
Efficient Texture Mapping by Homogeneous Patch Discovery

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science (by Research)
in

Computer Science Engineering

by

R. VIKRAM PRATAP SINGH
201007007

vikrampratap.singh@research.iiit.ac.in

Center For Visual Information Technology
International Institute of Information Technology

Hyderabad - 500 032, INDIA
MAY 2013

Copyright © R. VIKRAM PRATAP SINGH, 2013

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “ Efficient Texture Mapping by Homoge-
neous Patch Discovery ” by R. VIKRAM PRATAP SINGH(201007007), has been carried out under my
supervision and is not submitted elsewhere for a degree.

Date Adviser: Prof. Anoop M.Namboodiri

To My Family and Friends

Acknowledgments

I would like to thank my advisor Prof. Anoop M Namboodiri for his guidance and supervision
throughout my thesis work. I really enjoyed the long discussion sessions with him and admire his
patience in clearing my doubts. I would like to thank him specially for always being available and
supporting me through the tough times of my thesis. I would like to thank all my friends at CVIT Lab
for sharing their valuable thoughts with me especially Prabhu Teja, Swagatika Panda, Ravi Shekhar,
Sushma Madam, Ravi Shankar, Anand Mishra, Praveen Krishnan, Harshit Aggarwal, Srinathan, Sumit
Kumar, Karthik Desingh and Aseem Behl.

I think coming to IIIT is the best decision I have ever made. I sometimes fancy myself a thought
about how my life would have been, if I had taken a job directly after BTech. I smile at myself silently
and thank god for showing me the light. ”Peter these are the years when a man changes into the man he
is gonna become for the rest of his life. Just be careful what you turn into”. A great dialogue from the
uncle ben to peter parker in the movie spider man. Well I could proudly say that IIIT has nurtured me
into a good man. It taught me how to work had with its assignments, how to have fun with its cultural
events and my prof taught me how to be cool under heavy pressure and enjoy life. I enjoyed the weekly
visits to my home and I thank my friends Abhilash Reddy, Nisar Shaik, Shashank Surya and Emanual
for making my weekends truly enjoyable. Its sad to say that I have to leave IIIT sooner or later, but I am
happy to say that I will leave with bag full of memories. Memories full of laughs, endless discussion
with Nikhil, Praveen Dakwale, Jatin, Harsh about Bavalu and his CC’s, games we played and travelling
we did. I would like to thank them for being there for me and hope they will be there for me.

v

Abstract

All visible objects have shape and texture. The main aim of computer graphics is to represent and
render real world objects efficiently and realistically. To make the objects look realistic from a geomet-
ric point of view, we have to make sure that the shape and texture of the object are accurate. In practice,
shape is either hand crafted using 3D modeling tools such as Blender, or is acquired from real world
objects using 3D reconstruction techniques. Texture is the second aspect of appearance that must be
ensured to make the rendered objects look real. The texture has to be pasted on the surface in such a
manner that it perceptual corresponds to the correct part of the mesh. This process of pasting the texture
on the surface of a mesh model is called Texture mapping. Texture mapping can be done in two ways.
First way is to texture a surface by synthesizing the texture directly on the surface. The second method
is to wrap a synthesized texture around the surface and cut and merge the seams so that it fits correctly
on the surface. To visualize this problem we can think of texture as a cloth. The first method can be
thought of weaving around the body to fit it exactly like a sweater, while the second method is like
cutting and stitching an already woven cloth according to the shape of the mesh model. In this thesis
we propose a new method that follows the second approach. The primary goal of our method is to map
a texture on to large mesh model at interactive rates, while maintaining the perceived quality.

The primary technique for mapping a flat texture (image) onto an arbitrary shaped mesh model is
to parameterize the shape, which defines a mapping from points on the mesh surface onto a 2D plane.
When parameterizing these mesh models, we try to maintain the geometric correspondence between
the mesh vertices intact to reduce the distortion of the texture. Typically, parameterizing a mesh model
involves solving a set of linear equations representing the geometric correspondence of the triangles.
The approach involves defining an energy function for the mapping and searching for a global optimum
which minimizes the distortions during the mapping. Such methods are capable to achieving texture
mappings that has high perceptual quality. However, typical energy minimization procedures are com-
putationally expensive and cannot be applied for real time applications or with large mesh models.

As the size of mesh models increase, global optimization techniques employed by the parameteriza-
tion methods tend to become computational bottlenecks. To make parameterization a real time proce-
dure for large meshes, we propose a greedy approach that operates on local optimization function rather
than the traditional global optimization function. We express the surface in terms of local curvature and

vi

vii

store these values in a priority queue, which is used to determine the portion of the mesh that is to be
textured next. Our algorithm is simple to implement and can texture at approximately one million poly-
gons per second on current day desktops. We show that our algorithm is robust to dynamically changing
meshes and produces the same texture even when a part of the mesh is removed and brought back. This
is an important feature because in case of optimized rendering of large objects, we cull out large parts
of the model from rendering based on visibility, and render them again when these objects fall back into
the view frustum. In such situations, re-texturing of previously seen parts should not change its appear-
ance. The proposed algorithm is also not affected by a sudden change in the density of points on a noisy
mesh surfaces. That is, the algorithm’s runtime complexity does not depend upon the complexity of the
surface unlike most traditional parameterization algorithms. The time complexity is linearly related to
the model size and it is not affected by the size of the texture.

To complement the proposed texture mapping algorithm, we introduce a method to make a tex-
ture self tileable. This allows us to store only the texel structure, if the required texture is repetitive. We
present qualitative and quantitative results in comparison with several other texture mapping algorithms.
The proposed algorithm is robust in terms of the output quality and can find applications in different
scenarios such as rapid prototyping, where you require interactive texture mapping rates and the ability
to deal with dynamic mesh topology. It can also be used for applications such as large monument visu-
alizations, where we need to deal with large and noisy mesh models that are generated using techniques
such as multi-view stereo.

Contents

Chapter Page

1 Introduction . 1
1.1 History and its advancements . 1
1.2 Problem Overview . 2
1.3 Background . 3
1.4 Previous work . 5

1.4.1 Mesh parameterization . 5
1.4.1.1 Planar parameterization . 6
1.4.1.2 Spherical mesh Parameterization: 7
1.4.1.3 Hierarchical mesh parameterization: 8

1.4.2 Texture Synthesis: . 8
1.4.2.1 Pixel based Texture synthesis: . 8
1.4.2.2 Patch based Texture synthesis: . 9
1.4.2.3 Texture Synthesis in mesh parameterization: 10

1.5 Contributions . 10

2 Texture Mapping by homogeneous patch discovery . 11
2.1 Data Structure . 11
2.2 Patch Discovery and Mapping . 13
2.3 Salient Features . 18
2.4 Trade off between global and local optimization approach: 19
2.5 Constraining patch seams and Correction Texture . 21
2.6 Dynamic Mesh . 21

3 Texture synthesis of self tileable textures . 23
3.1 Dynamic Size Texture . 25
3.2 Aperiodic Tiling . 27

4 Analysis and Conclusions . 29
4.1 Results and Discussion . 31
4.2 Conclusions and Future work . 33

5 Appedix . 37
5.1 File formats . 37
5.2 Priority Queues . 38

viii

CONTENTS ix

Bibliography . 43

List of Figures

Figure Page

1.1 Notation for the construction of barycentric coordinates. 5

2.1 We use this data structure to represent geometric data. 12
2.2 Middle image shows a partially textured mesh model. Enlarged portions of the image

show faces of the mesh at the boundary of the texture, labeled in brown and gray colors
alternately. Among these faces, if we texture any brown colored face, neighboring gray
colored faces will have all the three vertices textured and vice versa. 13

2.3 Figures a,b,c and d represent the priority queues having zero, one, two, three neighbors
being textured respectively. 15

2.4 Proportion of faces that are explicitly textured with increasing model size. 15
2.5 This image shows how the computation of texture coordinates is done graphically. The

axis shown is the plane of the face. 16
2.6 Texture patch edges that are pushed to the geometric edges of the 3D mesh. 18
2.7 (a) Stone chariot, a heritage monument having 1, 586, 181 faces was textured in 3.28

sec. (b) and (c) show a noisy mesh model having 20k faces was texture in 0.012 sec
by our algorithm and in 7.21 sec by ABF++[36]. (d) shows our texturing result on a
complex model. 19

2.8 The seam that is formed on the hippo’s side in (a) can be moved to a less visible position
at the bottom by manually marking a seam line using our tool, resulting in (b). 20

3.1 Quadrant swapping for creating the tileable textures and resulting seam-lines. 23
3.2 Different weight maps produce different textures. (a)-(d), (b)-(e) and (c)-(f) are texture

and weight map pairs. The rectangular perimeter region of all the images are same,
which is a desired quality. 24

3.3 (a), (b), (c) are input images and (d), (e), (f) are the corresponding self-tileable outputs. 25
3.4 Result of our dynamic texture algorithm on different textures. The examples are ordered

as input, output and tilled output in every row. 28

4.1 Comparison of stretch produced by our algorithm in comparison with other mesh pa-
rameterization approaches. 29

4.2 Comparison of distortion produced by our algorithm in comparison with other mesh
parameterization approaches. 30

4.3 Comparison of time required for texture mapping. Note that the Y-axis is in log scale
and an increase in one unit is equivalent to a 10-fold increase in time. 30

x

LIST OF FIGURES xi

4.4 The texture quality is good in both the cases, i.e (a)without using skeleton and (b)with
using skeleton. But the texture in figure b seem to be more natural as it flows with the
body of the horse. 32

4.5 Results of various algorithms on Isis model. The proposed algorithm (f) preserves scale
much better than state-of-the-art methods while limiting distortion. 33

4.6 In this figure we show the results when skeleton was used for deriving the orientation
vectors. The Red-Blue line gives the direction of the first PCA vector. In figure 4.6(a)
orientations vectors follow the PCA vector and 4.6(b) shows the corresponding result of
texturing. In figure 4.6(c) we derive orientation vectors from the skeleton of the mesh
and 4.6(d) shows the corresponding result of texturing. 34

4.7 Results of texture mapping different mesh models of various complexities. Figure 11*
was the result of texture mapping when orientation vectors were generated from the
skeleton of the mesh. 35

5.1 This figure gives the visual representation of priority queue. 38
5.2 This figure shows some examples of correct and wrong priority queues. 40
5.3 This figure illustrates the order property of priority queues. 40
5.4 This figure illustrates how to implement priority queue using arrays. 41
5.5 This figure illustrates how to insert an element into priority queue. 41
5.6 This figure illustrates how to remove an element into priority queue. 42

List of Tables

Table Page

2.1 Stability of the algorithm: The error shown above is the average difference in the texture
coordinates of the vertices (scale is 800 pixels. Here pixels mean texture resolution). For
configuration of the mesh models refer to Table 4.1 22

4.1 Execution time with models of various sizes. Error(in pixels) denotes the largest shear
of triangle in pixels during texture mapping. These mesh models are shown in fig 4.2. . 31

4.2 Time (sec), stretch (area ratio) and Distortion (angle difference in degrees) for various
algorithms of four models of differing complexity. 31

xii

Chapter 1

Introduction

1.1 History and its advancements

Computer Graphics helps in visualization of geometric data, images and text and provides an in-
terface to see them from different view points and allows us to interact with and manipulate the data.
Computer graphics in its nascent stages (1960s) was primarily concerned about drawing shape primi-
tives such as points and lines on the display devices. Once the processors became powerful enough,
one could deal with solid objects, which were rendered with a single color. With the advent of color
displays, one was able to render solids using different colors at different vertices. Even then, the attempt
to reproduce objects closer to reality was a far dream. This is because objects in real world have large
amounts of structural complexity, and to render and simulate it realistically, you should have extremely
complex models to capture the entire information. Moreover, the vertices of the models could only hold
basic color information then.

With the advent of time, the graphics processing units became significantly more powerful. Along
with APIs for utilizing the powerful hardware, the functionality of displaying images over vertices was
introduced. With the support for image mapping on geometry, one could introduce significantly higher
realism into the scene being rendered. Most of this processing happens on the Graphics Processing
Unit (GPU). While the purpose of both CPU(Central Processing Unit) and GPU is to carry out a set of
basic operations on the data, the nature of computation required for computer graphics is very specific
compared to general purpose computation done by a CPU. In computer graphics the operations carried
out are always on geometric mesh models or raster data. Geometric mesh models are composed of 3D
points represented using floating point numbers and the operations carried out on them are restricted to
translation, rotation, scaling or skewing. In mathematical terms, all of these operations can be achieved
using matrix multiplications in homogeneous coordinate system. Visual manipulations on raster data
like images are also represented by matrices, which basically calculate the imagery that would be gener-
ated when these rasters are seen from different view points. So we can take advantage of this observation
and design the architecture of GPU, such that the ALU(Arithmetic Logic Unit) would have operations

1

directly for addition, subtraction, multiplication and division of matrices. When the data is sent to the
GPU it would go through a series of operations in graphics pipeline, where the above operations are
carried out on geometric data. With the latest APIs you can program these operations on the pipeline
using shader languages. These shader languages would directly be executed on GPU. This provides a
lot of flexibility in graphics programming and we can make use of the fast computation power of GPU.

Displaying a simple rectangular image on a quad is made easy by the current GPUs. We just need
to match the ends of the image with the ends of the quad and the GPU will take care of the rest of the
rendering process. An image loaded into the graphics memory is referred to as a texture. The process
of assigning texture coordinates to the vertices of a geometry is called UV mapping or texture mapping.
Here the letters ”U” and ”V” denote the axes of the 2D texture. Specifying the texture mapping manually
(i.e. specifying texture coordinates to each and every vertex) can be a laborious task and hence cannot be
done in most practical situations. Specifying texture coordinates manually to non planar mesh models
like a simple sphere is impractical. So the process of texture mapping was automated by using mesh
parametrization techniques. The state-of-the-art techniques do well in terms of the texture quality but
often are very slow. In this thesis, we propose an algorithm that is highly efficient and still maintains
texture quality comparable to the state-of-the-art techniques.

1.2 Problem Overview

Texture mapping is the process of assigning texture coordinates to the mesh vertices. For synthetic
flat surfaces having no guassian curvature, texture mapping is a trivial process and it involves projection
of the surface onto the texture plane. After projecting, we use the projection coordinates as the texture
coordinates for the corresponding vertices. On the other hand, natural surfaces having gaussian curva-
ture are not trivial cases of texture mapping. When we project natural surfaces onto a plane, the surface
can stretch or squeeze based on the relative position to the plane we are projecting onto.

We can use mesh parameterization to minimize this distortion. Mesh parameterization is a bijective
function f : R3 → R2 that maps the 3D vertices onto a 2D plane. Ideally the parameterization should
be isometric, preserving both the area and the angles of the triangle. But we cannot achieve isometric
parameterization, as a surface with Guassian curve will always have to be distorted to be able to fit onto
a 2D plane.

Hence, the goal of mesh parameterization algorithm is to minimize the distortion of the triangles
in terms of the angle (conformal maps) or the area (authalic maps) to reduce the amount of skewing
or stretching of the texture. Such mesh parameterization algorithms have several applications such as
texture mapping, re-meshing, morphing, mesh editing, and mesh compression. We refer to mesh pa-

2

rameterization only in conjunction with texture mapping in all our further references.

Mesh parameterization visualizes the edges of the mesh primitives as springs, so that the surface
becomes flexible to transform it to a planar surface. Parameterization should not fold the triangles over
the adjacent triangles in texture space. If the surface of the mesh model has a high curvature, then
parameterization would produce a more distorted texture. We can reduce the distortion by cutting the
mesh into planar patches and mapping each patch independently. However, increasing the number of
cuts would introduce more discontinuities in the pasted texture, leading to deterioration in the perceived
quality. A possible approach to minimize the visual impact of the cuts is to constrain them to the geo-
metric edges of the 3D mesh model. We must also optimize between the size of the texture patch and
the amount of distortion within the patch. So a good texture mapping algorithm should take into consid-
eration all the above constraints and find a mapping that introduces the least amount of visual artifacts.
We try to propose an algorithm that efficiently tackles all the these problems while providing a real time
performance for most model sizes. In the next section, we look into the basics of mesh parameterization.

1.3 Background

In terms of visualization, Mesh parameterization can be thought of relaxing a geometric mesh over
an arbitrary surface, so that the stretching of the edges is minimum. The edges of a triangle can be
given the physical nature of a spring, so that each edge (spring) tries to pull itself back to reduce the
stretch in the length of the edge. Let us consider the parameterization of a gaussian mesh surface that is
homoemorphic to a 2D plane. To simplify the problem, let us assume that we already know the texture
coordinates for the boundary vertices. This means that, we have now fixed the boundary of the mesh to
the texture’s boundary. Now we try to relax the interior network of the mesh by relaxing the tension in
the springs (edges) to form the most efficient configuration. We can simply assign the positions where
the vertices of the mesh have come to rest in the texture plane as texture coordinates to the corresponding
vertices. The springs are assumed to be ideal in nature i.e their rest length is zero. When these springs
are stretched to a length s, the potential energy P of the string is ½Ds2, where D is the spring constant.
We first specify the texture coordinates ui = (ui, vi), where i = n+1..., n+b for the boundary vertices
pi ∈ VB . Then we minimize the overall spring energy

E =
1

2

n∑
i=1

∑
j∈Ni

1

2
Dij ‖ ui − uj ‖2 (1.1)

,
where Dij = Dji is the spring constant of the spring between vertices pi and pj , with respect to the

unknown texture coordinates ui = (ui, vi) of interior vertices. The constant 1
2 in the above equation

is to calculate the tension between two vertices only once, as summing up this way counts every edge
twice. The partial derivative of E with respect to ui is

3

∂E

∂ui
=

∑
j∈Ni

Dij(ui − uj) (1.2)

the minimum of E is obtained if

∑
j∈Ni

Dijui =
∑
j∈Ni

Dijuj (1.3)

holds for all i = 1, ..., n. This is equivalent to saying that each interior vertices ui, is an affine combi-
nation of its neighbours,

ui =
∑
j∈Ni

λijuj (1.4)

with normalized coefficients

λij = Dij/
∑
k∈Ni

Dik (1.5)

The coefficients clearly sum to 1. By separating the parameter points for the interior and the boundary
vertices in the sum on the right hand side of (1.4) we get

ui −
∑

j∈Ni,j≤n
λijuj =

∑
j∈Ni,j>n

λijuj (1.6)

and see that computing the texture coordinates ui and vi of the interior vertex ui requires to solve
the linear systems

AU = U and AV = V (1.7)

where U = (u1, ..., un) and V = (v1, ..., vn) are the column vectors of unknown coordinates,
U = (u1, ..., un) and V = (v1, ..., vn) are the column vectors with known coefficients

ui =
∑

j∈Ni,j>n

λijuj and vi =
∑

j∈Ni,j>n

λijvj (1.8)

and A = (aij)i,j=1,...,n is the n× n matrix with elements

aij = 1 if i = j, aij = −λij if j ∈ Ni, aij = 0 otherwise. (1.9)

If we choose the texture coordinates for ui such that

ui =
∑
j∈Ni

λijuj and
∑
j∈Ni

λij = 1 (1.10)

the coordinates λij , j = 1, ..., n are called barycentric coordinates of ui.

4

Figure 1.1 Notation for the construction of barycentric coordinates.

where λij is
λij = wij/

∑
k∈Ni

wik (1.11)

Discrete harmonic coordinates[5] calculates barycentric coordinates λij as

wij = cotγij + cotγji (1.12)

Mean value coordinates[10] calculates barycentric coordinates λij as

wij =
tan

αij

2 + tan
βji
2

γij
(1.13)

From the above discussion, it is clear that finding the texture mapping by taking the entire surface into
consideration and then optimizing it is a time taking process. So, we propose a local error minimizing
solution that will provide fast output.

1.4 Previous work

This thesis will look into improving the speed of mesh parameterization, which also includes a
texture synthesis technique that help us to achieve this. We first discuss the previous work in the field of
mesh parameterization, followed by that in texture synthesis.

1.4.1 Mesh parameterization

Parameterization of a mesh surface can be defined as bijective mapping of the mesh vertices onto a
2D texture plane, such that there is no overlapping and distortion of the triangles. One major requirement
for this to happen is that, the surface of the mesh model should be homeomorphic to the parametric sur-
face. Here the parametric surface is a 2D texture plane. So the mesh should be homeomorphic to a plane.

A closed surface like a sphere (surfaces with zero genus) cannot be flattened to a sheet. So the mesh
has to be cut into patches that are homeomorphic to a disk and then parameterized independently to
map them to a 2D plane. A surface with high genus would require large number of cuts. So the steps
involved in the process of texture mapping are:

5

1. Segment the mesh, if needed, into surfaces homeomorphic to a plane using mesh segmentation
algorithms [20][47][15][33][46]. The goal of dividing the surface into charts should be that the
distortion when parameterizing should be low, while generating only few charts. The shape of the
chart should also be circular to reduce the perimeter of the texture i.e the texture seam.

2. Parametrize the surface to the topology of the parametric domain.

3. Pack the texture into a single texture image compactly, to gain memory efficiency when storing it
in the gpu memory.

1.4.1.1 Planar parameterization

When parameterizing the mesh, we can fix the boundary of the mesh to a simple convex polygon like
a square. Then we can interpolate the interior vertices by expressing them in terms of the barycentric co-
ordinates of the boundary vertices. Floater[10] takes such an approach and uses barycentric coordinate
system to parametrize the mesh. In general, this type of boundary limitation will generate more distor-
tion than free boundary techniques. Yoshizawa et al.[44] starts with the method described by Floater[10]
and uses an iterative approach to decrease the error at each step. The Angle Based Flattening(ABF)[34]
algorithm by Sheffer et al. enforce constraints on the angles of the triangles during parametrization by
expressing the angles of the triangle as a point in parametric space and the movement of this point is
approximated by a Lagrangian function. This Lagrangian function is minimized using iterative Newton
schemes. Sheffer et al.[35] then minimize the change in the angles of the triangle by keeping the sign of
the Jacobian to positive. However, this latter approach requires a lot of time to solve the linear equations
and becomes impractical for meshes with more than 30K faces. Later, Sheffer et al.[36] reduced the di-
mensionality of the Hessian used in ABF[34] by a factor of five, which resulted in a speed up by a factor
of 10. Zayer et al.[45] improved on the speed of this approach by reformulating the problem in terms of
error of estimation rather than angles of the triangles. Least Square Conformal Maps(LSCM)[20] uses
discrete approximation of a conformal map using the Conjugate Gradient method.

Gu et al.[13] explored the fact that surface parametrization will change drastically if the topology
changes even a little bit. They punctured small holes to change the surface topology negligibly and ac-
quired better parametrization with reduced stretch. Madaras et al.[24] used the skeleton of the mesh to
do texture mapping. They used the skeleton generated by Cao et al.[3]. After skeletonizing the vertices
into a skeleton element, the correspondence between the mesh vertices and the skeleton elements is
stored. A bunch of neighboring skeleton elements are grouped such that they form a rectangular surface
when back projected to the corresponding vertices. The surfaces formed by these vertices are matched
against some predetermined surfaces. The parametrization for these surfaces are precomputed. When
a surface is mapped against a predetermined surface, its corresponding parametrization is directly used
for texture mapping. Hence we can avoid storing the texture coordinates in the mesh data and instead
just store the index to the corresponding parametric surface, saving a lot of storage space. Because

6

the parametrized surfaces are rectangular planes, we can pack the texture atlases efficiently. Such a
parametrization would allow arbitrary surfaces to be parametrized. Liu et al.[23] introduces ASAP and
ARAP methods. While ASAP has results similar to LSCM[20], ARAP produces better parameteriza-
tion results.

The disadvantage of conformal mapping comes into picture when parameterizing a planar region
with protruding shapes in it. Conformal mapping has a tendency to create large amount of stretch at
protruding shapes to preserve angular structure. If the mesh segmentation algorithm has cut the mesh
along the length of the protruding shape, then there will be no stretch along the peak. But this may
or may not happen and this makes the mesh parameterization algorithm’s output to be dependent on
mesh segmentation algorithm and hence these algorithms are weak in terms of its robustness. However
authalic mapping will texture and form a seam along the length of the bump.

Authalic mapping tries to preserve the area, which implies avoiding stretch as much as possible.
Authalic map generation has been of major interest in the field of geometry processing. In some appli-
cations where a captured image is projected over a mesh, it is desirable that the parametrization to the
parametric domain be area preserving. But area preserving parametrization is hard to come by, because
its constraints are in term of area and area has less degrees of freedom to map a 3d surface onto a 2d
plane. In case of conformal maps, the restriction is only on angles and we can stretch the texture to do
parameterization. To reduce the complexity of authalic mapping, we can decompose the mesh model
into charts having the topology of a disc, such that the Gaussian curvature is close to zero.

Zhang et al.[46] used an anisotropic stretch metric to guide the vertex position optimization. They did
not give any bound on the area preserving property, despite having a area preserving energy term in their
distortion metric. Jin et al.[14] used Mobius transformations space to search for optimal global confor-
mal parametrization. Because Mobius transformations is invariant to conformality, the parametrization
acquired should still be conformal. Parametrization, in general, cannot be both authalic and confor-
mal, because getting isometric maps is impossible for Gaussian curvature surfaces. So Jin et al.[14]
parametrization cannot be area preserving. Zou et al.[48] used Lie advection, a classical mechanics
concept, to compute area preserving parametrization.

1.4.1.2 Spherical mesh Parameterization:

Geometric models are often described by closed, genus-zero surfaces. For such models, the sphere
is the most natural parameterization domain, since it does not require cutting the surface into disks.
Here we parameterize a triangular mesh onto a unit sphere based on an optimality condition. Note that
this assumes the texture to be mapped is not a flat rectangular image, but spherical. This assignment
should reduce the distortion induced into the spherical triangles and there should be no overlap. For

7

complex and highly deformed surfaces, generating a low distortion and non overlapping parametrized
spherical triangles is difficult. Gotsman et al.[12] introduced the concept of spherical parameterization.
Praun et al.[28] and Saba et al.[30] further improved the method. Octahedral mesh parameterization
was proposed by Praun and Hoppe et al. [28], where an octahedron is used instead of a sphere. Spheri-
cal parameterization is impractical in situations where we cannot get spherical textures.

1.4.1.3 Hierarchical mesh parameterization:

Linear solvers can sometimes take a lot of time to converge and this is mainly the problem with
large dense mesh. Some authors choose to solve this problem using a hierarchical approach. A pyramid
of meshes are created by a series of smoothing filters and we start processing the coarse meshes first.
Coarse meshes have only high frequency components. After the coarse mesh is processed, we move
onto the next level of the hierarchy, where a part of the missing lower frequency components are intro-
duced. We use the information from the previous level as a staring condition for the next level. In this
approach we will be processing extra geometry, but the linear solver will converge a lot faster compared
to non-hierarchical approach. Ray et al.[29]’s Hierarchical Least Squares Conformal Maps is an hierar-
chical version of LSCM. In HLSCM, the solver used in LSCM is implemented in a hierarchical manner,
allowing the algorithm to treat higher and lower frequencies separately. Lee et al.[17] parametrizes
the coarse mesh and propagates the texture coordinates to the next levels. The algorithm proposed by
Hormannet al.[16] also uses a hierarchical approach where a few vertices are parametrized, followed by
introduction of new vertices and relaunching of parametrization. Sander et al.[32] did optimization in
signal domain. Their approach evenly distributes the signal frequencies in the texture at all levels.

1.4.2 Texture Synthesis:

Texture synthesis is another field of graphics where a lot of research has taken place. Texture syn-
thesis deal with the generation of a texture image from a smaller texture sample or its characteristics.
The definition of texture in this context, is slightly different from how it was used earlier. An image is
considered to be a texture if all smaller windows within the texture are statistically (appearance-wise)
similar. This implies that the image has random repetitiveness in its pattern of visual features. Given
such an image, we try to synthesize a new (possibly larger) image that has the same visual behavior.

1.4.2.1 Pixel based Texture synthesis:

Efros and Leung[8] seed the texture with the some noise having the same statistical distribution as
the exampler image and then go in a spiral fashion around this seed. To determine a pixel value they

8

construct a neighborhood around the current pixel and match this neighborhood with the neighborhoods
present in the input exemplar image. Pick a random one from the closest matching neighborhoods and
assign this value to the current pixel. Wei and Levoy[40] improve on this concept and they propose
to synthesize the texture in scan line order rather than in spiral fashion and introduced pyramidal tech-
niques for improving the quality. Ashikhmin et al.[1] also improves this concept, by using k-coherence
to restricts his range of search to the candidates from where the adjacent pixels were taken and assigns
the relative pixel color. Lefebvre and Hoppes[18] were able to run their algorithm on GPU at interactive
speed. Their algorithm mainly consisted of three steps: up-sampling, adding jitter to introduce random-
ness and then correction using neighborhood search.

1.4.2.2 Patch based Texture synthesis:

Along with pixel based texture synthesis, there is also patch based texture synthesis. In patch based
texture synthesis procedure, you search for a patch that will seamlessly tile with the already synthesized
texture. Ying et al.[42] does patch tilling by a stochastic distribution of random image blocks in a ran-
dom fashion. After this we do have some artifacts and these artifacts are removed, by processing the
layer of texture around this artifact and using the Efros and Leung[8] method to fill up this blank space
using a suitable neighborhood. Lin et al.[21] approach for patch based texture synthesis is similar to
Ying et al.[42], but they do it in a scan line order. They search for a patch that will seamlessly tile with
the already synthesized texture and then they apply a smoothing filter on the overlapping region to re-
move the small artifacts of synthesis procedure. They use Approximate Nearest Neighbour technique to
find the patch that match the patch boundary. Efros et al.[7] improved on this procedure. In the work of
Lin et al.[21] they used square patches for pasting. Whereas Efros et al.[7] pasted the same rectangular
blocks, and then carved them to have irregular boundaries by calculating a minimum error boundary cut
in the overlap region using dynamic programming.

There are pros and cons for both pixel and patch based synthesis procedure. We select the patch-
based approach so that we can synthesize the textures faster compared to pixel-based procedures. The
output of patch based procedures will be also be sharper compared to pixel based techniques as it often
places neighboring pixels selected from different locations that may not blend well, leading to a blurred
texture output. One of the main disadvantage of patch based synthesis is that you have to give the texel
size as input, making the procedure semi-automatic. We cannot generalize the size of the patch as dif-
ferent textures have different texel structures and an appropriate patch size can only be decided based
upon the size of the texel present in that particular texture. If we use wrong patch size for synthesis,
then it will corrupt the texel structure in the output.

9

1.4.2.3 Texture Synthesis in mesh parameterization:

As discussed earlier we can do texture mapping of a surface by doing texture synthesis directly on the
surface. So, Texture synthesis is another area where parameterization finds its application. Traditional
texture synthesis methods approach the problem in raster scan order, considering the boundary of al-
ready synthesized regions. In order to carry out synthesis on arbitrary surfaces, these surfaces need to
be mapped to a planar surface first by using a mesh parameterization technique and then use the normal
raster scan based texture synthesis algorithms. Wei et al.[41], Ying et al.[43] and Praun et al.[27] use
this approach to do texture synthesis directly on mesh models.

1.5 Contributions

In light of the above discussion, we note that in order to apply a texture to a mesh model, one needs to:
i) Segment a 3D mesh into parts that are homeomorphic to the texture surface (often planar), ii) Compute
a mapping from each segmented part of the mesh to the texture surface that minimizes distortions, and
iii) Ensure that one has a texture that is large enough to cover the mapped area. In addition, one also
needs to ensure that the seams created by independently mapping the segmented parts of the 3D mesh
does not create distracting visual artifacts. The process of finding an optimal mapping that ensures the
above is often a time consuming process. In order to make the process of texture mapping fast and to
take care of the above requirements, we do the following:

• Propose a locally optimal greedy method that efficiently maps a given texture to a 3D model,
while segmenting the mesh automatically. The process is described in detail in Chapter 2. In
order to make the process efficient, we assume that the texture image being used is self-tileable.

• Explore methods to assign texture directions to mesh triangles that would create natural texture
flow for directional textures, and

• Propose a method to make a given texture image self-tileable to complement the above algorithm.
This algorithm is described in Chapter 3. The algorithm also allows for variations in the synthesis
in case one needs to avoid regular repetitive patterns.

In addition, we also show that the algorithm is also amenable to suggestions by a user to define
both texture direction and seam positions so that one can achieve a desired appearance after texture
mapping. We present qualitative and quantitative results with models of different complexities to show
the effectiveness of the proposed algorithms.

10

Chapter 2

Texture Mapping by homogeneous patch discovery

As mentioned in the introduction, we propose an algorithm that computes a locally optimal mapping
in a greedy fashion while simultaneously segmenting the mesh into patches that are homeomorphic to
the given planar texture. To reduce visual artifacts, we discover patches that are homogenous in normals
and texture orientation. In order to achieve high levels of efficiency, it is critical that the information
required by the algorithm at each step is readily available. We first present the data structure that we use
to store the relevant information before describing the algorithm. The reader may also skip the following
section and read the rest of the chapter to get an overall understanding of the algorithm and refer to the
data structure when required.

2.1 Data Structure

We will first look at the data structure that hold the geometry information of the 3D mesh. The
geometric models are stored in different formats such as .3ds, .obj, .ply, etc. We used ply files in our
experimentation, which is an extended variant of the obj file format. For more information about ply
file format see Appendix 5.1. These files should be read into the main memory and parsed into a data
structure, so that we can access them for our processing.

The first, and simplest data structure we might think of is a simple list of polygons, each one storing
(redundantly) all of its vertex coordinates. That is, in C++:

struct Vert {double x, y, z;}; // vertex position
Vert tri[NFACES][3]; // array of triangles, each with 3 vertices

With this data structure, the vertices of face f would be at the xyz points tri[f][i] for i=0,1,2. The
above scheme is for triangulated models, where each face (polygon) has three sides, but it could obvi-
ously be generalized for models with n-sided faces. With this data structure, it would be very tricky to
perform an operation such as vertex truncation, where you need to find all the vertices adjacent (con-
nected by an edge) to a given vertex. To do that one would need to search through the face list for other

11

vertices with equal coordinates which is inefficient and not very elegant.

A better alternative would be to store the vertices separately, and make the faces be pointers to the
vertices:

Vert vert[NVERTS]; // array of vertices
struct Tri {Vert *p, *q, *r;}; // triangle holds 3 vertex pointers

Tri tri[NFACES]; // array of triangular faces

Again, this is the representation for triangular faces only. This second method reduces redundancy.
However, finding the vertices adjacent to a given vertex would still be costly (O(NFACES)), as we have
to search the entire face list. The above two data structures record the geometric information (vertex
positions) just fine, but they are lacking in topological information that records connectedness (adjacen-
cies) between vertices, edges, and faces. The first data structure stored no topological information, the
second stored only pointers from faces to vertices.

We can do better. To do so we’ll need to store even more topological information, so that we can find
the vertices/edges/faces immediately adjacent to a given vertex/edge/face in constant time. There are
many efficient data structure that overcome these issues like Quad-Edge Data structure. In the Quad-
Edge Data structure, there are classes for vertices, edges, and faces. It stores a lot of information about
its geometry like for a given vertex what is the list of neighboring vertices, what is the list of edges
incident on it and all this information is stored in both clockwise and counter clockwise order. But we
don’t require that much amount of information, as our algorithm is simple and if we maintain such large
amount of data then it might reduce the performance of the algorithm. So we build a data structure that
is tuned to our need. In the figure 2.1 we explain the data structure we use for our algorithm.

Figure 2.1 We use this data structure to represent geometric data.

12

In our algorithm1 we require only the information about the neighboring faces and hence the given
data structure is best suited our need. Because we store small amount of information, we are increasing
the locality of reference as there will be less number of cache misses. This will add to the speed of the
algorithm. With this information we are well prepared to understand and analyze the algorithm, which
we describe in the next section.

2.2 Patch Discovery and Mapping

We present the algorithm for triangulated meshes, although it can be extended to quad or any polyg-
onal meshes. We start by texturing a random face, by dropping it into the texture plane of the face
calculated from the orientation vector and bi-tangent vector. Bi-tangent vector is the cross product of
orientation vector and normal vector. Normal vector can be computed using the three vertices of the
triangle. We can also pre-compute it and store it in the mesh data. We can compute orientation fields
using a variety of methods, including Tangent vector fields suggested by Fisher et al[9]. As we are
interested in increasing execution speed of texture mapping algorithm, we have used a simpler approach
to compute the orientation field of the mesh model. We compute the principal direction of stretch of the
mesh model from PCA of its vertices. The orientation vector of each triangle is taken as the projection
of the first principal vector onto the triangle.

Figure 2.2 Middle image shows a partially textured mesh model. Enlarged portions of the image show
faces of the mesh at the boundary of the texture, labeled in brown and gray colors alternately. Among
these faces, if we texture any brown colored face, neighboring gray colored faces will have all the three
vertices textured and vice versa.

13

We then proceed to texture the triangles around the initial one, expanding the texture by incremen-
tally pushing the texture boundary. The boundary of textured region is pushed in the direction of ho-
mogeneous orientations, stopping at faces with large change in orientation vectors. The process is
implemented efficiently using a min heap priority queue for candidate faces to be textured, where we
use age of the face to strike balance between homogeneity of the region and compactness of the bound-
ary. Priority queue is the main essence of our algorithm and for more information about priority queue
refer to Appendix 5.2. Our algorithm processes the mesh in terms of faces, which is a triangle in our
discussions. The initial triangle ∆ABC, is textured by assigning any one of its vertices to a random
texture coordinate, say A is assigned the texture coordinates of the center of the texture space.1 Now
vertices B and C are projected onto the texture plane of the current face and the vectors

−→
ab and −→ac are

calculated. Texture coordinates of B (bx, by) are calculated as follows.

bx = (ax +
−→
abx) (2.1)

by = (ay +−→acy) (2.2)

Similarly, we calculate texture coordinates for the vertex C. We have now textured the first triangle
in a direction consistent with its orientation vector. Now we spread the texture over to the adjacent
faces that are planar to the current textured patch. For each face, the sum of angle differences made by
the current face orientation vector with the orientation vectors of neighboring faces are computed and
stored. From now onwards, we refer to this value as the age of the face, as the reason behind this would
seem obvious during the further reading. The neighboring faces of the current textured face are pushed
into a priority queue using the age as priority (larger age indicates lower priority) and they are pushed
into the priority queue based on the number of neighboring faces already textured. For example, faces
having two neighboring faces textured is pushed into priority queue two. So initially all the faces will
be in priority queue zero and as the number of neighboring textured faces are changed they are moved
into the corresponding queues. Figure 2.3 shows how these how these priority queues are organized.
We now pick the face from the top of the heap for texturing. We start with PQueue3 and move towards
lower queues. So, this means that faces having three neighboring faces textured are given high priority
and the face having least age is processed.

The reader may note that for a single connected mesh, any face picked out of the queue will have
either two or three of its vertices textured. If there are n disconnected components, we will encounter
n− 1 faces in the priority queue which have zero vertices textured.

Faces with three textured vertices in the queue should be given high priority to be textured first. If all
three of its vertices are textured, then there is nothing else to do, but declare the face as textured, remove
it from the queue and push its neighboring untextured faces into the priority queue. In practice, about

1Upper case letters refer to geometric space and lower case letters refer to texture space

14

(a) PQueue0 (b) PQueue1 (c) PQueue2 (d) PQueue3

Figure 2.3 Figures a,b,c and d represent the priority queues having zero, one, two, three neighbors
being textured respectively.

50% (see Figure 2.4) of the faces are textured in this way. This happens because, if a face has two of
its neighboring faces already textured, then it will have all its three vertices textured. This observation
can be clearly seen in Figure 2.2. If the triangle to be textured has two of its vertices assigned, then
we project both the vertices onto the texture plane of current face. Lets assume that we are texturing
the ∆ABC where A, B and C are its vertices. Vertices A, B are textured and C is not. The texture
coordinates of the third vertex C(cx, cy) are computed as below.

cx =
(ax +−→acx) + (bx +

−→
bcx)

2
(2.3)

cy =
(ay +−→acy) + (by +

−→
bcy)

2
(2.4)

where ax, ay are texture coordinates of vertex A and bx, by are texture coordinates of vertex B.
Figure 2.5 summarizes these equations. The overall process is summarized in the Algorithm 1. In equa-
tions (2.3) and (2.4), we average the texture coordinates suggested by the two vertices. If the texture
coordinates suggested by the vertices differ beyond a value errorThreshold, we do not process the

Sheet1

Page 1

0.49

0.495

0.5

0.505

0.51

0.515

0.52

Mesh models

%
 F

a
ce

s
 p

ro
c e

s
s

e
d

 (
 0

 -
 1

)

Figure 2.4 Proportion of faces that are explicitly textured with increasing model size.

15

face but push it back onto the queue with its age increased by a largeV al. Normally this happens at
faces having large curvature i.e. geometric edges. Value of the variable largeV al can be set to anything
that will push the face to the end of the queue. This avoids the processing of such faces in the near
future and hence propagation of distorted features is avoided. These are the region of a potential texture
seam. If the suggested texture coordinates are within the errorThreshold, we assign the average of
those texture coordinates and push the neighboring untextured faces in the priority queue.

A (ax,ay)

B (bx,by)

C(cx,cy) = ?

Figure 2.5 This image shows how the computation of texture coordinates is done graphically. The axis
shown is the plane of the face.

After processing, we decrease the age of all the faces in the priority queue by some Factor. We
took this Factor to be 1/(number offaces). By doing so we wish to process those faces that have
stayed in the queue for long time and hence they are given high priority to be textured next. This helps
in smoothly developing the texture over the surface without leaving any holes. Decrease in the length of
the texture patch boundary can be observed, as there is a potential possibility that these small holes left
untextured may grow into bigger holes. Operations on the priority queue are the core part of our algo-
rithm. In order to avoid decreasing the age of all faces in the queue(time complexityO(n)), we increase
the age of the face that is being pushed on the priority queue(time complexity O(1)), incremented by
Factor. The value of Factor keeps incrementing in every iteration by a value 1/(number offaces).
Instead if we increment by a value say 100/(number offaces), the algorithm will lose its capacity to
form texture patches at geometric edges, as the new faces introduced into the priority queue will always
be inserted at the end of the priority queue and hence acts like a normal queue. Flow of texture will be in
a spiral fashion around the starting face. This will introduce a lot of texture distortion, but will decrease
the execution time.

16

Decrease in execution time depends on two things: 1) Insertion into the priority queue and 2) Dele-
tion from the priority queue. In the above case with large increment in Factor value, faces are inserted
always at the end of the priority queue and it will make only one comparison for these types of inser-
tions. Deletion includes deleting the top of the heap and a re-heap of the priority queue which is of
O(logn) complexity. So the run time complexity decreases for the above special case. The value of
the increment is critical to the proper functioning of our algorithm. errorThreshold used in the Algo-
rithm 1 is initially set to 25 pixels, when the texture is scaled 800 times and the mesh is bounded in a
unit volume cube. If all the faces left in the priority queue are giving a error more than errorThreshold,
we increment it by 10 pixels and restart the algorithm. This would avoid a potential infinite loop in the
algorithm. Algorithm 1 gives an overview of the entire procedure.

Algorithm 1 Proposed Algorithm
Input: Mesh model
Output: Texture coordinates assigned to vertices
Factor := 1/(number offaces);
while priority queue is not empty do

Pop the face with least age from the priority queue, giving higher priority to faces with 3 vertices
textured.
if error > errorThreshold then

Enqueue face again with age=age+ LargeV al.
else

Process the face as explained in Section 2.2.
Enqueue neighbors with age = age+ Factor.
Factor := Factor + 1/(numberoffaces);

end if
end while

An another interesting discussion would that why we process the mesh interms of faces and not
interms of vertices. Our texture mapping algorithm processes the vertices in one sweep from one point
on the surface to the other point face by face. As we use min heap priority queue to maintain the faces
with the age as priority, only the faces present on the edges of the processed texture are present at the
top of the heap. The faces present at the border have two vertices textured and one untextured as shown
in fig 2.2 . So to texture the untextured vertex we only consider the neighboring two vertices and the
orientation vector of the face. This is the main reason for processing the face interms of faces and not
interms of vertices. On an average every vertex has 6 neighboring vertices. If we choose to process
the mesh in terms of vertices, then to texture a vertex we have to take into account all the neighboring
vertices. Here the major problem is that the number of neighboring vertices for a particular vertex is
variable. Whereas in our case where we process interms of faces we have, for a given vertex, only two
other vertices to be considered and this is a constant. For a triangular vertex this will always be two.

17

Figure 2.6 Texture patch edges that are pushed to the geometric edges of the 3D mesh.

If the same algorithm was used on a quad mesh, then the number of vertices to be considered is
three. So we can consider the core part of the algorithm to be of constant run time. Though occasionally
the faces are reprocessed if texturing that face gives large error. But the probability that face will be
textured again and again is very less, as after some time we relax the error filter and process the faces
that have been in the queue for a long time irrespective of the error they are giving. There is a case that
may make the algorithms time complexity to increase i.e the case where all the faces in the queue are
giving a error more than errorThreshold. We check for this condition in our algorithm1 and increase
the errorThreshold as discussed earlier. As a result it was observed that almost all the faces would be
textured. This makes the run time complexity of our algorithm to be O(n).

2.3 Salient Features

1. Most striking feature of algorithm 1 is the speed of the algorithm (see Figure 2.7(a)). Vertices are
textured by considering only the other two vertices and the orientation vector of the face. Only
half of the faces are actually processed, saving much time (see Figure 2.4).

2. A priority queue based patch discovery algorithm that grows into homogeneous regions, as the
priority of a face is inversely proportional to the orientation distortion at the face.

3. The patch discovery process tends to terminate at faces of large variations in normals resulting
in patches getting bounded by edges of the model i.e at places where the seam is less visible.
This improves the perceptual quality of texturing (see Figure 2.6) and helps to reduce the stretch.

18

(a) stonechariot (b) Our result (c) ABF++ result (d) Mannequin-devil

Figure 2.7 (a) Stone chariot, a heritage monument having 1, 586, 181 faces was textured in 3.28 sec.
(b) and (c) show a noisy mesh model having 20k faces was texture in 0.012 sec by our algorithm and in
7.21 sec by ABF++[36]. (d) shows our texturing result on a complex model.

This property of our algorithm results in cutting the mesh into patches. However, unlike most
mesh parameterization methods, this is an inherent part of our algorithm. Sorkine et al.[37]
also proposes a mesh parameterization technique that does texture mapping and mesh cutting
simultaneously.

4. Our algorithm does not have any restriction on the topology, as it incrementally textures the
surface and cuts at appropriate places.

5. Increase in complexity of the mesh topology has a negligible effect on the run time of the al-
gorithm and its texture quality(see Figure 2.7(b) and 2.7(c)). Other mesh parameterization al-
gorithms like ABF++[36] drastically increase their execution speed and texture boundary length
with increase in complexity of mesh topology or for noisy meshes. This suggests that our algo-
rithm is robust to complex surface topology.

6. Texture patches follow the orientation vectors and remain in coherence with neighboring texture
patches making the seam less obvious. This phenomenon can be observed in the Figure2.7(b) and
2.7(c).

19

(a) (b)

Figure 2.8 The seam that is formed on the hippo’s side in (a) can be moved to a less visible position at
the bottom by manually marking a seam line using our tool, resulting in (b).

2.4 Trade off between global and local optimization approach:

The general goal of mesh parametrization in terms texture mapping is to reduce the amount of stretch
and distortion and meanwhile have less number of texture cuts. Instead of minimizing a global function
some authors choose to minimize a local parametrization function. Local parametrization algorithms
decide whether to cut the texture or extend it. As the optimization function takes only the local neighbor-
hood into consideration, it suffers from the disadvantages of greedy approach, where solution obtained
may not be optimal. This is why the global parametrization, which takes the entire surface into consider-
ation, analogous to dynamic programming approach, is considered to give good results. When a global
parametrization technique is used for a surface having Gaussian curvature there is no single optimal
solution. But dynamic programming approach will try to find the optimal solution for every patch and
in this process it will give sub optimal solution to some part of the texture. This sub optimal solution
will give a distorted texture and this distortion is mainly seen in terms of stretch or compression of
the texture. This is where the local parametrization approach performs over the global parametrization
technique. Using the local parametrization approach we have full control over each and every part of
the surface and can sometimes give better texture mapping results. But local parametrization technique
can sometimes create large number of texture seam[37][2][31].

Both the methods have their pros and cons and a choice between them be made based on the require-
ment. For example in situation where the mesh is small and a highly structured texture is to be pasted,
we should prefer global parametrization technique. In situations where the mesh is very dense and the
texture pasted is a semi structured or stochastic texture, we can prefer local parametrization technique.
One major advantage of local parametrization technique is its speed. Assigning texture coordinate to
vertex using local parametrization will normally require the information from neighbouring vertices.
On an average, the no of vertices surrounding a vertex is 6 and hence deciding the texture coordinate for
a vertex, given the information of the neighbouring vertices can be considered as having constant time
complexity. Another major advantage of local parametrization is that, because we have local informa-
tion available we can try to maintain the texture to have very less or no stretch. But this can increase

20

the number of texture seams. Sorkine et al.[37] [2002] use a incremental approach to parametrize a
mesh by taking local information into account. Mesh was divided into large number of charts to keep
distortions below some preset threshold. In section 2.2 we propose a method that uses less number of
cuts and faster compared to Sorkine et al[37].

2.5 Constraining patch seams and Correction Texture

In some situations, it will be quite useful if we can decide where the patch seams occurs. Taking
advantage of the local nature of patch growing in our algorithm, we can specify where the texture patch
seams are formed on the mesh model. To achieve this, our texturing tool allows us to select the faces
where we want the seam to appear and while texturing, the algorithm treats those faces similar to those
with high variation in orientation, pushing it back onto the queue for later processing. This effectively
transfers the seams onto these regions even if their orientation vectors are smooth in nature. Figure 2.8
shows a typical example, where the original method created a seam on the side of the hippo model,
where it is quite visible. By selecting faces at the bottom of the hippo, the seam was pushed to the
bottom, making it less visible.

2.6 Dynamic Mesh

Online virtual worlds simulate an entire geographical location like a small town or a forest area or
a dungeon. Many players from all over the world co-exist in these virtual worlds. To simulate such
an environment, we should have all the physical objects in the virtual world stored as mesh models.
Typically these mesh models would be enormous in size and we cannot afford to store them on local
machines of all the players. So, these mesh models are streamed online as we explore the territory.
Mesh model data typically consists of vertex position, their normals and the texture coordinates. We
propose a model, where we store only the vertex positions and their normals. Texture coordinates are
not stored and are produced on the fly. Because our algorithm is computationally light, we can afford to
do an online computation of the texture coordinates, saving approximately one-third of the bandwidth
during online play.

For the algorithm to be eligible for on-the-fly texture coordinate computation, one of the most impor-
tant feature to have is stability. That is, when a part of the mesh is removed from the main memory and
then retextured while loading it back, if the same texture patch is pasted by the algorithm, we consider
the algorithm to be stable in texture mapping computation. We test the stability of the algorithm by
removing a part of the mesh model and loading it back. Table 2.1 shows some quantitative results. Our
algorithm uses a random texture coordinate as seed point. Care should be taken to buffer this information
when using it in online virtual worlds.

21

Serial Model Error(in Pixels)
1 Horse 0.400964
2 Bunny 1.20871
3 Dragon 3.70625
4 Maxplank 0.2222
5 Buddha 0.757328
6 Heptoroid 0.453456
7 Fertility 0.89455

Table 2.1 Stability of the algorithm: The error shown above is the average difference in the texture
coordinates of the vertices (scale is 800 pixels. Here pixels mean texture resolution). For configuration
of the mesh models refer to Table 4.1

22

Chapter 3

Texture synthesis of self tileable textures

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

ICVGIP 2012 Submission #0136. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

H2

H1

V1 C V2

(a) imagelayout

H2

H1

(b) horizontal strips H1,
H2 and its corresponding
weight map

V2 V1

(c) vertical strips V1,
V2 and its corresponding
weight map

(d) image showing the re-
gion of artifacts in the cen-
ter piece ’C’ of image lay-
out

Figure 6: This image shows the different layouts used for creating the tileable textures

(a) (b) (c)

(d) (e) (f)

Figure 5: This figure shows how differnt weight
maps produce different textures. Here (a)-(d), (b)-
(e), (c)-(f) are texture and weight map pairs. It can
be observed that the rectangular perimeter region
of all the images are same, which is a desired quality.

to as shown in the figure 6(a). Process the center patch ’C’
in a similar fashion and use the weight map as shown in the
figure 5(d). We retain the size of the texture through this
entire process. Patch based algorithms have the potential
nature to grow garbage if the size of the tile is very small,
which is explained in detail by

Wei et al. [30]. we observed block size 32 pixels and one
fourth overlap over the previous patch to be a good param-
eter for Efros et al. [4]. If a inherently tileable texture is
given to our algorithm then it will not destroy that nature.

6. APERIODIC TILLING
Until now our algorithm was using only one tileable tex-

ture. But this can introduce periodicity in the texture pasted.
Jos Stam et al. [28] proposed a subtitution rule to generate
an infinite array of tiles that tile seamlessly with other tiles
based on the color coding given for the edges. We propose a
more simplified approach to this by synthesizing more than
one self-tileable textures, which can be produced by the same
algorithm 5, by using different weight maps. This would

Serial Model Faces Time error
1 Buddha 100000 0.129687 105
2 Gargoyle 20000 0.015 205
3 Bunny 69451 0.063743 65
4 Heptoroid 573440 0.783872 35
5 Pegasus 127099 0.308173 895
6 Maxplank 98260 0.082029 45
7 Fertility 483226 0.549943 25
8 Dragon 100000 0.128216 95
9 Laurana 499998 0.640021 305
10 Lucy 525814 0.619300 65
11 Horse 96966 0.106641 35

Table 1: Error is the final error at the end of the
algorithm. When all the faces could not be textured
below a error threshold, we increase the threshold
in step of 10. Scale used for texturing was 1600.

produce different texture as shown in fig 5. Before starting
the texture mapping produce a 2D array of random number,
where the random numbers range between 1 and the number
of tileable textures being used. By following this method we
can decide on the number of textures to use based on our
requirement, but this was not the case with [8] where they
had to have 16 wang tiles. Neyret et al. [19] used triangu-
lar patches to introduce aperiodicity but generating tileable
triangular patches is difficult.

7. RESULTS AND LIMITATIONS
All the results shown in the Table 1 are calculated on In-

tel Core 2 Duo CPU E4600 @ 2.40 GHz and our algorithm
has been implemented for single core processors only. The
results of these mesh models are shown in the Figure 7. Ta-
ble 7 shows the real stregth of our algorithm. All the value
in bold shows the best in that perticular column. Clearly
interms of time and stretch our algorithm does the best.
The best nearest algorithm in terms of time is ARAP [17]
which is and our algorithm is 25.145 faster on an average
for the 4 mesh models in the table 7(a). Texturing time
reported does not include the calculation of orientation vec-
tors and assume it to be a preprocessing step. Our algo-
rithm is sensitive to the orientation changes and smoothing
of these orientation vectors. Smoothing of the orientation

Figure 3.1 Quadrant swapping for creating the tileable textures and resulting seam-lines.

Use of mesh parameterization for texture mapping assumes that the texture on to which the mesh is
parameterized is large enough to cover the complete model. If not, the texture patch is tiled to make
it large. This will result in periodic discontinuities unless the patches are self-tileable: i.e., it should
satisfy the property that the south edge of the texture should be seamlessly tileable with north edge and
similarly east edge with west edge. In simple terms, we wish to make our texture toroidal in nature.
Our approach to acquire this property is similar to the procedure to create Wang tiles[4]. We start by
dividing the input texture image into four equal pieces of 2X2. The north-west piece is then swapped
with south-east piece and similarly swap north-east piece with south-west piece. We now have a texture
patch that is tileable on all edges, but with seams in the interior portions i.e along horizontal center
and vertical center. We synthesize these artifacts and use a weight map to keep the tileable edges from
changing during the synthesis process.

23

(a) (b) (c)

(d) (e) (f)

Figure 3.2 Different weight maps produce different textures. (a)-(d), (b)-(e) and (c)-(f) are texture and
weight map pairs. The rectangular perimeter region of all the images are same, which is a desired
quality.

Liang et al.[22] can be used, which is a simpler version of image quilting method, but it gives tex-
ture leakages. To avoid texture leakages Nealen et al.[25] suggested a hybrid approach. We can also
search in appearance space suggested by Lefebvre et al.[19] to get better results. Any one of the above
algorithms can be used based on the requirement and we demonstrate our results using Efros et al[7].

Efros et al.[7] is a patch based algorithm and process the image in raster scan order. Image shown
in Figure 3.1(a) is a shifted image and this image is divided into regions according to the labels shown.
Height of H1, H2 and width of V 1, V 2 are same and is equal to the patch size. Initially we remove
the artifacts in the patch H1, H2. We arrange them as show in the Figure 3.1(b) and use the corre-
sponding weight map. For each patch, find the correlation with all the patches in the exemplar image.
Multiply the correlation vector with the weights at the corresponding position in the weight map and
pick from the top results. Weight map is designed to remove the artifacts present in the green ellipse as
shown in the figure 3.1(b). Similarly, process the patch V 1 + V 2 with the weight map as shown in the
figure 3.1(c). Now place these patches where they belong to as shown in the figure 5(a). Process the cen-
ter patch ’C’ in a similar fashion and use one of the weight map as shown in the figure 3.2(d)3.2(e)3.2(f).

We retain the size of the texture through this entire process. Patch based algorithms have the poten-
tial nature to grow garbage if the size of the patch is very small, which is explained in detail by Wei et
al[40]. we observed block size 32 pixels and one fourth overlap over the previous patch to be a good
parameter for Efros et al.[7]. If an inherently tileable texture is given to our algorithm, then it will not
destroy that nature. Some examples of our tileable patch generation algorithm are shown in Figure 3.3.
In the third pair of images 3.3(c) and 3.3(f) you find some irregularities in middle columnar area. This
is because the color changes horizontally is more and hence our algorithm could not smoothly change

24

(a) Input Texture1 (b) Input Texture2 (c) Input Texture3

(d) Output Texture1 (e) Output Texture2 (f) Output Texture3

Figure 3.3 (a), (b), (c) are input images and (d), (e), (f) are the corresponding self-tileable outputs.

the texture. Such irregularities can be avoided by tweaking the weight map to give less weightage to the
edge and providing more freedom at the center of the texture. But this is not the case with the middle
horizontal region, because there was not great change in color vertically. We can also generate variants
of the texture patch with the same tileable edges by changing the weight map as seen in Figure 3.2.

3.1 Dynamic Size Texture

One problem with the above mentioned method is that the size of the texture is constant. Consider
an example where the texture has vertical strips of black and white color. Let the width of each strip
be 10 pixels and the width of the entire texture be 55 pixels. If the texture started with a black strip, it
will have a pattern b w b w b w(.5), where w represents white strip and black is represented by b. The
last variable w(.5) says that the texture’s last white strip is 5 pixels wide. To make this strip tillable
horizontally we have to either cut the last 15 pixels to make the texture b w b w or add 5 pixels of white
strip to make the texture b w b w b w. Cutting the texture is not a preferred solution, as the cut part can
have some useful information. So we introduce the some extra information by learning from the initial
texture. This extra information should be a white strip of 5 pixels width. This would make the texture
as b w b w b w. This texture is a tileable texture. In this case of black and white strip, the solution is
simple. But in textures having complex information, the solution may not be this simple. On the other
hand we would like our algorithm to have the capability to recognize the repeatative patterns and store
only once, instead of the entire texture.

25

For example lets say we have a texture of size 50px ∗ 50px and the texture will have white circles on
black background. Let the circle be of size 10px ∗ 10px and then the texture will have circles arranged
in 5 5 array fashion. After observing this texture we can say that it would be enough if we can just store
one circle. This would reduce the size of the texture to 10 10, reducing the space requirement to 1/25th
of the original for this example. This is a simple texture and it is easy to discover the texel structure.
There can be cases where the texel structure is complex and there can be more than one texel in the
texture. Our algorithm should be robust to these requirements and detect the complete texel structure.
In the following section we elaborate on our algorithm which tries to comply with these requirements.

In section 3 we started with a swapped texture. This swapped texture will have artifacts in the central
plus region. we tried to remove this artifacts by synthesizing using the weight map. This weight map
will try to generate a texture that will keep the left and right ends same and vary the interior region.
This requirement will be some times hard to comply with, as there may not be such texture patches in
the original algorithm. So we remove this restriction and initially we start generating the texture using
the patch based algorithm described in the previous section. Take the left part of the original texture
as the base to start with. This will make the texture to be restrictive only to the left part. When we
are generating the texture, at each step we check whether the current generated patch is similar to the
right patch. We keep track of this similarity measure in an array. There can be two types of stopping
condition for this algorithm.

1. Generate a particular length texture and then search for the patch giving the least error. Make this
patch the end of the texture and blend this patch linearly with the end patch.

2. Synthesis the texture until you have a patch whose error metric is less than a particular value.

There are two problems with the second approach. First is the selection of the error threshold. This
can be a function of the patch size that we are using and also the nature of the texture. Second, this
procedure has the potentiality to make the algorithm to entire a infinite loop or generate unnecessary
large textures. The specific steps of this algorithm are as given below.

1. Swap the four quadrants of the texture to its diagonally opposite end.

2. Extract the bottom and top strips H1 and H2 from the swapped textures.

3. Consider the left part as the base and synthesize the texture to the right of it.

4. At each step when synthesizing the patch, calculate the error of the synthesized patch with respect
to the right patch. The synthesis may me stopped after a fixed set of iterations.

5. Find the patch that gives the minimum error and match it with the right patch.

6. To remove any small artifacts, blend this texture with the right patch linearly.

26

The choice of the length of the texture generated in the step 5 should be made wisely. If we assume
that the texture will have a texel atleast of size 1/9th of the entire texture, then we can make an approx-
imation of the patch size accordingly. If the patch size is not selected correctly then the texel structure
will be compressed to fit into the final texture. This will destroy the visual appearance. You can see the
result of not choosing the correct patch size in the figure 3.4(k).

After the Strips H1 and H2 are processed, we should process V 1 and V 2. We can follow the same
procedure used for the tile H1 + H2 by rotating the texture by 90 degrees in anticlockwise direction.
After processing V 1 and V 2 we are left with the central section. The procedure described in section 3
and the corresponding weight map can be used to produce the central section. Here we can use the old
procedure because the width and height of the texture have been already adjusted to fit the texels com-
pletely. In the first two rows of figure 3.4, we can see that the texel were identified very correctly and
the output texture size is dependent on the texel size. Third row shows the example where the texture
edges are out of phase and the output texture had the texture edges in phase. Fourth and fifth show the
cases where the wrong and correct patch sizes were choosen respectively.

3.2 Aperiodic Tiling

In the above algorithm we consider only one tileable texture, which can introduce periodicity in the
texture pasted. Jos Stam et al.[38] proposed a substitution rule to generate an infinite array of tiles that
tile seamlessly with other tiles based on the color coding given for the edges. We can use a simplified
approach for this by synthesizing more than one self-tileable texture, which can be produced by the
same algorithm mentioned above, by using different weight maps. This produces different texture as
shown in Figure 3.2. These variants may be used interchangeably to create aperiodic tiling during
texture mapping. Before texture mapping, produce a 2D array of random number, where the random
numbers range between 1 and the number of tileable textures being used. When texture mapping use
this 2D array to decide on which tile to use. This method cannot be used by Jos Stam et al.[38], because
they were not using self tileable textures. By following this method we can decide on the number of
textures to use based on our requirement. Fu et al.[11] had the constraint where they had to use 16
Wang tiles. Neyret et al.[26] used triangular patches to introduce aperiodicity, but generating tileable
triangular patches is comparably difficult.

27

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3.4 Result of our dynamic texture algorithm on different textures. The examples are ordered as
input, output and tilled output in every row.

28

Chapter 4

Analysis and Conclusions

We now take a closer look at the different aspects of the proposed algorithm by comparing it with
the state of the art techniques, both visually and quantitatively. We look at the execution times of the
various algorithms as well as quality parameters such as stretch and distortion. As we will see from
the time measurements, the proposed algorithm is extremely fast and can texture at an average rate of 1
Million faces per second for exemplar images on typical desktop hardware. We first analyze the visual
quality of the texture mapping in terms of its stretch and distortion.

Figure 4.1 Comparison of stretch produced by our algorithm in comparison with other mesh parame-
terization approaches.

Texture pasted by our algorithm has a relatively even stretch over the entire surface even for complex
models. As illustrated by Figure 4.1, the proposed algorithm has least stretch in comparison with the
state of the art algorithms. This is because our algorithm has the nature to cut the texture instead of
stretching it. We referred to this process before as finding of homogeneous patches for texturing. This
may increase the seam, but the algorithm ensures that these seams occur mostly confined the geometric
edges, where it less apparent. Stretch was calculated as the ratio of the area of a face in texture space to
geometric space. As the direct ratio is affected by the scale at which the texture is pasted, we normalized
the scales of all algorithms to unity and report the standard deviation in scale across the triangles in a

29

model. This clearly captures the variation in scale across the image or in other words texture stretching.
Comparison are made with [39], [10], [6], [20], [29], [34], [36], and [23]. The stretch values of our
algorithm are comparable or better than the newer and computationally intensive mesh parameterization
techniques.

Figure 4.2 Comparison of distortion produced by our algorithm in comparison with other mesh param-
eterization approaches.

Figure 4.2 shows the average distortion in the texture mapping process. Distortion is measured as
the sum of absolute value of the difference in angles of actual texture to pasted texture. Distortion gives
the measure of skewness of the texture when pasted. As the average values of distortion computed for
many algorithms can be highly skewed by the outliers at the patch edges, we compute the median of
the distortion of triangles to get a stable measure. As our algorithm tries to wrap the texture while com-
plying with the orientation field of the model, it is natural that additional distortion will be introduced.
Though our method may not be the best in terms of absolute distortion it maintains constant levels of
distortion. This emphasizes the robustness of our algorithm.

Figure 4.3 Comparison of time required for texture mapping. Note that the Y-axis is in log scale and an
increase in one unit is equivalent to a 10-fold increase in time.

30

Speed is the most important consideration in design of our algorithm. Figure 4.3 provides a compar-
ison with 8 other algorithms in terms of speed. The first four are traditional algorithms that are often
used as a base case. The next four are recent algorithms that have shown promising improvements in
mapping quality.

4.1 Results and Discussion

Serial Model Faces Time (sec) Error
1 Buddha 100,000 0.14 55
2 Gargoyle 20,000 0.0138 95
3 Bunny 69,451 0.078 35
4 Heptoroid 573,440 0.778 25
5 Pegasus 127,099 0.32 465
6 Maxplank 98,260 0.092 25
7 Fertility 483,226 0.584 25
8 Dragon 100,000 0.138 45
9 Laurana 499,998 0.659 155
10 Hand 23,186 0.0186 45
11 Horse 96,966 0.115 125
12 Devil 25888 0.021 35
13 Isis 879 0.000705 25

Table 4.1 Execution time with models of various sizes. Error(in pixels) denotes the largest shear of
triangle in pixels during texture mapping. These mesh models are shown in fig 4.2.

Table 4.1 shows the time taken and errorThreshold values of various mesh models, calculated on
a Intel Core 2 Duo CPU E4600 @ 2.40 GHz and our algorithm has been implemented for single core
processors only. Table 4.2 shows the real strength of our algorithm. All the values in bold show the best

Method Lucy Fig4.2(10) Devil (Fig 2.7(d)) Isis (Fig 4.5(f)) Gargoyle Fig4.2(2)
Time Stre Distr Time Stre Distr Time Stre Distr Time Stre Distr

Bary[39] 1.55 1.44 52.5 1.57 2.02 52.0 0.01 0.58 72.3 0.86 0.5 62.9
Mean[10] 2.28 1.36 17.9 2.63 1.80 31.5 0.01 0.52 32.9 1.08 0.48 29.0
Multi[6] 2.45 1.39 9.16 3.24 1.73 10.0 0.01 0.51 33.0 1.07 0.48 27.9
LSCM[20] 4.94 1.42 7.12 4.64 1.62 23.3 0.02 0.65 11.0 10.6 0.47 3.89
HLSCM[29] 170 0.38 1.32 169 0.2 1.63 2.09 0.24 4.39 261 0.29 2.28
ABF[34] 5.62 0.29 1.14 25.0 0.32 3.32 0.5 0.47 4.6 8.15 0.31 3.37
ABF++[36] 4.57 0.13 1.14 15.9 0.32 2.44 0.51 0.48 4.57 5.59 0.31 3.37
ARAP[23] 0.32 0.40 96.8 0.39 0.39 71.6 0.01 0.22 19.0 0.34 0.20 26.8
Proposed 0.013 0.14 4.6 0.015 0.17 4.53 0.0003 0.15 7.52 0.015 0.19 8.29

Table 4.2 Time (sec), stretch (area ratio) and Distortion (angle difference in degrees) for various algorithms of four models of
differing complexity.

31

(a) (b)

Figure 4.4 The texture quality is good in both the cases, i.e (a)without using skeleton and (b)with using skeleton. But the
texture in figure b seem to be more natural as it flows with the body of the horse.

in that particular column. Clearly in terms of time and stretch our algorithm does the best. The best
nearest algorithm in terms of time is ARAP[23] and our algorithm is 25.145 faster on an average for the
4 mesh models in the Table 4.2. Texturing time reported includes the calculation of orientation vectors.
Our algorithm’s output quality is dependent upon the correctness of orientation vectors and is sensitive
to slight orientation vector changes. Smoothing of the orientation vectors over neighboring faces can
increase the texture quality sometimes. All the results presented in this paper are without smoothing of
orientation vectors. Deriving orientation vectors from the skeleton can sometimes improve the quality
of the texture, as the skeleton is structured along the mesh surface. Figure 4.6 shows the output when
skeleton of the mesh was used for deriving orientation vectors using Cao et al.[3]. But deriving the
skeleton of the mesh is a time consuming process. The texture quality of the normal orientation vectors
is good in most of the cases, except in few cases 4.6(d)i.e in cases where the mesh model is elongated
and curvy. Figure 4.4 shows a good example where using skeleton based texture mapping can be useful
for texture mapping models of animals.

Density of the mesh vertices do not affect the quality of the texture, as this is the requirement for
some mesh parameterization algorithms. Despite being simple, the algorithm can manage to texture
complex surfaces because of the heuristics used for choosing a face while texture mapping. If large
values are choosen for Factor the algorithm loses its property of cutting the texture patches at geometric
edges. But increasing the Factor value decreases the execution time. Factor := 9/(nooffaces)

strikes a good balance between texturing time and texture patch boundary length. On an average, 99.9%

of faces are textured within the errorThreshold of 25 pixels. The scale used for texturing all the
results is 800, which means for every square unit area in geometric space 800 square pixels of texture
space was pasted. So, the stretch is bounded between 0.96 to 1.03 for every unit length vector in texture

32

(a) Floater et
al. [10]

(b) Eck et al. [6] (c) Ray et
al. [29]

(d) Sheffer et
al. [36]

(e) Liu et al. [23] (f) Our algorithm

Figure 4.5 Results of various algorithms on Isis model. The proposed algorithm (f) preserves scale much better than state-of-
the-art methods while limiting distortion.

space. Sorkine et al.[37] also proposed a similar greedy method approach which approximately textures
at a rate of 20k triangles/sec on a 2.40 GHz processor. Our method textures at 1 Million triangles/sec
because of its salient feature as mentioned in Section 2.3. Sorkine et al.[37] restricted the patch size and
hence had large number of cuts. Our algorithm never had any such restrictions and hence less number
of seams. Finally, we present our results on a number of mesh models of varying complexity in fig 4.2
to illustrate the robustness and consistency of our algorithm.

4.2 Conclusions and Future work

Our approach is highly robust and efficient, while producing texture mappings that are similar in
perceptual quality compared to recent mesh parameterization techniques that are multiple orders of
magnitude slower. Quantitative measures of stretch and distortion also shows the approach to be among
the best available. Our approach is also amenable to interactive modifications, which can be easily inte-
grated into our patch discovery process. Practical use of texture mapping is found in 3D modelling tools
where you give a texture to be mapped to a mesh. Major use of this 3D modeling tools is done by game
industry. In games most of the textures used are either stochastic or semi-stochastic like the textures of
walls, grounds, mountains, and flooring. Our algorithm gives robust output for textures of such type.

33

(a) (b) (c) (d)

Figure 4.6 In this figure we show the results when skeleton was used for deriving the orientation vectors. The Red-Blue line
gives the direction of the first PCA vector. In figure 4.6(a) orientations vectors follow the PCA vector and 4.6(b) shows the
corresponding result of texturing. In figure 4.6(c) we derive orientation vectors from the skeleton of the mesh and 4.6(d) shows
the corresponding result of texturing.

Hence we believe that our work has potential usage in real world applications. But as the algorithm
prefer to cut the texture instead of stretching, we can try to reduce the texture seam length. A possible
approach to reduce the effect of such seams would be to make these textures to join in phase with the
other end of the texture, so that they will tile seamlessly. This would be especially useful with textures
that have some kind of regularity in the patterns.

34

Figure 4.7 Results of texture mapping different mesh models of various complexities. Figure 11* was the result of texture
mapping when orientation vectors were generated from the skeleton of the mesh.35

Related Publications

[1] Vikram Singh, Anoop M. Namboodiri, Efficient texture mapping by homogeneous patch discov-
ery, ICVGIP Dec 16th 2012. [oral]

[2] Vikram Singh, Anoop M. Namboodiri, Robust and Efficient texture mapping by homogeneous
patch discovery, International Journal of Image and Graphics. [about to be submitted].

36

Chapter 5

Appedix

5.1 File formats

A polygon mesh is a collection of vertices, edges and faces that defines the shape of a polyhedral
object in 3D computer graphics and solid modeling. The faces usually consist of triangles, quadrilat-
erals or other simple convex polygons, since this simplifies rendering, but may also be composed of
more general concave polygons, or polygons with holes. There are also many alternate methods of
representing 3D objects like NURBS(Non-uniform rational B-spline) surfaces. The basic object used in
mesh modeling is a vertex, a point in three dimensional space. Two vertices connected by a straight line
become an edge. Three vertices, connected to each other by three edges, define a triangle, which is the
simplest polygon in Euclidean space. More complex polygons can be created out of multiple triangles,
or as a single object with more than 3 vertices. A group of polygons, connected to each other by shared
vertices, is generally referred to as an element. Each of the polygons making up an element is called a
face.

Computer graphics can be used to visualize such different types of 3D mesh models. These mesh
models can be acquired from real world using laser scanners or generated using 3D modeling tools.
The output of these operations is that you store the mesh models to your local disk in some format.
There are many formats that can be used to represent 3D data. We choose to represent our data in ply
format. This format supports a relatively simple description of a single object as a list of nominally flat
polygons. A variety of properties can be stored like color and transparency, surface normals and tex-
ture coordinates. The format permits one to have different properties for the front and back of a polygon.

Every file format has a header and the header format for ply files is as follows:

1. You start the header using the keyword ”ply”.

2. The second line indicates which variation of the PLY format this is. It should be one of:

(a) format ascii 1.0

37

(b) format binary little endian 1.0

(c) format binary big endian 1.0

3. Comments may be placed in the header by using the word comment at the start of the line. Ev-
erything from there until the end of the line should then be ignored. e.g.:
comment This is a comment!

4. The ’element’ keyword introduces a description of how some particular data element is stored
and how many of them there are. Hence, in a file where there are 12 vertices, each represented as
a floating point (X,Y,Z) triple, one would expect to see:

element vertex 12
property float x
property float y
property float z

5. Other ’property’ lines might indicate colors or other data items that are stored at each vertex
and indicate the data type of that information. Regarding the data type there are two variants,
depending on the source of the ply file, the type can be specified with one of char uchar short
ushort int uint float double, or one of int8 uint8 int16 uint16 int32 uint32 float32 float64. For an
object with ten polygonal faces, one might see:

element face 10
property list uchar int vertex index

6. The word ’list’ indicates that the data is a list of values, the first of which is the number of entries
in the list (represented as a ’uchar’ in this case) and each list entry is (in this case) represented as
an ’int’. At the end of the header, there must always be the line:

end header

5.2 Priority Queues

Figure5.1 gives the conceptual image of priority queue.

Figure 5.1 This figure gives the visual representation of priority queue.

38

Priority Queue can be visualized as a bag that holds objects according to their priority, irrespective of
their input order. At any point of time if we remove an object from the bag, the object with the highest
priority comes out.

Speaking in this sense, a priority queue is different from normal queue, because instead of being a
”first-in-first-out” data structure, values come out in order by priority. Given this behavior, a priority
queue has lots of uses, for example, it can be used to handle the threads in an operating system, so that
when picking up threads from the waiting list, threads having high priority(high priority represented by
larger value) will be processed first. A priority queue can be implemented using many data structures
like an array, a linked list, or a binary search tree. We implement the priority queue using arrays. Though
it may not be the most efficient way of implementing it, according to our algorithms requirement it is
best suited.

A priority queue is a binary tree (in which each node contains a Comparable key value), with two
special properties:

1. The ORDER property:

(a) For every node in the priority queue, the value of that node is greater than or equal to the
value in the nodes of its children. And hence is greater or equal to all its children in the
subtree.

2. The SHAPE property:

(a) All leaves are either at depth d or d-1 (for some value d).

(b) All of the leaves at depth d-1(if any) are always to the right of the leaves at depth d.

(c) i. There is at most 1 node with just 1 child.

ii. That child is the left child of its parent, and

iii. it is the rightmost leaf at depth d.

Figure 5.2 shows some examples where the shape properties are violated, and some of which respect
those properties:

And in figure5.3 we show some more trees; they all have the shape property, but some violate the
order property:

Now let’s consider how to implement priority queues. The standard approach is to use an array,
starting at position 1 (instead of 0), where each item in the array corresponds to one node in the heap:

1. The root of the heap is always in array[1].

2. Its left child is in array[2].

3. Its right child is in array[3].

39

Figure 5.2 This figure shows some examples of correct and wrong priority queues.

Figure 5.3 This figure illustrates the order property of priority queues.

4. If a node is in array[k], then its left child will be in array[k*2], and its right child will be in
array[k*2 + 1].

5. If a node is in array[k], then its parent is in array[k/2] (using integer division, so that if k is odd,
then the result is truncated; e.g., 3/2 = 1).

Figure5.4 shows both the conceptual heap (the binary tree), and its array representation:
It can be observed that the array never has holes in it and this is because of the shape property of the

priority queue. Because we are using a array, procedures for returning the size of the array and creating
a priority queue are easy to implement. Below we discuss about insert and removeMax operations on
priority queue.

Implementing insert : When a new value is inserted into a priority queue, we need to:

1. Add the value so that the heap still maintains the order and shape properties, and

40

Figure 5.4 This figure illustrates how to implement priority queue using arrays.

2. Do it efficiently!

The way to achieve these goals is as follows:

1. When inserting elemets into the priority queue, add the new value at the end of the array; that
corresponds to adding it as a new rightmost leaf in the tree (or, if the tree was a complete binary
tree, i.e., all leaves were at the same depth d, then that corresponds to adding a new leaf at depth
d+1).

2. This ensures that the heap maintains the shape property; however, it may not have the order
property. We can check that by comparing the new value to the value in its parent. If the parent is
smaller, we swap the values, and we continue this check-and-swap procedure up the tree until we
find that the order property holds, or we get to the root. This procedure is called re-heaping.

Figure5.5 illustrates the example of inserting the value 34 into a heap:

Figure 5.5 This figure illustrates how to insert an element into priority queue.

Implementing removeMax: Removing the maximum element from the priority queue is trivial. Be-
cause heaps have the order property, the largest value is always at the root. Therefore, the removeMax

41

operation will always remove and return the root value; the question then is how to replace the root node
so that the heap still has the order and shape properties. The answer is to use the following algorithm:

1. Replace the value in the root with the value at the end of the array (which corresponds to the
heap’s rightmost leaf at depth d). Remove that leaf from the tree.

2. Now work your way down the tree, swapping values to restore the order property i.e re-heap: each
time, if the value in the current node is less than one of its children, then swap its value with the
larger child (that ensures that the new root value is larger than both of its children).

Figure5.6 illustrates the removeMax operation applied to the heap shown above.

Figure 5.6 This figure illustrates how to remove an element into priority queue.

In our algorithm we require to remove an internal node. Removing a internal node is similar to
removing a root node, except that in this case we invoke the removeMax function on the required
internal node. Because the priority queue has order property, all the node in the subtree will have less
priority than the parent of the root of the subtree and hence even after the re-heap of subtree, the entire
tree will maintain its heap property.

Complexity: For the insert operation, we start by adding a value to the end of the array (constant time,
assuming the array doesn’t have to be expanded); then we swap values up the tree until the order prop-
erty has been restored. In the worst case, we follow a path all the way from a leaf to the root (i.e., the
work we do is proportional to the height of the tree). Because a heap is a balanced binary tree, the height
of the tree is O(log N), where N is the number of values stored in the tree. The removeMax operation is
similar: in the worst case, we follow a path down the tree from the root to a leaf. Again, the worst-case
time is O(log N). In the next chapter we propose our mesh parameterization algorithm.

42

Bibliography

[1] M. Ashikhmin. Synthesizing natural textures. In Proceedings of the 2001 symposium on Interactive 3D

graphics, 2001.

[2] C. Bennis, J.-M. Vézien, and G. Iglésias. Piecewise surface flattening for non-distorted texture mapping.

SIGGRAPH Comput. Graph., 1991.

[3] J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, and Z. Su. Point cloud skeletons via laplacian based contrac-

tion. 2010.

[4] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang tiles for image and texture generation. SIGGRAPH,

2003.

[5] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution analysis of

arbitrary meshes. 1995.

[6] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution analysis of

arbitrary meshes. SIGGRAPH, 1995.

[7] A. Efros and W. T. Freeman. Image quilting for texture synthesis and transfer. SIGGRAPH, 2001.

[8] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In Proceedings of the Inter-

national Conference on Computer Vision-Volume 2 - Volume 2, 1999.

[9] M. Fisher, P. Schröder, M. Desbrun, and H. Hoppe. Design of tangent vector fields. SIGGRAPH, 2007.

[10] M. S. Floater. Mean value coordinates. Computer Aided Geom. Design, 2003.

[11] C.-W. Fu and M.-K. Leung. Texture tiling on arbitrary topological surfaces using wang tiles. In Proceedings

of the Sixteenth Eurographics conference on Rendering Techniques, 2005.

[12] C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parameterization for 3d meshes.

[13] X. Gu and S.-T. Yau. Global conformal surface parameterization. 2003.

[14] M. Jin, Y. Wang, S.-T. Yau, and X. Gu. Optimal global conformal surface parameterization. 2004.

[15] D. Julius, V. Kraevoy, and A. Sheffer. D-charts: Quasi-developable mesh segmentation. 2005.

[16] a. S. C. K. Hormann, G. Greiner. Hierarchical parametrization of triangulated surfaces. Vision, Modeling,

and Visualization, 1999.

[17] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. Maps: Multiresolution adaptive

parameterization of surfaces. SIGGRAPH, 1998.

43

[18] S. Lefebvre and H. Hoppe. Parallel controllable texture synthesis. ACM Trans. Graph., 2005.

[19] S. Lefebvre and H. Hoppe. Appearance-space texture synthesis. SIGGRAPH, 2006.

[20] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for automatic texture atlas

generation. 2002.

[21] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum. Real-time texture synthesis by patch-based sampling.

ACM Trans. Graph., 2001.

[22] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum. Real-time texture synthesis by patch-based sampling.

ACM Trans. Graph., 2001.

[23] L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S. J. Gortler. A local/global approach to mesh param- eterization.

2008.

[24] M. Madaras and R. Ďurikovič. Skeleton texture mapping. 2012.

[25] A. Nealen and M. Alexa. Hybrid texture synthesis. In Proceedings of the 14th Eurographics workshop on

Rendering, 2003.

[26] F. Neyret and M.-P. Cani. Pattern-based texturing revisited. SIGGRAPH, 1999.

[27] E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures. SIGGRAPH, 2000.

[28] E. Praun and H. Hoppe. Spherical parametrization and remeshing. SIGGRAPH, 2003.

[29] N. Ray and B. Levy. Hierarchical least squares conformal map. In Pacific Conference on Computer Graphics

and Applications, 2003.

[30] S. Saba, I. Yavneh, C. Gotsman, and A. Sheffer. Practical spherical embedding of manifold triangle meshes.

SMI, 2005.

[31] M. Samek, C. Slean, and H. Weghorst. Texture mapping and distortion in digital graphics. The Visual

Computer, 1986.

[32] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture mapping progressive meshes. SIGGRAPH,

2001.

[33] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. Multi-chart geometry images. 2003.

[34] A. Sheffer and E. de Sturler. Parameterization of Faceted Surfaces for Meshing using Angle-Based Flatten-

ing. Engineering with Computers, 17, 2001.

[35] A. Sheffer and J. C. Hart. Seamster: inconspicuous low-distortion texture seam layout. 2002.

[36] A. Sheffer, B. Lévy, M. Mogilnitsky, and A. Bogomyakov. ABF++: fast and robust angle based flattening.

ACM Transactions on Graphics, 2005.

[37] O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. Bounded-distortion piecewise mesh parame-

terization. In Proc. Visualization, 2002.

[38] J. Stam. Aperiodic texture mapping. Technical report, European Research Consortium for Informatics and

Mathematics, 1997.

[39] W. T. Tutte. How to draw a graph. Proc Lond Math Soc, 13, 1963.

44

[40] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector quantization. SIGGRAPH,

2000.

[41] L.-Y. Wei and M. Levoy. Texture synthesis over arbitrary manifold surfaces. SIGGRAPH, 2001.

[42] Y.-Q. Xu, B. Guo, and H. Shum. Chaos Mosaic: Fast and Memory Efficient Texture Synthesis. Technical

report, 2002.

[43] L. Ying, A. Hertzmann, H. Biermann, and D. Zorin. Texture and shape synthesis on surfaces. In Proc.

Eurographics Workshop on Rendering Techniques, 2001.

[44] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. A fast and simple stretch-minimizing mesh parameterization.

2004.

[45] R. Zayer, B. Lévy, and H.-P. Seidel. Linear angle based parameterization. ACM/EG Symposium on Geom-

etry Processing, 2007.

[46] E. Zhang, K. Mischaikow, and G. Turk. Feature-based surface parameterization and texture mapping. ACM

Trans. Graph., 2005.

[47] K. Zhou, J. Synder, B. Guo, and H.-Y. Shum. Iso-charts: stretch-driven mesh parameterization using spectral

analysis. 2004.

[48] G. Zou, J. Hu, X. Gu, and J. Hua. Authalic parameterization of general surfaces using lie advection. IEEE

Transactions on Visualization and Computer Graphics, 2011.

45

	Introduction
	History and its advancements
	Problem Overview
	Background
	Previous work
	Mesh parameterization
	Planar parameterization
	Spherical mesh Parameterization:
	Hierarchical mesh parameterization:

	Texture Synthesis:
	Pixel based Texture synthesis:
	Patch based Texture synthesis:
	Texture Synthesis in mesh parameterization:

	Contributions

	Texture Mapping by homogeneous patch discovery
	Data Structure
	Patch Discovery and Mapping
	Salient Features
	Trade off between global and local optimization approach:
	Constraining patch seams and Correction Texture
	Dynamic Mesh

	Texture synthesis of self tileable textures
	Dynamic Size Texture
	Aperiodic Tiling

	Analysis and Conclusions
	Results and Discussion
	Conclusions and Future work

	Appedix
	File formats
	Priority Queues

	Bibliography

