MINUTIAE LOCAL STRUCTURES FOR FINGERPRINT INDEXING
AND MATCHING

Thesis submitted in partial fulfillment
of the requirements for the degree of

MS by Research
in
Computer Science

by

Akhil Vij
200702003
akhil.vij@esearch.iiit.ac.in

CVIT
International Institute of Information Technology
Hyderabad - 500 032, INDIA
June 2013



Copyright@© Akhil Vij, June 2013
All Rights Reserved



International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Minutiae Local Stmestdor Fingerprint
Indexing and Matching” by Akhil Vij, has been carried out under my suvigeon and is not submitted
elsewhere for a degree.

Date Adviser: Prof. Anoop Namboodiri



To My Parents and My Guide



Acknowledgments

| would sincerely like to thank my guide and mentor Dr. Anoop Namboodiri foghidance during
the last 3 years. He has given me complete freedom as a researcher.wis no pressure of constant
meetings and his work style really helped me in my research and and achienseads responsiblity.
| was completely free to express my own ideas and work on them. | think sdepémdent thinking is
very important for good research. Also, we had various discussiatisgle academic boundaries which
really affected me in my stay at llIT. | sincerely thank him for all the abdwgould also like to thank
Dr. C.V Jawahar, Dr. PJ Narayan and Dr. Jayanthi Siwaswamy for glaéiance in various courses
related to machine learning and computer vision which greatly helped me in narekse biometrics.

Then | would like to thank my CVIT lab mates Atif, Siddhartha, Shrikant, Rohit,h#awi, Pra-
teek, Madhulika and Rohan for their constant help and support. Thimat&dgement would not be

complete without thanking my parents who have constantly supported me andit@dtne to work
hard.



Abstract

Human beings use specific characteristics of people such as their fzatiate’s, voice and gait to
recognize people who are familiar to us in our daily life. The fact that marnfi@physiological and
behavioral characteristics are sufficiently distinctive and can be usedutomatic identification of
people has led to the emergencé@metric recognitioras a prominent research field in recent years.
Several biometric technologies have been developed and successfilbyed around the world such
as fingerprints, face, iris, palmprint, hand geometry, and signature.ofalt these biometric traits,
fingerprints are the most popular because of their ease of capturectilistiress and persistence over
time, as well as the low cost and maturity of sensors and algorithms.

This thesis is focused on improving the efficiency of fingerprint recogniigstems using local
minutiae based features. Initially, we tackle the problem of large scale fingematching called
fingerprint identification. Large size of databases (sometimes containinghbiltibfingerprints) and
significant distortions between different impressions of the same fingsoamne of the major challenges
in identification. A naive solution involves explicit comparison of a probedipgnt image/template
against each of the images/templates stored in the database. A better Appre®ed up this process
is to index the database, where a light-weight comparison is used to regudatéipase to a smaller set
of candidates for detailed comparison.

In this thesis, we propose a novel hash-based indexing method to gpéiaderprint identification
in large databases. For each minutia point, its local neighborhood informstiomputed with features
defined based on the geometric arrangements of its neighboring minutiae pbieteatures proposed
are provably invariant to distortions such as translation, rotation and gcdlimese features are used
to create an affine invariant local descriptor calledarangement Vectomwhich completely describes
the local neighborhood of a minutiae point. To account for missing andcgfuminutiae, we consider
subsets of the neighboring minutiae and hashes of these structuresdrmm uise indexing process.
Experiments conducted on FVC 2002 databases show that the appragagteigffective and gives
better results than the existing state-of-the-art approach using similar fféitures.

We then extend our indexing framework to solve the problem of matching ofihgerprints. We
extend the proposed arrangement vector by adding more features tbritadang it more robust. We
come up with a novel fixed-length descriptor for a minutia that captures its dis@riocal geometry.
This distinctive representation of each minutiae neighborhood allows usipare two minutiae points
and determine their similarity. Given a fingerprint database, we then uspemised K-means cluster-
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ing to learn prominent neighborhoods from the database. Each fingdagmepresented as a collection
of these prominent neighborhoods. This allows us to come up with a binayI&éxgth representation
for a fingerprint that is invariant to global distortions, and handle smadil loon-linear distortions. The
representation is also robust to missing or spurious minutiae points. Givelimtyasprints, we repre-
sent each of them as fixed length binary vectors. The matching problemmetiaces to a sequence of
bitwise operations, which is very fast and can be easily implemented on snraléeatures such as
smart phones and embedded devices. We compared our results with theistimgestate-of-the-art
fixed length fingerprint representations from the literature, which detradas the superiority of the
proposed representation.

In addition, the proposed representation can be derived using only théiaeipositions and orienta-
tion of a fingerprint. This makes it applicable to existing template databasedtratontain only this
information. Most of the other existing methods in the literature use some addlitibmanation such
as orientation flow and core points, which need the original image for cotigrutd he new proposed
binary representation is also suitable for biometric template protection schechéssanall enough to
be stored on smart cards.
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Chapter 1

Introduction

This thesis is organized in four main parts. In the first part in ChapteeXjive a brief introduction
on biometrics and fingerprints. We talk about various biometric traits sucicasifis, hand geometry
etc and see why fingerprints are the most popular and widely used in bioretinientication systems
around the world. Then, we have a look at the structure of a fingeratriatglobal level and at a
local level. We look at the functioning of a fingerprint recognition systerveirification mode and in
identification mode. Readers who are familiar with biometrics and functioninggérprint recognition
systems can skip this chapter and move on to the second part. In the sacdndhapter-2, we discuss
about the problem of matching two fingerprints. We talk about matching usiglgfeatures such as
core points, ridge structure etc and see how matching at a local level nsmgiae-based features
leads to a better accuracy. We do an exhaustive survey on minutiagdbaaéfingerprint matching
techniques. Most of these techniques build local minutiae structures fuamdnt distances and angles
in the neighborhood of each minutia. We have a look at existing local stescturd their weaknesses
and lay motivation for a new local minutia structure. Then in the third part i@, we look at the
problem of fingerprint identification over a large database. We propossv minutiae structure called
anArrangement Vectathat describes the geometric arrangement of neighboring minutiae pointslarou
a central minutia. We propose a hash-based novel indexing mecharnigrausangement vectors and
show its effectiveness. In the last part of thesis (Chapter-4), wa@xtee Arrangement vector into a
fixed length binary representation for a fingerprint and tackle the probfdingerprint matching. We
finish this thesis in Chapter-5 by summarizing our main contributions and theidirgeén which we
can extend our work.

1.1 Biometrics

Recognizing people is a fundamental activity at the heart of our sociehydaity life. For many
activities and applications, ensuring the identity and authenticity of peopleresrequisite. Biometric
identification, orbiometrics refers to identifying people based on their unique characteristics.eThes
distinctive unique characteristics are called biometric identifiers (or simply biese Physiological



biometrics, like fingerprints or hand geometry, are physical characterggticerally measured at some
point in time. Behavioral biometrics, like signature , on the other hand, dafdise way some action
is carried out and are learned over time. Most of the biometric identifiera acanbination of phys-
iological and behavioral characteristics of a person. For examplesrfingts may be physiological
in nature but the usage of the input device (how user places a fingethevéingerprint scanner etc.)
depends on the person’s behavior. Fingerprints, face, iris, retaif, signature and speech are few
examples of such biometric identifiers [20]. Figure 1.1 shows some common thicenesed in cur-
rent applications. Biometric based authentication provides many advaatagyesonventional methods
of identification. Conventional methods of authentication rely eithepassessionsr onknowledge
Possessions include physical possessions such as keys, passga@tsartcards. Knowledge includes
pieces of information that are supposed to be kept secret like passatdbass phrases. But both of
these can be easily misplaced, lost, forged, stolen, forgotten, or slradetb not offer particularly high
security. Biometric identifiers on the other hand are less likely to be stoleracedwith other people.
These can also be used to provide an extra layer of security over tradliti@hods of authentication.
For example, in many applications, both conventional and biometric baseddsetfeocombined to get
better security. Passport is one such possession with face and signiatuetrics.

The importance of biometrics in the modern technology era has been reidfbycthe need for
large-scale identity management systems whose functionality relies on thatacdatermination of
an individual's identity in the context of several different applicationsarples of these applications
include distributing government services/products to citizens, perforreimgte financial transactions,
crossing a border etc. The proliferation of web-based services ¢aline banking) and the deploy-
ment of decentralized customer service centers (e.g., credit cardsunther underscored the need for
reliable identity management systems that can accommodate a large numbevidtiaddi

1.1.1 Selecting Biometric Identifiers

Ofcourse, the question now is what biometric identifier to use if you areniegig biometric authen-
tication system. This is not such a simple question and the answer is very épplgecific. However,
there are certain requirements that a good biometric identifier should satisfgden to achieve high
performance and security. These include the five requirements dekbyilielarke [42]

e Universality : Every person should have the biometric characteristic.

e Uniqueness :No two persons should have exactly the same biometric characteristic.

Permanence :The biometric should be sufficiently invariant over a period of time.

Collectability : It should be practically possible to measure the biometric with some sensing
device.

Acceptability : Individuals in the target population that will utilize the application should have
no strong reasons to object to collection of the biometric.



(e)

Figure 1.1 Examples of biometric identifiers that are used for authentication purpBbgsical identi-
fiers include face, fingerprint, hand geometry and iris while behavioealtifiers include signature and
voice.

It is the combination of all these attributes that determines the effectivehagsadicular biometric
and the corresponding biometric based authentication system. Also, aalrhidioetric system should
have acceptable recognition accuracy and speed, with reasonahleceegequirements, harmless to the
users and sufficiently robust to various fraudulent methods.

1.1.2 Popular Biometric Identifiers

A number of biometric identifiers are in use in various applications (See Figtije There is no
single identifier that satisfies all of these requirements absolutely. A few caiymeed biometrics
with their pros and cons are discussed below.

e Face : Face appearance is a particularly compelling biometric because it is one ofate
common methods of recognition that humans use in their visual interactions. réamgnition
scores very high on acceptability as the methods of acquiring face images-intnusive. But
face as a biometric scores low in uniqueness and permeance. Also,féatiales can change
over the course of time. It is also a big challenge to develop face recogiatdmiques that
can tolerate the effects of aging, facial expressions, slight variationsiging environment and
facial disguise. As a result even automated facial recognition systemgeexxtensive human
intervention.

e Iris: The colored part of the eye bounded by the pupil and sclera is the ingy beh in texture
it is posited to be distinctive for each person and each eye [24]. Iredmsgthentication systems
are relatively modern and highly accurate and fast. But iris as a biometiesery less in
collectability and acceptability. The design of an iris image capture device tbabvenient and
unobtrusive is a real challenge. Also, capturing an iris image requiregisamnt cooperation
from the user, both to register the image of iris in the central imaging area amdtwe that the
iris is at a predetermined distance from the focal plane of the camera.



e Hand Geometry : Hand geometry refers to the geometric structure of the human hand. Many

geometric features like length and width of the fingers, aspect ratio of thregdingers, width
of the palm, thickness of the palm etc are relatively invariant and unique todandual. But
hand geometry as a biometric scores a bit low on universality, uniquengégeaneance. On the
other hand, hand geometry measurements are easily collectible and naivnasicompared to
iris.

e \oice : Voice recognition (or speaker recognition) tries to identify individuals @y they sound
when they speak. Voice capture is unobtrusive and voice print is @ptadie biometric in almost
all societies. As a result, voice as a biometric scores very high on collectabititacceptability.
But on the other hand, voice is not distinctive and unique. It gets tougletdifgd an individual
from a large database of identities given only voice as a differentiatingrfadlso, voice gets
affected by a person’s health, stress, emotions, age etc. And voiaasiy be forged, if your
mimicking skills are extraordinarily high.

e Signature : The way a person signs can be said to be unique to that person. Sigastare
biometric scores high on collectability and acceptability. But a signature caadilg forged and
score low on universality and uniqueness. Also, a person’s signadee: not be permanent and
since this is a behavioral biometric, this can change over time.

Most of these famous biometrics score high on some grounds but thendioge when it comes to
acceptability or collectability. Fingerprints score high on all of the aboveréaggirements and hence,
are used most widely in today’s biometric authentication systems.

1.2 Fingerprints

Fingerprints are perhaps what the majority of people immediately associateiavitbtbics. Finger-
prints have a long and interesting history of being used as a reliable bionwmatitehtifying a person
[17]. Fingerprints are popular because of their ease of capture,aigtiness and persistence over time.
Fingerprints are part of an individual’s phenotype and hence arevegdkly determined by genetics.
Even fingerprints of identical twins are quite different in structure [#fgerprints score very high on
uniqueness and it is widely believed in the forensic community that no two pbap&identical ridge
details. History of fingerprints is quite interesting.

1.2.1 Evolution of Fingerprinting

e There is evidence that the Chinese were aware of the individuality ofrfinges well over 5000
years ago [21]. But it was not until the late sixteenth century that the madezntific fingerprint
technique was first initiated.
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Figure 1.2 Global and Local Structure present in a fingerprint. (a) The ovelaltiay ridge and valley
structure (b) The local structure showing minutiae points and pores.

¢ In 1684, Nehemiah Grew, an English plant morphologist published thes@irsntific paper re-
porting his study on the ridge, furrow and pore structure in fingerprints.

e In 1823, Purkinje proposed the first fingerprint classification scheasedon nine categories.

o William Herschel (around 1859) was the first european to recognizealne of fingerprints for
identification purposes.

e In 1880, Henry Fauld suggested the individuality of fingerprints baseshpirical observations.

e During 1888-1892, Sir Francis Galton conducted an extensive stufiggerprints. In his works,
he divided the fingerprints into three major classes and introduced themarfeninutiae features
for comparing two fingerprints.

e But modern era of fingerprint recognition systems began with developrhtrd “Henry Systerii
of fingerprint classification during 1899-1900. This system was madedward Henry and his
two Indian assistants in 1899 [21]. According to this system, five classes mweoduced as
shown in Figure 1.3. This system was adopted and refined by the FBI [13]

¢ In the early twentieth century, fingerprint recognition was formally acakepgea valid personal
identification method and became a standard routine in forensics.
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Figure 1.3Henry Fingerprint Classification Scheme.

1.2.2 Structure and Individuality of Fingerprints

Fingerprints are fully formed at about seven months of fetus developarghtemain the same
throughout the person’s life (conformance to permeance requirentfeanty. scars or superficial damage
occur, the skin will grow back in exactly the same arrangement as at bhty 8re even one of the last
features to decompose after death. A fingerprint is the reproductiofirfertip epidermis, produced
when a finger is pressed against a smooth surface. As we can see ia Eiguthe most evident
structural characteristic of a fingerprint is a pattern of interleaved sidtiee dark areas) and valleys
(bright areas). This ridge-valley pattern creates the distinguishingrésaai a fingerprint which are
identified at three levels.

At a global level, the ridges tend to form shapes characterized by regions of hightate and
numerous ridge terminations. These regions are c&ladularities(see Figure 1.4) and are of three
types.

1. delta (represented by the syml);
2. loop (represented by the symlifq);

3. whorl (represented by the symHo));

Another global feature in a fingerprintis t®re. Core is defined as the center of the north most loop
type singularity. Often the core is used as a reference point to align twagitigis prior to matching.



Figure 1.4 Basic Singularities loop, whorl and delta. The core point as defined tiorek.2.2 is also
shown.

The core and singularities are useful to classify fingerprints but ardiscriminating enough to match
two fingerprints.

At the local level, other important features, called minutiae and pores ciubeé in the fingerprint
patterns. Minutiae points refer to the various ways that the ridges can tentiuous. The most
common minutiae points are shown in Figure 1.2. By increasing the resolutidmet tihe fingerprint
image is captured (atleast 1000 dpi), it is possible to extract very minute grgohetails like scars,
ridge width, breaks etc. The most important low level details are small pointslowveidge line called
sweat pores. These sweat pores are highly distinctive and arow@ 20res are sufficient to recognize
a person. But they are not used that much in current biometric authemisgitems because the image
quality and the acquisition resolution has to be very high.

1.3 Fingerprint Recognition Systems

A general fingerprint recognition system can be viewed as a pattevgniion system that generally
offers a binary decision to a given input. The first time an individual aske®metric systems, he/she
has to go through thenrolimentphase. During the enrollment, the fingerprints from that individual is
captured and stored in the database (See Figure 1.5). In the sultsesggrfingerprints are captured
and compared with the information stored at the time of enroliment. Fingerpdagmnéion systems
normally authenticate people in two modes :

¢ \erification Mode : In this mode, a person’s identity is authenticated by comparing the captured
fingerprint with the person’s fingerprint image/template already stored inldksbase. It is a
one-to-one matching process as shown in Figure 1.6.
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Figure 1.6 Fingerprint Recognition System in Verfication mode.
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Figure 1.7 Fingerprint Recognition System in Identification mode.



¢ Identification Mode : In this mode, the system tries to tell us whether a fingerprint query can
find a match in the database or not. Therefore, in this mode the system t®odecto-many
comparison to establish an individuals identity (or fails if the subject is natledrin the system
database) without the subject having to claim an identity. It is a one-to-matthimg process as
shown in Figure 1.7.

1.4 Accuracy Measurements

A general biometric system, irrespective of the biometric identifier being asddthe mode of
operation, can be viewed as a pattern recognition system that offerarg diecision to a given input.
Such a system does make errors and we need a statistical way of meaisenrggformance of such a
system. In the coming two sections, we discuss various metrics that help usgnedactly that.

1.4.1 Fingerprint recognition systems in Verification Mode

Lets consider fingerprint recognition system in verification mode, whengefprint is presented
as input to the system we expect a binary decision of the type matched/rioheahavith the template
already stored in the database. However, due to imperfect sensingreneint, alterations in user’s
finger (cuts, bruises etc.), sensor faults and variations in the usernadtitas with the sensor, the
system may output the wrong answer. We need a framework through wieiatould measure the
system’s errors and performance. The Bayesian decision theoryofi#4$ all we need to measure
errors in biometric systems.

The response of the system is usually a similarity sedteat measures the similarity between the
two images (or minutiae sets). The system has to output a final binary delsaged on this similarity
s. This decision is usually by a system threshbldpairs of images (or minutiae sets) with similarity
score greater than or equal to the threshidde calledmnatchingpairs; whereas those pairs producing
score less than the threshdldre callechon-matchingpairs. A similarity score is known asgenuine
scoreif it is a result of matching of fingerprints of the same user. It is known asngoster scoref
the two compared fingerprints belong to different users. A good fimgermpatching algorithm leads to
good separation between genuiune scores and imposter scores.

A fingerprint verification system can make two type of errors :

e False Match In this case, the system mistakes two fingerprints coming from differentichudils
to be a match. This is also calléalse acceptanceFalse Match Rate(FMR) is defined as the
probability that an imposter scores exceeds the threshold

e False Non-MatchIn this case, the system mistakes two different impressions of the same finge
as a non-match. This is also calliadise rejection False Non-Match Rate(FNMR) is defined as
the probability that a genuine score falls below the threshold
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Figure 1.8 Genuine and Imposter Distributions. Also, shown are False Non-Match dakd-alse
Match Rate for a given threshold (t) value

To evaluate the accuracy one must collect scores produced from a&nohdenuine matches (these
scores form what is called ttgenuine distributiopand scores produced from a number of imposter
matches (these scores form tingposter distributiopn An example graph of FMR and FNMR over
genuine and imposter distributions is shown in Figure 1.8. Both FMR and FNiMRuactions of
the system threshold If t is decreased to make the system more tolerant, the FMR increases and the
FNMR decreases. ffis increased to make the system more secure, then FMR decreases aNtifRe F
increases.

There are other measures also for measuring the system’s perfornifaneeplot a curve between
FMR and FNMR, we obtain an important curve calledeiver operating characteristidROC curve).

Also, there are other metrics also [9] like :

e Equal Error Rate (EER) denotes the error rate at the threshold t where the FMR and FNMR
values are identical.

o ZeroFMR: is the lowest FNMR at which no false matches occur.

ZeroFMR (t) = min(FNMR (1)[FMR (t) = 0) (1.1)

¢ ZeroFNMR: is the lowest FMR at which no false non-matches occur.

ZeroFNMR (t) = min(FMR (£)[FNMR (t) = 0) (1.2)

An example of curve showing FMR(t), FNMR(t) values along with the abovtiaseis shown in
Figure 1.9. The question still remains that for a specific system how shouldet the system threshold
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Figure 1.9False Non-Match Rate and False Match Rate for a given threshold (t) vdk@shown are
points corresponding to ZeroFMR, ZeroFNMR and EER.

t, which controls the performance of the system. This is pretty much applicgtémifis. For example,
some highly secure control applications like nuclear power plants etc. \eill aery low FMR. In this
casef should be high as the primary objective is not to let in any imposters. Some legitisetemay
be denied access in this case but that is a trade-off we have to accept.

1.4.2 Fingerprint recognition systems in ldentification Mode

FMR and FNMR are used to evaluate the performance of a matching algoritamlyih the Iden-
tification mode, a back-end indexing algorithm operates which narrows dogvsize of the database
to be searched. Then the matching algorithm only works with the small pare afatabase which is
outputted by the indexing algorithm. Hence, the goal of the indexing algorithmriarrow down the
number of hypothesis which need to be considered for subsequentimgatdrhe output of such an
algorithm is the top N hypothesis. If the query fingerprint is present in theflidp N hypothesis, we
take the indexing result as the correct result. Correct Index Powe) {€the metric defined [7] to
evaluate performance of indexing algorithms. CIPNz;(N;), whereN,; is the number of correctly
indexed query images, ang, is the total number of images in the database. The retrieval efficiency
is indicated by théPenetration Ratewhich is the average percentage of database probed over all test
fingerprints. Ideally, we would want a high CIP and a low Penetration Rate.
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1.5 Motivation and Problem Statement

The problem we deal with in this thesis is using local minutiae structures foruttpmge of finger-
print indexing and matching. We have chosen to use local minutiae informagicaube that is more
tolerant and robust against global transformations and non-lineartaistoand gives better results than
using global information. As we will see in the second chapter, many locahingtéechniques have
been proposed in the literature but still the problem is far from solvedTimere is still a need for more
accurate, fast and efficient algorithms. We design a new minutiae-onlystoaature. We use that local
structure for the purpose of fingerprint indexing as we will see in the thegpter. Then we extend that
local structure to get a new fixed length representation for fingerpritdirimg. The main motivations
that led us to design a new local minutiae structure and extend it to repeeiegérprint are :

e Need for more accurate minutiae-only algorithmslany of the existing techniques use several
extra features besides minutiae information [10]. These features areitatiopally expensive to
compute and there is no standard definition of these features since taegegsere not defined
in the standard minutiae template ISO/IEC 19794 [1]. We want to keep the temizatass
minimum as possible so that algorithm could be used on light architecturegsticbxpensive
smart cards etc.

¢ Need for new fixed length fingerprint representatiorery few fixed length representations have
been proposed in the literature. We need a new and a more robust figtld tepresentation that
can tolerate non-linear distortions and global transformations.

e Suitability for template protection techniquedBiometric template protection is an area which
is rapidly growing because of its great benefits (like protection againskattaonreversibility,
diversity etc). Many recently proposed template protection techniquesaf&7][3], require a
fixed length representation of the biometric identifier as the input.

1.6 Summary

This chapter gave a general introduction on biometrics. We had lookiatisdsiometric identifiers
and we also saw some basic requirements that a biometric identifier should fii#h we saw that
fingerprint as a biometric fulfills almost all of the above requirements. Themave a brief history
of how present day fingerprint authentication systems have evolvezh Wk had a look the structure
of a fingerprint at global and at local level. Then we discussed alumationing of a present day
fingerprint authentication system. We saw that present day systemseojpefieo modes : verification
and identification. Then we saw how to measure the accuracy and penfcgrafisuch systems in both
modes. Finally, we laid down the motivation for this thesis and the existing chalethgt are present
and need to be tackled.
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Chapter 2

Existing Minutiae Based Structures - A Survey

In the previous chapter, we gave a brief overview of biometrics and biameéntifiers. We talked
about the structure of fingerprints and functioning of fingerprint antibation systems. Then we looked
at how to evaluate the performance of these systems and the need foabettercy and performance.
In this chapter, we first discuss existing fingerprint matching technigeession 2.1). We classify
these techniques as local or global in nature depending on the fingdegartiores they use for matching
purposes. Then we look at the weaknesses of global matching and howimgeat a more local level
can improve performance . Finally, we do a thorough survey of existin@iitex on local minutiae
based matching (section 2.2). Then we look at the weaknesses of tapteugthods and lay motivation
for a new fingerprint representation using local minutiae structureidee?.4 and 2.5).

2.1 Matching Two Fingerprints

The problem of matching two fingerprints (generally known as fingerpenfication) can be de-
scribed as given two fingerprints, we need to return either a degramitdirity or a binary decision
(matched/non-matched). Fingerprint Recognition at its very core is a #iD jpattern matching prob-
lem and has been researched extensively in the Patter Recognition comrulamityeffective solutions
have been proposed in the literature, but the problem still cannot be eaflély solved one. There
is still need for more accurate methods as the performance of most of thesgabalgorithms is still
lower than the theory estimation. Also, we need more faster algorithms as thed gieedatabase even
after filtering and indexing is quite large.

2.1.1 Major Problems Faced

Large intra class variability is one of the major problems that we face in matchm§jrigerprints.
Intra-class variation refers to the large variability in different impressadribe same finger. There are
many reasons that lead to such high intra-class variation :
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e Global transformations: The same finger may be placed at different lasatiomay be rotated
at different angles with respect to the sensor surface during diffaguisitions. This can result
in a global translation or rotation of the fingerprint area. Any good alguoritlas to account for
global transformation like translation, rotation, scale and sheatr.

e Partial Overlap: These global transformations mentioned above oftep paut of the fingerprint
area to fall outside the sensor’s field of view, resulting in a smaller ovedapd®en the foreground
areas of the two fingerprints. In simpler terms, a lot of minutiae points presengifingerprint
may not be present in the other fingerprint. Dealing with these missing dogpuminutiae points
is a major challenge for most of the fingerprint matching techniques.

¢ Non-linear distortions : Non-linear distortion refers to the compressiotretching of skin due
to skin plasticity. This comes up as we try to map the 3D shape of a fingerprinthen2® surface
of the sensor. The components of the force that are non-orthogotied s@nsor surface produce
non-linear distortions. These distortions are quite local in nature andih@mtioese distortions is
a major open challenge. There are other reasons also which lead to igtesgotts [6]. These
include the sensor orientation with respect to the finger, the applied pees$ise disposition of
the subject, the motion of the finger prior to its placement on the sensor, thensksture and
the elasticity of the skin. Also some users apply excessive force to crdatgiamal elastic
deformations. The effect of these non-linear distortions is quite largeawsnsin Figure 2.1.

e Pressure and skin condition : We would ideally want to capture the ridgestelof a fingerprint
with high accuracy. For this, part of the finger being imaged has to be inrami€ontact with
surface. But in real life, because of pressure, dryness, skiagissweat, dirt, humidity etc we
get a non-uniform contact and hence, a noisy image. Such noisy imagydtsimea lot of spurious
minutiae points which the algorithm has to deal with.

2.1.2 Existing Solutions

Many effective methods have been proposed in the literature. Depeuagargthe fingerprint fea-
tures used, the methods can be classified as :

Correlation-Based Matching : These methods usually work directly on fingerprint images by su-
perimposing the two images and computing the correlation between the comdasppixels for
different alignments. Usually a cross-correlation measure represeairtiiigrity between the two
images (like sum of squared difference of intensity values) is computetdifetly computing
correlation is not a good solution because :

e Because of non-linear distortions, two global fingerprint patternsatam reliably corre-
lated.
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Figure 2.1 Effect of Non-linear distortion. Shown are two different impressionfhefsame finger from
the FVC 2004 database. The same ridge line is straight in one image and tutkie other image due
to non-linear distortion.

e Skin condition and finger pressure cause the image’s brightness, stancaridge thickness
to vary significantly across different impressions of the same finger. Riapiescorrelation
of pixels will not give you a good result in this case.

e Pixel correlations have to be computed for many alignments. Since, the appossible
alignments is exponential with respect to the number of minutiae, correlatied beethods
are very expensive.

Ridge Features Based or Global in nature Global features such as singular points, orientation flow
around core points, Poinaamdex and average ridge-line frequency represent the globalmpatter
of ridges with uniform model. Many techniques like Tico in [33], Medinad2dan [32], G.Ng
and X.Tong in [16] and Wang in [27] use global orientation flow and fesmy for matching
purposes. Many methods also use spatial relationship and geometricatesidbthe ridge lines
[26] and [57]. Y.He and J.Tian use global texture information presenteritigerprint in their
work [57]. Unfortunately, most of the global matching algorithms are contioumially demand-
ing and lack robustness with respect to non linear distortions. Another maj@ is that most of
these global features are not present in the standard ISO/IEC 2942085) minutia template [1]
and have to be computed separately starting with the original image. Manywd édchniques
[11] require prior alignment of the two fingerprint images which is computatigrexpensive.
Since non-linear distortions make impressions of the same finger differ in tdrghsbal struc-
ture, these techniques are not able to handle local non-linear distortional minutiae based
fingerprint matching methods generally outperform their global countstp&lowever, global
features are good for the task of fingerprint classification or candxinsconjunction with more
discriminative and robust minutiae based features.

Minutiae Based or Local in nature : Minutiae based techniques are the most popular due to the
compactness of the minutiae templates and also because these are the featunegerprint
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experts look at while doing the visual inspection of fingerprints. Minutiaeeatracted from
the two fingerprints and stored as a set of points in 2-D space. The protwe reduces to
2D point pattern matching problem. Minutiae based matching methods can ber fortken
down into global and local minutiae matching methods. Global methods [11dis#a space
of possible transformations to find a global alignment between the two fingerphat results
in the maximum number of minutiae pairings. Hough transform based techriigjl@s this
category. Non-linear distortions is a major issue with these techniques. thlsamumber of
alignments can be exponential (w.r.t number of minutiae) and hence, théségtees are quite
slow in practice. Local minutiae matching methods construct local minutiae stescinound
each minutia point. Then the two fingerprints are compared according toltdwdestructures.
These methods use relative distances and angles between neighbarta@pd the minutia point
to construct the local structures. These attributes (relative distandesgles) are invariant with
respect to global transformations such as translation, rotation , scakhaad. and therefore
can be used for matching without any apriori global alignment. These $baaltures can also
handle non-linear distortions better than global minutiae matching technigaeknigjues such
as [35, 25, 54, 45, 15, 52] and [51] use local structures aroundtiméepoints for the purpose of
matching. These local structures are described in detail in the next section

2.2 Local Minutiae Structures

Local minutiae matching consists of comparing two fingerprints according tb nuicatiae struc-
tures. These structures are characterized by attributes that are riwaitia respect to global trans-
formations. Local structures usually carry information about the locangry of neighboring points
around the central minutia point. Depending on how you choose the neigbhmints for the cen-
tral minutia, these local can be broadly classified into nearest neighbed lzand fixed radius based
structures.

2.2.1 Nearest Neighbor based structures

Nearest neighbor techniques first find out thepatially closest points with respect to the central
minutia and then construct a local structure from thesearest points. In most of the cases, normal
euclidean distance between points is considered for measuring distanog.ndarest neighbor based
structures have been proposed in the literature.

The simplest of these structures is based on minutia pairs, where the dibttme®en the pair
and the orientation of each minutia with respect to the line connecting them aasedeas invariant
attributes. Another commonly used nearest neighbor structure is the minulé, trinere relative
features (distances and angles) computed from combinations of three miargiased for the purpose
of fingerprint matching and indexing [7, 28] and [5]. A number of otheanest neighbor based
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Figure 2.2 The k-plet structure proposed by Chekkerur in [45].

local minutiae structures (with number of neighbors3) have also been proposed. Chekkerur and
Govindaraju in their work [45] presented a new local structure callel:k-p

The k-plet consists of a central minutig; andk of its nearest neighboring minutiden; ,ms...my }.
Each neighborhood minutia is defined in terms of its local radial co-ordifétest;;, r;;) wherer;;
represents the euclidean distance between the minutjagnd m;, 0;; is the relative orientation of
minutiam; w.r.t to central minutian; and®;; is the direction of the edge connecting the two minutiae
points. An example of k-plet structure is shown in Figure 2.2. Kwon andiivtimeir work [8] propose
a similar nearest neighbor based local structure caddididectional nearest neighbaik-DNN). With
central minutia as the new origin and its orientation as the new X-axis, theyediv@ plane intdk
slots and find the nearest neighbor for each slot. Forghaearest neighbor, they encode the relative
distance, angle and orientation from the central minutial,as®),, and ®r. An example of k-DNN
structure is shown in Figure 2.3. Jiang and Yau [54] also proposed davalvstructure based on
relative distance, radial angles, orientation and ridge count as shdwgure 2.4.

One main advantage of nearest neighbor based structures is that itdeafised length descriptor
that describes the geometric layout of these neighbors around thelgamitdia. This fixed length
descriptor can be easily matched with other such descriptors. But one maabatk is that these
structures are not tolerant enough to missing or spurious minutiae poirgse Blructures break down
when the image is too noisy or when there is very small overlap between twodsiqme of the same
finger.

2.2.2 Fixed Radius based structures

In the fixed radius based structures, all the minutiae points that lie inside teeespihgiven radius
R (with central minutia as the center) for the neighborhood for that centraltiain Again, normal
euclidean distance is considered for measuring distance.
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Figure 2.3 The k-Directional Nearest Neighbor (k-DNN) structure propose#&wpn in [8] (for k=8).
The red minutiae points represent the nearest points in each slot aneémenginutiae points represent
the second nearest. Encoding the parameters for the nearest negalsorshown.

Ratha and Pandit [35] proposed a novel graph representation afegiint based on fixed radius
local structure as shown in Figure 2.4. They call their representationteAdjacency Graph (MAG)
and present a robust and accurate matching technique for MAGs badedal structural similarity.
However, like most of the fixed radius based approaches their methadsdéier from border errors.
Major issue is handling of minutiae that lie on the boundary of the spherartitplar, minutiae close
to the local-region border in one of the two fingerprints can be mismatchedibedocal distortion or
location inaccuracy may cause the same minutiae to move out of the local retferitner fingerprint.
The technique proposed by Feng [25] does not suffer from b@mers and can be considered a state-
of-the-art fixed radius local matching algorithm. They deal with the bopdeblem by considering
minutiae not close to the border agatchableand minutiae near the border slkould-be-matchable
. Most of the fixed radius based approaches lead to a variable lengthptes(since the number of
minutiae in the sphere will depend on the minutiae density around the central rpinbicn is more
complex to match.

2.2.3 Comparison of Nearest Neighbor and Fixed Radius basestructures

Nearest neighbor based techniques usually represent the neightarhthe central minutia with
the geometric arrangement of fixed number of neighboring minutiae (letsesagsk). This leads to a
fixed length descriptor that can be easily matched with other descriptamsetiBees the matching can
just be a simple difference or bitwise-AND of the two descriptors. Such rimagetan be quickly and
efficiently done even on light architectures such as smart card or systearehip. On the other hand
nearest neighbor based techniques cannot deal very well with migsspgi@ous minutiae points. Even
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Figure 2.4 Local structures proposed by Jiang and Ratha. (a) The nearebboeigased structure by
Jiang encoding relative distanaod),(orientationg), radial anglesp), ridge count() and typel() of the
neighboring point. (b) The fixed radius based structure by Ratha. étigghtowards a neighbor encodes
relative distance, orientation and ridge count.

with a controlled acquisition environment, noisy fingerprint images can beirachjwhere different
impressions of the same finger can have different number of minutiae. féidied based techniques can
deal robustly with such noisy images. But these approaches generally leaiable length descriptor
which is tough to match. Hence, the matching phase now becomes more conpleonaputationally
expensive. Also, border errors as described in the earlier sectietd®de gracefully handled.

There are certain hybrid structures that take the advantages of bogstnieaighbor and fixed radius
structures and throw away their respective disadvantages. Minutiaed€yldode (MCC) [40] is one
such descriptor that can be considered state-of-the-art in local mirhased fingerprint matching.
MCC and other hybrid structures are described in detail in the next section

2.3 Minutiae Cylinder Code and other Hybrid Structures

Hybrid structures usually combine the advantages of both nearest neigaked and fixed-radius
structures, without suffering from their respective drawbacks. kaeuCylinder code (MCC) [40]
is the state-of-the-art in this area. MCC is a fixed-radius approach amefdne it can handle miss-
ing/spurious minutiae better than nearest neighbor-based approaBhesinlike other fixed-radius
approaches, MCC outputs a fixed length descriptor for each minutia andakiss the computation of
local structure similarities very simple. Infact cylinder matching is very simptefast, it reduces to
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Figure 2.5Minutia Cylinder Code structure. (a) The main cylinder is shown encloseceiauthiod. (b)
The cylinder structure is discretized into sections and sections are divittecells. (c) An individual
cell is shown, for each cell a numerical value is calculated from its nergidpinutiae.

just a sequence of bit- wise operations (AND, XOR) that can be efficiemfyemented even on very
light CPUs. MCC also handles border errors and local non-linear ttsrgracefully.

In MCC, the local structure for each minutiais represented by a cylinder of radius R and height
2I1 whose base is centered at,{,y,,), the 2D location of minutiam. The cylinder is enclosed inside
a cuboid whose base is aligned according to the minutia direéfjonThe cylinder is divided into
sections : each section corresponds to a directional difference innige fal,II] .The sections are
discretized intoNo = Ng X Ng X Np cells as shown in the Figure 2.5. During the creation of the
cylinder, a numerical value is calculated for each cell, by accumulatingibotitms from minutiae in
the neighborhood of the projection of the cell center onto the cylinder. b@eed Radius (85) is used
to define the radius of the neighborhood. While calculating the contributilgg@ative distances and
directional differences are used between minutiae. The contributiorcbfremutiam; to a cell (of the
cylinder corresponding to a given minutig depends both on:

e spatial information (how much; is close to the center of the cell)

e directional information (how much the directional difference betwegrandm is similar to the
directional difference associated to the section where the cell lies.)

In other words, value of a cell represents the likelihood of finding minutiakeate close to the cell
and whose directional difference with respectrics similar to a given value. Since, the number of cells
are fixedN¢, this leads to a fixed length descriptor that can be easily matched.

But there are some weaknesses present in the MCC structure alsotefinegentation of a minutiae
neighborhood is not provably invariant to affine deformations. Recemthny attempts have been
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made at reconstructing a minutia template starting from a minutia cylinder set. M#mgse attempts
have been quite successful, which puts a question mark on the degree-céwersability of MCC
representation. MCC is a fixed length representation for a minutia pointarfdnthe fingerprint. We
have local similarity scores representing how well two minutiae points matchinButler to compare
two fingerprints a single value (global score) denoting an overall similaagytd be obtained from these
local similarities. Hence, an extra global consolidation stage is required, dfinutiae representation
of a fingerprint cannot be applied directly in the recently developed temptatection schemes such
as [37] and [3], which require as an input a fixed-length feature veefwresentation of fingerprints.
Many attempts have been made to come up with such a fixed-length representstb is invariant to
global transformations but still the problem is far from solved.

2.4 Need for new Fingerprint Representation

As we saw in the previous section, there are certain weaknesses in ntbst méarest neighbor
and radius based approaches. Even state-of-the-art hybridegpa&on such as MCC has some short-
comings. A fixed length descriptor which completely describes the geomeuicigte of minutiae
points present in a fingerprint is needed. Such fixed length repréisentauld be suitable to template
protection schemes. Such representation could then be intelligently quatatigetibinary fingerprint
representation. Such binary representation would then reduce fimgarmtching to a series to bi-
nary operations (such as bitwise-AND/XOR). This would significantly impritve matching speed and
matching could then be efficiently done on small architectures such as ssmdst ¢n Chapter 4, we
propose a novel fixed length fingerprint representation and tell itsfitene

2.5 Summary

In this chapter, we introduced the problem of reliably matching two fingdsprifve saw that match-
ing could be done using global features such as overall ridge struamdreore points, and also using
local features extracted from minutiae points. Local matching has sexbrahtages over global match-
ing and is much more tolerant towards non-linear distortions. Then we did@utiio literature survey
of local minutiae matching and the minutiae structures that they use for matchipgspes. We classi-
fied the minutiae structures as nearest neighbor based or fixed radags bee looked at the advantages
and disadvantages of both of them. Then we had a look at hybrid strectiuch as MCC that takes ad-
vantages of both of them. Finally, we discussed the weaknesses of theseres and gave motivation
on why we would need a new minutiae structure and a new fixed length espatgisn for fingerprints.
In the next chapter, we propose a new minutiae representation callddamgement Vectoand use
that representation for indexing large fingerprint databases.
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Chapter 3

Fingerprint Indexing Based on Local Arrangements of Minutiae

Neighborhoods

In this chapter, we talk about the problem of retrieving fingerprints froverg large fingerprint
database. The problem is termedrFasgerprint Indexing The chapter is divided into six sections. In
the first section, we give the general introduction for the problem aadaeous real-world scenarios
where the problem comes up in practice. We will look at the challengesiatsbaevith fingerprint
indexing problem and some basic solutions. In the second section, we dpxief literature survey
about the existing fingerprint indexing algorithms. We will have a look at tiveeik points and why
a new fingerprint indexing algorithm is needed. In the third section, we walb@se a new minutia
representation calledrrangement Vectoand use this representation for indexing purposes. The fourth
section describes all the experiments conducted and detailed discudgiesslts. We discuss how we
handle missing or spurious minutiae points which is one of the major challengedo\detailed time
analysis and look at how much time we gain when using our indexing algorittivarrénan going for
one-to-one matching for the entire database. Finally, we compare resulesxgting algorithms in the
fifth section. We conclude this chapter with the sixth section in which we didtmssve can extend
the proposed minutiae representation for matching purposes.

3.1 Searching Large Fingerprint Databases

Biometrics especially fingerprints play a major role in automated personal idatitfi systems
deployed to enhance security all over the world. Many of such automgséehss have very huge un-
derlying fingerprint database. In these large identification systems, #iésgo determine the identity
of a subject from a large set of users (possibly in millions) already edroli¢he database. Many of
these databases contain tens of millions of records and a single identificajioest can take a signif-
icant amount of time even with the modern day computing technologies. Thehg@ae becomes an
important factor in the success and failure of such systems. The Aadijectounder the Unique Iden-
tification Authority of India is one such project which maintains a databasedidith citizens containing
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their ten fingerprints and other data. With more than one billion enroliments &xpebis may lead to
the biggest biometric database ever created (billions of fingerprintstesigrere is a need for reducing
the search space by narrowing down the size of the database. Gfcthese are many problems that
come up when we try to do exactly that.

3.1.1 Major Problems Faced

Fingerprint Identification over a large database is still an open probleihpases many challenges.
First of all the size of the database is the biggest challenge faced. Incsises, the identification
typically has an unacceptably long response time. The process can dmedpg by reducing the
number of comparisons that are required to be performed. Sometimesnation about age, sex,
caste and other demographic data can be used to reduce the portion atadhasg searched. Such
information is not always available in many cases. In the general casemiation intrinsic to the
fingerprint samples has to be used for an efficient retrieval. Also, dftene are significant distortions
between different impressions of the same finger making the problem ewgheto Three common
approaches have been proposed in the literature for solving the problesarching large fingerprint
databases.

3.1.2 Possible Solutions

The three classes of solutions include :

e Brute Fore solution : This refers to performing a sequence of one-to-one verification with the
entire database. This is, ofcourse, a time consuming solution and not easilble in practice.
Lets take the example of the above Aadhar project. Even if one matchinggtatesd 1 millisec-
ond, still enrolling one indian citizen will take around 300 hours (assumidimpopulation of
1.2 billion). We need something more smarter and efficient.

e Fingerprint Classification : Fingerprint Classification refers to the problem of assigning a finger-
print to a class in a consistent and reliable way. So basically it involves |gbedich fingerprint
image into one of a few known global patterns and restricting the matchingeof ¢msample of
the same class. Arch, Tented Arch, Loop (left loop and right loop) rixdra double loop are the
major global patterns (or classes). But Fingerprint Classification hawitgeawbacks. First of
all, small inter-class variation and large intra-class variation make this a tooglem. Uneven
distribution of fingerprints in different classes is another issue. Mo#tefingerprints (around
90%) belong the loop and whorl patterns. So even after classificatiorsetireh space is not
narrowed down by a significant amount. The number of global pattermta@ses) are quite less.
Also, fingerprint classification is generally based on global featureglitdeal ridge structure,
singular points [39, 38] and [4] and such features are tough to computedisyaimage. Hence,
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- Query
Fingerprint

Figure 3.1 Figure showing goal of Fingerprint Indexing. Matching is only done wiktors that are
close to the query vector.

we need some different technique to narrow down the search spadadaxihg provides the
answer.

e Fingerprint Indexing : This technique is generalization of the classification approach, where the
database is automatically divided into a large number of possibly overlapgisgts. The index-
ing function predicts the subsets that need to be searched for eachimpagie. The goal here
is to find a mapping (or feature representation), that maps similar fingerpriotss® points in
a multi-dimensional space. So, we associate fingerprints with these multi-dimahsionerical
feature vectors summarizing their main features. Retrieval is performed tohimg the input
fingerprint with those in the database whose corresponding vectoctoaeeto the searched one
as shown in Figure 3.1. There have been many fingerprint indexingitgemproposed in the
literature.

3.2 Literature Survey on Fingerprint Indexing Techniques

Based upon the fingerprint features used, the existing fingerprintimgleechniques can be classi-
fied as:

Global Representations. Global features like average ridge-line frequency, orientation flowrato
core points and Poincaiindex represent the global pattern of ridges with uniform model. The al-
gorithms used in [50] and [53] belong to this category. However, thegarkes are more suited for
classification purposes and are not particularly good at handling disteriiod global transfor-
mations. These techniques often require prior alignment of fingerprinasiaghe database and
use the location of singular points. In many low quality and noisy images, it ihtmulgcate the
singular points reliably and thus, such images are rejected in this case fEaagres are usually
used in conjunction with more discriminative features to further narrow dbesearch [53].
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Orientation Flow Features: Techniques which use features such as local ridge line orientations [39
38] and local ridge-line frequencies [46] fall under this categoryweler, one disadvantage of
using features obtained from orientation image is that these featurestgreesent in the ISO
standard minutiae templates and have to be computed separately starting withitred imnage.

Minutiae-based Features Most minutiae based indexing techniques [43, 55, 23, 7], derive geigme
features from sets of minutiae points that are robust in presence of m#tatitd translations
and use hashing techniques for searching. Some techniques like fi29][44] form complex
structures from minutiae representations and use them for indexingsaspinutiae Cylinder
Codesor MCC [40] was proposed recently and have been demonstrated toigbkla é¢ffective
method for representing a minutiae neighborhood for the purposes effirgt matching as well
as indexing. While the MCC representation of a minutiae neighborhood igowvly invariant
to affine deformations, the regularizations performed during the computaide them very
robust. In this work, we try to ensure affine-invariance of the minutiaehfeidhood features and
explore their effectiveness for the purposes of indexing.

Other Features: Features such as Fingercode [4] and SIFT-based featuresg®6lavelet responses
to encode local textures. Some techniques also try to combine differest dfpeatures to im-
prove the results [5]. There are also techniques which are based oh states [2] and hash
functions [48].

Minutiae-based fingerprint indexing schemes generally give bettdtgdisan other techniques. In-
dexing based on Minutia Cylinder Code (MCC) can be considered asditite-art in the area of
fingerprint indexing. But MCC representation of minutiae neighborhoatbtsprovably invariant to
affine deformations. We have developed a new representation for a mpainiathat is provably in-
variant to affine deformations and made it applicable directly to the existing menogised templates.
The representation does not require detection of singular points ogtigoment of the templates. Un-
like MCC, we have even avoided the use of minutiae orientations to make the nagtplochble to the
widest variety of existing templates. We also propose a way of handling missisgurious minutiae
points.

3.3 New Minutiae Representation : Arrangement Vector

The atomic unit of our representation is a fixed-length descriptor for a mithgitacaptures its
distinctive neighborhood pattern in an affine-invariant fashion. Thigndié/e representation of each
minutiae allows us to compare two minutiae points and determine their similarity irrespettihe
global alignment.
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Figure 3.2 Process of creating the Arrangement Vector for minutia p5. In stepl ndéte nearest n
minutiae of p5 (n=7). In step2, we take all combinations of m points out okthgmints. In subsequent
steps, we take four points A,B,C,D and calculate invariants a,b,c,d,e,f (seéenS28.1).abcdefis the
required vector that describes the arrangement of p3,p4,p2,p1,pBamdynd p5.

3.3.1 Process of Calculating Arrangement Vector

The process of calculating the arrangement vector for a mipatishown in Figure 3.2, is as follows:

e We calculate the nearestneighbors of minutig5. In Figure 3.2, letn = 7, and the nearest
minutiae are pl,p2,p3,p4,p6, and p7. We then enumerate all combinations ahis @othe
aboven (() combinations).

e For each combination, we arrange thepoints in clockwise order. Now, we describe the local
geometry of these: points around the minutia p5. As shown in Figure 3.2, let m=6, and let p3,
p4, p2, pl, p7 and p6 be the m minutiae arranged in clockwise order. Witlp&ints denoted as
A, B, C, D, we calculate the following invariant features for indexing :

Ratio of Areas : The first featurep is the ratio of the areas of the triangles formed by minutiae
triplets A, B,C andA, B, D.

Ratio of Lengths of Largest Side : The second featurkis the ratio of the lengths of the largest
side of the triangles formed by minutiae tripletsB, C' and A, C, D.

Ratio of median and minimum angles: The third and fourth features,; andas are the ratios
of the median and minimum angles of the triangles formed by minutiae triglefis C' and
A,C,D.

These features are invariant to affine transformations [7] and remahlmanged even when the fin-
gerprint is translated, rotated, scaled or sheared. A weighted combioativese features is computed
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to get one final invariant value that describes the local arrangemehéesém points. By sliding the
points to regard A, B, C and D in clockwise rotation, m such invariants dealezed (i.e a,b,c,d,e and
fin Figure 3.2). Thusabcdefrepresents an arrangement vector for minutia p5.

3.3.2 Enrolling a Fingerprint

The above vector depends on the initial choice of A, B, C and D points amat iwtation invariant.
To achieve rotation invariance, we use cyclic permutations of this vectarlicGhermutation of these
m invariants give us m vectors (iabcdef, bcdefa, cdefab, defabce, efabcd, fahcdggch vector is
considered for hashing and a hash value is calculated from it by Equgafiomn the equatiory is the
m length arrangement vectdt,_sizeis the size of the hash table akds the level of quantization of
the invariant. This means that the quantized value is in the range [0,k]. TheéiaiDufingerprint ID
along with the arrangement vector is stored in the corresponding hasBdparate Chaining technique
is applied to resolve collisions that occur when two vectors map to the saméinaSummary of the
offline Enrollment stage is shown in Algorithm 1. The complete enrollment pip&iskown in Figure
3.3.

Hingew = (Zv[i] : k:) mod Hgise (3.1)

=1

Algorithm 1 Enrollment Algorithm

INPUT — Entire Fingerprint Database db, n, m, k
OUTPUT — Model Hash Table
for all fingerprintimagép in dbdo
for all minutiap in fp do
N — nearest n neighbors of minutia p
L — list of all possible combinations of m points
for all combination of m points in ldo
find arrangement vectar
C — list of all cyclic permutations of
for all vectorv’ in list C do
calculateH;,, 4., fromv’ using eq.1
register item (Fingerprint ID ofp, Minutia ID of p, Arrangement vector’ ) using H;,,de.
end for
end for
end for
end for

3.3.3 Querying the Index

For each minutig’ in a query image and for each combinationrefpoints around that minutia,
we calculate its arrangement vectdras described earlier. The hash value/6fs computed, and the
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corresponding list of fingerprints that contain a similar minutiae neighborisoalatained from the hash
table. Each minutia in the query fingerprint casts a vote for each fingenpite candidate list. Finally,
a list of top N fingerprints with the maximum votes is returned as the output of ttexiimg algorithm.
Summary of the on-line indexing stage is given in Algorithm 2. The complete idsttdn pipeline is
shown in Figure 3.4.

Algorithm 2 Indexing Algorithm
INPUT — Query image im, n, m, k, N
OUTPUT — List of top N fingerprints sorted by number of votes received
for all minutiap’ inim do
N — nearesh neighbors of minutia’
L — list of all possible combinations of m points
for all combination of m points in ldo
find arrangement vectat’
calculateH;,, 4., fromv” using eq.1
lookup Hash Table wittH;,, 4., and retrieve the corresponding list
for all item in the retrieved listo
if v”==item.Arrangement vectahen
Increment vote count for FingerprintID correspondingtion
end if
end for
end for
end for
Sort all fingerprints according to vote counts in descending order
Output list of top N as the indexing result

3.4 Experiments and Discussions

The experiments were conducted on the flBUC 2002 databases: DB1, DB2, DB3 and DB4. Each
database contains 800 fingerprints from 100 users (8 impressionsg®@r &or each user, the first 4
impressions were placed in the gallery to build the hash table while the remainingdssigns were
used as probes. Experiments were conducted with different valuesrofamd k. The best results
were observed for n=6, m=5 and k=28 aAd;.. = 1000000. Accuracy and efficiency are two main
indicators of the retrieval performance. In the experiments, the agcigatenoted byCorrect Index
Power (CIP)where CIP = (V.;/Ny), N.; is the number of correctly indexed probe images, ads the
number of images in the database. The retrieval efficiency is indicated Pgtiedration Ratewhich is
the average percentage of database probed over all test fingerfataghy, we would want a high CIP
and a low Penetration Rate.
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Figure 3.5Results on FVC 2002 databases in case 6t 2@issing minutiae data(M), original minutiae
(N) and 20% spurious minutiae (S). (a) For FVC 2002 DB1 (b) For FVC 2002 DB2.

3.4.1 Dealing with missing and spurious minutiae

Handling the case of missing or spurious minutiae is a major challenge for minasae indexing
techniques [43], [55], [23], [7]. We deal with this problem by firsbosing nearest neighbors for a
minutia and then out of thesg we choose all possible combinationsnefminutiae points. This rule of
choosing m out of n neighbors helps us to deal with missing and spurious minutia. Experiments were
done with datasets having Z0spurious minutiae and 20 missing minutiae. Minutiae were removed
and added randomly to the database. For each experiment, the followiegtses were considered:
datasets in their original form; datasets wit’28purious minutiae; and datasets with/2@nissing
minutiae. As the plots show (Figures 3.5,3.6), even removing or addifige3@®ra minutiae did not
affect the low penetration rates at the hit rate of greater théh Ihis shows that the scheme is able to
handle low quality noisy images, where there are lots of missing or spuriousiagmoints.

3.4.2 Dealing with Distortions

Handling the case of non-linear distortions and transformations is a majbergie for indexing
algorithms that use global features [50] and [53]. We deal with this pnobleusing features, like ratio
of sides, angles and areas, which are invariant to geometric transfonséke rotation, translation,
scaling and shear [7]. It is known that non-linear distortion happenifdgdal minutiae structures
is small enough to be ignored compared with the much larger global non-tiigtartion [58]. The
arrangement vector, the proposed local minutia structure, can toleradepar distortion as indicated
by the experimental results.
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Figure 3.6 Results on FVC 2002 databases in case 6f 2@issing minutiae data(M), original minutiae
(N) and 20% spurious minutiae (S). (a) For FVC 2002 DB3 (b) For FVC 2002 DB4.

Hit Rate Minutiae Quadruplets [36] Proposed Algo.
60% 6.8 1
70% 8.68 1.9
80% 10.5 3.9
90% 15 8.6
95% 17.6 14
100% 215 57

Table 3.1Average penetration rates using the proposed and quadruplets [86bapes at various Hit
Rates. The database used was FVC 2002 DB1.

Hit Rate Minutiae Quadruplets [36] Proposed Algo.
60% 6.31 2.8
70% 8.15 4.14
80% 11.8 8
90% 17.89 13.5
95% 22.89 17.5
100% 27.89 60

Table 3.2 Average penetration rates using the proposed and quadruplets [86papes at various Hit
Rates. The database used was FVC 2002 DB1 with 20nutiae removed randomly.
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3.5 Comparison of Results

The proposed algorithm is compared with the quadruplet based indexiogtlay in [36], which
is also a minutiae based indexing algorithm. We have selected this work for deorpas, to the best
of our knowledge, it has the highest accuracy among the affine invaeijpresentations that have been
proposed till date. The Minutiae Cylinder Code uses a richer representdtthe minutiae neighbor-
hoods and performs better in practice. However, their features hdydranslation invariance and
rotation invariance is achieved by orienting the cube using minutiae orient@ier invariances are
not considered. While explicit invariances are not necessary fotipaasystems (as indicated by MCC
results), we prefer to use them as they provide a theoretically soundfitwafiture analysis of errors.
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Figure 3.7 Comparison of the proposed and quadruplets [36] approaches or2680ZDB1.

The evaluation protocol was based on [36], which uses Hit Rate as aireeF#scorrect indexing.
Hit Rate is defined as CIP*100 in percentage. As the results in Table 3.Tedohel 3.2 show, the Hit
Rate of the proposed algorithm is better than that reported in [36] at logveat@tion rates. Also, our
algorithm handles missing minutiae points better than the one proposed by R88k iHowever, the
guadruplet based algorithm performs better than ours fo?:18@ Rate. Figure 3.7 compares the Hit
Rate vs Penetration graphs of both the algorithms. The tests were run c8F02DB1 database.

3.6 Time Analysis

The major benefit of using a fingerprint indexing algorithm is that it redtice number of expensive
one-to-one matches resulting in significant reduction in the overall time fatifd&tion. To find out
the reduction in time we get by applying our indexing algorithm, we carried xp#réments with the
FVC 2002 Dbl database. To find the time required for each identificatioretest,image in DB1 was
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Figure 3.8 Time analysis done for FVC 2002 DB1. (a) Shows the gain in time obtained lexiimgl
over 1:1 matching with entire database. (b) Shows the sub-linear scaling pfaposed algorithm with
the increase in database size.

used as a probe for identification against a gallery of other fingerpririte. gallery size was kept at
100, 200, 300 and increased till 800. This helped us to check how oorithlgp scaled with increase
in size of the database. This is a very critical factor, as any good indelgogithm should scale well
when the database size is increased. A probe image is considered todmlgatassified, if at least
one impression from its class is present in the list returned by indexingthigor

3.6.1 Time Gained by Indexing

In the first experiment, we observed the time we gained by using our indalgoegthm. Given a
probe image, we first calculate the time required for performing one to anparisons with the entire
database. The comparisons were made using the FBI appnfisetatching algorithm [31] which takes
8.76 msedor one matching. Then we applied our indexing algorithm to get aNtdigst and matched
the probe with the top N list only (for 97% CIP). We calculated the time requivedhis task. We
compared both the times for a database of size 100, 200, 300, 400,E)0;@ and 800 fingerprint
images. We observed a significant gain in time when we apply our fingenpdiexing algorithm over
the naive entire one-to-one matching. The results are plotted in Figure®tBeaatime values are shown
in Table 3.3.
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Size of the database Time without Indexing Time with Indexing
100 0.876 0.134
200 1.752 0.265
300 2.628 0.397
400 3.504 0.529
500 4.380 0.661
600 5.256 0.794
700 6.132 0.925
800 7.008 1.057

Table 3.3 Showing the time benefit (in sec.) we obtain on indexing the database over ichimga
without indexing

3.6.2 Scalability of the proposed algorithm

In the second experiment, we observed the time required by our indeximgtiag to output the top
N list sorted by votes. We experimented with different database sizes &ed cwn the time taken.
We observed that the time increase was sub-linear with the increase ingtatismas shown in Figure
3.8.

3.7 Summary

In this chapter, we tackled the problem of searching through large fingedatabases known as
fingerprint indexing problem. Then an extensive literature survey was dn the existing fingerprint
indexing methods. These methods were classified according to the feifeyasse and we discussed
the weaknesses present in this method. Then we proposed a newerggties for a minutia point
using only the locations of the points and no other high level features suchiemtation flow and di-
rectional field were used. This makes the proposed approach applioableide variety of existing
templates. Then we showed results of experiments on FVC 2002 dataldesesnducted experiments
with missing or spurious minutiae points and showed that our algorithm wastrtibappearance and
disappearence of points. Then we compared our results with the besinigaeethod in the litera-
ture using similar features. Our approach led to better results and was moemtat®vards missing
minutiae. Then finally, we did a detailed time analysis of our algorithm and shtveedur algorithm
scales sub-linearly with the increase in database size. Now, in the ngatechae extend our proposed
minutiae representation for constructing a fixed length representationmjexprint image. Then we
used the proposed fixed length representation for fingerprint matchpoge.
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Chapter 4

Learning Minutiae Neighborhoods: A New Binary Fingerprint

Representation

In the last chapter, we proposed a novel local minutiae based neargbar structure calledr-
rangement Vectothat describes the geometric layout of neighboring points around a ceritratia
point. We used that structure for a hash based fingerprint indexing thaticbshowed the usefulness
of the structure. In this chapter, we will extend that structure to handlertii#gm of matching two
fingerprints. The problem, with existing solutions and major challenges, esgided in Chapter-2.
The technigue proposed in this chapter, relies on the creation of high dimahsinucture space based
on minutiae neighborhoods. The k-means clustering technique is then ajoptiadition this structure
space into multiple clusters. The center of these clusters represent thedemighborhoods from the
entire dataset. Fingerprints are then visualized as collection of these ndightde and a fixed length
binary representation for the fingerprint is then generated. The matohing is then reduced to sim-
ple computation of the hamming distance between the two binary vectors nefimgdée fingerprints.
The experiments performed on the FVC 2002 and FVC 2004 databasedtsheffectiveness of the
proposed approach.

4.1 Representing a Fingerprint

Although what we get from a fingerprint sensor is usually a grayscalggérabsome resolution, only
a few fingerprint matching or indexing algorithms work directly on the gralsonage. Before the
matching stage, most of the algorithms have a pre-processing or a fednaiction stage where useful
information is extracted from the fingerprint. And then this information is usestead of directly
superimposing or corelating the two grayscale images. Based on feakxtrasted and stored, the
traditional fingerprint representation schemes can be classified as :

e Global Features based Representation The global approach to fingerprint representation is
typically used for fingerprint indexing. These representations incliateagridge-line frequency,
core points, orientation images and singular points. These featureserptiee global pattern of
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(a) (b) (c)

Figure 4.1 Global Representations of a fingerprint. (a) Original grayscale imag€dglresponding
orientation image (c) Corresponding frequency map where lighter regmmespond to higher ridge
frequency.

the ridges in the fingerprint. An example of orientation image and the comdsmpfrequency

map is shown in Figure 4.1. One disadvantage of these representationstisytmnnot be easily
extracted from poor quality fingerprints. Also, these representatiom®toffer good individual

discrimination and are not good at handling distortions. Further, the inglefficiency of existing

global representations is not very good due to a small number of catetjmaitecan be effectively
identified and a highly skewed distribution of the population in each category.

e Local Features based Representation The local approach refers to representing the finger-
print in the terms of minutiae sets, local ridge orientations and local ridgeidreyy. Ross in
his work [2], uses representative local fingerprint patterns to aactstrfeature vector. These lo-
cal representations have evolved from intuitive system design gearéidderprint experts who
visually match fingerprints. These local representations are quite diséircitygenerally outper-
form their global counterparts. Minutiae based representations arecorostonly used as they
are compliant with most of the existing fingerprint suppliers and datab@sesdisadvantage of
such representations is that they suffer from misalignment problem guouteea preliminary reg-
istration step. Also, minutiae extraction is not that simple and requires stagfeashinarization,
thinning of the grayscale image and post processing to remove false minutiae.

e Combination of Local and Global ;. Certain schemes have been proposed which combine the
local and global information present in a fingerprint. Fingercode [18ppsed by Jain, utilizes
both local and global ridge descriptors and texture information. Therfsatre extracted by
measuring the responses of radial image sectors to a gabor filterbanB®BIproposed a better
version of fingercode as described in Section 2. Benhammadi [12] adpoged a new represen-
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tation called oriented minutiae codes based on minutiae texture maps. They vsspibese of
eight gabor filters to generate the codes.

Existing representations are surveyed in Section 2. Depending on thé leinipe feature vector
constructed, the traditional fingerprint representation schemes couldigided intofixed-lengthand
variable-lengthrepresentation schemes.

4.1.1 Fixed length representation

The length of such representations are independent of the number diiaaipoints present in
the image. Generally, in this scheme each fingerprint in the database isereie by a fixed length
(usually binary) feature vector. Various methods have been propgogeahsform a fingerprint image
(or a minutiae set) into a fixed-length quantized feature vector. Fingefé8iiencodes the local and
global texture around the core of the fingerprint. Tuyls in his work [3@ppsed a novel quantization
algorithm to get fixed length representation based on local orientation gésidXu [18] explained
the construction of a feature vector of floats via the spectral repréwentd a minutiae set. Julien
Bringer in their work [22], transform a minutiae set into a fixed-length daad feature vector by
matching small minutiae vicinities (or neighborhoods) with a set of representatinities. One major
advantage of fixed length vectors representing fingerprints is that théimgastage becomes very fast.
It just reduces to a simple series of binary operations (AND, XOR) outatiog the hamming distance
between the two vectors which is very quick. Also, since the length of thenss fixed, the vectors are
easy to match and most of the times don’t require any prior alignment. Also, teanpjate protection
schemes like [37] and [3] require a fixed length vector as input. In stixet length representations
are easier to match and are suitable for the recent biometric template protetiones.

4.1.2 Variable length representation

The most widely used and a classical representation for fingerprintsésl lmam minutiae set which
is an unordered set of characteristic points (ridge endings and hifiisa Fingerprint is stored as a
collection of minutiae points. The length of such representations depemdtiipaensity of minutiae
points in the fingerprint. A good quality fingerprint contains between 60 tmButiae, but different
fingerprints have different number of minutiae. Matching now requirgstering of minutiae sets of
different sizes which is computationally expensive and tough to intuitivelyalise. Also, variable
length representations are tough to store on smart cards and are lhsetigfble for biometric template
protection schemes. And ofcourse, a major challenge when designingatiable length representa-
tion is how to deal with the insertion and deletion of minutiae. However, variabtghaepresentations
are usually more tolerant towards non-linear distortions.
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Figure 4.2 Process of generating Fingercode. First the core point is detected.iflage is tessellated
around the core point into sectors. Then each sector is normalized ahdredfiwvith bank of Gabor
filters. The response is concatenated to get a fixed length fingercode.

4.2 Popular representations and their drawbacks

Many representations have been proposed in the literature. Finggr8o8e] is a fixedb40 byterep-
resentation that makes use of both the overall global ridge pattern anat#gheiflge characteristic. The
fingercode is extracted by tessellating the image around the core pointedthed vector consists of an
ordered collection of texture descriptors from various sectors of tkeltason. The texture descriptors
are obtained by filtering each sector with eight oriented gabor filters amdctaputing the Average
Absolute Deviation of the pixel values in each cell. The features are tamaiad to get the fingercode
as shown in Figure 4.2. The disadvantage of fingercode is that it regb@eore point to be accurately
located which in itself is a difficult problem. Tico [34] proposed&bytelength representation using
Digital Wavelet Transform (DWT) features. Amornraksa [49] praxba24 byterepresentation using
the Digital Cosine Transform (DCT) features. However, one draklbé&transform-based representa-
tions is that they are not rotation invariant and rotation has to be handldéidigypThis was handled
by Xu in his work [18], in which he proposed a spectral minutiae reptesien based on Fourier-Melin
transform. By representing minutiae as a magnitude spectrum, he transformsteae set into a fixed
length feature vector that does not need registration to compensatef&latian, rotation and scaling.
But still the scheme is not very robust to non-linear distortions and missimigsis minutiae.
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Figure 4.3 The process of creating the local structure for minutia X. In stepl, wetfiachearest
n minutiae of X. In subsequent steps, we take two points A,B and calculateainisgaa,b,c,d,e (see
Section 4.3)abcde is the required structure that describes the local neighborhoedtoflcminutia X.

4.2.1 Need for new Representation

Most of the fixed length representations described above either daandie global transformations
like rotation and translation or are not tolerant towards small local nonrliofietortions. This implies
that the accuracy of matching using the quantized feature vector rafatises still is very low as
compared to classical minutiae based matching. Also, most of these schaimegdiy tough to handle
missing/spurious minutiae points. We really require a fixed length (binarem@f representation
that is tolerant towards these distortions, can handle missing/spurious mjigisagable for template
protection schemes, small enough to be stored on smart cards and hagiae¥only construction so
that it can be applied to existing databases. In the next section we pr@peselocal minutiae structure
that captures the complete geometry of neighboring points around a gainttaia. This local structure
is an extension ofArrangement Vectddefined in the last chapter). We have added relative orientation
information into the Arrangement Vector to make it more robust. We therkuseansclustering
to cluster this high dimensional space of local structures. From this wk gester centers, which
correspond to thie most prominent neighborhood structures learned from the finger@iabdse. Then
every fingerprint in the database is expressed as a collection of theter denters to get a fixed-length
(of lengthk) representation for a fingerprint.

4.3 Proposed Local Structure

Our local structure is a fixed-length descriptor for a minutia that captuesggbmetry formed by its
neighboring points around that minutia. Such geometry is quite distinctivegartecular minutia and
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Figure 4.4 The geometric features computed fravAXB. Relative distances AX and BX, Relative
Orientationsp 4 and¢ g and angles’B and ZA

remains the same even when the image is transformed. This distinctive repteseof each minutiae
allows us to compare two minutiae points and determine their similarity.
The process of calculating the local structure for a minutia (X), shown iar€ig.3, is as follows:

e We calculate the nearestneighbors of minutia X based on their euclidean distances from X. In
Figure 1, let» = 5, and the nearest minutiae are p1,p2,p3,p5 and pé.

e We arrange the points in clockwise order. This is because the clockwise order of minutiagspo
remains unchanged even when the fingerprint image is rotated, translzdést or sheared.

e Now, we describe the local geometry of thespoints around the minutia X. As shown in Figure
4.3, let n=5, and let p3, p2, p1, p6 and p5 be the n minutiae arranged kwaétecorder. With
two points marked as A, B we calculate the following geometric features fx&XB as shown
in Figure 4.4

Relative Distances: We calculate the euclidean distances between points X and A,B. The first
feature is the ratio of these relative distances.

Relative Orientation : We calculate the orientations of points A,B with respect to the central
minutia X (relative orientation of A is thé 4 - ¢ x, whereg 4 is the orientation of minutia
A). The second feature is the ratio of these relative orientations.

Angles of AAXB : The next features we use the angl&$BA and /XAB of the AAXB. The
third feature is the ratio of these angles.

e These features are provably invariant to geometric distortions [7] andineunchanged even
when the fingerprint is translated, rotated, scaled or sheared.
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Figure 4.5 Populating then-dimensional structure space. The local structures are extractecerom
fingerprint in the database. Then the structure space is partitionedietasters via the k-means
algorithm.

A simple average of these features is computed to get one final invarlaet@aas shown in figure
4.3) that describes contribution &fAXB in the arrangement of these points around the minutia X.
By sliding the points A, B in clockwise rotatiom, such invariants are calculated ( i.e a,b,c,d and e in
Figure 4.3). Thusbcdeis the local structure of lengththat describes the geometric layout of these n
points around our central minutia X. The structatededepends upon the initial choice of points A,
B and is not invariant to rotations. To achieve rotation invariance, we ydiE ermutations of this
structure. Alln cyclic permutations ofbcde(i.e bcdea cdeah deabg eabcdandabcdg are calculated
and stored in a list. So now we have mangimensional feature vectors, where each vector represents
a minutiae neighborhood. Now we ulseneandgo cluster this n-dimensional space as shown in Figure
4.5,

4.3.1 Partitioning the Structure Space and Representing aiRgerprint

Each fingerprint now can be represented as a set of minutiae neigiogsthEach neighborhood
is generated from only minutiae points and is characterized hylength feature vector. This n-
dimensional feature vector can be viewed as a single point in n-dimensigpaispace. Thus, each
finger will have a collection of points (pertaining to all neighborhoods itams) residing in this hy-
perspace. Given a set of training fingerprint images, an unsupérldaening algorithnK-meansis
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Figure 4.6 A fingerprintimage represented in terms of representative neighbashGaiden a image, we
extract all the neighborhoods and map them to the nearest cligstetheK length binary representation
of the fingerprint.

then applied to cluster this hyperspace. This result iclusterscy,co,cs.....cx Where each cluster
represents set of similar neighborhoods. The centroid of each ctystepresented by:; can be seen
as the mean representative neighborhood for that set of neighlotsrtivat map te;. So, in essence,
mi,ma,ms.......x are the most prominent neighborhoods learned by our algorithm. Anyrfinge
now can be represented in terms of these representative neighbsrMsben a new fingerprint comes,
we extract all the neighborhoods from that and map each neighboffeatgte vector to its nearest
cluster center as shown in Figure 4.6. So, how each fingerprint is ayigeture vectofp of lengthK
where fp; tells whether a neighborhood similar 4e; is present in the fingerprint or not. So, we now
visualize fingerprints as a collection of neighborhoods rather than agatyimage or minutiae sets.

4.4 Fingerprint Similarity Measure

Now given two binary vector§pl andfp2, representing the two fingerprints, a formula based on
simple bitwise operations on the two vectors will give a measure of number of simeilghborhoods
present in them. Thus, simple bit-oriented coding can now be used as arexfadingerprint similar-
ity. Similarity s between two binary vectorfpl andfp2is calculated by using 3 different metrics.
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The first metric used is thi2-normof the XOR of the two vectors L2-normis the square root of
the number of one bits in the vector. The second metric used isGhermof the XOR of the two
vectors. LO-normgives the number of one bits in the vector. The third metric usediaormof the
bitwise AND of the two vectors. Equation 4.1 gives the XOR similarity between tbevbgtors, where
|| fp|| is L2 norm forxor-L2 metric measure and LO norm feor-LO metric measure. Equation 4.2 gives
the AND similarity used forand metric measure. A test run on FVC 2002 db1 showed that L2 XOR
(xor-L2) similarity measure gave the best results (Figure 4.7) and was used faniegrexperiments.

s(fpl, fp2) =1 — (||fpl XOR fp2]))/(|l fp1l + || fp2]) (4.1)

s(fpl, fp2) = (I fpL AND fp2[))/(llfp1l + l/p2l) (4.2)
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Figure 4.7 ROC curve for comparing the accuracy achieved by the three diffaretrics.xor-normis
the L2 norm of the XORXxor is the LO norm of the XOR andndis the LO norm of the AND of the two
vectors.

4.5 Experiments and Results

Experiments were conducted on FVC 2002 db1, db2, db3 and FVC 2tD4rd db2 databases.
Each database consists of 800 impressions from 100 different firgj@rgpressions per finger. The
minutiae were extracted using the standard NIST MINDTCT algorithm[14]. peréormance evalua-
tion protocol used in FVC 2002 (same as in [9]) has been adopted. iExgpes were done for different
values ofk andn. The best results were obtained for cluster size of 1000 (i.e k=10@M)eighborhood
size of 5 (i.e n=5). A total of 14,000 genuine matches (2800 per datakag&y,750 imposter matches
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(4950 per database) were done. The ROC curves with different mohbleisters have been plotted be-
low. It was observed that the accuracy increased with increase in mahtesters upto an extend and
then it started decreasing gradually after 1000 clusters as shown in theefdw. The ROC curves and
the genuine-imposter class distribution curves for the FVC datasets ava shahe next page (refer to
Figures 4.10, 4.11 and 4.12). The results have been compared withesp@ntitiae representation [18]
and binary representation through minutiae vicinities [22] (see Figure 4AIBgse are the two major
fixed-length quantized fingerprint representations in the literature.

ROC curve for FVC 2002 db3

0.98: =i o

0.96 Cat ‘

0.94

600 clusters
— — — 800 clusters
— — — 1000 clusters

True positive rate
o
©

107 107
False positive rate

Figure 4.8 ROC curve for FVC2002 db3 database showing the increase in agaouithcthe increase
in number of clusters.

4.6 Summary

We proposed a novel binary fixed-length representation for a fingégonstructed from minutiae-
only features. We captured the local geometry around a minutia point intdooar arrangement
structure. We then applied unsupervised learning to learn prominent mimeiiglgoorhoods from the
database. A fingerprint was then represented as a collection of neligiulas resulting in a fixed 1000-
length binary representation. The matching of two fingerprints is then eeldioca sequence of bitwise
operation which is very quick. Experiments conducted of FVC 2002 afd 2atabases showed the
effectiveness of our representation as compared with the major filgagpresentations existing in the
literature. Our representation is tolerant towards distortions, can belstasfly on light architectures
such as smart cards and is suitable for biometric template protection schemes.
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Chapter 5

Conclusions and Future Work

The major problem we try to solve is the use of local geometric information praseund a minu-
tia point for the purpose of fingerprint indexing and matching. Many exjstirethods also use such
information in the vicinity of a minutia point for the purpose of indexing. Howetleey also use extra
information such as orientation flow and core points. We use only the spat&ldo of neighboring
points to come up with a new local minutiae structure calledhemngement VectorThis allows us
to maintain compatibility with all possible templates, while keeping the storage requitemoea min-
imum. The arrangement vector is invariant to distortions and can handle el paerlap problem
of fingerprint acquisition. We use this structure to come up with a hash badexing algorithm to
speed up large scale fingerprint retrieval. We proposeliloese m out of n ruleto handle missing or
spurious minutiae. Then we extend the arrangement vector by adding miatigagtion information
to it. We include more robust features to the arrangement vector and ussadlviothe problem of
matching of two fingerprints. In the end, we apply unsupervised clustirifigd the common minutiae
neighborhoods. We represent each fingerprint as a collection dilvaigoods rather than a grayscale
image or a minutiae set. This results in a fixed length binary representation foidleprint, which is
then used for matching purposes. Experiments were carried out onlihelyavailable datasets from
FVC 2002 and FVC 2004 databases for comparison with existing methods.

The goal of any representation is to capture as much of the distinctivariafmm available in a
fingerprint, while discarding the variations between multiple impressions ofithe §inger. The exper-
iments we conducted showed that our representation was able to capturef ih@sgeometric details
around minutiae points and is invariant to distortions. The matching is thenegédaditwise opera-
tions between the vectors representing the two fingerprints. We comparedsults with two major
guantized fingerprint representations [18, 22] from the literature @ngodstrated our method to be
more accurate in most practical situations.

One way in which we could extend our work is to improve the robustness igtidativeness of
the arrangement vector. Possible features that can be included forutiigse include ridge count
between neighboring minutiae, relative minutiae orientation with respect tos{ipe of minutia,
and quadruplet features[36]. Another possible extension is to ugeldaming algorithms to learn
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what a fingerprint really is. For this approach, we require massive atsat labeled fingerprint data,
which is becoming available with large scale identification systems. Also, we cseldur minutia
representation in conjunction with similar representations such as MCC aiat.k-This combined
representation could outperform any of the single representations. oWe also use our proposed

binary representation for a fingerprint for the purpose of template gifoteand use it in the research
area of biometric cryptosystems.
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