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Abstract

Computer Vision is the process of obtaining information about a scene by processing the
images of the scene. This reverse process can be mathematically formulated in terms of
various unknown variables. Given the images, these variables will satisfy some constraints.
For example the variables could be the intensity values at each pixel location in an image and
the constraint being that these values have to lie between 0 and 255. An objective function
can be formed in terms of variable and constraints. This function has the property that a set
of variables which will minimize this function i.e. the global minima of this function, will
be the desired solution. Often in Computer Vision, the number of possible solutions is large
due to which the objective function has a number of local minima. The exhaustive search
for global minima becomes computationally intensive. This thus becomes a Combinatorial
Optimization problem in vision. Recently, a number of techniques based on Minimum Cut
on Graphs have been proposed which are fast and efficeint. They lead to a polynomial time
approximately global minima. The solutions obtained using these techniques on benchmark
problems have performed better than optimization techniques developed earlier. This has led
to renewed interest in the field of Optimization in computer vision in recent times. For a
vision problem, obtaining a global minima using efficient optimization methods is not enough
if it does not correspond to the desired solution. The formulation of an accurate objective
function is also an important aspect.

In this thesis, we have first proposed new objective functions for problems in Imaging and
Depth estimation from images and then formulated them as optimization problems. The two
main problems of imaging which have been addressed are Omnifocus Imaging and Background
Subtraction. Omnifocus imaging is important as it helps to generate an image which has a
large depth of field which means that everything being imaged is in focus. This is critical
to many high level vision problems like object recognition which require better quality sharp
images. The input to this problem is a set of images which are focussed at different depths.
These images are called as multifocus images and are captured from a Non-Frontal Imaging
Camera (NICAM). A new calibration technique for calibrating this camera is also proposed.
This helps in registration of input images from NICAM. A Focus measure in omnifocus
imaging finds the best focussed image from the set of multifocus input images. We have
proposed a new Generative focus measure in this thesis.

The removal of Background from images is another imaging technique where the unwanted
regions in the image are removed. We have proposed a new objective function for background
removal for the machine vision problem of monitoring Intermodal Freight trains. The ob-
jective function is optimized using Graph Cuts based optimization. We have also developed
another techniques based on finding Edges in an image and Gaussian Mixture Modeling for
background removal in such videos.

In Depth estimation, the thesis has proposed range estimation from images generated from
a NICAM in an optimization framework. The constraint used in this framework is that the
nearby points in the three dimensional world have got the same depth. Thus the proposed
optimization framework allows for accurate and smooth depth estimation in real world scenes.
We show results on real data sets.
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Chapter 1

Introduction

1.1 Introduction

Since long, it has been our goal to develop machines which could see and perceive the
environment around them just as we do. For a human, fastest and easiest way of perceiving
the environment is through eyes. A human eye captures the light energy getting reflected
from various objects in the scene and builds an inverted image of the scene. This image is
then processed by the human brain and various information about the scene is generated.
The intuitive way to achieve this goal for the machines is to follow the viewing pipeline
similar to our eyes. This pipeline can be briefly divided into two steps: the first step is
capturing an image of a scene and the second step is the processing of this image to infer
the details of the scene.

The first task for capturing the light energy of a scene was first achieved by the development
of a Pinhole camera. In a pinhole camera, the light was allowed to pass through a small
hole onto a photographic sensor where an inverted image of the scene was formed. But
since the images captured by a Pinhole camera were darker and noisy they could not be
used for processing to extract useful information. This led to the use of a lens in a Pinhole
camera and the use of charged couple devices (CCD) as image sensor. This was called a
photographic camera. Since the advent of first cameras based on lenses, a lot of advancement
has been made in the field of such cameras. They have become more cheaper and also of
higher resolution. Along with single images, a camera can be used to capture a series of
images of a scene thus generating a video of an event. Thus image and video acquisition
have become an easy task.

The second task of developing algorithms which process the image and video as the human
brain does to infer the three dimensional world is more difficult and complicated. The pro-
cessing of an image/video to obtain relevant features and then analyzing them has led to the
formation of three important fields namely Computer Vision, Image Processing and Machine
Learning. A task in Image processing involves developing methods to obtain relevant image
features from a given image e.g. finding edges in an image, making the image more bright
etc., but it is the field of Computer Vision whose goal is to develop algorithms that do the
important task of mapping this information to infer the three dimensional world just like our
brain does. Thus, Image Processing and Computer Vision based Algorithms for processing
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of images and videos is critical to understanding the three - dimensional scene. This thesis
concentrates on this task and proposes some new algorithms for processing the images and
inferring the corresponding scene.

The images and videos of a scene are composed of tiny graphic elements called as pixels.
The number of pixels are usually large in number. Thus the machines that apply Computer
Vision algorithms for processing images and videos require high computational power. The
requirement of high computational power can be solved in the following two ways. The
first method is to increase the computational power of the machines used for running vision
algorithms, which means increasing the clock cycles of the processor and challenging the
hardware limits. Although this approach leads to faster computation but then they also
require higher end machines which in turn increases the cost of using the Vision algorithms.
Another approach is to make the algorithms more efficient so that they give similar results
as before but use lesser computation power and are fast. This would make them more ap-
plicable to being applied to real world scenarios as well. This has resulted in an increased
use of Optimization based framework as they lead to accurate and fast solutions for solv-
ing Computer Vision problems. Optimization based techniques are common in the field of
Mathematics and Physics since long. But recently they have gained a lot of popularity in
the Computer Vision community owing to their power of providing fast solutions in lesser
number of computations. An optimization technique requires the formulation of an objective
or error function for the vision problem at hand. The global minima of this function gives
us the optimal solution.

In this thesis first, we have proposed new algorithms for processing of images and estimat-
ing various information about the three dimensional world. Second, these new algorithms
have been formulated in an optimization framework so that they are fast and applicable to
real world problems. Our contributions in this thesis are explained in the next section.

1.2 Contributions

(a) (b)

Figure 1.1: (a) A schematic diagram of a Non-Frontal Imaging Camera (See Chapter 3 for
details). (b) Consecutive image frames of an Intermodal Train. (See Chapter 5 for details)
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In this thesis we have proposed new objective functions for imaging and depth estimation
which are optimized using Graph Cuts technique [1]. In particular, we address the following:

• First, we propose an optimization based technique for calibrating a panning camera to
obtain the tilt of the sensor plane and the stage on which the camera is kept. These
values are then used for accurate registration of images genrated from a NICAM [2]
(See Figure 1.1(a) for a schematic diagram of this camera). These registred images are
used as input images for omnifocus imaging which is proposed in a MAP (Maximum
a Posteriori) - MRF (Markov Random Field) framework. This objective function for
omnifocus imaging when regularized using a smoothness prior leads to the formation
of an energy minimization function. This energy function can be minimized using very
fast algorithms of minimum cut on graphs. We also propose a new objective function
which is derived from a Generative Focus Measure.

• Second, we propose a Graph Cuts based discrete optimization technique for background
removal for a particular application of InterModal (IM) train videos (See Figure 1.1(b)
for sample frames from a IM train video). We formulate a novel objective function for
background subtraction and analyze it on train videos. To compare the performance of
the proposed algorithm, we propose another method which combines Gaussian Mixture
Modeling of background and Edge Based techniques for accurate background removal.
The background removed video is used for inferring various information about the train
e.g. its velocity, dimension of the loads, distance between the gaps between the loads
of the train.

• Lastly, in order to obtain depth of a 3D scene, we propose a MAP-MRF based op-
timization framework for depth from focus images. Such a framework allows us to
impose a smoothness constraint on the obtained depth estimates. This leads to sharp
boundaries at depth edges. A graph cut based optimization techniques makes the
depth estimation fast and accurate.

1.3 Organization

The main focus of the thesis is to propose new algorithms in optimization based framework for
efficient imaging and depth estimation. In order to achieve this goal, we have proposed new
energy minimization functions which model the problem more accurately. The application of
graph cuts for optimization leads to fast convergence to a near global minima. In Section 1.1,
we give an introduction to the problem at hand. Section 1.2 briefly explains the contribution
of the thesis. The remainder of the thesis is organized as follows:

• In Chapter 2, we give an overview of Discrete Optimization in Computer Vision. A
number of concepts relating to the formulation of an energy function and its justifica-
tion in a Bayesian framework is explained. An introduction to graph based minimiza-
tion for energy functions is given. In the end we give an example of the vision problem
of Depth from Stereo in a discrete optimization framework.
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• In Chapter 3, we give an overview of image acquisition in Computer Vision using
various cameras. We discuss the limitations of such images. To overcome these lim-
iations, a new camera called Non-Frontal Imaging Camera (NICAM) was developed.
This camera can be used to generate an Omnifocus image i.e. an image where all the
objects in the scene are imaged with foucs. We give a background about the geometry
of this camera. Next we give a literature survey on Omnifocus imaging and various
Depth/Shape estimation techniques using different image cues. We discuss the prior
work done on Depth from Focus/Defocus cue in detail. In the end we discuss the
various techniques for Background Subtraction in videos.

• In Chapter 4, we first propose a new non-linear technique for Calibration of panning
cameras. We use this tehcnique to calibrate NICAM. Then we propose omnifocus
imaging in a discrete optimization framework. For omnifocus imaging we then propose
and explain a Generative Focus Measure. At last, we show results and evaluation on
real as well as synthetic images for omnifocus imaging.

• In Chapter 5, we propose and apply a Discrete and Continuous Optimization based
background removal technique for removing background from train videos. The train
videos are a part of machine vision system which has been set up to monitor Intermodal
load trains and obtain the length of the gaps between the loads. The gap lengths are
used to calculate the aerodynamic efficiency of the train.

• In Chapter 6, we propose Depth Estimation in a discrete optimziation framework.
The proposed framework overcomes the depth of field problem, where a conventional
camera is able to focus on a limited range of depths and returns optimal and accurate
depths as shown in the results on real images.

• In Chapter 7, we conclude the thesis. We summarize the contributions of this thesis
and comment on the limitations and future work.
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Chapter 2

Preliminaries: Discrete Optimization
in Computer Vision

2.1 Introduction

The field of computer vision is related to the task of obtaining relevant information about
the real world by inferring the images of that world. Typically the task becomes difficult
owing to the uncertainties in the imaging process and the ambiguities in the inference of
the real world. This in turn leads to multiple solutions to a particular vision problem.
An optimization approach provides an elegant technique to reduce the number of possible
solutions by formulating various constraints on the problem at hand. The optimization
approach consists of two major steps described as follows.

The first step is the formulation of an objective function. It is a function from the set of all
possible solutions to real numbers. In order to formulate an objective function it is important
to impose a set of constraints which should be satisfied by the final solution. The solution
to an objective function which satisfies these set of constraints in the best possible manner
is the desired solution. Thus, the value of the real number to which the objective function
is mapped gives the measure of goodness of that solution. Conventionally, the lesser the
value, the better the solution is. Two of the most commonly used constraints to formulate
an objective function for a vision problem are obtained by the input data which could be an
image for example and the prior knowledge about this data. The data constraint restricts the
desired solution to be close to the observed data and the prior constraint confines the desired
solution to have the form which is agreeable with the prior knowledge about the problem.
The objective function thus formulated and containing the two constraints is referred to
as an energy function. The data constraint is defined specific to the vision problem being
solved. The prior constraint is usually imposed by the assumption that the variables of
the objective function belong to a Markov Random Field (MRF). The concept of MRFs is
explained in Section 2.3. Prior to this in Section 2.2, we explain the concept of Labeling
in vision which is a natural representation for the study of MRFs and is imperative to
understand the optimization framework for various problems in computer vision.

The second step of the optimization approach is to minimize the energy function by
finding the global minima. An energy function in computer vision is typically not convex
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and they have multiple local minima. This makes the task of global minimization difficult.
Additionally, the energy function for an image has a large number of unknowns, which makes
the computational requirements for minimization high. In fact its an NP-hard problem to
find the exact minima. This leads finding approximate solutions which are closer to the
global minima. One of the assumption which relaxes the optimization approach to some
extent is that the set of solutions is finite. This is done by discretizing the variables which
are used to formulate the energy function. This makes the set of solutions countable but still
too large to be explored completely. Such an optimization problem where the input solution
set is countable is combinatorial in nature and is called as a discrete optimization problem. It
can be shown that minimizing such an optimization function in computer vision will indeed
lead to the optimal solution by using a Bayesian perspective (Maximum A Posteriori (MAP)
estimation) as is explained in Section 2.3.4.

A number of minimization methods have been developed which efficiently minimize energy
function to obtain approximate solutions. Recently techniques based on calculating minimum
cuts on graphs have emerged as efficient energy minimization method. In this method the
data constraint and the prior constraint are applied as weights on the edges of a graph. Such
that the cost of minimum cut on this graph which is a real number corresponds to a improved
solution to the energy function. We describe this technique in detail in Section 2.4. Finally
in Section 2.5, we give an example of a Computer Vision problem which can be formulated
as an energy minimization problem and globally optimized using Graph Cuts in near linear
time.

The energy minimization approach has been used since long in computer vision for a
number of problems e.g. image restoration and reconstruction [3, 4], shape from shad-
ing [5], stereo, motion and optical flow [6], texture [7, 8], edge detection [9], image seg-
mentation [10], perceptual grouping [11, 12], object matching and recognition [13, 14] and
pose estimation [15]. Some of the recent works which are based on optimization techniques
are prominently in single view [1] and multi-view stereo [16], image restoration [4], texture
synthesis [17] etc.

2.2 Labeling Problem

A number of computer vision problems can be posed as labeling problems. For example
consider the problem of image segmentation: Here segmenting an image boils down to the
problem of assigning a unique label out of two possible labels to each pixel. The two possible
labels being either foreground or background.

A labeling problem is completely defined by two sets : site set and label set. The site set
is the set of image features e.g. the pixels in an image, image regions, edges in an image
etc. which can have some properties and the label set is these set of properties which can
be assigned to site set e.g. in segmentation a pixel can be in foreground or background. All
the members of the label set are possible candidates which could be assigned to a particular
member of the site set. This leads to a very large set of possible mappings as explained
below.
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Let the set of sites S and labels L be denoted as

S = {1, 2, . . . , m}.

L = {l1, l2, . . . , lk}.

where m is the number of sites and k is the number of labels. For segmenting an image of
size h × w into foreground and background, we have m = h × w , k = 2, (l0 = foreground
and l1 = background). A labeling can be defined as a function g which maps sites to labels
as

g : S→ L.

Each possible mapping where all the sites in S are assigned some label from the set L is
referred to as a configuration. Thus, the total number of possible labeling configurations O
is

O = L× L · · · × L
︸ ︷︷ ︸

m times

= L
m

which is exponential in size. One of these configurations will be the optimal configuration.
Since the search space of all possible labelings C is large, finding optimal labeling becomes
an NP - hard problem. An energy function encodes any particular labeling into an objec-
tive function and the value of that objective function becomes a quantitative measure of
the goodness of the various labelings. A number of problems in Computer Vision can be
addressed using this general framework of labeling:

• Image Segmentation: S = {pixels} and L = {0, 1} (see [18]).

• Stereo Reconstruction: S = {pixels} and L = {disparities} (see [1]).

• Image Restoration: S = {pixels} and L = {intensities(0, . . . , 255)} (see [4]).

• Texture Synthesis: S = {pixels} and L = {patches} (see [17]).

• . . .

In the following section, we explain Markov Random Fields (MRF) and show its equiv-
alence to Maximum a Posteriori(MAP) estimate of underlying labels given the input data.
This equivalence leads to the formulation of an energy function which can be minimized
using Graph Cuts (Section 2.4)

2.3 Markov Random Fields

Markov Random Field (MRF) is a branch of probability theory for analyzing the spa-
tial or contextual dependencies of a physical phenomena. The concept of MRFs has its
origins from statistical physics where Ising used this model to explain certain empirically ob-
served facts about ferromagnetic materials [19]. It is used in a labeling problem to establish
probabilistic distributions of interacting labels at each site as follows.

Let F = {F1, . . . , Fm} be a family of random variables defined on the set S, in which
each random variable Fi takes a label li in L. The family F is called a random field. We
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use the notation Fi = li to denote the event that Fi takes the label li and the notation
(F1 = l1, . . . , Fm = lm) to denote the joint event. For simplicity, a joint event is abbreviated
as F = l where l = {l1, . . . , lm} is a configuration of F, corresponding to a realization of
the field. For a discrete label set L, the probability that random variable Fi takes the
value li is denoted Pr(Fi = li), abbreviated Pr(li) and the joint probability is denoted
Pr(F = l) = Pr(F1 = l1, . . . , Fm = lm) and abbreviated Pr(l). Similarly, corresponding to a
continuous label set L, we have probability density functions(pdf) p(Fi = li) and p(F = l).

F is said to be a Markov Random Field on S with respect to a neighborhood system N if
and only if the following two conditions are satisfied:

1. Pr(F = l) > 0 ∀ l ∈ F (Positivity).

2. Pr(li|lS−{i}) = Pr(li|lNi
) (Markovianity).

where S−{i} is the set difference, i is some site in S such that i ≤ m, lS−{i} denotes the set
of labels at the remaining sites in S− {i} and

lNi
= {li′|i

′ ∈ Ni}.

denotes the set of labels at the sites neighboring i. The first statement signifies that each
configuration of the labels is probable and the second statement means that a label at a given
site i depends solely on the labeling of the neighbors of i. We describe neighboring system
and the concept of Cliques in the next section which are useful in showing the equivalence
of MRF to a Gibbs distribution.

2.3.1 Neighborhood System and Cliques

Neighborhood System: The sites in S are related to one another via a neighborhood
system N which is defined as

N = {Ni|∀i ∈ S}.

where Ni is the set of sites neighboring the site i. The neighboring relationship has the
following properties.

1. A site is not neighboring to itself : i /∈ Ni,

2. The neighboring relationship is mutual : i ∈ Ni′ ⇐⇒ i
′

∈ Ni.

For a regular lattice S, the neighboring set of i : Ni is defined as the set of nearby sites
within a radius of r. Thus,

Ni = {i
′

∈ S|[dist(pixeli′ , pixeli)]
2 ≤ r, i

′

6= i}.

where dist(A, B) denotes the Euclidean distance between A and B and r takes an integer
value. Depending on the value of r, the neighborhood systems can be classified into different
orders of neighborhood system e.g. first order neighborhood system where any site x ∈ S

has 4 neighbors (See Fig. 2.1), second order neighborhood system has 8 neighbors around
x (See Fig. 2.1). When the sites in a regular rectangular lattice S = {(i, j)|1 ≤ i, j ≤ n}
correspond to the pixels of an n × n image in the 2D plane, an internal site (i, j) has four
nearest neighbors as Ni,j = {(i−1, j), (i+1, j), (i, j−1), (i, j+1)} and a site at the boundary
has three and a site at the corner has two nearest neighbors.
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Figure 2.1: The left shows a first order neighborhood relationship between sites and the
right shows a second order relationship. The numbers denote the order of neighborhood
relationship.

Cliques: A 2D lattice corresponds to a regular graph where the vertices of the graph
correspond to the sites and the edges in the graph correspond to the neighborhood system
among the sites as described above. Thus a graph can be denoted as G , (S, N). A clique in
a graph is a set of pairwise adjacent vertices, or in other words, an induced subgraph which
is a complete graph. For example, in the graph shown in 2.2, vertices 1, 2 and 5 form a
clique, because each has an edge to all the others. The set of cliques C in the graph G can

Figure 2.2: A graph containing a clique of size 3 marked with red circles

consist of singe site c = {i}, pair of neighboring sites c = {i, i′}, triple of neighboring sites
c = {i, i′, i′′} and so on. Thus we can denote these cliques as

C1 = {i|i ∈ S}.

C2 = {{i, i′}|i′ ∈ Ni, i ∈ S}.

C3 = {{i, i′, i′′}|i, i′, i′′ ∈ S are neighbors to one another}.

The collection of all cliques of (S, N) is

C = C1 ∪ C2 ∪ C3 · · ·

In Fig. 2.3, we show the various sized cliques for a second order neighborhood system in a
2D lattice. As the order of the neighborhood system increases, the number of cliques grow
rapidly.
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Figure 2.3: Cliques of various sizes in a second order neighborhood system.

2.3.2 Gibbs Random Fields

A set of random variables F is said to be a Gibbs Random Field (GRF) on S with respect
to the neighborhood system N if and only if its configurations obey a Gibbs distribution. A
Gibbs distribution for a given labeling l has the following form

Pr(l) = Z−1 × e−
1
T

U(l).

where
Z =

∑

l∈F

e−
1
T

U(l).

is the normalizing constant called the partition function and T is a constant called the
temperature and assumed to have a value of 1. U(l) is called the energy function and is
given as

U(l) =
∑

c∈C

Vc(l).

which is a sum of clique potentials Vc(l) over all possible cliques C. The value of Vc(l)
depends on the local configuration of the clique c. Expanding the above equation in terms
of cliques of various sizes we get

U(l) =
∑

{i}∈C1

V1(li) +
∑

{i,i′}∈C2

V2(li, li′) +
∑

{i,i′,i′′}∈C3

V3(li, li′, li′′) + · · ·

An important special case is when only cliques of size up to two are considered. In this case,
the energy can also be written as

U(l) =
∑

i∈S

∑

i′∈Ni

V2(li, li′).

Thus, the Gibbs distribution for a particular labeling l can be given as

Pr(l) = Z−1 × e−
1
T

P

i∈S

P

i′∈Ni
V2(li,li′).
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2.3.3 Markov-Gibbs Equivalence

An MRF is characterized by its local property (the Markovianity) whereas a GRF is char-
acterized by its global property (the Gibbs distribution). The Hammersley-Clifford theo-
rem [20] establishes the equivalence of these two types of properties. The theorem states
that F is an MRF on S with respect to N if and only if F is a GRF on S with respect to N .
A proof that a GRF is an MRF is given as follows. Let Pr(l) be a Gibbs distribution on S

with respect to the neighborhood system N . Consider the conditional probability

Pr(li|lS−{i}) =
Pr(li, lS−{i})

Pr(lS−{i})
=

Pr(l)
∑

l′
i
∈L

Pr(l′)
.

where l′ = {l1, . . . , li−1, l
′
i, li+1, . . . , lm} is a configuration which agrees with l at all sites

except possibly i. Using Pr(l) = Z−1 × e−
P

c∈C
Vc(l) in the above equation, we get

Pr(li|lS−{i}) =
e−

P

c∈C
Vc(l)

∑

l′i
e−

P

c∈C
Vc(l′)

.

Now, the set of cliques C can be divided into two sets A and B with A consisting of cliques
containing i and B with cliques not containing i. Then the above can be written as

Pr(li|lS−{i}) =

[
e−

P

c∈A
Vc(l)
] [

e−
P

c∈B
Vc(l)
]

∑

l′i

{[
e−

P

c∈A
Vc(l′)

] [
e−

P

c∈B
Vc(l′)

]} .

Because Vc(l) = Vc(l
′) for any clique c that does not contain i, the term e−

P

c∈B
Vc(l) cancels

from both the numerator and denominator. Therefore, this probability depends only on the
potentials of the cliques containing i,

Pr(li|lS−{i}) =
e−

P

c∈A
Vc(l)

∑

l′i
e−

P

c∈A
Vc(l′)

.

that is, it depends on labels at i′s neighbors. This proves that a Gibbs random field is a
Markov Random Field. The reverse proof that an MRF is a GRF is given in [21]. This
equivalence between MRF and GRF provides a simple way of specifying the joint probability
of the labels l on the grid S. The joint probability Pr(F = l) can be obtained by specifying the
clique potential functions Vc(l) and choosing the appropriate potential functions according
to the problem. One of the classical potential functions of pairwise cliques C2 is the Pott’s
model where we have

V2(li, lj) =

{
1 if li 6= lj
0 otherwise

This simple case enforces the neighbor sites to have the same label and is applicable to many
computer vision energy functions. A number of other potential functions are discussed in [22].

2.3.4 Maximum A Posteriori (MAP) - Markov Random Field

(MRF) Labeling

The realization of the labeling F = l is not accessible directly, rather it can only be realized via
the observation d. Th conditional probability Pr(d|l) is the link between the realization and
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the observation. A classical method to estimate the configuration l is to use the Maximum
A Posteriori estimation as follows. Lets denote the observed data as d and the unknown
labeling configuration to be l. For the case of images, let the set of sites S be all the pixel
positions in an image denoted as G and the size of G is m. At each pixel location (x, y) in
the grid G we have an observed variable d(x,y) and an unknown label l(x,y) which is drawn
from the set of labels L. See Fig. 2.4 for an explanation of this realization setting. The

Figure 2.4: Labeling of observed variables where the unknown variables belong to a Markov
Random Field

posterior distribution of the labelings l is given as Pr(l|d). From Baye’s theorem

argmax
l

Pr(l|d) = argmax
l

Pr(d|l) Pr(l).

where Pr(d|l) is the likelihood of generating the observation d and Pr(l) is the prior knowledge
about the structure of the unknown labels l. A simple likelihood formulation can be given
as

Pr(d|l) = K × exp (−U(d|l)).

where K is a constant and

U(d|l) =

m∑

i=1

(li − di)
2

2σ2
i

.

The prior is given as
Pr(l) = Z−1 exp−U(l).

where from a Markov Random Field modeling of the unknown labels and a quadratic clique
potential function for pairwise cliques we have

U(l) =
∑

c∈C

Vc(l) =
m∑

i=1

(li − li−1)
2.
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Here Z =
∑

l exp−U(l) and Vc(l) is the clique potential defined in cliques c of size 2 in
the image grid G. This potential incorporates a smoothness constraint in the final solution.
Thus the posterior becomes

Pr(l|d) ≈ exp (−U(d|l))× exp−U(l).

Taking a negative log of the above equation converts the maximization of probability to
minimization of an energy function. Mathematically speaking we have

U(l|d) = U(d|l) + U(l)

=
m∑

i=1

(li − di)
2

2σ2
i

+
m∑

i=1

(li − li−1)
2.

Thus the MAP estimate becomes minimizing of the posterior energy

l∗ = argmin
l

U(l|d).

The energy function U(l|d) is commonly written as E(l) and consist of two terms. The first

term is called the data term which is
∑m

i=1
(li−di)2

2σ2
i

and the second term is called potential

term which is
∑m

i=1(li− li−1)
2 in the previous equation. As the names imply, the data term

is derived from the observed data and the potential term encodes the clique potential of the
underlying labelings. Thus we write

E(l) = Edata(l) + Epotential(l).

where the data term has the general form of

Edata(l) =
∑

i∈S

Di(li).

which encodes the cost of assigning the label li to pixel i or in other words how much does
labeling disagree. The potential term has the general form of

Epotential(l) =
∑

{i,j}∈N

V{i,j}(li, lj).

which measure the amount of closeness in the labelings given to neighboring pixel locations i
and j. Thus, the procedure of the MAP-MRF approach for solving computer vision problems
is summarized in the following:

• Pose a vision problem as one of labeling and choose an appropriate MRF representation
for the labeling l.

• Formulate an energy function by deriving proper likelihood and smoothness function

• Find the MAP solution by solving the energy function using discrete or continuous
optimization technique like Graph Cuts.
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2.4 Optimization Using Graph Cuts

In this section, we give a brief overview of the various optimization techniques in computer
vision. We describe one of the recent optimization techniques called Graph Cuts in detail in
the next section. Optimization problems are solved using optimization techniques which can
be classified into global and local optimization methods. The global methods find the global
minima or maxima whereas the local techniques find a local optima. If the initialization is
good or the optimization function is convex local techniques find global optima. A number
of techniques exist in literature for finding the optimal solution. Some of the global opti-
mization techniques are Simulated Annealing(discrete and continuous labels) [23, 24, 4, 25],
Graduated Non-Convexity(continuous labels) [26], Mean Field Approximation [27], Dynamic
Programming [28], Graph cuts [29, 30] etc. and various local techniques are Variational Meth-
ods [6] in case of continuous labels and Iterated Condition Modes(ICM) [31] and Relaxation
Labeling methods [32, 33, 34] for discrete labels. Graph cuts have emerged has fast and
efficient global optimization technique for minimization of an energy function. This tech-
nique returns an approximate optima which is close to the global minima. In Section 2.4.1
we give basics of graph construction and the equivalence of maximum flow and minimum
cut on these graphs. Later in Section 2.4.2, we explain how energy minimization functions
are mapped to a graph and the minimum cut on this graph corresponds to a minimization
of the energy function. We describe the α-expansion algorithm which does this mapping in
detail. In our work in this thesis, we have used this algorithm extensively.

2.4.1 Graphs and Maximum Flow-Minimum Cut in Vision

This section describes the structure of graph construction in computer vision problems. Lets
denote the graph as G = 〈V, E〉 where V denotes the nodes of the graph and E denotes
the edges of the graph connecting the nodes with each other. In addition to these nodes,
another set of two special terminal nodes are present: the source s and the sink t. Each
node connecting the nodes p and q of the graph G is assigned a non negative weight w(p, q).
The edges in the graph are divided into two groups: n-links and t-links. A n-link is an edge
connecting two non-terminal nodes. A t-link connects a non-terminal node to a terminal
node, s or t A st cut C ⊂ E is a set of edges that satisfies the following properties

• the resulting graph G(C) = 〈V, E −C〉 separates the source node s from the sink node
t, such that there is no path linking the terminals.

• there is no subset of C that also separates the two terminals.

Such a cut partitions of the nodes in the graph into two disjoint subsets S and T such that
the source s ∈ S and the sink t ∈ T . See Fig. 2.5(b) for an example cut on a graph G. The
cost of this cut |C| is defined as the sum of the weights of the edge connecting vertices p and
q such that p ∈ S and q ∈ T with an additional constraint that the edges are directional
i.e. only edges leaving the S part are taken into account and no edge from T part to S are
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(a) A Graph G (b) A cut on G

Figure 2.5: A cut on a graph. The width of the edges represents the cost given to the edges.
The yellow edge denotes the n-links and the red and blue edges denote the t-links. The green
line denotes the cut on the graph G

considered. Thus,

|C| =
∑

p ∈ S
q ∈ T

(p, q) ∈ C

w(p, q).

The minimum cut problem is to find the cut in a graph which is of minimum cost among
all the cuts. It can be shown that the minimum cut in a graph is equal to the maximum
flow in the graph [35]. This is obvious from the fact that the amount of flow along a set of
edges from source to sink in a graph is limited by the edge with minimum capacity. Thus
the maximum flow value is equal to the cost of minimum cut.

2.4.2 Energy Minimization Using Graph Cuts

To solve energy minimization problems using Graph Cuts, the nodes V of the graph G are
considered corresponding to the observed variables like pixel intensities, voxels, or other
features. Thus if the observed variable d (See Section 2.3.4) is the pixel intensities, the
graph corresponds to a rectangular image grid. The weight of the edges between the nodes
of the graph are derived from the energy function as follows. The energy function is given
as,

E(l) = Edata(l) + Epotential(l).

In this graph, the t-links is derived from the data term Edata and the n-links are derived from
the smoothness or potential cost Epotential. See Fig. 2.5 for an example of a two terminal
graph from [29]. The α-expansion move algorithm introduced by [1, 36, 37] calculates the cut
C in such a specially constructed graph iteratively and reduces the value of energy function
iteratively till an approximately global minima value of the energy function is reached. This
algorithm can be used whenever the smoothness term V2(li, lj) is a metric on the space of
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labels L including a Pott’s model. The Pott’s model is given as

V2(li, lj) =

{
1 if li 6= lj
0 otherwise

which means that the potential is 1 if its argument is true and 0 otherwise.
An α-expansion move algorithm works as follows. We consider a labeling l and a particular

label α ∈ L. Another labeling l′ is defined to be an α-expansion move from l if every pixel
either keeps its own label (l′i = li) or switches to α i.e.(l′i = α). This move is obtained by
finding the minimum cut in the special graph G. Thus the set of pixels having the label α
increases as it moves from the labeling l to l′ (See Fig. 2.6). If the energy of the new labeling

(a) (b)

Figure 2.6: Example of α-expansion (a) Initial labeling (b) Final labeling obtained after
α-expansion on the red colored pixels

l′ is less than the energy of the current labeling l, the current labeling is changed to the
new labeling. This process is repeated for all the labels α belonging to the set of labels L

till there is no decrease in energy. The final labeling which we get is a local minima of the
energy function and is shown to be within a multiplicative factor of the global minima [1].
The complete alpha expansion algorithm is shown in Algorithm 1.

1: Start with an arbitrary labeling l
2: Set success = 0
3: repeat
4: for each label α ∈ L do
5: Find l̂ = argmin E(l′) among l′ within one α-expansion of l
6: if E(l̂) < E(l) then
7: set l = l̂ and success = 1
8: end if
9: end for

10: until success = 1
11: return l

Algorithm 1: α-expansion algorithm
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Since the number of labels is discrete and countable, the complexity of the algorithm di-
rectly depends on the order of finding the expansion move with minimum energy in an opti-
mal manner. This requires that the minimum cut in such graph should be found optimally. A
number of algorithms exist for finding the minimum cut in a graph. The Ford-Fulkerson [35]
algorithm is a flow conserving algorithm and is based on the idea of augmenting paths. If
V = V is the number of nodes in the graph G and E = E is the number of edges, the
worst case complexity of this algorithm is O(E|C|) where C is the cost of the cut. The
Push-Relabel algorithm by [38, 39] is another set of algorithms for finding maximum flow
in a graph. It is a non flow conserving algorithm. The worst case complexity of this algo-
rithm is equal to O(EV 2). Recently, Boykov and Kolmogorov in [40, 41] proposed a very
efficient implementation of the augmenting path maxflow flow computation algorithm. The
complexity of this algorithm is given as O(V E|C|) which in practice is almost linear in time.
In our we use this algorithm for minimizing the our energy functions.

2.5 Example Problem

In this section, we will give an example Computer Vision problem which is formulated in
discrete optimization framework and the resulting energy function is minimized using Graph
Cuts. This vision problem is the Shape from Stereo problem. We will first show that this
is a Labeling problem (See Section 2.2). The observation d and the realizations l (See Sec-
tion 2.3.4) are a set of images called as stereo pairs and the disparity map respectively. Then
we will formulate a simple Energy Function using MAP-MRF equivalence (See Section 2.3.4)
for this problem and show the obtained results.

2.5.1 Stereo Using Graph Cuts

The input is a left-right pair of images (Ileft, Iright)taken from a stereo camera. The corre-
spondence between the image features (intensity) in the two stereo pairs is directly propor-
tional to the depth of the objects in the scene. The value of this correspondence is measured
in terms of the amount of pixel shifts produced from the left image to the right image. This
shift is called as Disparity D. For each pixel in the left image, we can associate a disparity
value. Since it is measured in pixels, the values are discrete in nature and a maximum value
of disparity can be set. Thus, the disparity becomes the label set L. Since the disparity is
being calculated for the left image, the pixel locations in the left image become the sites S.
If the size of the image is h× w and the maximum value of disparity is Dmax, we have,

S = {1, 2, . . . , h× w}.

L = {0, 1, 2, . . . , Dmax}.

The data term Edata is defined as the cost of giving a pixel p in Ileft a disparity value of
D ∈ L. Thus,

Edata(p, D) = (Ileft(p)− Iright(p + D))2.

The smoothness term Esmooth is defined on cliques of size 2 (See end of Section 2.3.2) as the
Pott’s model

Esmooth(Dp, Dq) = K × (Dp = Dq).
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(a) Ileft (b) Iright (c) disparity

Figure 2.7: Tsukuba data set (University of Tsukuba, Japan) (a) The left image (b) The
right image (c) The corresponding disparity map obtained using Graph Cuts [1]. The higher
the gray intensity value the closer is the object in the image to the camera. Thus disparity
directly maps to the depth of objects in the scene.

where (·) is 1 if argument is true else it is 0 and Dp is the disparity at the pixel location p
and q = Np. The complete energy function E can be written as

E(D) =
∑

p∈(h×w)

Edata(p, D) +
∑

(p,q);(q∈Np)

Esmooth(Dp, Dq).

Once the energy function is formulated, α-expansion algorithm can be applied to get the set
of optimal disparities Doptimum. The output result is shown in Figure 2.7(c).

2.6 Summary

In this chapter we have given an introduction to discrete optimization techniques applied
in computer vision. We first formulate an objective function called the energy function
based on the constraints of the Computer Vision problem at hand. These constraints are
obtained from the Markov Random Field nature of the variables of the function. Also, the
variables of this function are discrete in nature i.e. they take on discrete values only. An
optimization technique is then required which should find the global minima of this energy
function. Since finding the global minima of this function is an NP - hard problem, methods
which can find approximate solutions close to the global minima are developed. Graph Cuts
based minimization is one such recently developed optimization technique which is almost
linear in time in practice and gives excellent results.

Due to the abundance of Computer Vision problems which have been formulated in a
discrete optimization framework, propose another two problems in this thesis, which can be
formulated in this framework. These problems are related to imaging and depth estimation
in vision. We give a brief overview of Imaging and Depth in Computer Vision in the next
chapter.
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Chapter 3

Preliminaries : Imaging and Depth

3.1 Introduction

An image captures the three dimensional world in a still picture. In order to obtain an
image, one must capture the light being reflected from the objects in the world. This can
be done by using a Pinhole Camera. A pinhole camera consists of a setup where the light
rays are allowed to pass through a small hole called as Aperture and fall on a translucent
screen which acts like a sensor plane. This is shown in Figure 3.1(a). In order to produce
and image which is reasonably clear, the aperture has to hundred times smaller than the
distance of the screen. The Shutter of a camera is defined as the device which allows for the
light to pass through the aperture for a determined period of time called as Exposure. For a
pinhole camera the shutter is a light proof material which can allow and stop the passage of
light. Since the amount of light entering through the aperture of pinhole is small, the image
produced on the screen will be dark. In order to get better quality image, the exposure
time can be increased, usually being from 5 seconds to hours or days. The image formed
by a pinhole camera is a sharp image as everything is in focus as shown in Figure 3.1(c).
The geometry of image formation using a pinhole camera is shown Figure 3.1(b), where an

(a)

Screen Location

P

O f

Q

(b) (c)

Figure 3.1: (a) A pinhole camera. (b) Pinhole camera geometry where the light rays from
a world point P are passing through the pinhole O and getting imaged at Q. (c) A sample
image obtained from a pinhole camera. The image is dark near the edges of the image due
to the lesser amount of light getting passed through the pinhole.
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object at P gets imaged on the screen located at Q. The distance of this screen f from the
optic center O is referred to as the Focal Length of the camera. Since the aperture size of

(a) (b)

v Q

Screen Location

O

P

Optical Axis

Lens

f

u

(c) (d)

(e)

Figure 3.2: (a) A Glass Lens which can be used in a pinhole camera. (b) Larger amount of
light is captured by a lens compared to a pinhole. P is the object in the 3D world and Q is
its image. As can be seen lesser amount of light is getting transmitted through a pin hole
compared to a lens. (c) The image formation model by a lens. (d) A sample image formed
using a camera with a glass lens. (e) Blur model for a thin lens camera where an object
point P is getting imaged with blur of radius R on the sensor plane.

the pinhole cameras is small, only a small set of rays from a particular point on a three
dimensional object hit the screen. This results in images formed by a pinhole camera to be
darker (See Figure 3.1). To alleviate this problem , a Glass Lens is introduced in the pinhole
camera geometry by placing it in the pin hole. A lens is a optical device (See Figure 3.2)(a)
which has an axial symmetry and can transmit and refract light, either concentrating it or
diverging it. Thus a lens can capture larger amount of light from a point in the world and
concentrate it on one single point as shown in Figure 3.2(b). This makes lenses suitable of
capturing better and brighter images. The Focal Length of a lens is defined as the point
where all the rays coming from infinity which are parallel the optical axis converge after
refracting from a convex lens. For a thin lens, the Thin Lens Formula relates the distance
of an object (u) with the distance of the image formed on the sensor plane (v) via the focal
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length (f) of the lens as
1

u
+

1

v
=

1

f

The traditional lens cameras capture the light energy on a photographic film or photographic
plate. Nowadays, digital cameras are used for image capturing and they use a Charged Couple
Device (CCD) sensor for capturing the light energy. This energy can be stored as bits in the
computer memory and thus Digital images are created. A CCD is a rectangular grid in shape
as shown in Figure 3.3 where each square in the grid corresponds to a pixel in an image.
A Pixel is defined as a single graphic point in an image. Unlike the image capture using a
pinhole camera where all the object distances are in focus, an image captured on a CCD
sensor has a limited range of object distances in focus. This range is dependent on the size
of the square on a CCD grid and is referred to as the Depth of Field of the camera. This is
explained in Figure 3.3(b). Due to the limited depth of field the objects which are out of the
depth range, get imaged with some amount of Blur, i.e. some parts of the image are sharp
whereas other parts are blurred. This is shown in Figure 3.2(e). The Field of View(FOV)

(a)

Depth of Field

2c

CCD Sensor Plane
Lens

u1 v1
u0 v0

v2u2

(b)

Figure 3.3: (a) A CCD array whose each square is of size 2c which is the physical size of 1
pixel in an image captured on this CCD. (b) The depth of field is the range of depths which
will get imaged in focus inside a CCD square of width 2c.

of the camera is defined as the part of the three dimensional world which is projected onto
the imaging device i.e. the CCD sensor. An image captured using a conventional camera
has a small field of view as shown in Figure 3.4(a). Usually a larger field of view as shown
in Figure 3.4(b) is desirable. Such an image which covers a larger horizontal FOV is called
a Panoramic Mosaic.

Thus, up till now we have come across three major drawbacks of a lens based camera:

• The camera has a limited Depth of Field. This can cause blurring the captured images

• The Field of View is small. A larger field of view is desirable.

In order to alleviate this problem a new imaging camera was proposed in by Krishnan and
Ahuja in [2]. For our work on Imaging in Chapter 4 in this thesis, we have used images
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(a) (b)

Figure 3.4: (a) A small Field of View of a scene which is equivalent to a Human FOV (b)
A large FOV image of the same scene. This is called a Panoramic Mosaic as it covers the
complete 360o angle horizontally.

captured by this camera to obtain a Panoramic Mosaic which does not contain any blur.
Such an image is called as an Omnifocus Image ( Omni = Everywhere, Focus = Sharp ).
We also use these images to propose techniques for Depth Estimation of a three dimensional
scene in Chapter 6. We give a brief overview of this camera in the next Section and the
properties of the images generated by this camera.

3.2 Non frontal Imaging Camera : NICAM

In order to obtain large panoramic images where all the objects are in focus, the conventional
technique using frontal sensor involves two mechanical motions : (a) panning the camera and
(b) for each pan angle focussing the camera on each depth. This leads to slower acquisition
of an omnifocus image i.e. an image in which all the depths appear in focus. In order to
make this process fast and easy a new camera model was proposed in [2, 42, 43]. In our
experiments for omnifocus imaging and depth from focus, we used this camera for image
acquisition. Here we give a brief over view of the camera and the characteristics of the
image captured by this camera. Normally, the sensor of a common camera is Frontal in
nature as shown in Figure 3.5(a). Owing to the thin lens equation 1

u
+ 1

v
= 1

f
where u is the

depth of scene point and v is the focussed image distance, this leads to only one particular
depth in the 3D world getting focussed at a time in image. To capture different depths in
focus, the frontal sensor is moved along the optical axis. This changes the image distance
and thus a volume of three-dimensional space gets covered. The shape of this region looks
like the frustum of a cone as shown in Figure 3.5(b). It can be noted that since the field
of view of such cameras is limited they cannot be used to generate panoramic omnifocus
images. An alternative method for panorama generation for such cameras is to follow a
tedious procedure of rotating the camera about the optical axis and at each rotation angle
taking multiple images with different depths in focus.

We consider a situation where the CCD sensor plane is tilted with respect to the lens.
In such a situation, different sensor surface points are at different distances from the lens,
then depending upon where on the sensor surface the image of a scene point is formed,
the imaging parameter of image distance v will assume different values. This means that
by controlling only the pan angle, both the goals of capturing images at different depths
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(a) (b)

Figure 3.5: (a) A planar surface gets sharply focussed on a frontal CCD plane. (b) A frustum
of cone is formed in the three-dimensional region due to the movement of the sensor plane
along the optical axis. All the objects in this region get imaged sharply in at least one of
the positions of the sensor plane.

and scanning a larger visual field can be achieved. This non-standard configuration of a
camera which images each scene point at different sensor surface points which are at various
distances from the lens is called a Non-Frontal camera.

This non-frontal sensor plane configuration can be achieved by two methods. The first
method is to rotate the camera about the lens center and keep the lens tilted by some angle
(See Figure 3.6(a)). This causes the optical axis to intersect the the CCD array at a different
location. As the camera is also being rotated about the optical axis, with each moving angle
of the panning camera, a particular object will get imaged at different imaging locations.
These locations will increase and decrease the imaging distance v of the sensor plane from the
lens center. But such a set up leads to large optical aberrations in the bordering parts of the
image which are not desirable. Thus, a second configuration is considered where the sensor
plane is tilted with respect to its frontal position (See Figure 3.6(b)). This also results
in varying v as the camera rotates, but the image point where the optical axis intersects
with the CCD surface remains constant thus leading to no optical abberations. Such a
configuration is shown in Figure 3.6(b). The schematic diagram of the resulting camera is
shown in Figure 3.6(c). Consider an object point at an angle θ from the optical axis. For

different angles θ, the sensor distances | ~OC| and | ~OD| from the lens center to the sensor
plane are different and are given by

| ~OC| =
d cosα

cos(θ − α)
; | ~OD| =

d cosα cos θ

cos(θ − α)
(3.1)

The lens law for such a tilted sensor camera is given as

1

u
+

1

d + ~AC sin α
=

1

f
(3.2)

Since for a tilted sensor plane, v varies linearly with position along the plane, it follows from
the lens law that the corresponding sharply focussed(SF) surface is a plane along which the
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Optical Axis

(a) (b) (c)

Figure 3.6: (a) The lens has been tilted which causes optical axis to intersect the CCD array
at different locations. (b) NICAM: The CCD array is tilted with respect to the lesn (c)
Schematic model of NICAM.

u value mirrors the v variation. The SF surface is shown in Figure 3.7(a). The volume swept
by the SF surface as the camera is rotated is shown in Figure 3.7(b). If the camera turns
about the lens center O by an angle φ, then the same object point considered earlier will
now be seen at an angle θ + φ from the new optical axis. The new image distance for the
object point will be given by the equation:

| ~OD| =
d cos α cos(φ + θ)

cos(φ + θ − α)
(3.3)

As the angle φ increases, the image distance also increases. At some particular angle, the
image will appear perfectly focussed and as the angle further increases, the image will again
go out of focus. By identifying the angle φ at which the object point appears in sharp focus,
we can calculate the focus distance, and then from the lens law, the object distance. As the
camera rotates about the lens center to increase φ, new parts of the scene enter the image at
the left edge of the image and some previously imaged parts exit at the right edge. The entire
360 degree panoramic scene can be imaged and the omnifocus image and range estimated
by completely rotating the camera once. Using the images generated from aNICAM , we
propose the new techniques of omnifocus imaging in an discrete optimization framework.
and also provide a novel focus measure calculation technique which is based on a generative
model in Chapter 4.

3.3 Shape From X

One of the basic goals of computer vision is to predict the shape of a three-dimensional
scene by extracting information from two-dimensional images of that scene. Given an image
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(a) (b)

Figure 3.7: (a) The SF surface for the proposed camera with a tilted sensor plane. The SF
surface is not parallel to the lens and the optical axis is not perpendicular to the SF surface.
(b) The cross-section of the 3D volume traversed by the rotation of a non-frontal camera.
Each thick line indicates the position of the SF surface at different panning angles of the
camera.

a number of cues can be used to infer the shape or depth of the various objects in the scene.
Since the current work uses focus/defocus criteria for shape and appearance estimation we
give a brief overview of the previous work done in this field.

3.3.1 Shape From Focus/Defocus

Due to the thin lens equation, imaging results in only a particular plane coming into focus
and thus generating blurring in other parts of the image. This blur can be used as a cue for
depth estimation in a scene. The techniques which use this cue for shape recovery are known
as Shape From Focus(SFF) when the sharpness of the scene indicates how focussed it is and
Shape From Defocus(SFD) when the blur parameter is explicitly calculated and geometry of
the scene inferred. Since focus and depth are directly related, One of the earliest approaches
for depth estimation was by Pentland [44, 45] where he used a pin hole image which is a
sharp image and a large aperture image which will contain blurs to estimate change in focus
which is related the the depth. In Shape from focus, a number of images of the scene are
taken such that each image captures different depth planes of the three-dimensional world
in focus. This results in same world point getting imaged with varying amounts of blur in
each image. The goal is to choose the image point from the image in which it is imaged with
minimum or zero blur. Once that image is obtained, using the camera parameters and the
thin lens equation the depth of that particular image point can be obtained. This requires
calculating a focus measure function at each pixel location which is nothing but how sharp
an image region around a pixel is. Thus, a number of focus measures have been proposed in
literature which capture the high frequency components in the image like gradients, laplacian
and energy of the texture. Darrel et al. [46] generate Laplacian and Gaussian pyramids to
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calculate the sharpness map of scene using pipelined image processing hardware. Horn [47]
describes a Fourier-transform method in which the normalized high-frequency energy from
a 1-D FFT is used as an objective criterion. Tenenbaum [48] uses a thresholded gradient
magnitude in which the Sobel operators are used to estimate the gradient. The criterion
function used is the sum of gradient energy over a local window centered around all pixel
locations in the image. This has also been used by Krotkov [49] which also does a Fibonacci
search over the focus measure profile for any pixel location across the set of multi focus
images. Jarvis [50] suggests sharpness measures based on entropy, variance and gradient.
Nayar et al. [51] has developed a sum-modified-Laplacian operator to obtain local measures
of the quality of image focus. Subbarao et al. [52] proposes energy maximization of unfiltered,
low-pass filtered, high-pass filtered and band-pass filtered images as focus measure functions.
Shafer et al. [53] propose a combination of Fibonacci search and curve fitting for finding the
minima of the Tenegrad focus criteria based error profile to obtain accurate minima. Due
to window based approach and local equifocal assumption in conventional focus measure,
these techniques result in artifacts near the edges in the image. Ning et al. [54] propose a
focus measure which handles artifacts at these edges and apply graph cuts to obtain smooth
omnifocus image.

Shape from Defocus or SFD takes advantage of the fact that defocus produced in an
image is related to the geometry of the scene and thus it is possible to estimate geometry
by measuring the amount of defocus in an image. Earlier techniques modeled shape and
appearance from defocus as a Markov random field [55, 56, 57, 58] but the computational
cost of theses techniques seems to be high. Surya et al. [59] used a spatial domain convo-
lution/deconvolution approach for SFD. In [60], an active illumination pattern is projected
on the scene and a defocussed set of images is captured which is then used for shape esti-
mation. A multi resolution local frequency representation of the input defocus image pair
estimates the blur in the scene and geometry of the scene is obtained in [61]. Soatto et
al. [62] study and analyze accommodation cues for shape reconstruction. Accommodation
cues are defined as all measurable properties of images which are associated with a change
in the geometry of the imaging device. Soatto et al. [63] propose a solution to the generic
bilinear calibration estimation problem and use that solution for 3D scene reconstruction
from defocussed images. In [64], an optimal method to infer 3D geometry from defocused
images is proposed that involves computing orthogonal operators which are regularized via
functional singular value decomposition. A review on other popular cues for Shape From X
is given in Table. 3.1:

3.4 Background Subtraction

Background subtraction is a class of technique for segmenting out objects of interest in a
scene for applications such as surveillance or tracking. It involves comparing an observed
image with an estimate of the image if it contained no objects of interest. The portion of
the image where there is a significant difference between the observed and the estimated
image indicates the presence of objects of interest. A number of techniques are proposed in
literature for background removal. In [105], a pixel is marked as foreground if

|It −Bt| > τ
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Image Cue
X

Shape Estimation Techniques from X References

Shading Shape from shading(SFS) deals with the recov-
ery of shape from a gradual variation of shading
in an image. Assuming lambertian model of im-
age formation the aim is to recover light source
and the surface shape at each pixel in the image.
SFS techniques can be divided into four groups:
minimization approaches obtain the solution by
minimizing the energy function [5, 65, 66, 67].
Propagation approaches propagate the shape in-
formation from a set of surface points to the
whole image [68, 69, 70]. Local approaches de-
rive the shape based on the assumption of surface
type [71, 72]. Linear approaches compute the so-
lution based on the linearization of the reflectance
map [73, 74].

Ikeuchi and Horn,1981[5]
Szeliski,1991[65]
Zheng and
Chellappa,1991[66]
Vaga and Yang,1993[67]
Horn,1970[68]
Oliensis and
Dupuis,1992[69]
Bichsel and
Pentland,1992[70]
Pentland,1984[71]
Lee and Rosenfeld,1985[72]
Pentland,1988[73]
Tsai and Shah,1994[74]

Stereo Shape from stereo uses a pair or more number
of stereo images to calculate the disparity be-
tween the image features in the frames. Since
the disparity is inversely proportional to depth,
this leads to depth estimation. This technique is
based on the major problem of obtaining accurate
correspondence between the image features in the
images. The image features being used can be ei-
ther sparse e.g. harris corners or SIFT features or
it can be dense based in pixel intensity values at
each pixel location. The correspondence problem
can be solved efficiently by formulating an error
function which can be solved using dynamic pro-
gramming [75, 76], graph based methods [77, 1],
belief propagation [78], simulated annealing [79]
etc. In multi-view stereo, there are multiple views
of the scene to obtain the three-dimensional in-
formation about the scene [80, 81, 16, 82]

Ohta and Kanade,1985[75]
Cox et al. 1996[76]
Roy and Cox,1998[77]
Boykov et al. 2001[1]
Sun et al. 2003[78]
Barnard,1989[79]
Furukawa and
Ponce,2006,2007[80, 81]
Kolmogrov and
Zabih,2002[16]
Vogiatzis et al. 2005 [82]
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Motion Structure or Shape From Motion(SFM) refers to
the process of building a 3D model from video
of a moving rigid object. In structure from mo-
tion, given the images taken at different points in
time or space the goal is to recover the three di-
mensional configuration of these points and the
camera configurations. Koenderink et al. [83]
proposed a geometric affine scene reconstruction
from two images. SFM from a sequence of im-
ages was solved by [84] where they exploited the
affine structure of affine images in a robust fac-
torization method through singular value decom-
position of a measurement matrix. The Cholesky
approach to the same problem is due to [85].
Various extensions of their approach have been
proposed recently, including the incremental re-
covery of structure and motion [86, 87]. The fac-
torization approach has been generalized to per-
spective case [88], to incorporate uncertainty [89],
for independent moving objects [90], articulated
objects [91], for dynamic objects [92, 93] and with
outliers and missing points [94]

Koenderink and
Doorn,1991[83]
Tomasi and
Kanade,1992[84]
Poelman and
Kanade,1997[85]
Weinshall and
Tomasi,1995[86]
Morita and
Kanade,1997[87]
Sturm and Triggs,1996[88]
Irani and Anandan,2002[89]
Costeira and
Kanade,1994[90]
Yan and Pollefeys,2005[91]
Bregler et al. 2001[92]
Brand,2001[93]
Jacobs,2001[94]

Texture The basic principle behind shape from tex-
ture(SFT) is the distortion of the individual tex-
els. Their variation across the image allows to
estimate the shape of the observed surface. The
shape reconstruction exploits perspective distor-
tion, which makes objects far from the cam-
era appear smaller, and foreshortening distortion,
which makes objects not parallel to the image
plane shorter. The amount of both distortions
can be measured (shape distortion and distor-
tion gradient) from an image. Gibson [95] was
the first to suggest the human perception of 3D
is effected by texture gradients. Early work on
shape from texture were feature based [96, 97, 98].
An alternative approach uses spectral informa-
tion [99, 100] like Fourier transform, wavelet de-
composition and Gabor transform. Most of the
techniques notably [101, 102, 103] assumed that
the textures were stationary. Forsyth [104] in his
work solves SFT without making any assump-
tions of isotropic, homogeneity or stationary as
was done by earlier works.

Gibson,1950[95]
Witkin,1981[96]
Ohta et al. 1981[97]
Blostein and
Ahuja,1989[98]
Bajcsy and
Lieberman,1976[99]
Brown and
Shvaytser,1990[100]
Garding,1992[101]
Malik and
Rosenholtz,1993[102]
Clerc and Mallat,2002[103]
Lobay and
Forsyth,2006[104]

Table 3.1: Summary of Techniques for Obtaining Shape from Various Image Cues.
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where τ is a predefined threshold. The background is obtained and updated as

Bt+1 = αIt + (1− α)Bt

Further corrections are made as if a pixel is marked as foreground for more than m of the
last M frames, then the background is updated as Bt+1 = It. This compensates for sudden
illumination changes and the appearance of static new objects. Also, if a pixel changes state
frequently from foreground to background it is masked as foreground. This compensates
for fluctuating illumination. But these simple methods are sensitive to threshold τ and the
information of nearby pixels in not used. Thus other methods were developed which could
use high level information like tracking the object in the foreground and learning its appear-
ance [106, 107]. Elgammal [108] proposed a kernel density based estimate and Han [109]
proposed a mean shift based estimation technique for background PDF. Eigenbackgrounds
was proposed in [110]. In [111, 112] the pixel value distribution over time is modeled as an
autoregressive process. In [113] Hidden Markov Models were used.

3.4.1 Continuous Optimization: Gaussian Mixture Model

Single gaussian modeling of the pixel intensities across time at a particular image location
was proposed in [114]. However to handle complex intensity profiles across time i.e. to
handle multi modal background distributions, mixture models were required. Pixel-wise
Gaussian mixture model (GMM) was first proposed for background subtraction in [115] in
an EM framework. One of the more common techniques of GMM modeling and updating
was proposed in [116, 117, 118] and it was later improved [119] and made efficient by [120].
The basic steps of the algorithm are as follows. The sequence of each pixel {I1, . . . , It} is
modeled as a mixture of K gaussians. The probability of observing the current pixel value
is

P (It) =
K∑

i=1

ωi,t ⋆ η(It; µi,t, Σi,t)

where K is the number of gaussians, ωi,t is the weight, µi,t is the mean and Σi,t is the
covariance matrix of the ith Gaussian in the mixture at time t. η is a Gaussian probability
density function

η(It, µ, Σ) =
1

(2π)
n
2 |Σ|

1
2

e−
1
2
(Xt−µt)T Σ−1(Xt−µt)

Σk,t = σk2I

Every time a new pixel value It is checked against the existing K Gaussian distributions,
until a match is found. A match is defined as a pixel value within 2.5 standard deviations of a
distribution. If none of the K distributions match the current pixel value, the least probable
distribution is replaced with a distribution with the current value as its mean value, an
initially high variance and low prior weight. The prior weights of the K distributions at time
t, ωk,t are updated as follows

ωk,t = (1− α)ωk,t−1 + α(Mk,t)
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where α is the learning rate and Mk,t is 1 for the model which matched and 0 for the
remaining models. The weights are then re normalized. The µ and σ parameters for the
unmatched distribution remain the same. The parameters of the distribution which matches
the new observation are updated as follows

µt = (1− ρ)µt−1 + ρIt

σ2
t = (1− ρ)σ2

t−1 + ρ(It − µt)
T (It − µt)

where
ρ = αη(It|µk, σk)

The foreground at a pixel location are detected as follows. The Gaussians are ordered by
the value of ω/σ. Thus higher importance are given to the components with most evidence
and lowest variance which are assumed to be the background. The first B distributions are
chosen as the background model, where

B = argmin
b

(
b∑

k=1

ωk > T

)

So, if It does not match one of these B components, the pixel is marked as foreground.
Foreground pixels are then segmented into regions using a connected component labeling.

3.4.2 Discrete Optimization: Graph Cuts

Due to the recent development in fast optimization algorithms for computer vision problems,
few techniques based on discrete optimization framework have been proposed for background
removal. In Cohen [121], background removal from a set of image frames is modeled as a
foreground filling problem. An image from the video from which the background is to be
removed is chosen. A set of images are taken which were there before and after this frame.
This set of images becomes the label set. In an energy minimization framework, the data
term becomes the cost of assigning the intensity from the neighboring frames to the input
frame, such that the cost of labels containing intensity from background model is minimum.
The smoothness cost is a quadratic function of the labels of neighboring pixel locations.
Once the energy function is formulated, it can be minimized using modified alpha expansion
technique from [1]. This technique was later enhanced by using subspace based techniques to
obtain better data term by [122]. Then the problem is framed as that of a labeling problem,
where the labels are the indexes of the input image frames.

3.5 Summary

In this chapter, we have reviewed the process of image acquisition using a Non-frontal Imag-
ing camera (NICAM). A conventional imaging process in not able to generate an image which
has a wide field of view and also has a large depth of field. NICAM proposes a unique way
of image capturing which after post processing guarantees an efficient method of alleviating
both of the above problems. The algorithms of post processing are critical and in this work,
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we propose new algorithms based on these lines for Omnifocus Imaging in Chapter 4. Thus
we have used images acquired from a NICAM for our work. Depth estimation is another
goal of Computer Vision research, where features obtained on an image have to be used to
infer the structure of the three dimensional world. We have reviewed a number of image
features or cues have been used for depth estimation. In Chapter 6, we have proposed new
techniques for depth estimation which uses focus/defocus cue from a set of images. The last
part of this chapter reviews various background removal techniques. Background removal is
critical to video surveillance and tracking as it helps removal of redundant information. We
have reviewed many techniques in continuous and discrete optimization framework which
do background removal. In Chapter 5, we first apply an existing continuous optimization
background removal technique to a real world computer vision problem. Then for the same
problem we propose a novel discrete optimization based algorithm for background removal.
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Chapter 4

Omnifocus Imaging

4.1 Introduction

Many computer vision algorithms for object recognition, image segmentation etc. require
high quality images as input. We define high quality imaging as the process which generates
images that are sharp and do not contain any blurred regions. Such an image can be
generated only if all the objects in the three dimensional world are getting imaged with
focus. But the conventional cameras suffer from the limitation that they have a limited
depth of field. This means that they can capture only one particular depth in focus in one
image. Thus in order to generate an image where everything is focussed, we first need to
capture a series of images each focussing at different depths. This set of images is referred
as multifocus images. Then these set of images are to be fused together into one completely
focussed image based on some fusing criteria and which is referred to as a focus measure.
The fused image is referred as an omnifocus image as it is focussed throughout the image.
Specifically, the complete procedure of omnifocus imaging can be decomposed into three
steps.

In the first step the input images are captured using a special camera called as a Non-
frontal Imaging Camera or NICAM. The tilted sensor of the camera captures a sequence of
images with each objects gets imaged with varying degrees of blur and simultaneously the
panning motion of the camera covers a large field of view. Once the images are captured
they need to be fused together. This is done by registering the images such that there
is pixel level alignment between them. A number of existing registration techniques use
image based features for registration. But in our case we have to register images in which
a pixel is blurred with varying degrees of blur and thus we can not use image features for
registration. In order to solve this problem we have developed a camera calibration based
image registration technique where the NICAM is calibrated first and then the estimated
intrinsic and extrinsic parameters of the camera are used to register the images.

The second and third step are summarized as follows. Most of the vision based techniques
formulate an error function and then apply an optimization method to obtain the parameters
which would minimize this error. The error function in our case is the focus measure which
is being applied while fusing the input images to obtain the desired omnifocused image. This
measure should be accurate and model the fusion process better than previously proposed
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focus measures. It should also be robust to the small registration errors which could not be
taken care of during the calibration based registration process. We have developed a window
based generative model focus criteria which is robust to registration errors and does not suf-
fer from the drawbacks of conventional techniques. Next we need an optimization method
to minimize our error function. An optimization framework is critical to current computer
vision algorithms as their mathematical basis is well understood and they are easily em-
ployable on many computer vision problems. An optimization based formulation yields an
optimal solution if the objective function can be solved to obtain the global extrema. Since
the optimization functions in vision problems involve a large number of variables they be-
come combinatorial in nature and conventional optimization techniques become exponential
in run time. As is true with any field of science, the final goal for any solution to a computer
vision problem is that they could be used for real world vision systems. This would require
the proposed solution to be fast so that it could run in real time and be as accurate as
possible. As the problem of omnifocus imaging takes a number of large images as input, this
requires an optimization technique which would quickly converge to give accurate results.
With the advent of Markov Random Fields (MRF) in low level vision [4] and new approxi-
mate combinatorial optimization techniques like Graph cuts [1] and belief propagation [123],
solving them in polynomial time has become feasible. We propose a optimization framework
based formulation of the error function and thus incorporate the additional advantage of
smoothness to the final solution of omnifocus image.

The remainder of the chapter is organized as follows. In Section 4.2, a new camera
calibration technique has been proposed. This method can be used for registration of images
generated from a NICAM [2]. This is followed by a discrete optimization based framework
for omnifocus imaging in Section 4.3. In the last Section 4.4, we propose a Generative focus
measure for omnifocus imaging. We summarize in Section 4.5.

4.2 Non-Linear Calibration

A panning camera rotates about an axis passing through the optic center in discrete steps
and at each step it captures an image. Thus it covers a larger horizontal field of view. An
example of such a camera is NICAM which captures multifocus images while panning. This
camera differs from conventional panning cameras in that it has a tilted sensor plane (See
Figure. 4.8(a) & (b)). At each pan angle, an image of the scene is captured such that some of
the depths are in focus and the others are blurred. Since there is blurring in the images, image
based features are not useful for accurate registration of the images. But since the camera is
at hand, the parameters of the camera can be used to back-project each input image onto a
three dimensional world and register the images. If the calibration parameters are accurate,
this will lead to pixel level registration. Conventional cameras have the intrinsic and extrinsic
parameters as their calibration parameters. In NICAM, for registration purposes we need
to know other parameters also like the tilt of the CCD sensor. The sensor tilt value is also
used while calculating the new focus measure developed in Section 4.4. The set up of the
panning camera is shown in Figure 4.2. The various parameters which need to be estimated
are the angle parameters of the axes associated with the camera, stage and board (Explained
in Section 4.2.2).
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Our contribution lies in formulating a non-linear error function in terms of the calibration
parameters whose optimum value returns the various calibration parameters. As a pre -
processing step to the main calibration, we also present a novel pan - centering algorithm,
such that the panning camera become single view - point across the panning axis. This has
the advantage that some of the calibration parameters get a fixed value and the order of non
- linearity of the error function reduces.

4.2.1 Pan - Centering

Pan - centering is an important part of the main calibration step. It brings all the coordinate
systems associated with the panning camera system (as shown in Figure 4.2) to coincide with
each other and thus reduces the mathematical complexity of the whole calibration procedure.
The panning camera is mounted on a stage via a flexible set of joints which has two degrees
of freedom in the plane parallel to the ground. In order to make the camera single viewpoint
or pan - centered, we need to move the camera in the horizontal (lets call it y axis) and
vertical (and lets call it z axis) directions such that the rotation axis coincides with the
vertical axis of the lens. Thus the problem now is to decide the amount of shift in y and z
directions. This is achieved by the following iterative algorithm. We start by capturing a
set of images of a checkerboard pattern by panning the camera. Using each of these images
and the Matlab camera calibration toolbox [124] we obtain the extrinsic parameters for each
of the camera positions. Since the camera calibration toolbox assumes that the camera is a
pinhole camera, we have to make NICAM pinhole. This is done by reducing the aperture
of the camera and increasing the lighting in the scene. The obtained extrinsic parameters
return the location of the camera for each of the input images. If the camera is not pan -
centered, we hypothesize that these camera positions will lie on an elliptical curve in xyz
space. This will be caused as the camera will be rotating about some other axis other than
the axis passing through the optical center. On doing the experiments we observed that
indeed the camera centers were located on an ellipse as can be seen from Figure 4.1. Next
we project these camera positions on the plane perpendicular to the lens rotation axis and
fit a circle to it. The center of this circle gives the initial estimate of the amount of x and
y displacements required by the camera to make it pan - centered. We repeat the above
procedure till the radius of the calculated circle becomes negligible i.e. the rotation axis
coincides with the lens axis.

4.2.2 Non- Linear Solution

We define the following components of the setup for calibrating a panning camera.

• BOARD(B) : This is a checkered board whose corners are used for calibration.

• WORLD(W) : This is the base on which the rotating stage is kept.

• STAGE(S) : This is the stage, which rotates with fixed angles. The camera is kept on
it and can move in y and z directions.

• CAMERA(C) : A camera which can move is mounted on the stage.
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(a) (b)

(c) (d)

Figure 4.1: (a) The camera positions obtained from extrinsic parameters of each image. (b)
The 3D poses form an elliptical structure in XYZ plane. (c) A circle is fit to the projection
of the 3D poses on the YZ plane. The error in pan centering is approx 9.4 mm. (d) After
applying our algorithm, the error in pan centering reduces to 0.4 mm.

The corresponding camera coordinate systems are defined as (X, Y, Z)B/W/S/C . The coordi-
nate axes are as defined in Figure 4.2. After pan centering, the center of world, stage and
camera coordinate systems coincide with each other. Without loss of generality, Xs can be
assumed to be aligned with Xw. Since the stage rotates at fixed angles, the Y Zs plane differs
from the Y Zw plane by fixed angles. The orientation of the camera coordinate system is
assumed to be at any arbitrary angle with respect to the stage and world coordinates. Next
we define the following transformations occurring between different coordinate systems.

• TC←B = Transformation from the Board Coordinate System to Camera Coordinate
System.

• TW←B = Transformation from the Board Coordinate System to World Coordinate
System.

• TS←W = Transformation from the World Coordinate System to Stage Coordinate Sys-
tem.

• TC←S = Transformation from the Stage Coordinate System to Camera Coordinate
System.
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Figure 4.2: Sketch of placement of calibration board, camera, stage and the associated
rotation matrices.

Each of the above transformations can be broken down into rotation matrix and translation
vectors as follows. There is any arbitrary transformation which maps board coordinates into
world coordinate frame.

TW←B =

(
RW

B TW
B

0 1

)

. (4.1)

The stage rotates with angles of increment θ. Thus we can write,

TS←W =

(
Rθ/X 0

0 1

)

. (4.2)

Rθ/X is a known matrix. The stage to camera matrix has the translation component 0 as
the camera was pan - centered before. Thus we have,

TC←S =

(
RC

S 0
0 1

)

. (4.3)

The transformation from board to camera coordinates is again arbitrary, but they are equal
to the extrinsic parameters returned by the MATLAB Calibration Toolbox. Thus we have,

TC←B =

(
RC

B TC
B

0 1

)

. (4.4)

Now we formulate the following equality condition,

TC←B = TC←S ∗ TS←W ∗ TW←B. (4.5)
(

RC
B TC

B

0 1

)

=

(
RC

S 0
0 1

)

∗

(
Rθ/X 0

0 1

)

∗

(
RW

B TW
B

0 1

)

. (4.6)

=

(
RC

S Rθ/X 0
0 1

)

∗

(
RW

B TW
B

0 1

)

. (4.7)

=

(
RC

S Rθ/XRW
B RC

S Rθ/XTW
B

0 1

)

. (4.8)
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We obtain the following equalities from Equation 4.8,

RC
B = RC

S Rθ/XRW
B . (4.9)

TC
B = RC

S Rθ/XTW
B . (4.10)

We define the error function using Equation 4.31. Each of the rotation matrices RC
S and

RW
B is parameterized by 3 angle variables each. Thus there are 6 angle parameters to be

calculated. Let, the angles be given as αw
b , βw

b , γw
b , αc

s, β
c
s, γ

c
s and are related to the various

rotation angles in the error function given in Equation 4.13 as:

RW
B = Rz(α

w
b )×Ry(β

w
b )× Rx(γ

w
b ) (4.11)

RC
S = Rz(α

c
s)× Ry(β

c
s)×Rx(γ

c
s) (4.12)

Thus we have error function defined as,

F (αc
s, β

c
s, γ

c
s, α

w
b , βw

b , γw
b ) =

∣
∣RC

B −RC
S Rθ/XRW

B

∣
∣ . (4.13)

This equation is highly non-linear with trigonometric terms, but with good initial estimates,
it converges to an optimal local minima. The minimization approach is explained in the next
section along with how the minimized values can be used for registering images.

4.2.3 Results

In this section we show the results of Non-Linear minimization to obtain camera calibration
parameters. The input to the calibration algorithm is a set of images of a checkerboard as
shown in Figure 4.3. The input images are taken by rotating the NICAM by some angles
and at each angle capturing an image. The calibration parameters to be estimated are the
angles of rotation between the Board to the World and the Stage to the Camera where the
angles are given as αw

b , βw
b , γw

b , αc
s, β

c
s, γ

c
s. In order to obtain accurate results we need to give

a good initialization to these angles. Additionally, after each minimization, the result was
again used as an input to the next iteration of the minimization. The initialized rotation
angles between board and world for γw

b were given as 180o for rotation about x− axis and
αw

b was initialized as 270o for rotation about z axis. The angle βw
b was initialized to 0. This

will align the Board coordinate system to the World coordinate system. This is explained in
Figure 4.2.3. All the angles : αc

s, β
c
s, γ

c
s between the Stage and Camera were initialized to 0o.

We used the fminsearch function of matlab to find the minimized values. The final minimized
value after iteratively minimizing are given in Table 4.1. As can be seen the rotation angle
γc

s about the x-axis of the stage coordinate system comes out to be 1.8389, which is the tilt
of the CCD sensor of NICAM. The other rotation angles are negligible. Also, the rotation
of the World Coordinate system about the y axis of the Board Coordinate System comes
out to be 3.1361 degrees which means that the calibration board is not completely vertical
to the ground. The images are registered to each other based on these rotation angles as
explained below. Now, once the rotation angles are estimated, the registration can be done
by projecting rays from the images back on to a 2D plane which is located on at some z = Z.
When the rays intersect the 2D plane, we get images. Since this plane is built in the World
coordinate system which is attached to the ground, it is fixed irrespective of the pan angles
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Figure 4.3: Input images of a checkerboard taken by the panning camera NICAM.
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Figure 4.4: Rotation between the Board and the World Coordinate system can be initialized
by first rotating about the x-axis by 180o and then about the z-axis by 270o.

at which the images were captured. Thus, on projecting rays on this plane we obtain a
registered set of images. The process of back projection is described as follows. Let any 3D
point on this plane be denoted as PW , which is not known to us. Also, let the projection
matrix from the Camera coordinate system to the coordinate system attached with the CCD
sensor be Tp. For a pinhole camera, this matrix is usually given as

Tp =





fx 0 ccx

0 fy ccy

0 0 1



 . (4.14)

where fx and fy are the focal lengths of the camera and ccx and ccy are the principal point

where the optical axis intersects the CCD sensor. The image point Pi =

[
u
v

]

can be

obtained from Tp TC←S is obtained after the calibration procedure explained above.

Pi = Tp × TC←S × TS←W × PW . (4.15)
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Table 4.1: Rotation Angles Between the Coordinate Systems

Rotation Angle Initial Value Value

γc
s 0 1.8389

βc
s 0 0.1209

αc
s 0 0.0163

γw
b 180 179.4259

βw
b 0 3.1361

αw
b 270 270.6416

For all the input images and the points Pi in them, we obtain the 3D points PW in the world
coordinate system. We show four registered images in Figure 4.2.3. The first two images are
superimposed to obtain the third image and all the images are superimposed to obtain the
sixth image. As can be seen there are no ghosting of images due to accurate registration.

Figure 4.5: Registered images of the calibration pattern. On the rightmost column the
images are superimposed. Due to accurate registration, there are no ghosting of images.

4.3 Optimization Framework for Omnifocus Imaging

Once we obtain a set of registered images, the next goal is to apply a focus measure on
the set of pixels and generate an omnifocus image. In this section, we address the problem
of generating a seamless, fully focused, single image from a set of multifocus images in a
discrete optimization framework. Such an image is referred to as an omnifocus image. Our
approach is based on a Maximum a Posteriori (MAP) estimation of unobserved variables on
which Bayes theorem is applied to obtain the likelihood and the prior model. The prior is
proposed to be realization of an underlying Markov Random Field (MRF) on these variables.
The MAP estimate is then formulated into an energy minimization function. This function
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is solved using the discrete optimization technique of graph cuts which helps in generating
a seamless omnifocus image without artifacts.

As described earlier, the basic procedure of generating an omnifocus image is to capture
a series of images with different camera settings such that objects with different depths
are focused in at least one of the input images. For comprehensive coverage of the area
we need a set of images which cover the entire field of depth. These images are called
multifocus images [125]. The conventional method of obtaining an omnifocus image from a
set of multifocus images is by defining a Focus Measure function F at each pixel location
across all the input images. This function attains maximum/minimum value only for the
image in which the pixel is focused. The focused intensity from this frame is extracted and
pasted on a new image. This process is repeated for all pixel locations to obtain an omnifocus
image. See Figure 4.6. The conventional methods [52, 54] for generating an omnifocus image

(a) (b) (c)

Figure 4.6: (a) and (b) depict two multifocus images where the nose and eye of the bug are
in focus respectively whereas other parts of the image are defocussed. (c) In this image all
the pixels in the image are in focus irrespective of their depth. It is called an omnifocus
image.

are local in nature, in the sense that the choice of the focused frame at one pixel location
is independent of the choice at its neighboring pixel. They do not take advantage of the
underlying smoothness of the locally planar objects in the scene which are being imaged.
Consequently, due to imaging noise and the limitations of the focus measure [126], the nearby
pixels corresponding to images of the same planar object do not get imaged with focus in
the same frame. This leads to artifacts in the final omnifocus image. This can be removed
if the prior smoothness knowledge about the scene can be incorporated in the focus frame
selection. Ning et al. [54] tried to address this problem by proposing a 3D graph cut approach
where the neighboring pixels were connected by an edge and then maxflow-mincut algorithm
was applied to get smooth solutions. Since the edge costs in this graph were obtained from
the focus measure values itself, the smoothness obtained was still a function of how good
focus measure F was. Our contribution in this work is as follows:

• An explicit smoothness constraint is imposed on the final solution. This makes the
introduction of smoothness independent of the goodness of the focus measure being
used.

• It is assumed that the focus frames belong to an underlying MRF structure. This helps
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us in modeling the focus frame selection as MAP estimation which is used to formulate
an energy minimization function.

• The energy function is solved in a discrete optimization framework using graph cuts
and a seamless omnifocus image is obtained, enabling an omnifocus imaging sensor [2]
to do realtime computations.

4.3.1 Related Work

In omnifocus imaging, a number of focus measures have been proposed in literature to select
the focused pixels e.g. [52, 54]. In the current work we use the focus measure proposed
in [54] due to its robustness near the intensity edges, although any traditional focus measure
could be used. One of the earliest applications of MRF modeling in computer vision can be
traced back to the works of Geman and Geman [4] where the problem of image restoration
was addressed in a MAP-MRF framework. Some of the other low - level vision problems
like stereo [1], segmentation [18], depth from defocus [57] have also been formulated in a
MAP-MRF framework. By taking the negative log of the MAP estimate, the maximization
problem was reduced to an energy minimization function. To obtain a global or local minima
of this function, many optimization techniques have been proposed in vision literature e.g.
simulated annealing [4] and ICM [31] which guarantee global and local minima respectively.
Most of these methods take large amount of time to converge and the global minima is
also not guaranteed. One of the techniques called graph cuts [22] has recently become
popular in the vision community owing to its polynomial order execution time. A number
of vision problems like stereo [1] and segmentation [18] have been formulated as an energy
minimization problem and then solved using graph cuts. One of the works close to our work
is that of [58] where the problem of depth from defocus in an MRF framework is addressed.
The energy function is then solved using simulated annealing. Simulated annealing typically
provides global minima but with larger convergence time. We address a different problem in
our work, which is omnifocus imaging in an MRF framework. We use graph cuts for function
optimization which has fast convergence rates.

4.3.2 Multifocus Imaging

A point light source P , at a distance of u from the optical center of a camera, having fixed
focal length of f forms a focused image on the sensor plane at a distance of v. The three
distances satisfy the thin lens formula defined as

1

u
+

1

v
=

1

f

where u is the distance of the object from the lens center, v is the distance of the sensor plane
from the optic center of the camera and f is the focal length of the camera. If the sensor
plane is moved along the optical axis away from v to s1 or s2, the point P gets imaged with
blur. Thus by moving the sensor plane by fixed discrete steps, we obtain a set of multifocus
images. This is explained in the Figure 4.7, where P gets imaged with different blurs in each
image.
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Figure 4.7: Multifocus images obtained by varying v and capturing images.

4.3.3 MAP Estimation for Omnifocus Imaging

We formulate the generation of an unknown omnifocus image IO from a given set of multifo-
cused images as a maximum-a-posteriori (MAP) estimation problem. Let the input images
be denoted as I = {I1, I2, · · · , IN} where N is the number of images and the X and Y are
the width and height of the image. Let us also define the pixel locations corresponding to
a multifocussed image as S = {s = (i, j) : 1 ≤ i ≤ X, 1 ≤ j ≤ Y }. These images have the
following properties in common:

• They are captured by varying sensor plane distances along the optical axis.

• All the 3D points in the world are getting imaged with focus in at least one of the
frames

• The images together cover the entire range of depths which are being imaged.

On the other hand, the generated omnifocus image will consist of intensity values taken from
frames which are best focussed among the available set I. Thus any pixel location s in IO

can be labeled by the index of the focussed frame from which it got the focused pixel. By
extending this labeling to all the pixel locations we can obtain a configuration of labelings for
omnifocus image IO. Let us denote this configuration as L. Thus for every pixel location s in
IO, if there are N labels each corresponding to one input multifocused frames and X×Y pixel
locations, then in all there are NX×Y configurations possible. The optimal configuration is
the one which produces the best possible omnifocus image. Thus, we define the posterior
probability of obtaining the optimal labels L given the set of observed quantities which are
multifocused images I as P (L|I) and try to maximize the posterior distribution. From Baye’s
theorem

argmax
L

Pr(L|I) = argmax
L

Pr(I|L) Pr(L). (4.16)

where Pr(I|L) is the likelihood of observed quantities and Pr(L) is the prior on the labels.
In the following paragraphs we describe each of these.
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(a) (b)

Figure 4.8: Multifocus images captured by a NICAM(a) Wide field of view being covered by
a panning NICAM and (b) Image of an object formed at location (x.y) on the sensor plane.

Likelihood: The likelihood function denotes the probability of obtaining the set of mul-
tifocused images I given the current configuration of unknown labels L. We define the set
of labels at each pixel location s ∈ S in IO as the set of frame indexes. Thus, L = {l(s) =
1, 2, 3, · · · , N : s ∈ S}. In our case, likelihood can be seen as those set of correct depths
which will generate the multi-focussed images I. Since there exists a direct mapping between
the depth of an object and the frame index in which it gets focussed, focus measure F defined
at a pixel location in turn becomes the likelihood function. Thus, for any pixel location s,
we define the focus measure vector F (l(s)) of length N as the likelihood cost. Assuming
independent observations at each pixel location across the set of multifocus images, we can
write the likelihood function over I as

Pr(I|L) ∝
∏

s

exp{−F (l(s)}. (4.17)

where F (l(s)) is the focus measure vector at location s for the set of multifocused images
I and l(s) is the current label. The focus measure function F at pixel location s = (x, y)
across the set of multifocus images is derived from [54]. The label l(s) denotes the frame
index of an input image frame and since each image frame is blurred with different amounts,
the label directly maps to the amount of blurring σ in that image. Thus the focus measure
function F is given by

F (σ) =
1

N2

∑

x

∑

y

(min(gσ(x, y)− Vmin, Vmax − gσ(x, y)))2 (4.18)
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where gσ(x, y) is given as in Equation 4.25 and Vmax and Vmin are obtained as follows

Vmin = argmin
σ;(x,y)∈D

gσ(x, y)

Vmax = argmin
σ;(x,y)∈D

gσ(x, y)

and D is an N ×N local window around (x, y).

Prior: The objects in a scene are often locally planar. This means that when imaged with
focus, they will get imaged on the same image frame. In our case, the frame index is the set
of labels. Thus these labels are locally smooth in nature and we propose that they belong
to a Markov Random Field. This assumption defines a prior probability distribution which
favors nearby pixels in the image having similar focus frame indexes. The assumption of
MRF structure greatly reduces the complexity of the prior as it says that the probability of
labeling a pixel location is dependent only on the labels of the neighboring pixel locations.
Let N denote a 4-neighborhood system on S. Thus using the MRF property we can write,

Pr(l(s)|l(S − {s})) = Pr(l(s)|l(Ns)).

A Gibbs distribution on a graph, whose nodes can be assigned values from a label set, defines
a probability distribution on the current configuration of labels in terms of the different
sized cliques present in the graph. Since MRFs also define a probability density function on
a neighborhood system, Hammersley and Clifford expansion shows an equivalence between
Gibbs distribution and MRFs [4]. Thus, it can be shown that for any particular configuration
of labels L assigned to S we have,

Pr(L) = Z
−1 × exp(−

1

T
U(L)). (4.19)

where

Z =
∑

L

exp(−
1

T
U(L)) and U(L) =

∑

c∈C

Vc(L).

where Vc(L) is the clique potential defined on cliques c belonging the complete set of cliques
C, Z is a normalizing constant and T is the temperature parameter. In the case of images we
have a 4-neighborhood system, which is a clique of size two. Thus using Equation 4.16, 4.17
and 4.19 the posterior distribution becomes

argmax
L

Pr(L|I) ∝ argmax
L

∏

s

(exp−F (l(s)))× exp(−U(L)). (4.20)

Energy Minimization: The MAP estimate of the posterior distribution in Equation 4.20
will gives us the optimal set of labels L∗ which will correspond to the best omnifocus image.
By taking a negative log of this probability distribution we can define an energy function
which can be minimized over the set of labels L. In energy minimization, such problems are
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also called labeling problems. In our case the labels are the discrete frame indexes l(s) at
site s ∈ S. The corresponding energy function E(L) on this set of labels can be obtained as

E(L) =
∑

s

F (l(s)) +
∑

s′∈N(s)

V (l(s), l(s
′

)). (4.21)

where the first term is the data term and the second term is the smoothness term. The
data term is the set of focus measure vectors at site s. This is obtained by applying focus
measure criteria at site s for all the input multifocus images and stacking them to obtain
a vector or length N . The smoothness term is chosen to be Pott’s model and piecewise
constant model and defined as K · T (l(s) 6= l(s

′

)) and A ·min(B, |l(s)− l(s
′

)|) respectively.
A number of optimization techniques like graph cuts and belief propagation exist in literature
to get a local minima of this function in polynomial time. Here we have used graph cuts
algorithms [1] to get approximate solution. Specifically we use α-expansion technique which
is bound to find a local minima of E up to a constant factor of the global minima.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.9: Input multifocus images for (a-e) Porsche data set. Zoom in to see how the
number plate of the car is captured with varying amounts of blur. (f-j) Conference data set.
Zoom in to see the blurred images in the bottle.

4.3.4 Results

The experiments were done real images where the multifocus images were captured from
a NICAM as described in [2] and in the previous chapter. The camera was rotated about
the optical center while the world was being imaged. Due to the non-frontal nature of the
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sensor plane, different depths get imaged at different sensor plane coordinates with blur.
We show our results of omnifocus images on two kinds of scenes: Indoors and Outdoors.
The Porsche data set was captured outdoors and covered approximately 180 degree field
of view. Some sample images taken by panning NICAM are shown in Figure 4.9(a-e). If
we zoom on the car in this image set, we find that it is getting imaged at shifted spatial
locations horizontally and with each shift, the blurriness of the imaged car is changing. Thus
we generated a multifocus set of images for the car. Similarly, other neighboring cars also
get imaged with varying blur. Note that since the building in the background is farther
from the camera compared to the car, the building remains almost focused throughout the
imaging process. Although, by changing the tilt etc. of nicam we can generate multifocus
images for the building also. These input images are then registered together so that the
focus measure can be applied on them to obtain our data term in the energy formulation
Equation 4.21. After applying graph cuts, the obtained output omnifocus image is shown
in Figure 4.10(a). As can be seen there are no seams in the image and all the objects are
in focus, irrespective of their depths. Such sharp images are visually pleasing and can be
used for as input images to vision problems like object detection etc. The graph cuts took
around 2 minutes to output the omnifocus results which is near real time with respect to
image acquisition using nicam. The second data set was collected indoors and is called the
Conference Room data set, where we have objects at depths ranging from 1ft to 5 ft. Some
sample input images are shown in Figure 4.9(f-j) and the resulting omnifocus image is show
in Figure 4.10(b). We show the effectiveness of graph cuts in Figure 4.11(c,d) where the
decreasing energy values along Y-axis are plotted against the labels along the X-axis. The
plots clearly show the sharp decrease in energy values with each iteration of α-expansion
over the label set. The first plot is using piecewise smooth model and second is for Potts’s
model [22]. As can be seen, towards the end of the minimization process, the energy curve
becomes stable for both the smoothness models. The piecewise smooth model starts with
lower energy values and reaches lower energy values because it allows for more freedom in
smoothness of labels compared to Pott’s model, which gives constant cost irrespective of the
labels assigned to nearby pixel sites.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: (a-f) Resulting omnifocussed Images. All the depths are imaged with focus
irrespective of their depth.
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Figure 4.11: (c) Piecewise smooth (d) Pott’s smoothness model. Energy values minimizes
very fast with each iteration and then reaches almost constant value.

4.4 A Generative Focus Measure

In order to generate an omni focussed image for a physical scene, a large number of images
of the scene from one single view point is taken such that each image focusses at different
depths in the world. This leads to each point in the 3D world getting imaged at a pixel
location with different degrees of blur in every image. From among these set of multifocus
pixels across all images we need to choose the best focussed pixel. The criteria of best
focussed is usually defined in terms of a metric called focus measure. For a focussed frame,
this measure when computed at a pixel location and a small window around it for all the
frames either maximizes or minimizes. On repeating this process across all the pixels in
the image, we are able to finally generate an omnifocus image. In the previous section
we modeled omnifocus imaging in a discrete optimization framework and used graph cuts
based techniques to solve it. The goodness of the data term of the energy minimization
function is dependent on the focus measure being used. A number of focus measures have
been suggested in literature [54, 125, 52, 53]. As a focussed image is characterized by
sharp image boundaries, most of the focus measure techniques calculate the sharpness in
a windowed region across the set of multifocus images. As these measures focus criterion
based on a patch of intensities and they look for sharp edges in the windows as a metric
for how focussed that window or pixel is, they are bound to fail when windows are chosen
in smooth regions at the edge of an intensity discontinuity. If such a window is chosen in a
defocussed image, it can be observed that due to the bleeding of sharp intensity edge into
its neighboring pixels, the amount of gradient increases in the window, whereas the actual
gradient in the focussed image is zero. This leads to the criteria of maximizing focus measure
getting actually maximized in a defocussed image. See Figure 4.4 for an explanation. Thus
we propose a new focus measure in this section which alleviates this problem.

In omnifocus imaging, it is required to collect a set of multifocus images as shown in
Figure 4.7 where the sensor plane distance is shifted along the optical axis and a set of
images is captured at each such shift. Due to the change in sensor plane location, the image
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of the object is formed with different amounts of blur. We make the following observations
true to this existing technique of image capturing for omnifocusing. As can be seen from
Figure 4.7 that the process of obtaining a omni focussed image from the set of focussed and
defocussed images is a continuous process where a pixel is initially imaged as being blurred,
then it becomes sharp somewhere in between and again gets blurred. Thus focussing of a
pixel is not an independent event at a frame, rather its a continuous process which depends
on the way a pixel is imaged in the frames before and after the current frame. In the latter
case, we have more information at hand than just by one frame. This knowledge is used
in order to formulate a new focus measure which does not suffer from the drawbacks of
conventional focus measure techniques. In Section 4.4.2, we introduce our approach along
with our algorithm.

(a) (b) (c) (d)

Figure 4.12: (a). A step edge image with left region having uniform intensity of 80 and
right region 150. (b). A zoomed in 10x10 window near the step edge. (c). (a) is blurred
with gaussian blur of σ = 4. (d). Same 10x10 window extracted and zoomed from (c) We
see that there is more gradient in (d) than in (b). Thus using maximum gradient as focus
measure leads to selection of a pixel from blurred image.

4.4.1 Image Formation

In this section, we describe the image formation process using a thin lens model as shown in
Figure 4.13. The rays from an object point P fall on the lens, get refracted by some amount
and then intersect at some point p′ on the sensor plane at location vf forming a focussed
image of the object point. For a lens of focal length f , if the object was at a distance of u
from the optic center and the focussed image was formed on a sensor plane at a distance of
vf behind the lens, then the following relation holds true:

1

u
+

1

vf

=
1

f
. (4.22)

If the sensor plane location is moved from focussed position to some other position, a blurred
image is formed as the light rays intersect at the focussed distance and again spread to form
a circular blob of radius R on the sensor. This blob is usually referred as the blur circle.
If the object point is assumed to be a point source of light with unit light energy, this
blob represents a Point Spread Function (PSF). Ideally the PSF should be a circular
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p = (x_p,y_p)

Lens
P

2R

u

vf

f

si

D

Figure 4.13: A image formation using a thin lens is shown. The rays from the object P
converge on the sensor plane vf to form a focus image p. As the rays diverge a blurred image
of the object is formed on another sensor plane position at si.

patch with uniform intensity, but due to various optical aberrations the intensity inside the
circular area reduces towards the edges. Thus the PSF is usually modeled in optics by a
two dimensional gaussian distribution centered at the center of blur circle with mean 0and
standard deviation σ. Let the PSF at a location (x, y) be denoted as h(x, y, σ). Assuming a
loss less imaging system h(x, y) can be written as:

h(x, y, σ) =
1

2πσ2
exp−

x2 + y2

2σ2
. (4.23)

∫ ∞

−∞

∫ ∞

−∞

h(x, y, σ)dxdy = 1. (4.24)

Thus, at pixel location (x, y), the blurred image gσ(x, y) of some focussed image f(x, y) is
obtained by convolving the focussed image with the PSF h(x, y, σ). In discrete domain, this
convolution is applied over a N×N window around the pixel. Thus blurred image formation
can be written as:

gσ(x, y) = f(x, y) ∗ h(x, y, σ) . (4.25)

Now, the value of σ at each pixel location (x, y) is calculated as follows. Using similar
triangles it can be shown that the geometric radius of blur R at location (x, y) in image
sensor location si is

Ri(x, y) =
D

2

[
si

vf

− 1

]

. (4.26)

where si is the distance of the ith sensor plane from the lens center, vf is the sensor plane
distance from the lens center at which the focussed image of the object would have formed
and D is the diameter of the lens. As the blur circle is assumed to be a gaussian, the σ
corresponding to a blur radius of Ri can be approximated as

σi(x, y) ≈ Ri(x, y)/3. (4.27)
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In the next section, we use the blur model described above to propose a generative model
based algorithm for finding out the best focussed frame for all the points at different depths
in the physical world.

4.4.2 Algorithm

As described in section 4.4.1 the images of the physical world are taken by moving the
sensor plane along the optical axis from one end to another end. We denote the set of input
images (also called as multifocus images) as G = {gi : i ∈ 1, 2, 3, . . . , N} where N is the
number of multifocus images. The images taken by varying the sensor plane distance are
registered such that the correspondence of image pixels is maintained across frames. After
registration, let any world point P ge imaged with varying amounts of blur on each sensor
plane at location p with the coordinates of the center of blur radius located at (xi

p, y
i
p) s.t.

i ∈ N across all frames. Let P be imaged with focus on the kth frame, then the blur
radius in that frame becomes 0 and the focussed image is the pixel intensity at (xk

p, y
k
p).

From the multifocus imaging process, we observe the following property of the blur radius
{Ri(x

i
p, y

i
p) : i ∈ 1, . . . , N & i 6= k} at location p across the N frames.

Ri(x
i
p, y

i
p) > Rj(x

j
p, y

j
p) ∀{i > j > k} where {i, j, k ∈ {1, . . . , N}} (4.28)

Ri(x
i
p, y

i
p) < Rj(x

j
p, y

j
p) ∀{k < i < j} where {i, j, k ∈ {1, . . . , N}} (4.29)

Thus we make an important conclusion that

1. For any frame i, other than the k, the size of blur radius is more on one frame next
to it and less on the frame previous to it.

2. For the focussed frame k, the size of blur radius is more on frame next to it as
well as on frame previous to it.

To summarize, we observed from Figure 4.7 that the blur radius at any pixel location in the
first image is very high, then it decreases finally becoming 0 and again starts increasing until
it reaches the last frame. But the fact is that we don’t know in which frame k the point p
came into focus. Thus our algorithm boils down to determine the frame in which it was in
focus and then extract the pixel from that frame. We make use of the observation above to
determine the focussed pixel.

Our model is generative in nature and inspired by the multifocus image capture process in
nature. It can be referred as an intensity matching algorithm where, given a pixel location
p across all the N frames, we want to obtain the frame in which p was focussed. There is
a prior knowledge that blurring a pixel intensity will cause it to either increase or decrease
depending on the kind of texture in its neighborhood. Since p could be focussed in any of
the N frames, without loss of generality we assume that it is focussed in some kth frame. We
claim that if p was indeed focussed, then in confirmation of the imaging process described
in Section 4.4.1, on artificially blurring p with some blur kernel obtained by assuming that
kth image was the focussed frame, the new intensity created will be same as was originally
there in location p in frames on either side of the kth frame. If p was not focussed in kth

frame, then the new intensity will not agree with the intensity at location (xp, yp) on frames
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on at least one of the either side of the kth frame. This is because the blurring would be less
on the left frame as compared to the right frame and thus the simulated intensity will not
match with one of the corresponding intensities in neighboring frames. In ideal situations
where there is no imaging noise, this method can be applied at each pixel location and this
will generate a set of candidate frames (unique frames are also possible) which are focussed
(See Figure 4.14 for an explanation of the intensity matching procedure). We get a set of
candidate frames because the proposed measure can select false candidate frames. We give a
theoretical proof of ambiguity in Section 4.4.3. To alleviate this as additional step is applied
to the algorithm which could be thought of as assigning of a focus measure to each candidate
frames. Out of the possible candidate frames, we select a window around the pixel location
p. This window is blurred with the blur kernel whose σ is obtained by assuming that that
candidate frame is focussed frame. The new intensity over the window is then compared
with the intensity in a window in the neighboring frames. The difference in intensities in a
window around the pixel is stored as a sum of differences and this designates a focus measure
for that frame. This is actually the sum of squared distances(SSD) of the intensity values.
The frame with minimum focus measure value out of the candidate frames constitutes the
best focussed frame. To assure that there is smoothness in the final solution, a graph cuts
based discrete optimization is done using this focus measure and the results obtained. The
whole algorithm can be written as in Algorithm. 2 :

(a) (b)

Figure 4.14: Plot of intensity differences for simulated and original images after running
the new focus measure algorithm at some pixel location. (a) Original intensity differences
of multifocus images. (b) Simulated intensity differences of multifocus images using our
algorithm. In plots (a) and (b), the subplots marked with blue squares and orange circles
match with each other. This means that these are the possible candidates for the set of
images in which the pixel could be focussed. But, from the ground truth we find that some
of these matches were wrong and some were correct. We mark the wrong matches with blue
squares and the correct matches with orange circles
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input : A set of multifocus images G = {gi : i ∈ 1, 2, 3, . . . , N} of size h× w and
the sensor plane locations si

output: An omnifocus image where all the pixels are in focus.

RegisterImages (G);
//Df is the number of frames to look for on both sides of the current

frame.

Df ← 1 ;
//Each pixel location is chosen

for p← 1 to h× w do
//Each input image is considered as focussed

for i← Df + 1 to N −Df do
I ← gi(xp, yp) ;
I−1 ← gi−Df(xp, yp) ;
I+1 ← gi+Df(xp, yp) ;
f ← i ;
vf ← si ;

Ri−Df ←
D
2

[
si−Df

vf
− 1
]

;

Ri+Df ←
D
2

[
si+Df

vf
− 1
]

;

R← Ri−Df = Ri+Df ;
σi,i−Df = σi,i+Df ←

R
3

;
I ′ ← I ∗ h(xp, yp, σi,i−Df) ;
I ′′ ← I ∗ h(xp, yp, σi,i+Df) ;
//Focus criteria being checked

if sign (I− I−1) ⇔ sign (I− I ′) and sign (I− I+1) ⇔ sign (I− I ′′) then
Candidate = Candidate ∪ f ;

end

end
for c ∈ Candidate do

//SSD is taken over a window

sumc ←
∑

N3×3
|I−1 − I ′|+ |I+1 − I ′′| ;

end
Edata ←

∑

c ;
end
Esmooth ← PiecewiseSmoothModel ;
E ← Edata + Esmooth ;
Omnifocus Image ← Apply graph cuts on E ;

Algorithm 2: Algorithm for New focus measure
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4.4.3 Proof of Ambiguity

As mentioned in previous section, here we give a theoretical proof of the fact that there
will be multiple candidates of image frames which could be focussed using the new focus
measure. Without loss of generality, let us assume we have a 1D focussed image X of n
pixels. We also assume that this image can be blurred with blurring kernels of various sizes
denoted as σ where σ ≤ k. For simplicity the blurring is averaging blur i.e. all the locations
in the blurring kernel are equally weighted. We use ∗ to denote an averaging blur operator.
Now, the whole process of multifocus imaging can be mapped as blurring the focussed image
X with σ = k upto σ = 0 and again till σ = k. This is represented in Figure 4.15 as a blur
Vs Image axes where the focussed image X is located along horizontal axis and the various
levels of blur are located along vertical axis.

pixel locations on a 1D image

0

1

k

1

blur axis

k

k+1

k−1

σ

x0
0 x0

1 xm xn

xk
m−1

xk
m

xk
m+1

xk−1
m

xk+1
m

Figure 4.15: A blur Vs 1D image axis.

Let the intensity values of pixels at blur level σ be given as xσ
i for the ith pixel location.

Thus we have the focussed image X as {x0
0, x

0
1, . . . , x

0
n}. The radius of blur at kth blur level

i.e. σk is given as
Rk = 2× k + 1 (4.30)

Let us consider a focussed pixel x0
m. On blurring this pixel with blur of σ = 1, 2, . . . , k −
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1, k, k + 1, we get

x1
m = x0

m ∗ σ1 =
x0

m−1 + x0
m + x0

m+1

3

x2
m = x0

m ∗ σ2 =
x0

m−2 + x0
m−1 + x0

m + x0
m+1 + x0

m+2

5
...

xk−1
m = x0

m ∗ σk−1 =

∑k−1
j=−(k−1) x

0
m+j

2(k − 1) + 1
(4.31)

xk
m = x0

m ∗ σk =

∑k
j=−k x0

m+j

2k + 1
(4.32)

xk+1
m = x0

m ∗ σk+1 =

∑k+1
j=−(k+1) x

0
m+j

2(k + 1) + 1
(4.33)

At the kth blur level, we take the (m− 1)th, mth and (m + 1)th pixel locations and assume
that the pixel xk

m is focussed. By using our measure we artificially blur it with σ = 1 and
compare it with the pixels xk+1

m and xk−1
m which are at ±1 with blur σ = k respectively. This

is pictorially represented in Figure 4.15. Thus the simulated blur x
′

is given as

x
′

=
xk

m−1 + xk
m + xk

m+1

3

=

∑k
j=−k x0

m−1+j +
∑k

j=−k x0
m+j +

∑k
j=−k x0

m+1+j

3(2k + 1)

Simplifying the above, we get

x
′

=
x0

m−k−1+2x0
m−k

+3
Pk−1

j=−k+1 x0
m+j+2x0

m+k
+x0

m+k+1

3(2k+1)
(4.34)

For the new focus criterion, we have from Equation 4.31 and 4.34

(xk
m − x

′

)(xk
m − xk+1

m ) > 0 and (4.35)

(xk
m − x

′

)(xk
m − xk−1

m ) > 0 (4.36)

Thus we see that there are 2k+3 unknown intensities ranging from x0
m−k−1 to x0

m+k+1 and only
1 equation which should be satisfied. Thus we have multiple solutions for focussed intensity
set X. Also, with increasing blur radius σ = k, the number of solutions are increasing. This
leads to more number of candidate frames satisfying the focus criteria. It can be observed
that for k = 0 which is the focussed image, the new focus criteria is satisfied as follows

(x0
m − x

′

)(x0
m − x1

m) = (x0
m − x

′

)2 > 0 since x1
m = x′

4.4.4 Results

Figure 4.14 explains our focus criterion described above. We took some point p across a set
of 131 multifocus images. The pixel was visible in approximately 19 image frames out of the
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131 captured. This is because the images were captured using a NICAM [2] which captures
a wide field of view as it rotates. The point p came in view in the 70th frame where it was
defocused and remained in view till the 99th. The blue and the red plot are the plots of gray
intensity value of p along the y-axis and the image frame index number along the x-axis. In
the blue plot three intensity values are plotted : the current frame and the frames indexed
±4 from this frame. In one red plot we show the simulated intensity of the pixel p nearby
±4 frames by assuming the intensity in the current frame is focussed as blurring p with an
artificial blur calculated from the sensor plane locations. The plots in both the figures which
have been marked with ellipse and rectangle are the possible candidates who satisfy the
focus criterion described in the algorithm Alg. 2. From the ground truth data, out of the
many candidates the ones shown in orange rectangle are the possible positive candidates
whereas the ones shown in blue spheres are false positives. As can be seen the true positives
appear in nearby frames which is true from the fact that the depth of the field of the camera
covers those frames. Once all the candidates are obtained, a focus measure based on SSD
on a local neighborhood of a pixel location is calculated which serves as a data term in the
energy minimization function.
Synthetic Images Figure 4.16(a)-(e) shows a set of synthetic images generated by applying
a gaussian blur on a checker board image pattern. Such a pattern of images is same as set of
multifocused images being generated from a camera. Initially an image which is sharp was
taken and then blurred by σ ranging from .3 to 3. The focus measure algorithm is applied
to get the final results in Figure 4.16(f). Figure 4.17(a)-(d) shows two synthetic planes at
different depths. Thus the artificial blurring which is being applied becomes a function of
the depth of the planes. The resulting omnifocus image is shown in Figure 4.17(e) where
both the planes are in focus.

Real Images Figure 4.18(a-d) shows input multifocus images of a real scene, captured
using a NICAM. Different parts of the scene get focussed in different image frames. The
output omnifocus image after applying graph cuts is shown in Figure 4.18(e). Similarly for
another data set as shown in Figure 4.19

4.5 Summary

In this chapter we have provided a new algorithm for calibrating NICAM where the tilt of
the sensor plane is obtained. This leads to registration of multifocus images. The algorithm
is formulated as a least squares minimization. Further, a general method for pan - centering
a camera has also been proposed. The problem of omni focus imaging has been presented
in a energy minimization framework where the labels are discrete. This framework allows
for smooth and fast solution to this problem by the application of recently developed graph
cuts method for energy minimization. This makes any real world vision system applying
this framework near real time. The problem of omni focus imaging requires a focus measure
function which is a criteria for selecting the best focussed pixel on an object which has been
imaged with varying amounts of blur in a number of images. In this work, we also develop
a new focus measure function which is generative in nature. As explained in Section 4.4,
unlike old focus measures, it performs better near the image and depth discontinuities. This
leads to better, smoother and fast omnifocus images. In the next chapter, we propose
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(a) (b) (c) (d) (e)

(f)

Figure 4.16: (a)-(e) Some images from the set of synthetic multifocus images. (f) Output
omnifocus image.

(a) (b) (c) (d)

(e)

Figure 4.17: (a)-(d) Some images from the set of synthetic multifocus images. (f) Output
omnifocus image.
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Figure 4.18: (a)-(d) Some images from the set of real multifocus images. (f) Output omni-
focus image.
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Figure 4.19: (a)-(d) Some images from the set of real multifocus images. (f) Output omni-
focus image.
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optimization based techniques for background removal in a real world Computer Vision
problem. Specifically, we modify an existing continuous optimization technique and apply it
and then propose a new discrete optimization function for background removal

61



Chapter 5

Background Removal for Train
Monitoring System

5.1 Introduction

The objects in the three dimensional world can be divided into two basic classes : Static
and Dynamic. Static objects include sky, ground, buildings etc. which have no temporal
motion and are stationary with respect to a static observer (which is the camera in our case).
Dynamic objects include people, vehicles etc. to which some motion could be associated. A
dynamic scene is captured by the camera in the form of a video. Thus, a video is a sequence of
images called as frames such that in each frame an object has moved by some amount. Some
of the common video based computer vision problems include tracking where a particular
object is tracked across the frames of a video, motion estimation where the velocity of the
moving object is calculated. We will refer such moving objects as lying in the foreground
and other static objects like the ground on which the object is moving and the sky on top
etc as lying in the background. Since only the objects in foreground are important to us, the
background is a redundant information for us. The branch of computer vision which deals
with removal of background from videos is called as Background Subtraction. A review of
popular background removal techniques was given in Chapter 3. Most of these techniques
were developed keeping in view the real world problem for which they would be used. Thus
the solution to the background removal problem is usually application dependent.

The design and development of a real world vision system which solves a specific task
with very high accuracy is a difficult task. A number of factors like the imaging conditions,
the type of camera, the surrounding environment and the applicability of existing computer
vision techniques under these factors decides the feasibility of developing such a system. In
this chapter we describe novel background removal techniques applied for an Intermodal
Train Monitoring System. This system captures the video of a moving train and outputs the
dimensions of the containers kept on the train, the train velocity, the type of containers etc.
One of the important computer vision problems involved in this system is the removal of
background from the individual frames of the video. The background in this video consists
of moving clouds along with changing lighting conditions and more importantly the color
of the containers was nearly same with the color of the background at different instances
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of time. This made background removal difficult. Although the clouds were moving with
small velocity yet the application of conventional background subtraction techniques which
assumed near static background failed. And the requirement of the system was to have an
accurate background removal. In addition to background removal another important aspect
of this system is the estimation of the velocity of the train.

In order to obtain accurate background subtraction, discrete and continuous optimization
based background removal techniques are proposed. The first technique employed the knowl-
edge of the shape of the containers in the train video along with a window based Gaussian
Mixture Model (GMM) for background learning model to learn the background. In this
algorithm, the mixture model updates and henceforth background labeling is similar to a
continuous optimization method. The combined method allowed to handle a wide variety of
backgrounds e.g. changing lighting and similar color background foreground. From consec-
utive background subtracted image frames, the velocity of the train was estimated. Then,
we have developed another discrete optimization based background removal technique which
can handle small motions of the clouds in the background as well estimate the velocity of the
IM train simultaneously. This technique utilizes the recently developed fast discrete opti-
mization technique of Graph Cuts. In this algorithm, we model the velocity of objects (train
and other objects in the background) in the train video as a Markov Random Field (MRF)
and formulate an energy function for motion estimation. Once the motion of the objects is
estimated, the obtained motion map can be simply thresholded to obtain the objects in the
foreground i.e. the train. Such a thresholding separates the slow moving objects like clouds
and static background from the trains in the foreground which are having a high velocity.

The rest of the chapter is organized as follows. In Section 5.2, we describe the Intermodal
Train Monitoring System and the motivation behind it. This system is composed of a number
of computer vision modules including background removal, velocity estimation, panoramic
mosaic generation. As background removal is a critical part of the system, we describe the
optimization based techniques which have been proposed and applied in Section 5.3.1 and
Section 5.3.3. Finally, in Section 5.5 we summarize the contributions and claims of this
chapter.

5.2 Overview : Train Monitoring System

This section gives a brief overview of the vision based Intermodal Train Monitoring Sys-
tem(ITMS). An intermodal train is a freight train which consists of two basic types of loads
- Containers and Trailers. This system takes the video of a moving intermodal(IM) train
as input and then outputs various features of the train like length of gaps between the
consecutive loads, velocity of the train, various types of loads as containers and trailers.
This information is used for higher level inferences like calculation of the amount of air
drag through the gaps between the loads of the train as it moves. Thus the aerodynamic
efficiency of the loading pattern of the train can be calculated. The complete system re-
lies on a sequence of following tasks - robust background subtraction in each frame of the
video, estimation of train velocity, creation of mosaic of the whole train from the video and
classification of train loads into containers and trailers.

In an IM train, each load is placed on a long iron platform with wheels called as rail car
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(a) (b) (c) (d) (e) (f)

Figure 5.1: (a) Railcar. (b-f) Different kinds of loads. (b) Double Stack with upper and
lower stack of same length. (c)&(d) Double Stack with upper and lower stack of different
length. (e) Single Stack. (f) Trailer.

as shown in Figure 5.2(a). A series of such different length rail cars are attached together
to form the complete train. Loads of different sizes and types as shown in Figure 5.2(b-f)
are placed on each of the rail cars. The arrangement of these loads across the length of an
IM train is called as the loading pattern for that train. Figure 5.2 shows a good and a bad
loading pattern. The poor loading assignment of loads to railcars leads to large gaps in IM
trains. In [127] it was found that such inefficient loading patterns contribute to considerable
increase in aerodynamic penalties. A good loading pattern would reduce the air resistance
by as much as 27 percent and the fuel consumptions by a gallon per mile per train [128].
Therefore, a vision based system is developed to do a loading pattern analysis of an IM train.

(a) (b)

Figure 5.2: (a) good loading pattern in which the length of railcars match the length of the
loads. (b) A bad loading pattern in which the smaller loads are kept on longer railcars. This
leads to more aerodynamic resistance.

A loading pattern analysis involves measuring the gaps between consecutive loads of the
train and use this information to determine the efficiency of the loading assignment as in [128].
Our system is a camera based automatic train monitoring system, which captures a video of
a moving train and applies image processing and machine learning techniques to process this
video. The task is made challenging by the fact that the system should be near real time
and be able to handle different imaging conditions e.g. cloudy skies and varying lighting
conditions. The system functions as

• Capture a video of an IM train.

• Apply novel background subtraction techniques proposed in Section 5.3.1 and Sec-
tion 5.3.3 on individual image frames of the video.

• Generate panoramic mosaic of the train.

• Calculate the gaps between the loads of the train.

The calculated gap lengths are used for calculating the aerodynamic efficiency of the train.
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5.3 Background Subtraction

In this section we propose two novel background subtraction techniques for background re-
moval in train videos. The first technique proposed in Section 5.3.1 utilizes the shape of the
intermodal loads as a prior knowledge while detecting and removing the background. Addi-
tionally the technique also employs a continuous optimization method of Gaussian Mixture
Modeling(GMM) for background modeling to increase the overall accuracy of the ITMS sys-
tem. To incorporate the slightly moving clouds in the background, the GMM is modified by
making it window based. After background removal, the velocity is estimated by correlating
two consecutive image frames. The second technique in Section 5.3.3 models background re-
moval as that of velocity estimation. Thus velocity estimation and background subtraction
of an image frame is done simultaneously. This modeling is done in a discrete optimiza-
tion framework by formulating a novel energy minimization function. This function can be
optimized very fast using minimum cuts on graphs [1].

5.3.1 Continuous Optimization Approach

(a) (b) (c) (d)

Figure 5.3: (a) and (b) Background template images with clouds,sky and fields. (c) Fore-
ground containing load. (d) Regions where different subtraction algorithms are applied.

The loads of an IM train can be broadly classified into containers and trailers. The
containers are rectangular box shaped structures as shown in Figure 5.2(b-e). The trailers
differ from containers in that they have wheels near their bottom as shown in Figure 5.2(f).
The containers are stacked on rail cars in the following two configurations: Single Stack
which has only one container on the rail car (See Figure 5.2(e)) and Double Stack which has
two containers stacked over each other (See Figure 5.2(b,c,d)) and placed on the rail car.
Once the video of IM train is obtained, the next step is to separate the foreground from the
background. The background is defined as any part of the image which does not belong to
the IM train. e.g., sky, ground behind the train etc. See Figure 5.3 for sample background
and foreground frames from the videos we captured. A simple template based background
subtraction algorithm does not work properly for our case, since the background changes
dynamically e.g. clouds change position over the duration of train movement. Thus, for
robustness of background subtraction, we adopted the following three stage algorithm.
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• Edge detection based method is used for background removal from above the top of
the loads (region marked Red in Figure 5.3(d)) and gaps between consecutive loads
(region marked Green in Figure 5.3(d)) is removed using edge detection methods.

• For the gap boundaries which are not straight as is for double stacks with unequal
lengths (See Figure 5.2(c,d)), the background in the small region near the edge of
the smaller stack (region marked Blue in Figure 5.3(d)) is removed using a windowed
GMM [118] method.

Each of these methods is explained below.
The loads have box shaped structure, which gets projected as a rectangular shape in an

image. Thus a load can be characterized by a top edge and two side edges. The enclosed
region corresponds to the load i.e. foreground, and the outside region is background. A
gradient based edge detector is applied to each frame to obtain a binary image with edges of
the loads getting the highest intensity value of 255. Due to over exposure of the images in
the train video, some of the detected edges may not be continuous, thus we dilate the edge
image using a 5× 5 mask. Figure 5.4 shows the edge detection and dilation results.

(a) (b) (c)

Figure 5.4: (a) Original Frame containing a load. (b) Edges of the load detected. (c) Dilated
Edge image.

In this dilated edge image, we need to identify the top edge of the load. As the background
usually contains structures like sky, clouds and bushes, which have low frequency compo-
nents, the edge detection process detects very few edges from the background. Since the
loads are almost rectangular in shape their top edge is assumed to be a straight line. Thus
the first pixel location where the sum of intensities along x-direction peaks is taken to be the
top of the container. This is depicted in Figure 5.5. The region above this pixel location in
the image frame is considered to be background. Now, we remove background from the gaps
lying between the vertical boundaries of consecutive loads. Since the containers and trailers
are long, only some portion of their length gets imaged in consecutive frames. In fact any
load can be imaged in four possible configurations as shown in Figure 5.6. Three of these
configurations (a-c) contain gaps or part of the gaps.

To detect these gaps, we start from the leftmost column of the image frame and look at the
location of the highest edge pixels along y direction. These locations have higher y coordinate
values for loads and lower values for gaps. We decide on a threshold Th, and whenever the
difference in measurement in consecutive columns exceeds Th we signal the presence of left
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Figure 5.5: Detection of top edge of the load.

(a) (b) (c) (d)

Figure 5.6: (a) Left part of the gap is visible. (b) Complete gap is visible. (c) Right part of
the gap is visible. (d) No gap visible.

side of the gap. Similarly we repeat the process to find the right side of the gap. The threshold
Th can be calculated as follows. The height of the rail car and the containers is fixed and can
be obtained from freight train manual [129]. Assuming perspective projection, the height of
rail car hrc in image pixels is computed using the parameters of the camera setup. Similarly
we can calculate the height of a single stack (smallest in height among all loads) in image
pixels as hss. Their difference i.e., hss − hrc is our threshold Th. Figure 5.7 depicts the gap
detection algorithm. The above algorithm is sufficient for detecting gaps, which do not have
a double stack container with unequal length stacks on either of its sides (Figure 5.3(c)). In
such cases, the above technique based on edge detection only helps in removing a part of
the gaps between longer stacks as shown in green color in Figure 5.3(d). In order to remove
background near the shorter of the two stacks (blue region in Figure 5.3(d)), we apply the
GMM method described in [118]. In this method the temporal pixel intensities obtained
across frames at one particular location are modeled as a mixture of gaussians. In this work,
we input all the intensities in background frames captured before the arrival of IM train
(see Figure 5.3(a,b)) and the intensities from the background regions detected using edge
based method to learn the parameters of the gaussians corresponding to the background.
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Figure 5.7: Detection of gaps in between the loads.

Since we do not have any prior knowledge about the presence of such kind of gaps, we apply
this adaptive algorithm near the boundaries of all the gaps detected using our previous edge
based method. We thus use edge based and GMM based continuous optimization technique
for robust background removal as seen in Figure 5.3.2 in Section 5.3.2.

5.3.2 Results

In this section, we describe the results obtained by applying the continuous optimization
technique proposed earlier. As can be seen in Figure 5.3.2(a,c), the input is an image frame
containing a load. Although there are many clouds in the background, they are not very
sharp and are easily removable using edge detection techniques. The top edge and the gaps
are detected based on the technique described above. In the meantime, the GMM based
algorithm is also learning the intensity between the gaps as belonging to the background.
This is helpful in removing background from the region near the smaller stack out of the two
stacks in the double stack configuration. This is shown in Figure 5.3.2(e,f). The next step is
to calculate the velocity of the IM train from the background subtracted images generated
before. We assume that the motion of the train is horizontal and there is negligible vertical
motion. A correlation based technique is applied to get the pixel location where there is
a best match between consecutive frames. Since a two-dimensional correlation is not very
fast and our application should be near real time, we approximate it with a one-dimensional
correlation. This is done by summing up the intensities in two consecutive images column
wise and then correlating these summed up 1D arrays. The summing operation takes care
of the small motions in vertical direction. The array index of maximum correlation denotes
the optimal pixel shifts between consecutive frames and is thus the velocity of the train in
pixel shift per frame. Thus the estimated optimal velocity vopt(I1, I2) can be written as

vopt(I1, I2) = argmax
v

∑

x

(
∑

y

I1(x, y) ·
∑

y

I2(x + v, y)

)

where, I1 and I2 are two neighboring image frames. Thus, we are able to do background
subtraction using the prior information about the problem we are solving. This information
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(a) (b) (c) (d)

(e) (f)

(g)

Figure 5.8: (a) and (c) Example frames from a video. (b) and (d) Corresponding background
subtracted frames. (e) and (f) Gaussian Mixture Model based background subtraction re-
moves the background from the gaps near the smaller stacks in a double stack configuration.
(g) Mosaic of an intermodal train consisting of background subtracted loads.
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is in the form of the rectangular edges of the train. In addition we also use a GMM model
to learn the background and remove it from some parts of the gaps between the loads. In
the next section, we describe another discrete optimization based framework for background
removal. This technique calculates velocity of the train and does background removal simul-
taneously. Once the velocity estimate and the background subtracted frames are obtained
as described in Section 5.3.1, the final panoramic mosaic is created as follows. We extract a
patch of pixels of certain width from the center of the frames and then paste these patches
on one large image. The width of each patch is equal to the velocity estimate of the train
in the frame, from which the patch was taken. The reason being that the velocity estimate
describes the amount by which the pixels have been shifted. Thus by selecting patches of
length equal to the velocity we make sure that there is least overlapping region between
consecutive patches when we create the mosaic. Since distortion is least in the center of the
image, we choose the patch located at the center of the image. Figure 5.3.2(g) shows our
results on mosaic generation for one IM train. The length of the gaps can then be obtained
from the background subtracted panoramic mosaic by measuring the number of background
pixels between the loads. These pixels have an intensity of 0 due to the application of
background removal on them.

5.3.3 Discrete Optimization Approach

This section presents a new algorithm for background detection and velocity estimation
simultaneously in an energy minimization framework. Any image frame from an IM train
video consists only of objects which have either large velocity i.e. the load or small or zero
velocity which is actually the background. Thus if the velocity of each pixel in the image
frame is known with high accuracy, then the image can be easily classified into foreground
and background. If we assume that the unknown velocity at each pixel location in an
image belong to a Markov Random Field ,we can formulate an error function whose minima
will give accurate velocity estimates. This error function is popularly known as energy
minimization function in computer vision literature [4]. A number of optimization techniques
(See Chapter 2) exist for minimizing this function. We apply a recent developed technique
called Graph Cuts [1], which is a fast combinatorial optimization method to obtain smooth
and regularized solution. Conventionally an energy function is defined as :

E(f) =
∑

p∈P

Dp(fp) +
∑

{p.q}∈N

V{p,q}(fp, fq) (5.1)

where p is a pixel location in an image, f = {fp|p ∈ P} is a labeling of the image P , Dp(·)
is the data penalty function which signifies how much cost one is paying to give a particular
label to one pixel, V{p,q} is an interaction potential and signifies the cost of giving different
labels to the neighboring pixel locations, and N is the set of all pairs of neighboring pixels.

In our problem we define the labels as the unknown values of the velocity values at each
pixel location in an image frame. This is the unknown velocity of the train in pixel shifts
per frame. Thus the label set is : fp = {0, 1, 2, . . . , v}. We define the data term at a pixel
location p as follows. A window wI

p of size c × c around the pixel location p in reference
image frame I (See Figure. 5.9) is taken. Assuming local smoothness of velocity estimates
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Figure 5.9: Consecutive input frames of a intermodal train video. A pixel location p in image
frame I is assigned a velocity of v. Thus the point p can be found at different locations in
different image frames which differ by their x-coordinate locations. If the assigned velocity
label v is optimum or close to optimum the data term Dp in Equation 5.2 peaks for that
label.

in the window wI
p, let us suppose the velocity label of the patch w centered at pixel location

p is v. If this assigned velocity label v were the correct velocity, then the patch would moves
to location p + v in the (I + 1)th frame and p + 2v in the (I + 2)th frame and so on. We
propose the use of illumination invariant metric: Normalized Cross Correlation(NCC) for
measuring the similarity between two image patches. Thus, we define the cost of giving the
patch Wp a velocity v as the NCC of image features (intensity, gradient information etc.)
between this patch and the patches in the frames which are located at intervals [−n, n] with
respect the reference frame I. This is explained in Figure 5.9. An important assumption
here is that, since the motion of the train is horizontal, the unknown motion label fp should
only account for motion along the x-direction. The vertical motion is considered to be zero.
The data penalty function D0

p can thus be defined as :

D0
p(v) =

∑n
t=−n NCC(wI

p, w
I+t
p+(t×v))

(2n + 1)
(5.2)

where v is the velocity label given to pixel p in image I, n is the number of frames to which
the window w in I will be correlated with and is taken on either side of the reference frame
I and wI

p is the spatial window taken in image I centered at pixel location p.
The image feature being used is the intensity values inside the window w. Although other

image features like image gradient etc. can also be used but since the number of edges is
usually less, they lead to sparse velocity maps. In order to analyze the goodness of the
error function in the data term defined in Equation 5.2, we obtain the initial estimate of the
velocity map for the reference frame I, without applying any smoothness constraint. This
is done by calculating the velocity costs for each possible velocity at each pixel location and
then assigning the velocity which gives maximum NCC value to that pixel. The classification
of a pixel as background/foreground is done by differentiating the regions with larger velocity
cost with those with lower velocities based on some threshold. The process is repeated for
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all pixel locations across the image. An example of the obtained map by using the data term
D0

p as in Equation 5.2 is shown in Figure. 5.11(a,b). We observe that the velocity labels for
the pixels belonging to the train are good and close to correct velocity. But there are also
exists some erroneous estimates of velocity of the background in the gaps between the loads.
This behavior of the data cost can be analyzed as follows.

Since the background in most of image is relatively smooth, the NCC at the regions of
the image belonging to the background do not get any enough strong matches and it peaks
for incorrect velocity. This is explained in the Figure. 5.10 where the top left image is
the reference image for which the velocity map is to be calculated. The first row shows

Figure 5.10: The data term D0 for smoothly textured background (marked inside a black
square) in the top left image results in erroneous correlation peaks.

the three consecutive frames of a moving train. A window (colored black)/patch is chosen
from the background in the first frame. Since there are no sharp edged clouds or any other
high gradient object in the background, the window consists of uniform intensities. Let the
velocity v of this patch be 0 which is the correct velocity for background. Then the obtained
window patches in the next two frames are shown as yellow squares. It can be seen the
correlation between the three patches (which are zoomed in second row) will come out to
be low since the train pixels have occluded the background at the yellow colored patches.
Whereas, if the velocity of the patch (black window in top left image) in the background is
assumed to be high e.g. 30 pixels of shift, then the NCC with the corresponding patches
in the next couple of frames (green box and zoomed in the third row) will peak. Although
the patches in the third row are not of the same part of the background yet due to absence
of texture they all look similar and thus the NCC value is ought to maximize for higher
velocities. This causes erroneous data cost vector for pixels in the background and we obtain
noisy velocity estimates in the background between the loads as is shown in Figure. 5.11(b).
Such patches will always be there if the background is texture less and the data penalty
vector will not be able to model the background if it is smooth.

One of the solutions to this problem is to remove the uniform texture from the background
as the first step itself and then apply the data term D0. This is done by simply subtracting
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the template of the background which was obtained before the train arrived. Although we
had mentioned before that the background in the intermodal train video moves and template
based solutions are thus not good, yet it can be noted that such movements are visible for
the edges of sharp clouds which are moving. Otherwise movement of a smooth textured
cloud is not a problem as due to its smoothness it does not cause any intensity change on
a spatially static window placed in the background. In Figure. 5.11(d) we show the result
of first removing the texture less background and then applying the data term D0 as in
Equation 5.3. We observe that most but not all of the background is removed.

(a) (b) (c) (d)

(e) (f)

Figure 5.11: (a) Input image from a video of an IM train (b) Background subtracted frame
when the image feature being used for NCC. (c) Another Input image frame (d) Background
subtraction is done by first removing smoothly textured regions and then applying NCC. (e)
and (f) NCC Vs Velocity labels for two pixel locations located on the train. As can be seen
the correlations correctly peak on train velocity 40 pixels per frame.

But still, we observe as in Figure. 5.11(c) that when there are sharply edged clouds moving
with slight velocity in the background the data term D0is not able to model it. These regions
are still getting erroneous velocities. This happens because although a patch of background
taken in this region does not suffer from the drawback of smooth texture described previously,
yet it is possible that the train regions occlude them quite quickly in the consecutive frames
of the reference frame. Thus the erroneous correlation values average out the final NCC
when computed over all the 2n + 1 frames. This is shown in the Figure. 5.3.3(b) where we
have plotted the NCC values at a pixel location marked with red dot (see Figure. 5.11(c))
taken on the edge of the cloud. As can be observed the NCC plot does not peak for lower
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velocities rather the NCC values are almost same for most of the velocities. To overcome
this situation, we refine the data term described in Equation 5.2 as explained below. The
previous data term gave equal weight of 1

2t+1
to each correlation between reference patch

and all the other 2t frames. Since we have more confidence in NCC values on the patches
from frames which are near to the reference frame patches, we weight the correlation values
according to their temporal distance from the reference frame. Thus we define a new data
term D1 as follows :

D1
p(v) =

[
n∑

t=−n

NCC(wI
p, w

I+t
p+(t×v))

|t|
×K

]

/2 (5.3)

where |t| is the absolute difference between the index of the reference frame and the tth

neighboring frame, K is the normalizing factor such that the D1
p(v) ≤ 1. This leads to

better modeling of the background containing objects with edges e.g. clouds or trees. This
is shown in the NCC Vs velocity labels plots in Figure 5.3.3(b & d). As can be seen in
Figure 5.3.3(c), there is a clear improvement in the background subtraction and the NCC
value correctly peaks for lower velocity labels, thus modeling the motion of clouds in the
background. It can be seen that although there has been improvement in the background

(a) (b) (c) (d)

(e) (f)

Figure 5.12: In all of these input images the texture less regions were removed first using
template based background removal(a) Background subtracted frame using data term D0

(b) NCC Vs Labels plot for a point selected in the background. (c) Using data term D1.
(d) Corresponding NCC Vs Labels plot. (e) Using data term D2 we obtain best background
removal (f) Corresponding NCC Vs Labels. As can be seen, this plot peaks for correct
velocity which is around 0.

subtraction, yet there still exist regions in the background which are getting detected as
foreground. This is evident from the erroneous foreground in Figure 5.3.3(c). In order
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to still improve the data term and with the observation that there are still regions in the
background which are getting high correlation values for high velocity labels we refine the
data term D1 into D2. We found out that D1 usually fails in the regions lying close to the
edges of the loads. Since we are correlating a pixel location in the reference frame with n
number of frames which came before and after the current reference frame I, there is a high
probability that this regions will get correct correlation windows from at least one out of
the following two sets of images: image frames coming before the reference form one set
(e.g. Image frames I + 1, I + 2 in Figure 5.9) and those coming after the reference frame
constitute the other set (e.g. Image frames I − 1, I − 2 in Figure 5.9). In previous data
terms, we were averaging the NCC obtained from the +t and −t frames, so regions which
were getting good estimates from at least one set were getting averaged and not peaking for
correct velocities labels.Thus we modify the data term as follows. We take the maximum
value of the correlation obtained by correlating reference frame with image frames taken from
both sides of the reference frame. Thus, the set which gives highest correlation becomes the
data term for that pixel location p, . Thus we have :

D2
p(v) = max

(
−1∑

t=−n

NCC(wI
p, w

I+t
p+(t×v))

|t|
×K1,

n∑

t=1

NCC(wI
p, w

I+t
p+(t×v))

|t|
×K2

)

(5.4)

In Figure 5.3.3(e) we show the obtained background subtracted image after the data term
D2 has been applied. As can be seen the NCC plot for the red pixel point gets a low
(≈ 0) velocity label as correctly belongs to the background. Additionally, on comparing
the velocity mapped frames in Figure. 5.3.3(c & e), we observe a clear improvement in the
background subtracted frames, where of the erroneous velocities at the boundary of the load
has got corrected. Finally, the smoothness model Vp,q in Equation 5.1 is defined as the cost
of smoothness between nearby frames. We define the smoothness function as the Pott’s
model [1]. This model is defined as

Vp,q = K × T (fp = fq)

where T (·) = 1 if argument is true else T (·) = 0. Finally we analyze a situation where the

Figure 5.13: Repetitive texture causes ambiguous NCC values when the data term D2 is
applied on the pixel marked red on the leftmost velocity map.

smoothness function Vp,q helps to obtain smooth and thus correct solution, if the data term
is not discriminatory enough. The background subtracted frame shown in Figure 5.13(a)
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contains a number of locations in the region inside the train where the initial velocity estimate
is not correct. We choose one such point in the BG subtracted image and also locate its
location in the original train frame, both marked with red dot. On plotting the NCC Vs
velocity labels plot, we find that the correlation peaks have peaked for multiple labels. This
occurs due to the presence of repetitive texture on the surface of the train. For such regions
in the image the NCC based data term will peak for multiple velocities out of which only
one is correct. Here, we rely on the smoothness function V{p,q} defined in Equation 5.1 to
assign them the correct velocity labels. Thus the final energy function to be minimized can
be defined as

E(f) =
∑

p∈P

D2
p(fp) +

∑

{p.q}∈N

V{p,q}(fp, fq) (5.5)

We apply the α expansion based Graph cuts approach proposed in [1] for energy minimiza-
tion. We show and describe the obtained results in Figure. 5.14 in Section 5.3.4.

5.3.4 Results

In this section, we show the results obtained after modeling background subtraction for
Intermodal freight trains as that of motion estimation. The problem of motion estimation can
be modeled in a discrete optimization framework. On applying graph cut based minimization
technique in this framework we obtain the results shown in Figure 5.14. The size of each
input image is 320 × 240. Without applying any smoothness to the background removal
map and using just the Data Term, we get the velocity maps as shown in Figure 5.14(d,e,f).
This causes some amount of noisy background removal in one of the images, in the form
that background is not removed properly from between the gaps. But after the application
of smoothness constraints and Graph Cuts, it can be seen that we get smooth velocity maps
whose value is typically around 40 pixel shifts per frame. We also observed that the velocity
map of a train consists of two velocities which are close to each other and differ by 2 pixels
per frame in most cases. See Figure 5.14(g,h,i) in detail. The lower part of the velocity
maps has a higher velocity and the upper part has higher velocity. This happens because
the camera from which the video is being captured is located on the ground and pointing
towards the moving train. This the lower part of the train is closer to the camera compared
to the upper part. Due to this and the fact that imaging is done with perspective projection,
the input images are actually slightly distorted. Thus the lower part moves more number of
pixels from one frame to the other compared to the upper part. The strength of the proposed
framework can be seen from the fact that the velocity maps are being calculated with such
high accuracy.

5.4 Comparison of Various Techniques

In this section, we compare and then analyze the various techniques of background removal
based on a frame from an Intermodal Freight train. In Figure 5.15, we show the results ob-
tained from various techniques. The input frame is shown in Figure 5.15(a). This image has
been chosen as a general representation of the kind of images encountered in our problem of
background removal. It contains a sharply edged cloud and the edge of the left container falls
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5.14: (a-c) Input image frames. (d-f) Initial estimates using data term D2 (g-i)
Regularized velocity estimates obtained using graph cuts (j-l) Background subtracted frames
overlaid over velocity maps.

near this edge. In such cases, the edge based algorithm described in Section 5.3.1 will per-
form poorly because the sharp edge of the cloud will be a strong noise for this algorithm. The
output from other basic background subtraction algorithms are shown in Figure 5.15(b,c,d).
In (b), the background has been removed using a template based subtraction method, where
the template was the initial frame of the video. Most of the background is not removed as
template based removal algorithms are a function of a constant called threshold. Thus due
to the movement of clouds and the changing intensity of light in an outside environment
results in bad background removal. The Gaussian Mixture Model (GMM) based algorithm
is used for removal in (c). This algorithm performs better than template based removal
and removes most of the background. But some of the background between the gaps is not
removed at some pixel locations. This happens because the intensity values at those pixel
locations have been learnt as foreground. The reason for this is that the intensity on some
of the loads passing through that pixel location are close to the intensity of the background
at that pixel location. In (d), we show the output of our Graph Cuts based algorithm. It
performs better than all the other algorithms.

5.5 Summary

In this chapter we have proposed a discrete optimization based background removal technique
for train monitoring system. This techniques relies on the assumption of the unknown
velocities belonging to an MRF. This this allows the application of smoothness constraints
on the final solution. We have also applied another continuous optimization technique called
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(a) (b) (c) (d)

Figure 5.15: (a) Input image from which the background is to be removed. (b) Image
obtained after template based subtraction at pixel level. (c) Gaussian Mixture Model (GMM)
based background removal. (d) Proposed Graph Cuts based background removal. As can
be seen, the proposed technique performs better than the other two methods

Gaussian Mixture Model(GMM) along with the prior knowledge of the shape of the loads
of the train for background removal. This background removal technique works in most of
the cases where we can rely on robust edge detection which are non - erroneous too. In the
sense, that this algorithm might not work properly for videos win which there is a sharp
cloud in the background. In order to handle such clouds and other slightly moving objects
like trees we have developed the graph cuts based background removal technique.
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Chapter 6

Depth Estimation

6.1 Introduction

Images map the three dimensional world onto a two dimensional grid composed of pixels.
The intensities associated with the pixels store the color information of the world. The goal
of Computer Vision is to find an inverse mapping where the information stored in images
is used to infer information about the corresponding scene which has been imaged. Various
imaging techniques like omnifocus imaging (See Chapter 4) and background removal (See
Chapter 5) are some of the techniques which extract information about the scene. For ex-
ample, Background Subtraction gives us the knowledge about those parts of the scene which
are static or have very less motion. Similarly, Omnifocus Imaging gives us the knowledge
about those parts of the scene which got imaged with focus. A number of other imaging
techniques can be used to infer similar information. As can be seen that such information
about the scene are passive in nature i.e. they do not give any concrete information about
the scene e.g. the depth of the objects in the world being imaged. The structure/depth
information about a scene is lost in the mapping between three dimensional to two dimen-
sional. This information is critical to many applications of Computer Vision like Robotics
where the depth of objects in the scene is required for a smooth navigation of the robot.

As described in Chapter 4, a number of depth estimation techniques exist in literature,
where different features extracted from an image can be used as a cue for predicting depth.
The focus and defocus cue is one such image cue where the amount of blurring in an image
can be used to infer depth of the scene. This is done by using a Focus Measure criteria to
find the image in which an object is in focus. Based on the knowledge about the distance of
the sensor plane on which that image was captured, the depth of the scene can be calculated.
But, as described in Chapter 3, conventional cameras can focus only over a limited range
of depths which satisfy the thin lens equation 1

u
+ 1

v
= 1

f
i.e. they have a limited depth of

field. Due to this limitation of range of possible depths for a particular object in a three
dimensional world, the task of depth estimation becomes ambiguous. This ambiguity in
depth can be resolved by using the depth estimates of neighboring objects in the world. This
is incorporating by imposing a smoothness constraint on the possible set of depth estimates.
After the optimal smooth depths are estimated, the omnifocus image can also be calculated
as a by product. In the work presented in this chapter, we propose a new optimization
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Figure 6.1: A set of five multifocus images of a scene obtained by varying the sensor plane
distances on the optical axis. The number ’3’ gets imaged with varying amounts of blur from
left image to right image.

framework for obtaining smoothly varying depth estimates. Specifically, we first pose depth
estimation from a set of multifocus images (See Chapter 4) as that of a Labeling problem
in Section 6.2. Next we propose and explain an energy minimization framework for depth
estimation in Section 6.3. This framework is analyzed for its benefits in Section 6.4. Finally,
in Section 6.5, we present detailed results and conclusions of the proposed method.

The basic procedure of omnifocus imaging and consequently depth estimation can be
outlined as follows: First, a set of images is captured by varying the sensor plane distance
along the optical axis, such that objects get imaged with various amounts of blur (including
zero blur) in each image. This set of images are referred as multifocus images [125] (e.g.,
Figure 6.1). As demonstrated in Figure 6.2(a) and (b), the image formed on each sensor
plane contributes to the set of multifocus images. Further, a focus measure value [52, 54] is
calculated at each pixel location across the set of multifocus images. This measure gives a
numerical value of how focussed a pixel is in an image. The focus measure function is defined
such that it attains a extremum value for the image frame, in which the pixel gets focussed.
The pixel intensity from this focussed frame is extracted and correctly pasted on a new
image. As the distance of the focussed frame from the optic center is also known, the thin
lens formula can be used to obtain the depth of the focussed pixel in the world. This process
is repeated for all pixel locations and an omnifocus image and the corresponding depth map
is obtained. Previous methods of omnifocus imaging [52, 54] were local in nature, as the
decision of a pixel being focussed in a frame was taken independently of the neighboring
pixel. These methods do not exploit the fact that most of the objects in the world being
imaged are locally planar. Thus the probability of nearby pixels being at similar depths
and in turn getting focussed in the same frame should be high. Such a dependence can be
captured by assuming that the unknown depths of the objects being imaged belong to a
Markov Random Field (MRF) [4]. The assumption of MRF is quite popular in vision and
has been used in problems like stereo [1] and segmentation [18] to capture the contextual
dependencies of disparity and intensity respectively. MRFs give a mathematical formulation
for explicit regularization of the unknown depths of the objects in the scene. We take
advantage of underlying smoothness in depths of objects being imaged and obtain accurate
depth maps and omnifocus images. The usefulness of our approach is discussed and analyzed
in Section 6.4. Results on real data sets are shown and explained in Section 6.5. The main
contributions of this work can be summarized as follows:

1. Depth estimation is posed as a labeling problem (Section 6.2) which is put in a
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maximum-a-posteriori (MAP) estimation framework. The maximization of posterior
probability is converted to an energy function which is minimized using global opti-
mization technique of graph cuts [1, 18, 22].

2. An explicit smoothness constraint is imposed on the depth values of nearby pixels in
depth from focus problem. This leads to accurate recovery of object boundaries in the
depth map which is otherwise difficult to achieve using conventional depth from focus
techniques.

3. The dependence on using robust focus measures for omnifocus imaging is reduced, by
enforcing the smoothness constraint. So even if a pixel gets inaccurate depth estimate
by using only focus measure criterion it can correct its depth by using the information
of its neighbors. This makes the solution applicable to a variety of scenes.

(a)

(b)

Figure 6.2: In (a) a set of multifocus images is created by an object at distance U1. When
the object is moved to a new distance U2(> U1), a new set of multifocus images are created
as shown in (b). Thus there exists a unique mapping between the depth of an object and
the set of multifocus images being created.
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6.2 Depth Estimation: A Labeling Problem

We formulate depth estimation as one of labeling problem [130], where a pixel location across
the set of multifocus images can be assigned a depth from a set of candidate depths which
belong to a Markov Random Field (MRF). Finding an exact solution to the labeling problem
is NP-hard, because the search space is exponential in size. However, the assumption of MRF
on the possible depths alleviates this problem by imposing a smoothness constraint among
the depths of neighboring pixel locations. The labeling problem can then be solved by
formulating it in a MAP-MRF framework and obtaining a suitable energy function which
can be globally minimized using graph cuts [1]. The rationale behind formulating depth
estimation as a labeling problem is:

1. Unique mapping between multifocus images and scene depth: A set of mul-
tifocus images is captured by varying the sensor plane locations along the optical axis
and keeping the imaged object stationary. On moving the object along the optical axis,
a different set of multifocus images is generated. This is illustrated in Figure 6.2(a)
and (b) where moving the object from U1 to U2 generates a new set of multifocus
images. Thus, under the constraint that the sensor place locations on the optical axis
remain constant, there exists a unique mapping between a set of multifocus images and
the underlying depth map associated with it. This mapping can be used to estimate
the unknown depths of the object in a labeling problem framework. This framework
allows for the formulation of an error function whose global minima corresponds to the
correct set of depths (Section 6.3).

2. Allows a probabilistic framework which can encode depth smoothness: In
a labeling problem, if we assume that the unobserved variables belong to a Markov
Random Field (MRF) then we can mathematically define the smoothness constraint in
the scene. This is achieved by formulating the labeling problem as a MAP estimation
problem over the set of hidden labels and then maximizing the product of likelihood
and prior. The definition of likelihood is problem dependent, but the priori can only
be defined probabilistically if an MRF exists over the depths, which in turn can be
done only if the problem is defined as that of labeling.

Figure 6.3 gives a pictorial representation of the proposed labeling framework. Input mul-
tifocus images are denoted as O = {I1, I2, · · · , IN} where each image is of size (h× w). A
2 dimensional grid G of size (h× w) which corresponds to the images in O stacked over
each other is created. The depths in the scene are sampled into k discrete depth values as
H = {d1, d2, · · · , dk}. As H is not known a-piori it is a hidden variable. Figure 6.3 shows
a pixel location p along with its three neighbors at which world point P gets imaged with
varying amounts of blur across the set of multifocus images O. Pixel location p denotes the
depth of P in the world and can get k possible depths. We attach a vector of two dimensional
intensity windows of size (u× v) centered around p corresponding to each multifocus image
in O. This is the observed variable corresponding to the blurred images of world point P in O.
As the size of the image grid is (h× w) and each pixel location in it can be assigned k depths,
there exists C = k(h×w) possible configurations of assigned depths to the complete image grid
G. But, from the unique mapping between O and H, only one of the optimal configurations
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Figure 6.3: Four neighboring pixel location sites belonging to a grid G are shown. Each
observed intensity vector belongs to the set of multifocus images and can be labeled by a
depth value which belong to a Markov Random Field. This is a labeling problem.

of depth will correspond to the given set O. Finding this optimal configuration of depths
from C is referred to as a labeling problem.

The image acquisition is done using a non-frontal sensor camera [2], which captures a set
of multifocussed images in one panning motion. The sensor tilt causes objects to get focussed
at different sensor plane locations. The captured images are then registered to obtain the
set of multifocus images O.

6.3 Energy Minimization Framework

As explained in Section 6.2, the set of multifocus images O being generated depends upon
the depth of the objects. This can be formulated as the maximization of posterior probability
Pr(H|O). Applying Baye’s theorem, the posterior can be written as a product of a likelihood
probability and a prior probability. For our problem of depth estimation we show that
the likelihood is nothing but the focus measure at each pixel location, and the prior is the
probability distribution of the depth labels belonging to a MRF. Thus the MAP estimate
can be written as,

argmax
H

Pr(H|O) = argmax
H

Pr(O|H) Pr(H). (6.1)

where Pr(O|H) is the likelihood of the set of multifocus images O and Pr(H) is the prior on
depths H.
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Likelihood: The likelihood denotes the probability of generating the set of multifocus
images O given the set of hidden depths H. We know that varying the object distance from
the optic center (See Figure 6.2) results in different amounts of blur in the multifocus images.
Since the blur model is not known exactly, it is difficult to predict the image formed by an
object. Therefore, instead of predicting blur across all the multifocus images, the frame in
which the pixel location p is most focussed is predicted. As the focussed frame will correspond
to minima or maxima of a focus measure vector, the likelihood of image intensities at pixel
location p is defined as the focus measure vector at that pixel location. Taking this likelihood
over all the pixel locations in G, the complete likelihood of O is obtained. We note that the
length of the focus measure vector at p is N but the number of possible depth labels is k
(|H| = k). Thus the focus measure vector is resampled to length k. The new focus measure
vector of length k is referred to as F and the focus measure value corresponding to depth
di ∈ H at pixel location p is denoted F(dp

i ). We have used the focus measure proposed in [54]
which is robust near the intensity edges and the minimum value in this vector corresponds to
the focussed frame. Thus, the complete likelihood of multifocus images O given the hidden
depth values H over the grid G is defined as:

Pr(O|H) ∝
∏

{p∈G;di∈H}

exp{−F(dp
i )}. (6.2)

Prior: The world which is being imaged consists mostly of planar objects with smoothly
varying depths. The depth of a pixel in 3D world is not independent of its neighbor’s depth;
rather all the neighboring pixels are highly probable to have similar depths except for the
object boundaries. Such a neighborhood dependency can be captured by assuming a MRF
over the depth labels in grid G. The MRF assumption helps us two fold: First, it helps us in
imposing an explicit smoothness constraint on depths of neighboring pixel locations. This is
derived from the Markovian property [130] defined on a 4-neighborhood system Np around
p as

Pr(Hp|HG−{p}) = Pr(Hp|HNp
).

which says that the depth corresponding to any pixel location p in the gird G depends only
on the depths of the pixel locations in its neighborhood Np. Further, assuming Gibbs random
field [4] over the grid G the prior distribution of H over the grid can be defined as:

Pr(H) ∝ exp{−
∑

c∈Q

Vc(H)}. (6.3)

where, Vc(H) is referred as clique potential over the set of all possible cliques Q in the grid
G. Since an MRF over G is defined for a 4-neighborhood system, Q is limited to cliques of
size 2. Thus combining (6.1),(6.2) and (6.3) the posterior distribution can be redefined as:

argmax
H

Pr(H|O) ∝ argmax
H

{[
∏

{p∈G;di∈H}

exp{−F(dp
i )}]× [exp{−

∑

c∈Q

Vc(H)}]}. (6.4)

Energy Minimization: The problem of maximizing the posterior probability in Equa-
tion 6.4 is converted to a minimization problem by taking its negative log [4]. The resulting
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function is called as an energy minimization function and is denoted as E(H). From Equa-
tion 6.4 we have,

E(H) =
∑

{p∈G;di∈H}

F(dp
i ) +

∑

c∈Q

Vc(H) (6.5)

=
∑

{p∈G;di∈H}

F(dp
i ) +

∑

{p′∈Np;(p,p′ )∈G;(di,d
i
′ )∈H}

V(dp
i , d

p
′

i
′ ) (6.6)

= Edata + Esmooth (6.7)

The first term Edata is referred to as the Data Term and is the cost of assigning a depth di

to a pixel location p in grid G. This cost is our focus measure function as discussed earlier.
The second term Esmooth is called the Smoothness Term and defines the cost of assigning
different depths to neighborhood pixels. In Figure 6.3, we show the assignment of cost Edata

to the link joining the observed variables to the hidden variables and the assignment of cost
Esmooth to the edge joining neighboring hidden variables. The smoothness cost becomes large
if the nearby pixels are labeled with depths values differing by large amounts. Thus energy
minimization function favors depth labels which are close to each other. We propose the use

of a piecewise smooth model [22] for V which is given by V(dp
i , d

p
′

i
′ ) = A×min(B, |dp

i − dp
′

i
′ |).

A number of discrete optimization techniques like graph cuts [1, 22] exist which can solve E
approximately in polynomial time. We have used graph-cuts [1] to obtain smooth depths.
Specifically speaking we use α-expansion algorithm which is bound to find a local minima
of E which is close to the global minima [1]. Once the optimal depth maps are known at
each pixel location, the thin lens formula can be used to predict the image distance. From
the sensor plane location lying closest to this distance, we can extract the focussed pixel
intensity. Repeating this process for all the pixel locations generates the omnifocus image.

6.4 Analysis and Discussion

Many problems in computer vision have been formulated as labeling problems e.g. stereo [1],
image restoration [31] and recently interactive segmentation [1, 131, 132] and digital pho-
tomontage [133], and solved using discrete optimization techniques like graph cuts. This
work introduces the problem of depth from focus into this existing class of computer vision
problems. Our method has the following three advantages.

1. It allows simultaneous omnifocus imaging and depth estimation from one single camera
by posing it in a global optimization framework. Since the camera is panned [2] to
obtained a large set of multifocus images, a large field of view(FOV) is also covered.

2. The smoothness constraint is imposed on the depths of the objects in the world by
introducing a Markov Random Field (MRF) in a MAP framework. Depth estimation
is typically a difficult problem as it relies on noisy pixel intensities in images. To alle-
viate the noise problem in imaging, we have posed depth from focus in a probabilistic
framework. Prior research has emphasized on improvement of focus measures and thus
the final depth map is dependent on the goodness of the focus measure. This work
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relaxes this constraint to some extent by proposing a formulation in which, even if a
pixel gets erroneous depth values due to bad focus measure, it can correct its depth
value by looking at its neighboring pixels depth. This regularization is imposed by the
MRF structure of the unknown depths (See Section 6.3).

3. The energy function E imposes a discontinuity preserving model [22] which can recover
sharp depth boundaries. This is shown in the some of the results which we have
obtained (See Figure 6.5). Obtaining sharp object boundaries is difficult using other
techniques of depth estimation e.g. in stereo, occlusion at object boundary and in depth
from defocus, approximation of blurring model by a Gaussian at depth discontinuity, is
a limitation . Although the blur problem persists in depth from focus, yet our explicit
imposition of smoothness constraint on the final depth map guides the solution towards
recovering accurate depth boundaries. The energy function is solved with polynomial
runtime using graph-cuts based techniques. This is important for real time omnifocus
imaging and range estimation sensors like NICAM [2].

6.5 Results

Experiments have been conducted on multifocus images of different scenes captured from a
NICAM [2]. The focal length of the camera was set to 8.2 mm and the tilt of the sensor
plane was 1.19o. The camera was rotated about the axis passing through the center of the
lens and an image was captured with each constant rotation step. The resolution of each
image was 640× 480 pixel and a large number of images were captured for each data set.
The images were registered with each other using the camera calibration parameters. The
experiments were run on a 2.16Ghz machine with 1GB ram. To process a set of images
captured in 2mins, the proposed optimization technique takes around 5mins which includes
focus measure calculation time.
Table: In Figure 6.4 we zoom on few image patches in the table real data set and show
the various input multifocus images. The rightmost column shows the same patch in the
omnifocus image. Figure 6.5 shows results on a scene consisting of textured patterns kept
on a table at distances ranging from 2ft to 5ft. The top row shows the omnifocus image
and the depth map obtained. As can be seen in the rectangular marked region, sharp object
discontinuities are obtained with high accuracy, due to the explicit imposition of smoothness
constraint on the final depth maps. In the depth map, the lower gray values indicate closer
objects and higher gray values indicate farther objects. The scene consists of few regions
with no intensity variations where the obtained depths are noisy. Since it is difficult to detect
blur in such regions, the focus measure is weak and does not help in giving correct estimates.
Circles: Figure 6.6 shows results on images of a scene which does not consist of highly

textured regions. There are two planes with focus information mainly encoded in the edges
of the circles and the numbers. Applying piecewise smooth model, leads to accurate depth
estimation. The original depth of the planes is approximately 1ft and 2.5ft. As shown in
the obtained 3D plot in the second row, the recovered depths are quite close to the original
being 310mm(1.01ft) for the close plane and 780mm(2.55ft) for the far plane.
Office: Figure 6.7 shows another set of results on a scene consisting of textured surfaces.
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Figure 6.4: The first row shows letter ’A’ getting imaged across the set of multifocus images
with varying degrees of blur. In the rightmost corner of top row, the letter ’A’ which has
been extracted from the omnifocus image is shown. This image is close to the second input
multifocus image in sharpness. Similarly, in second row various multifocus images for number
’3’ is shown. The last column shows the patch from the omnifocus image. This image is
close to the third input multifocus image.

There are some errors in the slanted region at the back as it is composed of smooth intensity
regions.
Thus, we show results on various kinds of textures and smooth surfaces, where the proposed
global optimization based method generates omnifocus images and depth estimates with
high accuracy.

6.6 Summary

In this chapter, we have formulated the problem of depth estimation in an discrete optimiza-
tion framework. An energy function is first formulated which is composed of a Data term
and a Smoothness term. The data term describes the cost of assigning a particular depth
to a pixel in an image. This cost is obtained by a focus measure function. This function
encodes how sharp an image is. The sharper it is, the better that image will satisfy the
thin lens formula and the depth estimates will be more accurate. But due to the depth of
field problem, this cost alone is not sufficient to estimate the depth of a pixel. Some extra
information in the form of depth estimates of neighboring pixels is required to strengthen the
claim. This is encoded as a smoothness cost. This cost allows for nearby pixels to have same
depth estimates. Thus we are able to get accurate depths using this framework of discrete
optimization. Additionally, the use of fast optimization techniques like graph cuts makes
the depth estimation algorithm near real time and applicable to real world depth sensors.
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Figure 6.5: The top row shows the omnifocus image and the obtained depth estimates. The
sharp object boundaries are correctly detected as shown in the rectangular box. The bottom
row shows textured map depth maps from various views.

Figure 6.6: Top row shows four input images. The first column of bottom row shows the
obtained depth estimate. The next column shows the 3D plot of obtained depth map. In
the next image we show the obtained omnifocus image.
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Figure 6.7: Top row shows the input multifocus images. The bottom row shows the obtained
depth map and the corresponding omnifocus image. The nearer objects have lower gray
value. The slanted surface consisting of smooth intensity variations has noisy depth.
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Chapter 7

Conclusions

The recent advent of polynomial time optimization techniques has resulted in faster, accurate
and better results for the problems in computer vision and this is the primary motivation
behind the work done in this thesis. Many applications is vision require pre-processed images
for high level inference along with the depth estimates of the objects which are being imaged
and they need to be near real time in practice. In imaging the current work formulates the
twin problems of omnifocus imaging and background removal in an optimization framework.
The problem of omnifocus imaging is important for obtaining better quality images in which
everything is sharp. Such images are useful for various higher level vision techniques like
object recognition etc. The problem for efficient background removal is also imprortant.
It is applicable to many areas where surveillance or human tracking are required. Similar
framework has also been proposed to obtain accurate depth estimates of a three dimensional
scene. The estimation of depth from an image or multiple images is one of the primary
problem of computer vision. Depth estimation techniques are quite important due to their
relevance in many other fields like robotics, where the robots need to estimate depth and
navigate accordingly to avoid obstacles. The final goal of Computer Vision is to make
vision based applications which can run efficiently in real world. This is facilitated by the
formulation of a problem in an optimization framework and using fast techniques like Graph
Cuts to optimize them.

In the next section, we outline the primary contributions of this thesis. The concluding
section describes the limitations and avenues for future research.

7.1 Primary Contributions

Our contribution in this thesis can be primarily divided into two major fields.

• The first one is imaging. In imaging we have first looked at the problem of omnifocus
imaging, where the goal is to obtain an image where everything is imaged with focus
irrespective of their depth in the actual three dimensional world. The input to this
problem is a set of images which have been captured with different focus settings from
a Non-Frontal Imaging Camera (NICAM). These images are then fused together to
obtain an omnifocus image. For accurate fusion, it is must to register these images.
We have proposed a calibration based registration technique for such images. After
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the images are registered they need to be fused together intelligently. This is where we
have developed a new fusing criteria which we refer to as a Generative focus measure.
This criteria is used to select the best focussed image from the set of input images. In
order to make this near real time, we have modeled the omnifocus imaging in a discrete
optimization framework, where we use graph cuts to optimize the solution. The second
problem we have looked in imaging is Background removal, where we have developed
discrete and continuous background removal techniques for removing background from
a video of a moving Intermodal train. This technique is applied to a Train Monitoring
System which is a machine vision system. In such real life systems we come across
a number of problems related to imaging conditions which make the applicability of
standard Computer Vision algorithms difficult. Our proposed techniques have been
able to handle many such critical imaging conditions of changing lighting, moving
clouds in the background etc. Also since the techniques are in a proposed optimization
framework, they are fast and efficient.

• The second problem we have looked is that of depth estimation. Depth estimation
is an important problem in Compute Vision. We have used the focus/defocus cue
of a set of images to propose an optimization framework for depth estimation. Our
proposed technique estimates depth accurately and takes care of the ambiguity in depth
estimation owing to the limited depth of field problem for conventional cameras. The
proposed technique imposes smoothness constraint on the depth estimates, thus also
reading to sharp depth boundaries. The optimization framework based on Graph Cuts
also makes it fast. As a by product of the depth estimation process, we also get an
omnifocus image.

7.2 Limitations and Future Work

As is with any research work, this thesis leaves more questions unanswered than it solves or
attempts to solve. Firstly, like any camera, NICAM suffers from the depth of field problem.
This limits the usage of depth from focus techniques alone to predict accurate depths since
a set of range values satisfy the thin lens equation. Some other cues are needed to resolve
this. One of the solutions to this problem could be the use of a Stereo NICAM. A stereo
NICAM would consist of two such cameras mounted over each other thus acting as a stereo
pair. The disparity cue generated from this pair along with the depth from focus cue will
give better depth estimates. Such a camera will also cover large field of view in the vertical
direction. In background removal technique using Graph Cuts, the calculation of Normalized
Cross Correlation at each pixel location is a computationally intensive process when done in
MATLAB. A C++ implementation will surely help in improving the speed of the algorithm.

91



Bibliography

[1] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via
graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23,
pp. 1222–1239, November 2001.

[2] A. Krishnan and N. Ahuja, “Range estimation from focus using a non-frontal imaging
camera,” International Journal of Computer Vision, vol. 20, no. 3, pp. 169–185, 1996.

[3] W. E. L. Grimson, From Images to Surfaces: A Computational Study of the Human
Early Visual System. Cambridge, MA: MIT Press, 1981.

[4] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 6, no. 6, pp. 721–741, 1984.

[5] K. Ikeuchi and B. K. P. Horn, “Numerical shape from shading and occluding bound-
aries,” Artificial Intelligence, vol. 17, pp. 141–184, 1981.

[6] B. K. P. Horn and B. G. Schunk, “Determining optical flow,” Artificial Intelligence,
vol. 17, pp. 185–203, 1981.

[7] R. L. Kashyap, R. Chellappa, and A. Khotanzad, “Texture classification using features
derived from random process models,” Pattern Recognition Letters, vol. 1, pp. 43–50,
1982.

[8] G. C. Cross and A. K. Jain, “Markov random field texture models,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 5, no. 1, pp. 25–39, 1983.

[9] V. Torre and T. Poggio, “On edge detection,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 8, no. 2, pp. 147–163, 1986.

[10] S. Z. Li, “Invariant surface segmentation through energy minimization with disconti-
nuities,” International Journal of Computer Vision, vol. 5, no. 2, pp. 161–194, 1990.

[11] D. G. Lowe, Perceptual Organization and Visual Recognition. Kluwer Academic Pub-
lishers, 1985.

[12] R. Mohan and R. Nevatia, “Using perceptual organization to extract 3-d structures,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 1121–
1139, 1989.

92



[13] S. Z. Li, “Towards 3D vision from range images: An optimization framework and
parallel networks,” Computer Vision, Graphics and Image Processing, vol. 55, no. 3,
pp. 231–260, 1992.

[14] S. Z. Li, “A Markov random field model for object matching under contextual con-
straints,” in IEEE Conference on Computer Vision and Pattern Recognition, Seattle,
Washington, 1994, pp. 866–869.

[15] R. M. Haralick, H. Joo, C. Lee, X. Zhuang, V. Vaidya, and M. Kim, “Pose estimation
from corresponding point data,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 19, pp. 1426–1446, 1989.

[16] V. Kolmogorov and R. Zabih, “Multi-camera scene reconstruction via graph cuts,”
in European Conference on Computer Vision, London, UK, Springer-Verlag, 2002,
pp. 82–96.

[17] V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick, “Graphcut textures: Image
and video synthesis using graph cuts,” ACM Transactions on Graphics, SIGGRAPH
2003, vol. 22, pp. 277–286, July 2003.

[18] Y. Boykov and M. P. Jolly, “Interactive graph cuts for optimal boundary and region
segmentation of objects in n-d images,” in International Conference on Computer
Vision, vol. 1, 2001, pp. 105–112.

[19] R. Kindermann and J. L. Snell, Markov Random Fields and Their Applications. Amer-
ican Mathematical Society, 1980.

[20] J. M. Hammersley and P. Clifford, “Markov fields on finite graphs and lattices,” Un-
published. Clifford published a simplified veresion of the theorem in 1990, 1971.

[21] J. G. Kemeny, J. L. Snell, and A. W. Knapp, Denumerable Markov Chains. Springer-
Verlag, 1976.

[22] O. Veksler, “Efficient graph based energy minimization methods in computer vision,”
Ph.D. dissertation, Cornell University, 1999.

[23] V. Cerny, “A thermodynamic approach to the traveling salesman problem: An efficient
simulation,” Journal of Optimization Theory and Applications, vol. 45, pp. 41–51, 1985.

[24] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, pp. 671–680, 1983.

[25] R. H. J. M. Otten and L. P. P. P. van Ginneken, The Annealing Algorithm. Kluwer
Academic Publishers, 1989.

[26] A. Blake and A. Zisserman, Visual Reconstruction. Cambridge, MA: MIT Press, 1987.

[27] D. Geiger and A. Yuille, “A common framework for image segmentation,” International
Journal of Computer Vision, vol. 6, no. 3, pp. 227–243, 1991.

93



[28] A. Amini, T. Weymouth, and R. Jain, “Using dynamic programming for solving vari-
ational problems in vision,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 12, no. 9, pp. 855–867, 1990.

[29] D. Greig, B. Porteous, and A. Seheult, “Exact maximum a posteriori estimation for bi-
nary images,” Journal of the Royal Statistical Society, Series B, vol. 51, no. 2, pp. 271–
279, 1989.

[30] P. Ferrari, A. Frigessi, and P. de Sa, “Fast approximate maximum a posteriori restora-
tion of multicolor images,” Journal of the Royal Statistical Society, Series B, vol. 57,
no. 3, pp. 485–500, 1995.

[31] J. Besag, “On the statistical analysis of dirty pictures (with discussions),” Journal of
the Royal Statistical Society, Series B, vol. 48, no. 3, pp. 259–302, 1986.

[32] P. B. Chou and C. M. Brown, “The theory and practice of bayesian image labeling,”
International Journal of Computer Vision, vol. 4, no. 3, pp. 185–210, 1990.

[33] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, “Scene labeling by relaxation opera-
tions,” IEEE Transactions on Systems, Man and Cybernetics, vol. 6, no. 6, pp. 420–433,
1976.

[34] R. Szeliski, “Bayesian modeling of uncertainity in low-level vision,” International Jour-
nal of Computer Vision, vol. 5, no. 3, pp. 271–302, 1990.

[35] L. Ford and D. Fulkerson, Flows in Networks. Princeton University Press, 1962.

[36] Y. Boykov, O. Veksler, and R. Zabih, “Markov random fields with efficient approx-
imations,” in IEEE Conference on Computer Vision and Pattern Recognition, 1998,
pp. 648–655.

[37] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph
cuts,” in International Conference on Computer Vision, September 1999, pp. 377–384.

[38] A. V. Goldberg, “Efficient graph algorithms for sequential and parallel computers,”
Ph.D. dissertation, Massachusetts Institute of Technology, 1987.

[39] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum flow problem,”
ACM symposium on Theory of Computing, pp. 136–146, 1986.

[40] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision,” in International Workshop on Energy
Minimization Methods in Computer Vision and Pattern Recognition, London, UK,
Springer-Verlag, 2001, pp. 359–374.

[41] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 26, pp. 1124–1137, September 2004.

94



[42] A. Krishnan, “Non-frontal imaging camera,” Ph.D. dissertation, University of Illinois,
Urbana-Champaign, 1997.

[43] A. Castano, “Range from a nonfrontal imaging camera,” Ph.D. dissertation, University
of Illinois, Urbana-Champaign, 1998.

[44] A. P. Pentland, “A new sense for depth of field,” in International Joint Conference on
Artificial Intelligence, Los Angeles, August 1985, pp. 988–994.

[45] A. P. Pentland, “A new sense for depth of field,” IEEE Transaction on Pattern Analysis
and Machine Intelligence, vol. 9, no. 4, pp. 523–531, 1987.

[46] T. Darrell and K. Wohn, “Pyramid based depth from focus,” in IEEE Conference on
Computer Vision and Pattern Recognition, 1988, pp. 504–509.

[47] B. K. P. Horn, “Focusing,” Technical Report 160, MIT Artificial Intelligence Lab,
1968.

[48] J. M. Tenenbaum, “Accommodation in computer vision,” Ph.D. dissertation, Stanford
University, Stanford, CA, USA, 1971.

[49] E. P. Krotkov, “Focusing,” Technical Report MS-CIS-86-22, GRASP Lab., University
of Pennsylvania, 1986.

[50] R. A. Jarvis, “Focus optimisation criteria for computer image processing,” Microscope,
vol. 24, no. 2, pp. 163–180, 1976.

[51] S. Nayar and Y. Nakagawa, “Shape from focus,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 16, pp. 824–831, Aug 1994.

[52] M. Subbarao, T. Choi, and A. Nikzad, “Focusing techniques,” Journal of Optical
Engineering, pp. 2824–2836, 1993.

[53] Y. Xiong and S. Shafer, “Depth from focusing and defocusing,” cmu-ri-tr-93-07,
Robotics Institute, Carnegie Mellon University, 1993.

[54] N. Xu, K. Tan, H. Arora, and N. Ahuja, “Generating omnifocus images using graph
cuts and a new focus measure,” in International Conference on Pattern Recognition,
vol. 4, Washington, DC, USA, IEEE Computer Society, 2004, pp. 697–700.

[55] A. Rajagopalan and S. Chaudhuri, “A variational approach to recovering depth from
defocused images,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 19, pp. 1158–1164, October 1997.

[56] S. Chaudhuri and A. Rajagopalan, Depth from Defocus: A Real Aperture Imaging
Approach. Springer-Verlag, 1998.

[57] A. Rajagopalan and S. Chaudhuri, “An MRF model-based approach to simultane-
ous recovery of depth and restoration from defocused images,” IEEE Transaction on
Pattern Analysis and Machine Intelligence, vol. 21, pp. 577–589, July 1999.

95



[58] A. Rajagopalan and S. Chaudhuri, “Optimal recovery of space-varying depth from de-
focused images using an mrf model,” in International Conference on Computer Vision,
1998, pp. 1047–1052.

[59] G. Surya and M. Subbarao, “Depth from defocus by changing camera aperture: A
spatial doma in approach,” in IEEE Conference on Computer Vision and Pattern
Recognition, vol. 93, 1993, pp. 61–67.

[60] M. Watanabe, S. Nayar, and M. Noguchi, “Real-time computation of depth from
defocus,” in Proceedings of The International Society for Optical Engineering (SPIE),
vol. 2599, January 1996, pp. 14–25.

[61] M. Gokstorp, “Computing depth from out-of-focus blur using a local frequency repre-
sentation,” in International Conference on Pattern Recognition, 1994, pp. A:153–158.

[62] A. Mennucci and S. Soatto, “On observing shape from defocused images,” in Inter-
national Conference on Image Analysis and Processing, Washington, DC, USA, IEEE
Computer Society, 1999, pp. 550–555.

[63] S. Soatto and P. Favaro, “A geometric approach to blind deconvolution with applica-
tion to shape from defocus,” in IEEE Conference on Computer Vision and Pattern
Recognition, vol. II, IEEE Computer Society, 2000, pp. 10–17.

[64] P. Favaro and S. Soatto, “A geometric approach to shape from defocus,” IEEE Trans-
action on Pattern Analysis and Machine Intelligence, vol. 27, pp. 406–417, March
2005.

[65] R. Szeliski, “Fast shape from shading,” Computer Vision, Graphics and Image Pro-
cessing: Image Understanding, vol. 53, no. 2, pp. 129–153, 1991.

[66] Q. Zheng and R. Chellappa, “Estimation of illuminant direction, albedo, and shape
from shading,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 13, no. 7, pp. 680–702, 1991.

[67] O. E. Vaga and Y. H. Yang, “Shading logic: A heuristic approach to recover shape from
shading,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15,
no. 6, pp. 592–597, 1993.

[68] B. K. Horn, “Shape from shading: A method for obtaining the shape of a smooth
opaque object from one view,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, 1970.

[69] J. Oliensis and P. Dupuis, “A global algorithm for shape from shading,” in Interna-
tional Conference on Computer Vision, 1993, pp. 692–701.

[70] M. Bichsel and A. Pentland, “A simple algorithm for shape from shading,” in IEEE
Conference on Computer Vision and Pattern Recognition, vol. 92, 1992, pp. 459–465.

96



[71] A. Pentland, “Local shading analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 6, pp. 170–187, March 1984.

[72] C.-H. Lee and A. Rosenfeld, “Improved methods of estimating shape from shading
using the light source coordinate system,” Artificial Intelligence, vol. 26, no. 2, pp. 125–
143, 1985.

[73] A. Pentland, “Shape information from shading: a theory about human perception,” in
International Conference on Computer Vision, 1988, pp. 404–413.

[74] P. Tsai and M. Shah, “Shape from shading using linear-approximation,” Image and
Vision Computing, vol. 12, pp. 487–498, October 1994.

[75] Y. Ohta and T. Kanade, “Stereo by intra- and inter-scanline search using dynamic pro-
gramming,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 7,
pp. 139–154, 1985.

[76] I. J. Cox, S. L. Hingorani, S. B. Rao, and B. M. Maggs, “A maximum likelihood stereo
algorithm,” Computer Vision and Image Understing, vol. 63, no. 3, pp. 542–567, 1996.

[77] S. Roy and I. J. Cox, “A maximum-flow formulation of the n-camera stereo correspon-
dence problem,” in International Conference on Computer Vision, 1998, pp. 492–502.

[78] J. Sun, N.-N. Zheng, and H.-Y. Shum, “Stereo matching using belief propagation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 7,
pp. 787–800, 2003.

[79] S. Barnard, “Stochastic stereo matching over scale,” International Journal of Computer
Vision, vol. 3, pp. 17–32, May 1989.

[80] Y. Furukawa and J. Ponce, “High-fidelity image based modeling,” Technical Report
2006-02, University of Illinois, Urbana-Champaign, 2006.

[81] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multi-view stereopsis,” in
IEEE Conference on Computer Vision and Pattern Recognition, IEEE Computer So-
ciety, 2007, pp. 1–8.

[82] G. Vogiatzis, P. H. S. Torr, and R. Cipolla, “Multi-view stereo via volumetric graph-
cuts,” in IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, Wash-
ington, DC, USA, IEEE Computer Society, 2005, pp. 391–398.

[83] J. J. Koenderink and A. J. van Doorn, “Affine structure from motion,” Journal of the
Optical Society of America A, vol. 8, pp. 377–385, Feb. 1991.

[84] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthography:
a factorization method,” International Journal of Computer Vision, vol. 9, no. 2,
pp. 137–154, 1992.

97



[85] C. J. Poelman and T. Kanade, “A paraperspective factorization method for shape and
motion recovery,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 19, no. 3, pp. 206–218, 1997.

[86] D. Weinshall and C. Tomasi, “Linear and incremental acquisition of invariant shape
models from image sequences,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 17, no. 5, pp. 512–517, 1995.

[87] T. Morita and T. Kanade, “A sequential factorization method for recovering shape and
motion from image streams,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 8, pp. 858–867, 1997.

[88] P. F. Sturm and B. Triggs, “A factorization based algorithm for multi-image projective
structure and motion,” in European Conference on Computer Vision, London, UK,
Springer-Verlag, 1996, pp. 709–720.

[89] P. Anandan and M. Irani, “Factorization with uncertainty,” International Journal of
Computer Vision, vol. 49, no. 2-3, pp. 101–116, 2002.

[90] J. P. Costeira and T. Kanade, “A multibody factorization method for independently
moving objects,” International Journal of Computer Vision, vol. 29, no. 3, pp. 159–179,
1998.

[91] J. Yan and M. Pollefeys, “A factorization-based approach to articulated motion recov-
ery,” in IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, vol. 2, Washington, DC, USA, IEEE Computer Society, 2005, pp. 815–821.

[92] C. Bregler, A. Hertzmann, and H. Biermann, “Recovering non-rigid 3d shape from
image streams,” in IEEE Conference on Computer Vision and Pattern Recognition,
vol. 2, 2000, pp. 690–696.

[93] M. Brand, “Morphable 3d models from video,” in IEEE Conference on Computer
Vision and Pattern Recognition, vol. 02, Los Alamitos, CA, USA, IEEE Computer
Society, 2001, p. 456.

[94] D. W. Jacobs, “Linear fitting with missing data for structure-from-motion,” Computer
Vision and Image Understanding, vol. 82, no. 1, pp. 57–81, 2001.

[95] J. Gibson, The Perception of the Visual World. Houghton Mifflin, 1950.

[96] A. Witkin, “Recovering surface shape and orientation from texture,” Artificial Intelli-
gence, vol. 17, pp. 17–45, August 1981.

[97] Y. Ohta, K. Maenobu, and T. Sakai, “Obtaining surface orientation from texels under
perspective projection,” in International Joint Conference on Artificial Intelligence,
1981, pp. 746–751.

[98] D. Blostein and N. Ahuja, “Shape from texture: Integrating texture-element extrac-
tion and surface estimation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 11, pp. 1233–1251, December 1989.

98



[99] R. Bajcsy and L. Lieberman, “Texture gradient as a depth cue,” Computer Graphics
and Image Processing, vol. 5, no. 1, pp. 52–67, 1976.

[100] L. Brown and H. Shvaytser, “Surface orientation from projective foreshortening of
isotropic texture autocorrelation,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 12, pp. 584–588, June 1990.

[101] J. Garding, “Shape from texture for smooth curved surfaces,” in European Conference
on Computer Vision, London, UK, Springer-Verlag, 1992, pp. 630–638.

[102] J. Malik and R. Rosenholtz, “A differential method for computing local shape-from-
texture for planar and curved surfaces,” in IEEE Conference on Computer Vision and
Pattern Recognition, Berkeley, CA, USA, IEEE Computer Society, 1993, pp. 267–273.

[103] M. Clerc and S. Mallat, “The texture gradient equation for recovering shape from
texture,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,
pp. 536–549, April 2002.

[104] A. Lobay and D. A. Forsyth, “Shape from texture without boundaries,” International
Journal of Computer Vision, vol. 67, no. 1, pp. 71–91, 2006.

[105] J. Heikkilä and O. Silvén, “A real-time system for monitoring of cyclists and pedestri-
ans,” in Second IEEE Workshop on Visual Surveillance, Washington, DC, USA, IEEE
Computer Society, 1999, p. 74.

[106] M. Harville, “A framework for high-level feedback to adaptive, per-pixel, mixture-of-
gaussian background models,” in European Conference on Computer Vision, London,
UK, Springer-Verlag, 2002, pp. 543–560.

[107] P. Withagen, K. Schutte, and F. Groen, “Likelihood-based object detection and object
tracking using color histograms and em,” in IEEE International Conference on Image
Processing, vol. 1, IEEE Computer Society, 2002, pp. 589–592.

[108] A. M. Elgammal, D. Harwood, and L. S. Davis, “Non-parametric model for back-
ground subtraction,” in European Conference on Computer Vision, vol. 2, London,
UK, Springer-Verlag, 2000, pp. 751–767.

[109] B. Han, D. Comaniciu, and L. Davis, “Sequential kernel density approximation through
mode propagation: Applications to background modeling,” in Asian Conference on
Computer Vision, Jeju Island, Japan, 2004.

[110] N. M. Oliver, B. Rosario, and A. P. Pentland, “A bayesian computer vision system for
modeling human interactions,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 831–843, 2000.

[111] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: Principles and prac-
tice of background maintenance,” in International Conference on Computer Vision,
vol. 1, 1999, pp. 255–261.

99



[112] A. Monnet, A. Mittal, N. Paragios, and V. Ramesh, “Background modeling and sub-
traction of dynamic scenes,” in International Conference on Computer Vision, vol. 2,
Washington, DC, USA, IEEE Computer Society, 2003, p. 1305.

[113] J. Kato, T. Watanabe, S. Joga, J. Rittscher, and A. Blake, “An HMM-based segmen-
tation method for traffic monitoring movies,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, no. 9, pp. 1291–1296, 2002.

[114] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: Real-time
tracking of the human body,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 7, pp. 780–785, 1997.

[115] N. Friedman and S. Russell, “Image segmentation in video sequences: A probabilis-
tic approach,” in Annual Conference on Uncertainty in Artificial Intelligence, 1997,
pp. 175–181.

[116] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee, “Using adaptive tracking to
classify and monitor activities in a site,” in IEEE Conference on Computer Vision and
Pattern Recognition, Washington, DC, USA, IEEE Computer Society, 1998, p. 22.

[117] Y. Ivanov, C. Stauffer, A. Bobick, and E. Grimson, “Video surveillance of interactions,”
in IEEE Conference on Computer Vision and Pattern Recognition : Workshop on
Visual Surveillance, Fort Collins, Colorado, November 1998.

[118] C. Stauffer and W. Grimson, “Adaptive background mixture models for real-time
tracking,” in IEEE Conference on Computer Vision and Pattern Recognition, vol. 2,
1999, pp. 246–252.

[119] E. Hayman and J.-O. Eklundh, “Statistical background subtraction for a mobile ob-
server,” in International Conference on Computer Vision, Washington, DC, USA,
IEEE Computer Society, 2003, p. 67.

[120] Z. Zivkovic, “Improved adaptive gaussian mixture model for background subtraction,”
in IEEE International Conference on Pattern Recognition, 2004.

[121] S. Cohen, “Background estimation as a labeling problem,” in International Conference
on Computer Vision, vol. 2, 2005, pp. 1034–1041.

[122] D. Russell and S. Gong, “Minimum cuts of a time-varying background,” in British
Machine Vision Conference, vol. 2, 2006, p. 809.

[123] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient belief propagation for early
vision,” International Journal of Computer Vision, vol. 70, pp. 41–54, October 2006.

[124] J. Y. Bouguet, “Matlab camera calibration toolbox,” technical report, California In-
stitute of Technology, 2000.

[125] N. Asada, H. Fujiwara, and T. Matsuyama, “Edge and depth from focus,” International
Journal of Computer Vision, vol. 26, pp. 153–163, February 1998.

100



[126] M. Aggarwal and N. Ahuja, “On generating seamless mosaics with large depth of field,”
in International Conference on Pattern Recognition, vol. 1, 2000, pp. 588–591.

[127] Y. C. Lai and C. P. L. Barkan, “Options for improving the energy efficiency of in-
termodal freight trains,” in Transportation Research Record 1916, Transportation Re-
search Board, 2005, pp. 47–55.

[128] Y. C. Lai, C. P. L. Barkan, J. Drapa, N. Ahuja, J. M. Hart, P. J. Narayanan, C. V.
Jawahar, A. Kumar, and L. Milhon, “Machine vision analysis of the energy efficiency
of intermodal freight trains,” Journal of Rail and Rapid Transit, 2006.

[129] R. Corporation, UMLER Data Specification Manual. Association of American Rail-
roads(AAR), 2005.

[130] S. Z. Li, Markov Random Field Modeling in Computer Vision. Springer-Verlag, 1995.

[131] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: interactive foreground extraction
using iterated graph cuts,” ACM Transaction on Graphics, vol. 23, no. 3, pp. 309–314,
2004.

[132] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum, “Lazy snapping,” ACM Transaction on
Graphics, vol. 23, no. 3, pp. 303–308, 2004.

[133] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn, B. Curless,
D. Salesin, and M. Cohen, “Interactive digital photomontage,” ACM Transaction on
Graphics, vol. 23, pp. 294–302, August 2004.

101


