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Abstract

Biometrics has a long history, and is possibly as old as the human race itselfoften used as
an advanced security measure to safeguard important artifacts, builaifagenation, etc. Biometrics
is increasingly being used for secure authentication of individuals and kingnés presence felt in
our lives. With the fast increase in computational power, such systemsogabe deployed on a very
large scale. However, efficiency in large scale biometric matching is still @ecoras the problem of
deduplication (removal of duplicates) of a biometric database Witbntries isO(/N?), which can be
extremely challenging for large databases. To make this problem tractalpigjmdaxing methods have
been proposed that would speed up the comparison process. Hptievekrpectation of accuracy in
such systems combined with the nature of biometric data makes the problemchaleynging one.

Biometric identification often involves explicit comparison of a probe templatmageach template
stored in a database. An effective approach to speed up the prodkas @ filtering, where a light-
weight comparison is used to reduce the database to smaller set of candidabeplicit comparison.
However, most existing filtering schemes use specific features that adechafted for the biometric
trait at each stage of the filtering. In this work, we show that a cascasienpfe linear projections on
random lines can achieve significant levels of filtering. Each stage oftfijteonsists of projecting the
probe onto a specific line and removal of database samples outside a wiralovd ahe probe. The
approach provides a way of automatic generation of filters and avoidst#ueaf developing specific
features for different biometric traits. The method also provides us withietyaf parameters such as
the projection lines, the number and order of projections, and the windewtsizustomize the filtering
process to a specific application. The experiments are performed onghegfimts, palmprints and iris.

For both iris and palmprint datasets, the representation that we usexpedggction) is the popularly
used thresholded filter response from pre-defined regions of the irgxgerimental results show that
using an ensemble of projections reduce the search space by 60% vnitreaising the false negative
identification rate in palmprint. However for stronger biometrics such as irsafgproach does not
yield similar results. We further explore this problem to find a solution, spadifitor the case of
fingerprints.

The fundamental approach here is to explore the effectiveness affe@iares in a cascade for fil-
tering fingerprint databases. We start with a set of potential indexingrésacomputed from minutiae
triplets and minutiae quadruplets. We show that by using a set of random tideékeproposed fitness
function, one can achieve better results that optimized projection metholdsasuRCA or LDA. Ex-
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perimental results on fingerprint datasets show that using an ensembtgexitions we can reduce the
penetration t®26% at a hit rate 0P9%. As each stage of the cascade is extremely fast, and filtering is
progressive along the cascade, one can terminate the cascade airay pachieve the desired perfor-
mance. One can also combine this method with other indexing methods to improwethk accuracy
and speed. We present detailed experimental results on various asfibetprocess on the FVC 2002
dataset.

The proposed approach is scalable to large datasets due to the useéawh diarear projections and
direcly lends to pipelined processing. The method also allows the use of multiglang features
without affecting the computation time.
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Chapter 1

Introduction

1.1 Motivation

Bometrics is branch of science that aims at uniquely recognising humantesieg on physiologi-
cal or behavioral traits. Physiological characteristics are related tdsgal appearance of the body.
Some examples include fingerprint, face recognition, DNA, palm print, gandhetry, iris recognition.
Behavioral are related to the characteristics that we are habituateddonpmrth as typing rhythm gait,
walking and voice Physiological characteristics includes fingerpring, faand/finger geometry, iris,
retina, signature, gait, palmprint, voice pattern, ear, hand vein, odoe @NA information of an indi-
vidual to establish identity ( [11], [75])(See Fig. 1.2). In the biometric litemtthese characteristics
are referred to as traits, indicators or identifiers. While biometric systenesthaw own limitations
([60]) they have an edge over traditional security methods in that theyothe easily stolen or shared.
Besides boosting security, biometric systems also enhance user cowecairehtrust by removing the
need to design and remember passwords. Face recognition is the olfleststrbasic of a characteris-
tics that is used for human recognition. Human face have been useddgnigon since the beginning
of the civilisation. Excavations have revealed a 31,000 years old cavingawhere the painter has left
his hand prints as a signature. Face Recognition is supoosed to be tfarirstf biometrics. Chinese
have started using fingerprint as biometric$4f* century. Due to rapid growth of city population in the
beginning of18!" century, there was a formally recognized need to identify people. Theatarse of
fingerprints was started in South Africa, Asia and Europgsifi century by the police department. By
the the end ofl 9k century indexing method for fingerprint was developed in India by Edwienry
who was working in the Bengal police who started Henry Classification Bystas a precursor to the
clasification system which was used for many years by the US FedemrsBof Investigation. A detalil
timeline of use of biometrics can be found in [69].

The importance of biometrics in modern society has been reinforced by #dtefae large-scale
identity management systems whose functionality relies on the accurate detemmafan individuals
identity in the context of several different applications. Examples of tappéications include sharing
networked computer resources, performing remote financial transacti@mossing a border. The pro-



liferation of web-based services (e.g., online banking) and the depldyohe®centralized customer
service centers (e.g., credit cards) have further underscorecéukefor reliable identity management
systems that can accommodate a large number of individuals. Automatic Biomgeteémshave become
available over the last few decades, due to significant improvements inltheffeamputer processing.
Many of these new automated techniques, however are based on thinatemsre originally concieved
hundreds, or even thousands of years ago. Although fingerpranssithin use today, the idea to develop
automatic system for use our voices, our hands, palms, iris and facegpvegosed. In 1936, the idea
that our iris patterns are unique was proposed. The development a$ éteintification system began
in 1993 [37]; in 1994 the first iris recognition algorithm was patented, aagdar after that, a commer-
cial product measuring iris became available. In 1960s face recogniicente semi-automated [8].
Funding for the project was provided by the unnamed agency and little imfvibek was published.
In 1991, face detection is pioneered making real time face recognitioibpofa3] by Turk and Pent-
land. However the algorithm works well with clear background and aligaegels. Face Recognition for
image with cluttered background become possible with real time detector in 30@bla-Jones [74]
Biometric Identification using palmprint identification was proposed in 200 [8G&th the rapid pop-
ulation explision this task becomes seemingly more challenging. Biometrics bg@ézhtion can now
be seen in use around us in everyday life. Government across thehaoddtarted to provide their cit-
izens with the biometric identifiers and maintain identity database. These dat@asesed at airports
and other entry points to regulate public movement across borders ahtisbsidentity in commer-
cial transactionssingle out suspicious elements. USA, Brazil, Germaigdingdom, Iraq, Israel,
Australia, New Zealand etc have already started issuing passports cogtdigitized biometric data
like signature, photographs, iris information etc. Many country includirtialare leading down the
same path to maintain the digital records of its population and are in the prddsssiog passports
and Unique Identification Number with embedded biometrics details.

Biometrics as a solution of user identification and security problems in today®nkeis believed
by a lots of people. Misuse of password, password theft is a big proiléoday’s network, whether
it is human error and in some cases malicionsness. Biometric Technologyeeetthe scope of human
error. That means the case of password lost does not exist.

Biometrics Application can be seen in some high securing buildings and evemim\webs. This
indicates the importance of the biomerics in the future. It has been in widalyim$ersensics applica-
tions such as criminal identification and prison security. The biometric tecipadaapidly expanding
and has a strong potential to be widely accepted in civilian technology.ardmss all over the world
working on the biometric technology can be used in the areas like electromiiniga e-commerce.
Some companies are working on the implementation of fingerprint authenticgtitans These days
some of the laptop come with the fingerprint authentication system.

With the rapid growth of population and increase in the web technology usedcifanic transac-
tions, electronic banking and electronic commerce are becoming one of thémpostant field in the
applications in biometrics. The applications where biometric applications carabiisgd include credit



card security, ATM security, check cashing and fund tansfes onlimsdcions and web access. The
use of biometrics will become more widespread in coming years as the techimoddgres and becomes
more trust worthy. Some of these applications have already started usingthis for person verifica-
tion. Traditional knowledge-based (password or Personal Idetitificlumber (PIN)) and token-based
(passport, driver license, and ID card) identifications can be compedniisfraud because PINs may
be forgotten or guessed by an imposter and the tokens may be lost or wemetrics trait offers a
natural and reliable solution to certain aspects of identity management by utfiitipgutomated or
semi-automated schemes to recognize individuals based on their physibébgicecteristics. By using
biometrics it is possible to establish an identity based on who you are, rathdnivehat you possess,
such as an ID card, or what you remember, such as a passwordnénagplications, biometrics may
be used along with the ID cards and passwords thereby providing &oadtlevel of security. This is
known as dual-factor authentication scheme.

To access your accounts. ..

Login to OnlineSBH
User Name * I |
Password * ‘ |

] Enable Virtual Keyboard

(@) (b)

Figure 1.1 Authentication schemes. (a) Traditional schemes use ID cards andgrdssw validate
individuals and ensure that system resources are accessed by a kefytieraolled individual. (b)
With the advent of biometrics, it is now possible to establish an identity basedoryau are rather
than by what you possess or what you remember.

Traditional knowledge-based and token-based approaches die tmaatisfy the security require-
ments of our electronically interconnected information society. Biometricdifa@tion system such
as IAFIS [34] have huge biometric databases. In such a large dajainadeas to determine the identity
of a subject from a large set of users already enrolled in the datab@iseddentification of a person
requires a comparison of the biometric traits to all the traits in the databaseaSaction may be nec-
essary for a variety of reasons but the primary intention is to prevent taygdsom accessing protected
resources. In some cases, the database may be very larger evesufmra&omputer to do one to one



Figure 1.2 Examples of biometric traits that can be used for authenticating an individuggidal traits
include fingerprint, iris, face and hand geometry while behavioral traitsdecsignature, keystroke
dynamics and gait.

matching. In such cases identification takes a long time to repond to a que\cuFtent biometrics
systems works well with the small database, but it will fail when we have tatiiara larger database,
as in the case of Unique Identification. Traditional databases index thedseem an alphabetical or
numeric order for efficient retrieval. In biometric templates, there is no absorting order by which
one can sort the biometric records, making indexing a challenging probtetimisithesis We propose a
guidelines for the search in biometric databases with the use of filtering.

The introduction to thesis is organized as follows: In this chapter, we praseoverview of biomet-
rics. This includes a basic introduction to biometrics, followed by a sectiotaiexpg the biometric
recognition process. We will describe the already existing Indexingggsoand their short comings. The
chapter concludes by giving a detailed motivation to the problem chosehisahesis, exact problem
statement, and thesis contributions.

1.2 Identification vs. Verification

Depending on the application context, a biometric system may operate either vertfieation
or identification mode (see Figure 1.4,1.5). In the verification mode, the sysibdates a person’s
identity by comparing the captured biometric data with her own biometric template(gdsin the
system database. In such a system, an individual who desires to mimsb claims an identity,
usually via a PIN, a user name or a smart card, and the system condussta-ane comparison to
determine whether the claim is true or not (e.g., “Does this biometric data belduif2g. Verification



Fingerprint Enhancement  Minutia Templates
Capture Image Extraction in databast

Enrolime

Figure 1.3 Fingerprint Enrolment: First the the image is catured using fingerprint satssenhanced
using fingerprint enhancing algorithm, its features (minutiaes position,atiamtand its quality) is
extracted and its value is stored in the database along with the informationthbaster.

Claimed Identity

|

Template

Fingerprint Quality Feature Matching Module

Capture Assesment Extraction
Decision Genuine/
Verification

Figure 1.4 Fingerprint Verification: First the the image is catured using fingerprird@eMhe quality
assessment module determines if the sensed data can be effectively tisefHature extractor. Its fea-
tures, (minutiaes position,orientation and its quality) is extracted and its valueugatad and matched
with the template of the claimed user.

is typically used for positive recognition, where the aim is to prevent multipteleefrom using the
same identity.

In the identification mode, the system recognizes an individual by searthéntemplates of all
the users in the database for a match. Therefore, the system condumsi@rmany comparison to
establish an individuals identity (or fails if the subject is not enrolled in théegyslatabase) without
the subject having to claim an identity (e.g., “Whose biometric data is this?tifebation is a critical
component in negative recognition applications where the system establigtather the person is
who she (implicitly or explicitly) denies to be. The purpose of negative neition is to prevent a
single person from using multiple identities. ldentification may also be used itiveoecognition
for convenience (the user is not required to claim an identity). While traditiorethods of personal
recognition such as passwords, PINs, keys, and tokens may wogo§itive recognition, negative
recognition can only be established through biometrics.



Input Feature Sef
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Stored Template

Fingerprint Quality Feature Matching Module
Capture Assesment  Extraction

R
™ " Rule
Identificatio Imposter

Figure 1.5Fingerprint Identification: Image is captured, its feature is extracted anthiished with all
the templates stored in the database.

1.3 Biometrics Characteristics

Each Biometrics has its pros and cons, therefore, the choice of a biomaitifotra particular
application depends on a variety of issues besides its matching perform@&agmanet al. [75] have
identified seven factors that determine the suitability of a physical or a lmrhhtrait to be used in a
biometric application.

e Universality Every individual should have this particular trait.

e UniquenessThe trait should be unique for the all population that ever came.

e PermanenceThe biometric trait of an individual should be invariant to time and condition.
e Measurability It should be possible to extract the features from the trait.

e PerformanceThe recognition accuracy and the resources required to achievethiaaey should
meet the constraints imposed by the application.

e Acceptability Individuals in the target population that will utilize the application should be will-
ing to present their biometric trait to the system.

e Circumvention The affect of artificats in which the trait of an individual can be affedigdake
fingers, mimmicry, iris and capturing devise. This is known as circumventiaridéal biometric
should have minimal circumvention.

Each form of biometrics authentication has its own strength and weaknessingle biometric trait
is expected to effectively meet all the requirements (e.g., accuracyjoaldg, cost) imposed by all
applications (e.g., Digital Rights Management (DRM), access control, reedfiatribution). In other
words, no biometric is ideal but a number of them adenissible Some of the commonly biometric
traits are given below:

1. Face: Face Recognition is the most common and oldest method used by the humargttseco
one another almost as old as human civilisation. The most popular appsdadiace recognition



[40] are based on the location and shape of facial attributes, such egabenose, lips, and chin
and their spatial relationships, or the overall analysis of the face imagecthra@sents a face as
a weighted combination of a number of canonical faces. In order fasial flaecognition system
to work well in practice, it should automatically detect whether a face is pt@s¢he acquired
image; locate the face; identify the amount of rotation and recognize therf@mea general
viewpoint (i.e., from any pose) under different lighting condition.

. Fingerprints: Fingerprints is the strongest of all biometric traits and are used for pedritan-
tification for many years. The matching accuracy using fingerprints hexs \ery high [76]. It
has been determined that the fingerprints of identical twins are differehsa are the prints
on each finger of the same person [41]. Today, most fingerprinhecarost less thaRs3000
when ordered in large quantities and the marginal cost of embedding ggfiimjdased biomet-
ric in a system (e.g., laptop computer) has become affordable in a large nofrdgplications.
Nowadays laptop are coming with fingerprint scanner. The accurattyeaturrently available
fingerprint recognition systems is adequate for authentication systemserakapplications,
particularly forensics. The fingerprint for the small section of the sociedy not be used for
the identification, e.g manual workers may have a large number of cuts aisgédon their fin-
gerprints that keep changing. There some cons in using fingerprinthas itaditionally been
associated with criminal activities and thus users could be reluctant to @i fiir of biometric
authentication

. Hand geometry: Hand geometry recognition systems are based on a number of measurements
taken from the human hand, including its shape, size of palm, and the lemgthgdths of the
fingers and diagonally measurements of palm [11]. Commercial hand geebasted authen-
tication systems have been installed in hundreds of locations around the wtwldever, this
system can not be deployed on large scale as its the size of featuresacage avith age. The
physical size of a hand geometry-based system is large making it difficdptoy in all the
places like laptop.

. Palmprints: The palms of the human hands contain pattern of ridges and valleys much like the
fingerprints. The area of the palm is much larger than the area of a fingdemdnich makes
palmprints to be even more distinctive than the fingerprints [80]. Human palrascaigain
additional distinctive features such as principal lines and wrinkles. elfestures are easier

to capture even with a lower resolution scanner, which would be che&pally, when using

a high-resolution palmprint scanner, all the features of the hand sugkamsetry, ridge and
valley features principal lines, and wrinkles may be combined to build a higlelyrate biometric
system. The negative thing would be it will be diffcult to deploy in all the places

. Iris: The iris is the annular region of the eye bounded by the pupil and the ¢$aleita of the eye)
on either side. The visual texture of the circumcentre in iris is formed dudtal development



and stabilizes during the first two years of life. The complex iris texturéesavery distinctive
information useful for personal recognition [20]. The accuracy sjmekd of currently deployed
iris-based recognition systems is promising and support the feasibility eftargle identification
systems based on iris information. It is easier to fool the system with fakaatdanse (see [11]).
The hippus movement of the eye may also be used as a measure of liventgs biometric.
Although early iris-based recognition systems required considerablgadeipation and were
expensive, the newer systems have become more user-friendly areffecsive. It detects the
iris and captures it automatically [30].

Some other used biometric characteristics, includes keystroke. This biomsetii¢ expected to be
unique to each individual but it may be expected to offer sufficient ihidoatory information to permit
identity verification [58]. Signature of a person is well known biometricsiaraften used in for bank
cheque processing system, but it is yet to applied on a automatic system.id/aivether biometrics
characteristics. There is some problem with the voice recognition system alikgtound noise must
be controlled. Space required is very large for storing the template. Ibeaifected by the climate
situation,like sore throat, common cold. The physical features of an indilddwice are based on the
shape and size of the appendages (e.g., vocal tracts, mouth, nasascamd lips) that are used in the
synthesis of the sound. There are two different types of voice réiagisystem: text-dependent and
text independent. Gait refers to the manner in which a person walks, ame isf the few biometric
traits that can be used to recognize people at a distance. Based on thefdiiainetric characteristics
its difficult to find a characteristics with all the features. We choose theacteistics based on the
situation, level of security needed and costs we can afford.

1.4 Indexing and Classification

The identification of a person requires a comparison of her fingerpithtadl the fingerprints in a
database. This database may be very large (e.g., several million fingegmthin some cases billions
of fingerprints) in many forensic and civilian applications. In such cagesidentification typically
has an unacceptably long response time. The identification process spadued up by reducing the
number of comparisons that are required to be performed. Informatarn aéx, race, age, location and
other data related to the individual are available and the portion of the databde searched can be
significantly reduced. These informations are not always accessigle ¢eminal identification based
on latent fingerprints or in case when we are chacking for frauds)iarnkle general case, information
intrinsic to the biometric samples has to be used for an efficient retrieval. Withdve@ncement of
technology, several computers can be run in parallel to retrieve reduttanmon strategy to speed up
the search is to divide the fingerprint database into a number of bingi(bas®me predefined classes).
A fingerprint to be identified is then required to be compared only to the fonigés in a single bin
of the database based on its class. Classification referes to a problencinamtiass is assigned to
fingerprint or palm print. When a probe image comes it class is determineitl sgatched in database



with its own class. The aim of Indexing is to retrieve a small portion of datalpaseler to determince
the possible match This improves the reponse time and and enables the implemerfthiionetrics
technology in real world application.

1.5 Existing Methods for Searching in Large Databases

Hao et al. [31] shows the use of indexing in large databases. Their used BeadidedsSearch
(BGS), tackles the problem of large databases dispersing a multitudeaxfdth®’ in the search space.
Despite random bit errors, iris codes from the same eye are more likelllitteamith the same beacons
than those from different eyes. By counting the number of collisions, B@fhks the search range
dramatically with a negligible loss of precision. They evaluated this techniqog 682,500 iris codes
enrolled in the United Arab Emirates (UAE) border control system, showsupatantial improvement
in search speed with a negligible loss of accuracy. This is first step stepdswdexing of biometric
data in a large scale.

Another example of searching in a large database is internet. The intéersta;m enormous amount
of information in almost every imaginable category. Eric Schmidt, the CEO ofg{eathe world’s
largest index of the Internet, estimated the size at roughly 5 million terabytdataf That's over
5 billion gigabytes of data. Schmidt further noted that in its seven years efatipns, Google has
indexed roughly 200 terabytes of that,.004% of the total size [52]. The Indexed Web contains at least
7.74 billion pages as of May 2012 [22] The estimations is based on the nuwiheages indexed by
Google, Bing, Yahoo Search Engines.

Even a single website can contain huge collections of data. If visitors haeatoh these websites
without any help it would literally take them hours to find something they wheeg. af

Website indexing concepts developed as indexers, librarians and welgerarexperimented with
different approaches for making the information they were providing erlriternet more accessible.
These approaches included: A to Z indexes; displaying the overalt@teuof the site (information ar-
chitecture); site maps; and search facilities. Search facilities were sometitraasoed by the creation of
subject metadata (“catalogue cards”), which could be organised imadiffeacets, or displayed visually
as well as textually. The tools for creating A to Z indexes have changedtiove. Initially, indexers
used simple HTML coding to create indexes. Features such as indentsraacbtund (wraparound)
lines caused difficulties.

The development of HTML Indexer was a major breakthrough in the fielseafch engines. It
provided an effective way to create indexes for websites. They Heaugged the system and traditional
methods of indexing. In one of indexing scheme, an index of all possil@eydarms is prepared in
advance during training phase. Lets take an example of collection of Edmlas in a library. The
easiest and the most obvious approach would be to keep track of ak fword the English dictionary
that appear in each book. On repeating this across all books, we emithu@ term-incidence matrix,
in which each entry shows if a specific word occurs in a book or not. EBi@jé shows a sample term-



document identifier

1 2 3 4 5 6

the X X [ X | X | X | X

to X X X X X

% john X X X

- realize X X X
algorithm X

Figure 1.6 Term-Incidence Matrix for a sample of English documents taken from [18]

Dictionary Posting Lists (document identifier, term frequency)

the —_— ] 1,9 | 2,8 \ 3,8 | 4,5 \ 5,6 | 6,9
to — [ 15 | 31 [ az [ s2 | &6 |
john —l \ 2,4 \ 4,1 | 6,4 |

realize — | 12 \ 3,1 | 6.3 |

algorithm | —— ’T‘

Figure 1.7 lllustration of Posting Lists for Example from Figure 1.6( [18])

incidence matrix. The collection of documents over which a search engifugmps retrieval is referred
to as a corpus. This will create a big matrix. For a database of 1 million documiht$00K distinct
words, ~ 10GB(1M x 100K) will be required to hold the index in matrix form. A total of 4 GB
(1M x 1000 x 4) storage if each document is 1000 words long on average and eaehregluires 4
bytes to store. Clearly, lot of space is wasted in recording the abseterensfin a document, and hence
a much better representation is required to record only the occurréh8gs.

An improved efficient index structure is an inverted index. Its a collectiolistf, one per term,
recording the documents containing that term [18]. Each item in the list forg tdso referred to as
a posting, records the orginal document identifier d, and its correspptetm frequency (TF)d, t f).

If 4 bytes are used to encode each posting, a term appearing in 100Kdots will result in a posting
list of size 100KB to 1MB. We illustrate this in Figure 1.7 for the same example aigjuré-1.6.

Another interesting problem in the same scale includes searching image flmtgrnet. Image
search is a specialized data search used to find images. User can enjetegms such as keyword,
image file, link to the image. for images, a user may provide query terms suctya®rkl, image
file/link, and the system will return images “similar” to the query. The similarity dsedearch criteria
could be meta tags, color distribution in images, region/shape attributes, etc.

¢ Image-meta Searctsearch of images based on associated metadata such as keywordsitdxt, w
are linked to the image.
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e Content-based image retrievalContent Based image retrieval provides result based on the con-
tent of the query image. It uses various application of computer vision tevetresults. It avoids
the use of text to retrieve results and its purely based on colors shajasese

The most misunderstanding when it comes to image search based on meta datthis thost people
thinks that search is based on detecting information in the image itself. But magt isearch works
as other search engines. The metadata of the image is indexed and stoladjendatabase and when
a search query is performed the image search engine looks up the indeyeries are matched with
the stored information. Its like an html indexer which returns image. The remaligresented in order
of relevancy. The usefulness of the result

“Content-based” means that the search will analyze the actual contahesiafiage like colors key
points inside the image, rather than the text data such as keywords, tdigs, @escriptions associated
with the image. The term ‘content’ in this context might refer to colors, shdpgtures, or any other
information that can be derived from the image itself. CBIR is desirableusecaost web based image
search engines rely purely on metadata and this creates a large variabiligyréstiits. Google Image
has started content based search. Tineye is another content basedseneath. Concept-based image
indexing, also variably named as “description-based” or “text-basedjenraexing/retrieval, refers to
retrieval from text-based indexing of images that may employ keywortigeaiheadings, captions, or
natural language text [15]

Chenet al.[16] have shown that hierarchical trees and pyramids are verytigédor both searching
and browsing large databases of images. In [3], Weiss have devdiciprdfimage search and scene
matching techniques that are fast and require very little memory, enablingudeewn standard hard-
ware or even on handheld devices. Their approach uses the Gisiptas(a real valued vector that
describes orientation energies at different scales and orientations afitlinage) to a compact binary
code, with a few hundred bits per image. Sift features are also in useoftte@ based matching of
image in a large databases. Large databases of biological data is prbtteebtain information about
biological structures of different species [9]. In computer vision aaitipn recognition, problems like
face recognition [56], body pose estimation [68], optical charactegriton [5] require processing on
enormous amount of data.

The large scale problem discussed above either follows a natural sorteg(in case of internet
indexing) or in most cases it doesnt affect the result much if there is salse fiegative. Incase of
biometrics, the intraclass difference is very low, and interclass differenalmost fixed between any
two samples belongs to different class. Size of the feature vector is vwegey, vhich increases the
computational time between two samples. There may be chances that parpaflthesample is miss-
ing(like in the case of fingerprint where some minutiae may be missing). Size bfdmetric database
is huge, which keeps on increasing everyday. Absence of a reliathi@sinindexing method shows the
relevance of the problem.

11
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Figure 1.8 Handwritten digit recognition using a nearest neighbor classifier and tk&SMdatabase
of 60,000 training images [5]. Given a query image that we want to clask#ysystem retrieves the
nearest neighbor of the query in the database, and assigns the dlassetfieved nearest neighbor to
the query image.

1.6 Problem Statement and Thesis Overview

The problem we deal in this thesis, is the automatic generation of filtering pigblheeduces the
search space, for a given query image, with minimal false non matchesré/feagosing the use of
cascaded random projection.

In chapter 2 We have explained the history of biometrics, indexing andfaasisn, a brief review
of Random Projection, its advantage over earlier form of dimensionalityctexh, its cost effectiveness,
its accuracy. We have explained some of the state of the art indexing méthdifisrent biometrics. In
chapter 3, use of random projection in palmprint and iris for cascadedrfijteln chapter 4, cascaded
filtering of fingerprints data, using random projection is explained. Welade thesis with a conclusion
and some future work in the field of biometric indexing.

1.7 Summary

With the rapid advancements in the field of communications, computer netwonkéhtgansporta-
tion, along with increased concerns about identity fraud and nationatisedas resulted in a solid
need for reliable and efficient identity management schemes. ldentity mmaeagecludes creation,
maintenance and removal of identities along the guarantee of protectionnmoostor does not fraud-
ulently gain privileges associated with a legitimately enrolled individual. Traditiechniques based
on passwords and tokens are limited in their ability to address issues suefaiv@& recognition and
non-repudiation. Password can be compromised. Tokens can be coisgdo Biometric systems use
the physical and behavioral characteristics individual to establish atitide/hich makes it more secure
as its difficult fool and remembering password is not an issue.

The deployment of biometrics in civilian and government applications hasdrgisestions related
to the privacy of an enrolled individual [21]. Specifically, questionshsas the biometric data be used
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to track people thereby violating their right to privacy. The acquired biame#ata be used only for the
intended purpose of verifying, or will it be used for some other func@®of=dividual's financial and
social profile should be secure, possible outcome if the system fails tectgridentify biometric data
have advocated raise several concerns about the use of biomettiors®in large-scale applications.
Even if these problem are resolved, the implementations of biometrics systamational level is still
a challenge. The indexing of such a large database is a challenge andissilbiwork can be done in
the field.
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Chapter 2

Previous Work

In the last chapter, we present an overview of biometrics, indexing ofidtibics. Some large scale
problem. in detail. Here, we discuss about the existing works in the field ekingd of fingerprints,
iris and palmprint recognition and some indexing method in detail. We start witlevaopis works
in the field of Random Projection, its cost effectiveness ability over tradittype of dimensional
reduction method in section 2.1. In section 2.2 a comparison between clagsifiwad indexing. The
Classification based approach for indexing is discussed in section 2.ghe lsubsections we have
explained the classification in fingerprints, Henry’s classification and paitglassification. In the
section 2.4 we explained Indexing works in the biometrics and explained firigesrand iris indexing.
In section 2.4.4 we have give a brief overview of palmprint indexing. Wiesmed the pyramid indexing
in section 2.5. We conclude the chapter with a summary and overview of thehegter.

2.1 Random Projection

The Nearest Neighbour(NN) Search problem, is a major problem in \&fields of computer sci-
ence. Basically there are two sides of the problem: Exact NN and apprexiih The problem is
stated as: Given a set of poinis a high-dimensional space, construct a data structure which given
query pointq finds the point inP closest tog(for exact NN). or a close approximation to the nearest
point of ¢(for approximate NN). The problem stated above is of significant impogtemfield of pattern
recognition, searching in multimedia data, dimensionality reduction [28], conigui statistics [23],
data mining etc. Many of these applications involve data sets that are vesyifadgmension and size.
Moreover the dimensionality of the data points can be in the order of hundretisusands. Both of
these factors make it a challenging computational problem in computer science

Random Projection has been used in past for dimensionality reductionisTéhtechnique of map-
ping a number of points in a high-dimensional space into a low dimensiona syttt the property
that the Euclidean distance of any two points is approximately preservagytntbe projection, where
the high dimensionality of the data would otherwise lead to heavy computationsomiging dimen-
sionality reduction method for a use in pattern recognition is random projectio8ulic et al. [70]
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| Biometric Trait| Iris | Signature| Ear | Face | Combined Features
| FRR [2% ] 21% [1.8%]3.33%] 0.66% |

Table 2.1Result on indexing with KD tree on different Biometric Traits

the performance of the random projection method which can be used in dethedmeras is shown.
Random projection is compared to Principal Component Analysis(PCA) itethes of recognition ef-
ficiency on image data set. Unlike PCA, it does not depend on a particuilaingalata set. Unlike
Discrete Cosine Transform (DCT) or Discrete Fourier TransformTDE basis vectors do not ex-
hibit particular frequency or phase properties. Results in [70] sh@wd gerformance of the random
projection in comparison to the PCA even without explicit normalization of transdtion subspace.
Furthermore, it represents a computationally simple and effective methqat és&trves the structure of
the data without significant distortion [29]. It preserves for examplemekiand affine distances [50]
or the structure of data (e.g. clustering) [19].

In [25] random projection is used for a cluster ensemble approachislapproach multiple runs of
clustering are performed and the results are aggregated to fornx ansimilarity matrix. Heren is the
number of instances. A clustering algorithm is then applied to the matrix to pedtiecfinal cluster.
Dasgupteet al. [19] showed that random projection can change the shape of hightyeaxclusters
to be more spherical. In [32], it showed the random projection methodeasdxd in conjunction with
standard algorithms with virtually no degradation in performance. Randojegtions can been shown
to result in both significant computational savings and provably goodeaince. Binghanet al.
in [7] showed the use of Random Projection for dimesnsional reductioaigy mnd noiseless images.
Goelet al.[29] uses the Random Projection for face recognition. Their experimeptesenting faces
shows that although random projections represents in a random, lowslonahsubspace, its overall
performance is comparable to that of PCA with a lower computational requitsra@d being data
independent.

However, one of the major drawback of random projection is that it is highltable different
random projections may lead to radically different clustering results.

2.2 Multidimensional Indexing in Biometrics

Jayaraman et al. [43] explained the usage of multidimensional indexing in tsioswith B+ trees.
The features are projected on to a low dimensional subspace defineGAyTRe indexing is then
performed on this low dimensional Eigen space using B+ trees. In most apiiecation where mul-
tidimensional techniques has been used, either B+ trees or KD-Treégdasised to index. Result is
shown in table 2.1.
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Depends on the different value of k chosen the penetration rate veoias3f6 to 12% on the com-
bination of featured from iris, signature, ear and face.

2.3 Classification and Indexing

Classification based indexing means assigning a class label to the prolbasithien compared with
the gallery template which belongs to the same class as the probe. The mainiteshe wlassification
technique is that the number of classes is small and templates are uneveiibytdidtamong them.
This problem is addressed in using sub classification and continuos clatssifi Another critical issue
is that the accuracy of the overall system is limited to that of the classifierfasé@ttlexing, which is
too low to useful.

2.4 Classification in Biometrics

2.4.1 Fingerprint classification

Classification as defined above is assigning a label to probe. Fingesfassification is generally
based on global features, such as global ridge structure and sipgirtés (Core and Deltas). Finger-
print classification is a challenging pattern recognition problem due to the srtelclass variability
and the large intra-class variability in the fingerprint patterns. Moredwgerprint images often con-
tain noise, in some cases only contains a part of image, which makes the cdissiftask even more
difficult.

The Henry Classification System, the first British fingerprint files in Londentten by Edward
Henry more than 100 years ago, was a precursor to the fingerpristfidason system that was used
by the FBI for many years.

2.4.2 Henry Classification System for fingerprints

We will start with how fingerprint classification progress over the yeBtskinje in [57], proposed
first fingerprint classification rules in 1823. He classified fingerprinis inne categories (transverse
curve, central longitudinal stria, oblique stripe, oblique loop, almond lyhpiral whorl, ellipse, circle,
and double whorl) according to the global ridge configurations. Frabaiton performed the first de-
tailed scientific work on fingerprint classification. He divided the fingetprinto three major classes
(arch, loop, and whorl) and further divided each category into degoaies [26]. During the same
period, a police official from Argentina, Juan Vucetich from developatifferent system of classifi-
cation. This system is still used in many Spanish-speaking countries. &dveary, a British police
officer in Bengal in 1900 refined Galtons classification by increasing tineoer of classes [33]. The
GaltonHenry classification scheme was adopted in several countriesoMbe classification schemes
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currently used by law enforcement agencies worldwide are variantedbéttonHenry classification
scheme.

FBI follows this system of classification and used eight different clafssdmgerprints: radial loop,
ulnar loop, double loop, central pocket loop, plain arch, tented ataim whorl, and accidental [72]. As
a result, most automatic system reduces the number of classes to five. fityeGHessification System
allows for categorization of ten-print fingerprint records into primargugings based on fingerprint
pattern types. This system reduces the effort necessary to seayemianbers of fingerprint records
by classifying fingerprint records according to gross physiologicata&cteristics.

To reduce the search time and computational complexity, it is desirable to gldese fingerprints
in an accurate and consistent manner such that the input fingerprud tebe matched with only a
subset of the fingerprints in the database. When an input fingerpnmésd is matched with on of
the pre specified fingerprints to determine which class the probe fingebetiongs. Then this input
fingerprint image is matched with all the fingerprint in the database. Thdatapudistribution of the
occurence of the fingerprints are approximately 33% , 36%, 17%, 6&e8%nfor whorl, right loop,
left loop, arch, and tented arch, respectively [72] according to theegly FBI. Sometimes it happens
with the automated system that we get two classes for a query template. Weeoaitrsthe population
distribution that for two classes, whorl and right loop, it covers alf®dt of the whole population.
Such occurence reduces overall effectiveness of classificatgadladexing. This classification is not
in much use today, as it was used few decades ago.

2.4.3 Palmprint Classification

Palmprint classification provides an important indexing mechanism in a palngaiabase. As
discussed in chapter 1 it is one of the important biometric modalities. An accamdt€onsistent
classification can greatly reduce palmprint matching time for a large datakasegianet al. in [78]
principal lines of the palmprint is defined using their position and orientatidrtl@iokness. After that
a set of directional line detectors is algorithm is run. Then the potential hiegis of line initials of
the principal lines are extracted. After that, based on these line initialsuesiee process is applied
to extract the principal lines. Palmprints are classified into six categoriesdieg to the number of
the principal lines and the number of their intersections. The proportiotiesé six categories (1-6)
in their database containing 13,800 samples(a36%, 1.23%, 2.83%, 11.81%, 78.12% and5.65%,
respectively [24]. This approach is able to classify palmprints with anracgwf96.03%

In Fanget al. [24], it is shown a palmprint classification algorithm which is able to classifynpa
prints into ten evenly-distributed categories (1, 2, 3, 4, 6, A, B, C, D,Endn palmprint biometric
system, 78% of the population falls in one category.
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(c) Rightloop (d) Left loop

(e) Arch (f) Tented Arch

Figure 2.16 different types of fingerprints that are used in academics and indirielassification
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(e) Category 5 (f) Category 6

Figure 2.2 Examples of each palmprint category.
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2.5 Indexing in Biometrics

2.5.1 Fingerprints Indexing

Germainet al. in [27] used the triangulation of mintutiae points, length of each side, locaitaitn
and ridge count between two vertices for the indexing of fingerprinisefasitive rate on a 10 person
database i$0%. FPR on 100 person databas&38:. 32 disks were distributed over 8 node IBM SP2
system, could search a database of 10 million fingerprints in 70 secondsuBhal. uses triangu-
lation of minutia [6]. He used the maximum of the three sides, median and minimunsatridagle
handedness, type and direction of the minutiae selected, ridge count amiandi@nsity. On NIST-4
database the Correct Index Performance (CIRp{% with the verification of his method was limited
to the10% of the database. Bebét al. in [4] uses the delaunay triangulation (see Figure 2.3) method
of minutiae points. The other feature used was the ratio of the maximum to the minigik rthe
triangle and the cosines of the two smallest sides. In case of 3 imprints gengarthe training set,
average correct matching ratesi.56%. and the average false negative matching rat8.i36%. Arun
Ross and Mukherjee in [66] uses Delaunay Triangulation to extract #terés. He choses the largest
angle, ratio of the square of the perimeter and area of the triangle andfrdtemlongest to the smallest
side as the feature. The penetration Wad% for 100% hit rate. and9.52% for 80% hit rate.

Liu et al.[49] shows indexing based on the Singular point correlation. He pespib& continuous
fingerprint indexing method based on location, direction estimation correlatibngerpeint singular
points. In 2006 he presented fingerprint indexing method based on égiStnation [48]. The average
search space was34% of the total database if the size of the testing and training is same of FVC
2000 dataset. Cappebit al. in [13] shows the use of minutia cylinder code for fingerprint indexing.
A Locality-Sensitive Hashing (LSH) scheme has been designed relyingioutiae Cylinder-Code
(MCC), which proved to be very effective in mapping a minutiae-baseresetation (position/ an-
gle only) into a set of fixed-length transformation-invariant binary vexctdlCC has been used in
fingerprint matching in [12]. MCC is a novel representation based on&B structures (called cylin-
ders), built from minutiae distances and angles. The cylinders can atedrstarting from a subset of
the mandatory features (minutiae position and direction) defined by stanlilkedSO/IEC 19794-2
(2005). They have demonstrate the feasibility of obtaining a very efee¢ind interoperable) finger-
print recognition implementation for light architectures.

2.5.2 lIris Indexing

In iris recognition is based on the texture content of iris is used to extratirfss, which are used
for iris recognition [37]. Rosst al. [67] shows the use of iris codes for indexing. Iris template gener-
ation involves the two stages, the first stage involves iris segmentation, Wigeirgs is localised and
isolated from the other structures in the vicinity, second stage geometric lizatioa is done, where
the annular structure of the iris is mapped to the polar domain via an “unwigpmiocedure resulting
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Figure 2.3Delauney Triangulation method used in different paper for fingerpmoixing(Figure taken
from [66])

(a) IRIS with a circle (b) Unwrapped iris
template

Figure 2.4 Segmented iris and its unwrapped template

in a rectangular entity. Finally the feature extraction, where this rectangutdy is projected onto a
Gabor wavelet and the resulting phasor information quantized into an #e&sCRee Figure 2.4. Puhan
et al. uses the iris color for database indexing method [63]. Mehetdteh [53] used energy hostogram
of DCT subbands. where he used histogram of dct subbands fodrgde

In this method iris is indexed using energy histogram. Iris image is first norrdadisd then is
divided into subbands using multiresolution DCT transformation. Histograwrised for all the the
images in the database, which is divided into fixed bins to group the imagegtsmiitar values. A
detail work is given in [53].

2.5.3 Palmprint Indexing

Not much work has been performed in the area of palmprint indexing. tLiatdse work by Yang
etal.in [79] in 2011. Palmprint is aligned during the offline training by registeringitsntation field
with respect to a set of reference orientation fields. These orientatids fiee obtained by clustering
training palmprint orientation fields. Indexing is based on comparing ridigatation fields and ridge
density maps, which is much faster than minutiae matching. Algorithm propos&®Jim¢hieved an
error rate ofl% at a penetration rate @f25% on a palmprint database consisting of 13,416 palmprints.
It takes only 0.22 seconds to retrieve the results.
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2.6 Pyramid Indexing

One of the common indexing technique is Pyramid indexing. It works for velgtsmall dimen-
sional datasets. The key idea is to divide the d dimensional data spac&dirad pyramids sharing the
center point of the space as the top as seen in 2.5,2.6. It involves the natioalsf the data values to
lie between 0 and 1. Subsequently, each of the single pyramid is cut intofsicke| to the base of the
pyramid that forms the data pages. Such a patrtition strategy yields a mapmimghie d-dimensional
space to a 1-dimensional space. B+ tree is then applied to index these omesidimaé transformed
data. The pyramid works well when featue vector size is less [54]. Batwthe size increases to few
thousands, it fails to give any satisfactory result.
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Figure 2.5 Partitioning 2-d space into Pyramids

height of v

Pyramid p1

Figure 2.6 Height of point v in Pyramid P1

2.7 Summary

In this chapter, we have seen that random projection can be applied infiglds of computer
vision, its cheap computation cost. We have seen all the important indexioggsrthat are used in the
biometrics system. The problem of indexing in a large databases a well koimlstem in computer
science. The current indexing method will fail if the size of datasets is bvgHion. Most of the
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indexing method that are in use today are either hand crafted or worksHerewe have small datasets.
With larger size of the feature vector, indexing becomes difficult to perfa¥e have seen the problem
with the classification of fingerprints and palmprints. Huge population of fprges and palmprints
falls within 3 classes, this reduces the significance of classification. Wasdisthbout the difference
between classification and indexing. Random Projection, a novel cpnospite of compuationally
cheap, has never been used in the field of biometrics as a weak clagsitige. next two chapters we
discuss about the indexing of biometrics data using random projectionhdpt€r 3 we will discuss
about the indexing of palmprint using random projection. In chapter 4i¥digcuss about the indexing
of fingerprints using random projection. We conclude the thesis with a siemand future work.
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Chapter 3

Cascaded Filtering using Random Projections

We now describe the process of creation of the filtering pipeline usingorangtojections. We
also compare the results with the use of non-random projections suchfaamICLDA, along with
experimental results on Palmprint and Iris datasets.

3.1 Introduction

Approaches to reducing the search time falls into two categories: indexéh{lning. Indexing,
as mentioned before, classifies a probe as belonging to a specific clagevoclasses), and uses only
that part of the dataset from the same class for explicit comparisongrébess is extremely quick as
the time required for classification of the probe is independent of the dataliwe. However approach
assumes that the biometric trait can be partitioned into mutually exclusive $assés and classification
into these classes is accurate. Filtering approaches relaxes this assuamgtioses a simple light-
weight matcher to compare the probe against each entry in the databasamplis that are potential
candidates from this matching process is passed on to the next stagetfer iomparisons.

We note that the ideal feature representation of strong biometric trait osédehtification is not
well-suited for indexing as the inter-class distances tend to be close to tetas evidenced by low
variance of the imposter distribution. Similarly, the variable length of featyseesentation and the
comparison mechanisms used in practice for strong biometric traits makes itdop foe use in a
filtering process. As supported by experimental evidences, a dirpriagh to indexing biometric data
such as the use of indexing structures like KD-Trees on the featureseagations of a strong biometric
does not yield satisfactory results. To overcome these difficulties rasra and biometric practitioners
have proposed a variety of features and matching strategies, oftenddiboaebiometric trait for the
purpose of indexing and filtering. As we are using the indexing or filtertagesas a precursor to
explicit matching, we would like to keep the False Non-Identification Rate (fNi&y close to zero,
while pruning the database as much as possible. FNIR indicates the probtdatity probe with a
matching record in the database would return a no-match after the entire @hittifiprocess.
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Automatic classification of fingerprints into the Henry classes was explgrédibet al.[38], yield-
ing a system with 12.4% FRR. A similar work by Ratbtal. [65] yielded a False reject rate(FRR) of
10% with search space pruned to 25% of the original database. In arireept conducted by Cappelli
et al.[64] on NIST Special Database 4, it was shown that the distribution ofgfjmnt population was
non-uniform with 2 of the 5 Henry classes they considered holding né&8y of the population. Note
that the FNIR (corresponds to FRR in this case) is too high for most prhpticaoses and often one
has to search more than one bin in the database for every probe. Thixfteduces the effectiveness
of the method.

The pyramid indexing [55] technigue tries to map a feature vector into one giitamids centered
at the mid point of the feature range. The index of the pyramid and the locztibe probe within the
pyramid helps to reduce the search space to points within a few pyramids iatdigade. The authors
report considerable success with this technique, with a database pou8&86% of original size with
0% FNIR in case of hand geometry. Unfortunately the method performdypetth larger feature
vectors such as Gabor responses of IRIS images. Meheb#la[53] proposed the use of ordered DCT
coefficients for indexing a dataset of IRIS images. The authors wézdéaprune the database to around
2.6% with an FNIR 0f35.6%. The method is sensitive to the location and orientation of the samples
and does not work well with other modalities such as palmprints or fingerprints

For palmprints, Zhangt al. [80] proposed the use of high-level textural information to filter out a
set of possible candidates for fine-grained matching using interest pHietarchical identification of
palmprint, where a Hough transform of the principal lines is used as aédatfiltering was proposed
by Li and Leung [24]. Local information extracted from line-based $truff Distance (LHD) is used
for further fine-level identification.

In short, we note that the feature representations and the indexing arnddikehemes developed
are often tailored for a specific biometric modality. In this work, we explore #geaf random linear
projections as a generic method for deriving features from a givanrieaepresentation of a strong
biometric for the purpose of filtering. We also propose a cascaded wibdeed filtering scheme that
would be applicable to such feature representations in an efficient manner

3.1.1 Random Projections

The use of linear projections to reduce the dimensionality of a dataset is axp@red topic. Ap-
proaches such as Principal Component Analysis and Linear Discrimireaiysis try to find a set of
projections for a given dataset that would maximize a specific objectiaifum In other problems such
as unsupervised learning, the objective function is either not defineghoot be optimized analytically.
The distance preserving nature of linear projections into random scespeere explored by Johnson
and Lindenstrauss [45] in 1984 (JL Theorem), who showed that raqtojections preserve the struc-
ture of high dimensional data well in lower dimensions. Specifically, the distoitialistances, when
mappingn p-dimensional points into a g-dimensional random subspace, where)(log(n)/e?) is
less than a factor df + . The method of random projections have been proven to be useful nesyva
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of practical applications such as dimensionality reduction, density estima8@rddta clustering [25],
nearest neighbor search [47, 36], document classification [62], etc

Random projections have also been used in biometric verification to denree tthmensional feature
representations of modalities such as face [29] and to derive cancedgibsentations using Multi-
space Random Projections [44]. In this work, we explore the use ofesiagdom projects as weak
classifiers that can act as a filtering stage for efficient biometric identificaifii® employ each projec-
tion as an independent filter in a cascaded fashion [74] to achieve efférid flexible filtering. The use
of cascades as a method for improving efficiency of matching for iris wassalggested in [71].

Entire Data
Further Processi

Figure 3.1 Cascading Approach: A large number of weak classifier is used to rethewa#ata which
does not belong to a probe sample at each stage.

3.1.2 Principal Component and Linear Discriminant Analysis

An alternative to random projection is to employ projections that maximize cerairefies that are
suitable to achieve high levels of filtering. The most common approachesigvachis are Principal
Component Analysis or PCA and Fischer Linear Discriminant Analysis (LDA

Principal Component Analysis (PCA) preserves dimensions with maximuianea for the given
data pointsY) and hence are potential candidates for projection for filtering. Thegfinstipal com-
ponent.w; is obtained as:

wy = argmawaH:l‘/ar{YTw} (3.1)

While PCA is good for minimizing the error in representation of data in low dimessitrdoes
not promote the separation of classes in the projected subspace. Thiwelggaffects the filtering
performance on each projection. Linear Discriminant Analysis (LDA) erother hand utilizes the class
labels of the data and tries to maximize the ratio of between-class variance tdtireclass variance
in any particular data set, thereby guaranteeing maximal separability. 3iiléng projection may be
used as a linear classifier, or, more commonly, for dimensionality reductfonebater classification.
LDA considers maximizing the following objective:

wTSBw

J(w) (3.2)

- wT Syrw
whereSp is the “between classes scatter matrix” afd is the “within classes scatter matrix”. Note that
due to the fact that scatter matrices are proportional to the covarianceenatiéiccould have defined
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J using covariance matrices the proportionality constant would have nct eifethe solution. The
definitions of the scatter matrices are:

Sp = Z (e — ) (pe — j)T (3.3)

C

Sw = Z Z (e — ) (pe — j)T (3.4

wherez is the overall mean of the data-cases. Oftentimes you will see that for 2&kgg9s defined
asSp = (u1 — p2)(pu1 — p2)” . This is the scatter of class 1 with with respect to the scatter of class
2 and hence corresponds to computing the scatter relative to a differetatrr.v By using the general
transformation rule for scatter matrices:

Syt =S, + Nvv+2Nv(u —v)T (3.5)

with S, = > (z; — p)(z; — )T, we can deduce that the only difference is a constant shift not depend
ing on any relative distances between point. It will therefore have no ingpeibe final solution.

The objective function for LDA, the ratio of between-class to within clasdtec seems to suit the
filtering process, where we would like to have samples of the same classheeamery and others,
farther away from it. We will explore the relative merits of the approach ireperiments.

3.2 Filtering with Projections

Figure 3.2 Cascading random projections: P1, P2 and P3 are three projectiah$nuaesequence.
Samples that are not falling within a window of the probe are removed atstagé.

We consider each projection as a weak but efficient representatioa bidimetric dataset. Matching
against a dataset, where each sample is represented as a scalar islgeffeiant. If the samples of
each class are clustered in the projected space, it is reasonable to #ssusaenples of the same class
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will be within a window of the probe in the projected space. At each stagejseard the samples that
are outside the window. Figure 3.2 shows the result of projection of & $&balimensional samples
on to three projections and discarding the samples that lie outside a windewvhite polygon in the
middle represents the samples that are selected from the cascaded filter.

CandidateList < {All templates in gallery

for each projectiorP; do
Retrieve projected values f6fandidate List for P,
Find the window around the projection of probe Bn
Remove templates outside windowdfundidate List

end for

ReturnCandidateList

Algorithm 1: Computing Candidate list for a probe.

Although the final set of samples that are selected are independent afdifreof projections, the
efficiency of the cascade is clearly dependent on it. If we use projecti@t remove large number
of impostor samples at initial stages of the cascade, the number of comaaistaer stages of the
cascade can be minimized. If the projection preserves the intra-class simiiatiy projected space
as compared to the inter-class variations, then we can use a small windowailldt reject a large
number of impostors without losing any genuine samples. The property thékevto maximize is
hence close but not identical to the Fisher criterion, the ratio of betwiass-scatter to within-class
scatter 5/ Sw).

After each projection, the data outside the filter window around the probmlgzed. If the data is
from a different class (person), we call it a correct reject (regectgrectly) and if the data is from the
same class as the probe, we call it a false reject (rejected falsely).tiéssfor goodness of a projection
i with a windowW may be calculated using the following:

> =8(3))

W
“ Zj =S(7) (36)
> S3)
o GEW
fi >.50)" (3.7)

whereS(j) is and indicator variable that takes a valyevhenj is of the same class as the probe and
otherwise.N is the total number of samples. The score ofitfigorojection is defined as the ratio:
Ci
L+ fi
We note that the definition of this objective function does not yield to an andbivulation of
a minimization problem to find the optimal set of projections. The use of the F@fterion will
give us the most discriminating set of basis vectors. However, as we nooteHigure 3.2, the use of

(3.8)

Score; =
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additional projections over a basis set of vectors can further improvidttlagion process. To address
this problem, we start with a large number of random projections, and setset which maximizes the
above criterion function. One could also include the discriminating basisrgeaitang with the random

projection before the selection process. Section 3.4 compares the uBAofdctors as a projection

basis as opposed to random projections, and the effect of its combination.

3.2.1 Advantages of Random Projections

The use of random projections allow us to deal with a variety of problenwuetered in other linear
projection estimation techniques. As noted before, according to the Johnstenstrauss lemma [45],
a random subspace of dimensionatitylogn) can effectively represent samples in any high dimen-
sional feature space. Moreover, the use of random projections makeghlting representation to be
independent of the training data, and hence addition of new data doexjuoe changes to the random
basis. We partially negate this advantage by choosing a subset of ttwrrgndjections that best filter
the training data. One can also produce any number of projections asddesiike methods such as
PCA or LDA that are limited by the rank of the covariance matrix or the numbelastes.

Avoiding matrix inversions that are required in the computation of other linegegtion methods
makes the computation more numerically stable and widely applicable. The traimiogsp is also
relatively less expensive.

3.3 Implementation Details and Challenges

The first set of experiments on filtering are done on a dataset of palnyages. As we are using
a fixed length feature vector for projection, we need to ensure that dlerés in the same position of
different vector correspond to each other. This makes the procedigoing and cropping palmprints
from images, critical. Experimental results for filtering are also reportea detabase of Iris images.

3.3.1 Preprocessing

It is important to define a coordinate system that is used to align differémppiat images for
matching. To extract the central part of a palmprint, for reliable featuresamements, we use the gaps
between the fingers as reference points to determine a coordinate systenfiveTmajor steps (see
Fig. 3.3) in processing the image are:

Step 1: A lowpass filterL(u,v) is applied, such as Gaussian smoothing, to the original image,
O(z,y). Athreshold, Tp, is used to convert the convolved image to a binary iniagey), as shown
in Fig. 3.3(b).

Step 2: The boundary is obtained;z;, Fiy;)(i = 1,2), between the fingers using a boundary
tracking algorithm (see Fig. 3.3(c)). The boundary of the gap betwesenirnt and middle fingers is not
useful for the following processeing. So its not extracted.
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Step 3: The tangent of the two gaps is computed. (kdty1) and (z2,y2) be any points on
(Flxj, Flyj) and(F2xj, F2yj), respectively. If the lindy = ma+c) passing though these two points
satisfies the inequality;iyj = mF;x; + ¢, for alli and j (see Fig. 3.3(d)), then the litg = ma + ¢)
is considered to be the tangent of the two gaps.

Step 4:(x1,y1) and (22, y2) is aligned to get the Y-axis of the palmprint coordinate system, and
use a line passing through the midpoint of these two points, which is perpiandio the Y-axis, to
determine the origin of the coordinate system (see Fig. 3.3(d)).

Step 5: Then we crop the central region based on the coordinate sybesull-image is located at
a certain area of the palmprint image for feature extraction (see Figs)-3.3(8).

3.3.2 Feature Extraction

As mentioned before, a palmprint can be represented by some line feftamea low-resolution
image. Algorithms such as the stack filter [77] are able to extract the prirlgigal However, these
principal lines are not sufficient to represent the uniqueness ofiediduals palmprint because dif-
ferent people may have similar principal lines in their palmprints. Fig. 3.4 detnades this problem
by showing nine different palmprint samples that have similar principal limeaddition, some palm-
print images do not have clear wrinkles (see Fig. 3.5). As a result, we &yttact texture features
from low-resolution palmprint images, and we propose a 2-D Gabor juaieg scheme for palmprint
representation, which has been used for iris recognition [37].

The circular Gabor filter is an effective tool for texture analysis [3@H has the following general
form

G(x7 y? 9’ u7 0-) =

1 2 2
5 eTp {— x —|—2y } exp{2mi(ux cosf + uysinf)} (3.9)

2o 20

wherei = \/—1, u is the frequency of the sinusoidal wavegontrols the orientation of the function,
ando is the standard deviation of the Gaussian envelope. To make it more r@aisstabrightness,

a discrete Gabor filtei7[x, y, 6, 0, 5], is turned to zero DC (direct current) with the application of the
following formula:

a Z?:fn ZﬂzfnG[i7j797u70—]
G{xayaeaua 0] :G[x,y,G,u,Cf] B (J27'L+1)2 )

(3.10)

where(2n + 1)? is the size of the filter. In fact, the imaginary part of the Gabor filter automatibaky
zero DC because of odd symmetry. The adjusted Gabor filter is used to fdtpreéprocessed images.

The success of 2-D Gabor phase coding depends on the selectiohaffBar parameterd), s, and
u. In our system, we applied a tuning process to optimize the selection of thesepimameters. As a
result, one Gabor filter with optimized parametérss 7, u = 0.0916 ando = 5.6179, is exploited to
generate a feature vector with 2,048 dimensions.

Binarized feature vectors such as those used in palm and iris codes blelvave well for indexing
and filtering purposes. We use the response values of the filters tootdrttye indexing. Each feature
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(@) (b)

(c) (d)

)

Figure 3.3 Palmprint extraction process. First the image is binarized, then boundarislextracted
and two points are calculated. Then Central region is cropped.
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Figure 3.4 Three sets of the palmprint images with the similar principal lines.
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Figure 3.5Preprocessed palmprint images without clear wrinkles.

is first normalized to the rande-1, 1] using the sigmoidal function:

1 _ e—S(L'

=— 3.11
14 es% ( )

Y

wherex is a feature value of the sample andlecides the slope of the sigmoid function. We have
selecteds = 1.5 for palmprint dataset and = 10 for iris. Once all the samples are projected on the
random basis, they are scaled to the rajig#0]. Note that the range of projected values depend on the
length of the feature vector.

3.3.3 Determining Window Width and Cascade Sequence

As the filtering is a precursor to the regular identification stage, it is desitakilee this stage in
such a way that the accuracy of the identification system is not adverféetyeal. The width of the
window should be selected such that the FNIR is very close to zero. In witrels the number of
genuine samples outside the window should be practically zero.

Once the window width is finalized, one can re-order the cascade to makeetal process more
efficient. As noted before, the order of cascade does not affedinleaccuracy. However, we use
only a subset of the projections that has very low false rejects. We mapdenerate 1500 projections
and select best 500 projections based on the scores as mentioned béfprojections are ordered in
the sequence of decreasing scores as computed by Equation 3.8. Tildswinimize the total amount
of comparisons as the samples that are rejected in one projection is nateredsin the following
projections in the cascade.

3.3.4 Effect of Feature Representation

In our experiments, we use three different feature representatiotiefmitial feature vector (before
projection) for the purpose of comparison. The first one (referreabtel) is a Gabor wavelet based
texture feature that is popular in Iris as well as Palmprint recognition. &sgonse is computed by
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convolving the image with the following kernel:

1 {*x2+y2} {27 (uzcosb+uysinh)}
G(z,y,0,u,0) = 9752¢ 202 Je , (3.12)

where: = /—1;u is the frequency of the sinusoidal wawegontrols the orientation of the kernel and
is the standard deviation of the Gaussian envelope. Palmprint is repitasintg a2048 (32 x 32 x 2)
dimensional feature vector, while the iris was represented @6i0@Q(240 x 20 x 2) dimensional vector.
In our cas¢f = 7 ando = 0.0916. Another set of features that was proposed for iris indexing was
DCT coefficients in various subbands [53]. After normalizing for pasilumination variations using
an adaptive histogram equalization, image is divided into non-overlagping pixel blocks and are
transformed to generate DCT coefficients.

The coefficients from each block belonging to a particular subbandratged together. Energy
value E; of each subband; is obtained by summing up the square of coefficients as

=Y Silay)? (3.13)

The feature vector consists of different energy values obtained 1@msubbands, resulting in a 10-
dimensional feature vector. The image key consists of bin number corneisyg to each subband. The
bin numbers for each subband are combined together in increasingobfdequency. We refer to the
DCT feature representation & from now on.
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Figure 3.6 Effect of F1 and F3 on filtering performance using only random projestio

Using only the Gabor response features and using a mixture of projecttomzuted from LDA as
well as random generation, we can prune 56% of the dataset with thngdoss of 10%. However, if
we use a concatenated feature vector of both Gabor Responses andeixtred to a$3). In case of
palmprint images, we can prune the dataset 6ptd% with no loss in genuine (see Figure 3.6).

3.3.5 Effect of Window Size

The size of the window selected also plays an important role in determining theaag of the
system, if the size of the window is too small, we will be able to remove more of thegdilg many
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Figure 3.7 Effect of window size on filtering using feature set F3.

genuine samples will also be removed during the process. However, ifititew size is too large, it
will not be able to reduce the search space considerably (see Figuré\@.Aeed to select the optimum
window size depending on the nature of the data.

3.4 Experimental Results and Analysis

The experiments are performed on two different modalities: Palmprintsiand e PolyU database [2]
of palmprint and CASIA database [1] of Iris were used for this purpé&®e the palmprint, only those
images in the dataset, where the complete palm was visible was considerat, fioe entire database
was considered irrespective of whether part of the iris was coveréueteyelids or not. The Palmprint
dataset contains images of siz®l x 284 with 10 samples from each of 385 users. The iris database
contains images of siz&0 x 280 with 3 samples each from a total of 286 users. Tables 3.1 and 3.2
provides the Penetration rates achieved versus the FNIR for diffea¢gibases, features and projection
methods.

Feature Palmprint Iris
PolyU CASIA
Pen. FNIR | Pen. FNIR
F1 64.8% | 10.3% | 38.9% | 21.2%
Pyramid | 98.9% | 0.15% | 88.8% | 5.4%
Indexing
F2 - - 35.6% | 2.6%
F3 37.9% | 0% 33.3% | 10.0%

Table 3.1FNIR and filtering rates with various features on Palmprint and Iris datasets
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Feat. Random LDA Combined
Pen. | FNIR | Pen. | FNIR | Pen. | FNIR

F1 | 65.0% 10.3% 46.1% 10.0% 42.4% 10.7%

F3 | 37.0% 0% 41.0% 5.1% | 24.8% 1.0%

Table 3.2FNIR and filtering rates with various methods of selection the projections trsengalmprint
dataset.

3.4.1 Costanalysis

We now analyze the cost advantage of carrying out a filtering stageebexplicit matching. Each
stage of filtering would remove a part of the dataset from consideratiergkiis improving the speed
of the overall system. However, as the number of projections in the cagoa@ases, the returns starts
diminishing, and at some point the cost of the projection and matching wouldde/éhe cost advantage
due to filtering. Figure 3.8 shows a plot of the reduction in search spé0e-(penetration) versus the
FNIR for various lengths of the cascade. The green dots indicate thila¢eoig , 51, 101, ...,451. We
note that after arount0 projections, the reduction in penetration rate is not significant.
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Figure 3.8 Data pruned after each set @ projections, starting with. The improvement in pruning
reduces as the number of projections increase.

To compute the actual gain in speed, we carry out an experiment with a sparopkeand the time
taken for identification for various lengths of the cascade was determfigdre 3.9 shows a graph
between the overall time taken for identification (in seconds) and the nunfl@pjections in the
cascade. This experiment was conducted on the PolyU Palmprint datéisasepected, the returns of
adding further filtering stages reduces and then reverses as the mfrpbgections cross a limitl(4).
The time required for explicit comparison of a template against all samples iratabate was around
2.86 seconds. However, as part of the samples are filtered out, the total timiesgeépr comparison
decreases, and with a filtering pipelinel6ft random projections, the time required for an identification
drops t00.84 seconds. Note that the actual time will depend on the specific probe beidgldewever,
the overall trend remains the same.
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Figure 3.9 Overall time taken (seconds) for identification as the number of projectioti®inascade
increases.

If the size of dataset is very large such that it cant be fit in memory, therdivided into chunks.
Each chunk is pruned independently. As the process directly lendsalgtiaation, each chunk can be
pruned at the same time on a different machine.

3.5 Hard Biometrics and Soft Biometrics

Soft biometrics have been recently proposed for improving the verificagdiormance of biometric
recognition systems. Examples of soft biometrics are skin, eyes, hairch&ght,and ethnicity. Some
of them are often cheaper than "hard”, standard biometrics (e.g., fingerface, iris, palm vein) [59]
to extract. Soft biometrics exhibit a low discriminant power for recognizieggns, but can add some
evidences about the personal identity, and can be useful for disaatipigcertain users.

A second classification based on the disciminability is that of weak vs. striongelric. Both are
sufficient to identify people in most usage scenarios, but stronger biesitnd to give higher accuracy
of lower false match rates. The experimental result performed herangrerzipal lines of palmprints
and iris texture, where the first one is a weak biometric, while the seconid streng.

The results indicate that indexing of weaker biometrics is an easier task meartpastrong biomet-
rics, as indicated by the poor indexability on iris. In case of fingerprints@ational minutiae repre-
sentation is a variable length representation and is not suited for lineactwog We will explore the
issue of representation for fingerprint indexing in detail in the nexttemap

3.6 Summary

In this chapter, we have shown the application of random projection onabeaded filtering on
palmprints and iris datasets. The existing works on palmprints are limited to clagsifibased index-
ing. Random projections was used in the past for dimensionality reductasta@ed filtering has been
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used for classification and detection problems. We use a combination of the awtomatically design
a filtering pipeline with high accuracy and low time complexity.
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Chapter 4

Cascaded Filtering for Biometric Identification using Random

Projections

4.1 Introduction

Among the biometric traits, fingerprints are the most widely studied and acciptedn identifi-
cation systems. Most biometric systems that scale to national population ugapfints as the one
of the modalities for identification due to the ease of acquisition, amount ofdisative information
available in fingerprints [61], acceptability in legal situations, as well as vadadbility of low cost
devices for authentication purposes [11].

Matching of two fingerprint images is a computationally demanding task due tdimear defor-
mation of the skin during the acquisition process. The problem is compodadatkntification tasks
in large databases. To reduce the amount of matching to be performetmnaocoapproach that is
employed is the classification of the fingerprints into a set of basic classe44414]. All fingerprints
in the database are classified into one of the basic classes (loops, whlogls)aand stored in partially
overlapping partitions. The input fingerprint is also classified, and is cmtypared against the finger-
prints of the corresponding class in the partial database. If fingerprares equally distributed into say
five classes, the penetration rate would be reducdd te 0.2. Therefore, the processing time and the
False Identification Rate (FIR) would be reduced. However, as the nuphlotasses is small and the
fingerprints are unequally distributed among them (more g4 of the fingerprints are either right
loops, left loops or whorl [41]) the penetration is usually larger. Furttuege, the classification error and
rejected fingerprints must be considered when classification is perfaatethatically. These factors
reduce the effectiveness of classification based approach to ndommwthe search space.

Fingerprint indexing algorithms reduce the number of comparison by sajettinmost probable
candidates and sorting them by the similarity to the input [17]. As indexing tgabs perform better
than exclusive classification considering the size of space that needstablzhed [6], many indexing
algorithms have been proposed recently. Gerratal. proposed a flash algorithm for fingerprint index-
ing [27]. Bebiset al. [4] proposed the Delaunay triangulation of minutia points to perform firrijgrp
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indexing. Boeret al.[10] used the registered directional field estimate, FingerCode and minugpie tr
along with their combination to index fingerprint databases. Bhanu and6lageperated minutiae
triplets and used angles, handedness, type, direction, and maximum saefaatures for indexing.
They also applied some constraints on minutiae selection to avoid spurious minigiaet al. [39]
use the features around a core point of a Gabor filtered image to realedngd Another indexing
algorithm was proposed based on correlation of the robustly detectadagipgints in [49].

Most of the indexing methods available for fingerprints are based on thetiba of core and delta
points, referred to as the singular points. The accuracy of the enttensysdependent on the accuracy
of detection of singular points. Other indexing schemes rely on alignmentedfinberprints for a
compact representation, and the indexing accuracy is often dependtr quality of alignment.

4.2 Feature Extraction

One of the major problems with fingerprint identification is that the feature wésteariable in
length. Different samples of fingerprints from the same user can halezedif number of minutiae
extracted. This prohibits us from using any indexing method that assuntekdhmattern is a pointin a
Euclidean feature space. Another problem faced in fingerprint ideatiditis the lack of alignment of
the query with samples in the database.

To overcome the issue with minutiae representation, various fixed lengthdeapesentations have
been proposed such as low order Delaunay triangulation [4], minutiagsrjfleand Finger Code [39].
In this work, we start with the assumption that a set of fixed length featueesvailable for representing
each fingerprint sample, and derive a method for efficient filtering ubiegiven set of features.

We have currently used two different sets of features and they aatmrated together so that
every finger is represented using a fixed length feature vector. Tieséit of features are extracted
from the triangles formed by minutiae in the image (referred to as minutiae tripdetthe second set
of features are extracted from the quadrilaterals formed from the gdoaiétications of minutiae, as
proposed in [35].

To extract the features from triangles, the largest sideee Figure 4.1), and the two angles (
andas) that involvel are computed. The feature representation of each triangleds, (), where
(a1 < az).

The features from minutiae quadruplets is as proposed by lloatuei [35], which involves?
features< 1, 9, d1, 92, p1, p2,n > (See Figure 4.2). The two featur@s and . are the differences
of two opposite angles in the quadrilateral, @an@- are the lengths of the two diagonajs.andp, are
the heights of the parallelogram.

The last feature is a global feature, and is a combination of sides and area of the quadigater

n = 100log;,(Tv), 4.2)
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Figure 4.2 A minutia quadruplets

where
T:\/A>p+\‘yx1><x2><(l:3><:]}4 (42)
v= /Ay + VU1 X y2 (4.3)

A, is the area of the parallelogram;, x2, 3 andz4 are the lengths of the sides of quadrilateral,

is the area of the quadrilateral, apdandys are the length of the sides of the parallelogram. We have
removed concave quadrilaterals and all quadrilaterals with crossesd weége uncrossed to form regular
convex quadrilaterals. See Figure

Figure 4.3 A convex quadrilateral
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Figure 4.4 An inverted quadrilateral

Figure 4.5 A concave quadrilateral

The above procedure gives us the features for each triangle addlgteaal. The number of triangles
and quadrilaterals vary considerably between images as it depends mmtber of minutiae that are
detected. In our experiment, we fixed the number of triangles and quadhitatbat were selected,
which were empirically set to b&0 and 1200 respectively. To reduce the influence of deformations
in fingerprints, we concentrate on local minutiae structure, and hencettamlymaller triangles and
quadrilaterals are considered in computing the feature vectors. In shersmalles800 and 1200
triangles and quadrilaterals were used in construction of the final featuater.

The final feature vector contains the frequency count of differéamgtes and quadrilaterals present
in the fingerprint. To determine this, we first learn the most promih@histers are determined from the
training samples for both triangles and quadrilaterals ukirgmeans clustering in the corresponding
feature spaces. Le}, denote the:* cluster.

To extract the feature from images, its tripléts, |w = 1,2, .., @} are assigned to the nearest cluster
based on the Euclidean distance to the cluster centers.

Assignt,, to ¢, if k = argmin{|t, —n;|,j = 1..k} (4.4)

Here,n; is the centroid of thg?" cluster and:;, is the cluster id. Each triplet is assigned to a single
cluster. The feature vector is constructed by counting the number of trgdetgned to each cluster.
Thus, the feature vector of imagéis F;(Y) = {a},a},...,a} }, wherea} is the number of triplets
from imageY that are assigned to clusteandk is the total number of clusters. We will refer ég as
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an accumulator for centroid The quadruplets based features are also converted to a histogram usin
the accumulation process as above.

In our experiments, the numbers of clustenwas empirically set t60 for both triplets and quadru-
plets, resulting in feature vectors of lengdth for each. The two feature vectors are then concatenated
to form a single100 dimensional feature vector. The resulting feature vector may be writtereas th
concatenationF (Y') = [Fy(Y) F,(Y)]. As the individual features are rotation invariant, there is no
need of alignment between samples for the purpose of matching.

4.3 Experimental Results and Analysis

We used the FVC2002 (DB1,DB2,DB3,DB4) [51] for evaluating the prepadgorithm. Each DB
consists of eight prints each of 100 distinct fingers captured by optealoss (500 dpi). We separate
each dataset into independent training and testing sets of equal size.

First the window sizéV; for each projection is calculated from the training samples. The size of
the window should be such that the samples of the same class falling outsidetiié ke minimal
and number of sample falling within the window should be maximum. For each peolj#ate (testing
sample), the features are extracted and projected into a lines. We wilhsadycin the dataset which
falls in the window centered around the probe. To extract the featwssfingerprints we have used
50 clusters for both quadrilaterals and triangles, giving us a combiné&aréeaector of size 100. The
number of projections to be used for cascading and size of the windowveidedieby the experiments
and the dataset we are using.

To generate the cascade, we start with a se060 random projections and select the b&gd
projections. The final cascade is typically terminated witklirprojections. We also added 100 LDA
and 100 PCA projections values for comparison purposes. Howeeeg, Were no perceptible changes
in the results, confirming the effectiveness of random projections fquriiidem.

100

DB1
—DB2
- - DB3
- - -DB4

99+

98

97+

96

951

94

Hit Rate

93

92+

91

90O 1‘0 2‘0 3‘0 4‘0 5‘0 éO 7‘0 E;O 9‘0 1(‘)0
Penetration Rate

Figure 4.6 Hit Rate vs. Penetration Rate on FVC 2002 DB1,..,DB4.
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Figure 4.6 shows the hit rate vs penetration rate on different DBs of FO02.2Figure 4.7 clearly
shows our method is significantly better in terms of efficiency as comparedlodidd the difference
increases with the size of database. Figure 4.8 shows the nature of fil&iéngith increasing number
of projections. We note that significant portion of the filtering takes placemiite first10 projections
in the cascade, and one might stop there for efficiency purposes. /éiad as the number of training
samples increase, we can do a better estimation of the window size and thergerée improves as
seen in Figure 4.9.
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Figure 4.7 Time taken for indexing with increasing number of training samples.
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Figure 4.8 Decrease in penetration with increasing number of projections.

One of the advantages of the proposed method is that it efficiently ardiedtg combine different
feature sets. Figure 4.10 shows the results of using the two feature seidared independently and
when combining the two. As the final cascade is based on projections, tite l&frthe feature vector
does affect the database and the effect on the filtering process is minimal.
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Figure 4.9 Effect of training sample size on filtering performance.
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Figure 4.10Effect of using the individual (triangles and quadrilaterals) and contbii@ature sets.

Another common indexing approach is KD-Tree. A kD tree ( kd-tree, Dirkension tree) is a
data structure that is used for storing coordinates so nearest-neigédmches or range-searches are
quick. Itis a binary-search tree that is specialised for coordinatelsiegt and is useful for answering
guestions such as which point is closest to a query data. We have seeateeof KD-Tree in [43] in
the field of biometrics. However, the technique achieves acceptable gigoetnit tradeoff with the use
of multiple biometric traits.

Figure 4.11 shows the comparison of the proposed approach to the kadseeindexing. The result
shows the kd tree doesnt perform very good for fingerprints.
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Method Penetration at Time taken
99% Hit Rate| in u secs.

Quadruplets[35] 20% 147
Combined Features 26% 74

Table 4.1Result in FVC 2002 DB2 datasets, with equal number of training and testinplss.
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Figure 4.11Comparison of Hit Rate vs. Penetration Rate with proposed approachdanekk

4.4 Summary

In this chapter we have extended the cascaded filtering approach tpfingedatasets. The features
extracted from the minutiae quadruplets and triplets are combined for projedi®have seen that the
result we get is comparable to [35], while using less than half the time. Wedesvethat adding more
features increases the accuracy. The results show that the prapmmedch is effective in a variety of
application scenarios, provided we use an appropriate representation.
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Chapter 5

Conclusions and Future Work

This thesis presents a novel approach towards cascaded filteringpifoetoic identification using
random projections. Biometrics has become important field of researchlevg@ast few years with
increased deployment of biometric systems in commercial applications. With Wieengaents all over
the world trying to keep the record of their citizens, and visitors crossinghtinder, the speed of
search for a record in the database becomes critical. Increase ityseoancerns has also pushed the
importance of biometrics in day to day life.

Unfortunately, biometric data does not lend itself to indexing process asdhdath is not evenly
spread in the feature space. In this work, we have proposed a gemethod for cascaded filtering
using projections and have shown its application to different biometric traith fitering, we reduce
the amount of time taken to retrieve the candidate list for searching withoutroomging in accuracy.
The results show that we can reduce the search space bgewith no increase in the false non-
identification rate (FNIR). The approach is flexible to use different feagets and their combinations
to carry out the projection. As each sample can be projected independenithg the training, the
computational cost of inserting a new sample into the database is minimal. Tiuaelppdso allows a
high degree of parallelization or pipelined processing.

Random projections are a powerful method of dimensionality reduction thaide us with both
conceptual simplicity, and very strong error guarantees. The simplicitya@égions allows them
to be analyzed thoroughly, and this, combined with the error guarante&ssrtem a very popular
method of dimensionality reduction. In this thesis we used random projectiofikdring of biometrics
data, which is initially applied to palmprint datasets. Most existing methods for imgleicluding
palmprints, are based on hand-crafted features. In contrast thesgwpnethod allows us to create
automatic filtering pipelines from a given set of features.

We also explored a method for fingerprint database filtering using casgadiections. The results
are comparable to the state of the art fingerprint indexing methods. Expesisteow that the proposed
method extremely efficient and can give a significant advantage whdraggbe first stage in identifica-
tion. While we do not propose any new features for fingerprint indexaogmethod is able to combine
a large number of existing feature descriptors into a compact and efft@soaded filter, irrespective
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of the feature vector size. This results in significant savings in time durimgifbation of fingerprints.
Due to it efficiency, the method may be used as the first stage while combining leuitigxing and
filtering methods.

The method is scalable as well as incremental. We provide a promising steg$odeareloping a
general indexing framework. The ability of our approach to be paraltklzakes it useful in indexing
with computer clusters. The process is simple and avoids retraining if weaviarttoduce new samples
to the database, without affecting the overall feature space distributmmp@rison of the results with
other state of the art approaches show that while providing lower pé&patrate, they take almost
double time for a search compared to the proposed approach.

The use of random projections also avoids computationally and memory irgérasning for finding
popular projections such as PCA and LDA. This allows us to deal with vegg ldatasets.

One of the fundamental aspects that need further exploration is the pafaeetures that lend itself
suitable or unsuitable for indexing as observed in the case of palmprinisisisironically the very
nature of strong biometric features that introduce high (and uniform) afss variability makes them
unsuitable for indexing. One can also look at formulation of the projectibarmn function that lends
itself to analytical optimization, leading to non-random projection cascadesimethod of cascaded fil-
tering using random projections can also be applied to other fields sutleas detection, recognition,
etc.
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