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Abstract

Scene understanding is a very crucial task in computer vision. With the recent advances in research
of autonomous driving, road scene segmentation has become a very important problem to solve. Few
exclusive datasets were also proposed to address this research problem. Advances in other methods of
deep learning gave rise to deeper and computationally heavy models and were subsequently adapted
to solve the problem of semantic segmentation. In general, larger datasets and heavier models are a
trademark of segmentation problems. This thesis is a direction to propose methods to reduce annotation
effort of datasets and computational efforts of models in semantic segmentation.

In the first part of the thesis, we introduce the general sub-domain of semantic segmentation and ex-
plain the challenges of dataset annotation effort. We also explain a sub-field of machine learning called
active learning which relies on a smart selection of data to learn from, thereby performing better with
lesser training. Since obtaining labeled data for semantic segmentation is extremely expensive, active
learning can play a huge role in reducing the effort of obtaining that labeled data. We also discuss the
computational complexity of the training methods and give an introduction to a method called knowl-
edge distillation which relies on transferring the knowledge from complex objective functions of deeper
and heavier models to improve the performance of a simpler model. Thus, we will be able to deploy
better performing simpler models on computationally restrained systems such as self-driving cars or
mobile phones.

The second part is a detailed work on active learning in which we propose a Region-Based Active
Learning method to efficiently obtain labelled annotations for semantic segmentation. The advantages
of this method include: (a) using lesser labeled data to train a semantic segmentation model (b) propos-
ing efficient models to obtaining the labeled data thereby reducing the annotation effort. (c) transferring
model trained on one dataset to another unlabeled dataset with minimal annotation cost which signif-
icantly improves the accuracy. Studies on Cityscapes and Mapillary datasets show that this method is
effective to reduce the dataset annotation cost.

The third part is the work on knowledge distillation and we propose a method to improve the per-
formance of faster segmentation models, which usually suffer from low accuracies due to model com-
pression. This method is based on distilling the knowledge during the training phase from models with
high performance to models with low performance through a teacher-student type of architecture. The
knowledge distillation allows the student to mimic the performance of the teacher network, thereby
improving its performance during inference. We quantitatively and qualitatively validate the results on
three different networks for Cityscapes dataset.

vi



vii

Overall, in this thesis, we propose methods to reduce the bottlenecks of semantic segmentation tasks,
specifically related to road scene understanding: the high cost of obtaining labeled data and the high
computational requirement for better performance. We show that smart annotation of partial regions
in data can reduce the effort of obtaining labels. We also show that extra supervision from a better
performing model can improve the accuracies for computationally faster models which are useful for
real-time deployment.
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Chapter 1

Introduction

Deep Learning has ubiquitously changed the field of statistical machine learning and artificial intel-
ligence. The advancements in semiconductor technology have allowed to build bigger and better com-
putational systems. This unprecedented growth in computational power allowed us to leverage vastly
available data to solve long-standing problems in visual understanding. With access to large amounts of
data and the ability to harness computational power faster graphical processing units, deep learning has
been at the forefront of revolutionizing the field of artificial intelligence.

The success of deep learning was first realized when the system was able to solve the image recog-
nition problem better than its predecessors with a large margin. Researchers around the world spent
their efforts to develop better and deeper neural networks to solve various other problems relevant to
computer vision. These networks resulted in state-of-art accuracies in their relevant tasks such as image
recognition, object detection, semantic segmentation, and instance segmentation. As the networks be-
came complex and deeper, they required more data and more computational power. With low resource
systems such as mobile phones and self-driving cars, deploying such computationally intensive mod-
els is infeasible. Also, as the network complexity increases, it requires larger amounts of data to learn
and generalize better. All these challenges need to be addressed to develop better systems which are
computationally efficient.

In this thesis, we present a set of solutions which address the data and the computational bottleneck
of deep learning models. These proposed solutions try to solve the challenges pertaining to a specific
sub-domain of computer vision which is the most affected by these bottlenecks – semantic segmentation.
Our first work gives a solution to the data bottleneck by addressing a way to reduce the data annotation
cost. In the second work, we address the computational bottleneck of semantic segmentation models for
real-time deployment on necessary devices such as self-driving cars and mobile phones. We present a
solution to improve the performance of small, compact models deployed on such devices.

1.1 Motivation

The need for large, annotated datasets has seen increasing significance with the growing capabilities
of deep neural network models in solving real-world vision tasks, and their subsequent absorption in
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usable technologies. Autonomous systems, such as self-driving vehicles, have further underscored this
need, in order to scale to various geographies and settings around the world. Existing efforts to create
large-scale vision datasets have largely been localized, and there is a need to provide better methods to
create datasets more efficiently. This work is an effort in this direction.

Among vision tasks, semantic segmentation has recently attracted a lot of attention, where the ob-
jective is to classify each pixel into its corresponding semantic class. Fully supervised methods for this
problem require annotation of all pixels of all given images/videos. This is a tedious task, and requires
a huge amount of time and need human effort [57]. While semi-supervised methods (where part of
the data used to train a machine learning model is unlabeled) can be used to offset the annotation load,
fully supervised methods have continued to maintain state-of-the-art performance on tasks, especially
in automation. Our objective in this work is to reduce the annotation load for semantic segmentation
tasks.

Active learning methods have been known in machine learning for a couple of decades now. They
operate in a setting where given a learned model, a learning algorithm chooses data points intelligently
(using the given model) and subsequently queries an oracle for the labels of the chosen data points.
The model is then updated using the newly obtained labeled data, with a view to increasing the model’s
performance on unseen data. There have been limited related efforts in the past on active learning in
semantic segmentation [69, 70]; however, their focus was different and algorithm-driven and did not
show tangible improvements in dataset development for real-world tasks. We instead focus on using
active learning to contribute to dataset development for tasks based on contemporary datasets such as
Cityscapes and Mapillary, with the main objective to reduce annotation cost on unlabeled data.

While data annotation cost can be reduced there is still a very high computational cost required to
run better performing state-of-the-art models on autonomous systems such and self-driving cars and is
practically infeasible to deploy on mobile phones. This calls for compressed models for segmentation.
While compressed models are fast and fit on a constrained computation system, their performance is
oftentimes very less compared to the state-of-the-art models. Our objective in this work is to improve
the semantic segmentation accuracies for the compressed models.

A teacher-student learning was introduced in early 2014 by Ba and Caruna [3] which leverages
deeper network’s supervision to learn similar complex functions in shallow networks. Knowledge dis-
tillation introduced by Hinton et.al., [28] is a special case of teacher-student learning. In this, the softmax
of a deeper network (teacher) is used along with labeled data to train a shallow network (student). This
improves the performance of the student network when compared to training it alone with the labeled
data. This is because the student network learns to mimic the complex objective function learnt by the
teacher network. There has been an adaptation of this concept to image classification and object detec-
tion. We focus on using knowledge distillation to shallow and fast segmentation networks in improving
their performance.
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1.2 Problem Definition

We will be focusing our work in this thesis on reducing the annotation cost and improving model
performance for semantic segmentation. Particularly, we discuss two problems in this domain.

Active Learning: The aim of this work is to reduce the high annotation cost for datasets for semantic
segmentation. Dense pixel-wise annotations for semantic segmentation are very expensive to obtain,
often requiring 100s of hours of human annotation. This is prohibitive when we need to add new data of
cities for autonomous driving situations. Instead, by leveraging the existing models and with very little
additional annotation on new data, getting almost similar performance as full supervision with whole
dataset annotation is quit. However, such data needs to annotated in a smarter and intelligent way and
active learning plays a huge role in such a scenario.

Knowledge Distillation: The aim of this work is to improve the performance of fast and real-time
networks for semantic segmentation. These real-time and smaller networks are very useful to deploy on
computationally constrained systems, like self-driving cars and mobile phones. More often than not, the
real-time inference and reduction in model size reduce the performance of such networks significantly.
Adapting knowledge distillation to such models is instrumental in improving their performance with no
additional cost during inference.

1.3 Contribution

The contribution of this thesis to semantic segmentation is two-fold:

• Reduction of annotation effort for datasets through active learning without compromising much
on the performance, discussed in chapter 3.

• Improvement of the performance of segmentation models during training through knowledge dis-
tillation without increasing the time during inference, which was presented in chapter 4.

In the first work, we propose an entropy-based active learning approach for efficient labeling in se-
mantic segmentation. While entropy has been extensively used for active learning in the past [31] for
classification [77], we use this exclusively for semantic segmentation in this work. Furthermore, we
propose a region-based active learning methodology, where annotation at the superpixel level in images,
along with the use of fully connected Conditional Random Fields (CRF) [38] for label propagation, pro-
vides significant benefits in reducing annotation cost. We show our results on datasets for autonomous
driving, namely, Cityscapes and Mapillary. We show the results of our methods on cityscapes dataset.
We then transfer the learned model on cityscapes dataset to mapillary dataset with very little additional
labelling.
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In the second work, we propose an ensemble based knowledge distillation approach to real-time and
fast segmentation models to achieve improvement of their performance. We leverage the knowledge
learnt in deeper and complex networks, which are better performing, and distill that knowledge to the
fast segmentation networks. We show our results on Cityscapes dataset and prove the utility of this
method on two small sized, real-time segmentation networks.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents an overview of supervised learning for semantic segmentation. It discusses
the evaluation strategy for semantic segmentation. The relevant datasets and methods of annota-
tion used for segmentation are introduced. It also introduces the concepts of active learning and
knowledge distillation and discusses the relevant literature pertaining to both.

• Chapter 3 details several active learning strategies in the context of semantic segmentation. It
proposes various novel active learning algorithms for segmentation in addition to presenting the
existing query selection methods. The results are presented for two major datasets for self-driving.
We also compare our method to another popular active learning strategy, which used monte-carlo
dropout as an active learning metric. We discuss the benefits and merits of our method compared
to the other one. We also briefly discuss our proposed user annotation strategies.

• Chapter 4 describes the research focusing on improving the performance of smaller models
through knowledge distillation. We discuss existing relevant literature for knowledge distillation
which proved successful in problems such as image annotation, object detection. We introduce
our proposed ensemble teacher-student training method and discuss its contributions. We present
our results on a dataset for autonomous driving and show its adaptability to various real-time
segmentation networks.

• We finally end the thesis by summarizing it, presenting conclusions and discussing possible future
directions.
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Chapter 2

Background

In this chapter, we address the problem of scene understanding and the challenges it presents. Scene
understanding is one of the very fundamental tasks of computer vision that deals with knowing what
is present in the scene and where it is present. Algorithms for this task are required to understand the
semantics and the contextual information in the scene. The work in this thesis discusses semantic seg-
mentation in particular, with a focus on data and computational constraints of the task. In section 2.1
we discuss the problem of semantic segmentation and also briefly discuss the supervised deep learning
methods used to solve the task and explain a popular real-time segmentation network, ICNet. Sec-
tion 2.2 discusses how to evaluate the performance of a semantic segmentation task, and provides a
detailed introduction to the IOU metric. Existing datasets for segmentation are described in section 2.3.
This section also includes the standard annotation methods used to densely annotate an image for se-
mantic segmentation. We show how expensive the annotation is through such methods, and theorize
it will be beneficial to intelligently annotate the image pixels partially. Active learning, described in
section 2.4 is a sub-domain of machine learning which is a way to reduce the annotation cost for various
machine learning tasks. A major constraint to deploying segmentation systems onboard a self-driving
car or a mobile phone is the size of the system. Though real-time segmentation systems are introduced
lately, they usually suffer from reduced performance. We discuss knowledge distillation in section 2.5, a
teacher-student model training method to transfer or distill the knowledge from a larger machine learn-
ing model to a smaller model. The smaller model distilled with the knowledge of a larger model will
have better performance than the stand-alone smaller model trained without distillation. Subsequently,
active learning and knowledge distillation were adapted to semantic segmentation in chapters 3 and 4.

2.1 Supervised Learning for Semantic Segmentation

The task of semantic segmentation can be summarized as “classifying each pixel of the given image
to its corresponding semantic class”. While this sounds very similar to image classification, it is more
complex the this problem. The inherent spatial correlation of pixels in the image is what makes the
problem hard to solve. Some of the earlier works on this problem predict the class probabilities of a pixel
in an image patch using random forest [7][64] and boosting [39]. These noisy pixel-level probabilities
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can then be smoothed out using the semantic correlation with its neighboring pixel. This was explained
in the use of unary and pairwise potential terms in Conditional Random Fields (CRF)S and subsequently
in fully-connected CRFs [38] which improved the accuracy of the predictions.

After the success of deep neural networks on the ILSVRC challenge [54] for the image classification
task, Shelhamer et. al. [45] proposed the first end-to-end neural network architecture for semantic
segmentation. This architecture, called the Fully Convolutional Network (FCN), captures the low-level
and high-level information in the image. It had a VGGNet base architecture [65] of image classification
network, adapted to predict the segmentation map. This was accomplished by adding a deconvolutional
layer through bilinear interpolation after the convolutional layers instead of the fully connected layers.
This ensured the preservation of spatial information. They presented their results on the Pascal VOC

dataset [20], which showed a high improvement over previously proposed conventional methods.
After the visible success of FCN for segmentation, several other methods were proposed building

upon it. SegNet by Kendall et.al., [36] proposes learning of deconvolutional layers along with the
weights of convolutional layers. DeepLab [14] combines the semantic segmentation architecture with
CRF inference to improve its performance. With also the improvement in architectures for image classi-
fication such as ResNet [27] and others, same things have been adapted to semantic segmentation. Other
recent networks are PSPNet [79], DeepLab V3 [16], which have much deeper and complex architectures.

Next, we will explain in detail the base neural network architecture and strategies like crf used in our
work.

2.1.1 ICNet

ICNet is a semantic segmentation architecture which has decent prediction accuracy and is also fast.
It also processes the input images at high-resolution, which is the desired requirement for real-time
segmentation architectures.

It processes low-resolution images through full semantic prediction architecture. Through this, we
get a coarse prediction map. Then these predictions are gradually fused to mid-resolution and high-
resolution version of this image through their proposed cascade feature fusion (CFF) and cascade la-
bel guidance architectures. Since both the mid and high-resolution inputs are computationally heavy,
they go through only partial semantic prediction and then the low-resolution prediction is interpolated
through the CFF unit to fuse with the mid-resolution prediction. A similar CFF unit is applied to high-
resolution prediction fusion with mid-resolution prediction. This reduces the computational time thus
allowing the network to run at real-time.

2.1.2 Fully-connected Conditional Random Fields

Traditionally, the image segmentation problem was posed as a graphical inference in a Conditional
Random Field CRF [40] defined over pixels or image patches. A unary potential term models the un-
certainty of individual pixels or image patches and a pairwise potential term models the relationship
between the neighboring pixels or patches. To model long-range connection instead of just adjacent
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Figure 2.1 Example images with corresponding segmentation masks from a few existing datasets
(named below each pair) for semantic segmentation. (on right) are the sample images from a specific
dataset (below) and (on left) are the corresponding segmentation masks representing each class with a
color.
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Figure 2.2 Improvement in the IoU of segmentation with proposed methods. The performance of the
method increases with introduction of deeper layers and complex multi-scale architectures to obtain
finer segmentation predictions.

pairwise potential, Krahenbuhl et.al., [38] proposed a fully connected CRF which establishes pairwise
potential on all pairs of pixels in a given image.

Other recent methods improving the efficiency of higher order terms in CRF are proposed by Shanu
et.al., [62] [63].

E(x) =
∑
i

ψu(xi) +
∑
i<j

ψp(xi, xj) (2.1)

i,j range from 1 to N , where N is the number of pixels in the image. ψu is the unary potential for
each pixel. The unary potential is the distribution over all classes xi for a given image that is produced
by a classifier. For a deep neural network, the softmax prediction probabilities is a suitable unary
distribution. The pairwise potential incorporates a Gaussian kernel for each pixel or image patch pair
over an arbitrary feature space. This model improves the segmentation performance when used over a
deep learning model prediction.

2.2 Evaluation Measures and Methodology

Once a model is trained, we will need to evaluate how good it performs on unseen data. For this, we
need some sort of evaluation metric. In this section, I will outline the metrics I have used to evaluate the
experiments in my thesis.
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Figure 2.3 Visualization of Intersection over Union IOU metric. In the top row (left) the green segmen-
tation mask is the groundtruth for that object and blue is the predicted segmentation mask; (right) is the
regions labeled TP, FP, FN showing the true positive, false positve, false negative regions of the predic-
tions. In the bottom row (left) the colored region is the intersection of the groundtruth and predicted
segmentation (right) is the union of the groundtruth and predicted segmentation.

For evaluation, we will have a prediction and a correct segmentation (ground truth). Let us first
describe a few terms which will be used in the subsequent evaluation metrics. Given a prediction and a
groundtruth, for a given class ci, TP (true positive) measures the number of pixels which are predicted
correctly to ci; FP (false positive) is the total number of pixels wrongly predicted as ci when they actually
belong to another class; and FN (false negative) is the total number of pixels predicted as some other
class when they actually belong to ci. The evaluation metric, Intersection over Union (IOU), also known
as Jaccard Index is defined as,

IoU =
TP

TP + FP + FN
(2.2)

In other words, it measures the fraction of the total number of common pixels of a given class ci
between the prediction and groundtruth, and the total number of pixels of the class ci in prediction and
groundtruth. This IOU is calculated separately for all classes and averaged over all classes to get a mean
IOU for segmentation.

IoU =
prediction ∪ groundtruth
prediction ∩ groundtruth

(2.3)

The data is partitioned into training and validation sets. For all the datasets we use in our experi-
ments, the split of training,validation and testing sets are already provided wherein the dataset creators
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Dataset Total Training Validation Testing
Pascal VOC 2012 4378 1464 1449 1456
Cityscapes 5000 2975 500 1525
ADE20k 25210 20210 2000 3000
Mapillary 25000 18000 2000 5000
IDD 10003 6993 581 2029

Table 2.1 Comparison of various datasets and their metrics. Each of these datasets are for semantic
segmentation and detail the total number of images in dataset along with their training, validation and
testing split for the fine pixel-level annotation.

made sure that the sets do not overlap. We train our models on the training set and finally test it on the
validation set, and present all our results in the work on the validation set as access to evaluation servers
for the test was very limited.

2.3 Datasets and Annotation

2.3.1 Datasets

There have been many proposed datasets to solve the problem of semantic segmentation. One of the
first large scale datasets for segmentation was the Pascal VOC 2011 dataset. Another popular dataset
for solving general segmentation problem is the COCO dataset. ADE20k is another recently proposed
dataset.

Specifically for road scene understanding, the main topic of the thesis, there have been several pop-
ular datasets. The first one was KITTI dataset. Other datasets are CamVid, Cityscapes, and Mapillary.
Recently, Varma et.al., [68] released the first large-scale dataset, IDD for autonomous driving in uncon-
strained environments for Indian Roads. We present the dataset properties for semantic segmentation
task in Table 2.1. The table details the total number of images along with providing the split between
training, validation and test images. Cityscapes, Mapillary and IDD are datasets for autonomous driving
situations which also have dense pixel-wise annotations for instance segmentation. Pascal VOC 2012
is a dataset for general segmentation images. ADE 20k has scenes from indoor and outdoor for general
scene parsing. Examples of the images and its corresponding annotations from various datasets are also
presented in Figure 2.1. All of these datasets are finely annotated for the semantic segmentation task.

The major drawback of such datasets is the very high cost of its annotation, often requiring 1.5
hours per image. Access to large dataset always increases the performance of a model but it also comes
at the cost of increased annotation. The IDD dataset, which is more semantically complex than its
predecessors reports the annotation time as 2.25 hours per image. The increase in scene complexity
also affects the annotation cost. Section 2.3.2 describes the existing annotation strategies for semantic
segmentation.
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Figure 2.4 A sample annotation for an image from Mapillary dataset on the web-based annotation tool,
LabelMe. (left) is the annotation of an image in which an object is annotated with a polygon brush
across its boundary; the circle in green is the control point to click when annotation for an object is
completed. (middle) is the dialog box asking for the attributes of the annotated object along with its
class label. (right) is the final segmentation mask of the object, car, in the image.

2.3.2 Annotation

Dense pixel-wise annotation of an image is a crucial task for both semantic segmentation and instance
segmentation. Dense pixel-wise annotation is usually very costly. To speed up this annotation, several
methods make use of interactive segmentation [52][73][11]. Few other methods also use super-pixel
annotation [76][23] in which they divide an image to be annotated into its corresponding superpixels
and fill the superpixels with labels for the object present in it. There are also other works, which anno-
tate in a semi-supervised manner in which they manually annotate squiggles [6][75] or points [6][33]
and inference the annotation of an object from there. All these strategies, definitely to speed up the
annotation, but often result in a lower quality.

The popular datasets like Cityscapes and Mapillary use much more quality controlled annotation
method derived from LabelMe [55]. This annotation is achieved by drawing polygon bounding boxes
around an object to be as fit as possible to its boundaries. The strict Quality Assurance (QA) makes sure
that the annotated images are 97 ∼ 98% correct in their labels. These annotations often also include void
classes, which are ignored during training or testing; the void class is usually such regions in an image
where the human annotator is unsure of the class of the object in the categories defined for the dataset. In
the following paragraphs, we explain the annotation strategy used for Cityscapes and Mapillary datasets
and provide some examples for it.

2.3.2.1 Polygon Annotations

Polygon annotations are the de-facto standard to annotate images for the task of semantic segmen-
tation. The annotation tool for Cityscapes and Mapillary datasets is based on LabelMe. LabelMe is a
web-based annotation tool using JavaScript. The user annotates an object by starting a control point and
guiding the annotations around the object and end it by clicking the control point. A dialog box pops up
asking for the class of the object to be entered. A sample annotation is shown in figure 2.4

11



The available large scale datasets for autonomous driving scenarios, as mentioned are Cityscapes
and Mapillary. They adapt the LabelMe annotation tool and build an interactive annotation tool with
additional features. Each image takes 1.5h on average in cityscapes for a 1024 × 2048 image and
similarly 94min average in mapillary for a 1920 × 1080 image. The objects in both the datasets are
annotated from back to front, starting from the farthest object in the image to the nearest one. They also
ensure that no object boundary is marked more than one time. This strategy is implicitly beneficial since
it will provide depth ordering of the object in the given image.

With the scaling of datasets to prepare robust self-driving systems, the cost of annotation equally
increases. This requires 100s of hours of human annotation cost and is laborious and repetitive. The
scaling of datasets needs to be cost-effective in terms of annotation. Active Learning [57] has been used
in literature for a long time to intelligently annotate data in image recognition and detection which can
also be adapted for segmentation. In the next section, we describe active learning and its methods which
will be helpful in reducing data annotation cost. In chapter 3 we did extensive experimentation to show
how active learning can be adapted for semantic segmentation to efficiently label new data.

2.4 Active Learning

Supervised learning models train on the data and groundtruth available to them. However, these
datasets are usually massive, which translates to hundreds of hours of fine annotation. Instead, it is
desirable to reduce the annotation effort to train these models while retaining a similar performance. We
argue that active learning is a suitable strategy to achieve this. The main idea behind active learning is
that a given machine learning algorithm will be able to achieve greater performance with fewer training
labels, if it is allowed choose that data from which it learns [57]. This strategy had a proven success in
image classification [44] [72] [34], object detection [71] , object tracking [5] and image retrieval [66].
There had been few recent works to demonstrate the use of active learning in semantic segmentation on
smaller multi-class datasets [69] and in medical image segmentation [24].

While there are nuances present in algorithms for the above works, a general active learning system
can be described as in figure 2.5

In the beginning, we train a machine learning model on already present labeled data. We also have
access to a large collection of unlabeled data from the same domain. Any proposed active learning
method uses some strategies to pick a single or a pool of unlabeled instances which will improve the
accuracy or performance of the machine learning model. Such unlabeled instances are queried for labels
to an oracle and then the obtained labeled instances are appended to labeled data to retrain the machine
learning model.

2.4.1 Querying Strategies

To make sure that we are querying for the right instances for labels that will maximize the perfor-
mance while minimizing the annotation effort, we need strategies through which a machine learning
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Figure 2.5 A general pipeline describing the active learning methodology.

algorithm can query for the labels from an annotator/oracle. In the following sections, we introduce a
few active learning strategies used and discussed in this thesis:

2.4.1.1 Uncertainty Sampling

The concept of uncertainty sampling was first introduced in Lewis et.al [43]. In this strategy, the
active learning algorithm queries for those instances for which it is highly uncertain to label. For exam-
ple, in binary classification tasks described in Lewis et.al. [43] [42] which uses a Bayes Classifier, this
strategy queries those instances whose posterior probability is close to 0.5. However, a general strategy
for uncertainty sampling is Shannon Entropy [61], or commonly known as entropy.

H = −
C∑
i=1

pi log(pi) (2.4)

For a c-class classification task, if the predicted probabilities of the classes are p1, p2, .., pc, equa-
tion 2.4 is the entropy measure. Higher the entropy, higher is the uncertainty of that instance, or in other
words, the classifier is the least confident to classify the instance.

There are other uncertainty measures such as least confident and margin sampling. However, en-
tropy is a popular uncertainty measure that has been widely used, though, the correct strategy is still
application-dependant.
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2.4.1.2 Monte Carlo Dropout Sampling

This method has been used in deep-learning models by Kendall et.al., [37] to model the uncertainty
of the SegNet architecture [4]. This method models the approximate uncertainty through monte carlo
dropout integration.

p(y = c|x,X,Y) ∼ 1

T

T∑
i=1

Softmax(f(x)) (2.5)

T is the number of model weights obtained through dropout distribution as theorized in [22]. Here,
we average over all model probabilities from dropout at inference time.

2.4.2 Other Active Learning Methods

We have surveyed active learning literature to learn the various strategies used for selecting the
appropriate strategy based on the application. We present this section to give an introduction to the
reader intrigued about the sub-domain of active learning. This is a brief introduction to various methods
and the reader is encouraged to refer Active Learning Literature Survey by Burr Settles [57] for a detailed
analysis of these methods.

2.4.2.1 Query-By-Committee

This strategy uses a ‘committee’ of different models C = {θ1, θ2, .., θn} trained on the same labeled
dataset. These models then predict the label of given unlabeled instances. The instances on which most
of the models disagree is considered to be the most informative query. This is intuitively similar to
uncertainty sampling, but the uncertain measure is the disagreement of the committee of the trained
models. This strategy was first proposed in Seung et.al., [60]. In order to implement this algorithm, it is
necessary to have some measure of disagreement among the models of the committee.

2.4.2.2 Expected Model Change

This strategy selects a query in such a way that it provides the greatest change to a given model once
the label is revealed. This was introduced in Settles et.al., [59] for multiple-instance active learning.
It was also applied in Settles and Craven [58] for models like CRF. In general, this can be applied in
any learning problem which uses gradient-based training. In this, the learner queries for an instance
x, which will be added to a labeled set L and result in gradient with the largest change. The expected
change score is defined as

x∗EC = argmax
x

∑
i

pθ(yi|x)
∥∥∥∇lθ(L ∪ 〈x, yi〉)∥∥∥ (2.6)

In this equation, ∇lθ(L) is the gradient of the objective function l and ∇lθ(L ∪ 〈x, yi〉 is a new gra-
dient we will obtain if we add the pair 〈x, y〉. Since we do not know label prior to query, we calculate
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the expected change, EC as the expectation over the possible labels yi. This approach has been imple-
mented for semantic segmentation in [69]. However, this model becomes computationally expensive
for a larger feature space.

2.4.2.3 Expected Error Reduction

Another similar approach to expected model change is to choose a query that will provide the great-
est reduction in the generalization error. In this model, the expected future error is evaluated on the
unlabeled set, U if we train the labeled set newly queried pair, L ∪ 〈x, y〉. We query for the instance
which will have the least expected future error by minimizing the expected 0/1 loss or the log-loss. This
equivalent to reducing the expected entropy of the unlabeled set or maximizing the expected information
gain of a query x. The expected 0/1-loss is represented as:

x∗0/1 = argmin
x

∑
i

p(yi|x)
( U∑
u=1

1− Pθ+〈x,yi〉(ŷ|x(u))
)

(2.7)

In the equation, θ+〈x,yi〉 refers to the retrained model with the labeled set L and the new queried
instance 〈x, yi〉. Similar to expected model change, we do not know the label prior to the query, so we
calculate the expected error reduced over all the possible labels yi. Roy et.al. [53] first proposed this
framework for text classification. This method has been improved and used in other semi-supervised
active learning methods. Unfortunately, expected error reduction is very expensive in most cases since
it requires estimating future error over all unlabeled instances along with incrementally retraining over
all possible labels.

2.4.2.4 Variance Reduction

As discussed in expected error reduction, minimizing the generalization error is very expensive.
This, however, can be done indirectly by minimizing the output variance. The query strategy can be
formulated as follows:

x∗V R = argmin
x

〈
σ̃2ŷ
〉+x (2.8)

Here,
〈
σ̃2ŷ
〉+x is the estimated mean output variance after we retrain the model on the queried label

for instance x. This was introduced in Cohn et.al., [18]. Equation 2.8 is differentiable with respect to
x, so it can be used in gradient-based learning methods to reduce the generalization error by indirect
reduction of the expected variation.

2.4.3 Related work for Active Learning and Semantic Segmentation

Several deep neural networks have tackled the problem of semantic segmentation. The work Badri-
narayan et al. on Segnet [4] makes use of encoder-decoder network which eliminates the need to learn
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for up-sampling by using pooling indices computed in max pooling. Another work, DeepLab [16] com-
bines the last layer of the DCNN with a fully connected CRF to improve local performance. CRF as
RNN[80] integrates the CRF into CNN for end-to-end training. A recent state-of-the-art method, Pyramid
Scene Parsing Network [79] divides feature maps into sub-regions to capture global context informa-
tion before the deconvolutional layers. All this work described work uses the high level of supervision
through densely labeled frames to predict the segmentation of an image. As reported by Cityscapes
[19], the dense segmentation of each image takes about 2.5 hours which means obtaining labels is a
very costly task. In this work, we aim to solve the problem of segmentation with only a few labeled
instances and a large number of unlabeled instances, thereby reducing the cost for labeled examples.

Papandreou et al. use the information image level tags and partial labels to obtain the segmentation
of images. Similarly, work done by Xu et al. from University of Toronto [75] incorporate image tags,
bounding boxes and partial labels to solve the problem of segmentation. Work by Pathak et al. [50]
make use of only image level tags to obtain segmentation by constraining the output prediction space.
In a similar way, we a trying to solve this problem using only the information from the partial labels.

Active learning methods have been proposed for many years now, and many criteria have been pro-
posed for selecting the most informative data points to query for labels from an oracle. In [35, 42],
uncertainty-based measures are used for choosing the queries. In [69], expected change (EC) in the
labeling is used for selecting the informative data points, based on which points induce the largest ex-
pected change in the current model. In [36], Epistemic and Aleatoric uncertainty measures are studied
in Bayesian deep learning models for vision tasks. The epistemic uncertainty measure is used for active
learning in [25] and [37]. In [25], a Cost-effective Active Learning approach using dropout at test time
as Monte Carlo sampling is proposed to model the pixel-wise uncertainty. It estimates the uncertainty
based on the stability of the pixel-wise predictions when a dropout is applied to a deep neural network.
An earlier method proposed in [67] achieves semantic segmentation by active learning query for fore-
ground object and Sparse Gaussian Process to obtain segmentation. The other commonly used active
learning methods include query-by-committee [60], expected error reduction [26, 53], expected model
change [21], variance reduction [29, 56] and Min-max view active learning [30, 32]. The proposed
method can be viewed as an uncertainty-based sampling method.

Region-based methods [2, 9] have been popular for image segmentation in the past, and have only
recently been integrated into deep neural network models for semantic segmentation. In typical region-
based methods, the image is first divided into small coherent regions, until some stopping criterion is
satisfied. These small regions form seed regions for the given image and can capture complete objects
or its canonical parts. Labels over these seed regions are used to classify its neighboring pixels/regions.
We leverage this approach for label propagation in active learning.
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2.5 Knowledge Distillation

Deep Neural Networks (DNNs) have achieved state-of-the-art performance in numerous areas of
computer vision, like, image classification, object detection, and semantic segmentation. However,
these state-of-the-art networks are deeper and complex, and therefore take up significant storage space.
This also leads to the requirement of larger computational power and time. This is a huge factor that
restricts the deployment of such models on systems with limited resources.

Smaller and faster networks have been developed to overcome the problem of not being able to
deploy larger networks for limited resource systems such as self-driving cars and mobile devices. How-
ever, these smaller networks suffer in performance as they won’t be able to capture as much detail as
the deeper networks. One convenient way to improve the performance of the machine learning system
designed for a specific task would be to train the same data on multiple networks: smaller or larger
networks depending on the requirement, and then averaging their predictions. This invariably increases
the computation time at deployment. Especially in self-driving cars, the machine learning model needs
to be both smaller and computationally faster and at the same time have a good prediction accuracy.
This rules out the possibility of using an ensemble of models during deployment.

This problem was addressed in Hinton et.al. [28] when he introduced the concept of knowledge
distillation. Knowledge distillation allows transfer of the knowledge of a teacher network, which is
either an ensemble of high-performance networks or a single high-performance network, to a student
network, which is usually a shallow network or low-performance network. The concept of knowledge
distillation is discussed in detail in the next section.

2.5.1 Distillation

The main premise behind distillation from larger networks to smaller networks is that we use the
knowledge gained in larger networks and train the smaller network to mimic that knowledge. This way,
the smaller network trained to mimic the larger network will typically perform much better than the
smaller network trained in the normal way. Design choices for larger networks can be two ways: either
a single best performing models or the average of an ensemble of different models. The rest of the
section formulates the way to use the knowledge from larger networks to train the smaller networks.

A neural network for a given task, predicts the class probabilities through a softmax layer. The
softmax layer takes the input of logits score of the network predictions and outputs the class wise
probabilities. If zi is the logits score, the softmax layer class probabilities pi are given in equation 2.9

pi =
ezi/T∑
i e
zi/T

(2.9)

In this equation, T is the temperature the softmax predictions. Usually, T is set to 1 softmax layer.
If T is set higher, it gives a softer distribution of probabilities of all the classes.

So distillation is where we transfer the trained model with a softer distribution to another smaller
model. If the dataset used for teacher and student networks is the same, we can formulate this problem
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as follows. We use two objective functions to train the smaller model. The first is cross-entropy loss
function to train with correct labels or groundtruth with softmax computed at temperature 1. The second
objective function is for the teacher-student distillation, and is usually a cross-entropy loss function or a
KL Divergence loss function at the softened higher temperature depending on the application we want
to train.

2.5.2 Related Applications

This concept of knowledge distillation has been adapted to various computer vision and machine
learning problems. Romero et.al. [51] introduced Fitnets; they provide additional supervision at in-
termediate layers along with teacher-student training, called hint-based training to improve the knowl-
edge distillation model performance. Fitnet based approach was adapted to object detection by Chen
et.al. [13]. Along with teacher-student training from Fitnets, they had a distillation loss for bounding
boxes thus distilling the knowledge from a larger teacher model. Lan et.al., [41] use on-the-fly teacher
ensemble to train a student network. This, however, is also computationally very expensive during
training because it requires space and computational power for the ensemble of networks.

Knowledge distillation has been applied and adapted to simplify other problems which do not have
traditional CNN models. Chen et.al., [17] adapted knowledge distillation to sequence model, to the con-
nectist temporal classification (CTC) for speech models. They introduced knowledge distillation at both
frame-level and sequence-level. They showed the improved distillation results on English Switchboard
corpus and a large corpus of Chinese speech samples. Mun et.al., [47] learn specialized knowledge
distillation models for visual question answering (VQA). They adapt the distillation concept to multiple
choice learning problem in where they distill the knowledge from a generalized base model ensemble
to specialized multiple choice models. Castro et.al., [12] use distillation loss to retain the information
from already trained classes and propose incremental learning of new classes for image classification to
overcome the problem of catastrophic forgetting.

Our work aims to adapt the knowledge distillation to semantic segmentation. The main motivation is
to increase the performance of smaller, real-time networks which find huge applications in autonomous
driving situations. We propose a similar approach as [41], but eliminating the need for on-the-fly
ensemble and therefore reducing computational power requirement. Another work recently proposed to
improve the fast segmentation models [74] use a consistency loss along with distillation loss. This work
has been parallel with ours, but we use ensemble of teacher networks to improve the consistency.
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Chapter 3

Active Learning for Semantic Segmentation

This chapter details our proposed active learning strategies for labelling data in semantic segmenta-
tion tasks. Our key contributions can be summarized as follows. Convolutional Neural Networks (CNNs)
have shown to be very effective for the semantic segmentation task in recent years [4, 45, 79, 78]. To
the best of our knowledge, none of the earlier methods for active learning in semantic segmentation
were based on CNNs, and this is the first such effort. Recently, fully connected Conditional Random
Fields have been used with CNNs [16] for improving the model performance in semantic segmentation
task too. We leverage this development in our work to use the dense connectivity in fully connected
CRF at the pixel level, along with CNN-based models, to achieve semantic segmentation with limited
labeling effort. We apply our proposed method for the road scene understanding problem, which has
significant applications in autonomous driving. We evaluate our method on the Cityscapes dataset, and
our approach achieves 93.4% percent of the accuracy of the corresponding fully annotated model while
querying just 10% of the pixel labels. We also demonstrate the effect of transfer learning over the Map-
illary dataset, where the initial model is learned on the Cityscapes data, and this model is used to label
the Mapillary dataset with minimal annotation effort.

Unlike classification or recognition where we can obtain single or multiple labeled instances with
ease, semantic segmentation is more demanding in the labels and types of labels we can obtain. We
cannot, for example, label every pixel of selected unlabeled instances. So it is necessary that our query
strategies include ways to collectively annotate the pixels. We present such strategies in section 3.1.
Various types of query strategies of sampling pixels for annotation affect the image segmentation output
differently as shown in Figure 3.1. It can be observed that the segmentation results improve significantly
with the third strategy when compared the first and second strategies. We have also dedicated a section
to annotation strategies where we present the suitable methods of annotation for the task.

3.1 Proposed Method

Given a (small) labeled dataset and a deep learning model trained on this data, our objective is to
reduce the cost of annotations on available unlabeled data, so as to obtain a new model which provides
better validation performance than the initial model. Let X = P ∪ Q be the given data, where P is a
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Figure 3.1 An overview of different sampling methods. The manner in which we select the samples (in
this case, pixels) affects the final segmentation result. The reference image is from cityscapes dataset.
(first and second rows) show datapoints sampled through random strategies and their corresponding
segmentation outputs for a given image. (third row) shows the better segmentation output corresponding
to our proposed sampling strategy.

set of labeled data and Q is the set of unlabeled data. Let Θ be a deep learning model trained on the
labeled data P . Our objective is to reduce the number of annotations on Q using the trained model Θ

such that the model’s performance (in terms of semantic segmentation) on the un-annotated remainder
of Q improves.

We now describe the general approach for active learning in semantic segmentation using uncertainty
measures based on entropy.

Our overall active learning methodology starts after training the initial network Θ over the labeled
data P . We present active learning strategies to reduce annotations at both image-level and pixel-level.
At an image-level, using uncertainty-based measures (which we describe later in this section), we rank
images in the unlabeled set Q for annotation. The most uncertain images in Q are then selected as
candidate images for annotation. The images are then annotated by an oracle O in groups, i.e. the first
group of images is the most uncertain images and these are selected first for annotation. Given a pixel
xji , where xi is the unlabeled image from Q, we can query its label using a given oracle O . O(xji ) gives
the true label of jth pixel in xi i.e. xji . We assume group size to be l and the number of groups to be b.

At a pixel-level, for each candidate image in Q, we identify the most uncertain pixels for annota-
tions. For a given image xi, our objective is to find a given m ∈ [0, 1] portion of candidate pixels for
annotations, i.e. for the image xi, where |xi| is the number of pixels, we only annotate m|xi| number
of pixels. These pixels are identified using uncertainty measures computed at a pixel-level (described
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later in this section). The oracle O is then queried for the true labels of the identified pixels. Finally, the
given network represented by Θ is retrained on the selected data B using the annotations obtained using
the oracle O.

The overview of our proposed active learning method is summarized in Algorithm 1. In the final
step, the model is retrained using the selected data and the labels obtained from O, to obtain the updated
model Θ. We also update the current unlabeled set Q as Q − B. The new retrained model and the
updated unlabeled set are further provided as input to the next iteration of the algorithm, and the process
is continued for the given number of groups b. The uncertainty at image and pixel level is computed
using entropy measures, described in Section 3.2.

Algorithm 1 Active learning for Semantic Segmentation
Input: (i) Given data X = P ∪Q, where P is labeled, and Q is unlabeled;
(ii) Oracle O for providing labels on unlabeled data;
(iii) Deep learning model Θ trained on P ;
(iv) Proportion of annotations m on Q;
(v) Number of groups b and group size l
Output: Updated model Θ
i = 1
while i < b do

(1) Select a group B ⊂ Q, |B| = l such that uncertainty(B) > uncertainty(B
′
)∀B′ ⊂

Q, |B′ | = l
(2) Query oracle O for relevant m portion of pixels of images in B
(3) Retrain the model Θ on B using the new labels obtained from Step (2) and update Θ
(4) i = i+ 1; Q = Q−B

end while
Return updated model Θ

3.2 Computation of Uncertainty

We describe four different strategies for computing uncertainty, to be used for our active learning
methodology described in Algorithm 1: Pixel-level Entropy, Image-level Entropy, Edge Pixel-based
Entropy, and finally, the Region-based Entropy (which constitutes our proposed region-based active
learning strategy and is the most effective of the proposed strategies).

3.2.1 Image-level Entropy:

The entropy at an image level is obtained by summing the uncertainties over all the pixels in the
image xi, as below:

Hi =

|xi|∑
j=1

Hj
i (3.1)

21



Entropy for an image xi gives the uncertainty present in the prediction for the model Θ over the entire
image xi. In Step 1 of Algorithm 1, we compute the most uncertain images for the current model Θ (by
ranking images inQ based on their respective entropies) and, using the oracle O , we only select a group
of l images for annotation. We hence annotate a total of l × b number of images only in this strategy
(which is much lesser than the size of Q in our experiments).

3.2.2 Pixel-level Entropy

Given an unlabeled image xi, we compute its probability score map p(ck/xi), where k ∈ {i, . . . , C}
and C is the number of classes. This gives the probability scores p(ck/x

j
i ) for j ∈ {i, . . . , |xi|}, where

|xi| is the number of pixels in xi. p(ck/x
j
i ) gives the probability for the pixel xji belonging to the

class ck. This probability distribution is obtained using the available deep learned model Θ, with no
additional annotation effort on the unlabeled set. The entropy (uncertainty estimate), Hj

i at each pixel,
is then computed using Eqn 3.2 below.

Hj
i =

C∑
k=1

p(ck|xji ,Θ) log(p(ck|xji ,Θ)) (3.2)

This entropy is computed for each image xi separately. Our active learning methodology first ranks all
images in the unlabeled set Q according to their entropies (as in Section 3.2.1), and the m portion of
each image is then selected based on pixel-level entropy for labeling.

3.2.3 Edge Pixel-based Entropy

In general, the misclassification rate for pixels at object boundaries/edges is more when compared to
the other pixels in the image. This suggests that edge pixels inherently have high uncertainty.

However, not all edge pixels have high uncertainty like small edges inside an object. Also, few
boundary pixels have a high chance of being misclassified, but their uncertainty is not as high as other
uncertainty pixels. To consider edge pixels for annotation, we modify the pixel-level entropy strategy to
give a higher weightage to edge pixels. We use a Canny edge detector to identify edge pixels, and the
weighted entropy computed for edge pixels in a given image xi is obtained as follows:

Hi =

|xi|∑
k=1

C∑
l=1

wep(cl|xki , θ) log(p(cl|xki , θ)) (3.3)

where we > 1 is the weight given to the edge pixels. For other pixels it is set to 1.

3.2.4 Region-based Entropy

In semantic segmentation, the neighboring pixels are highly likely to have a close relationship and
share similar information. Therefore, they are likely to belong to the same semantic class. However,
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in all the aforementioned strategies, the entropy of each pixel is calculated independently without con-
sidering this relationship. In order to take advantage of the spatial correlation in images, we propose a
region-based strategy that is applied at the level of superpixels (SP) in an image. We use (SLIC) [1] to
computing the superpixels in a given image, and define the entropy at the superpixel level as the sum
of its pixel entropies. To further leverage this strategy, we apply fully connected Conditional Random
Field (CRF) model over the segmentation output (probability map) obtained using a deep learned model.
This gives the probability score maps for all the pixels. In other words, instead of computing the un-
certainty measure over the probability obtained from the current network, we compute our uncertainty
measure over the probability map obtained from CRF in this case. We find that this region-based strategy
with the propagation obtained using a CRF is immensely useful in obtaining promising results with little
annotation. Overview of the Region-based Entropy method is given in Figure 3.2. Here, we take a sin-
gle image for illustrating each step. The final segmentation image is used for retraining the previously
trained network.

Figure 3.2 Overview of the Region-based Entropy method. Here, the final segmentation image is used
for retraining the previously trained model.

3.2.5 Class Specific Selection of Pixels/SuperPixels

In general road scene images, few frequent classes like road, trees, and buildings dominate other
classes like traffic signal and signboards. So the number of pixels considered for labeling in these classes
dominates other classes. It is desirable to take an equal number of pixels from each class to avoid the
dominance of frequent classes. In this method, we first take the deep network trained on the initial
labeled data. Now, we represent all the pixels in the labeled images using the feature vector obtained
from the network. We construct a feature space using these feature vectors, where each category is
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Baseline Random 10% GT Entropy Entropy + Edge pixels SP SP + CRF Class-specific SP+CRF
# Training images 100% GT 10% GT
1175 55.6 55.6 55.6 55.6 55.6 55.6 55.6
1475 57.9 55.9 (96.5%) 56.1 (96.8%) 56.4 (97.4%) 56.5 (97.5%) 56.9 (98.2%) 57.0 (98.4%)
1775 59.7 56.2 (94.1%) 56.5 (94.6%) 57.0 (95.4%) 57.1 (95.6%) 57.8 (96.8%) 57.9 (96.9%)
2075 61.5 56.3 (91.5%) 56.9 (92.5%) 57.9 (94.1%) 58.0 (94.3%) 58.5 (95.1%) 58.7 (95.4%)
2375 62.7 56.5 (90.1%) 57.4 (91.5%) 58.7 (93.6%) 58.8 (93.7%) 59.4 (94.7%) 59.7 (95.2%)
2675 63.8 56.4 (88.4%) 57.8 (90.5%) 59.4 (93.1%) 59.3 (92.9%) 60.2 (94.3%) 60.4 (95.2%)
2975 65.3 56.5 (86.5%) 58.1 (88.9%) 59.8 (91.5%) 60.0 (91.8%) 61.0 (93.4%) 61.3 (93.8%)

Table 3.1 Comparison of our various active learning techniques over incremental training data for
cityscapes data. Performance is given in meanIoU. Here, SP means SuperPixels and GT means
Groundtruth. Results over 1175 images are obtained using the initial trained network over full ground
truth. The values in the bracket indicate the ratio to the baseline. It means the percentage of baseline
accuracy the method is able to achieve.

denoted with a feature vector calculated using the feature vectors of the pixels in the same category. We
represent each category with the mean of feature vectors of all the pixels in that category. Now, for the
given unlabeled image, we calculate the similarity (cosine similarity) for each of its pixels with all the
class means as follows,

simk
xji

=
F
xji
mk

||F
xji
|| ||mk||

where F
xji

is the feature vector for the pixel xji
th obtained from the network and mk is the feature

vector representing kth category. simk
xji

gives the similarity between the xji
th pixel and the feature

vector representing the kth category. Next, each pixel is assigned to its most similar category. In this
method, instead of computing the entropy independent of its class, we compute the entropy of the pixels
in each category separately and pick the high entropy pixels from each class independently.

3.3 Experimental Results

In this section, we evaluate our entropy-based active learning methods for semantic segmentation.

3.3.1 Datasets and Experimental settings

We evaluate our proposed method on two large widely used datasets for semantic segmentation:
Cityscapes [19] and Mapillary [48]. Both Cityscapes and Mapillary datasets have emerged as the most
popular choices for road scene understanding and autonomous driving. Cityscapes contains 2975 finely
annotated training images along with 500 validation images. To evaluate the performance of our pro-
posed method on Cityscapes, we divide the training data into 2 sets. The first set contains 1175 images
and the second set contains 1800 images. A deep learning network is trained over the set containing
1175 images using original ground truth, and this model is used as the initial network. Using this model,
we try to reduce the number of annotations required on the remaining 1800 images and the performance
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is evaluated over a hold-out validation dataset. We use ICNet [78] as our deep learning network. ICNet
is a popular network for real-time semantic segmentation on high-resolution images. Since all the im-
ages in Cityscapes dataset are high-resolution images (1024× 2048), we use ICNet as our deep learning
network.

The Mapillary Vistas Dataset [48] is a large scale street-level image dataset. It contains 25000
high-resolution images annotated into 66 object categories. For this dataset, the network trained over
cityscapes training data (2975 images) using original ground truth is considered as the initial model. For
consistency in the results, we use 19 common classes in both cityscapes and mapillary datasets. The
performance over these datasets is measured in terms of the mean of class-wise intersection over union
(mIoU).

For all the experiments, we take the number of groups as 6. The group size for cityscapes is 300 and
for mapillary is 3000. For both cityscapes and mapillary data, we report the results on the validation
data. We only select 10% of pixels for annotation. For computing superpixels (SP), in SLIC, we take the
size of the superpixels as 1400. For training ICNet [78], we use SGD solver. For Cityscapes, we resized
the training images to 512×1024 and while testing is done on the original images without resizing. On
the other hand, for Mapillary dataset, we take the image size as 1920 × 1080. For both the datasets, we
take the base learning rate as 0.01 and the poly learning rate policy is adopted with a power of 0.9. For
cityscapes, we train the network for 30K iterations and for mapillay, we train it for 90k iterations. For
both the datasets, we fix the momentum as 0.9, weight decay as 0.0001 and we take the batch size as 8.
We use Caffe framework for the implementation of ICNet. For fully connected CRF, we take the similar
settings as given in Deeplab [16]. We take the default values for w2(= 3) and σy(= 3). The values for
the parameters w1, σα and σβ are computed using cross-validation. For cross-validation, we use a small
subset of 100 images.

Figure 3.3 Performance of the proposed active learning methods over incremental selection of groups
on cityscapes data.
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Figure 3.4 Semantic segmentation results on Cityscapes data. Here, we show the 10% of annotated
pixels for different methods and their segmentation results. The first column is the original image and
its ground truth (GT). In row 1, from column 2-5, shows the selected 10% of pixels in different methods
for annotation. In row 2, from column 2-5, shows their corresponding segmentation results.

3.3.2 Results on Cityscapes dataset

3.3.2.1 Image Level Annotations

First, we demonstrate how the incremental selection of images/groups is effective. In this experi-
ment, we label all the pixels in the images using original ground truth (all the pixels in the images are
annotated). We only try to reduce the number of images for annotation. We start with the model trained
over 1175 images using the full ground truth of pixels. The results for group selection are given in
Table 3.1. The results are given under ”Baseline”. Here, for each group, the performance is evaluated
on the validation set. We also show the performance of the network over these incremental groups in
Figure 3.3. From the figure (Baseline), we can observe a steep increase in IoU for the initial groups of
images compared to the final groups. This is mainly due to the high uncertainty images present in the
initial groups compared to the final groups. This means the entropy-based selection allows us to identify
the most informative images.

3.3.2.2 Pixels/Region Level Annotations

In all the ”Pixels/Region Level Annotations” experiments, we only annotate 10% of the pixels in each
image obtained from the corresponding methods and study their performance for the given segmentation
task. For all other pixels, we take labels from the trained model.

Random Selection of Pixels The results for the random selection of pixel selection are given in Ta-
ble 3.1 under Random 10% GT. In this experiment, we randomly select 10% of pixels for annotation.
From the results, we can observe that this is not performing well compared to the baseline. Here, the
results under the baseline are obtained using full ground truth (annotating all the pixels). The drop in
the performance is high compared to the baseline. To get better performance, we need to select the
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most uncertain pixels for annotation. However, in the random selection, we are annotating both right
prediction pixels as well as wrong prediction pixels for the current network.

Figure 3.5 Semantic segmentation results on Mapillary data. Here, we show the segmentation results
over incremental selection of groups. The first column is the input image and its ground truth (GT). In
row 1, from column 2-4, shows the segmentation results over groups 1-3. In row 2, from columns 2-4,
shows the segmentation results over groups 4-6.

Pixel-level Entropy based Selection In this experiment, instead of selecting random 10% of pixels for
annotation in each image, we use the proposed pixel-level entropy for selecting the pixels for annotation.
The results are given under Entropy in Table 3.1. From the results, we can observe that with only 10% of
pixel annotations, the network is giving comparable results compared to the baseline. This suggests that
our pixel-level entropy based active learning methods are able to pick the more informative pixels (high
uncertain pixels). From the results, we can also observe that the pixel-level entropy-based selection is
outperforming the random selection of 10% of pixels for annotation. Using pixel-level entropy based
selection, we are able to achieve 88.9% of baseline performance.

Edge-Pixels Based Selection In this experiment, while computing the entropy for each pixel, we give
higher weightage to the edge pixels. The results are given under Entropy + Edge pixels in the Table 3.1.
From the results we can observe that it further improved the performance of pixel-level entropy based
selection. In our experiments, mostly the selected edge pixels are coming from the class boundaries.
Few segmentation results for edge-based selection are given in Figure 3.4. From the results, we can
observe that compared to the entropy-based segmentation results, the class boundaries in Entropy +
Edge method are improved. We can also observe that in Entropy+Edge selection, the most uncertain
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class boundaries are selected for annotation. Using Edge-Pixels based selection, we are able to achieve
89.4% of baseline performance.

Figure 3.6 Segmentation results using transfer learning on mapillary data. In No Additional labeling,
the segmentation result is obtained from the network with out any annotations. In using 10% labeling,
the segmentation result is obtained using our active learning method using 10% of pixel annotations.

Region based Selection In region-based selection, we conducted the experiments at the superpixel
(SP) level. Here, we select the most uncertain superpixels for annotation. The results are given under
SP (Superpixels) in Table 3.1. From the results, it can be observed that the uncertainty computed at the
superpixel level is performing well compared to the pixel level. In superpixels, it forces the neighboring
pixels which share similar information to get the same class label. Using superpixels, we are able to
achieve 91.8% of baseline accuracy. In the next experiment, we use CRF for improving the superpixel-
based selection. The results for CRF are given in Table 3.1. Here, we apply CRF at superpixel level.
The results are given under SP+CRF. From the results, we can clearly observe that it improved the
performance of SP based selection. Using our SP+CRF based selection, we are able to achieve 93.4% of
baseline performance.

Class specific based Selection In this experiment, we select the 10% of pixels for annotation from
each category. To evaluate its performance, we apply it over SP + CRF based method. The results
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Baseline SP+CRF
100% GT 10% GT 20% GT 30% GT 40% GT

65.3 61.0 (93.4%) 61.8 (94.6%) 62.4 (95.5%) 63.6 (97.4%)

Table 3.2 Performance of SP+CRF on cityscapes data over different percentage of pixel level annota-
tions. GT = ground truth.

Figure 3.7 Performance of SP+CRF on cityscapes data with respect to different percentage of pixel
annotations.

are given in Table 3.1 under Class-specific SP + CRF. From the results, we can observe that it further
improved the performance of SP + CRF based method and it outperformed all other methods. Using this
method, we are able to achieve 93.8% of baseline performance.

We also compared the performance of all the methods in Figure 3.3. From the Figure, we can observe
that Class-specific SP+CRF based selection outperforms all other methods. We have also compared the
performance of our active learning method over different percentages of pixel level annotations in Ta-
ble 3.2. A graphical representation in Figure 3.7 of the performance of the proposed SP+CRF method is
helpful in understanding the advantage of this method. Here, we take SP+CRF method for demonstrating
the results. From the Table, we can observe that the segmentation performance is improving with the
addition of more annotations. Using 40% of annotations, we are able to achieve 97.4% of baseline per-
formance. This also gives us the trade-off between the performance and annotation cost. Here, we can
choose, is it better to have 93.4% of peak performance with 10% of annotation cost or 97.4% of peak
performance with 40% of annotation cost. We also show the selected 10% of pixels for annotations in
different methods in Figure 3.4. From the Figure, we can observe that the regions where both Entropy
and Entropy+ Edge methods are given wrong labels are selected for annotation in SP+CRF. We can also
observe that the segmentation results are improved in SP+CRF.
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Figure 3.8 Performance of the proposed active learning methods over incremental selection of groups
on mapillary data.

# Training images Baseline Random SP + CRF
100% GT 10% GT

Cityscapes - 2975 25.2 25.2 25.2
3000 31.1 27.7 (89.0%) 28.7 (92.2%)
6000 35.2 28.3 (80.3%) 32.4 (92.0%)
9000 38.8 29.0 (74.7%) 35.1 (90.4%)
12000 40.3 29.8 (73.9%) 37.8 (93.7%)
15000 43.3 30.3 (69.9%) 39.4 (90.9%)
18000 45.1 30.6 (67.8%) 40.5 (89.8%)

Table 3.3 Results on Mapillary data. The results are given over incremental groups. The percentage
values in the bracket indicates the relation to the baseline.

3.3.3 Results on Mapillary Dataset

The results on transfer learning are demonstrated over the mapillary dataset. The results are given
in Table 3.3 under Baseline. Here, the trained model on cityscapes data (2975 images) is used for
propagating the labels to mapillary data. We also show the performance of the network over these
incremental groups in Figure 3.8. From the results, we can observe that the maximum improvement
in the accuracy is obtained in the initial groups. We also presented the segmentation results over these
groups in Figure 3.5. We can observe that the segmentation results are improving with the addition of
more groups.

The results over Mapillary data for SP+CRF are given in Table 3.3. On complete training data with
18000 images, we obtain 89.8% of baseline performance by querying only 10% of pixels for labeling.
It outperformed the random selection of 10% of pixels for annotation. In Figure 3.6, we show the
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segmentation results obtained using transfer learning. Here, we show the segmentation result obtained
from the Cityscapes model without any additional labeling (No additional labels) and the result obtained
using 10% of pixel annotations using the proposed method (Using 10% labeling).

Internal experiments showed us that using different cameras with different imaging sensor character-
istics (e.g. dynamic range, signal to noise ratio etc) for recording same dataset also leads to failure of the
current model even for the same classes. In this context, we refer to similar dataset captured with differ-
ent imaging sensors as different target domains. In this work, we use Cityscapes as source domain and
Mapilliary as target domain. Cityscapes dataset is obtained from a single camera source and Mapillary
consists of similar dataset captured using various imaging sensors such as mobile cameras, automotive
cameras etc. The predictions on Mapillary from Cityscapes trained model also proves that a different
camera plays a significant role in the performance of a model and how active learning is advantageous
to improve the performance of that model without heavy annotation load. So, in this work, we define
the domain as similar datasets captured using imaging sensors with varied characteristics.

Figure 3.9 Few examples of region selection for human annotation. The regions marked green are
labeled by watershed algorithm similar to [10] and the red regions are annotated by [46]

To further evaluate the proposed entropy-based uncertainty measure, we compare it with the uncer-
tainty measure given in [25]. This method uses Monte Carlo dropout to estimate the final predictions
and uncertainties. The results are given in Table 3.4. In terms of accuracy, the proposed entropy based
uncertainty measure is comparable with [25]. However, the proposed entropy-based method is 8 times
faster compared to [25]. In terms of class-wise IoU, the entropy-based method is performing well for
the person and vehicle classes (truck, bus, train, motorcycle, bicycle). On the other hand, the uncertainty
measure defined in [25] is performing well for the classes like traffic light, traffic sign, terrain, sky, and
rider. Class-wise IoUs are given in the supplementary material.

3.4 Annotation Strategies

For our experiments, our oracle has access to all groundtruth we withheld for the unlabeled data.
However, for newly collected data without annotations, we need a human annotator to label the pixels
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Baseline Entropy [25]
100% GT 10% GT

Accuracy (mIoU) 56.0 49.9 (89.1%) 50.0 (89.2%)
Computational Time - 0.09 Sec 0.7 Sec

Table 3.4 Comparison of the proposed entropy based uncertainty measure with the uncertainty measure
given in [25]. The computational time is given in seconds.

Entropy Entropy + Edge SP SP + CRF Class Specific SP+CRF
Computational Time (Sec) 0.09 0.09 1.41 2.48 3.62

Table 3.5 Comparison of all the methods in terms of computational time. The computational time is
given in seconds.

and superpixels selected by the active learning methods. We propose the following strategies depending
on the type of annotation required.

For annotation of regions by an oracle, we use a similar annotation tool to the one in [10]. The larger
regions are annotated through the watershed algorithm. For annotating smaller/narrower regions, we
selected the regions through a magnetic lasso tool proposed in [46]. Few examples for annotation are
given in Figure 3.9. The regions marked in green are suitable for annotation by [10] and the regions
marked in red are annotated by [46].

3.5 Additional Results

To show the pixel level uncertainties computed using the proposed entropy-based method, we plot
a heatmap for the entropy in Figure 3.10. From the Figure, we can observe that the entropy values are
higher at the class boundaries and at the edges.

We compare all the proposed active learning methods in terms of computational time in Table 3.5.
From the results, we can observe that ”Entropy” method is computationally faster compared to other
methods. In the other methods, computation of additional information like edges, superpixels and CRF

contribute to the extra computational time. Class specific SP+CRF is computationally slower compared
to the other methods. This is mainly due to the computational time involved in the CRF and the compu-
tations needed for constructing the feature space.

In all our active learning methods, we select only 10% of pixels for annotation. However, we do not
need to relabel all these 10% of pixels, i.e, the labels for few of these pixels obtained from the previous
model may be correct (assuming ground truth is present for verification). In Table 3.6, we show the
percentage of pixels needed relabeling in different methods. From the results, we can observe that the
percentage of relabeling pixels are higher in Class specific SP + CRF compared to the other methods.
This means, Class-specific SP + CRF method is picking the more wrong predicted pixels for relabeling.
This is the main reason for its superior performance compared to the other methods. We also show the
selected relabeling pixels for each method in Figure 3.11.
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Entropy Entropy + Edge SP SP + CRF Class specific SP + CRF
Accuracy 59% 66% 71% 77% 79%

Table 3.6 Comparison of percentage of pixels needed relabeling in the selected 10% of pixels for anno-
tation in different methods.
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Entropy 0.94 0.69 0.83 0.27 0.32 0.39 0.27 0.43 0.84 0.30 0.66 0.65 0.17 0.82 0.29 0.67 0.25 0.09 0.49
[9] 0.95 0.70 0.82 0.25 0.21 0.39 0.41 0.49 0.89 0.60 0.75 0.46 0.29 0.84 0.20 0.50 0.07 0.07 0.53

Table 3.7 Class-wise IoUs for the proposed entropy-based uncertainty measure and the uncertainty
measure given in [25].

We also analyzed the role of group size in the proposed active learning method in Figure 3.12. Here,
we compare the performance of the group size of 180 with the group size 300. From the results, we can
observe that higher group size is slightly performing well compared to the lower group size. However,
lower group size is slightly performing well compared to the higher group size in the initial groups.

In the comparative study, we compare the proposed entropy based uncertainty measure with uncer-
tainty measure defined in [9]. The class-wise IoU for this comparison are given in Table 3.7. We also
show the selected 10% of pixels for annotation in both the methods in Figure 3.13.

3.6 Summary

This chapter presents the first contribution of this thesis, reducing the data annotation constraint of
semantic segmentation tasks. We proposed several active learning strategies for which picks a small per-
centage of the most informative pixels or superpixels of an image for annotation. With such strategies
we can achieve near fully-supervised performance but still significantly reduce the amount of data anno-
tated. The qualitative and quantitative results were presented on datasets for road scene understanding,
cityscapes and mapillary.
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Figure 3.10 Entropy Heatmap. Output prediction is the segmentation output from the network. In the
heatmap, we can observe that entropy values are higher at the class boundaries and at the edges.

Figure 3.11 Selected relabeling pixels for all the methods.

34



Figure 3.12 Comparison of group sizes for active learning

Figure 3.13 Selected 10% of pixels for annotation obtained from Entropy and [9].
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Chapter 4

Knowledge Distillation for Semantic Segmentation

This chapter is motivated by the practical requirement of real-time semantic segmentation models
for autonomous driving scenarios. Model size and parameters heavily influence the performance of a
segmentation model, with the best performing models usually being complex and deeper. The training
time and space complexity for such models is also high and require a lot more computational power than
average. Often-times these best performing models are also very slow during inference. Usually, any
proposed compression of the segmentation network architectures for real-time inference suffers from a
significant loss in performance. In this work, we explore the possibility of obtaining better performance
for real-time models that learn from the already existing best performing models.

Self-driving cars are perfect examples of complex machine learning systems working together to
solve a task. These self-driving cars being stand-alone systems isolated from constant power and com-
putation grids are usually constrained by the onboard computation power, which means it prefers that
the model it runs take as little space as possible. At the same time, these models also need to run
real-time. For example, ENet [49] has very fewer parameters (0.37M) and runs real-time, but it suffers
in performance on any given dataset compared to state-of-the-art models like PSPNet [79]. The main
challenge here is to improve the performance on networks like ENet, while not changing its parameter
size or time complexity during inference.

4.1 Introduction

Deep neural networks are proven to perform well on computer vision tasks such as image classi-
fication, object detection, and semantic segmentation. In particular, for the task of semantic segmen-
tation, deeper network with complex architectures result in a robust segmentation. A recent work,
DeepLabv3 [15] proposes using atrous convolutions along with spatial pyramid pooling layers, achiev-
ing almost state-of-the-art performance on various segmentation datasets. However, this architecture
presents a challenge to deploy as a real-time segmentation system due to its higher size and inference
time. There were several attempts in the literature to build smaller networks which will reduce the
number of parameters and computational time during inference. These smaller networks usually suffer
from a significant decrease in the performance of the model. An ideal model would be one which is
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real-time and is better performing which leads to the question of whether we can somehow learn from
the state-of-the-art models. One such sub-domain that tackles this problem is model compression which
is discussed in the subsequent paragraph.

One of the earlier known methods of model compression was in Bucilua et.al., [8] where the pro-
posed method was to train a neural network which will mimic a large ensemble of networks. In this, they
obtained labels or unlabeled data through the output from ensembles and then trained their neural net-
work using that data. It was then adopted to deep learning models in Ba & Caurana [3]. Subsequently,
Hinton et.al., [28] introduced knowledge distillation framework, which is a student-teacher training ap-
proach to train a smaller neural network to learn from better performing network. During training, the
student network predicts both the true classification labels and also tries to mimic and predict the soft-
ened outputs of teacher network. One way to get the softened outputs is the introduce a temperature
parameter in the softmax prediction for classification. Higher the temperature, more softened are the
outputs and lesser is the disparity between prediction probabilities. Note that introducing the tempera-
ture parameter does not change the maximum or minimum value of prediction probabilities but merely
scales their distribution to be nearer. Later, Romero et.al., [51] introduced FitNets, which additionally
takes hints from the teacher network in intermediate layers along with the teacher-student prediction
loss. Chen et.al. [13], used this idea of hint learning and proposed a compressed framework to learn
object detection through knowledge distillation. We show the adaptation of knowledge distillation to
compressed semantic segmentation models and our contribution to this domain is as follows:

• We adapt the concept of knowledge distillation to semantic segmentation, with a focus to improve
the performance of fast and real-time segmentation models to be deployed for autonomous driving
situations.

• We propose to train the student network with the teacher output of ensemble networks and labeled
data, thereby eliminating the need for the presence of a teacher network during training. This
both reduces the overall network size and training time when compared to the training of the
conventional teacher-student method.

The proposed method shows significant improvement of the model performance on the real-time
segmentation models. The rest of the chapter is structured as follows. Section 4.2 presents in detail
our approach for the proposed method. In, section 4.3 we explain the experimental settings and present
our results to show the increased performance of student networks with our proposed method. A brief
discussion in section 4.4 summarizes the work that has been presented in this chapter.

4.2 Approach

Our approach has two kinds of networks: the first is an ensemble of segmentation teacher networks.
These teacher networks are chosen such that they provide atleast some contrasting information for each
class and such that the performance of their ensemble outperforms each individual networks. The second
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network is the student network which is a real-time segmentation network and optionally also has very
few parameters.

4.2.1 The Power of Ensembles

We choose 3 similar better performing teacher networks and ensemble them to get the final teacher
outputs. As we already available trained models for these networks, we obtain their softmax outputs,
p1(x), p2(x), p3(x) where x is the input image. We also have access to the class wise performance of
each model for a given dataset, cij where j a class in the dataset and i represents the teacher network. To
calculate the ensemble probabilities of all teacher networks, we average them according to the weight
of class-wise performance.

pTj =

∑k
j=1 c

i
jp
i∑k

j=1 c
i
j

(4.1)

In equation 4.1 k is the total number of classes and pTj is the softmax probability of the ensemble for
the jth class. We save the weighted softmax average and safely discard the teacher networks and their
corresponding trained models.

As proposed in [28], we soften the softmax probabilities for each teacher network. The temperatures
for each network are empirically decided to assure consistency of the softmax score across all the teacher
networks.

pi(zk) =
e

zk
Ti∑
e

zk
Ti

(4.2)

where p(zk) is the probability score of class k and Ti is temperature of teacher network i.

4.2.2 Training the student network

The student network is trained on the same input data as the teacher networks, white it is optimized
to mimic the output predictions of the teacher ensemble. A good choice of the student network for our
task is a network that has real-time inference and optionally, has a very low number of parameters.

The student network is, therefore, jointly trained with labeled input data and its corresponding teacher
softmax predictions. The loss of the student network for training with the labeled data is the commonly
used cross entropy loss

Lce = −
∑
i

yi log(p(xi)) (4.3)

Where y′i is the groundtruth and p(xi) is the softmax prediction.
To mimic the teacher performance for the same labeled dataset, we found the KL Diverence Loss to

be the most effective. The student network is also softened when comparing it to the teacher ensem-
ble during training. This temperature parameter is decided based on the experimentation to maintain
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Figure 4.1 Our proposed knowledge distillation method for semantic segmentation.

consistency between stand-alone student softmax probabilities and the teacher ensemble softmax prob-
abilities.

Lkld =
∑
i

ps log
ps
pt

(4.4)

Here ps is the student softmax probabilities, ps = softmax( zsT ) with zs being the final score output
of student network. pt is the softened softmax probability of the ensemble of network as described in
equations 4.1 and 4.2.

We jointly train the student network on labeled data and teacher outputs using the proposed knowl-
edge distillation loss.

Lkd = Lce + λLkld (4.5)

Here, λ is a hyper-parameter which decides the weightage of the KL Divergence loss. This has been
empirically set to be similar to the cross-entropy loss. This proposed method is shown in figure 4.1.

After training, the teacher ensemble can be discarded, and the inference is real-time on the stand-
alone network. This teacher-student trained model has improved performance due to the joint training
with the labeled data and the teacher supervision. We show the improved results in the next section and
also discuss the experimental settings.
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ERFNet 0.9857 0.9093 0.941 0.8515 0.8276 0.6533 0.6674 0.7644 0.9304 0.8383 0.9515 0.8203 0.684 0.952 0.9069 0.9213 0.9221 0.7523 0.7476 84.35%
DeepLab 0.9828 0.8862 0.9333 0.8068 0.8042 0.507 0.6312 0.7329 0.9223 0.8057 0.9388 0.8036 0.6966 0.941 0.8833 0.9162 0.9247 0.7655 0.7553 82.30%
ICNet 0.9824 0.8768 0.9229 0.7306 0.7033 0.4946 0.5266 0.656 0.9172 0.7785 0.947 0.764 0.583 0.9362 0.8434 0.8781 0.8985 0.6516 0.6773 77.7%
Ensemble 0.9889 0.926 0.9509 0.8907 0.8715 0.6782 0.715 0.8108 0.94 0.874 0.9556 0.8531 0.7565 0.959 0.9367 0.9425 0.9465 0.8205 0.7955 87.43%

Table 4.1 Class-wise performance of individual teacher networks and the teacher ensemble on
Cityscapes dataset

Class mIoU
ICNet 0.677
ERFNet 0.7234
DeepLab 0.693
Ensemble 0.7544

Table 4.2 Validation performance of individual teacher network and the teacher ensemble on Cityscapes
dataset

4.3 Experiments and Results

4.3.1 Dataset

As this work is focused knowledge distillation for real-time segmentation, we performed all experi-
ments on the Cityscapes [19] dataset for road scene segmentation in autonomous driving situations. It
has 5000 finely annotated images, divided into 2975 for training, 500 for validation and 1525 for test.
We use the training set for our teacher-student ensemble and evaluate the model on the validation set.
The dataset has presented 31 classes out of which 19 are trainable. All the images are at 1024x2048
resolution.

4.3.2 Teacher Ensemble

As explained in section 4.2.1, we choose three similar performing networks. These networks are
chosen such that they provide contrasting information in atleast 3-4 classes. Our networks are ICNet,
ERFNet and DeepLab. Table 4.1 shows the class-wise performance of all the networks on the Cityscapes
training set. The class-wise IoU of each network is used as the class-wise weights used in equation 4.1.
Table 4.2 shows the performance of the individual networks on the validation set of Cityscapes. It is to
be noted that class-wise and overall IOU of the teacher ensemble outperform the individual networks.

The teacher ensemble present in Table 4.1 obtained is after softened softmax weighted average of
the individual networks. Softened softmax of each individual network does not change the performance
(IOU) of the network; it only redistributes the softmax values to be closer in distribution. The tempera-
tures of ERFNet, ICNet and DeepLab are set to be 3, 4, 5 respectively based on the empirical evaluation.
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4.3.3 Training the student network

We have trained and evaluated our proposed method on 3 competing networks on Cityscapes dataset.
For all the experiments, the best value for the hyper-parameter λ, the weightage of KL Divergence loss
as mentioned in equation 4.5 is empirically determined to be 100.

ENet: We first train ENet stand-alone without the teacher loss to get the baseline performance. We
use the experiment parameters mentioned in the ENet paper. We train with a batch size 2, the input
resolution of the image is 512 × 1024. It is trained for 300 epochs on the full training set of 2975

images.

To train the teacher-student network, we empirically set the student temperature to Ts = 5. We train
the network with the same training parameters as the stand-alone network training details mentioned
above. The improvement in the performance is mentioned in Table 4.3

ICNet: ICNet is trained standalone without teacher loss whose performance will give the baseline. The
paper is trained with a batch size of 16 which was not possible use due to computational constraints, so
we set the batch size to 2. Rest of the experiment parameters are the same as given in the paper.

The temperature set for teacher-student training is the same we set in the teacher ensemble, Ts = 4.
The student is trained with the parameters mentioned in the above paragraph. We found a significant
improvement in the performance of the network and is reported in Table 4.3

ERFNet: The main reason to do this experiment was to check if the teacher ensemble also improves
the best performing individual network of the ensemble. The training parameters for the experiment are
the same as reported in the ERFNet paper. (mention parameters).

We then jointly train this network with Cityscapes data and the teacher ensemble softmax probabili-
ties, with student temperature set to Ts = 3 for the teacher loss. We found no significant improvement
in the results over the standalone network and reported the same in Table 4.3.

Table 4.5 shows the comparison of the inference time of the student network during validation when
trained stand-alone and when trained along with teacher supervision. It is necessary to note that, the
inference time of the network does not increase, as we do not use the teacher supervision once the model
is trained.

We found that ICNet, ENet performance improves significantly. This is due to the competing results
of these student networks train on KL Divergence loss alone. These results are in Table 4.4. We also
observed that the performance of ERFNet remains the same despite the additional supervision from the
teacher ensemble. Also, if ERFNet is trained only with teacher supervision as in table 4.4, the network
does not perform as better as stand-alone cross entropy loss. We theorize that this is due to saturation
of the Cityscapes dataset performance for ERFNet. One way to overcome the performance curse of this
network is to use a larger dataset for the experiments.
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Student Network IOU teacher-student IOU
ENet 52.3 55.8
ICNet 54.7 57.8
ERFNet 72.34 72.2

Table 4.3 Results of proposed knowledge distillation method on Cityscapes dataset for different student
networks. (middle) is the IOU obtained when the network is trained with the regular cross-entropy loss.
(right) is the improvement obtained after the teacher-student training method.

Student Network IOU KL Divergence IOU
ENet 52.3 52.0
ICNet 54.7 54.4
ERFNet 72.34 69.3

Table 4.4 Comparison of performance of training a student network with (middle) the regular cross
entropy loss and (right) with only teacher supervision.

4.4 Summary

This chapter presents the second contribution of this thesis, improving the model performance of
real-time networks for semantic segmentation tasks. We presented the work on knowledge distillation
for semantic segmentation as a means of model compression for real-time deployment. This method
definitely improves the performance on smaller and low performing network architectures thereby being
readily deployable without an increase in space or computational cost. For moderate to high performing
networks on the given cityscapes dataset, the proposed solution is to use larger a dataset to improve the
model performance.

Network Inference Time (ms) Inference Time (ms)
(after teacher-student training)

ENet 145 145
ICNet 170 170
ERFNet 310 310

Table 4.5 Inference time of all the student networks. (middle) time in ms after stand-alone cross entropy
training, (right) time in ms after teacher-student training. These are the inference times on a single
Nvidia GeForce GTX 1080Ti
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Chapter 5

Conclusions

This chapter summarizes the thesis and along with it, presents the conclusions that were derived. A
brief discussion on the future direction of this work is also presented.

5.1 Summary

This thesis starts with this discussion of the theory of semantic segmentation and how and why it is
highly relevant in the current time of heavily invested research in autonomous vehicles. Chapter 2 was
dedicated to explaining the concepts of semantic segmentation, active learning and knowledge distilla-
tion. The topic of segmentation was discussed, starting with the older traditional methods formulated
to address the problem and we continued to discuss the latest deep learning methods which hold the
current state-of-the-art in solving this problem. The currently available datasets for solving semantic
segmentation were presented as a brief section. We also detailed how annotations for such datasets
are obtained by detailing the standard polygon annotation tool. We explained how time-consuming
the fine annotations for these datasets are and theorized that we needed to reduce the annotation load
without compromising on the performance. The evaluation metric, intersection over union, IoU, was
presented to help understand how the results of a segmentation method are evaluated. The concept of
active learning was explained to show that it was an important strategy to reduce the annotation load
while achieving higher performance. The relevant active learning methods used subsequently in the
thesis were also introduced. A study of existing literature for active learning and semantic segmenta-
tion were presented. We also introduced the concept of knowledge distillation, a method to distill the
knowledge from a larger and better performing network to a smaller and poorly performing network.
We explained how the knowledge can be distilled using the better performing network as a supervision
for the poorly performing network. Previous applications of this method showed that the performance of
the smaller network improves with the supervision from the larger network when compared to training
the smaller network alone. We also briefly discussed the applications of this concept in various other
machine learning problems.

Chapter 3 discusses the proposed active learning methods to reduce the annotation load for semantic
segmentation, focused on the task of road scene segmentation. The proposed methods were evaluated
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on relevant road scene understanding datasets, Cityscapes, and Mapillary. The proposed active learning
methods outperform the random sampling of data points in terms of performance. We have successfully
adapted the model trained on one dataset, Cityscapes to the other dataset, Mapillary with only very little
labelling while the performance of the method is almost close to that of the fully supervised IoU.

Chapter 4 is a work in the direction to improve the performance of fast segmentation models for
autonomous driving situations. Fast segmentation models are optimized to perform inference at real-
time, which often-times is at the cost of the accuracy of the mode. A study of knowledge distillation
shows that the performance of larger models, which are very slow, can be distilled to the faster models,
which will improve the segmentation performance. The problem was formally theorized for semantic
segmentation and the results were presented on the Cityscapes dataset.

5.2 Conclusion

In Chapter 3, active learning was adapted for semantic segmentation. As the annotation cost for
datasets for segmentation is very high, active learning is a suitable solution to reduce the annotation
cost for segmentation. We proposed pixel-level, edge + pixel-level and superpixel level strategies for
selecting the data-points for annotation in an image. All of these methods use entropy as a metric to pick
the most uncertain pixels or superpixels to be sent to an oracle or a human annotator. The results were
presented for autonomous driving datasets such as cityscapes and mapillary and showed its application
on ICNet network. For cityscapes, we considered a subset of unlabeled images. An incremental batch-
wise training approach was used for all the proposed strategies. In each proposed approach, we pick only
10% of pixels or superpixels and send them to an oracle for annotation. The rest of the pixel predictions
are considered correct and are used as groundtruth for subsequent batch training. With the pixel-level
approach, we achieved 86.5% of the performance of the fully-supervised method. Since edge-pixels
usually provide more information, in the edge + pixel approach, we saw a slight improvement in results
to 88.9% of fully supervised IOU. When we considered superpixels instead of pixels, this retained
the annotation cost but also increased performance to 91.5% of fully supervised performance. A CRF

post-processing after superpixel annotation improved the performance to 93.4% of a fully supervised
counterpart. We also introduced a class-wise superpixel and CRF and it showed a 0.4% improvement
over the previous method. We used a model trained on cityscapes dataset, and transferred the model to
the mapillary dataset. With only 10% annotation of the whole mapillary dataset through the proposed
superpixel and CRF approach, we observed that the performance of such model is almost at 90% of
the fully-supervised model. All these experiments successfully showed that active learning is a useful
strategy to reduce annotation cost and load for new data in semantic segmentation.

Chapter 4 presents the adaptation of knowledge distillation for semantic segmentation. The train-
ing dataset for all segmentation networks is the cityscapes dataset for road scene understanding. We
proposed an ensemble of teacher networks, ICNet, ERFNet and deeplab. The ensemble is weighted ac-
cording to its performance on the individual training data. The softmax output of the ensemble is saved
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and the networks were not used in training of student network. We had empirically set the temperature
values of softmax in the teacher networks for the ensemble so that they were in the same range. To train
a student network, we used the teacher ensemble output as supervision with a KL-Divergence loss. We
also trained the student network with the original groundtruth and used a cross-entropy loss. This joint
training has been tested on three fast and real-time segmentation networks ICNet and ENet and also on
ERFNet. We observed that the performance of ICNet increased by almost 4% compared to training the
network only with groundtruth. On ENet, the performance improved by 3.5%. However, on ERFNet we
saw no improvement in performance even after the student training with teacher supervision. This is due
to the fact that this network is saturated for cityscapes dataset and using a larger dataset will improve
the performance. The method proved to be effective in significant improvement in the performance of
smaller and low performing networks.

The promising results of reduced data annotation load from chapter 3 and improved model perfor-
mance through additional supervision in chapter 4 shows that a fully-supervised image-groundtruth pair
type of training is not just a single available solution for better segmentation. It is necessary to look
for smarter ways to obtain segmentation for road scene understanding. We hope that this thesis would
help the readers understanding the importance of semantic segmentation and help them to push towards
thinking beyond fully-supervised methods, thus driving research in that direction.

5.3 Future Directions

During the work for this thesis and discussions with other researchers, we have identified the fu-
ture directions on improving these methods and other directions to solve problems related to semantic
segmentation.

Better annotation methods:

Improving the way to annotate the uncertain regions. Currently proposed superpixel annotation is
computationally expensive. A further study in annotation methods, in general, can give an idea about
improving the annotation strategies. One such strategy briefly explored in during the thesis work was
using strokes as annotation for the given regions.

Video supervision for active learning:

Since the temporal information from the video is a valuable source of information of how the differ-
ent classes of the image interact, video supervision to predict intermediate frame annotation is a good
direction for research.
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Better dataset for knowledge distillation:

One of the drawbacks of the knowledge distillation methods is that it works well only on already low
performing architectures. To adapt it to moderately performing segmentation architectures, a good idea
is to use a bigger dataset.
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