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Problem Statement and Contributions

o In linear Radon transform, does reconstruction lattice play a role in
quality of reconstructed image?

o How to reconstruct an image under limited view circular Radon
Transform: the Circular arc Radon transform?

o How to remove the artifacts which arise in the Circular arc Radon
transform due to the limited view?
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Reconstruction onto Hexagonal Lattices.

In linear Radon transform, does reconstruction lattice play a role in quality of reconstructed image?
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Positron Emission Tomography(PET)

— Positron Emission Tomography(PET) is an
invasive, nuclear imaging technique involves
injecting the patient with a radioactive
material(tracer)
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PET Image Reconstruction

@ PET Images are reconstructed from noisy sinogram data by essentially
inverting the forward emission process.
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Handling Noisy Data
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Handling Noisy Data

@ More sophisticated methods, like algebraic
inversion!, Statistical inversion?, etc. have also
been proposed

@ Other methods, follow a two step process of
reconstruction followed by denoising>.

@ Reconstruction onto a different lattice has
received very little attention.

Reconstructed
Image

'Herman,’80, 2Fessler, '00 3 Valiollahzadeh, '13
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Our Pipeline

We propose a 2 step reconstruction process onto Hexagonal lattice:
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Our Pipeline

We propose a 2 step reconstruction process onto Hexagonal lattice:
— Step 1: Noisy Reconstruction using Filtered Back Projection.

— Step 2: Denoising using a sparse dictionary learned for the noisy
image.

| Conventional Square Lattice

o

<
<
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Object Sinogram Ramp Filter . Reconstructed Image|
Forward Projection
Data Acquisition model Input Data -
) Output

Proposed Lattica

Back Projection

Denoising

Reconstuction
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Tiling of Euclidean Plane

Figure: Square Tiling of Euclidean
Plane
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Tiling of Euclidean Plane

Figure: Square Tiling of Euclidean Figure: Hexagonal Tiling of

Plane Euclidean Plane

v Packing density.

v Larger, symmetric
neighbourhood
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Tiling of Euclidean Plane

Figure: Square Tiling of Euclidean Figure: Hexagonal Tiling of

Plane Euclidean Plane

v Packing density.

v Larger, Symmetric X Irrational Coordinates

neighbourhood
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Addressing Hexagonal Lattices

Figure: Addressing Hexagonal
Lattice

2L Middleton and J Sivaswamy, 2006.
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Hexagonal Patch and vectorization
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Figure: Hexagonal Patch of order 2
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Our Pipeline

We propose a 2 step reconstruction process onto Hexagonal lattice:
— Step 1: Noisy Reconstruction using Filtered Back Projection.

— Step 2: Denoising using a sparse dictionary learned for the noisy
image.
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Filtered Back-Projection (FBP)

Filtered Back Projection

Back
Projection

Ramp Filter

vavavavavava
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Filtered Back-Projection (FBP)

Filtered Back Projection

Back
Projection

Ramp Filter

‘‘‘‘‘‘‘‘‘

X Image reconstruction (especially in nuclear modalities) is very noisy.

v Back-projection (and also other reconstruction methods) allows a
choice of reconstruction lattice.
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Our Pipeline

We propose a 2 step reconstruction process onto Hexagonal lattice:

v/ Step 1: Noisy Reconstruction using Filtered Back Projection.

— Step 2: Denoising using a sparse dictionary learned for the noisy

image.

| Conventional Square Lattice

Back Projection
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Output
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Dictionary based denoising

— Learn a dictionary of patches
of size 49 (a level 2 patch).
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1
mn = || X=Dal%+\| «
e n 2 I I3 [

1,1

C={D e R™¥s.t¥j = 1,..k,||d] || < 1}

3M Elad and M Aharon, 2006
Tabish (I1IT-H) July 1, 2016 14 / 39



Dictionary based denoising

— Learn a dictionary of patches
of size 49 (a level 2 patch).

— Use the learned dictionary
for Denoising.

— Dictionary is learned by
solving the following
optimization problem.

Figure: Sample Dictionary atoms
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Qualitative Results

Noisy Image
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Quantitative Results

© PSNR{dB} of denoised inags u/s noise lsuel(std, dswiation) added
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Summary & Future Work

v/ We Proposed that the change of lattice can improve the
reconstruction quality of PET images.
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v/ We Proposed that the change of lattice can improve the
reconstruction quality of PET images.

v/ The change in lattice improves both the quality and fidelity of the
final denoised image.
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Summary & Future Work

v Include the noise model in the denoising step.

v/ Provide an analytical explanation for the improvement in
reconstruction.
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Reconstruction In Limited View Scenario

How to reconstruct an image under limited view circular Radon Transform: the Circular arc Radon transform?
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Imaging setup

@ Type: Photoacoustic type sensors L 1
where source of excitement is EM
waves and measurement is acoustic °
waves. \‘
x“ o T s
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Figure: Measurement Setup.
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Mathematial Model

We define Circular arc Radon(CAR)
Transform g® of a function f as follows
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CAR Transform: Back projection based inversion

An approximate inversion of the transform may be done using an algorithm
based on Backprojection, such that
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CAR Transform: Back projection based inversion

Orlglnal
Phantom

Examples of image reconstructions using a naive Backprojection Algorithm

@ The BP based algotithm is an approximate inversion and leads to lot of artifacts as well as
blurring.

@ Due the form of transform, it is non-trivial to derive the exact form of the filter.

@ To improve the quality of reconstruction, we adopt a Fourier series based solution.
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CAR Transform: Fourier Series based analysis

g%(p,¢) = / f(r,0)ds
Aa(Pv¢)

Since both f, g are 2m periodic in angular variable, we may expand them
into their Fourier series such that,
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CAR Transform: Fourier Series based analysis

g%(p,¢) = / f(r,0)ds
Aa(Pv¢)

Since both f, g are 2m periodic in angular variable, we may expand them
into their Fourier series such that,
then,

o0 e¢]

> g =3 [ flneras,

n=—00 n=—oo

Aa(P,(z))
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CAR Transform: Fourier Series based analysis

On Simplifying and equating the Fourier coefficients, the equation reduces
to

0= [ Zerww

R—+/R?+p2—2pR cos o
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CAR Transform: Fourier Series based analysis

On Simplifying and equating the Fourier coefficients, the equation reduces

to p
a Knlp,u)
g3(0) = /
n(p) N Fp(u)du
R—+/R?+p2—2pR cos o
where
Fn(u) = (R — u)
and

N2 p2 2
20(R—u)T, [%
VWw+p)@R+p—u)2R—p—u)

where, T,(x) = cos(ncos™!(x))

Kn(p, u) =
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CAR Transform: Integral equation

g - e Rl O
R-\/RET2pReosa

@ The equation is a non-standard Volterra integral equation of first kind
with a weakly singular kernel.
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CAR Transform: Integral equation

i Singural Kernel
o)
n\p, u
8n(p) = \ / % Fa(u)du (3)
R—+/R2+p2—2pRcos

@ The equation is a non-standard Volterra integral equation of first kind
with a weakly singular kernel.

® The exact (closed form) solution of such an equation is not known.

© A direct numerical solution of the equation does not require closed
form solution.
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Discrete CAR Transform

P

Kn(p, u
g’;\ (p) / G )F”(u)(lu.
. p—u

R—1\/R2+p2—2pR cos «

k Pq

g =Y [ g,

qzlﬂq—l
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Discrete CAR Transform

k Pq

g5 (k) = Z / \/7(5’“)@.

qfl
Approximating the integrand as a linear function over each interval [pg_1, pg], and integrating

we get

gn(pk Z bkq pk: pq) n(pq)
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Discrete CAR Transform

Kk Pa
Pk):Z / Mdu-

Approximating the integrand as a linear function over each interval [pg_1, pg], and integrating

we get
gn(pk Z bkq pkapq) n(pq)
where
Hk—q+ 1) +5(k—a)i +2k—q)7  q=I
big=4%((k—a+1)f —2k—q)f +(k—a-1)F) g=/+1..k—1
4
3 q=k.

and / = max (0, [R - \/R2 + pf( — 2pkR cos aJ) where | x| is the greatest integer less than
equal to x.
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Discrete CAR Transform

k
gn(pk) = Vh {Z brgKn(pk, pq)Fn(/)q)}

q=I/

The previous equation can be written in the matrix from as

g, = BnFy (4)
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Discrete CAR Transform

gn(pr) = {Z bigKn(pks pg) Fnlpg )}

The previous equation can be written in the matrix from as

where

Tabish (IIT-H)

g, = BnFy (4)

g5 (po) Fa(po)

g% (pm1) Falpm—1)

July 1, 2016 27 / 39



Discrete CAR Transform

gn /)k = {Z bkq /)k I)q n(/’ )}
The previous equation can be written in the matrix from as
n = BnFn (4)

where
g5 (po) Fn(po)

g% (pm1) Falpm—1)

e Matrix B, lower triangular matrix which is a piecewise linear, discrete
approximation of the integral in Equation (3).
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Discrete CAR Transform

The previous equation can be written in the matrix from as
8n = BnFn (4)
where
&5 (po) Fn(po)
£ (pm—1) Falom—1)

o Matrix B, lower triangular matrix which is a piecewise linear, discrete
approximation of the integral in Equation (3).

@ Diagonal entries of B,,, bjj = %\/E = 0, hence the matrix is invertible.
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Numerical inversion of CAR Transform.

gr?:BnFn

® Matrix B, lower triangular matrix which is a piecewise linear,
discrete approximation of the integral in Equation (3).

©® Diagonal entries of B, b; = %\/ﬂ = 0, hence the matrix is
invertible.

@ The matrix is B, has a high condition number (O(10%%)), hence
direct inversion is unstable.
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Numerical inversion of CAR Transform.

g, = BnFy

® Matrix B, lower triangular matrix which is a piecewise linear,
discrete approximation of the integral in Equation (3).
© Diagonal entries of B, b; = %\/ﬂ = 0, hence the matrix is
invertible.
® The matrix is B, has a high condition number (O(10%°)), hence
direct inversion is unstable.
We use a Truncated SVD based r-rank inverse (r < M) such that,

~ R-1 _«
FnNBn,rgn
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Experiments and Results: Effect of Rank

original phantom (f) used in
experiments.
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Experiments and Results: Effect of Rank

@ Full rank inversion is
expected to be unstable.

(c) r=9n/10 (d)r=n

Effect of rank r of matrix B, , on the reconstruction

quality. n = 300
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Experiments and Results: Effect of Rank

@ Full rank inversion is
expected to be unstable.

o If the rank r is set to be too
low reconstructed image is
expected to have ringing
artifacts.

(c) r=9n/10 (d)r=n

Effect of rank r of matrix B, , on the reconstruction

quality. n = 300
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Experiments and Results: Choosing Rank

original phantom (f) used in
(c) r =9n/10 experiments.

Effect of rank r of matrix B, , on the reconstruction

quality. n = 300
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Experiments and Results: Choosing Rank

0 20 240 200 10 150 40 % @ I 0
rark(r) =>

Plot of Mean Square Error as a
function of rank r.

(c) r=9n/10 (d)r=n

Effect of rank r of matrix B, , on the reconstruction

quality. n = 300
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Experiments and Results: Choosing Rank

Based on our experiments,‘
as a rule of thumb, dropping
highest 10% of singular val-
ues gives a fairly stable re-
construction.

\.

(c) r=9n/10 (d)r=n

Effect of rank r of matrix B, , on the reconstruction

quality. n = 300
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Reconstruction In Limited View Scenario

How to remove the artifacts which arise in the Circular arc Radon transform due to the limited view?
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Reconstruction of Singularities under Radon Transforms.

Figure: Image with visualization of

projection value along direction shown.
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Reconstruction of Singularities under Radon Transforms.

Figure: Image with visualization of

projection value along direction shown.
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the edge

Let C be the set of curves,
along which we measure pro-
jections. Then for an edge to
be visible there must be at
least one element in the in-
terior of set C, tangential to

N

J
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Effect of limited view

@ Due to limited view not all edges are visible,
in the sense of meeting tangency criterion
w.r.t set C.
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Effect of limited view

@ Due to limited view not all edges are visible,
in the sense of meeting tangency criterion [
w.r.t set C. ‘

@ The end points of the arc lie inside the object,
which leads to curves C having discontinuities
at end points.

@ The presence of these sharp discontinuities in
data set C and limited view will lead to streak |
and circular artifacts.

Figure: A sharp circular artifact is
observed due to discontinuity in angular,

as well as radial direction
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Reducing artifacts in reconstructed images

@ To reduce the artifacts in the reconstructed images we smooth out
the discontinuities of the elements of C
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the form e <2 ; visualized below.
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Reducing artifacts in reconstructed images

@ To reduce the artifacts in the reconstructed images we smooth out
the discontinuities of the elements of C

@ This is achieved by gracefully decaying arcs to zero at the edges.

@ Algorithmically, this achieved by weighing rows of B, by a factor of

the form e <2 ; visualized below.

Visualization of structure of unmodified Visualization of structure of modified
original matrix B. matrix B, for artifact suppression.
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Experiments and Results: Artifact Reduction.
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Experiments and Results: Artifact Reduction.

(g) a = 46 (h) o =76

Reconstructed images corresponding to different o before (row 1), and after artifact suppression
(row 2).
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Experiments and Results: Artifact Reduction

y axis

X axis

Figure: Setup with support outside the acquisition circle
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Experiments and Results: Artifact Reduction

P
£(p) = / K0 (u)du

v/ R2+p2+2pRcosa —R
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Experiments and Results: Artifact Reduction

« Kn(p,u
g5 (p) = J Kolp) £, (u)du
v/ R2+p2+2pRcosa —R

Kn b
gs(p) = J 28 F,(u)dy
R—+/R2+p2—2pR cos a
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Experiments and Results: Artifact Reduction

Figure: Phantom with support outside the acquisition circle.
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Experiments and Results: Artifact Reduction

(a) a=21 (b) @ =31 (c) a=146 (d)a=76

Figure: Reconstructed images corresponding to different o before (row 1), and after artifact
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Experiments and Results: Artifact Reduction

(a) a=21 (b) @ =31 (c) a=146 (d)a=76

() a=21 (f)a=31 (g) a =46 (h) a=76

Figure: Reconstructed images corresponding to different o before (row 1), and after artifact
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Summary & Future Work.

v/~ We Proposed a method of numerical inversion of circular arc Radon
transform, a limited view generalization of circular Radon transform.
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Summary & Future Work.

v/~ We Proposed a method of numerical inversion of circular arc Radon
transform, a limited view generalization of circular Radon transform.

v We also proposed a strategy to reduce the artifacts which arise in the
image due to limited view.
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Summary & Future Work.

v Provide a rigorous mathematical justification of the artifacts.
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Summary & Future Work.

v Provide a rigorous mathematical justification of the artifacts.

v Derive a closed form solution of the Volterra integral equation arising
in the transform.
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Thank You
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