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Abstract

Human beings use specific characteristics of people such as their facial features, voice and gait to

recognize people who are familiar to us in our daily life. The fact that many ofthe physiological and

behavioral characteristics are sufficiently distinctive and can be used for automatic identification of

people has led to the emergence ofbiometric recognitionas a prominent research field in recent years.

Several biometric technologies have been developed and successfully deployed around the world such

as fingerprints, face, iris, palmprint, hand geometry, and signature. Outof all these biometric traits,

fingerprints are the most popular because of their ease of capture, distinctiveness and persistence over

time, as well as the low cost and maturity of sensors and algorithms.

This thesis is focused on improving the efficiency of fingerprint recognition systems using local

minutiae based features. Initially, we tackle the problem of large scale fingerprint matching called

fingerprint identification. Large size of databases (sometimes containing billions of fingerprints) and

significant distortions between different impressions of the same finger are some of the major challenges

in identification. A naive solution involves explicit comparison of a probe fingerprint image/template

against each of the images/templates stored in the database. A better approach to speed up this process

is to index the database, where a light-weight comparison is used to reduce the database to a smaller set

of candidates for detailed comparison.

In this thesis, we propose a novel hash-based indexing method to speed up fingerprint identification

in large databases. For each minutia point, its local neighborhood informationis computed with features

defined based on the geometric arrangements of its neighboring minutiae points. The features proposed

are provably invariant to distortions such as translation, rotation and scaling. These features are used

to create an affine invariant local descriptor called anArrangement Vector, which completely describes

the local neighborhood of a minutiae point. To account for missing and spurious minutiae, we consider

subsets of the neighboring minutiae and hashes of these structures are used in the indexing process.

Experiments conducted on FVC 2002 databases show that the approach isquite effective and gives

better results than the existing state-of-the-art approach using similar affine features.

We then extend our indexing framework to solve the problem of matching of twofingerprints. We

extend the proposed arrangement vector by adding more features to it and making it more robust. We

come up with a novel fixed-length descriptor for a minutia that captures its distinctive local geometry.

This distinctive representation of each minutiae neighborhood allows us to compare two minutiae points

and determine their similarity. Given a fingerprint database, we then use unsupervised K-means cluster-
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ing to learn prominent neighborhoods from the database. Each fingerprint is represented as a collection

of these prominent neighborhoods. This allows us to come up with a binary fixed length representation

for a fingerprint that is invariant to global distortions, and handle small local non-linear distortions. The

representation is also robust to missing or spurious minutiae points. Given twofingerprints, we repre-

sent each of them as fixed length binary vectors. The matching problem then reduces to a sequence of

bitwise operations, which is very fast and can be easily implemented on smaller architectures such as

smart phones and embedded devices. We compared our results with the two existing state-of-the-art

fixed length fingerprint representations from the literature, which demonstrates the superiority of the

proposed representation.

In addition, the proposed representation can be derived using only the minutiae positions and orienta-

tion of a fingerprint. This makes it applicable to existing template databases that often contain only this

information. Most of the other existing methods in the literature use some additional information such

as orientation flow and core points, which need the original image for computation. The new proposed

binary representation is also suitable for biometric template protection schemes and is small enough to

be stored on smart cards.
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Chapter 1

Introduction

This thesis is organized in four main parts. In the first part in Chapter-1, we give a brief introduction

on biometrics and fingerprints. We talk about various biometric traits such as face, iris, hand geometry

etc and see why fingerprints are the most popular and widely used in biometricauthentication systems

around the world. Then, we have a look at the structure of a fingerprintat a global level and at a

local level. We look at the functioning of a fingerprint recognition system inverification mode and in

identification mode. Readers who are familiar with biometrics and functioning of fingerprint recognition

systems can skip this chapter and move on to the second part. In the second part in Chapter-2, we discuss

about the problem of matching two fingerprints. We talk about matching using global features such as

core points, ridge structure etc and see how matching at a local level usingminutiae-based features

leads to a better accuracy. We do an exhaustive survey on minutiae-based local fingerprint matching

techniques. Most of these techniques build local minutiae structures from invariant distances and angles

in the neighborhood of each minutia. We have a look at existing local structures and their weaknesses

and lay motivation for a new local minutia structure. Then in the third part in Chapter-3, we look at the

problem of fingerprint identification over a large database. We proposea new minutiae structure called

anArrangement Vectorthat describes the geometric arrangement of neighboring minutiae points around

a central minutia. We propose a hash-based novel indexing mechanism using arrangement vectors and

show its effectiveness. In the last part of thesis (Chapter-4), we extend the Arrangement vector into a

fixed length binary representation for a fingerprint and tackle the problem of fingerprint matching. We

finish this thesis in Chapter-5 by summarizing our main contributions and the directions in which we

can extend our work.

1.1 Biometrics

Recognizing people is a fundamental activity at the heart of our society and daily life. For many

activities and applications, ensuring the identity and authenticity of people is a prerequisite. Biometric

identification, orbiometrics, refers to identifying people based on their unique characteristics. These

distinctive unique characteristics are called biometric identifiers (or simply biometrics). Physiological
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biometrics, like fingerprints or hand geometry, are physical characteristics generally measured at some

point in time. Behavioral biometrics, like signature , on the other hand, consist of the way some action

is carried out and are learned over time. Most of the biometric identifiers area combination of phys-

iological and behavioral characteristics of a person. For example, fingerprints may be physiological

in nature but the usage of the input device (how user places a finger over the fingerprint scanner etc.)

depends on the person’s behavior. Fingerprints, face, iris, retina, gait, signature and speech are few

examples of such biometric identifiers [20]. Figure 1.1 shows some common biometrics used in cur-

rent applications. Biometric based authentication provides many advantagesover conventional methods

of identification. Conventional methods of authentication rely either onpossessionsor onknowledge.

Possessions include physical possessions such as keys, passportsand smartcards. Knowledge includes

pieces of information that are supposed to be kept secret like passwords and pass phrases. But both of

these can be easily misplaced, lost, forged, stolen, forgotten, or sharedand do not offer particularly high

security. Biometric identifiers on the other hand are less likely to be stolen or shared with other people.

These can also be used to provide an extra layer of security over traditional methods of authentication.

For example, in many applications, both conventional and biometric based methods are combined to get

better security. Passport is one such possession with face and signature biometrics.

The importance of biometrics in the modern technology era has been reinforced by the need for

large-scale identity management systems whose functionality relies on the accurate determination of

an individual’s identity in the context of several different applications. Examples of these applications

include distributing government services/products to citizens, performing remote financial transactions,

crossing a border etc. The proliferation of web-based services (e.g.online banking) and the deploy-

ment of decentralized customer service centers (e.g., credit cards) have further underscored the need for

reliable identity management systems that can accommodate a large number of individuals.

1.1.1 Selecting Biometric Identifiers

Ofcourse, the question now is what biometric identifier to use if you are designing a biometric authen-

tication system. This is not such a simple question and the answer is very application specific. However,

there are certain requirements that a good biometric identifier should satisfy inorder to achieve high

performance and security. These include the five requirements described by Clarke [42]

• Universality : Every person should have the biometric characteristic.

• Uniqueness :No two persons should have exactly the same biometric characteristic.

• Permanence :The biometric should be sufficiently invariant over a period of time.

• Collectability : It should be practically possible to measure the biometric with some sensing

device.

• Acceptability : Individuals in the target population that will utilize the application should have

no strong reasons to object to collection of the biometric.

2



Figure 1.1Examples of biometric identifiers that are used for authentication purposes.Physical identi-
fiers include face, fingerprint, hand geometry and iris while behavioral identifiers include signature and
voice.

It is the combination of all these attributes that determines the effectiveness of a particular biometric

and the corresponding biometric based authentication system. Also, a practical biometric system should

have acceptable recognition accuracy and speed, with reasonable resource requirements, harmless to the

users and sufficiently robust to various fraudulent methods.

1.1.2 Popular Biometric Identifiers

A number of biometric identifiers are in use in various applications (See Figure1.1). There is no

single identifier that satisfies all of these requirements absolutely. A few commonly used biometrics

with their pros and cons are discussed below.

• Face : Face appearance is a particularly compelling biometric because it is one of themost

common methods of recognition that humans use in their visual interactions. Face recognition

scores very high on acceptability as the methods of acquiring face images in non-intrusive. But

face as a biometric scores low in uniqueness and permeance. Also, facialfeatures can change

over the course of time. It is also a big challenge to develop face recognitiontechniques that

can tolerate the effects of aging, facial expressions, slight variations inimaging environment and

facial disguise. As a result even automated facial recognition systems require extensive human

intervention.

• Iris : The colored part of the eye bounded by the pupil and sclera is the iris, being rich in texture

it is posited to be distinctive for each person and each eye [24]. Iris based authentication systems

are relatively modern and highly accurate and fast. But iris as a biometric scores very less in

collectability and acceptability. The design of an iris image capture device that isconvenient and

unobtrusive is a real challenge. Also, capturing an iris image requires significant cooperation

from the user, both to register the image of iris in the central imaging area and toensure that the

iris is at a predetermined distance from the focal plane of the camera.

3



• Hand Geometry : Hand geometry refers to the geometric structure of the human hand. Many

geometric features like length and width of the fingers, aspect ratio of the palm or fingers, width

of the palm, thickness of the palm etc are relatively invariant and unique to anindividual. But

hand geometry as a biometric scores a bit low on universality, uniqueness and permeance. On the

other hand, hand geometry measurements are easily collectible and non-intrusive as compared to

iris.

• Voice : Voice recognition (or speaker recognition) tries to identify individuals by how they sound

when they speak. Voice capture is unobtrusive and voice print is an acceptable biometric in almost

all societies. As a result, voice as a biometric scores very high on collectabilityand acceptability.

But on the other hand, voice is not distinctive and unique. It gets tough to identify an individual

from a large database of identities given only voice as a differentiating factor. Also, voice gets

affected by a person’s health, stress, emotions, age etc. And voice caneasily be forged, if your

mimicking skills are extraordinarily high.

• Signature : The way a person signs can be said to be unique to that person. Signatureas a

biometric scores high on collectability and acceptability. But a signature can be easily forged and

score low on universality and uniqueness. Also, a person’s signatureneed not be permanent and

since this is a behavioral biometric, this can change over time.

Most of these famous biometrics score high on some grounds but then lose points when it comes to

acceptability or collectability. Fingerprints score high on all of the above fiverequirements and hence,

are used most widely in today’s biometric authentication systems.

1.2 Fingerprints

Fingerprints are perhaps what the majority of people immediately associate with biometrics. Finger-

prints have a long and interesting history of being used as a reliable biometric for identifying a person

[17]. Fingerprints are popular because of their ease of capture, distinctiveness and persistence over time.

Fingerprints are part of an individual’s phenotype and hence are onlyweakly determined by genetics.

Even fingerprints of identical twins are quite different in structure [47].Fingerprints score very high on

uniqueness and it is widely believed in the forensic community that no two peoplehave identical ridge

details. History of fingerprints is quite interesting.

1.2.1 Evolution of Fingerprinting

• There is evidence that the Chinese were aware of the individuality of fingerprints well over 5000

years ago [21]. But it was not until the late sixteenth century that the modern scientific fingerprint

technique was first initiated.
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(a) (b)

Figure 1.2 Global and Local Structure present in a fingerprint. (a) The overall global ridge and valley
structure (b) The local structure showing minutiae points and pores.

• In 1684, Nehemiah Grew, an English plant morphologist published the firstscientific paper re-

porting his study on the ridge, furrow and pore structure in fingerprints.

• In 1823, Purkinje proposed the first fingerprint classification scheme based on nine categories.

• William Herschel (around 1859) was the first european to recognize thevalue of fingerprints for

identification purposes.

• In 1880, Henry Fauld suggested the individuality of fingerprints based on empirical observations.

• During 1888-1892, Sir Francis Galton conducted an extensive study onfingerprints. In his works,

he divided the fingerprints into three major classes and introduced the concept of minutiae features

for comparing two fingerprints.

• But modern era of fingerprint recognition systems began with developmentof the“Henry System”

of fingerprint classification during 1899-1900. This system was made byEdward Henry and his

two Indian assistants in 1899 [21]. According to this system, five classes were introduced as

shown in Figure 1.3. This system was adopted and refined by the FBI [13].

• In the early twentieth century, fingerprint recognition was formally accepted as a valid personal

identification method and became a standard routine in forensics.
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Figure 1.3Henry Fingerprint Classification Scheme.

1.2.2 Structure and Individuality of Fingerprints

Fingerprints are fully formed at about seven months of fetus developmentand remain the same

throughout the person’s life (conformance to permeance requirement).If any scars or superficial damage

occur, the skin will grow back in exactly the same arrangement as at birth. They are even one of the last

features to decompose after death. A fingerprint is the reproduction of afingertip epidermis, produced

when a finger is pressed against a smooth surface. As we can see in Figure 1.2, the most evident

structural characteristic of a fingerprint is a pattern of interleaved ridges (the dark areas) and valleys

(bright areas). This ridge-valley pattern creates the distinguishing features of a fingerprint which are

identified at three levels.

At a global level, the ridges tend to form shapes characterized by regions of high curvature and

numerous ridge terminations. These regions are calledSingularities(see Figure 1.4) and are of three

types.

1. delta (represented by the symbol∆);

2. loop (represented by the symbol
⋂

);

3. whorl (represented by the symbol©);

Another global feature in a fingerprint is theCore. Core is defined as the center of the north most loop

type singularity. Often the core is used as a reference point to align two fingerprints prior to matching.
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Figure 1.4 Basic Singularities loop, whorl and delta. The core point as defined in section 1.2.2 is also
shown.

The core and singularities are useful to classify fingerprints but are not discriminating enough to match

two fingerprints.

At the local level, other important features, called minutiae and pores can befound in the fingerprint

patterns. Minutiae points refer to the various ways that the ridges can be discontinuous. The most

common minutiae points are shown in Figure 1.2. By increasing the resolution at which the fingerprint

image is captured (atleast 1000 dpi), it is possible to extract very minute geometric details like scars,

ridge width, breaks etc. The most important low level details are small points over the ridge line called

sweat pores. These sweat pores are highly distinctive and around 20-40 pores are sufficient to recognize

a person. But they are not used that much in current biometric authentication systems because the image

quality and the acquisition resolution has to be very high.

1.3 Fingerprint Recognition Systems

A general fingerprint recognition system can be viewed as a pattern recognition system that generally

offers a binary decision to a given input. The first time an individual usesa biometric systems, he/she

has to go through theenrollmentphase. During the enrollment, the fingerprints from that individual is

captured and stored in the database (See Figure 1.5). In the subsequent uses, fingerprints are captured

and compared with the information stored at the time of enrollment. Fingerprint recognition systems

normally authenticate people in two modes :

• Verification Mode : In this mode, a person’s identity is authenticated by comparing the captured

fingerprint with the person’s fingerprint image/template already stored in thedatabase. It is a

one-to-one matching process as shown in Figure 1.6.
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Figure 1.6Fingerprint Recognition System in Verfication mode.
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Figure 1.7Fingerprint Recognition System in Identification mode.
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• Identification Mode : In this mode, the system tries to tell us whether a fingerprint query can

find a match in the database or not. Therefore, in this mode the system conducts one-to-many

comparison to establish an individuals identity (or fails if the subject is not enrolled in the system

database) without the subject having to claim an identity. It is a one-to-many matching process as

shown in Figure 1.7.

1.4 Accuracy Measurements

A general biometric system, irrespective of the biometric identifier being usedand the mode of

operation, can be viewed as a pattern recognition system that offers a binary decision to a given input.

Such a system does make errors and we need a statistical way of measuringthe performance of such a

system. In the coming two sections, we discuss various metrics that help us in doing exactly that.

1.4.1 Fingerprint recognition systems in Verification Mode

Lets consider fingerprint recognition system in verification mode, when a fingerprint is presented

as input to the system we expect a binary decision of the type matched/non-matched with the template

already stored in the database. However, due to imperfect sensing environment, alterations in user’s

finger (cuts, bruises etc.), sensor faults and variations in the user’s interactions with the sensor, the

system may output the wrong answer. We need a framework through whichwe could measure the

system’s errors and performance. The Bayesian decision theory [44]offers all we need to measure

errors in biometric systems.

The response of the system is usually a similarity scores that measures the similarity between the

two images (or minutiae sets). The system has to output a final binary decisionbased on this similarity

s. This decision is usually by a system thresholdt : pairs of images (or minutiae sets) with similarity

score greater than or equal to the thresholdt are calledmatchingpairs; whereas those pairs producing

score less than the thresholdt are callednon-matchingpairs. A similarity score is known as agenuine

scoreif it is a result of matching of fingerprints of the same user. It is known as animposter scoreif

the two compared fingerprints belong to different users. A good fingerprint matching algorithm leads to

good separation between genuiune scores and imposter scores.

A fingerprint verification system can make two type of errors :

• False Match: In this case, the system mistakes two fingerprints coming from different individuals

to be a match. This is also calledfalse acceptance. False Match Rate(FMR) is defined as the

probability that an imposter scores exceeds the thresholdt.

• False Non-Match: In this case, the system mistakes two different impressions of the same finger

as a non-match. This is also calledfalse rejection. False Non-Match Rate(FNMR) is defined as

the probability that a genuine score falls below the thresholdt.
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Figure 1.8 Genuine and Imposter Distributions. Also, shown are False Non-Match Rateand False
Match Rate for a given threshold (t) value

To evaluate the accuracy one must collect scores produced from a number of genuine matches (these

scores form what is called thegenuine distribution) and scores produced from a number of imposter

matches (these scores form theimposter distribution). An example graph of FMR and FNMR over

genuine and imposter distributions is shown in Figure 1.8. Both FMR and FNMR are functions of

the system thresholdt. If t is decreased to make the system more tolerant, the FMR increases and the

FNMR decreases. Ift is increased to make the system more secure, then FMR decreases and the FNMR

increases.

There are other measures also for measuring the system’s performance.If we plot a curve between

FMR and FNMR, we obtain an important curve calledreceiver operating characteristic(ROC curve).

Also, there are other metrics also [9] like :

• Equal Error Rate (EER): denotes the error rate at the threshold t where the FMR and FNMR

values are identical.

• ZeroFMR: is the lowest FNMR at which no false matches occur.

ZeroFMR(t) =
t

min(FNMR(t)|FMR(t) = 0) (1.1)

• ZeroFNMR: is the lowest FMR at which no false non-matches occur.

ZeroFNMR(t) =
t

min(FMR(t)|FNMR(t) = 0) (1.2)

An example of curve showing FMR(t), FNMR(t) values along with the above metrics is shown in

Figure 1.9. The question still remains that for a specific system how should you set the system threshold
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Figure 1.9False Non-Match Rate and False Match Rate for a given threshold (t) value. Also shown are
points corresponding to ZeroFMR, ZeroFNMR and EER.

t, which controls the performance of the system. This is pretty much application specific. For example,

some highly secure control applications like nuclear power plants etc. will need a very low FMR. In this

case,t should be high as the primary objective is not to let in any imposters. Some legitimateusers may

be denied access in this case but that is a trade-off we have to accept.

1.4.2 Fingerprint recognition systems in Identification Mode

FMR and FNMR are used to evaluate the performance of a matching algorithm. Mainly in the Iden-

tification mode, a back-end indexing algorithm operates which narrows down the size of the database

to be searched. Then the matching algorithm only works with the small part of the database which is

outputted by the indexing algorithm. Hence, the goal of the indexing algorithm isto narrow down the

number of hypothesis which need to be considered for subsequent matching. The output of such an

algorithm is the top N hypothesis. If the query fingerprint is present in the list of top N hypothesis, we

take the indexing result as the correct result. Correct Index Power (CIP) is the metric defined [7] to

evaluate performance of indexing algorithms. CIP = (Nci/Nd), whereNci is the number of correctly

indexed query images, andNd is the total number of images in the database. The retrieval efficiency

is indicated by thePenetration Rate, which is the average percentage of database probed over all test

fingerprints. Ideally, we would want a high CIP and a low Penetration Rate.
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1.5 Motivation and Problem Statement

The problem we deal with in this thesis is using local minutiae structures for the purpose of finger-

print indexing and matching. We have chosen to use local minutiae information because that is more

tolerant and robust against global transformations and non-linear distortions and gives better results than

using global information. As we will see in the second chapter, many local matching techniques have

been proposed in the literature but still the problem is far from solved one.There is still a need for more

accurate, fast and efficient algorithms. We design a new minutiae-only local structure. We use that local

structure for the purpose of fingerprint indexing as we will see in the thirdchapter. Then we extend that

local structure to get a new fixed length representation for fingerprint matching. The main motivations

that led us to design a new local minutiae structure and extend it to representa fingerprint are :

• Need for more accurate minutiae-only algorithms: Many of the existing techniques use several

extra features besides minutiae information [10]. These features are computationally expensive to

compute and there is no standard definition of these features since these features are not defined

in the standard minutiae template ISO/IEC 19794 [1]. We want to keep the template size as

minimum as possible so that algorithm could be used on light architectures suchas inexpensive

smart cards etc.

• Need for new fixed length fingerprint representation: Very few fixed length representations have

been proposed in the literature. We need a new and a more robust fixed length representation that

can tolerate non-linear distortions and global transformations.

• Suitability for template protection techniques: Biometric template protection is an area which

is rapidly growing because of its great benefits (like protection against attacks, nonreversibility,

diversity etc). Many recently proposed template protection techniques [37]and [3], require a

fixed length representation of the biometric identifier as the input.

1.6 Summary

This chapter gave a general introduction on biometrics. We had look at various biometric identifiers

and we also saw some basic requirements that a biometric identifier should fulfill.Then we saw that

fingerprint as a biometric fulfills almost all of the above requirements. Then we gave a brief history

of how present day fingerprint authentication systems have evolved. Then we had a look the structure

of a fingerprint at global and at local level. Then we discussed aboutfunctioning of a present day

fingerprint authentication system. We saw that present day systems operate in two modes : verification

and identification. Then we saw how to measure the accuracy and performance of such systems in both

modes. Finally, we laid down the motivation for this thesis and the existing challenges that are present

and need to be tackled.
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Chapter 2

Existing Minutiae Based Structures - A Survey

In the previous chapter, we gave a brief overview of biometrics and biometric identifiers. We talked

about the structure of fingerprints and functioning of fingerprint authentication systems. Then we looked

at how to evaluate the performance of these systems and the need for betteraccuracy and performance.

In this chapter, we first discuss existing fingerprint matching techniques (section 2.1). We classify

these techniques as local or global in nature depending on the fingerprint features they use for matching

purposes. Then we look at the weaknesses of global matching and how matching at a more local level

can improve performance . Finally, we do a thorough survey of existing literature on local minutiae

based matching (section 2.2). Then we look at the weaknesses of the current methods and lay motivation

for a new fingerprint representation using local minutiae structures (sections 2.4 and 2.5).

2.1 Matching Two Fingerprints

The problem of matching two fingerprints (generally known as fingerprintverification) can be de-

scribed as given two fingerprints, we need to return either a degree of similarity or a binary decision

(matched/non-matched). Fingerprint Recognition at its very core is a 2D point pattern matching prob-

lem and has been researched extensively in the Patter Recognition community. Many effective solutions

have been proposed in the literature, but the problem still cannot be calleda fully solved one. There

is still need for more accurate methods as the performance of most of the proposed algorithms is still

lower than the theory estimation. Also, we need more faster algorithms as the sizeof the database even

after filtering and indexing is quite large.

2.1.1 Major Problems Faced

Large intra class variability is one of the major problems that we face in matching two fingerprints.

Intra-class variation refers to the large variability in different impressionsof the same finger. There are

many reasons that lead to such high intra-class variation :
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• Global transformations: The same finger may be placed at different locations or may be rotated

at different angles with respect to the sensor surface during different acquisitions. This can result

in a global translation or rotation of the fingerprint area. Any good algorithm has to account for

global transformation like translation, rotation, scale and shear.

• Partial Overlap: These global transformations mentioned above often cause part of the fingerprint

area to fall outside the sensor’s field of view, resulting in a smaller overlap between the foreground

areas of the two fingerprints. In simpler terms, a lot of minutiae points present inone fingerprint

may not be present in the other fingerprint. Dealing with these missing or spurious minutiae points

is a major challenge for most of the fingerprint matching techniques.

• Non-linear distortions : Non-linear distortion refers to the compression or stretching of skin due

to skin plasticity. This comes up as we try to map the 3D shape of a fingerprint ontothe 2D surface

of the sensor. The components of the force that are non-orthogonal tothe sensor surface produce

non-linear distortions. These distortions are quite local in nature and handling these distortions is

a major open challenge. There are other reasons also which lead to these distortions [6]. These

include the sensor orientation with respect to the finger, the applied pressure, the disposition of

the subject, the motion of the finger prior to its placement on the sensor, the skinmoisture and

the elasticity of the skin. Also some users apply excessive force to create intentional elastic

deformations. The effect of these non-linear distortions is quite large as shown in Figure 2.1.

• Pressure and skin condition : We would ideally want to capture the ridge structure of a fingerprint

with high accuracy. For this, part of the finger being imaged has to be in uniform contact with

surface. But in real life, because of pressure, dryness, skin disease, sweat, dirt, humidity etc we

get a non-uniform contact and hence, a noisy image. Such noisy images result in a lot of spurious

minutiae points which the algorithm has to deal with.

2.1.2 Existing Solutions

Many effective methods have been proposed in the literature. Dependingupon the fingerprint fea-

tures used, the methods can be classified as :

Correlation-Based Matching : These methods usually work directly on fingerprint images by su-

perimposing the two images and computing the correlation between the corresponding pixels for

different alignments. Usually a cross-correlation measure representingsimilarity between the two

images (like sum of squared difference of intensity values) is computed. But directly computing

correlation is not a good solution because :

• Because of non-linear distortions, two global fingerprint patterns cannot be reliably corre-

lated.
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Figure 2.1Effect of Non-linear distortion. Shown are two different impressions ofthe same finger from
the FVC 2004 database. The same ridge line is straight in one image and curved in the other image due
to non-linear distortion.

• Skin condition and finger pressure cause the image’s brightness, contrast and ridge thickness

to vary significantly across different impressions of the same finger. Plain simple correlation

of pixels will not give you a good result in this case.

• Pixel correlations have to be computed for many alignments. Since, the spaceof possible

alignments is exponential with respect to the number of minutiae, correlation based methods

are very expensive.

Ridge Features Based or Global in nature: Global features such as singular points, orientation flow

around core points, Poincarè index and average ridge-line frequency represent the global pattern

of ridges with uniform model. Many techniques like Tico in [33], Medina-Perez in [32], G.Ng

and X.Tong in [16] and Wang in [27] use global orientation flow and frequency for matching

purposes. Many methods also use spatial relationship and geometrical attributes of the ridge lines

[26] and [57]. Y.He and J.Tian use global texture information present in the fingerprint in their

work [57]. Unfortunately, most of the global matching algorithms are computationally demand-

ing and lack robustness with respect to non linear distortions. Another majorissue is that most of

these global features are not present in the standard ISO/IEC 19794-2(2005) minutia template [1]

and have to be computed separately starting with the original image. Many of above techniques

[11] require prior alignment of the two fingerprint images which is computationally expensive.

Since non-linear distortions make impressions of the same finger differ in termsof global struc-

ture, these techniques are not able to handle local non-linear distortions.Local minutiae based

fingerprint matching methods generally outperform their global counterparts. However, global

features are good for the task of fingerprint classification or can be used in conjunction with more

discriminative and robust minutiae based features.

Minutiae Based or Local in nature : Minutiae based techniques are the most popular due to the

compactness of the minutiae templates and also because these are the featuresthat fingerprint
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experts look at while doing the visual inspection of fingerprints. Minutiae are extracted from

the two fingerprints and stored as a set of points in 2-D space. The problem now reduces to

2D point pattern matching problem. Minutiae based matching methods can be further broken

down into global and local minutiae matching methods. Global methods [11] search the space

of possible transformations to find a global alignment between the two fingerprints that results

in the maximum number of minutiae pairings. Hough transform based techniquesfall in this

category. Non-linear distortions is a major issue with these techniques. Also,the number of

alignments can be exponential (w.r.t number of minutiae) and hence, these techniques are quite

slow in practice. Local minutiae matching methods construct local minutiae structures around

each minutia point. Then the two fingerprints are compared according to theselocal structures.

These methods use relative distances and angles between neighboring points and the minutia point

to construct the local structures. These attributes (relative distances and angles) are invariant with

respect to global transformations such as translation, rotation , scale andshear . and therefore

can be used for matching without any apriori global alignment. These localstructures can also

handle non-linear distortions better than global minutiae matching techniques. Techniques such

as [35, 25, 54, 45, 15, 52] and [51] use local structures around minutiae points for the purpose of

matching. These local structures are described in detail in the next section.

2.2 Local Minutiae Structures

Local minutiae matching consists of comparing two fingerprints according to local minutiae struc-

tures. These structures are characterized by attributes that are invariant with respect to global trans-

formations. Local structures usually carry information about the local geometry of neighboring points

around the central minutia point. Depending on how you choose the neighboring points for the cen-

tral minutia, these local can be broadly classified into nearest neighbor based and fixed radius based

structures.

2.2.1 Nearest Neighbor based structures

Nearest neighbor techniques first find out thek spatially closest points with respect to the central

minutia and then construct a local structure from thesek nearest points. In most of the cases, normal

euclidean distance between points is considered for measuring distance. Many nearest neighbor based

structures have been proposed in the literature.

The simplest of these structures is based on minutia pairs, where the distancebetween the pair

and the orientation of each minutia with respect to the line connecting them can beused as invariant

attributes. Another commonly used nearest neighbor structure is the minutia triplet, where relative

features (distances and angles) computed from combinations of three minutiae are used for the purpose

of fingerprint matching and indexing [7, 28] and [5]. A number of other nearest neighbor based
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Figure 2.2The k-plet structure proposed by Chekkerur in [45].

local minutiae structures (with number of neighbors> 3) have also been proposed. Chekkerur and

Govindaraju in their work [45] presented a new local structure called k-plet.

The k-plet consists of a central minutiami andk of its nearest neighboring minutiae{m1,m2...mk}.

Each neighborhood minutia is defined in terms of its local radial co-ordinates(Φij , θij , rij) whererij
represents the euclidean distance between the minutiaemi andmj , θij is the relative orientation of

minutiamj w.r.t to central minutiami andΦij is the direction of the edge connecting the two minutiae

points. An example of k-plet structure is shown in Figure 2.2. Kwon and Yunin their work [8] propose

a similar nearest neighbor based local structure calledk-directional nearest neighbor(k-DNN). With

central minutia as the new origin and its orientation as the new X-axis, they divide the plane intok

slots and find the nearest neighbor for each slot. For therth nearest neighbor, they encode the relative

distance, angle and orientation from the central minutia asdr, θr andΦr. An example of k-DNN

structure is shown in Figure 2.3. Jiang and Yau [54] also proposed a newlocal structure based on

relative distance, radial angles, orientation and ridge count as shown inFigure 2.4.

One main advantage of nearest neighbor based structures is that it leadsto a fixed length descriptor

that describes the geometric layout of these neighbors around the central minutia. This fixed length

descriptor can be easily matched with other such descriptors. But one main drawback is that these

structures are not tolerant enough to missing or spurious minutiae points. These structures break down

when the image is too noisy or when there is very small overlap between two impressions of the same

finger.

2.2.2 Fixed Radius based structures

In the fixed radius based structures, all the minutiae points that lie inside the sphere of given radius

R (with central minutia as the center) for the neighborhood for that central minutia. Again, normal

euclidean distance is considered for measuring distance.
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Figure 2.3The k-Directional Nearest Neighbor (k-DNN) structure proposed byKwon in [8] (for k=8).
The red minutiae points represent the nearest points in each slot and the green minutiae points represent
the second nearest. Encoding the parameters for the nearest neighboris also shown.

Ratha and Pandit [35] proposed a novel graph representation of a fingerprint based on fixed radius

local structure as shown in Figure 2.4. They call their representation Minutiae Adjacency Graph (MAG)

and present a robust and accurate matching technique for MAGs basedon local structural similarity.

However, like most of the fixed radius based approaches their method does suffer from border errors.

Major issue is handling of minutiae that lie on the boundary of the sphere. In particular, minutiae close

to the local-region border in one of the two fingerprints can be mismatched because local distortion or

location inaccuracy may cause the same minutiae to move out of the local region inthe other fingerprint.

The technique proposed by Feng [25] does not suffer from bordererrors and can be considered a state-

of-the-art fixed radius local matching algorithm. They deal with the borderproblem by considering

minutiae not close to the border asmatchableand minutiae near the border asshould-be-matchable

. Most of the fixed radius based approaches lead to a variable length descriptor (since the number of

minutiae in the sphere will depend on the minutiae density around the central minutia) which is more

complex to match.

2.2.3 Comparison of Nearest Neighbor and Fixed Radius basedStructures

Nearest neighbor based techniques usually represent the neighborhood of the central minutia with

the geometric arrangement of fixed number of neighboring minutiae (lets say nearestk). This leads to a

fixed length descriptor that can be easily matched with other descriptors. Sometimes the matching can

just be a simple difference or bitwise-AND of the two descriptors. Such matching can be quickly and

efficiently done even on light architectures such as smart card or system-on-a-chip. On the other hand

nearest neighbor based techniques cannot deal very well with missing or spurious minutiae points. Even
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(a) (b)

Figure 2.4 Local structures proposed by Jiang and Ratha. (a) The nearest neighbor based structure by
Jiang encoding relative distance (d), orientation(θ), radial angles(Φ), ridge count(n) and type(t) of the
neighboring point. (b) The fixed radius based structure by Ratha. Eachedge towards a neighbor encodes
relative distance, orientation and ridge count.

with a controlled acquisition environment, noisy fingerprint images can be acquired where different

impressions of the same finger can have different number of minutiae. Fixedradius based techniques can

deal robustly with such noisy images. But these approaches generally lead a variable length descriptor

which is tough to match. Hence, the matching phase now becomes more complex and computationally

expensive. Also, border errors as described in the earlier section have to be gracefully handled.

There are certain hybrid structures that take the advantages of both nearest neighbor and fixed radius

structures and throw away their respective disadvantages. Minutiae Cylinder Code (MCC) [40] is one

such descriptor that can be considered state-of-the-art in local minutiaebased fingerprint matching.

MCC and other hybrid structures are described in detail in the next section.

2.3 Minutiae Cylinder Code and other Hybrid Structures

Hybrid structures usually combine the advantages of both nearest neighbor-based and fixed-radius

structures, without suffering from their respective drawbacks. Minutiae Cylinder code (MCC) [40]

is the state-of-the-art in this area. MCC is a fixed-radius approach and therefore it can handle miss-

ing/spurious minutiae better than nearest neighbor-based approaches.But unlike other fixed-radius

approaches, MCC outputs a fixed length descriptor for each minutia and thismakes the computation of

local structure similarities very simple. Infact cylinder matching is very simple and fast, it reduces to
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Figure 2.5Minutia Cylinder Code structure. (a) The main cylinder is shown enclosed in the cubiod. (b)
The cylinder structure is discretized into sections and sections are dividedinto cells. (c) An individual
cell is shown, for each cell a numerical value is calculated from its neighboring minutiae.

just a sequence of bit- wise operations (AND, XOR) that can be efficientlyimplemented even on very

light CPUs. MCC also handles border errors and local non-linear distortions gracefully.

In MCC, the local structure for each minutiam is represented by a cylinder of radius R and height

2Π whose base is centered at (xm,ym), the 2D location of minutiam. The cylinder is enclosed inside

a cuboid whose base is aligned according to the minutia directionθm. The cylinder is divided into

sections : each section corresponds to a directional difference in the range [-Π,Π] .The sections are

discretized intoNC = NS X NS X ND cells as shown in the Figure 2.5. During the creation of the

cylinder, a numerical value is calculated for each cell, by accumulating contributions from minutiae in

the neighborhood of the projection of the cell center onto the cylinder base. Fixed Radius (3σS) is used

to define the radius of the neighborhood. While calculating the contributions only relative distances and

directional differences are used between minutiae. The contribution of each minutiamt to a cell (of the

cylinder corresponding to a given minutiam) depends both on:

• spatial information (how muchmt is close to the center of the cell)

• directional information (how much the directional difference betweenmt andm is similar to the

directional difference associated to the section where the cell lies.)

In other words, value of a cell represents the likelihood of finding minutiae that are close to the cell

and whose directional difference with respect tom is similar to a given value. Since, the number of cells

are fixedNC , this leads to a fixed length descriptor that can be easily matched.

But there are some weaknesses present in the MCC structure also. Theirrepresentation of a minutiae

neighborhood is not provably invariant to affine deformations. Recently, many attempts have been
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made at reconstructing a minutia template starting from a minutia cylinder set. Many of these attempts

have been quite successful, which puts a question mark on the degree of non-reversability of MCC

representation. MCC is a fixed length representation for a minutia point and not for the fingerprint. We

have local similarity scores representing how well two minutiae points match. Butin order to compare

two fingerprints a single value (global score) denoting an overall similarity has to be obtained from these

local similarities. Hence, an extra global consolidation stage is required. Also, a minutiae representation

of a fingerprint cannot be applied directly in the recently developed templateprotection schemes such

as [37] and [3], which require as an input a fixed-length feature vector representation of fingerprints.

Many attempts have been made to come up with such a fixed-length representation which is invariant to

global transformations but still the problem is far from solved.

2.4 Need for new Fingerprint Representation

As we saw in the previous section, there are certain weaknesses in most ofthe nearest neighbor

and radius based approaches. Even state-of-the-art hybrid representation such as MCC has some short-

comings. A fixed length descriptor which completely describes the geometric structure of minutiae

points present in a fingerprint is needed. Such fixed length representation would be suitable to template

protection schemes. Such representation could then be intelligently quantizedto get binary fingerprint

representation. Such binary representation would then reduce fingerprint matching to a series to bi-

nary operations (such as bitwise-AND/XOR). This would significantly improve the matching speed and

matching could then be efficiently done on small architectures such as smart cards. In Chapter 4, we

propose a novel fixed length fingerprint representation and tell its benefits.

2.5 Summary

In this chapter, we introduced the problem of reliably matching two fingerprints. We saw that match-

ing could be done using global features such as overall ridge structureand core points, and also using

local features extracted from minutiae points. Local matching has severaladvantages over global match-

ing and is much more tolerant towards non-linear distortions. Then we did a thorough literature survey

of local minutiae matching and the minutiae structures that they use for matching purposes. We classi-

fied the minutiae structures as nearest neighbor based or fixed radius based. We looked at the advantages

and disadvantages of both of them. Then we had a look at hybrid structures such as MCC that takes ad-

vantages of both of them. Finally, we discussed the weaknesses of these structures and gave motivation

on why we would need a new minutiae structure and a new fixed length representation for fingerprints.

In the next chapter, we propose a new minutiae representation called anArrangement Vectorand use

that representation for indexing large fingerprint databases.
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Chapter 3

Fingerprint Indexing Based on Local Arrangements of Minutiae

Neighborhoods

In this chapter, we talk about the problem of retrieving fingerprints from avery large fingerprint

database. The problem is termed asFingerprint Indexing. The chapter is divided into six sections. In

the first section, we give the general introduction for the problem and see various real-world scenarios

where the problem comes up in practice. We will look at the challenges associated with fingerprint

indexing problem and some basic solutions. In the second section, we givea brief literature survey

about the existing fingerprint indexing algorithms. We will have a look at theirweak points and why

a new fingerprint indexing algorithm is needed. In the third section, we will propose a new minutia

representation calledArrangement Vectorand use this representation for indexing purposes. The fourth

section describes all the experiments conducted and detailed discussions of results. We discuss how we

handle missing or spurious minutiae points which is one of the major challenges. We do detailed time

analysis and look at how much time we gain when using our indexing algorithm rather than going for

one-to-one matching for the entire database. Finally, we compare results withexisting algorithms in the

fifth section. We conclude this chapter with the sixth section in which we discusshow we can extend

the proposed minutiae representation for matching purposes.

3.1 Searching Large Fingerprint Databases

Biometrics especially fingerprints play a major role in automated personal identification systems

deployed to enhance security all over the world. Many of such automated systems have very huge un-

derlying fingerprint database. In these large identification systems, the goal is to determine the identity

of a subject from a large set of users (possibly in millions) already enrolled in the database. Many of

these databases contain tens of millions of records and a single identification request can take a signif-

icant amount of time even with the modern day computing technologies. The search time becomes an

important factor in the success and failure of such systems. The Aadhar project under the Unique Iden-

tification Authority of India is one such project which maintains a database of Indian citizens containing
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their ten fingerprints and other data. With more than one billion enrollments expected, this may lead to

the biggest biometric database ever created (billions of fingerprints). Hence, there is a need for reducing

the search space by narrowing down the size of the database. Ofcourse, there are many problems that

come up when we try to do exactly that.

3.1.1 Major Problems Faced

Fingerprint Identification over a large database is still an open problem and poses many challenges.

First of all the size of the database is the biggest challenge faced. In such cases, the identification

typically has an unacceptably long response time. The process can be speeded up by reducing the

number of comparisons that are required to be performed. Sometimes, information about age, sex,

caste and other demographic data can be used to reduce the portion of the database searched. Such

information is not always available in many cases. In the general case, information intrinsic to the

fingerprint samples has to be used for an efficient retrieval. Also, oftenthere are significant distortions

between different impressions of the same finger making the problem even tougher. Three common

approaches have been proposed in the literature for solving the problemof searching large fingerprint

databases.

3.1.2 Possible Solutions

The three classes of solutions include :

• Brute Fore solution : This refers to performing a sequence of one-to-one verification with the

entire database. This is, ofcourse, a time consuming solution and not at all feasible in practice.

Lets take the example of the above Aadhar project. Even if one matching takesaround 1 millisec-

ond, still enrolling one indian citizen will take around 300 hours (assuming Indian population of

1.2 billion). We need something more smarter and efficient.

• Fingerprint Classification : Fingerprint Classification refers to the problem of assigning a finger-

print to a class in a consistent and reliable way. So basically it involves labeling each fingerprint

image into one of a few known global patterns and restricting the matching of query to sample of

the same class. Arch, Tented Arch, Loop (left loop and right loop), whorl and double loop are the

major global patterns (or classes). But Fingerprint Classification has its own drawbacks. First of

all, small inter-class variation and large intra-class variation make this a tough problem. Uneven

distribution of fingerprints in different classes is another issue. Most ofthe fingerprints (around

90%) belong the loop and whorl patterns. So even after classification, thesearch space is not

narrowed down by a significant amount. The number of global patterns (or classes) are quite less.

Also, fingerprint classification is generally based on global features likeglobal ridge structure,

singular points [39, 38] and [4] and such features are tough to compute in anoisy image. Hence,
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Figure 3.1 Figure showing goal of Fingerprint Indexing. Matching is only done with vectors that are
close to the query vector.

we need some different technique to narrow down the search space andindexing provides the

answer.

• Fingerprint Indexing : This technique is generalization of the classification approach, where the

database is automatically divided into a large number of possibly overlapping subsets. The index-

ing function predicts the subsets that need to be searched for each query image. The goal here

is to find a mapping (or feature representation), that maps similar fingerprints toclose points in

a multi-dimensional space. So, we associate fingerprints with these multi-dimensional numerical

feature vectors summarizing their main features. Retrieval is performed by matching the input

fingerprint with those in the database whose corresponding vectors areclose to the searched one

as shown in Figure 3.1. There have been many fingerprint indexing techniques proposed in the

literature.

3.2 Literature Survey on Fingerprint Indexing Techniques

Based upon the fingerprint features used, the existing fingerprint indexing techniques can be classi-

fied as :

Global Representations: Global features like average ridge-line frequency, orientation flow around

core points and Poincarè index represent the global pattern of ridges with uniform model. The al-

gorithms used in [50] and [53] belong to this category. However, these features are more suited for

classification purposes and are not particularly good at handling distortions and global transfor-

mations. These techniques often require prior alignment of fingerprint images in the database and

use the location of singular points. In many low quality and noisy images, it is tough to locate the

singular points reliably and thus, such images are rejected in this case. These features are usually

used in conjunction with more discriminative features to further narrow downthe search [53].
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Orientation Flow Features : Techniques which use features such as local ridge line orientations [39,

38] and local ridge-line frequencies [46] fall under this category. However, one disadvantage of

using features obtained from orientation image is that these features are not present in the ISO

standard minutiae templates and have to be computed separately starting with the original image.

Minutiae-based Features: Most minutiae based indexing techniques [43, 55, 23, 7], derive geometric

features from sets of minutiae points that are robust in presence of rotations and translations

and use hashing techniques for searching. Some techniques like [29], and [41] form complex

structures from minutiae representations and use them for indexing purposes.Minutiae Cylinder

Codesor MCC [40] was proposed recently and have been demonstrated to be a highly effective

method for representing a minutiae neighborhood for the purposes of fingerprint matching as well

as indexing. While the MCC representation of a minutiae neighborhood is not provably invariant

to affine deformations, the regularizations performed during the computationmake them very

robust. In this work, we try to ensure affine-invariance of the minutiae neighborhood features and

explore their effectiveness for the purposes of indexing.

Other Features: Features such as Fingercode [4] and SIFT-based features [56] use wavelet responses

to encode local textures. Some techniques also try to combine different types of features to im-

prove the results [5]. There are also techniques which are based on match scores [2] and hash

functions [48].

Minutiae-based fingerprint indexing schemes generally give better results than other techniques. In-

dexing based on Minutia Cylinder Code (MCC) can be considered as state-of-the-art in the area of

fingerprint indexing. But MCC representation of minutiae neighborhood isnot provably invariant to

affine deformations. We have developed a new representation for a minutiapoint that is provably in-

variant to affine deformations and made it applicable directly to the existing minutiae based templates.

The representation does not require detection of singular points or prioralignment of the templates. Un-

like MCC, we have even avoided the use of minutiae orientations to make the methodapplicable to the

widest variety of existing templates. We also propose a way of handling missingor spurious minutiae

points.

3.3 New Minutiae Representation : Arrangement Vector

The atomic unit of our representation is a fixed-length descriptor for a minutiathat captures its

distinctive neighborhood pattern in an affine-invariant fashion. This distinctive representation of each

minutiae allows us to compare two minutiae points and determine their similarity irrespective of the

global alignment.
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Figure 3.2 Process of creating the Arrangement Vector for minutia p5. In step1, we find the nearest n
minutiae of p5 (n=7). In step2, we take all combinations of m points out of those n points. In subsequent
steps, we take four points A,B,C,D and calculate invariants a,b,c,d,e,f (see Section 3.3.1).abcdefis the
required vector that describes the arrangement of p3,p4,p2,p1,p7 and p6 around p5.

3.3.1 Process of Calculating Arrangement Vector

The process of calculating the arrangement vector for a minutiap5, shown in Figure 3.2, is as follows:

• We calculate the nearestn neighbors of minutiap5. In Figure 3.2, letn = 7, and the nearest

minutiae are p1,p2,p3,p4,p6, and p7. We then enumerate all combinations of m points of the

aboven (
(

n
m

)

combinations).

• For each combination, we arrange them points in clockwise order. Now, we describe the local

geometry of thesem points around the minutia p5. As shown in Figure 3.2, let m=6, and let p3,

p4, p2, p1, p7 and p6 be the m minutiae arranged in clockwise order. With four points denoted as

A, B, C, D, we calculate the following invariant features for indexing :

Ratio of Areas : The first featureϕ is the ratio of the areas of the triangles formed by minutiae

tripletsA,B,C andA,B,D.

Ratio of Lengths of Largest Side : The second featureλ is the ratio of the lengths of the largest

side of the triangles formed by minutiae tripletsA,B,C andA,C,D.

Ratio of median and minimum angles : The third and fourth featuresα1 andα2 are the ratios

of the median and minimum angles of the triangles formed by minutiae tripletsA,B,C and

A,C,D.

These features are invariant to affine transformations [7] and remain unchanged even when the fin-

gerprint is translated, rotated, scaled or sheared. A weighted combinationof these features is computed
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to get one final invariant value that describes the local arrangement ofthesem points. By sliding the

points to regard A, B, C and D in clockwise rotation, m such invariants are calculated (i.e a,b,c,d,e and

f in Figure 3.2). Thus,abcdefrepresents an arrangement vector for minutia p5.

3.3.2 Enrolling a Fingerprint

The above vector depends on the initial choice of A, B, C and D points and isnot rotation invariant.

To achieve rotation invariance, we use cyclic permutations of this vector. Cyclic permutation of these

m invariants give us m vectors (i.eabcdef, bcdefa, cdefab, defabc, efabcd, fabcde). Each vector is

considered for hashing and a hash value is calculated from it by Equation3.1. In the equation,v is the

m length arrangement vector,H sizeis the size of the hash table andk is the level of quantization of

the invariant. This means that the quantized value is in the range [0,k]. The minutia ID, fingerprint ID

along with the arrangement vector is stored in the corresponding hash bin.Separate Chaining technique

is applied to resolve collisions that occur when two vectors map to the same hashbin. Summary of the

offline Enrollment stage is shown in Algorithm 1. The complete enrollment pipelineis shown in Figure

3.3.

Hindex =

(

m
∑

i=1

v[i] · ki

)

mod Hsize (3.1)

Algorithm 1 Enrollment Algorithm

INPUT→ Entire Fingerprint Database db, n, m, k
OUTPUT→ Model Hash Table
for all fingerprint imagefp in dbdo

for all minutiap in fp do
N → nearest n neighbors of minutia p
L → list of all possible combinations of m points
for all combination of m points in Ldo

find arrangement vectorv
C → list of all cyclic permutations ofv
for all vectorv′ in list C do

calculateHindex from v’ using eq.1
register item (Fingerprint ID offp, Minutia ID of p, Arrangement vectorv’ ) usingHindex

end for
end for

end for
end for

3.3.3 Querying the Index

For each minutiap′ in a query image and for each combination ofm points around that minutia,

we calculate its arrangement vectorv′′ as described earlier. The hash value ofv′′ is computed, and the
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corresponding list of fingerprints that contain a similar minutiae neighborhoodis obtained from the hash

table. Each minutia in the query fingerprint casts a vote for each fingerprint in its candidate list. Finally,

a list of top N fingerprints with the maximum votes is returned as the output of the indexing algorithm.

Summary of the on-line indexing stage is given in Algorithm 2. The complete identification pipeline is

shown in Figure 3.4.

Algorithm 2 Indexing Algorithm

INPUT→ Query image im, n, m, k, N
OUTPUT→ List of top N fingerprints sorted by number of votes received
for all minutiap′ in im do

N → nearestn neighbors of minutiap′

L → list of all possible combinations of m points
for all combination of m points in Ldo

find arrangement vectorv”
calculateHindex from v” using eq.1
lookup Hash Table withHindex and retrieve the corresponding list
for all item in the retrieved listdo

if v′′==item.Arrangement vectorthen
Increment vote count for FingerprintID corresponding toitem

end if
end for

end for
end for
Sort all fingerprints according to vote counts in descending order
Output list of top N as the indexing result

3.4 Experiments and Discussions

The experiments were conducted on the fourFVC 2002databases: DB1, DB2, DB3 and DB4. Each

database contains 800 fingerprints from 100 users (8 impressions per user). For each user, the first 4

impressions were placed in the gallery to build the hash table while the remaining 4 impressions were

used as probes. Experiments were conducted with different values of n, m and k. The best results

were observed for n=6, m=5 and k=28 andHsize = 1000000. Accuracy and efficiency are two main

indicators of the retrieval performance. In the experiments, the accuracy is denoted byCorrect Index

Power (CIP)where CIP = (Nci/Nd), Nci is the number of correctly indexed probe images, andNd is the

number of images in the database. The retrieval efficiency is indicated by thePenetration Rate, which is

the average percentage of database probed over all test fingerprints. Ideally, we would want a high CIP

and a low Penetration Rate.

28



Figure 3.3Process of enrolling a user in the hash table.

Figure 3.4Process of identifying a user given a query fingerprint image.
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Figure 3.5Results on FVC 2002 databases in case of 20% missing minutiae data(M), original minutiae
(N) and 20% spurious minutiae (S). (a) For FVC 2002 DB1 (b) For FVC 2002 DB2.

3.4.1 Dealing with missing and spurious minutiae

Handling the case of missing or spurious minutiae is a major challenge for minutiae based indexing

techniques [43], [55], [23], [7]. We deal with this problem by first choosing nearestn neighbors for a

minutia and then out of thesen, we choose all possible combinations ofm minutiae points. This rule of

choosing m out of n neighbors helps us to deal with missing and spurious minutia. Experiments were

done with datasets having 20% spurious minutiae and 20% missing minutiae. Minutiae were removed

and added randomly to the database. For each experiment, the following three cases were considered:

datasets in their original form; datasets with 20% spurious minutiae; and datasets with 20% missing

minutiae. As the plots show (Figures 3.5,3.6), even removing or adding 20% extra minutiae did not

affect the low penetration rates at the hit rate of greater than 97%. This shows that the scheme is able to

handle low quality noisy images, where there are lots of missing or spurious minutiae points.

3.4.2 Dealing with Distortions

Handling the case of non-linear distortions and transformations is a major challenge for indexing

algorithms that use global features [50] and [53]. We deal with this problem by using features, like ratio

of sides, angles and areas, which are invariant to geometric transformations like rotation, translation,

scaling and shear [7]. It is known that non-linear distortion happening inlocal minutiae structures

is small enough to be ignored compared with the much larger global non-lineardistortion [58]. The

arrangement vector, the proposed local minutia structure, can tolerate non-linear distortion as indicated

by the experimental results.
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Figure 3.6Results on FVC 2002 databases in case of 20% missing minutiae data(M), original minutiae
(N) and 20% spurious minutiae (S). (a) For FVC 2002 DB3 (b) For FVC 2002 DB4.

Hit Rate Minutiae Quadruplets [36] Proposed Algo.
60% 6.8 1
70% 8.68 1.9
80% 10.5 3.9
90% 15 8.6
95% 17.6 14
100% 21.5 57

Table 3.1Average penetration rates using the proposed and quadruplets [36] approaches at various Hit
Rates. The database used was FVC 2002 DB1.

Hit Rate Minutiae Quadruplets [36] Proposed Algo.
60% 6.31 2.8
70% 8.15 4.14
80% 11.8 8
90% 17.89 13.5
95% 22.89 17.5
100% 27.89 60

Table 3.2Average penetration rates using the proposed and quadruplets [36] approaches at various Hit
Rates. The database used was FVC 2002 DB1 with 20% minutiae removed randomly.
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3.5 Comparison of Results

The proposed algorithm is compared with the quadruplet based indexing algorithm in [36], which

is also a minutiae based indexing algorithm. We have selected this work for comparison as, to the best

of our knowledge, it has the highest accuracy among the affine invariant representations that have been

proposed till date. The Minutiae Cylinder Code uses a richer representation of the minutiae neighbor-

hoods and performs better in practice. However, their features have only translation invariance and

rotation invariance is achieved by orienting the cube using minutiae orientation.Other invariances are

not considered. While explicit invariances are not necessary for practical systems (as indicated by MCC

results), we prefer to use them as they provide a theoretically sound basisfor future analysis of errors.
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Figure 3.7Comparison of the proposed and quadruplets [36] approaches on FVC2002 DB1.

The evaluation protocol was based on [36], which uses Hit Rate as a measure of correct indexing.

Hit Rate is defined as CIP*100 in percentage. As the results in Table 3.1 andTable 3.2 show, the Hit

Rate of the proposed algorithm is better than that reported in [36] at lower penetration rates. Also, our

algorithm handles missing minutiae points better than the one proposed by Ross in[36]. However, the

quadruplet based algorithm performs better than ours for 100% Hit Rate. Figure 3.7 compares the Hit

Rate vs Penetration graphs of both the algorithms. The tests were run on FVC2002 DB1 database.

3.6 Time Analysis

The major benefit of using a fingerprint indexing algorithm is that it reduces the number of expensive

one-to-one matches resulting in significant reduction in the overall time for identification. To find out

the reduction in time we get by applying our indexing algorithm, we carried out experiments with the

FVC 2002 Db1 database. To find the time required for each identification test,each image in DB1 was
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Figure 3.8 Time analysis done for FVC 2002 DB1. (a) Shows the gain in time obtained by indexing
over 1:1 matching with entire database. (b) Shows the sub-linear scaling of our proposed algorithm with
the increase in database size.

used as a probe for identification against a gallery of other fingerprints.The gallery size was kept at

100, 200, 300 and increased till 800. This helped us to check how our algorithm scaled with increase

in size of the database. This is a very critical factor, as any good indexingalgorithm should scale well

when the database size is increased. A probe image is considered to be correctly classified, if at least

one impression from its class is present in the list returned by indexing algorithm.

3.6.1 Time Gained by Indexing

In the first experiment, we observed the time we gained by using our indexingalgorithm. Given a

probe image, we first calculate the time required for performing one to one comparisons with the entire

database. The comparisons were made using the FBI approvednfismatching algorithm [31] which takes

8.76 msecfor one matching. Then we applied our indexing algorithm to get a topN list and matched

the probe with the top N list only (for 97% CIP). We calculated the time required for this task. We

compared both the times for a database of size 100, 200, 300, 400, 500, 600, 700 and 800 fingerprint

images. We observed a significant gain in time when we apply our fingerprintindexing algorithm over

the naive entire one-to-one matching. The results are plotted in Figure 3.8 and the time values are shown

in Table 3.3.

33



Size of the database Time without Indexing Time with Indexing
100 0.876 0.134
200 1.752 0.265
300 2.628 0.397
400 3.504 0.529
500 4.380 0.661
600 5.256 0.794
700 6.132 0.925
800 7.008 1.057

Table 3.3 Showing the time benefit (in sec.) we obtain on indexing the database over 1:1 matching
without indexing

3.6.2 Scalability of the proposed algorithm

In the second experiment, we observed the time required by our indexing algorithm to output the top

N list sorted by votes. We experimented with different database sizes and noted down the time taken.

We observed that the time increase was sub-linear with the increase in database size as shown in Figure

3.8.

3.7 Summary

In this chapter, we tackled the problem of searching through large fingerprint databases known as

fingerprint indexing problem. Then an extensive literature survey was done on the existing fingerprint

indexing methods. These methods were classified according to the featuresthey use and we discussed

the weaknesses present in this method. Then we proposed a new representation for a minutia point

using only the locations of the points and no other high level features such as orientation flow and di-

rectional field were used. This makes the proposed approach applicableto a wide variety of existing

templates. Then we showed results of experiments on FVC 2002 databases.We conducted experiments

with missing or spurious minutiae points and showed that our algorithm was robust to appearance and

disappearence of points. Then we compared our results with the best indexing method in the litera-

ture using similar features. Our approach led to better results and was more tolerant towards missing

minutiae. Then finally, we did a detailed time analysis of our algorithm and showedthat our algorithm

scales sub-linearly with the increase in database size. Now, in the next chapter we extend our proposed

minutiae representation for constructing a fixed length representation of a fingerprint image. Then we

used the proposed fixed length representation for fingerprint matching purpose.
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Chapter 4

Learning Minutiae Neighborhoods: A New Binary Fingerprint

Representation

In the last chapter, we proposed a novel local minutiae based nearest neighbor structure calledAr-

rangement Vectorthat describes the geometric layout of neighboring points around a centralminutia

point. We used that structure for a hash based fingerprint indexing method and showed the usefulness

of the structure. In this chapter, we will extend that structure to handle the problem of matching two

fingerprints. The problem, with existing solutions and major challenges, was described in Chapter-2.

The technique proposed in this chapter, relies on the creation of high dimensional structure space based

on minutiae neighborhoods. The k-means clustering technique is then appliedto partition this structure

space into multiple clusters. The center of these clusters represent the learned neighborhoods from the

entire dataset. Fingerprints are then visualized as collection of these neighborhoods and a fixed length

binary representation for the fingerprint is then generated. The matchingof two is then reduced to sim-

ple computation of the hamming distance between the two binary vectors representing the fingerprints.

The experiments performed on the FVC 2002 and FVC 2004 databases show the effectiveness of the

proposed approach.

4.1 Representing a Fingerprint

Although what we get from a fingerprint sensor is usually a grayscale image of some resolution, only

a few fingerprint matching or indexing algorithms work directly on the grayscale image. Before the

matching stage, most of the algorithms have a pre-processing or a feature extraction stage where useful

information is extracted from the fingerprint. And then this information is used,instead of directly

superimposing or corelating the two grayscale images. Based on features extracted and stored, the

traditional fingerprint representation schemes can be classified as :

• Global Features based Representation: The global approach to fingerprint representation is

typically used for fingerprint indexing. These representations include global ridge-line frequency,

core points, orientation images and singular points. These features represent the global pattern of
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Figure 4.1 Global Representations of a fingerprint. (a) Original grayscale image (b) Corresponding
orientation image (c) Corresponding frequency map where lighter regionscorrespond to higher ridge
frequency.

the ridges in the fingerprint. An example of orientation image and the corresponding frequency

map is shown in Figure 4.1. One disadvantage of these representations is that they cannot be easily

extracted from poor quality fingerprints. Also, these representations donot offer good individual

discrimination and are not good at handling distortions. Further, the indexing efficiency of existing

global representations is not very good due to a small number of categories that can be effectively

identified and a highly skewed distribution of the population in each category.

• Local Features based Representation: The local approach refers to representing the finger-

print in the terms of minutiae sets, local ridge orientations and local ridge frequency. Ross in

his work [2], uses representative local fingerprint patterns to construct a feature vector. These lo-

cal representations have evolved from intuitive system design geared for fingerprint experts who

visually match fingerprints. These local representations are quite distinctive and generally outper-

form their global counterparts. Minutiae based representations are mostcommonly used as they

are compliant with most of the existing fingerprint suppliers and databases.One disadvantage of

such representations is that they suffer from misalignment problem and require a preliminary reg-

istration step. Also, minutiae extraction is not that simple and requires stages such as binarization,

thinning of the grayscale image and post processing to remove false minutiae.

• Combination of Local and Global : Certain schemes have been proposed which combine the

local and global information present in a fingerprint. Fingercode [19] proposed by Jain, utilizes

both local and global ridge descriptors and texture information. The features are extracted by

measuring the responses of radial image sectors to a gabor filterbank. Sha [30] proposed a better

version of fingercode as described in Section 2. Benhammadi [12] also proposed a new represen-
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tation called oriented minutiae codes based on minutiae texture maps. They use theresponse of

eight gabor filters to generate the codes.

Existing representations are surveyed in Section 2. Depending on the length of the feature vector

constructed, the traditional fingerprint representation schemes could also divided intofixed-lengthand

variable-lengthrepresentation schemes.

4.1.1 Fixed length representation

The length of such representations are independent of the number of minutiae points present in

the image. Generally, in this scheme each fingerprint in the database is represented by a fixed length

(usually binary) feature vector. Various methods have been proposedto transform a fingerprint image

(or a minutiae set) into a fixed-length quantized feature vector. Fingercode[19] encodes the local and

global texture around the core of the fingerprint. Tuyls in his work [37] proposed a novel quantization

algorithm to get fixed length representation based on local orientation of ridges. Xu [18] explained

the construction of a feature vector of floats via the spectral representation of a minutiae set. Julien

Bringer in their work [22], transform a minutiae set into a fixed-length quantized feature vector by

matching small minutiae vicinities (or neighborhoods) with a set of representative vicinities. One major

advantage of fixed length vectors representing fingerprints is that the matching stage becomes very fast.

It just reduces to a simple series of binary operations (AND, XOR) or calculating the hamming distance

between the two vectors which is very quick. Also, since the length of the vectors is fixed, the vectors are

easy to match and most of the times don’t require any prior alignment. Also, manytemplate protection

schemes like [37] and [3] require a fixed length vector as input. In short,fixed length representations

are easier to match and are suitable for the recent biometric template protection schemes.

4.1.2 Variable length representation

The most widely used and a classical representation for fingerprints is based on minutiae set which

is an unordered set of characteristic points (ridge endings and bifurcations). Fingerprint is stored as a

collection of minutiae points. The length of such representations depend upon the density of minutiae

points in the fingerprint. A good quality fingerprint contains between 60 to 80minutiae, but different

fingerprints have different number of minutiae. Matching now requires registering of minutiae sets of

different sizes which is computationally expensive and tough to intuitively visualize. Also, variable

length representations are tough to store on smart cards and are not at all suitable for biometric template

protection schemes. And ofcourse, a major challenge when designing such variable length representa-

tion is how to deal with the insertion and deletion of minutiae. However, variable length representations

are usually more tolerant towards non-linear distortions.
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Figure 4.2Process of generating Fingercode. First the core point is detected. Then image is tessellated
around the core point into sectors. Then each sector is normalized and is filtered with bank of Gabor
filters. The response is concatenated to get a fixed length fingercode.

4.2 Popular representations and their drawbacks

Many representations have been proposed in the literature. Fingercode[19, 30] is a fixed640 byterep-

resentation that makes use of both the overall global ridge pattern and the local ridge characteristic. The

fingercode is extracted by tessellating the image around the core point. The feature vector consists of an

ordered collection of texture descriptors from various sectors of the tessellation. The texture descriptors

are obtained by filtering each sector with eight oriented gabor filters and then computing the Average

Absolute Deviation of the pixel values in each cell. The features are concatenated to get the fingercode

as shown in Figure 4.2. The disadvantage of fingercode is that it requires the core point to be accurately

located which in itself is a difficult problem. Tico [34] proposed a48 bytelength representation using

Digital Wavelet Transform (DWT) features. Amornraksa [49] proposed a24 byterepresentation using

the Digital Cosine Transform (DCT) features. However, one drawback of transform-based representa-

tions is that they are not rotation invariant and rotation has to be handled explicitly. This was handled

by Xu in his work [18], in which he proposed a spectral minutiae representation based on Fourier-Melin

transform. By representing minutiae as a magnitude spectrum, he transforms aminutiae set into a fixed

length feature vector that does not need registration to compensate for translation, rotation and scaling.

But still the scheme is not very robust to non-linear distortions and missing/spurious minutiae.
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Figure 4.3 The process of creating the local structure for minutia X. In step1, we findthe nearest
n minutiae of X. In subsequent steps, we take two points A,B and calculate invariants a,b,c,d,e (see
Section 4.3).abcde is the required structure that describes the local neighborhood of central minutia X.

4.2.1 Need for new Representation

Most of the fixed length representations described above either cannothandle global transformations

like rotation and translation or are not tolerant towards small local non-linear distortions. This implies

that the accuracy of matching using the quantized feature vector representations still is very low as

compared to classical minutiae based matching. Also, most of these schemes find it very tough to handle

missing/spurious minutiae points. We really require a fixed length (binary prefered) representation

that is tolerant towards these distortions, can handle missing/spurious minutiae, is suitable for template

protection schemes, small enough to be stored on smart cards and has a minutiae-only construction so

that it can be applied to existing databases. In the next section we proposea new local minutiae structure

that captures the complete geometry of neighboring points around a centralminutia. This local structure

is an extension ofArrangement Vector(defined in the last chapter). We have added relative orientation

information into the Arrangement Vector to make it more robust. We then usek-meansclustering

to cluster this high dimensional space of local structures. From this we getk cluster centers, which

correspond to thek most prominent neighborhood structures learned from the fingerprint database. Then

every fingerprint in the database is expressed as a collection of these cluster centers to get a fixed-length

(of lengthk) representation for a fingerprint.

4.3 Proposed Local Structure

Our local structure is a fixed-length descriptor for a minutia that captures the geometry formed by its

neighboring points around that minutia. Such geometry is quite distinctive for aparticular minutia and
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Figure 4.4 The geometric features computed from∆AXB. Relative distances AX and BX, Relative
OrientationsφA andφB and angles∠B and∠A

remains the same even when the image is transformed. This distinctive representation of each minutiae

allows us to compare two minutiae points and determine their similarity.

The process of calculating the local structure for a minutia (X), shown in Figure 4.3, is as follows:

• We calculate the nearestn neighbors of minutia X based on their euclidean distances from X. In

Figure 1, letn = 5, and the nearest minutiae are p1,p2,p3,p5 and p6.

• We arrange then points in clockwise order. This is because the clockwise order of minutiae points

remains unchanged even when the fingerprint image is rotated, translated,scaled or sheared.

• Now, we describe the local geometry of thesen points around the minutia X. As shown in Figure

4.3, let n=5, and let p3, p2, p1, p6 and p5 be the n minutiae arranged in clockwise order. With

two points marked as A, B we calculate the following geometric features from∆AXB as shown

in Figure 4.4:

Relative Distances: We calculate the euclidean distances between points X and A,B. The first

feature is the ratio of these relative distances.

Relative Orientation : We calculate the orientations of points A,B with respect to the central

minutia X (relative orientation of A is theφA - φX , whereφA is the orientation of minutia

A). The second feature is the ratio of these relative orientations.

Angles of∆AXB : The next features we use the angles∠XBA and∠XAB of the ∆AXB. The

third feature is the ratio of these angles.

• These features are provably invariant to geometric distortions [7] and remain unchanged even

when the fingerprint is translated, rotated, scaled or sheared.
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Figure 4.5 Populating then-dimensional structure space. The local structures are extracted fromeach
fingerprint in the database. Then the structure space is partitioned intoK clusters via the k-means
algorithm.

A simple average of these features is computed to get one final invariant value (a as shown in figure

4.3) that describes contribution of∆AXB in the arrangement of thesen points around the minutia X.

By sliding the points A, B in clockwise rotation,n such invariants are calculated ( i.e a,b,c,d and e in

Figure 4.3). Thusabcdeis the local structure of lengthn that describes the geometric layout of these n

points around our central minutia X. The structureabcdedepends upon the initial choice of points A,

B and is not invariant to rotations. To achieve rotation invariance, we use cyclic permutations of this

structure. Alln cyclic permutations ofabcde(i.e bcdea, cdeab, deabc, eabcdandabcde) are calculated

and stored in a list. So now we have manyn dimensional feature vectors, where each vector represents

a minutiae neighborhood. Now we usek-meansto cluster this n-dimensional space as shown in Figure

4.5.

4.3.1 Partitioning the Structure Space and Representing a Fingerprint

Each fingerprint now can be represented as a set of minutiae neighborhoods. Each neighborhood

is generated from only minutiae points and is characterized by an length feature vector. This n-

dimensional feature vector can be viewed as a single point in n-dimensionalhyperspace. Thus, each

finger will have a collection of points (pertaining to all neighborhoods it contains) residing in this hy-

perspace. Given a set of training fingerprint images, an unsupervised learning algorithmK-meansis
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Figure 4.6A fingerprint image represented in terms of representative neighborhoods. Given a image, we
extract all the neighborhoods and map them to the nearest cluster.fp is theK length binary representation
of the fingerprint.

then applied to cluster this hyperspace. This results inK clustersc1,c2,c3......cK where each cluster

represents set of similar neighborhoods. The centroid of each clustercj , represented bymj can be seen

as the mean representative neighborhood for that set of neighborhoods that map tocj . So, in essence,

m1,m2,m3.......mK are the most prominent neighborhoods learned by our algorithm. Any fingerprint

now can be represented in terms of these representative neighborhoods. When a new fingerprint comes,

we extract all the neighborhoods from that and map each neighborhoodfeature vector to its nearest

cluster center as shown in Figure 4.6. So, now each fingerprint is a binary feature vectorfp of lengthK

wherefpi tells whether a neighborhood similar tomi is present in the fingerprint or not. So, we now

visualize fingerprints as a collection of neighborhoods rather than a grayscale image or minutiae sets.

4.4 Fingerprint Similarity Measure

Now given two binary vectorsfp1 and fp2, representing the two fingerprints, a formula based on

simple bitwise operations on the two vectors will give a measure of number of similar neighborhoods

present in them. Thus, simple bit-oriented coding can now be used as a measure for fingerprint similar-

ity. Similarity sbetween two binary vectors,fp1andfp2 is calculated by using 3 different metrics.
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The first metric used is theL2-normof the XOR of the two vectors .L2-normis the square root of

the number of one bits in the vector. The second metric used is theL0-normof the XOR of the two

vectors.L0-normgives the number of one bits in the vector. The third metric used isL0-normof the

bitwise AND of the two vectors. Equation 4.1 gives the XOR similarity between the two vectors, where

||fp|| is L2 norm forxor-L2metric measure and L0 norm forxor-L0metric measure. Equation 4.2 gives

the AND similarity used forand metric measure. A test run on FVC 2002 db1 showed that L2 XOR

(xor-L2) similarity measure gave the best results (Figure 4.7) and was used for remaining experiments.

s(fp1, fp2) = 1− (‖fp1 XOR fp2‖)/(‖fp1‖+ ‖fp2‖) (4.1)

s(fp1, fp2) = (‖fp1 AND fp2‖)/(‖fp1‖+ ‖fp2‖) (4.2)

10
−3

10
−2

10
−1

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

ROC curve for different metrics

 

 

xor−L2
xor−L0
and

Figure 4.7ROC curve for comparing the accuracy achieved by the three differentmetrics.xor-normis
the L2 norm of the XOR.xor is the L0 norm of the XOR andand is the L0 norm of the AND of the two
vectors.

4.5 Experiments and Results

Experiments were conducted on FVC 2002 db1, db2, db3 and FVC 2004 db1 and db2 databases.

Each database consists of 800 impressions from 100 different fingers, 8 impressions per finger. The

minutiae were extracted using the standard NIST MINDTCT algorithm[14]. Theperformance evalua-

tion protocol used in FVC 2002 (same as in [9]) has been adopted. Experiments were done for different

values ofk andn. The best results were obtained for cluster size of 1000 (i.e k=1000) and neighborhood

size of 5 (i.e n=5). A total of 14,000 genuine matches (2800 per database)and 24,750 imposter matches
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(4950 per database) were done. The ROC curves with different number of clusters have been plotted be-

low. It was observed that the accuracy increased with increase in number of clusters upto an extend and

then it started decreasing gradually after 1000 clusters as shown in the plot below. The ROC curves and

the genuine-imposter class distribution curves for the FVC datasets are shown on the next page (refer to

Figures 4.10, 4.11 and 4.12). The results have been compared with spectral minutiae representation [18]

and binary representation through minutiae vicinities [22] (see Figure 4.9) .These are the two major

fixed-length quantized fingerprint representations in the literature.
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Figure 4.8 ROC curve for FVC2002 db3 database showing the increase in accuracy with the increase
in number of clusters.

4.6 Summary

We proposed a novel binary fixed-length representation for a fingerprint constructed from minutiae-

only features. We captured the local geometry around a minutia point into ourlocal arrangement

structure. We then applied unsupervised learning to learn prominent minutiaeneighborhoods from the

database. A fingerprint was then represented as a collection of neighborhoods resulting in a fixed 1000-

length binary representation. The matching of two fingerprints is then reduced to a sequence of bitwise

operation which is very quick. Experiments conducted of FVC 2002 and 2004 databases showed the

effectiveness of our representation as compared with the major fingerprint representations existing in the

literature. Our representation is tolerant towards distortions, can be stored easily on light architectures

such as smart cards and is suitable for biometric template protection schemes.
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Figure 4.10ROC curves for FVC databases. (a) ROC curve for FVC 2004 db1,db2. (b) ROC curve for
FVC 2002 db1,db2,db3.
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Figure 4.11Genuine and imposter class distribution curves for FVC 2004 databases.
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Figure 4.12Genuine and imposter class distribution curves for FVC 2002 databases.
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Chapter 5

Conclusions and Future Work

The major problem we try to solve is the use of local geometric information present around a minu-

tia point for the purpose of fingerprint indexing and matching. Many existing methods also use such

information in the vicinity of a minutia point for the purpose of indexing. However, they also use extra

information such as orientation flow and core points. We use only the spatial location of neighboring

points to come up with a new local minutiae structure called anArrangement Vector. This allows us

to maintain compatibility with all possible templates, while keeping the storage requirements to a min-

imum. The arrangement vector is invariant to distortions and can handle the partial overlap problem

of fingerprint acquisition. We use this structure to come up with a hash basedindexing algorithm to

speed up large scale fingerprint retrieval. We propose thechoose m out of n ruleto handle missing or

spurious minutiae. Then we extend the arrangement vector by adding minutiaeorientation information

to it. We include more robust features to the arrangement vector and use it tosolve the problem of

matching of two fingerprints. In the end, we apply unsupervised clusteringto find the common minutiae

neighborhoods. We represent each fingerprint as a collection of neighborhoods rather than a grayscale

image or a minutiae set. This results in a fixed length binary representation of thefingerprint, which is

then used for matching purposes. Experiments were carried out on the publicly available datasets from

FVC 2002 and FVC 2004 databases for comparison with existing methods.

The goal of any representation is to capture as much of the distinctive information available in a

fingerprint, while discarding the variations between multiple impressions of the same finger. The exper-

iments we conducted showed that our representation was able to capture most of the geometric details

around minutiae points and is invariant to distortions. The matching is then reduced to bitwise opera-

tions between the vectors representing the two fingerprints. We compared our results with two major

quantized fingerprint representations [18, 22] from the literature and demonstrated our method to be

more accurate in most practical situations.

One way in which we could extend our work is to improve the robustness and distinctiveness of

the arrangement vector. Possible features that can be included for this purpose include ridge count

between neighboring minutiae, relative minutiae orientation with respect to X-axis, type of minutia,

and quadruplet features[36]. Another possible extension is to use deep learning algorithms to learn
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what a fingerprint really is. For this approach, we require massive amounts of labeled fingerprint data,

which is becoming available with large scale identification systems. Also, we coulduse our minutia

representation in conjunction with similar representations such as MCC and k-plet. This combined

representation could outperform any of the single representations. We could also use our proposed

binary representation for a fingerprint for the purpose of template protection and use it in the research

area of biometric cryptosystems.
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