamic programming based procedure [11] to align two sequences
of signals. This can also provide a similarity measure. This is a popular technique in speech analysis
and recognition.

Let the word images (say their profiles) are represented as a sequence of vectors F = F1,F2, . . .FM

and G = G1,G2, . . . ,GN. The DTW-cost between these two sequences is D(M,N), which is cal-
culated using dynamic programming is given by:

D(i, j) = min







D(i − 1, j − 1)
D(i, j − 1)
D(i − 1, j)

+ d(i, j)
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where, d(i, j) is the cost in aligning the ith element of F with jth element of G and is computed
using a simple squared Euclidean distance:

d(i, j) =
N

∑

k=1

(F (i, k) − G(j, k))2

Using the given three values D(i, j−1),D(i−1, j) and D(i−1, j−1) in the calculation of D(i, j)
realizes a local continuity constraint, which ensures no samples left out in time warping. As shown
with red line in Figure 4.2 we also imposed global constraint using Sakoe - Chiba band [90] so as to
ensure the maximum steepness or flatness of the DTW path. Score for matching the two sequences
F and G is considered as D(M,N), where M and N are the lengths of the two sequences.

E.5 Information Retrieval (IR) from Word Image Collection

Addressing Word Form Variations: The simple matching procedure described above may be
efficient for spotting or matching a selected word-image. However the indexing process for a good
search engine is more involved than the simple word-level matching. A word, with similar meanings,
usually appears in various forms. This requires a method to conflate such different morphological
variants of a word to a common stem/root [91]. Stemming controls word variations such that words
with the same underlying stem are grouped together. In the text domain, variation of word forms
may obey the language rules. Text search engines use this information while indexing. However
for text-image indexing process, this information is not directly usable.

For instance, for a query “direct”, the matching scores of the words “directed” and “redirected”
are only the matching of the six characters, ’d-i-r-e-c-t’, of both words. Once an optimal sub-path
is identified, a normalized cost corresponding to this segment is considered as the matching score
for the pair of words. With this we find that a large set of words get grouped into one cluster. We
expect to extend this for more general variations of words.

The optimal warping path is generated by backtracking the DTW minimal score in the matching
space. As shown in Figure E.3, extracted features (using upper word profile) of the two words
’direct’ and ’redirected’ are aligned using DTW algorithm. It is observed that features of these
words are matched in such a way that elements of ’re’ at the beginning as well as ’ed’ at the end
of the word ‘redirected’ get matched with characters ’d’ and ’t’ of the word “direct”.

This additional cost is identified and removed while backtracking. It can be observed that for
word variants the DTW path deviates from the diagonal line in the horizontal or vertical direction
from the beginning or end of the path, which results in an increase in the matching cost. In
the example Figure E.3, the path deviates from the diagonal line at the two extreme ends. This
happened during matching the two words, that is, the root word (direct) and its variant (redirected).
Profiles of the extra characters (’re’ and ’ed’) have minimal contribution to the matching score and
hence subtracted from the total matching cost so as to compute the net cost. Such word form
variations are very popular in most languages.

Detection of relevant words for indexing a page is very important for effective retrieval. Many
interesting measures are proposed for this [35, 91]. We propose a measure in the same direction to
do the similar job at image level.

Detection of Stop Words: Once similar words are clustered, we analyse the clusters for their
relevance. Inverse document frequency is computed as a measure of the uniformity of the presence
of similar words across the documents. If a word is common in all the documents, this word is less
meaningful to characterize any of the document and hence considered as a stop word. Flagging such
words from the list of word representations can have a significant impact on the search process [91].
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Figure E.3: Plot Demonstrating Matching of Two Words ’direct’ and ’redirected’ using Dynamic
Time Warping and the Optimal Matching Path. Similar Word Form Variations are Present in
Indian Languages.

Word Frequencies for Retrieval: Given a query, a word image is generated and the cluster
(group of similar word images) in which this word will fall is identified. In each cluster, documents
with highest occurrence of similar words are ranked offline using term frequency/inverse document
frequency (TFIDF) weights defined at image level. Thus, TFIDF is applied for weighting the
frequency of occurrence of a word in a document by the number of total documents containing
that word in the collection and search results are displayed in descending order of TFIDF scores
consequently.

Weight of the jth term (cluster) in the ith document is computed as

Wij = fij · (log2 N − logd dj)

where fij is the frequency of the jth term (cluster representative) in ith document. N is the total
number of documents in the collection and dj is the number of documents containing the jth term.
The TF/IDF weights computed shows the relevance of the documents to a given query.
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