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Problem Statement and Contributions

We investigate the tomographic reconstruction under 2 scenarios

- Noisy Data case.
- Limited Data case.

and consider the following questions.

◦ In linear Radon transform, does reconstruction lattice play a role in
quality of reconstructed image?

◦ How to reconstruct an image under limited view circular Radon
Transform: the Circular arc Radon transform?

◦ How to remove the artifacts which arise in the Circular arc Radon
transform due to the limited view?
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Reconstruction onto Hexagonal Lattices.

In linear Radon transform, does reconstruction lattice play a role in quality of reconstructed image?
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Positron Emission Tomography(PET)

→ Positron Emission Tomography(PET) is an
invasive, nuclear imaging technique involves
injecting the patient with a radioactive
material(tracer)

→ PET imaging allows collecting metabolic
information about different tissues.

→ Due to physics of imaging process, PET
scans are very noisy.

Figure: Forward
Projection.
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PET Image Reconstruction

PET Images are reconstructed from noisy sinogram data by essentially
inverting the forward emission process.

An approximate inversion is achieved by high pass filtered back
projection.
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Handling Noisy Data

More sophisticated methods, like algebraic
inversion1, Statistical inversion2, etc. have also
been proposed

Other methods, follow a two step process of
reconstruction followed by denoising3.

Reconstruction onto a different lattice has
received very little attention.

Reconstructed
Image

1

1Herman,’80, 2Fessler, ’00 3 Valiollahzadeh, ’13
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Our Pipeline

We propose a 2 step reconstruction process onto Hexagonal lattice:

→ Step 1: Noisy Reconstruction using Filtered Back Projection.

→ Step 2: Denoising using a sparse dictionary learned for the noisy
image.
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Tiling of Euclidean Plane

Figure: Square Tiling of Euclidean
Plane

Figure: Hexagonal Tiling of
Euclidean Plane

3 Packing density.

3 Larger, symmetric
neighbourhood

7 Irrational Coordinates
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Addressing Hexagonal Lattices

→ Use base 7 indices

→ Start numbering from center
and move out spirally.

Figure: Addressing Hexagonal
Lattice

2

2
L Middleton and J Sivaswamy, 2006.
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Hexagonal Patch and vectorization

Figure: Hexagonal Patch of order 2
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Our Pipeline

We propose a 2 step reconstruction process onto Hexagonal lattice:

→ Step 1: Noisy Reconstruction using Filtered Back Projection.

→ Step 2: Denoising using a sparse dictionary learned for the noisy
image.
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Filtered Back-Projection (FBP)

7 Image reconstruction (especially in nuclear modalities) is very noisy.

3 Back-projection (and also other reconstruction methods) allows a
choice of reconstruction lattice.
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Dictionary based denoising

Figure: Sample Dictionary atoms

→ Learn a dictionary of patches
of size 49 (a level 2 patch).

→ Use the learned dictionary
for Denoising.

→ Dictionary is learned by
solving the following
optimization problem.

min
D∈C,α∈Rk×n

1

2
‖ X−Dα ‖2

F +λ ‖ α ‖1,1

C = {D ∈ Rm×ks.t∀j = 1, ...k , ||dT
j ||2 ≤ 1}

3

3M Elad and M Aharon, 2006
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Qualitative Results

Square lattice

Noisy Image

Hexagonal lattice
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Quantitative Results

Figure: PSNR Comparison

Figure: Line Profile
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Summary & Future Work

3 We Proposed that the change of lattice can improve the
reconstruction quality of PET images.

3 The change in lattice improves both the quality and fidelity of the
final denoised image.

3 Include the noise model in the denoising step.

3 Provide an analytical explanation for the improvement in
reconstruction.
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Reconstruction In Limited View Scenario

How to reconstruct an image under limited view circular Radon Transform: the Circular arc Radon transform?
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Imaging setup

Type: Photoacoustic type sensors
where source of excitement is EM
waves and measurement is acoustic
waves.

Geometry: The sensors are assumed
to be along a circle at points Pφ.

Sensor Structure: Each sensor is
assumed to have a limited conical
view equal to α

Object

x axis

y axis

O

φ

α

Pφ

C(ρ, φ)

Figure: Measurement Setup.

Tabish (IIIT-H) July 1, 2016 20 / 39



Imaging setup

Type: Photoacoustic type sensors
where source of excitement is EM
waves and measurement is acoustic
waves.

Geometry: The sensors are assumed
to be along a circle at points Pφ.

Sensor Structure: Each sensor is
assumed to have a limited conical
view equal to α

Object

x axis

y axis

O

φ

α

Pφ

C(ρ, φ)

Figure: Measurement Setup.

Tabish (IIIT-H) July 1, 2016 20 / 39



Imaging setup

Type: Photoacoustic type sensors
where source of excitement is EM
waves and measurement is acoustic
waves.

Geometry: The sensors are assumed
to be along a circle at points Pφ.

Sensor Structure: Each sensor is
assumed to have a limited conical
view equal to α

Object

x axis

y axis

O

φ

α

Pφ

C(ρ, φ)

Figure: Measurement Setup.

Tabish (IIIT-H) July 1, 2016 20 / 39



Imaging setup

Type: Photoacoustic type sensors
where source of excitement is EM
waves and measurement is acoustic
waves.

Geometry: The sensors are assumed
to be along a circle at points Pφ.

Sensor Structure: Each sensor is
assumed to have a limited conical
view equal to α

Object

x axis

y axis

O

φθ

ρ α

R
r

Pφ

C(ρ, φ)

Figure: Measurement Setup.

Tabish (IIIT-H) July 1, 2016 20 / 39



Mathematial Model

We define Circular arc Radon(CAR)
Transform gα of a function f as follows

gα(ρ, φ)

︸ ︷︷ ︸
Measured Data

=

∫
Aα(ρ,φ)

Object︷ ︸︸ ︷

f (r , θ) ds (1)

where is α is the view angle and s is the
arc length measure.

Object

x axis

y axis

O

φθ

ρ α

R
r

Pφ

C(ρ, φ)

Figure: Measurement Setup.
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CAR Transform: Back projection based inversion

An approximate inversion of the transform may be done using an algorithm
based on Backprojection, such that

(a) Original
Phantom

(b) α = 5 (c) α = 17 (d) α = 21

Examples of image reconstructions using a näive Backprojection Algorithm
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CAR Transform: Back projection based inversion

(a) Original
Phantom

(b) α = 5 (c) α = 17 (d) α = 21

Examples of image reconstructions using a näive Backprojection Algorithm

The BP based algotithm is an approximate inversion and leads to lot of artifacts as well as
blurring.

Due the form of transform, it is non-trivial to derive the exact form of the filter.

To improve the quality of reconstruction, we adopt a Fourier series based solution.
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CAR Transform: Fourier Series based analysis

Since both f , g are 2π periodic in angular variable, we may expand them
into their Fourier series such that,

then,
∞∑

n=−∞
gαn (ρ) e inφ =

∞∑
n=−∞

∫
Aα(ρ,φ)

fn(r)e inθdθ.
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CAR Transform: Fourier Series based analysis

On Simplifying and equating the Fourier coefficients, the equation reduces
to

gαn (ρ) =

ρ∫
R−
√

R2+ρ2−2ρR cosα

Kn(ρ, u)√
ρ− u

Fn(u)du

where
Fn(u) = fn(R − u)

and

Kn(ρ, u) =
2ρ(R − u)Tn

[
(R−u)2+R2−ρ2

2R(R−u)

]
√

(u + ρ)(2R + ρ− u)(2R − ρ− u)
. (2)

where, Tn(x) = cos(n cos−1(x))
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CAR Transform: Integral equation

gαn (ρ) =

ρ∫
R−
√

R2+ρ2−2ρR cosα

Singural Kernel︷ ︸︸ ︷

Kn(ρ, u)√
ρ− u

Fn(u)du (3)

Functions

The equation is a non-standard Volterra integral equation of first kind
with a weakly singular kernel.

/ The exact (closed form) solution of such an equation is not known.

, A direct numerical solution of the equation does not require closed
form solution.
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Discrete CAR Transform

gαn (ρk) =
k∑

q=1

ρq∫
ρq−1

Fn(u)Kn(ρ, u)√
ρ− u

du.

where

bkq =


4
3
{(k − q + 1)

3
2 + 4

3
(k − q)

3
2 + 2(k − q)

1
2 q = l

4
3

(
(k − q + 1)

3
2 − 2(k − q)

3
2 + (k − q − 1)

3
2

)
q = l + 1, ...k − 1.

4
3

q = k.

and l = max
(

0,
⌊
R −

√
R2 + ρ2

k − 2ρkR cosα
⌋)

where bxc is the greatest integer less than

equal to x .
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Discrete CAR Transform

gn(ρk ) =
√
h


k∑

q=l

bkqKn(ρk , ρq)Fn(ρq)


The previous equation can be written in the matrix from as

gαn = BnFn (4)

Matrix Bn lower triangular matrix which is a piecewise linear, discrete
approximation of the integral in Equation (3).

Diagonal entries of Bn, bii = 4
3

√
h 6= 0, hence the matrix is invertible.
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Numerical inversion of CAR Transform.

gαn = BnFn

, Matrix Bn lower triangular matrix which is a piecewise linear,
discrete approximation of the integral in Equation (3).

, Diagonal entries of Bn, bii = 4
3

√
h 6= 0, hence the matrix is

invertible.

/ The matrix is Bn has a high condition number (O(1015)), hence
direct inversion is unstable.
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Numerical inversion of CAR Transform.

gαn = BnFn

, Matrix Bn lower triangular matrix which is a piecewise linear,
discrete approximation of the integral in Equation (3).

, Diagonal entries of Bn, bii = 4
3

√
h 6= 0, hence the matrix is

invertible.

/ The matrix is Bn has a high condition number (O(1015)), hence
direct inversion is unstable.

We use a Truncated SVD based r -rank inverse (r < M) such that,

Fn ≈ B−1
n,r gαn
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Experiments and Results: Effect of Rank

Full rank inversion is
expected to be unstable.

If the rank r is set to be too
low reconstructed image is
expected to have ringing
artifacts.

original phantom (f ) used in
experiments.
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Experiments and Results: Choosing Rank

original phantom (f ) used in
experiments.
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(a) r = n/3 (b) r = n/2

(c) r = 9n/10 (d) r = n

Effect of rank r of matrix Bn,r on the reconstruction

quality. n = 300

Plot of Mean Square Error as a
function of rank r .
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(a) r = n/3 (b) r = n/2

(c) r = 9n/10 (d) r = n

Effect of rank r of matrix Bn,r on the reconstruction

quality. n = 300

original phantom (f ) used in experiments where region to

be zoomed is shown in red.
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Experiments and Results: Choosing Rank
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Based on our experiments,
as a rule of thumb, dropping
highest 10% of singular val-
ues gives a fairly stable re-
construction.



Reconstruction In Limited View Scenario

How to remove the artifacts which arise in the Circular arc Radon transform due to the limited view?
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Reconstruction of Singularities under Radon Transforms.

Figure: Image with visualization of

projection value along direction shown.
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Let C be the set of curves,
along which we measure pro-
jections. Then for an edge to
be visible there must be at
least one element in the in-
terior of set C, tangential to
the edge



Effect of limited view

Due to limited view not all edges are visible,
in the sense of meeting tangency criterion
w.r.t set C.

The end points of the arc lie inside the object,
which leads to curves C having discontinuities
at end points.

The presence of these sharp discontinuities in
data set C and limited view will lead to streak
and circular artifacts.

Object

x axis

y axis

Figure: A sharp circular artifact is

observed due to discontinuity in angular,

as well as radial direction
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Reducing artifacts in reconstructed images

To reduce the artifacts in the reconstructed images we smooth out
the discontinuities of the elements of C

This is achieved by gracefully decaying arcs to zero at the edges.

Algorithmically, this achieved by weighing rows of Bn by a factor of

the form e
(i−h)2

σ2 ; visualized below.

Visualization of structure of unmodified
original matrix Bn.

Visualization of structure of modified
matrix Bn for artifact suppression.
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Experiments and Results: Artifact Reduction.

(a) α = 21 (b) α = 31 (c) α = 46 (d) α = 76

(e) α = 21 (f) α = 31 (g) α = 46 (h) α = 76

Reconstructed images corresponding to different α before (row 1), and after artifact suppression
(row 2).

Tabish (IIIT-H) July 1, 2016 35 / 39



Experiments and Results: Artifact Reduction.

(a) α = 21 (b) α = 31 (c) α = 46 (d) α = 76

(e) α = 21 (f) α = 31 (g) α = 46 (h) α = 76

Reconstructed images corresponding to different α before (row 1), and after artifact suppression
(row 2).

Tabish (IIIT-H) July 1, 2016 35 / 39



Experiments and Results: Artifact Reduction

Object

α

ρ

R
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Pφ

x axis

y axis

Figure: Setup with support outside the acquisition circle
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Experiments and Results: Artifact Reduction

Figure: Phantom with support outside the acquisition circle.
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Experiments and Results: Artifact Reduction

(a) α = 21 (b) α = 31 (c) α = 46 (d) α = 76

(e) α = 21 (f) α = 31 (g) α = 46 (h) α = 76

Figure: Reconstructed images corresponding to different α before (row 1), and after artifact
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Summary & Future Work.

3 We Proposed a method of numerical inversion of circular arc Radon
transform, a limited view generalization of circular Radon transform.

3 We also proposed a strategy to reduce the artifacts which arise in the
image due to limited view.

3 Provide a rigorous mathematical justification of the artifacts.

3 Derive a closed form solution of the Volterra integral equation arising
in the transform.
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