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Abstract

Synthesis, capture and analysis of a highly complex 3D terrain structure are essential for critical
applications such as river/flood modelling, disaster mitigation planning, landslide modelling and flight
simulation. On the other hand, synthesis of natural-looking 3D terrains finds its applications in the
entertainment industry such as computer gaming and VFX. This thesis explores novel learning-based
techniques for the generation of immersive and realistic 3D virtual environments, catering to the needs
of the aforementioned applications. The generation of virtual worlds involves multiple components,
including terrain, vegetation, and other objects. We primarily focus on three key aspects for virtual world
generation: 1) develop novel AI-enabled 3D terrain authoring solutions based on real-world satellite and
aerial data using a learning-based framework, 2) L-systems grammar-based 3D tree generation and 3)
rendering techniques that are used to create high-quality visualizations of the generated world.

Terrain generation is a critical component of 3D virtual world generation, as it provides the founda-
tional structure for the environment. Traditional techniques for 3D terrain generation involve procedural
generation, which relies on mathematical algorithms to generate landscapes. However, deep learning
techniques have shown promise in generating more realistic terrain, as they can learn from real-world
data to produce new, varied, and realistic landscapes. In this thesis, we explore the use of deep learn-
ing techniques for 3D terrain generation, which can produce realistic and varied terrains with high
visual fidelity. Specifically, we propose two learning-based novel frameworks for Interactive 3D Ter-
rain Authoring & Manipulation and Adaptive Multi-Resolution Infinite Terrain Generation. In addition
to terrain generation, vegetation is another important component of virtual world generation. Trees and
other plants provide visual interest and can help create a more immersive environment. L-systems are a
popular technique for generating realistic vegetation, as they are capable of generating complex struc-
tures that resemble real-world plants. In this thesis, we propose a variant of the L-systems for 3D tree
generation and compare the results to traditional procedural generation techniques. Finally, rendering
is a critical component of 3D virtual world generation, as it is responsible for creating the final visual
output that users will see. In addition to terrain and tree generation, this thesis also covers rendering
techniques used to visualize the generated virtual world. We explore the use of real-time rendering tech-
niques in conjunction with terrain generation to achieve high-quality visual results while maintaining
performance.
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Overall, the research presented in this thesis aims to advance the state-of-the-art in virtual world
generation and contribute to the development of more realistic and immersive virtual environments. We
performed extensive empirical evaluation on publicly available datasets to report details qualitative and
quantitative results demonstrating the superiority of the proposed methods over existing solutions in the
literature.
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Chapter 1

Introduction

Virtual world creation has been a topic of research for several decades, with significant advance-
ments in technology leading to more realistic and immersive environments as shown in Figure 1.1. The
synthesis, capture, and analysis of intricate 3D terrain structures play a crucial role in various vital
endeavors. These include river/flood modeling, disaster mitigation planning, landslide modeling, and
flight simulation. Simultaneously, the creation of realistic-looking 3D terrains finds its practical utility
in the entertainment sector, specifically in computer gaming and VFX.

In this thesis, we explore novel learning-based techniques for the generation of immersive and real-
istic 3D virtual environments, catering to the needs of the aforementioned applications. The generation
of virtual worlds involves multiple components, including terrain, vegetation, and other objects. Our
primary focus is on two key aspects of virtual world generation: 3D terrain authoring solutions based
on real-world satellite and aerial data using a learning-based framework and L-systems grammar-based
3D tree generation. Additionally, we also discuss rendering techniques used to create high-quality visu-
alizations of the generated world.

Terrain generation is a critical component of 3D virtual world generation, as it provides the foun-
dational structure for the environment. Traditional techniques [75] for 3D terrain generation involve
procedural generation, which relies on mathematical algorithms to generate landscapes. However, deep
learning techniques have shown promise in generating more realistic terrain, as they can learn from real-
world data to produce new, varied, and realistic landscapes. This thesis delves into the application of
deep learning techniques in the field of 3D terrain generation. These techniques enable the creation of
diverse terrains. Our research focuses on two innovative frameworks: Interactive 3D Terrain Authoring
& Manipulation and Adaptive Multi-Resolution Infinite Terrain Generation.

In addition to terrain generation, vegetation is another important component of virtual world gener-
ation. Trees and other plants provide visual interest and can help create a more immersive environment.
L-systems are a popular technique for generating realistic vegetation, as they are capable of generat-
ing complex structures that resemble real-world plants. This thesis introduces a modified version of
L-systems designed for generating 3D trees, and evaluates its performance by comparing it to conven-
tional procedural generation methods.
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Finally, rendering is a critical component of 3D virtual world generation, as it is responsible for
creating the final visual output that users will see. In addition to terrain and tree generation, this thesis
also covers rendering techniques used to visualize the generated virtual world. We explore the use
of real-time rendering techniques in conjunction with terrain generation to achieve high-quality visual
results while maintaining performance.

The main objective of this thesis is to advance the state-of-the-art in virtual world generation and
contribute to the development of more realistic and immersive virtual environments. We performed
extensive empirical evaluation on publicly available datasets to report details qualitative and quantitative
results demonstrating the superiority of the proposed methods over existing solutions in the literature.
In the next chapters, we discuss the details of our proposed frameworks for 3D terrain authoring, 3D tree
generation, and rendering techniques used to create high-quality visualizations of the generated virtual
world.

Figure 1.1: A view of southwest US in VBS4 [6] featuring a vast virtual environment with terrain and

trees.

1.1 Motivation

Virtual world generation has become an increasingly important area of research in computer vision,
computer graphics, mixed reality and simulation. Virtual worlds are used in various applications such
as entertainment, education, and training, and they provide a platform for exploring and experiencing
different environments. However, creating realistic virtual environments is a challenging task that re-
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quires expertise in multiple domains, including computer graphics, vision, simulation, GIS and artificial
intelligence.

One of the critical aspects of creating realistic virtual environments is generating the terrain and
vegetation that make up the environment. Traditional methods for generating terrain and vegetation
often require significant manual effort and expertise, as well as complex algorithms and techniques.
Recent advances in deep learning have made it possible to generate realistic and diverse terrain and
vegetation along with opening possibilities for incorporating rendering algorithms seamlessly.

The potential impact of our work is significant. By reducing the time and effort required to cre-
ate virtual environments, we can lower the barrier to entry for creating immersive and realistic virtual
worlds. This, in turn, can enable a wider range of applications for virtual environments. Furthermore,
our work can also have applications in game development, where virtual environments are critical for
creating immersive gameplay experiences. By generating diverse and realistic virtual environments, we
can enable game developers to create more engaging and captivating worlds that keep players coming
back for more.

In this thesis, we will focus on the development of algorithms for terrain and tree generation in vir-
tual worlds, while also ensuring efficient rendering. Our objective is to create virtual environments that
realistically mimic real-world landscapes and offer an immersive and engaging user experience. We will
investigate state-of-the-art techniques for terrain and tree generation, examine effective methods for ren-
dering them, and propose novel algorithms to overcome the challenges faced in this area. Furthermore,
we will evaluate the effectiveness of our algorithms using user studies and compare our findings with
existing techniques. Ultimately, this thesis will advance the creation of virtual worlds and have diverse
applications across various fields.

1.2 Problem Statement

Synthesis, capture and analysis of a highly complex terrain structure (as shown in Figure 1.2) is
essential for critical applications such as river/flood modeling, disaster mitigation planning, landslide
modeling and flight simulation [17]. These applications demand high resolution details on terrain. Ter-
rain are commonly represented as Digital Elevation Models (DEM), which is a digital file that contains
elevation data for each point on the Earth’s terrain and employed in GIS, cartography, engineering, and
environmental studies. DEMs extracted from remotely sensed data are available at coarser resolution
for majority of the planet while only finer resolution is available for limited areas due to challenges in
acquisition and cost implications (e.g., LiDAR and SfM/Stereo).

On the other hand, synthesis of a natural looking terrain as Digital Surface Model (DSM) finds
its applications in entertainment industry such as computer gaming, science fiction and fantasy genre
cinematography. The DSMs synthesized with simulation based models include high resolution DEMs
and vegetation layer [5] on top of it to enhance the realism of natural scenes and to further augment
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Figure 1.2: Terrain surface represented as (a) Digital Elevation Model, (b), (c) Aerial Image, (d) Hill

shade Model. It consists of complex structural information such as high mountainous region, dense

vegetation, heavy snowfall, complex river networks, deep valleys and bare land.

the probes such as trees, plants, grass, etc. However, these DSMs often lack realism as the simulation
models typically do not learn from real world terrain data.

We aim to develop novel AI-enabled terrain authoring solutions with high degree of user control
based on real-world satellite and aerial data using a learning based framework. This would enable
generation of high resolution DEMs and respective vegetation layers. The literature in this direction is
fairly at nascent stage where the state-of-the-art methods either enhances the resolution details of the
captured low-resolution DEMs using multiple modalities such as aerial images [3, 45, 46] or synthesize
the natural looking terrain [23, 4] with limited user control. However, the existing methods limits the
user control and lacks the realism of natural looking terrain when accessed at different scales.

Some of our goals are (1) Using sketches and level-set as inputs, generate realistic looking low
resolution DEM as illustrated in Figure 1.3. Enhance the resolution of a DEM in order to add low level
details and get high resolution DEM. (2) Add user control mechanism to edit the existing sketch and
level sets to artistically change the DEMs for user specific requirements maintaining realism in modified

4



Figure 1.3: Converting user drawn sketch to terrain gives high degree of control to the user.

DEM. (3) Generate a rich library which contains diverse 3D tree and grass models using real-world data
of 2D image samples. Render the vegetation layer using the library and integrate it with high resolution
DEM to get fully synthesized digital surface model. (4) Rendering of thousands of trees on a large
terrain surface is a computationally challenging for a real-time navigation applications. We would like
to explore the multi-resolution representation of rendering details. A high level overview of the problem
statement is shown in Figure 1.4.

1.3 Application areas

Virtual worlds have diverse applications ranging from gaming and simulations to education and
tourism. Below, we will explore some of these applications.
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Figure 1.4: A high level overview of the problem statement.

1. Gaming: Virtual worlds have become a popular medium for entertainment and gaming (Fig-
ure 1.5), providing players with immersive experiences through realistic terrain and vegetation.
Game developers leverage virtual world creation techniques to generate diverse environments that
align with the game’s theme and storyline. For instance, they can design lifelike landscapes for
survival games or craft fantasy worlds for role-playing games. A notable example is Minecraft,
which employs a terrain generation algorithm that combines various noise functions to produce
a range of biomes, landscapes, and natural features, including mountains, caves, and rivers. This
approach yields a broad range of environments for players to explore and interact with. Addition-
ally, Minecraft’s tree generation algorithms use specific rules based on the type of biome, tree,
and availability of light and space to randomly generate trees in various biomes.

2. Films: Animated films benefit greatly from virtual environments (Figure 1.6) that offer immersive
settings for characters to engage with. Using terrain and tree generation techniques, creators can
design highly realistic and detailed backgrounds that provide a natural and believable environment
for characters to inhabit. This results in an enhanced viewing experience where the virtual world
feels seamless and integrated with the story.

3. Flight simulation: Terrain generation is a critical component of flight simulations, as it provides
a realistic and immersive experience for pilots and trainees as shown in Figure 1.7. One popular
application of terrain generation in flight simulations is the creation of virtual environments and
rendering them in real-time that simulate real-world conditions, allowing pilots to train in different
scenarios and environments.
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(a) Minecraft [64] (b) Elder Scrolls V: Skyrim [87]

Figure 1.5: Terrain and trees in games.

Figure 1.6: A shot from the film The Lion King [41] with terrain and vegetation in the background

4. Emergency Response Training: Virtual worlds are also used in emergency response training to
simulate realistic scenarios without endangering the lives of emergency responders. Terrain and
tree generation techniques can help create realistic landscapes that replicate real-world environ-
ments, providing trainees with an immersive and effective learning experience.

5. Architecture and Landscape Design: Virtual worlds can be used in architecture and landscape
design to simulate different building and landscape designs. Terrain and tree generation tech-
niques can help create realistic models of the environment, allowing architects and designers to
visualize the impact of their designs on the surrounding environment like Figure 1.8. This can aid
in sustainable design practices and in creating buildings and landscapes that are in harmony with
the natural environment.

6. Education: Virtual worlds are increasingly being used in education to provide interactive and
engaging learning experiences. Terrain and tree generation techniques can help create educa-
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Figure 1.7: Vast terrain and detailed trees in Microsoft Flight Simulator [63].

tional virtual environments that simulate different ecosystems, enabling students to learn about
geography, geology, and ecology in an immersive and interactive way.

7. Tourism: Virtual worlds can be used in tourism to provide a preview of potential travel destina-
tions. Terrain and tree generation techniques can help create realistic virtual environments that
allow tourists to explore and experience a destination before they actually travel there. For exam-
ple, virtual reality tours of natural landmarks and tourist destinations can be created using virtual
world creation techniques.

8. Environmental Studies and Conservation: Virtual worlds can be used to simulate different
ecosystems and their dynamics, enabling researchers to study environmental changes and their
impact on flora and fauna. Terrain and tree generation techniques can help create realistic mod-
els of ecosystems, allowing researchers to study the impact of climate change, natural disasters,
and human activities on different environments. This can aid in conservation efforts and help in
creating sustainable solutions.

9. Art and Design: Virtual worlds can be used in art and design to create virtual sculptures, instal-
lations, and other artworks that are inspired by natural landscapes. Terrain and tree generation
techniques can help create realistic models of different environments, allowing artists to create
immersive and interactive artworks that replicate natural landscapes. This can create new oppor-
tunities for artists to explore and experiment with different forms of art and design.

10. Real Estate and Property Development: Virtual worlds can be used in real estate and property
development to simulate different types of properties and their impact on the environment. Ter-
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Figure 1.8: Virtual trees covering the Central Vista Project design [11].

rain and tree generation techniques can help create realistic models of the environment, allowing
property developers to visualize the impact of their developments on the surrounding landscape.
This can aid in sustainable property development practices and in creating properties that are in
harmony with the natural environment.

Despite the progress that has been made in virtual world creation, there are still challenges that need
to be addressed. For example, generating realistic vegetation can be computationally expensive, and
there is a need for more efficient algorithms that can generate vegetation in real-time. Additionally,
the ability to generate dynamic and interactive landscapes that respond to user input and environmental
factors is an area of active research.

Overall, our thesis aims to contribute to the growing field of virtual world generation using deep
learning techniques, with the potential to impact various applications and fields. We believe that our
work can help advance the state-of-the-art in virtual world generation, enabling designers and developers
to create more immersive and realistic virtual environments.

1.4 Research Landscape

1.4.1 Computer Vision Landscape

Computer vision techniques such as image generation and super-resolution can be used in the cre-
ation of virtual worlds, particularly for generating realistic terrain. For example, image generation
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techniques can be used to synthesize new terrain height-maps and features based on real-world exam-
ples or other references (chapter 2, chapter 3, chapter 5), while super-resolution techniques can be used
to enhance the resolution and detail of existing terrain data (chapter 3, chapter 5). These techniques
can help create more immersive and visually appealing virtual worlds for various applications, such as
gaming, simulation, and training.

1.4.1.1 Generation

Generative modeling is a subfield of machine learning that focuses on building models that can gen-
erate new data samples that are similar to the data that they were trained on. Generative models are
particularly useful in a variety of applications such as terrain generation, terrain completion (inpaint-
ing/outpainting) and terrain super-resolution.

Three popular generative models are Generative Adversarial Networks (GANs) [21] (chapter 2, chap-
ter 5), Variational Autoencoders (VAEs) [44] (chapter 2), and Diffusion Models [69, 13] (chapter 3).
Each of these models has its own strengths and weaknesses, and understanding the differences between
them is important for choosing the right model for a particular application.

Generative Adversarial Networks (GANs) are a type of generative model that involves training two
neural networks: a generator network and a discriminator network. The generator network takes as
input a random noise vector and generates a sample that is intended to look like it came from the
training data. The discriminator network takes as input a sample, and tries to classify whether it is
a real training sample or a fake sample generated by the generator network. The two networks are
trained simultaneously, with the generator network trying to fool the discriminator network, and the
discriminator network trying to correctly classify the samples. The training process can be represented
by the following objective function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1.1)

where G is the generator network, D is the discriminator network, x is a sample from the training
data distribution pdata, z is a noise vector sampled from a prior distribution pz , and G(z) is the output
of the generator network when given input z.

Variational Autoencoders (VAEs) are another popular type of generative model that involves training
an encoder network and a decoder network. The encoder network takes as input a sample from the
training data, and outputs a distribution over a lower-dimensional latent space. The decoder network
takes a sample from the latent space and generates a sample that is intended to look like it came from
the training data. The training process involves maximizing a lower bound on the log-likelihood of the
training data, and can be represented by the following objective function:

LV AE = −Eqϕ(z|x)[log pθ(x|z)] +KL(qϕ(z|x)||p(z)) (1.2)
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where qϕ(z|x) is the encoder network, pθ(x|z) is the decoder network, z is a latent variable sampled
from a prior distribution p(z), x is a sample from the training data distribution, and KL denotes the
Kullback-Leibler divergence between two distributions.

The diffusion models are another class of generative models introduced in the seminal work by [90].
These models were further improved by [30, 69, 13] until recently when they eventually beat GANs on
image synthesis task. They involve modeling the process of diffusion, or the gradual smoothing out of
sharp features in a signal. The diffusion process is modeled using a sequence of stochastic differential
equations, and the generative process involves inverting this diffusion process to generate samples. The
training process involves minimizing the negative log-likelihood of the training data. The diffusion
process involves iteratively adding Gaussian noise to the signal, and then applying a transformation to
the signal to smooth out the noise. The generative process involves inverting this diffusion process to
generate new samples that are similar to the training data.

Overall, GANs, VAEs, and Diffusion Models are all powerful generative models that can be used for
a variety of applications. GANs are particularly effective at generating realistic-looking images, while
VAEs are well-suited for generating structured data such as text and music. Diffusion Models have
shown promise in generating high-quality images and other types of signals.

In summary, generative modeling is a subfield of machine learning that focuses on building models
that can generate new data samples that are similar to the data that they were trained on. GANs, VAEs,
and Diffusion Models are all popular generative models that each have their own strengths and weak-
nesses. By understanding the differences between these models, researchers can choose the right model
for a particular application and achieve high-quality generative results.

1.4.1.2 Super-resolution

Super-resolution refers to the process of increasing the spatial resolution of an image beyond the limit
imposed by the physical sensor or imaging system. We employ super-resolution for terrain enhancement
in chapter 3 and chapter 5.

One of the most popular approaches for super-resolution is based on the use of convolutional neural
networks (CNNs). In this approach, a CNN is trained to learn the mapping between low-resolution and
high-resolution images. The CNN takes a low-resolution image as input and outputs a high-resolution
image that is as close as possible to the ground-truth high-resolution image. The training is typically
done using pairs of low-resolution and high-resolution images, with the aim of minimizing the difference
between the output of the CNN and the ground-truth high-resolution image.

Mathematically, super-resolution can be formulated as follows. Let x be the low-resolution signal,
y be the high-resolution signal, and H be the up-sampling operator that maps x to y. Then, the super-
resolution problem can be written as:

x∗ = argminx||y −Hx||2 (1.3)
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Various methods have been proposed for solving the super-resolution problem, including bicubic
interpolation, iterative algorithms, and deep learning based approaches. The deep learning based ap-
proaches have shown state of the art performance in recent years, achieving high quality super resolution
results on a wide range of images.

Overall, super-resolution is an important topic in image processing and computer vision, with appli-
cations in fields such as remote sensing, microscopy, and medical imaging.

1.4.2 Computer Graphics Landscape

Computer graphics techniques play a critical role in virtual world creation by enabling the generation
and rendering of realistic and visually appealing environments. Some of the common computer graphics
techniques used in virtual world creation include 3D modeling, texturing, lighting, and rendering. 3D
modeling involves creating digital representations of objects such as trees, while texturing adds details
and surface characteristics to these models. Lighting is used to simulate realistic lighting conditions in
the virtual environment, while rendering produces the final image or animation by processing the 3D
models with textures and lighting. These techniques are used in various applications, including video
game development, virtual reality experiences, and architectural visualization, to create engaging and
immersive virtual worlds.

1.4.2.1 Rendering

Rendering refers to the process of generating an image from a 3D model or scene by simulating the
behavior of light and other physical phenomena. It is a crucial component of computer graphics, and is
used in a wide range of applications including video games, film and television, architecture and design,
and scientific visualization.

Rendering typically involves several stages, including modeling, texturing, lighting, and shading
[101]. During the modeling stage, the 3D geometry of the objects in the scene is created or imported
from a file. Texturing involves applying 2D images to the surfaces of the 3D models in order to give
them color and detail.

Lighting [52] is one of the most important aspects of rendering, as it determines how the objects in
the scene will be illuminated. Different types of lighting can be used, including directional lights, point
lights, and ambient lighting. In addition to lighting, shading is used to determine how light interacts
with the surfaces of the objects in the scene, taking into account factors such as reflection, refraction,
and absorption.

Once all of the components of the scene have been created and configured, the rendering engine
calculates how light interacts with each object in the scene, and generates an image that represents
what the camera would see if it were positioned in the scene. This image can be further processed or
post-processed in various ways to create the final output.
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One of the most important factors in rendering is the choice of rendering algorithm. Different al-
gorithms have different strengths and weaknesses, and the choice of algorithm will depend on factors
such as the desired level of realism, the size and complexity of the scene, and the available hardware
resources. For example, real-time rendering algorithms such as rasterization [104] are optimized for
speed and interactivity, while offline rendering algorithms such as ray tracing [105] and path tracing
[103] are optimized for accuracy and realism.

Overall, rendering is a complex process that requires a combination of artistic skill and technical
knowledge. Advances in rendering technology have enabled increasingly realistic and immersive virtual
environments, and have opened up new possibilities for creative expression and scientific visualization.

1.4.2.2 Shaders

Shaders [53] are an essential part of computer graphics, providing the means to define how light
interacts with surfaces and creating the visual effects that bring digital images and animations to life.
They are small programs written in specialized languages that run on the graphics processing unit (GPU)
of a computer, and they can be used to create a wide range of visual effects, from realistic lighting and
shadows to abstract shapes and patterns.

There are several types of shaders used in computer graphics, each with its own specific purpose.
Vertex shaders are used to manipulate the geometry of 3D objects by transforming their vertices. Frag-
ment shaders, also known as pixel shaders, control how the color and other properties of individual
pixels are computed. Geometry shaders [51] operate on entire primitives, such as triangles or lines, and
can be used to generate new primitives or modify existing ones. Tessellation shaders [54] are a relatively
new type of shader that can be used to dynamically subdivide geometry into finer detail, allowing for
more detailed and organic shapes. Tessellation shaders can be used to create highly detailed organic
shapes, such as landscapes or human faces, that would be difficult or impossible to create using tradi-
tional polygonal modeling techniques. Compute shaders [50] are a more general-purpose type of shader
that can perform complex calculations on data without necessarily generating any visible graphics.

Shaders are typically written in specialized languages such as OpenGL Shading Language (GLSL)
[39]. These languages are designed to be highly optimized for use on GPUs and to allow developers to
write code that can run in parallel on multiple cores.

In summary, shaders are a crucial component of modern computer graphics, providing the means to
create a wide range of visual effects and simulations. They require specialized knowledge and tools to
develop, but can be used to create stunning and realistic graphics that would be impossible to achieve
with traditional rendering techniques.

1.4.2.3 Tools Used

OpenGL OpenGL is a cross-platform graphics API (Application Programming Interface) that provides
developers with a set of functions to create interactive 2D and 3D graphics applications. OpenGL
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is widely used in video games, scientific visualization, CAD, and virtual reality applications. It
is also supported on a variety of platforms, including Windows, Linux, and macOS. Some of the
key features of OpenGL include support for advanced lighting and shading techniques, hardware-
accelerated rendering, and the ability to render large models in real-time.

Blender Blender is a 3D computer graphics software that is used for creating animated films, visual
effects, 3D models, and video games. It is an open-source software that is available for free
and is supported on Windows, Linux, and macOS. Blender features a powerful set of tools for
modeling, sculpting, texturing, and animating 3D objects. It also has a built-in game engine
that allows developers to create interactive 3D games. Other notable features of Blender include
support for a variety of file formats, GPU rendering, and the ability to create simulations such as
fluid and smoke simulations.

Terragen Terragen is a landscape generator and rendering software that is used for creating photorealis-
tic landscapes and natural environments. Terragen is often used in film and television productions,
as well as in video games and architectural visualization. Terragen can generate a wide range of
natural environments, including mountains, deserts, forests, and oceans. It also features a vari-
ety of tools for terrain sculpting, vegetation placement, and atmospheric effects such as clouds
and fog. Other notable features of Terragen include support for advanced lighting and shading
techniques, GPU rendering, and the ability to create large-scale landscapes.

1.4.3 GIS Landscape

Geographic Information Systems (GIS) [100] is a powerful tool that can be used to create virtual
worlds that simulate real-world landscapes and environments. Two key components of GIS that are
essential for virtual world creation are Digital Elevation Models (DEMs) and satellite imagery.

A Digital Elevation Model (DEM) [99] is a representation of the topography of a landscape. It is
a digital dataset that describes the elevation of points on the surface of the earth, typically at regular
intervals (e.g., every 30 meters or every 1 arc-second). TINs, on the other hand, are made up of a set of
non-overlapping triangles, each with its own set of vertices and elevation values. Other data structures
like point clouds and level sets are also used for terrain representation. Terrain data can be captured
through various methods, including LiDAR, photogrammetry, and ground surveying.

Airborne lidar [102] is a popular method for capturing DEM data because it provides high spatial
resolution and accuracy. Lidar uses laser pulses to measure the distance between the sensor and the
ground, creating a point cloud that can be used to generate a DEM. Ground-based surveying involves
physically measuring elevation at various points on the ground, which can be time-consuming and ex-
pensive. Satellite-based radar is another method for capturing DEM data, but it typically has lower
resolution and accuracy compared to lidar.

Satellite imagery is another important component of GIS for virtual world creation. Satellite imagery
can be used to create realistic textures and colors for virtual landscapes. There are a variety of satellite
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sensors that capture imagery at different spatial and spectral resolutions. For example, Landsat satellites
capture imagery at 30-meter spatial resolution, while high-resolution commercial satellites can capture
imagery at resolutions as fine as 30 centimeters.

The US Geological Survey (USGS) [96] is a key provider of DEM and satellite imagery data for GIS
applications. The USGS provides a web-based portal for accessing and downloading a variety of GIS
data, including DEMs and satellite imagery. The USGS provides free and open access to Landsat im-
agery. In addition, the USGS provides a variety of other GIS data, such as hydrography, transportation,
and land cover.

Other related topics that may be relevant for virtual world creation using GIS include geospatial
analysis, 3D modeling, and spatial data management. Geospatial analysis involves using GIS tools to
analyze and manipulate geospatial data, such as creating slope or aspect maps from DEM data. 3D
modeling involves using GIS data to create realistic 3D visualizations of virtual landscapes. Spatial
data management [22] involves organizing and storing geospatial data in a way that facilitates efficient
analysis and visualization.

Overall, GIS is a critical tool for virtual world creation, and DEMs and satellite imagery are two
key components of GIS that are essential for creating realistic virtual landscapes. The USGS is a key
provider of GIS data for virtual world creation, including DEMs and satellite imagery. Other related
topics, such as geospatial analysis, 3D modeling, and spatial data management, may also be important
for creating high-quality virtual worlds using GIS.

1.5 Background and Related Work

1.5.1 Terrain Generation

Terrain generation can broadly be categorised into traditional and learning based approaches. We can
further subdivide traditional approaches into noise-based, example-based and simulation-based tech-
niques. On the other hand, we divide learning based methods based on the applications and techniques
they use.

Noise based approaches are among the most commonly used methods due to their simplicity. Noise
based functions are mainly of two types, value noise in which we interpolate between random values
at fixed grid points and gradient noise in which we interpolate between random gradients in fixed grid
points. Examples of noise based approaches are Perlin Noise [75, 76], Simplex Noise [24] or diamond
square algorithm [15]. Perlin noise is a type of gradient noise and has been used extensively to generate
terrains [72, 56] due to its efficiency and simplicity. Perlin noise uses random gradient values at grid
points. For any point within the square grid, we calculate the dot product of the directional vector from
the grid corner to the point with the random gradient vector on the grid. We then smoothly interpolate
between the dot products to determine the elevation value at the given point. Let us denote Perlin noise
by noise(x, y), such that we get an elevation value at sampled x, y ∈ R2. We use fractional Brownian
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Figure 1.9: Illustration of fractal Perlin Noise along with its octaves. For this rendition, fp = 2.0,

ap = 0.5 and No = 3.

motion (fBm) [62, 74] to fuse multiple frequencies of Perlin noise. Let us denote the frequency of fBm
for Perlin noise by fp ∈ [1,∞), persistence ap ∈ [0, 1] and the number of octaves as No ∈ [1,∞). Then
fractal Perlin noise is given by,

No∑
i=1

aip × noise(f i
p × x, f i

p × y) (1.4)

Figure 1.9 renders a terrain corresponding to Equation 1.4. Figure 1.9 (b), (c) and (d) correspond to
the sum terms for i=1,2 and 3 called octaves o1, o2 and o3 of Perlin noise respectively whereas Figure 1.9
(a) is the fBm summation of those terms as given by Equation 1.4. This equation relies on the fractal
property of terrains, that is terrains exist as self-repeating structures at different scales and frequencies.

Simulation based methods consist of erosion tools [67, 8, 9], such that given a terrain, an erosion
process is simulated over it to produce natural terrain patterns. Whereas example based methods use
examples or sketches of terrains to generate terrains [117, 29].

Learning based methods for terrain generation were primarily dominated by GAN [20, 65, 35] and
VAE [43] based methods. Conditional GANs [65] are an extension of GAN which learn a conditional
distribution. Pip2Pix [35] is a conditional GAN image to image network which have been employed by
[23] to convert user inputs such as ridges and valley into terrain. Similarly, [116] used an adversarial
loss to amplify terrain with style components.

Image completion, inpainting, and outpainting have gained attention in recent years due to the
advancements in deep learning techniques. Image completion [34] and inpainting [73, 108] involve
filling in missing parts of an image. It is a challenging task as the missing parts of the image can be
irregular in shape and texture. Outpainting [109] involves generating new content beyond the boundaries
of the input image that can be used to generate high-resolution images from low-resolution inputs, as
well as to create panoramic images from a single image.

1.5.2 Terrain Enhancement

Terrain enhancement involves adding details to the terrain. Traditionally, this has been achieved
through the use of simulation erosion models [67, 106] on top of generated terrain, which can be time-
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consuming despite adhering to physical laws. In recent years, deep learning methods have become
popular for terrain enhancement, with techniques such as [23] seeking to learn erosion features to ac-
celerate the process.

Terrain enhancement can be framed as a terrain super-resolution problem, wherein low-resolution
terrain DEM is converted to a higher resolution. Methods such as [3, 46] employ ortho-photo and depth
map pairs to super-resolve low-resolution terrain patches using techniques such as attention feedback
networks. Other methods, such as [47, 36] use only the depth map to super-resolve terrain. Other
enhancement techniques such as [116] enhance while incorporating style embeddings.

Progressive super-resolution [48, 49, 97] is a type of image super-resolution technique that involves
creating a series of intermediate images with increasing resolution until the desired final resolution is
achieved. This intermediate image is used as input to generate another image with a higher resolution,
and the process is repeated until the final desired resolution is achieved. The advantage of this approach
is that it can produce high-quality images with much higher resolution than the original input image.

1.5.3 Tree Generation

There exist many classes of methods to model trees. Some of the classes are parametric methods,
image-based methods, modelling through 3D reconstruction, learning-based methods, grammar-based
methods, etc.

Parametric methods are often much harder to understand and work with. Weber and Penn [98]
introduced a system to model trees using a parametric approach. Their method is implemented in
blender as a famous plugin Sapling Tree Gen. [98] also proposed additional use cases in their work such
as pruning of trees, wind sway, vertical attraction and tropism in trees, etc.

Image-based modelling techniques [95, 26, 78] are used to model the most realistic trees but cannot
fit many use cases because of lack of scalability. Some methods such as [89] lie at an intersection of
image based approaches and grammar based approaches to model trees.

[95] proposed a model using an image-based approach. Their method used structure from motion and
other post-processing techniques to model trees. Other methods exist such as single image approaches
[26] and multiple image approaches [84], [78]. Methods of 3D reconstruction such as [110] use an
exemplar database consisting of real trees reconstructed from scanned 3D data. This approach similarly
lacks scalability due to the difficulty in the acquisition of data. Additionally, in use cases like modelling
forests, these methods will not work because a single set of 20 to 30 images produces a single tree and
these models lack stochasticity to produce variations in those trees. Producing a forest may require a big
database of images and computational needs can be too expensive. More importantly, the stem structure
information might be incomplete due to occlusion of leaves and hence it is not easy to animate such
reconstructed trees.

Learning-based methods have been proposed to model trees. One such strategy is inverse procedu-
ral modelling [111], [80], [92], [91] in which the parameters of grammar-based models or parametric
models are estimated given the data such as tree models. Other learning-based approaches such as [2]
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take images as input but mainly focus on 2D trees, though they have a limited extension to 3D. Further
work on Interactive procedural modelling like [60] provided for manual interaction for the 3D artist
reducing their design process. Whereas [12], [38] optimise procedural modelling approaches at scale
to efficiently generate forest for virtual world creation at reduced time and memory requirements. On
the other hand, [40] presented a visually optimised method to make tree generation and rendering more
suitable for applications in VR/AR.

Grammar-based approaches, such as the proposed work is based on the interpretation of the grammar
provided by the user. Different methods of interpretation vary the expressibility and the number of
species that can be modelled. L-system and its extensions [57] are popular grammar-based method
to model trees. In [57], the grammar is first expanded and then interpreted to give results. Another
grammar-based approach was proposed by [93]. Their model is easy for a user to understand thereby
giving the user bigger flexibility to model trees but is not able to model a wide variety of trees. The
limitation on the variety of trees is because all of their geometric parameters are set globally, i.e., it is
the same for all types of stems. This makes it harder to model local variations present in trees. The
proposed model overcomes this limitation by allowing the user to specify local variations in the tree
structure.

1.5.4 Terrain Rendering

Terrain rendering refers to the process of creating a visual representation of a three-dimensional
terrain. There exist many terrain rendering techniques in the literature [71, 31, 112, 59], with some
popular ones being ROAM [14], Geometrical MipMapping [10], Geometry Clipmaps [61] and quad-
tree based.

The ROAM algorithm [14] is a technique used for real-time mesh adaptation that maintains contin-
uous triangulations with the aid of priority queues. It utilizes pre-processed bintree triangles to enhance
its performance. Geometrical MipMapping [10] is a block-based terrain rendering algorithm that re-
duces CPU processing time by dividing the terrain into grid-based tiles. The algorithm is designed to
focus on GPU hardware-based rendering and minimize CPU overhead. Geometry Clipmap [61], is an-
other efficient algorithm for caching terrain in nested regular grids around the viewer, providing visual
continuity, uniform frame rate, and graceful degradation.

Quadtree-based terrain rendering [70, 113, 107, 83] is a another popular approach for rendering
large-scale terrains. A quadtree is a hierarchical data structure that recursively divides a 2D space into
four equal-sized quadrants. The basic idea behind quadtree-based terrain rendering is to divide a large
terrain into a set of smaller tiles, each of which is represented by a node in a quadtree data structure. The
terrain is initially represented by a single node at the highest level of the tree. This node is recursively
subdivided into four child nodes, each of which represents a quadrant of the terrain. This process is
repeated recursively for each child node until a desired level of detail is reached. Quadtree-based terrain
rendering also allows for efficient culling of non-visible portions of the terrain, since each quad can be
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individually culled. During rendering, the quadtree is traversed starting from the root node, and tiles
that are visible in the current view frustum are recursively subdivided and rendered.

1.6 Thesis contribution

(a) Generated terrain (b) Generated trees

Figure 1.10: Terrain and trees generated using our methods.

The primary focus of this thesis is to address the challenges of generating terrain and vegetation
components of virtual worlds as shown in Figure 1.10. Specifically, this thesis will explore the use
of learning-based generative approaches for terrain generation and L-systems for tree generation. The
goal is to develop efficient and effective methods to generate visually realistic and varied terrain and
vegetation. Furthermore, this thesis also aims to address the challenge of real-time rendering of virtual
worlds. Achieving real-time rendering of complex virtual environments is computationally demanding.
Therefore, this thesis aims to investigate novel rendering techniques which can be seamlessly integrated
with generative algorithms and achieve real-time performance while maintaining high visual fidelity.

The expected outcomes of this thesis are to develop a system for generating and rendering virtual
worlds that can be used in various applications, such as gaming, simulation, education, and training. The
system should be efficient, scalable, and able to handle different types of terrain and trees. The system
should also be flexible, allowing for customization and modification by users. By addressing these
challenges, this thesis aims to contribute to the development of more efficient and effective techniques
for creating virtual worlds. The chapter-wise enumeration of our contributions are as follows:

1. Deep Generative Framework for Interactive 3D Terrain Authoring and Manipulation [68]

• Proposal of a novel terrain authoring framework that utilizes a combination of VAE and
conditional GAN model to generate multiple variants of terrain from a single input.

• Learns a latent space from a real-world terrain dataset.
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• Presents an interactive tool that enables users to generate diverse terrains.

2. Adaptive & Multi-Resolution Procedural Infinite Terrain Generation with Diffusion Models
and Perlin Noise [36]

• A novel adaptive multi-resolution framework for generating terrains that combines a diffu-
sion based generative network and frequency-separated terrain features.

• SOTA terrain super-resolution for enhancing generated terrain patches.

• Novel kernel-based blending method for generating infinite terrain with realistic terrain fea-
tures using Perlin noise.

3. Automated Tree Generation Using Grammar & Particle System [37]

• Grammar-based solution for 3D tree generation that can model a wide range of species
improving the interpretability and expressibility of L-systems.

• Adopts a particle system approach for foliage, models the tree growth variations, changes in
foliage across seasons, and leaf structure.

• Blender add-on developed for use, which can be used for efficient 3D tree generation along
with a library of Indian and Western tree species.

4. Real-Time Terrain Generation and Rendering

• A learning based framework for infinite terrain generation and level of detailing.

• A rendering algorithm seamlessly integrated with the generative framework.

• Application developed using OpenGL and GLSL with quad-tree based data management,
added with botanical trees for aesthetics and user immersion.

1.7 Thesis organisation

This thesis is structured into several chapters that address different aspects of creating a virtual world.
Chapter 1 established the problem and motivation for the research, as well as provided a background
overview of the necessary topics. Chapter 2 focuses on generating and manipulating terrain patches,
which form the basis of the virtual world. Chapter 3 extends this concept to create infinite terrains
through an adaptive and multi-resolution approach. Chapter 4 covers the generation of trees, which
enhances the realism of the virtual world by improving the interpretability and expressibility of L-
systems. Chapter 5 builds upon the previous chapters to create a fully realized virtual world, complete
with generated terrain and trees, rendered through a seamlessly integrated algorithm. The concluding
chapter, Chapter 6, provides a summary of the research and discusses potential future directions for
further study.
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Chapter 2

Deep Generative Framework for Interactive 3D Terrain Authoring and

Manipulation

2.1 Introduction

In the previous chapter we introduced the problem and goals. In this chapter, we continue our
discussion by introducing the generation and manipulation of the fundamental building blocks of our
virtual world - terrain patches. 3D Terrain modelling aims to create a digital representation of the real-
world topography and is useful in both scientific applications surrounding land surface processes like
flooding, soil erosion, as well as virtual terrain rendering in graphics and computer vision applications.
It is also most sought for by the multimedia applications like Virtual Reality (VR) models and gaming.
The real-world terrains undergo a range of natural transformations such as erosion, weathering, and
landslides over the years, leading to the formation of complex topographies such as hills, mountain
ranges, canyons, plateaus, and plains. This makes 3D terrain generation and authoring a challenging
task. Existing 3D terrain authoring and modelling techniques have addressed some of these and can be
broadly categorised as procedural modelling, simulation method, and example-based methods (refer to
[18] for a detailed survey).

Recent advancements in deep learning have enabled us to learn diverse terrain features for tasks
like terrain amplification [46], modifications [85], etc. In the context of deep learning-based automated
3D terrain authoring, the literature is very sparse. One of the most relevant example-based 3D terrain
authoring methods referred to in this work as TSynthNet [25], trains a conditional Generative Adversarial
Network (cGAN) on a large set of real-world terrain data to generate realistic virtual terrains from hand-
drawn user inputs. However, they provide limited user control and generate a single terrain for a given
input. Additionally, their method allows the use of either drawing of level-sets or ridge/valley strokes
(with altitude cues). However, these two representations are complementary and jointly provide richer
information for terrain authoring tasks.

In this chapter, we propose a novel realistic 3D terrain authoring framework powered by a combina-
tion of Variational Auto-encoder (VAE) [44], and conditional GAN model. Our framework attempts to
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Figure 2.1: Generation of multiple variants of terrain from a single input topographic map sketch.

overcome the limitations of TSynthNet by learning a latent space from a real-world terrain dataset. This
latent space allows us to generate multiple variants of terrain from a single input (as depicted in Fig-
ure 2.1) as well as interpolate between terrains while keeping the generated terrains close to real-world
data distribution (Figure 2.2).

We also design a novel VAE loss function to exploit sparse topographic features like ridge/valley
lines. Finally, we developed an interactive tool that lets the user model diverse 3D terrains with minimal
inputs. We perform a thorough qualitative and quantitative analysis and provide a comparison with
TSynthNet to show the superiority of our method over SOTA methods. Our codebase1 and project
page2 are publicly accessible.

2.2 Methodology

We propose a two-stage framework to learn the topographical structure of real-world terrains from
existing datasets and generate plausible DEM from input sketches that can be thought of as topographic
maps primarily consisting of DEM level-sets and ridge/valley lines representing underlying abstract
topological features of the terrain. Learning such a latent space enables two key use-cases of the pro-
posed method, namely, automated generation of multiple variants of terrain from a single user input
sketch and interpolating between two terrains while keeping the generated virtual terrains closer to a

1https://github.com/Shanthika/TerrainAuthoring-Pytorch
2https://shanthika.github.io/terrain_authoring/
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Figure 2.2: Terrain generation, interpolation and sampling by the proposed framework.

Figure 2.3: The architecture of the proposed two-stage deep generative framework.
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real-world dataset consisting of realistic topographical features. Figure 2.3 provides an overview of the
proposed two-stage framework.

2.2.1 Stage 1: Latent Space Learning

In the first stage, we aim to learn a generative latent space for topographic maps using a Variational
Auto-encoder (VAE) model from a real-world terrain dataset. We extract ground truth topographic
maps from real-world terrain data (see Section 2.3.1) and autoregress using VAE to learn the latent
space. Let Tinp be our (hand-drawn) input sketches representing a rough topographic map. VAE learns
to approximate a distribution q(z) and learns the parameters µ and σ, from which the latent vector z is
sampled using the re-parameterization trick as z = µ+σ∗ϵ, where ϵ is sampled from a Standard Normal
distribution. This sampled vector is fed to the decoder, which predicts Trec, that is the reconstruction of
original input Tinp.

We propose a novel auto-regressive reconstruction loss Lrecons between VAE input Tinp and output
Trec by modifying the traditional Binary Cross Entropy (BCE) loss to emphasize the ridge/valley lines
in the topographic map.

We propose to give higher weightage to the loss on red and blue channels to give more importance to
ridge and valley lines/strokes in the topographic map sketches. Additionally, a traditional KL divergence
loss LKL ensure that the probability distribution of latent vector z follows a Standard Normal distribu-
tion. Thus, the final VAE loss LV AE is a combination of reconstruction Lrecons and KL divergence loss
LKL .

LV AE = Lrecons + γ ∗ LKL (2.1)

The γ parameter in Eq.2.1 is the weighting of the latent loss LKL which is set to 0.65.

2.2.2 Stage 2: DEM Generation

The second stage consists of a conditional Generative Adversarial Network (cGAN) (Pix2pix [35])
model that generates plausible DEM output. This stage aims to generate the DEM given user topo-
graphic map sketch or, in our case, generated sketch from the previous stage.

The overall network is trained such that both generator G and discriminator D reach a Nash equi-
librium by playing a two-player minimax game while optimizing the value functions V (G,D)[35]. We
use L1 loss for reconstruction from the generator, i.e., L1(G). So the final loss for cGAN training is
given in Eq. 2.2.

L = m
G
in m

D
ax [V (D,G) + L1(G)] (2.2)
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Table 2.1: Comparison with baseline and TSynthNet [25].

Method RMSE ↓ PSNR ↑

TSynthNet [25] 5.391 31.875

Baseline (VAE) 9.229 7.322

Our model (VAE+cGAN) 4.743 34.189

2.3 Experiment Details

2.3.1 Dataset

We use a popular DEM dataset used by other relevant works in the literature, e.g., [3, 47] which
is part of DEMs of mountain ranges named Pyrenees [33] and Tyrol [86], respectively. DEM patches
with a resolution of 2m/pixel have been used as ground truth elevation maps. Original DEM tiles were
split into 200x200 pixels. We randomly sample 3000 image patches for training and 878 image patches
for testing. More details about the dataset can be referred from [47]. We prepare the training dataset
by extracting the topographic map input sketches as RGB images from DEMs. Here the Green channel
is dedicated to representing the elevation in the form of 4 level-sets while the Red(/Orange) and Blue
channels are used to represent ridge and valley lines, respectively.

2.3.2 Implementation Details

Our VAE model is a 12 layer network with 6 layers in the encoder and 6 layers in the decoder. The
latent space dimension is set to 128. All the layers consist of a 3x3 convolution with a stride of 2 and
padding of 1, followed by Batch Normalization and using Leaky ReLU non-linearity. Adam optimizer
was used to update the parameters with a learning rate of 0.001 and an exponential scheduler with
gamma set to 0.95 while training the VAE.

Our conditional GAN generator is a U-net inspired Pix2pix architecture [35]. This model was trained
using Adam optimizer with a learning rate of 0.0002, β1 set to 0.5 and β2 as 0.999 for both Generator
and Discriminator. All our experiments were performed on a single Nvidia GTX 1080Ti.

2.3.3 Results

We provide quantitative evaluation results in Table 2.1. We can observe that we obtained superior
performance with RMSE of 4.743 and PSNR of 34.189 from our model (VAE+cGAN) and beat the
SOTA TSynthNet. We also demonstrate the results with the Baseline model (i.e., single-stage VAE
based DEM generation) also performs inferior to our model, justifying need for a two-stage frame-
work. Figure 2.4 shows the qualitative results where the first column shows the input and the VAE
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Figure 2.4: Rendering of generated and ground truth terrains for qualitative comparison.

Figure 2.5: Qualitative comparison with TSynthNet [25].
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Figure 2.6: Terrain interpolation results for varying α parameters.

reconstructed topographic maps. The second column gives a comparison between the ground truth and
generated DEMs. The last column shows the 3D rendering of these DEMs overlaid with the associated
satellite image. Moreover, Figure 2.10 gives illustrates samples from our framework along with their
3D rendering.

We also provide a qualitative comparison of our method with TSynthNet in Figure 2.5. The red
circles depict the region where TSynthNet deviates from ground truth terrain while our method (green
circles) stick closer to the ground truth. Additionally, our method also enables terrain interpolation and
variant generation using the learnt VAE latent space.

Generating Terrain Variants: We utilise the latent space created by VAE to generate different
samples from the same input. Different terrains generated from the latent space encoding of the same
input topographic map are shown in Figure 2.1. We can observe the generated terrains have realistic
but slightly different topographical features from that of input terrain. This provides the user with the
flexibility to generate multiple terrain DEMs and use them for large scale generation of virtual terrain
maps. Furthermore, we can observe the variations in terrain structure for the same input in Figure 2.7
and for different input in Figure 2.8.

Terrain Interpolation: The latent space can also be used for automated fusion of topographic fea-
tures across two terrains. Given two input DEMs we extract associated topographic map sketches and
generate a new terrain by linear interpolation of the respective feature embedding (z1 and z2) in the VAE
latent space. More specifically, we combine them using the formula z = α ∗ z1 + (1 − α) ∗ z2 while
generating respective novel DEM using our framework. Figure 2.6 shows an example interpolation of
two input terrains in the latent space for different values of α parameter.

2.3.4 User Study

We performed a user study involving 6 users. We presented users with a set of generated and ground
truth terrain pairs overlaid with satellite images. The users were unable to decisively differentiate the
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Figure 2.7: Variations in terrain generated for different input by the proposed framework.

Figure 2.8: Variations in terrain generated for same input by the proposed framework.

Figure 2.9: The UI developed for user study.
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Table 2.2: User study experiment 2 results where the cells contain the percentage of people who re-

sponded with a score to our questions.

Questions Score 5 Score 4 Score 3 Score 2 Score 1

Is the interface and application intuitive? 33.3% 66.7% 0% 0% 0%

Does the generated terrain follow the input? 50% 50% 0% 0% 0%

Was the UI fast and reactive? 100% 0% 0% 0% 0%

Is it easy to express ones intent? 50% 0% 16.7% 33.3% 0%

generated and ground truth terrains and choose the real terrain only 50% of the time. Total 83.3% of the
users agreed that the terrains generated are very realistic, while 16.7% said that it is fairly realistic.

In the second experiment, we provide the user with a simple interface to draw input sketches. We
provide the option to vary brush thickness so that the dense level-sets can be drawn with only a few
strokes. The user interface and the DEM generated for a hand draw user input is shown in Figure 2.9.
The input can also be interactively edited to get desired output. We asked the users several questions
regarding the interface and the application. The results of the study are shown in Table 2.2 where the
users had to rate from 1(lowest) to 5(highest). We observed that the users were able to generate DEMs
with ease after a couple of attempts.

2.4 Conclusion

We proposed a novel realistic terrain authoring framework powered by a combination of VAE and
conditional GAN model. Our framework learns a generative latent space from real world terrain dataset.
This latent space allows us to generate multiple variants of terrain from a single input as well as interpo-
late between terrains, while keeping the generated terrains close to real world data distribution. While
a preliminary interactive tool has been developed and used here, we further intend to provide user con-
trol to generate the terrain variants and interpolated terrains. The thorough qualitative and quantitative
analysis and comparison with other SOTA methods support the superior outcome of our approach. In
the next chapter, we continue the discussion of terrain generation by extending the idea of patches to
generate infinite terrain.
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Figure 2.10: Terrain generated by the proposed framework along with 3D rendering of top and side

view.
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Chapter 3

Adaptive & Multi-Resolution Procedural Infinite Terrain Generation

with Diffusion Models and Perlin Noise

Figure 3.1: Rendition of a terrain generated using the proposed method.

3.1 Introduction

We continue our discussion in this chapter by extending the concepts of the previous chapter to
generate infinite terrain. 3D Terrain generation is a classical use-case in the computer graphics commu-
nity (dates back to four decades [16]) largely driven by gaming and simulation applications. Procedural
and artist-driven 3D terrain generation are two popular lines of thought explored in the existing literature
[82]. In procedural 3D terrain generation, we aim to algorithmically generate height maps of landmasses
such as mountains or deserts. Many domains such as digital gaming, animated movies and architectural
models adopt this approach, e.g., popular ”open-world” games such as Minecraft and No Man’s Sky
need to render infinitely large 3D terrains and hence employ procedural generation techniques. Further-
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more, due to the large variation in hardware capability at the gamer’s end, it is desired to have a solution
with the ability to adaptively generated terrains of varying quality ( i.e., multi-resolution terrains).

Traditionally, 3D terrain generation has been attempted using functions like Perlin [75] or Simplex
[24] noise. This is to date a popular technique in digital gaming. However, these techniques provide
minimal control largely restricted to choosing noise parameters and hence lack real-world terrain fea-
tures. The real-world terrains are captured traditionally using microwave imaging (typically sensor over
satellites) or recently using LiDAR-based sensing [66]. These digitized terrains are thus represented
and stored as Digitial Elevation Models (DEMs) where a raster grid stores per pixel elevation of the
discretized terrain.

With the advent of deep learning technology, many generative modelling approaches such as Genera-
tive Adversarial Networks (GAN) [20] and Variational Auto Encoders (VAE) [43] have been employed
for the task of 3D terrain generation [23, 116] by learning over the real world DEM data. Their key
advantage over traditional noise modelling techniques is that they enable learning from a large set of
publicly available realistic terrain data [32, 19]. This brings realism to generated terrains. Nevertheless,
their usage has been largely limited to producing limited size tiles/patch of terrain at a single resolution
[68], which greatly limits their applications to open-world games and simulations where large-scale
continuous infinite terrain generation is desired. Another related use-case of terrain enhancement/super-
resolution is also well attempted with deep learning framework [47]. In regard to deep generative
models, recently diffusion-based technique is getting popular where an iterative Markov modelling is
proposed for learning data distribution and employed for the task of generating realistic images. The
diffusion-based formalism is claimed to outperform other existing generative techniques [13].

In this chapter, we propose a framework to generate infinite 3D terrains at multiple resolutions adap-
tively. Our framework combines diffusion-based generative network [69, 13] and novel frequency sep-
arated 3D terrain features along with learnable terrain super-resolution equipped enhancement followed
by novel Kernel-based Blending that uses Perlin noise [75] to generate infinite terrain with realistic ter-
rain features. More specifically, our framework consists of training and inference phases. As part of the
training phase, we propose to separate multiple spatial frequencies of 3D terrain features extracted from
real-world data and independently employ diffusion model based learning of respective data distribu-
tions (at associated spatial frequency). Additionally, we also learn a 3D terrain super-resolution model
over the same dataset in this phase. In the inference phase, we propose to adaptively sample learnt
data distribution from diffusion models (at respective spatial frequencies) and perform fusion to obtain
a new terrain patch. Subsequently, we enhance this patch using the trained super-resolution model to
enhance realistic 3d terrain features into the patch. Finally, we combine multiple patches using novel
kernel blending where Perlin noise help achieve seamless blending near patch boundaries enabling the
generation of large and continuous realistic 3D terrains. Figure 3.1 shows a realistic 3D terrain gener-
ated with the proposed framework. We provide a comprehensive quantitative and qualitative evaluation.
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Figure 3.2: Overview of the proposed framework consisting of the training and inference phases.

Additional details and video resources can be found on our project page 1. The code and model weights
are publicly accessible 2,3.

The key contributions of our work are: 1) A novel adaptive and multi-resolution framework for
generating realistic 3d terrains. 2) Diffusion-based generative modelling of 3d terrains. 3) Generating
infinitely large 3d terrain in a learning-based framework. 4) State-of-the-art 3d terrain super-resolution
technique.

3.2 Method

3.2.1 Overview & Notations

Our dataset consists of terrain represented as a Digital Elevation Model (DEM). The DEM is usually
large and hence divided into a set of smaller patches for easy processing.

Figure 3.2 gives an overview of the proposed framework divided into two phases. In the training
phase, we assume the availability of DEM dataset where we divide large DEMs into multiple smaller
uniform size patches ρi and the set of all patches obtained from the dataset is represented as P . Subse-
quently, we separate each patch ρi ∈ P into N of its constituent spatial frequencies µ1i . . . µNi using
Fourier transform such that µji ∈ Θj∀i. Hence, Θj is the set containing all patches of frequency j and
N is a hyper-parameter of the framework. Furthermore, we resize the patches in Θ1 . . .ΘN such that the
size of the patches increases from 1 to N. Finally, we train N separate diffusion models D1 . . .DN with
Θ1 . . .ΘN , respectively. We also train a separate super-resolution model S on P to enhance generated
patches.

1https://3dcomputervision.github.io/publications/inf_terrain_generation.html
2https://github.com/aryamaanjain/trcan
3https://github.com/aryamaanjain/perlin_noise
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Figure 3.3: Separation of a patch into its constituent frequencies. The patch dimension is 256×256 and

N = 3. The Gaussian kernel is of variance 8 and the Gaussians in the DoG kernel are of the variance

are given in their parameters.

As part of the inference phase, we adaptively sample patches from the first k diffusion models, where
0 ≤ k ≤ N . We can increase k adaptively upon the need for more details in the terrain, thereby pro-
viding a multi-resolution adaptive output. The sampled set of patches µ′

1i
. . . µ′

ki
are further employed

with bicubic up-sampling to be brought to the same size and fused together with fractional Brownian
motion (fBm) [62] to generate patch ρ′i. The generated patch is further enhanced by employing the
trained super-resolution model (S) to yield patch ρ′iSR

. Finally, for a smooth transition between the
generated patches ρ′1SR

, ρ′2SR
, . . . , we combine fractal Perlin noise with the generated patches using a

derived kernel G. The detailed description of relevant modules in our framework is presented below.

3.2.2 Frequency Separation

We separate each patch ρi ∈ P into its N constituent frequencies µ1i . . . µNi using Discrete Fourier
Transform (DFT) as show in Figure 3.3. DFT is an image processing method used to convert an image
from spatial to frequency domain. We specifically use the Fast Fourier Transform (FFT) algorithm [7]
F for our tasks. Given an input patch ρi ∈ P of size M ×M in the spatial domain, we convert it into
the frequency domain F of the same size as F = F(ρi) given by,

F (u, v) =

M−1∑
x=0

M−1∑
y=0

ρi(x, y)e
−i 2π(ux

M
+ vy

M ) (3.1)

Figure 3.4 illustrates the patch ρi and the corresponding log amplitude of its DFT. After we obtain the
frequency domain representation F of the patch ρi, we apply a set of kernels to separate its frequencies
at varying levels. We use a Gaussian kernel for the lowest frequency and Difference of Gaussian (DoG)
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Figure 3.4: (a) Patch (b) Corresponding log amplitude of the DFT of the patch.

Figure 3.5: The working of a diffusion model for terrains. t represents the timestep of the diffusion

process. Here we adopt linear schedule with β varying between 0.001 and 0.02.

kernels for higher frequencies as illustrated in Figure 3.3. These kernels mask F as Gaussian ◦ F or
DoG ◦ F where ◦ represents the Hadamard product which aids in separation of the frequencies. After
applying the kernels, we convert the resultant patches back to the spatial domain using Inverse FFT F−1

giving us the constituent patches at successively increasing spatial frequencies µ1i . . . µNi . Separating
a patch into its constituent spatial frequencies will aid in providing a multi-resolution and adaptive
framework for producing terrains. One can observe that the extracted spatial frequency patches (shown
in Figure 3.3) are conceptually very similar to the octaves depicted in Figure 1.9.

3.2.3 Diffusion Models

Diffusion models generate samples from a distribution by learning successive denoising starting from
from a noisy sample at timestep T . Particularly, each sample in the order µT

j , µ
T−1
j , . . . , µ1

j , µ
0
j is closer

to the desired distribution, where the superscript gives the timestep of the diffusion process. We adapt
our model from [13] which consists of a forward process q(µt

j |µ
t−1
j ) which adds noise to the given

sample and a reverse process pθ(µ
t−1
j |µt

j) which learn to denoise the sample. The reverse process is
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Figure 3.6: Architectural diagram of the proposed terrain super-resolution model TRCAN.

parameterized by θ which is learnt. For a given terrain frequency distribution sample µ0
j ∼ Θj , we

define the forward process as,

q(µk
j |µ0

j ) =
k∏

t=1

q(µt
j |µt−1

j ) =
k∏

t=1

N (
√
1− βtµ

t−1
j , βtI)) (3.2)

Here β is increased as per a linear or cosine schedule in our experiments. Since we iteratively scale
and sample from a Normal distribution as illustrated in Equation 3.2, we get an isotropic Gaussian
sample at timestep T . We define the reverse process as:,

pθ(µ
t−1
j |µt

j) = N (Mθ(µ
t
j , t),Σθ(µ

t
j , t)). (3.3)

At each time step, we predict the mean and covariance of the previous timestep using the parameter-
ized functions Mθ and Σθ parameterized by θ. We sample from a Normal distribution with the predicted
mean and covariance iteratively until timestep 0, which gives us a sample from the desired terrain fre-
quency distribution. We specifically predict the noise added, optimizing for the L2 norm of the true and
predicted noise E[||ϵ − ϵθ(µ

t
j , t)||22], where ϵ is the true added noise and ϵθ is a parameterized function

predicting the noise added. We use a UNet architecture.
We train N diffusion models Di, i ∈ [1, N ] with Θi. Each successive model is trained on a larger

patch size, that is, the size of the patch produced by the model Di ∝ i. In particular, we keep N = 3 in
our experiments with the patch sizes varying as 64× 64, 128× 128 and 256× 256 for D1,D2 and D3

respectively. Decreasing the patch size with decreasing frequency aids in adaptive sampling discussed
in the sections to follow. We use diffusion models for learning the distribution of terrains because of
their superior quality in terrain generation compared to other methods, as discussed in the section 3.3.
An illustration of the process of terrain patch generation with diffusion model is provided in Figure 3.5.

3.2.4 Terrain Super-Resolution

Modelling: We propose to adapt RCAN [114] model initially proposed for image super-resolution
for the task of terrain enhancement. Henceforth, we will refer to this network as Terrain Residual
Channel Attention Network (TRCAN). Figure 3.6 provides an overview of the architecture of TRCAN.
This network uses a residual in residual structure which helps in making very deep networks avoiding

36



vanishing gradients and increasing the receptive field. The input to TRCAN model while training is a
low-resolution patch ρLR and the output is the super-resolved patch ρSR corresponding to the ground
truth high-resolution patch ρHR.

The key difference between our method compared with RCAN [114] is the head and tail convolu-
tional blocks in the network. Whereas RCAN proposes to pass the image in its low-resolution dimension
through the network and upsample towards the end, we cannot employ the same for the task of terrain
super-resolution. This difference primarily arises due to the difference in the ways of the processing of
the datasets where terrains need the input and output to be of the same dimensions to find low-resolution
and high-resolution patch correspondences. We subsequently modify the head and the tail convolutional
blocks to account for the same.

We use Adam optimizer [42] along with L1 loss to optimize the parameters of the network given by,

L1(θ) = ||ρHR − ρSR||11 (3.4)

Post-Processing: As compared to regular RGB images, DEMs are often large in resolutions, for
example, Cimavertana region in our dataset is a 5250 × 3900 raster. Thus, the large DEMs are split
into smaller patches for easy processing with typical sizes lying in the range 256× 256. In the simplest
form, all the patches are split without any overlap, enhanced independently and put together side by
side without overlap to obtain the final super-resolved DEM. [47] observed that this was not the optimal
way to obtain the final DEM and proposed to split the patches with some overlap along the edges (25%
in their case), super-resolve and then average them along the edges. We observed that the scope of
improving the results is not limited to just the patch boundaries but throughout the patch and therefore
propose a new stride-based post-processing technique. We extract patches from the larger DEM at
strides of s, which is a hyperparameter. We super-resolve all the patches extracted at stride s and pool
their values at the overlapping regions to obtain the final result. This acts as an implicit ensemble thereby
improving the RMSE of the super-resolved DEM. This can be seen as a generalization of the method
proposed by [47], with a 25% overlap corresponding to a stride of 192 for a 256× 256 tile. We call this
model TRCAN+.

3.2.5 Adaptive Sampling, Fusion & Enhancement

We aim to produce a multi-resolution and adaptive framework to generate terrain. A naı̈ve approach
for generating terrains would be to learn the DEM patch P distribution rather than the distributions of its
constituent frequencies Θj . In this approach, we would need to learn the patches at a constant resolution,
and generate those patches at the same resolution regardless of any constraints. This might be wasteful
of resources because high levels of detail for far away terrains may be unnecessary in a real-time setting.
For example, in a first person view, we would like terrains close by to be of higher quality than areas of
terrains far away. We would also like the details on the terrain to increase as we move closer begging a
multi-resolution solution. Similarly, we would want an algorithm that could function on computational
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constraints, that is work on PCs with lower specifications too. Therefore, we desire a solution which is
adaptive, multi-resolution and realistic.

Firstly, we achieve adaptive sampling by varying the number of models we sample for generating a
patch. Particularly, we sample k ≤ N diffusion models to produce µ′

1 . . . µ
′
k. For example, in a first

person view, we would set k high for a nearby point and keep it low for a far away point interpreting it
as a technique for Continuous Levels of Detail (CLOD) in terrains. Another use case would be to set an
upper-limit for k to respect computational constraints, with k set to 0 for the slowest PCs corresponding
to just Perlin Noise which has efficient implementations available. Since for lower frequencies, the
models are learnt on lower resolutions, sampling them would be faster. Once we obtain µ′

1 . . . µ
′
k,

we perform bi-cubic interpolation to bring all of the generated frequency separated patches to the same
resolution and then fuse them using fBm, a method which is inspired by Perlin noise. Let the persistence
of generated patches be denoted by aµ ∈ [0, 1] which scales down higher frequency details, the fBm
fusion equation would be given by,

ρ′ =
k∑

i=1,µ′
i∼Di

aiµµ
′
i (3.5)

This is possible only because we have samples at different frequencies and would not be possible if
we used techniques incorporating mipmapping. We can compare this equation with Equation 1.4. Note
that Equation 3.5 can be computed in an online manner, that is, as we desire more details, we only have
to sample models Di such that i > k and update the previously produced patch. Equation 3.5 would
thereby enable us to produce multi-resolution terrain patches ρ′i as discussed in subsection 3.3.2

We further deal with step-size resizing in our trained diffusion models to improve our framework
adaptivity. Given that we have diffusion models trained on T steps, while sampling we can reduce the
number of steps to K ≤ T [69]. For this, K linearly spaced integers between 1 and T can be used as
the input to the diffusion model. This improves the sampling speed of our model by decreasing the time
to sample linearly with K. Alas, this comes at the cost of quality. This adds as another use-case for
adaptive terrain sampling, which can adjust to computation constraints. An illustration and discussion
on this is provided in subsection 3.3.2.

Finally, we use our enhancement module to add details to the generated terrain patch ρ′. Specifically,
the super-resolution model S takes the unrefined patch ρ′ and adds details to produce ρ′SR = S(ρ′).

3.2.6 Kernel Blending

One of the last challenges in producing infinitely large terrains is a smooth transition among the
patches ρ′SRi

we generated in the previous steps. Simply placing the tiles produced in a grid gives rise
to discontinuities along the patch boundary, as illustrated in Figure 3.7 (a) highlighted in red. This is
because the terrain tiles are produced independently and their edges do not line up with each other. On
the other hand, Perlin noise function is inherently continuous in R2 because it smoothly interpolates
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Figure 3.7: (a) Tiled terrain patches (b) Fractal Perlin noise (c) Kernel blended terrain.

between pseudo-random gradients at fixed intervals at tile vertices. Whereas, as we can observe in
Figure 3.7 (b), Perlin noise does not possess real terrain features and hence its divergence from the
distribution of terrain is high. We propose to take the best of both, a learnt distribution from diffusion
models (Figure 3.7 (a)) and the infinite continuity of Perlin noise (Figure 3.7 (b)) by blending them using
a kernel to produce infinite terrains with learnt details as illustrated in Figure 3.7 (c). The difference in
details are highlighted in comparison of (b) and (c), with (b) showing a much smoother surface lacking
real world detail. We do not observe boundary artifacts in (c) which were present in (a).

Let g be a 1-D kernel and t ∈ [0, 1] represent the domain of the kernel such that g(t) ∈ [0, 1] is
the range. We want the kernel to satisfy conditions (1) g′(t = 0) = 0 and (2) g′(t = 1) = 0 for the
continuity along the end-points given that we will tile this kernel, (3) g(t = 0) = 0 and (4) g(t =

1) = 0 to make sure that fractal Perlin noise is dominant at the tile edges to provide continuity and
(5) g(t = 1

2) = 1 such that the sampled terrain is dominant where continuity is not a concern. We
require an order four polynomial to satisfy the five conditions. Let g(t) =

∑4
i=0 ait

i be the template
polynomial. Upon simplifying with constraints (1) to (5), we get the linear system of equations,

1 1 1

4 3 2

1 2 4


a4a3
a2

 =

 0

0

16

 (3.6)

The solution of this gives us the kernel g(t) = 16t4 − 32t2 + 16t2, the corresponding graph is
plotted in Figure 3.8. This kernel resembles a Gaussian but upon experiments with a Gaussian kernel,
we observed edge artifacts due to the tails of Gaussian being non-zero. We take the outer product of the
kernel with itself which gives us the 2-D kernel G = g ⊗ g. We blend ρ′SR and fractal Perlin noise fpn
for the desired domain as,
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Figure 3.8: The 1-dimensional derived kernel g.

G ◦ ρ′SR + λ(1−G) ◦ fpn (3.7)

where ◦ denotes the Hadamard product and λ is a scaling hyper-parameter that we best found to
work in the range [0.75, 1]. An example of the resulting terrain is illustrated in Figure 3.7 (c), where
Figure 3.7 (a) corresponds to ρ′SR and Figure 3.7 (b) corresponds to fpn.

3.3 Experiments and Results

3.3.1 Dataset

We use the same dataset as [3, 47, 68] for fair comparison with state-of-the-art terrain generation and
terrain super-resolution. This dataset is publicly available and consists of high resolution DEMs of 2m
spatial resolution from the regions of Pyrenees [32] and Tyrol [19], which cover an area of 643 km2 and
304 km2 respectively. We divide the DEMs into tiles of 256× 256 for processing in the pipeline.

3.3.2 Diffusion Model, Adaptive Sampling & Fusion

Implementation Details: We train our diffusion models with number of steps K = 1000. We use
a batch size of 16 along with a cosine β scheduler. We learn the covariance and keep the learning rate
fixed at 10−4 optimizing with the Adam optimizer [42]. We train for 216 iterations on Nvidia GeForce
RTX 2080 Ti. We keep these parameters fixed for all the frequencies. We compare our proposed
diffusion based model to a set of baselines. The first baseline is the improved Perlin Noise [76] which
we implemented ourselves. We set the number of octaves to 3. The second baseline is a GAN model
[20] for which we use the implementation of deep convolutional GAN provided by [58]. Our batch size
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Table 3.1: Comparison of Fractal Perlin [76], GAN [58], VAE+GAN (chapter 2) and the proposed

diffusion based modeling using the FID ↓ metric for terrain generation.

Fractal Perlin GAN VAE+GAN Diffusion

FID ↓ 335.851 204.365 119.124 54.444

Figure 3.9: An illustration our fusion strategy (following Equation 3.5) with aµ = 0.5. (a), (b) and (c)

correspond to k = 1, 2 and 3.

was set to 64, learning rate 2× 10−4, latent dimension 100, trained for 200 epochs on Nvidia GeForce
RTX 2080 Ti and optimized using the Adam optimizer [42]. Our final baseline is a model which is
composed of a VAE and a GAN (chapter 2). This model was trained on the same dataset as ours. For
fair comparison, we set N = 1 for diffusion models.

Results: We generate samples from various baseline models (explained before) and compare it to
the ground truth dataset using the FID metric [28], that is a metric used to compare two distriutions. The
results given in Table 3.1 show that diffusion models outperform other methods in terrain generation.

In terms of qualitative understanding of adaptive terrain generation, Figure 3.10 displays terrains
rendered at varying values of diffusion sampling steps (K) in which we can observe a slight drop in the
finer details as we decrease K. Nevertheless, this decrease in quality can be acceptable as it yields faster
generation, with K = 1000 taking 35s and K = 10 taking 5s on an Intel Xeon CPU as sampling time
reduces linearly with K in diffusion models. Since terrain data is much more unstructured compared to
natural images or facial data, slight deviation from the actual distribution are not caught visually, hence
reducing K to improve sampling speed would not be as detrimental as it would be with other domains.

In regard to qualitative evaluation of fusion multiple patches generated by respective learnt diffusion
models for different spatial frequencies is shown in Figure 3.9, where we can observe the finer details
increase with an increase in k (following Equation 3.5).
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Figure 3.10: Terrains sampled with diffusion model by varying the number of sampling steps K for

N = 1.

3.3.3 Super-Resolution model

Implementation Details: The architectural diagram for our proposed method is given in Figure 3.6,
corresponding to which we found the values of I = 8 and J = 16 to work best for us. We used average
pooling in our pooling layer in the process to get the attention weights. We used Adam optimizer [42]
with a learning rate (LR) of 10−4 and a step LR scheduler reducing the LR by 5% every 2 epochs. We
train for 256 epochs on Nvidia GeForce RTX 2080 Ti.

Results:Figure 3.11 illustrate qualitative result of terrain enhancement, where we can observe that
(a) is the generated terrain (from fusion of multi spatial frequency patches) is smoothed out whereas fine
details like sharper edges are present in enhanced terrain obtained by employing terrain super-resolution
as shown in (b).

In terms of quantitative evaluation, we compare the RMSE and PSNR of our model with bicubic
upsampling and two baselines models, all of which were tested on the same dataset as ours. The first
baseline model FCND [3] proposed a multi-scale architecture with the possibility of combination with
aerial-imagery. We use their method with just depth for fair comparison. The second baseline model
[47] proposed a feedback neural network based architecture DSRFB along with extention with post-
processing DSRFO. Table 3.2 compares our method with the baselines using RMSE and PSNR and
establishes a new state-of-the-art in 8x terrain super-resolution. The results are reported for the test set.
DSRFB should be compared with TRCAN because they are tested without post-processing and DSRFO
with TRCAN+ with post-processing. TRCAN+ used a stride of 16.

We further experiment with the effect of stride on the RMSE. Figure 3.12 illustrates that there is an
approximately linear relationship between the two. This can be seen as an ensemble where the variance
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Figure 3.11: Terrain enhancement where (a) is enhanced to (b).

Table 3.2: Comparison of Bicubic Upsampling, FCND [3], DSRFB/DSRFO [47] and our proposed

TRCAN/TRCAN+ using RMSE (in meter, ↓) / PSNR (in dB, ↑) for 8x terrain super-resolution.

Region Bicubic FCND DSRFB DSRFO TRCAN TRCAN+

Bassiero 1.406/60.5 1.146/62.261 1.091/62.687 1.083/62.752 1.086/62.728 1.077/62.807

Forcanada 1.632/58.6 1.326/60.383 1.270/60.761 1.259/60.837 1.260/60.828 1.248/60.909

Durrenstein 1.445/59.5 0.957/63.076 0.884/63.766 0.868/63.924 0.869/63.915 0.847/64.138

Monte Magro 0.917/67.2 0.632/70.461 0.589/71.081 0.581/71.196 0.584/71.144 0.574/71.293

43



Figure 3.12: Effect of stride on the RMSE.

Table 3.3: Comparison of Fractal Perlin Noise [76], ground truth data and our proposed method based

on user rating for terrain generation.

Fractal Perlin Ground Truth Our

Mean 1.948 3.931 3.465

STD 1.085 1.298 1.074

in the output reduces with increasing number of samples, which is inversely proportional to the stride.
The RMSE has been normalized in this plot such that the RMSE of the maximum stride is 1.0 for
each region for easy visualization. The time required for post-processing increases quadratically with
an increase in stride, whereas the time required for sampling tiles from the diffusion model increases
linearly with the number of diffusion steps.

3.3.4 User Study

We conduct a user study with 30 domain expert participants. We show each participant 5 renders
each of terrain generated via fractal Perlin Noise, our method and the ground truth dataset and ask them
to rate the terrains based on realism and aesthetics out of 5. We report the mean and standard deviation
(STD) of the scores in Table 3.3. We observe the expected progression in mean and STD scores with
the highest scoring ground truth followed by our method and then fractal Perlin noise. We can observe
that mean rating of the generated terrains obtained with Perlin noise is significantly lower as compare
ratings of terrains generated with our method, which is very close to ratings given to real terrains.

44



3.4 Conclusion

We propose a novel framework for terrain generation introducing concepts such as frequency separa-
tion using Fourier transform, kernel blending and fBm fusion for generating patches which gives a new
perspective to terrain generation in a learning based framework. Our framework is adaptive and multi-
resolution for generating learning based infinite terrains procedurally which might contribute greatly to
the gaming and simulation community. We test and report superior qualitative and quantitative results
for diffusion based models and show their applicability for terrain generation. Along with that, we pro-
pose a state-of-the-art terrain super-resolution model with a novel post-processing technique which we
employ for terrain enhancement. In the next chapter, we continue our discussion by generating objects
that populate the terrain, specifically trees.
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Chapter 4

Automated Tree Generation Using Grammar & Particle System

Figure 4.1: A forest rendered using the proposed model.

4.1 Introduction

In the previous chapters, we discussed the generation of terrain, which would form the base of our
virtual world. In this chapter, we continue our discussion with the generation of trees, which would
be used to populate the virtual world. 3D Virtual world generation is an important goal for computer
graphics applications aiming at realistic experience for gaming or virtual reality audience. Modelling re-
alistic 3D Flora (plant life) is an important aspect of generating outdoor virtual scenes that are abundant
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Figure 4.2: Banyan tree generated by our method.

in graphics applications. Traditionally, a set of 3D tree models designed by expert artists are repeat-
edly used to populate a virtual forest scene. This approach suffers from a lack of variation in 3D tree
structures, as observed in real world as the same 3D tree models are being replicated. Hence, this ap-
proach fails to scale while generating virtual scenes with a large number of 3D trees, making the view
monotonous and repetitive. Thus, an automated approach to generating multiple 3D trees of varying
structures and appearances become important. This is a challenging task that involves modelling a large
number of plant species at multiple growth stages and in different environmental conditions like lighting
and wind flows.

Interestingly, trees exist as self-similar structures or fractals, where each stem is very similar to
its parent stem with subtle changes in shape and width. This self-similarity can be modelled using
a recursive grammar and the variation in structure is further modelled using geometric specifications.
Thus, each stem can be modelled as some geometric transformation relative to its parent. Examples of
such geometric transformations are scaling where child is smaller than its parent, rotation where child is
present at some angle relative to its parent, etc. These observations were used by [57] in the popular L-
system model to generate trees. [93] later extended earlier work to make the interpretation of grammar
easier. However, they used global geometry parameters, which made it difficult to model trees like Pine
that has a lot of local geometric variations.

In this chapter, we propose to extend the L-system grammar-based automation solution for 3D tree
generation that overcomes the limitation of existing methods and generalize to a large variety of tree
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(a) Pine (b) Pine (c) Aspen (d) Guava

Figure 4.3: Variations in grammar and geometry produce variations in trees structure.

species with varying topologies like Banyan, Mango, Pine or Palm trees. The proposed method can
also be used to model related vegetation such as flowers, shrubs or grasses like bamboo. Our method
uses stochastic rules and can therefore produce structural variations from the same set of rules. More
importantly, the proposed method overcomes the limitations of previous methods [93] by proposing to
extend the geometric variations locally instead of using global parameters. For modelling 3D foliage,
we have adopted the particle system approach. This allows to model foliage unique to each tree in terms
of leaf type and variations based on season, height and orientation. Subsequently, we perform texture
mapping to give a realistic appearance to both stem and leaves.

Figure 4.1 shows the 3D forest scene generated by our method where we can observe the variations
within multiple instances of the same species and differences between similar species consisting Pine,
Aspen and Fir. It is important to note that the proposed method is intuitive and easy to understand
and thus a novice user can also easily understand and edit the grammar and geometric parameters to
produce trees of their specification. We also intend to release a blender plugin implementation of our
method. Additionally, the majority of the existing datasets and automation based tree generation meth-
ods have focused on western tree species. We aimed at developing a library of trees focused on Indian
subcontinent (e.g., Banyan Tree shown in Figure 4.2).

4.2 Tree Generation

The tree generation primarily requires modelling the structure of the tree which posses self-similar
structures, albeit with large variation in size/shape within same and across various species. Additionally,
the foliage is also a key component in tree modelling and poses many unique challenges like variations
in size, colour, orientation and position of leaves and they also appear in large numbers as compare to
stems. In this section, we discuss in detail our approach for these two key tasks.

48



Table 4.1: Condensed grammar for selected trees. Grammar is given as input → output, with s always

representing the start state and t end state where applicable. For the case of Guava, we can see that the

grammar has two elements. For the second element, a can transition into aaa or aa, which can go on

recursively. Each transition a → a has a geometry associated with it.

Tree Grammar

Guava s → (a); a → (aaa/aa)

Fir s → (a); a → (ab1b1b2b2/ab1b1b2/ab1b1b1); b1 → (t); b2 → (c1c2); c1 → (t); c2 → (t)

Palm s → (a); a → (bb . . . b); b → (t)

Bamboo s → (aa . . . a); a → (a)

4.2.1 Tree Structure Generation

Regarding the first task, we propose a grammar-based approach to model tree stem structures. This
approach can be viewed as an automata, which consists of one start state S , a set of stop states T and
multiple transient states. Each state transition draws a stem as a spline and is controlled by a grammar
G and the geometry H associated with the grammar.

Additionally, each of these transitions from one state to another state of the automata is stochastic
in nature and thus can lead to one of the many next states defined as part of the grammar. This enables
modelling the structural variations associated with specific tree species. Another important aspect of
modelling structural variations is associated with geometrical rules defining the geometry of the stem to
be drawn for that transition. Each geometric rule also has random variations within it to further increase
the stochasticity within the species and also across species. This is by providing parameters such as
length or angle as uniform random variables rather than a constant. Figure 4.3 shows how variations in
grammar and geometry specification produce variations in trees. More specifically, trees in Figure 4.3a
and Figure 4.3b share the same grammar and geometry and are from the same species, the variation
produced are purely due to stochasticity in grammar and geometry. On the other hand, trees shown in
Figure 4.3a and Figure 4.3c share the same grammar but have different geometries. This is shown in
their similar underlying structure. Finally, trees rendered in Figure 4.3a and Figure 4.3d have different
grammar as well as different geometry. In the current approach, the stems that are generated are assumed
to be devoid of self-intersecting properties and is not explicitly modelled.

4.2.1.1 Grammar (G)

Grammar describes the underlying structure of the tree. It holds structural information such as the
number of stems a stem splits into, which can be stochastic. A grammar G is defined as a set of state
transition rules, i.e., G = {g1, g2, g3, . . .} with each transition rule gi defining the probabilities (or
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likelihood) of choosing the next (output) set of states starting from current (input) state. Therefore, each
element of G defines a stochastic input-output rule system where the input is a single state α and output
can be a set of states e.g., {β, γ, δ, . . .}. This means that a single input state can transition into multiple
output states. This is necessary for modelling trees and can be thought of as a single stem splitting into
a set of multiple child stems in a stochastic manner.

Interestingly, during such transitions from input to output states, each transition α → β and α → γ

has a different set of geometries associated with them. Nevertheless, even if input and output states are
the same, the stems will still be different due to stochasticity in the geometrical parameters as explained
below. Some examples of tree specific grammars are provided in table 4.1.

Another important parameter associated with the expansion of grammar is the maximum branching
depth D. It can also be thought of as the maximum recursion depth. More specifically, it controls how
many levels of branching the tree can have. Thus, it is used to control the size of the tree and hence
consequently limits the resource usage of the computer by not letting the code run indefinitely in case
the stop state is not encountered.

4.2.1.2 Geometry (H)

Each tree has a set of geometric rules where each rule hi ∈ H is associated with a every single state
transition in the grammar G. Each of these geometric rules has intuitive and simple parameters listed
here:

• Base Angle is specified as 3 uniform random variables representing the 3 Euler angles. The range
of these variables is specified by the user. The angle gives the relative change of orientation of the
child stem with respect to its parent which is further modified to give the true angle.

• Reduce angle is used to reduce the range of angles a stem can make from its parent. It is observed
that the stems that are higher up in a tree tend to make smaller angles from their parent stem than
those lower. This may be attributed to external factors such as gravity which over time increases
the angle between parent and child stem. It is specified as a vector containing the reduction for the
3 Euler angles. Reduce angle ra modifies the base angle ba to give the true angle ta as a function
of the current branching level c, given by relation ta = ba × rca.

• Base length of the stem is specified as a uniform random variable. This gives a relative measure of
the length of the stem associated with the state transition. The true length of the stem is dependent
on the base length as given below.

• Reduce length is specified as a scalar and it modifies the base length. True length of the stem tl,
is a function of the base length bl, reduce length rl and the current branching level c given by the
relation tl = bl × rcl . This gives an approximation of stem length as stem length reduces at higher
branching levels of the tree.
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(a) timestep 1 (b) timestep 2 (c) timestep 3 (d) timestep 4

Figure 4.4: The growth stages of trees. This is achieved by controlling the maximum branching depth

of the tree.

• Reduce width begin (rwb) and reduce width end (rwe) are specified as scalars. They control the
widths of the endpoints of the stem and interpolate the intermediate control point widths based
on the endpoint widths. Let w be the width of the adjoining endpoint of the parent stem, then
the widths of the endpoints of the child stem will be w × rwb and w × rwe. Additional global
parameter W represents the initial width of the base stem i.e., the trunk of the tree. It is a uniform
random variable between ranges provided by the user. This rule assumes that the width of the
child stem will always be less than or equal to its parent stem. This is true in most situations and
should be a good approximation for modelling trees.

• Curve is a uniform random variable that specifies the curviness of the stem. Noise functions like
Perlin noise can be used. The noise vector displaces the control points of the spline by an amount
proportional to the curve parameter. This helps make the tree more realistic by adding noise at
the structural level. Models using cylinders instead of splines for drawing stems cannot use this
parameter.

4.2.2 Populating Leaves

The key challenge associated with modelling leaves is dealing with a large system of geometry. To
tackle this issue, particle systems [79] have been a popular approach in the past. Particles are pieces of
geometry emitted from mesh objects, typically in the thousands. Each particle can be a point of light
or a mesh, and be joined or dynamic. They may react to many different influences and forces, and have
the notion of a lifespan. Particle systems once created are a placeholder for the particle geometry to be
placed.

We have adopted the particle system approach to model foliage unique to each tree in terms of
leaf type and variations seen based on season, height and orientation. In this approach, we use hair
type particles [1] which are a subset of regular particles. Hair systems form curves that can represent
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(a) Green leaves (b) Red leaves (c) Yellow leaves

Figure 4.5: The variation in leaves color across seasons for maple tree.

Figure 4.6: Different stages of tree foliage across seasons.

hair and fur in addition to leaves. The simulation and modelling of human hair is a process whose
computational complexity is very large, this is due to the large number of factors that must be calculated
to give a realistic appearance. Generally, the method used in the film industry to simulate hair is based
on particle handling graphics. In this chapter, a simpler approximation of modelling hair type particles
provided in Blender [94] is used. This approach towards modelling hair type particles is a common one
in the field of computer graphics.

We create a ParticleSystem in the Blender, an object parameterized to control the appearance and
behaviour of individual Particle objects over time. Particles, which are born from a ParticleEmitter, have
a position and type. The primary approach we take to affect the visual output is to include maximum
and minimum attributes. For every variable with a maximum and minimum input, the actual value for
that variable on the particle will be randomly assigned to be between the maximum and minimum input
and stay statically at that value for the entire life of the particle.

When we transition from an input state to output states, then each transition has a different set of
geometries associated with them. With each execution of expanding the grammar, leaves are generated
as particle system for the spline. The particles system takes as input the appropriate leaf texture and
distributes the leaves onto the spline that is in consideration.

Leaves are represented as planes. Leaf texture is specified as an image of the leaf. Different species
have different vernacular patterns that can be specified most accurately using images of real leaves.
Colour variations are observed that the stems that are higher up in a tree tend to dry out faster than
the ones below. Hence the provision for multiple textures to be supplied to the tree is available. The
lighter textures are seen on the higher branches and vice versa. This is achieved by calling upon the
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Figure 4.7: Snapshot of our Blender add-on for easy and intuitive user editing.

lighter textures for the particle systems on the top branches, a mix of lighter and darker textures on the
intermediate branches and darker textures on the lower branches.

The leaves are placed at different rotation angles within a user set range. A randomness value ensures
that different values are chosen within that range. The leaves are placed along the tangent to the spline.
It is observed that the stems that are higher up in a tree tend to have smaller newer leaves whereas the
lower branches have larger older leaves. Hence, the leaves are scaled to different sizes within a user set
range. A randomness value ensures that different values are chosen within that range.

4.3 Results

We were able to generate trees of high diversity using the proposed method. This includes various
western tree species (like Aspen, Fir, Maple, Pine, etc.) as well as Indian tree species (like Tulsi, Banyan,
Mango, Neem, Gulmohar, Kadamb, Sal, Ashoka, Peepal, etc.) that are shown in Figures 4.9 and 4.10.
Further illustrations and video are available at our website1,2. The code including multiple instances of
various tree species as listed in Table 4.2 has been made available to the public3.

Additionally, our method allows adding new species or updating the grammar for existing species
with minimal user editing. The code for our method as a Blender package, an user-friendly interface
based automated tree generation, as shown in Figure 4.7 is available at our website.

1https://cvit.iiit.ac.in/research/projects/cvit-projects/automated-tree-generation-using-grammar-particle-system/
2https://3dcomputervision.github.io/publications/tree_generation_icvgip
3https://github.com/aryamaanjain/tree_generation_grammar
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(a) Result of Sun et al. [93] (b) Result of our method

Figure 4.8: Qualitative comparison with [93]. (a) Keeping single global parameters for all kinds of

curves [93] fails in the case of pine. (b) The proposed model specify separate local parameters for

different types of curves to successfully generate a realistic Pine tree.

Table 4.2: A list of tree species and number of trees for each species in our generated dataset.

Tree Sample Tree Sample

Ashoka 1000 Lemon 1000

Aspen 1000 Mango 500

Bakul 800 Maple 500

Bamboo 2000 Neem 1500

Banyan 400 Palm 2000

Coconut 1500 Peepal 400

Fir 1000 Pine 1000

Guava 1500 Sal 1500

Gulmohar 500 Shrub 800

Kadamb 1000 Tulsi 800
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Our method can produce good variation in tree structures, within and across species, due to the
stochastic nature of grammar and geometries as shown in Figure 4.3. In addition, our method can also
be used to generate the growth pattern of a given tree species, as shown in Figure 4.4.

In regard to comparison with other relevant state-of-the-art methods, we were able to overcome short-
comings of most relevant work in [93] by proposing the usage of local rather than global parameters,
which allowed us to model a much wider range of species. This is demonstrated by generating a Pine
tree as shown in Figure 4.8 where our method generates a more realistic tree as compared to the method
from [93].

Regarding modelling of leaves, Figure 4.5 shows variations across seasons as depicted with colours
of leaves in the maple tree. Similarly, variation in leaf appearance, size and density across seasons is
shown in Figure 4.6. Video results in our website shows the movement of leaves and trunks owing to
external factors like strong wind currents which were produced by attaching armatures to the leaves and
trunk and then animating it. We can also model additional geometrical objects like fruits, flowers by
using the Particle System based approach, as shown for Mango Tree in Figure 4.10(d). Furthermore, we
illustrate sample forests generated with our framework in Figure 4.11, Figure 4.12 and Figure 4.13.

The time to produce a single tree using our method ranged between approximately 10ms for trees
with simple open structures like Sal to approximately 3000ms for complex and dense trees like Banayan.

4.4 Conclusion & Future Work

We propose a novel grammar based approach for generating wide variety of tree species. The pro-
posed grammar is easy to understand and can be edited by a novice user which overcomes the com-
plexities of parametric models. The proposed method also gives higher control to the user by setting
the geometries locally. Our method is scalable due to its inherent stochasticity to produce structurally
varying trees.

Some straightforward extensions of this model can be to incorporate the features such as those pro-
posed in [98] like pruning, wind sway, vertical attraction and tropism, degradation at range. There is
also a need to propose a good metric for formal comparison between various tree generation algorithms,
which currently does not exist. Further its scalability for generation of vast forest stretches may need
some optimisation. Learning-based approaches such as inverse procedural modelling can be integrated
with this model to regress to real-world trees. Up till here, we have discussed the generation of the ele-
ments of our virtual world. Up ahead in chapter 5, we would extend those concepts and further discuss
effective ways of rendering them.
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(a) Aspen (b) Bamboo

(c) Fir (d) Guava

(e) Maple (f) Palm

(g) Pine (h) Shrub

Figure 4.9: A subset of trees found in the western world created using the proposed model.
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(a) Ashoka (b) Banyan

(c) Kadamb (d) Mango

(e) Neem (f) Peepal

(g) Sal (h) Tulsi

Figure 4.10: A subset of trees found in the tropical Indian subcontinent generated using the proposed

model.
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(a) Forest without leaves (b) Forest with leaves

Figure 4.11: Render of forest generated with our framework with and without leaves.

Figure 4.12: Render of a generated dense forest.

Figure 4.13: Render of a generated sparse forest.
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Chapter 5

Real-Time Terrain Generation and Rendering

Figure 5.1: (a) We outline an approach for generating infinite terrain (learnt from real-world DEM),

while incorporating level of detailing within a learning-based framework. (b) To efficiently manage

the generated terrain data, a quad-tree structure is employed, which facilitates operations such as view

frustum culling. (c) The entire process is executed in real-time, with the terrain being rendered simulta-

neously.

5.1 Introduction

In the previous chapters, we discussed ways to generate terrain and trees. This chapter culminates in
extending the idea of terrain generation, populating them with trees and proposing an effective algorithm
to render them.

Virtual world creation is a popular use-case for modern multi-media applications such as gaming,
animation, augmented reality platforms, etc. 3D Terrain modelling is at the core of generating large-
scale realistic & immersive virtual terrains, apart from populating them with trees, rocks and other
objects (as shown in Figure 5.1). Synthesizing, capturing, and analyzing highly complex 3D terrain
structures was traditionally pursued by Geographic Information System (GIS) community for several
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critical applications such as river/flood modelling, disaster mitigation planning, and flight simulation
where high fidelity to real-world data was emphasized. Digital Elevation Models (DEMs), which are
raster-based representations of the terrain’s elevation values, are typically used for 3D terrains. Terrain
generation and rendering are the two key aspects of creating virtual terrains.

3D Terrain generation is a critical component of 3D virtual world generation, as it provides the foun-
dational structure for the environment. Over time, natural processes like erosion and weathering cause
terrains to undergo various transformations, resulting in the development of intricate landscapes such
as mountains, canyons, plateaus, and plains. Thus, a generated terrain needs to imitate these complex
geometrical structures existing at multiple scales. This makes 3D terrain generation and authoring a
challenging task. Traditional techniques for 3D terrain generation involve procedural generation, which
relies on mathematical algorithms to generate landscapes [75, 24]. The recent surge of deep learning
techniques has shown promise in generating more realistic terrain, as they can learn from real-world data
to produce new, varied, and realistic landscapes [36]. In the context of rendering terrains, methods [70]
use varying levels of detail to create real-time visualizations, particularly for gaming applications. In-
terestingly, terrain generation and rendering were typically attempted separately. Often, terrains were
generated offline, followed by online rendering or even crude online terrain generation algorithms like
Perlin noise were used, which did not approximate real-world data very well [61].

In this paper, we present a learning-based framework for real-time 3D terrain generation and si-
multaneous rendering. Our framework can generate and render infinite worlds in real time with level
of detailing (LODing) that is learned from real-world data using deep learning methods. Our gener-
ative module can create terrain conditioned on their neighbourhood, while our enhancement module
can refine the terrain based on quad-tree-based LODing with global-local context. Our seamless real-
time rendering algorithm is compatible with both the generative and enhancement modules, providing a
realistic and unique user experience.

In summary, our framework makes significant contributions to the field of terrain generation and ren-
dering. It includes a generative module for infinite realistic terrain generation, an enhancement module
for quad-tree-based LODing, and a seamless real-time rendering algorithm that is compatible with both
the generative and enhancement modules. We perform an elaborate quantitative and qualitative evalu-
ation of the proposed framework on real-world data. We plan to release our code and learned model
parameters to the community to further encourage research in this area.

5.2 Method

We propose a real-time terrain generation and rendering framework. An overview of our framework
is given in Figure 5.2. We start with an initial DEM, which can either be taken from an existing dataset
or generated via a terrain patch generation algorithm like [23, 68]. We then employ a terrain completion
module (TCM) (Figure 5.2b) to extend the initial DEM and enable the generation of infinite worlds.
TCM is discussed in detail in subsection 5.2.1. TCM generates terrain at the coarsest scale and needs
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Figure 5.2: Overview of our framework with learnt terrain completion and enhancement modules. A

quad-tree data structure is used for data management along with rendering in OpenGL.

to be enhanced for Level of Detailing (LODing) based on factors such as viewing position, direction
and roughness of the terrain. We propose a novel quad-tree-based terrain enhancement module (TEM)
for LODing of the terrain (Figure 5.2c), which is elaborated in subsection 5.2.2. Finally, we propose a
terrain rendering algorithm (subsection 5.2.3) which is seamlessly integrated with the terrain completion
and enhancement modules.

Figure 5.3: Illustration of the formulation and notations.

The notations used in the proceeding sections are illustrated in Figure 5.3. Denoting an infinite
terrain grid as T , let the individual patches of the grid T be indexable as Ti,j where i, j ∈ Z represent
the row and column indices of the terrain grid. Ti,j is a fixed size DEM square patch of dimension s×s.
Each indexing operation gives us a terrain patch Ti,j ∈ P , where P represents the set of all the terrain
patches.
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Figure 5.4: Overview of the terrain completion module.

5.2.1 Terrain Completion Module

We pose the problem of terrain completion in a discretized and structured setting. Given a subset
of the 8-neighbourhood patches of a terrain patch as input, we aim to generate the centre patch. More
formally, to generate patch Ti,j , the input to the model would be {Ti+p,j+q | (p, q) ∈ {−1 . . . 1}2 ∧
(p, q) ̸= (0, 0) ∧ I(Ti+p,j+q)} where I(Ti+p,j+q) is true if Ti+p,j+q is available. Solving this problem
will allow us to generate infinite terrain as we would be able to extend the given or previously generated
terrain patches in an unstructured manner. This model would be capable of unconditional generation in
case of no available context patches, outpainting in case of context from a single direction and inpainting
in other cases. Figure 5.4 illustrates the overview of the proposed terrain completion module.

The input to our model during training is generated from the ground truth DEM. We mask the 8-
neighbour patches of the centre terrain patch in the ground truth DEM independently and randomly. This
generates a scenario that we might encounter during inference, where the terrain grid T would be filled
based on the trajectory of the user, producing arbitrary neighbourhoods. Furthermore, we stack the input
with 3 masks along the channel corresponding to 1) predict mask: 1 for the centre patch and 0 elsewhere
(constant for all cases), corresponding to the patch we want to predict 2) available mask: 1 where the
neighbouring patches are available and 0 elsewhere, corresponding to the neighbouring patches which
are available and 3) unavailable mask: which corresponds to the neighbouring patches which are not
available. We use a UNet [81] architecture for the generator G in a GAN-based framework. The
generator generates the patch Ti,j . We then merge the generated patch with the previously available
terrain patches in T .

We use a combination of L1 and GAN losses to optimize the parameters of the network which have
shown promise in the generative literature in frameworks such as Pix2Pix [35]. More specifically, let
the generated patch be denoted by ŷ and the ground truth patch by y. We define the L1 loss as,

LL1(G) = ∥y − ŷ∥1 (5.1)
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Furthermore, the discriminator D of the GAN is modelled as a CNN. Let the generated patch along
with a neighbourhood context extending beyond the boundary of the patch (as shown in the red dotted
box in Figure 5.4) be denoted by ŷc and ground truth patch along with context be denoted by yc. We
define the GAN loss as,

LGAN (G,D) = min
G

max
D

log(D(yc)) + log(1−D(ŷc)) (5.2)

Work such as [34] has shown the importance to take local patches as well as global context for
meaningful inpainting. Combining the terms, the final loss for the terrain completion module is,

Lc = LGAN (G,D) + λcLL1(G) (5.3)

Here, λc is a hyper-parameter to adjust the contribution of the two loss terms.

We show the inference stage of the module in algorithm 1. The relevance radius (R) describes the
L2 distance beyond which we do not process terrain patches. We add the result of every inference to the
terrain grid T .

ALGORITHM 1: Inference stage of TCM
Data: x, z ◁ viewer position

R ◁ relevance radius

T ◁ terrain grid

1 forall (u, v) | ∥(u, v)− (x, z)∥2 ≤ R ∧ ¬available(Tu,v) do

// complete all unavailable patches in relevance area

2 np← getNP (u, v, T ) // get available 8-neighbouring patches

3 cp← TCM(np) // predict the center patch given neighbours

4 T ← updateGrid(T , cp, u, v) // add patch to grid

5.2.2 Terrain Enhancement Module

Terrain enhancement is the process of adding details to coarse terrain. This can be achieved through
traditional methods like running erosion simulations or more recently, using deep learning-based meth-
ods like super-resolution. We pose the problem as a super-resolution problem. One key difference
between the methods prevalent in the literature of natural image super-resolution and the problem we
are tackling is scale, while super-resolution on natural images has mainly been attempted for factors of
up to 8x [55, 115], for terrains as in our case, the factor can be as high as 32x. This makes directly
applying methods from natural image super-resolution literature to terrains non-trivial. For example,
as in our case, the input DEM is 2562 raster grid and directly super-resolving it by a factor of 32 will
give an output of dimensions 81922, which in most cases would be intractable for training due to mem-
ory constraints of the GPU VRAM. While previous work [46, 47, 3, 36] have attempted to solve this
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Figure 5.5: Overview of the terrain enhancement module.

problem by dividing the terrain into patches and then processing each patch individually, they have a
practical limitation due to each patch being processed independently of the other, which might be rea-
sonable locally, but have no signals from a global context. They also suffer from boundary artefacts [47]
due to their tile-based processing. In order to overcome this bottleneck, we propose a quad-tree-based
enhancement module which takes global and local coherence into account while processing the terrain
patches.

An overview of the terrain enhancement module is illustrated in Figure 5.5. We aim to enhance a
given terrain patch Ti,j ∈ P . The terrain patches produced by the TCM are of scale 32m and we aim
to enhance the patch to scales of 16m, 8m, 4m, 2m, and 1m for LODing in the rendering phase. This is
similar to progressive super-resolution, but rather than processing the entire patch, we process quadrants
of the patch. This makes sure that the enhancement module receives input of the same dimension at
each stage unlike [48, 49, 97], where the dimensions of the input increases at successive stages limiting
their scalability for higher enhancement factors. Our formulation has the added advantage of being
compatible with the quad-tree-based terrain rendering algorithms which have been researched quite
extensively.

We employ m models E0...m for enhancement (m=5 in our implementation), with model E0 en-
hancing a 32m resolution DEM to 16m, E1 from 16m to 8m and so on. We justify this design choice
rather than choosing one common model by observing the ground truth DEMs at different scales in
Figure 5.5, which demonstrates different features at different scales. This is another point of distinction
from natural images which may have the same features at different scales due to projective imaging.
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A single update step of our training algorithm is given in algorithm 2. The input patch is denoted
by p32 where 32 denotes the terrain at 32m scale. Furthermore, algorithm 2 takes ground truth patches
p16, p8, p4, p2, p1 as input for supervision along with the models E0, E1, E2, E3, E4 whose parameters
are updated. Moreover, we found augmenting features to the input terrain helpful (discussed more in
subsection 5.3.6) for enhancement given in line 5 of algorithm 2. We run the algorithm until conver-
gence. This simple yet effective algorithm gives us the ability to perform enhancement at scale.

ALGORITHM 2: Single step of TEM training
Data: p̂32 ∈ P ◁ LR input patch

p16, p8, p4, p2, p1 ◁ HR ground truth patches

E0, E1, E2, E3, E4 ◁ enhancement models

1 scale← (32, 16, 8, 4, 2, 1) // will aid in indexing

2 loss← 0.0 // initialize loss to zero

3 for i← 0 to 4 do

4 quad← selectQuad(p̂scale[i]) // select random quadrant of patch

5 quadFE ← FE(quad) // add features to the quadrant

6 p̂scale[i+1] ← Ei(quadFE) // forward pass

7 loss← loss+ ∥p̂scale[i+1] − pscale[i+1]∥1 // accumulate loss

8 backprop(loss) // back-propagate

9 Adam(E0..4) // optimize parameters with Adam

The inference of TEM is implemented as a recursive function given in algorithm 3. The shouldEnhance()

function is based on a number of factors including the roughness (standard deviation) of the patch, in-
tersection with view frustum, distance from viewpoint and availability of enhancement models beyond
a certain depth in the recursion. We can observe a quad-tree based inference in the algorithm where the
patch is divided into four quads at each level. Although not shown in algorithm 3 for brevity, we cache
the results in a quad-tree data structure for faster inference.

5.2.3 Terrain Rendering

Terrain rendering refers to the process of creating a visual representation of a three-dimensional
terrain or landscape, for which we use a quad-tree-based algorithm. The rendering algorithm starts with
an initial input patch which can be given from an existing DEM or generated via a terrain generation
algorithm [23, 68]. We use the TCM to fill T with terrain patches where unavailable within a pre-defined
radius from the user’s viewpoint as the user moves to approximate an infinite view.

For LODing, we make use of the TEM, wherein we split the patch based on two criteria 1) the
distance from the user viewpoint and 2) the surface roughness. The surface roughness is approximated
as the standard deviation of the patch. We maintain the split tiles in a quad-tree data structure, where
the coarsest tile is at the root and each node has 4 children of twice the resolution, corresponding to the
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ALGORITHM 3: Recursive inference function of TEM
Input: P ◁ patch to render

x, z ◁ viewer position

depth ◁ recursion depth

Data: E0, E1, E2, E3, E4 ◁ enhancement models

/* Enhance based on LOD criteria */

1 if ¬ shouldEnhance(P, x, z, depth) then

2 loadBuffer(P ) // send patch to GPU

3 renderPatch(P ) // render patch

4 else

/* LODing: enhance quadrants of patch recursively */

5 TEM(Edepth(Pne), x, z, depth+ 1) // north-east quadrant

6 TEM(Edepth(Pnw), x, z, depth+ 1) // north-west quadrant

7 TEM(Edepth(Pse), x, z, depth+ 1) // south-east quadrant

8 TEM(Edepth(Psw), x, z, depth+ 1) // south-west quadrant

north-east, north-west, south-east and south-west tiles. The formulation of our enhancement module
makes the integration with the rendering module seamless.

A quad-tree-based rendering makes optimizations like view-frustum culling very efficient (as illus-
trated in Figure 5.1b), as we can discard the tiles that are not visible to the user for rendering via an
inexpensive frustum-tile intersection check. We give an overview of the rendering algorithm in algo-
rithm 4.

ALGORITHM 4: Terrain rendering algorithm
Data: camera ◁ camera object

TCM,TEM ◁ terrain completion & enhancement modules

R ◁ relevance radius

1 ip← processUserInput() // get user inputs like movement

2 camera← updateCamera(ip) // update attributes like position

3 updateShaders(camera) // update attributes like MVP matrices

4 x, z ← camerax, cameraz // get user position in terrain grid

5 TCM(x, z,R) // complete terrain using TCM

6 forall (u, v) | ∥(u, v)− (x, z)∥2 ≤ R do

7 patch← Tu,v // extract patch to render

8 TEM(patch, x, z, 0) // render with LODing using TEM

9 drawOtherObjects() // trees, water bodies, sky
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Other Rendering Details:

• Our observations reveal that minor misalignments occur between tiles generated by the TCM. To
rectify this, we employ an inverse distance weighting function along a small strip along the edge
to align the tiles with their adjacent counterparts.

• In order to compute the normals necessary for shading, we implement a finite difference method
to determine the gradients along the x and z axes. This approach is more efficient than determining
the normals via cross-products. The efficacy of this method is attributed to the storage of the DEM
as a 2D grid.

• To enhance the aesthetics of our model, we incorporate objects, such as trees, at scale using
geometric instancing. This allows for the optimization of the rendering process by reducing the
number of draw calls required.

5.3 Experiments and Results

5.3.1 Dataset

The experiments employed the USGS National Map 3DEP Downloadable Data Collection 1 dataset.
This publicly accessible dataset comprises 100002 DEM tiles at a 1-meter resolution. We downloaded
approximately 700 GB of data, which was then subjected to a data cleaning process resulting in a dataset
size reduction to approximately 600 GB. Subsequently, the dataset was cropped to the nearest power of
two, yielding a final dataset size of 81922 at 1-meter resolution.

5.3.2 Evaluation Metrics

• Fréchet Inception Distance (FID) [27], a metric commonly used in generative models, is utilized
to evaluate the quality of generated samples by comparing the feature statistics extracted from the
generated samples to those of real samples using the Inception network. A lower FID score
indicates higher quality generated samples. We employ the FID metric to assess the performance
of the TCM model.

• Root Mean Squared Error (RMSE) and Peak Signal-to-Noise Ratio (PSNR), widely used in
image and video processing tasks, are two performance metrics we use to evaluate the perfor-
mance of the TEM. RMSE measures the average difference between predicted and actual values,
while PSNR measures the ratio between the maximum possible power of a signal and the power
of corrupting noise.

1https://www.sciencebase.gov/catalog/item/543e6b86e4b0fd76af69cf4c
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• Frames Per Second (FPS) is a commonly used metric for measuring the performance of real-
time and interactive applications, such as video games. It denotes the number of frames that can
be rendered and displayed on the screen per second, with higher FPS indicating smoother and
more responsive gameplay. We employ this metric to evaluate the performance of our rendering
algorithm.

• User study is a popular research method in which participants interact with a system or product to
assess its usability, user experience, and effectiveness. We conduct a first preference experiment,
a type of user study in which participants are asked to choose their preferred option from a set of
alternatives based on specific criteria, to evaluate the quality of the TCM.

5.3.3 Implementation Details

TCM is a Generative Adversarial Network (GAN) composed of a generator and a discriminator.
The generator component of the TCM is a UNet with a bottleneck of 1024 channels. The encoder layers
consist of (4, 64, 128, 256, 512, 1024) channels, while the decoder layers contain (1024, 512, 256, 128,
64, 1) channels, with 4 and 1 representing the number of input and output channels, respectively. To
enhance training stability, batch normalization was incorporated into the standard UNet architecture.
The discriminator component of TCM comprises a Convolutional Neural Network (CNN) followed by
a Multi-layer Perceptron (MLP). The discriminator can be conceptually divided into four parts: head,
body, tail, and classifier. The head converts the four input channels to a predefined number of channels
N c

tcm, which is set to 64. The body maintains N c
tcm(=3) channels across a series of N b

tcm Conv -

BatchNorm - LeakyReLU - Conv - Maxpool layers. Finally, the tail reduces the number of
channels to N t

tcm (= 1) and passes flattened features to a two-layer MLP. To optimize the TCM, we
employed the Adam optimizer with a learning rate (LR) of 0.0002 for the generator and 0.0001 for the
discriminator, setting the parameters β1 and β2 to 0.5 and 0.999, respectively. An LR scheduler was
employed to reduce the LR by 0.75 every four epochs. We trained the model using a batch size of 8 for
256 epochs. Furthermore, we set the λc value to 10 for our optimization equation (5.3).

Figure 5.12 and Figure 5.13 depict the generator and discriminator of the GAN-based TCM module,
respectively. The generator produces a 128 × 128 patch with a resolution of 32m, covering an area of
approximately 16 million sq km, given a context of 384× 384 patches with the center being predicted.
Meanwhile, the discriminator takes the predicted patch and a shorter appended context (i.e., a patch of
resolution 192× 192) and predicts whether the patch is real or fake.

TEM is composed of a set of convolutional neural network (CNN) models, with the number of
models m set to five. Each model contains a small number of trainable parameters, specifically 47497,
in order to ensure real-time performance during inference. Conceptually, a single model in the TEM is
comprised of three main components: the head, body, and tail, similar to the TCM. The head component
is a convolutional layer that takes an input of Nf

tem (=4) channels, consisting of a DEM to enhance and
Nf

tem−1 additional features, and outputs N c
tem(=32) channels. The three additional channels in the input
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include the gradient in the x direction, gradient in the z direction, and L1 norm of the gradient. The body
component is composed of N b

tem (=4) Conv - ReLU layers, which maintain N c
tem channels. The tail

component includes a Pixel-Shuffle layer [88] to increase the resolution by a factor of two, followed
by a convolutional layer. A skip connection connects the head and tail components, and the output is a
residual that is added to the bicubic-upsampled input. The model is trained for 128 epochs with a batch
size of 32, utilizing the Adam optimizer with a LR of 0.001 and a scheduler that reduces the LR by 0.8
every two epochs.

Figure 5.14 and Figure 5.15 illustrate the architecture diagrams for TEM and TEMbig, respectively.
TEMbprop shares the same architecture as TEM, while TEMdem differs only in the input and the first
convolutional layer, which processes a single channel input rather than 4 channels. We note that TEMbig

has a greater number of layers in the body than TEM and processes 64 channels in the head, body, and
tail, compared to 32 in TEM.

5.3.4 Training Details

In all our experiments, we adopt an 80-10-10 train-validation-test split. The training set comprises
1392 terrain tiles, while the validation and test sets contain 174 tiles each. Each tile has a resolution of
8192 × 8192.

Regarding the TRCAN model, we set the number of resgroups to 5, the number of resblocks to 10,
and the number of features to 48. We train the model using the Adam optimizer for L1 loss, with a
learning rate (LR) of 1e-4 and a step LR scheduler that reduces the LR by 0.95 every 2 epochs. For
AFND, we set the number of features to 64 and the number of steps to 2. We train this model with the
Adam optimizer and a LR of 1e-4.

The models were trained on a NVIDIA GeForce RTX 2080 Ti GPU employing the PyTorch frame-
work.

5.3.5 Terrain Completion

Quantitative evaluation: We adopt the Fréchet Inception Distance (FID) metric [27] to quantita-
tively evaluate the TCM and present the corresponding results in Table 5.1. Perlin noise is employed as
the baseline for comparison. Our evaluation demonstrates that TCM (FID 114.376) outperforms Perlin
noise (FID 495.256) in generating terrains that closely match the distribution of real-world terrains. Ad-
ditionally, an ablation study is conducted to justify the choice of our parameters, as shown in Table 5.1.
Our findings reveal a decreasing trend in FID as the ratio of generator to discriminator parameters in-
creases, with TCMa, TCMb, TCMc and TCM arranged in increasing order of this ratio. We increase
the size of the generator by adjusting the bottleneck channels in the U-Net architecture, while the size
of the discriminator is varied through parameters such as N c

tcm and N b
tcm. We cap the maximum size

of generator to 31 million parameters as networks beyond this size inhibit the real-time inference goal
while rendering. A visual comparison of TCM and Perlin noise is presented in Figure 5.6, where it
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Figure 5.6: Comparison of terrain generated by Perlin Noise and TCM. The terrain generated by TCM

exhibits features such as valleys (highlighted in the red circle) that are not present in the Perlin Noise-

generated terrain.

Table 5.1: Quantitative evaluation of TCM using FID↓[27]. The number of learnable parameters of the

Generator(G) and Discriminator(D) is denoted by S, and the number of channels in the bottleneck of

U-Net is denoted by W. The best result is highlighted in orange.

Method FID WG SD SG/SD

Perlin[76] 495.256 NA NA NA

TCMa 386.024 256 4806033 0.388

TCMb 215.854 256 1214217 1.536

TCMc 148.892 512 245762 31.334

TCM 114.376 1024 245762 126.294
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can be observed that the terrain generated by Perlin noise lacks distinctive features such as valleys and
ridges.

User study: For subjective evaluation, we conducted a user study involving 16 participants with
varying levels of experience in terrain analysis. In order to evaluate the effectiveness of our approach,
we employed a first preference experiment methodology. Each participant was presented with 5 pairs of
terrain patches, where each pair consisted of a terrain generated using Perlin noise and TCM, randomly
ordered. The users were asked to evaluate the perceived realism of the terrain structure by selecting
their first preference between the two options, denoted as A and B. Figure 5.7 illustrates the five pairs of
images presented to the users where options 1B, 2A, 3A, 4B and 5B correspond to the TCM generated
samples and their complementary correspond to the Perlin noise generated samples. The participants
expressed a clear preference for the terrain patch generated with TCM in 93.75% of the cases, high-
lighting the superior performance of our method. Specifically, out of 80 total responses, 75 (93.75%)
favored TCM, while only 5 responses favored Perlin noise. Notably, three of the Perlin noise prefer-
ences were recorded for pair 2, while the remaining two were for pair 5. These findings suggest that
TCM is a more effective method for generating realistic terrain structures compared to Perlin noise.
However, it is important to acknowledge that an expert in terrain and simulation commented that ”the
generated terrain lacks geologically accurate fluvial dendritic patterns”, which may require an explicit
inclusion of geological constraints. Although this may be necessary for specific GIS use cases such as
flood modelling, it may be relaxed for multimedia applications and games.

5.3.6 Terrain Enhancement

Comparison: We present a comparison of the TEM with a bicubic upsampling baseline and two
existing terrain super-resolution methods, namely AFND2[46], and TRCAN3 (chapter 3). Our evalua-
tion is based on RMSE and PSNR metrics, as shown in Table 5.2. AFND and TRCAN are tile-based
super-resolution methods that were originally designed for enhancement factors up to 8, but we have
trained them to handle factors up to 32. However, since these methods process each tile independently
without global context, their performance decreases as the number of tiles increases with increasing
enhancement factors. In contrast, the TEM has an image pyramid structure and is not affected by this
drawback. Our experimental results demonstrate that the TEM outperforms both AFND and TRCAN
for enhancement factors greater than two. Overall, our findings highlight the effectiveness of the TEM
for terrain enhancement, especially for high enhancement factors.

Ablation: We report the results on ablation tests for TEM in Table 5.3. Our final model is denoted
as TEM in the third row of the table. In TEMdem, we pass the DEM as input without any features,
which leads to lower scores. In TEMbprop, we back-propagate with only the last model’s loss without
any direct supervision for other models. Specifically, we use the loss term ∥p̂1 − p1∥1, where p̂1 and
p1 are the predicted patch and ground truth patches at 1m, instead of the summation of L1 losses for all

2https://github.com/ashj9/AFN
3https://github.com/aryamaanjain/trcan
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Figure 5.7: Samples used in the user study.
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Figure 5.8: A 32m resolution input LR DEM progressively enhanced with the TEM.

Table 5.2: This table compares the performance of the TEM with other models measured using RMSE↓

(in meter) and PSNR↑ (in dB). Orange and yellow highlights indicate the best and second-best results

respectively.

16m (2x) 8m (4x) 4m (8x) 2m (16x) 1m (32x)
Method

RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR

Bicubic 0.587 39.225 0.545 39.801 0.553 39.791 0.57 39.919 0.611 39.924

AFND[46] 0.451 40.983 0.459 40.662 0.489 40.438 0.505 40.314 0.584 40.08

TRCAN(chapter 3) 0.368 41.937 0.408 41.124 0.436 40.869 0.471 40.532 0.488 40.414

TEM 0.417 40.801 0.394 41.511 0.384 41.984 0.372 42.551 0.357 43.316
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Table 5.3: This table presents the results of the ablation study of TEM measured using RMSE↓ (in meter)

and PSNR↑ (in dB). Orange and yellow highlights indicate the best and second-best results respectively.

16m (2x) 8m (4x) 4m (8x) 2m (16x) 1m (32x)
Method

RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR

TEMdem 0.443 40.37 0.423 41.045 0.413 41.513 0.402 42.099 0.386 42.861

TEMbprop 1.489 27.774 0.862 33.006 0.743 34.384 5.36 16.543 0.37 43.164

TEM 0.417 40.801 0.394 41.511 0.384 41.984 0.372 42.551 0.357 43.316

TEMbig 0.414 40.884 0.394 41.548 0.381 42.086 0.371 42.671 0.357 43.442

resolutions as given in algorithm 2. Despite the gradient flow through all the models, we observe poor
performance for them. Interestingly, we not only observe a performance drop for factors lower than
32x but also find that the performance is not the best for 32x enhancement factor. These observations
further support the potential of a progressive architecture for terrain enhancement. Furthermore, we
also experiment with a scaled-up version of TEM, denoted as TEMbig, which contains 224081 trainable
parameters (× 5 models) compared to 47497 trainable parameters (× 5 models) of TEM. While TEMbig

scores better on RMSE/PSNR metrics, we note the trade-off between inference time and quality, which
limits the practical use of a larger model.

We illustrate a sample inference using the TEM in Figure 5.8 where finer details are added progres-
sively, with the finest details in the 1m terrain.

5.3.7 Patch Edge Errors

Patch-based methods such as AFND[46] and TRCAN[36] are known to exhibit high errors along
patch boundaries, especially for high enhancement factors such as 32x. This limitation becomes more
pronounced as the number of patches increases (quadratic increase with enhancement factor). We at-
tribute this limitation to the lack of global signals in patch-based methods and propose a solution by
designing the TEM as an image pyramid that takes global context into account.

Our proposed solution is illustrated in Figure 5.9, where the first column depicts the ground truth,
the second and third columns show the 32x enhancement results from TEM and TRCAN (patch-based),
respectively, and the last two columns display the corresponding error maps obtained by subtracting the
ground truth from the enhancement. It is notable that significant errors occur along the edges of TRCAN
(patch-based) enhancement, as highlighted in black, which are absent in TEM. The error maps in Figure
1 display positive errors in red, negative errors in blue, and zero errors in white.

The observed behavior leads to a degradation in the RMSE/PSNR of patch-based methods with
increasing enhancement factors and an increasing number of patches. This limitation persists despite
the decrease in the variance of patch elevations at higher resolutions. Overall, our proposed solution
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Figure 5.9: Illustration of error along the edge, comparing patch-wise method TRCAN with TEM for 6

randomly chosen samples.
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Figure 5.10: FPS (left) observed along a randomly traversed path (right). The red circles indicate the

FPS dropping below 100.

of using an image pyramid in TEM effectively addresses the limitations of patch-based methods by
incorporating global context.

5.3.8 Rendering Details

Our framework employs OpenGL and GLSL for rendering tasks in Python, enabling compatibility
with PyTorch. In Figure 5.11, we showcase a real-time rendered frame that features terrain, trees, and
water bodies. As illustrated in Figure 5.1a, the level of detail in the terrain is highlighted through a
mesh representation. We utilize quad-trees for view frustum culling to achieve optimized performance,
as demonstrated in Figure 5.1b in an overhead view of the frame. Additionally, we present a rendered
scene generated and processed in our framework using Terragen [77], as shown in Figure 5.1c.

To evaluate the real-time performance of our model, we conducted experiments using a system with
a NVIDIA GeForce RTX 3050 Laptop GPU and a 12th Gen Intel Core i5 CPU clocked at 2.50 GHz.
In the absence of batching, we found that the TCM achieved 10 inferences in 0.32s on the GPU and 10
inferences in 3.44s on the CPU. Similarly, the TEM completed 100 inferences in 0.19s on the GPU and
1.70s on the CPU, all while maintaining real-time performance.

In addition, we profiled the system performance by traversing a random path and recording the
frames per second (FPS) at different points. We observed occasional drops in FPS below 100 at specific
points along the path, as indicated by red circles, corresponding to TCM and TEM inferences. However,
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Figure 5.11: A view from our implementation of the proposed framework.

we confirm that these inferences did not exceed the real-time performance thresholds. These findings
are summarized in Figure 5.10.

5.4 Conclusion and Future Work

In conclusion, our framework has advanced the state-of-the-art in terrain generation and rendering by
providing a comprehensive solution that addresses the challenges of infinite terrain generation, efficient
LODing, and seamless real-time rendering. The generative module enables the creation of vast and di-
verse landscapes, while the enhancement module ensures that the terrain is rendered at the appropriate
level of detail. The seamless rendering algorithm provides a visually appealing and immersive expe-
rience for users. Overall, our framework offers a powerful toolset for game developers, virtual reality
enthusiasts, and other applications that require high-quality terrain rendering. Furthermore, the quad-
tree based enhancement module may be extended to other domains where the raster sizes are relatively
larger, such as the medical domain. Another possible direction of exploration is the integration of other
rendering algorithms such as ROAM or geographic mipmapping in a similar framework.
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Figure 5.12: Architecture diagram of the generator (UNet) used in the TCM. Zoom in for details.
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Figure 5.13: Architecture diagram of the discriminator used in the TCM. Zoom in for details.
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Figure 5.14: Architecture diagram of a single model in TEM.
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Figure 5.15: Architecture diagram of a single model in TEMbig.
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Chapter 6

Conclusion and Future Work

In conclusion, this thesis has successfully discussed techniques to create fully realized virtual worlds
with realistic terrain and trees. The motivation for this research was to create an algorithm that could
produce a virtual world that could be used in gaming, simulation, and virtual reality applications.

We started the thesis by introducing the problem and providing motivation for our research. We also
provided an overview of the necessary background topics required for understanding the subsequent
chapters. The goal was to lay the groundwork for the research by identifying the problems that exist in
current methods of generating virtual worlds and highlighting the need for more efficient and flexible
algorithms.

We continued by discussing the generation and manipulation of terrain patches, which served as the
building blocks for our virtual world. We described the various techniques and algorithms used for
terrain generation. The method proved to be effective in creating visually appealing and realistic terrain.
Furthermore, we extended the concept of terrain patches to generate infinite terrains using an adaptive
and multi-resolution approach to ensure optimal performance. The multi-resolution approach provided
a mechanism for adjusting the level of detail in different parts of the terrain, resulting in a more realistic
and visually appealing virtual world.

This thesis also concentrated on the generation of trees, which enhanced the realism of the virtual
world. We improved upon the interpretability and expressibility of L-systems in the process. We de-
scribed the challenges associated with generating realistic trees and provided a solution that utilized
L-systems to generate a variety of tree models.

Finally, we extended and improved upon the idea of generating infinite terrain and populating the
terrain with trees. We laid down the steps involved in rendering a fully realized virtual world, which
includes seamless integration with the terrain generation algorithm. We provide details of the rendering
pipeline and how it was optimized to provide a smooth and visually pleasing user experience.

Although this thesis has made notable contributions to the field, there remain limitations that require
attention in future research. One constraint of the current algorithm is its heavy reliance on hardware
processing power, which may not be available in devices such as low-end mobiles or VR headsets. To
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address this, future work could concentrate on developing more efficient algorithms that require fewer
resources while still preserving the realism and complexity of the virtual world.

Furthermore, the virtual world generated by the algorithm is static and does not consider dynamic
elements such as weather conditions, seasonal variations or erosion. To make the virtual world more
immersive and responsive to changes in the environment, future research could incorporate dynamic
elements. Additionally, this research focused primarily on generating terrain and trees, but future work
could expand the algorithm to generate other natural features such as water bodies, clouds, and rocks,
further enhancing the virtual world’s realism. It’s also worth noting that the absence of VR smell
and touch technology can limit the user’s sense of presence, despite the current algorithm’s visually
appealing and realistic terrain and trees. Future research could explore incorporating these sensory
experiences to further enhance the user’s immersion in the virtual environment.

In summary, this thesis shed light on algorithms that generate and renders a fully realized virtual
world with realistic terrain and trees. This research contributes to and has significant applications in
gaming, simulation, and virtual reality. Future work can build upon this research to further improve the
realism and complexity of virtual worlds.
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[86] SBG. Südtiroler bürgernetz geokatalog (sbg). http://geokatalog.buergernetz.bz.it/

geokatalog. Accessed: February 2, 2019.

[87] E. Scrolls. Elder scrolls, 2023.

[88] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time

single image and video super-resolution using an efficient sub-pixel convolutional neural network. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1874–1883, 2016.

[89] I. Shlyakhter, M. Rozenoer, J. Dorsey, and S. Teller. Reconstructing 3d tree models from instrumented

photographs. IEEE Computer Graphics and Applications, 21(3):53–61, 2001.

[90] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning using

nonequilibrium thermodynamics. In International Conference on Machine Learning, pages 2256–2265.

PMLR, 2015.
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