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Abstract

“How dangerous it always is to reason from

insufficient data.”

SHERLOCK HOLMES

The field of computer vision is rapidly expanding and has significantly more processing power and
memory today, than in previous decades. Video has become one of the most popular visual media
for communication and entertainment. In particular, automatic analysis and understanding the content
of a video is one of the long-standing goals of computer vision. One of the fundamental problems is
to model the appearance and behavior of the objects in videos. Such models mainly depend on the
problem definition. Typically, in many scenarios, the change in problem statement is followed by the
changes in the annotation and its complexities. Creating large-scale datasets in this scenario using the
manual annotation process is monotonous, time-consuming and non-scalable. In order to address this
challenge and strive towards practical large scale annotated video datasets, we investigate methods to
autonomously learn and adapt object models using temporal information in videos.

Even though the vision community has advanced in field of problem solving but data generation and
annotation is still a tough problem. Data annotation is expensive, tedious and involves a lot of human
efforts. Even after data annotation, it is essential to validate the goodness of annotations, which again is
a tiresome process. To address this problem, we investigate methods to autonomously learn and adapt
the object models using temporal information in videos. This involves learning robust representations of
the video. The aim of this thesis is two-fold, first we propose solutions for efficient and accurate object
annotation mechanisms in video sequences and secondly, to raise awareness in the community about the
importance and attention it deserves.

As our first contribution, we propose an efficient, scalable and accurate object bounding box anno-
tation method for large scale complex video datasets. We focus on minimizing the annotation efforts
simultaneously increasing the annotation propagation accuracy to get a precise and tight bounding box
around object of interest. Using a self training approach, we propose a combination of semi-automatic
initialization method with an energy minimization framework to propagate the annotations. Using an en-
ergy minimization system for segmentation gives accurate and tight bounding boxes around the object.
We have quantitatively and qualitatively validated the results on publicly available datasets.
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In the second half, we propose annotation scheme for human pose in video sequences. The proposed
model is based on a fully-automatic initialization, from any generic state-of-the-art method. But the
initialization is prone to error due to the challenges in video data type. We exploit the availability of
redundant information from the redundant data type. The model is build on the temporal smoothness
assumption in videos. We formulate the problem as a sequence-to-sequence learning problem, the
architecture uses Long Short Term Memory encoder-decoder model to encode the temporal context and
annotate the pose. We show results on state-of-the-art datasets.
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Chapter 1

Introduction

“It is a capital mistake to theorize before one

has data.”

SHERLOCK HOLMES

It is an undisputed agreement that large amounts of annotated training data is one of the crucial rea-
sons for the success of deep learning. They have been the primal reason for the considerable progress in
the field, not just as source of large amounts of training data, but also as means of measuring and com-
paring performance of competing algorithms. Imagenet [28] dataset with 1 Million annotated samples
is an example that depicts the reason behind one of the very first successfull attempts for object clas-
sification using neural networks. Since then there have been many advancements in the representation
learning but surprisingly there are no such advancements to create datasets with bigger sizes.

Researchers have shown impressive results on tasks such as large scale object detection, object
recognition, image classification, pose estimation, action recognition, segmentation and event detec-
tion [4, 23, 24, 28, 34, 58, 73, 74, 79, 83]. However, these methods are far from mature when it comes
to deploying in practical applications. This can be ascribed to the following reasons. First, generating
large scale training data with wide variety of anticipated scenarios and annotating them. Apart from
training data, another barrier is generating a large amount of validation and test datasets that can help
to find the model complexity and benchmark the algorithms. For practical applications, one must test
a solution rigorously for hundreds of hours to determine the performance robustly. Hence, it is crucial
to annotate large scale datasets. Datasets are an integral part of research and they have been the chief
reason for the considerable progress in the field, not just as source of large amounts of training data, but
also as means of measuring and comparing performance of competing algorithms. In the past, people
have attempted to generate annotated data in computer vision (eg. ImageNet, crowd-sourcing).

In the process of generating large annotated datasets, many opt for manual execution, where an anno-
tator marks the Ground Truth (GT) annotation in a set of images [35, 43, 66]. More recently researchers
have started to use video sequences to generate GT as they provide much richer representations of the
object [1, 56]. Manual annotation especially in videos involves a huge cognition load, and is subject to
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inefficiency and inaccuracies [93]. This is more evident while annotating humans as the limbs might
move in a nonlinear manner and is difficult to capture the variation in shape and extent of the object
within neighboring frames. The above aspects can be addressed either by crowd-sourcing or by devel-
oping semi automatic annotation schemes using computer vision and machine learning techniques. In
this work, we propose annotation schemes that use vision and machine learning algorithms to annotate
objects in video sequences.

1.1 Problem Definition

In this work, we focus on efficient object bounding box annotation in videos and accurate human
pose annotation in videos.

Object Annotation in Videos. Object Annotation is one of the most fundamental problems in vision
community because of its application in a wide variety of tasks and it is also a part of many high-level
problems. We propose an efficient and yet accurate annotation scheme with tight bounding boxes, for
object in videos with minimal supervision The annotations are propagated across the frames using self-
learning based approach. An energy minimization scheme for the segmentation is the core component
of our method. Figure 1.1 shows an example of annotation of a person walking on road. Some of the
applications of object annotation are motion analysis, event detection, surveillance systems, transport,
sports analytics.

Figure 1.1: Example showing objects (human) being annotated with a tight bounding box in case of pedestrian

videos taken from TUD-Stadtmitte dataset [8].

Pose Annotation in Videos. Estimating 2D human pose from images is a challenging task with many
applications in computer vision, such as motion capture, sign language, human-computer interaction
and activity recognition. Figure 1.2 shows examples of 2D human pose in images. It shows a full
body human pose estimation for 14 joints i.e., head, neck, left-right shoulder, left-right elbow, left-
right wrist, left-right hip, left-right knee and left-right ankle. Human pose estimation is one of the
classical problems in the computer vision but often the predictions are absurdly erroneous in videos due
to unusual poses, challenging illumination, blur, self-occlusions etc. These erroneous predictions can
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be refined by leveraging previous and future predictions as the temporal smoothness constrain in the
videos. We present a generic approach for pose correction in videos using sequence learning that makes
minimal assumptions on the sequence structure.

Figure 1.2: Example showing full body human pose or skeleton with 14 key-points annotation i.e., head, neck,

left-right shoulder, left-right elbow, left-right wrist, left-right hip, left-right knee and left-right ankle in 2D images

1.2 Motivation

More than 1 Billion unique users visit YouTube each month, watching 6 billion hours of video, and
uploading 100 hours of video every minute. Cameras are now ubiquitous and sifting through this ocean
of data has become a major global challenge.

The widespread proliferation of digital media, and in particular video data, in recent years, has
made the automated analysis of its content necessary for annotation, retrieval, storage, transmission,
security and commercial purposes. Video is analyzed for the tracking, detection and recognition of
human activities in a variety of setups, ranging from constrained indoors environments to outdoors
locations and videos in the wild. Applications include health monitoring, analysis of online content,
annotations, effective classification. It is also analyzed for the detection of unknown, unusual events
and abnormalities using and developing computer vision, machine learning and statistical methods.
Applications include security and surveillance applications, in the case of traffic or crowd videos, but
also more general videos where abnormal events may occur.

1.2.1 Applications

• Object Tracking. Object tracking can be described as a correspondence problem, and involves
finding the relation between objects in contiguous frames.

3



(a) (b)

(c) (d)

Figure 1.3: Challenges. (a) Illumination Changes, (b) Occlusion (External and Self), (c) Motion Blur and (d)

Dynamic Background. The examples are taken from ETH-SunnyDay [32], ETH-JBanhof [32] and YouTube Pose

dataset [23].

• Event detection. Event detection can be used to identify the events in video and has a variety
of applications like action classification, security systems (raise alarms if events are suspicious),
video understanding, summarization.

• Motion Detection. Motion detection algorithms are the basis for a wide range of applications
in computer vision like visual surveillance, object recognition and tracking and compression of
video streams.

1.3 Challenges

Video data poses a variety of challenges which include:

• Illumination changes. Lighting conditions in outdoor images vary drastically. They may range
from very high to very low foreground-background contrast. This might result in highlighting
random objects in the scene. Indoor surroundings and illumination can be manipulated to make

4



(a) (b)

(c)

Figure 1.4: Challenges. (a) Camera Movement and object speed, (b) Background Clutter and (c) Shape Variation.

The examples are taken from ETH-Jelmoli [32], ETH-JBanhof [32] and YouTube Pose dataset [23].

the object of interest in focus with respect to the background. Illumination changes usually results
in challenging problems for many computer vision applications such as recognition, tracking and
motion analysis. Figure 1.3 (a) shows varying illumination conditions highlighting the back-
ground or the foreground obscuring visibility of complete human.

• Occlusion (External & Self). In general, outdoor images have more than one object or the object
interacts with elements of the surroundings. This leads to occlusion by some other object like
a pole, building etc. These cases like partial or full occlusion create uncertainty in determining
the location of object which are not visible. Apart from the above mentioned occlusions which
were caused by an outside entity (whether living or non-living object), the object of interest can
occlude itself, which is termed as self occlusion. Figure 1.3 (b) shows such examples of self and
external occlusion. Self-occlusion is observed mostly in outdoor scenarios such as sports, dance,
exercises etc.
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• Motion Blur. This is a widely occurred phenomenon in videos. For example, videos in which,
human performs speedy actions like dancing, the limbs are subjected to move rapidly. Even with a
high frames per second (fps) extraction, the dislocation of corresponding parts is of a high degree.
Also the tracking strategy methods like Optical Flow or SIFT Flow will not be able to grasp the
possibilities unless a high quality part tracker is used. Figure 1.3 (c) shows artifacts like motion
blur in fast moving parts.

• Dynamic Background. Some parts of the scene may contain movement (a fountain, movement
of other objects, the swaying of tree branches, water waves etc.), but should be regarded as back-
ground, according to their relevance. Such movement can be periodical or irregular (e.g., traffic
lights, waving trees). Handling such background dynamics is a challenging task. Figure 1.3 (d)
shows examples of Dynamic background where water waves have irregular motion.

• Camera Movement. Videos captured by a moving camera or an unstable (e.g. vibrating) camera,
induce jitter in videos. The nature of noise introduced by jitter is sporadic. In case of moving
camera, the background is not static and the objects move in the same or opposite direction of
camera motion, hence changing the object size and appearance accordingly. Figure 1.4 (a) shows
examples where the motion of camera and the person are in opposite direction, hence the object
size increases as the camera moves closer.

• Background Clutter. Backgrounds can be highly complex which can make foreground back-
ground segmentation a really tough task even for the human eye. Multi-patterned and colored
background is probable to excite the filters being used at various locations leading to a large num-
ber of false positives. Figure 1.4 (b) shows an example of a scene where the background and
foreground are almost inseparable.

• Shape Variation. Another kind of challenge faced because of complex human pose configuration
is foreshortening of body parts especially limbs. Figure 1.4 (c) shows examples of variation in
shape when a person is dancing. It can be observed that as the person bends, there is a huge
difference in terms of object shape.

• Appearance diversity. The diversity in clothing different people wear is difficult to encapsulate
in a single model. Most of the times the silhouette of a person is the detailing added by the
clothing of the person. Some clothing types cover a number of body parts making it difficult to
estimate. The images shown in Figure 1.3 and 1.4 show the variations in appearance.

• Object Speed. The speed of the moving object plays an important role in its detection. Intermit-
tent motions of objects cause ghosting artifacts in the detected motion, i.e., objects move, then
stop for a short while, after which they start moving again. There may be situations in a video,
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where the still objects suddenly start moving, e.g., a parked vehicle driving away, and also aban-
doned objects. Figure 1.4 (c) shows a person dancing and the rate at which the person changes
position varies according to the song.

1.4 Our Contributions

The specific contributions of the work discussed in this thesis are as follows:

• Efficient Object Annotation for Surveillance and Automotive Applications. We focus on
efficient object annotations (tight bounding boxes) for surveillance and automotive applications.
We focus on one of the aspects of video annotation namely the annotation propagation. This step
plays a vital role in reducing the cognition load by incorporating human inputs - in the form of
annotations - at certain frames and automatically transferring them to the neighboring frames.
This eliminates the need to manually annotate every frame in the video. An energy minimization
scheme for the segmentation is the central component of our method. As we use segmentation to
generate the annotations, the resultant bounding boxes are tight with high recall.

• Human Pose Correction using Sequence to Sequence learning in Videos. Goal is to generate
accurate pose annotations by leveraging previous and future predictions as the temporal smooth-
ness constrain in videos. We propose a generic approach for pose refinement using sequence-
to-sequence learning which makes minimal assumptions regarding the sequence structure. The
proposed architecture uses Long Short-Term Memory (LSTM) encoder-decoder model to encode
the temporal context and refine the estimations.

1.5 Thesis Outline

The organization of the thesis is as follows. In the following chapter, we discuss object annotations
in detail. In chapter 3, we propose a semi-automatic initialization scheme to annotate object bounding
box in large scale complex videos. We annotate tight bounding boxes efficiently by using motion cues
and dynamic GMM update in videos. In chapter 4, an annotation scheme for human pose in videos is
proposed. Using a completely automatic initialization with the help of computer vision algorithms and
the temporal information in videos we propose an architecture to annotate the erroneous poses.
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Chapter 2

Object Annotations

Data Annotation plays a crucial role as they serve as a reference (ground truth) for supervised learn-
ing in any domain for problem solving. In the current era of deep learning, large amount of data is
required to train the networks, which requires a collection of large amount of data which itself is a dif-
ficult task. Getting the dataset annotated, with minimal errors is also a big challenge. The error in the
annotation is dependent on the complexity of annotation which in turn depends on the category of an-
notation. For example, in case of dataset annotation for the task of classification, the annotation would
be a class label from a pre-defined set. It indicates the classes present in the image. If the task is human
pose estimation, then the data will be annotated with the key-points i.e., head, neck, shoulders etc. If we
compare the possibility of annotation error, then highly likely it would be more in case of human pose
estimation over classification, as it requires the key-point annotations to be precise at the pixel level.

The goal is to minimize the annotation efforts by automating the processes with the help of vision
and machine learning algorithms, to strive for more accurate annotations with minimal cost. But since
the annotation complexity varies from problem to problem, it is required to analyze these annotations
independently. In next section, we discuss in detail the types of annotations and available datasets for
each case.

Figure 2.1: Sample image taken from Imagenet [28] with object classification Annotation
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There are a wide variety of object annotations available. The annotations were designed in order to
solve the problem of interest. Few of the object annotations include:

Class Labels. Class label annotation is one of the primary annotation, which assigns a label for each
class. It is used to solve classification related problems. In classification problems, the task is to identify
objects in images or actions in videos respectively. For example, in video classification, the goal is to
identify the action (one of the classes in the dataset) in a video. Table 2.1 lists a few datasets with class
labels as annotations.

Dataset Name Description Format

ImageNet [28] Labeled object image database Images

MNIST [8] images of digits Images

CIFAR [6] natural images Images

Caltech 256 [44] pictures of objects Images

Pascal VOC [33] images of objects Images

MS COCO [63] Images of natural scenes Images

Sports-1M [54] sports videos Videos

YouTube-8M [5] youtube videos Videos

Table 2.1: List of datasets with Class Labels as annotations.

Figure 2.2: Sample image taken from Imagenet [28] with Bounding Box Annotation of object Cat

Bounding Box. The class labels give information about the objects in the scene but they do not
describe about their position in the scene. To describe the object position in the image, one can draw a
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Dataset Name Description Format

TUD-Stadtmitte [8] static camera & pedestrians Videos

TUD-Campus [6] static camera & pedestrians Videos

TUD-Crossing [6] static camera & road crossing Videos

ETH-Person [32] moving camera & urban scene Videos

Caltech 256 [44] pictures of objects Images

FDDB [48] face images Images

WIDER FACE [94] face images Images

GTFD [69] face images Images

ImageNet [28] Labeled object image database Images

Pascal VOC [33] images of objects Images

YouTube-BB [76] youtube videos Videos

TDCB [62] street images with cyclists Images

VGG Face [71] face images Images

STWD [45] synthetic images Images

Table 2.2: List of datasets with Bounding Box annotations.

rectangle around the object to know it’s position. Hence, the object is annotated with a bounding box
such that the object lies completely inside the box. A Bounding box is either represented by upper-left
coordinates, width and height of box or upper-left and bottom-right coordinates. Bounding box anno-
tations are used for object detection, object tracking, object recognition, scene understanding, image
captioning, summary etc.

Table 2.2 shows a list of few datasets which have bounding box annotations. Figure 2.2 shows
example of bounding box annotation in an image for the object “cat”. It can be observed that the
bounding boxes are loose i.e., there more pixels of background (not belonging to object) inside the
bounding box.

Semantic Labeling. Although, the bounding box provides information regarding the position of
object in the image, but it is not precise. Often it is a loose bounding box, for example if we use bounding
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Figure 2.3: Example image taken from MSRC-21 [86] showing the semantic labeling Annotation of natural images.

box annotation to annotate a cat, almost half of the pixels in the box will belong to the background. For
a more accurate description of object, objects can be described at the pixel level. Semantic labeling
annotates objects at pixel level, it annotates each pixel as object (i.e., 1) or background (i.e., 0) in case
of only foreground-background segmentation. In case of multiple objects, each pixel is assigned to a
class. Table 2.3 shows a list of few datasets which have semantic labeling annotations. These type of
annotations provide accurate object details and help in better scene understanding.

Figure 2.4: Sample images showing the full body human pose annotation taken from Leeds Sports & extended

dataset [52] and MPII Human Pose dataset [9].

For example, the cityscapes [27] dataset has street images with pixel wise annotations, giving detailed
information about every object like tree, car, road etc. Figure 2.3 shows examples of natural images
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Dataset Name Description Format

CityScapes [27] street scenes Images & Videos

MSRC [86] images of real objects Images

Pascal VOC [33] images of objects Images

MS COCO [63] Images of natural scenes Images

MDRS3 [78] road scenes Images

Synthia [77] synthetic images of urban scenes Images

DAVIS [72] natural scenes Videos

BSD [65] images of objects Images

Flowers Dataset [70] flower images images

ParisSculpt360 [10] paris images Images

OpenSurface [15] real world scenes Images

CamVid [20] urban scenes Videos

Virtual KITTI [38] photo-realistic synthetic videos Videos

NYU-Depth V2 [68] RGBD indoor scenes Videos

Table 2.3: List of datasets with Semantic Labeling annotations.

and their corresponding semantic labeling annotations, as shown it labels every pixel as any one of the
given objects.

Human Pose. Semantic labeling provides pixel-level detail about the scene but it fails to provide
information regarding the object. For example, a human can be annotated at pixel-level using semantic
labeling, but information regarding human(for example posture, limb locations) is not known. Knowing
posture of human helps in semantically reasoning about the scene and will also help in solving other
problems like cloth parsing, action recognition etc. Human posture is nothing but the human layout that
is the skeleton, it can be represented by joint positions. For a full body human pose, a person is annotated
with 14 key-points that constitute to form skeleton (e.g., head, neck, left-right shoulder, left-right elbow,
left-right wrist, left-right hip, left-right knee and left-right ankle).
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Dataset Name Description Format

LSP & extended [52] Sports, athletics images Images

FLIC [81] Images from movies Images

Buffy [37] Images from TV show buffy Videos

Buffy 2 [49] images from TV show buffy Images

MPII Human Pose [9] natural images Images

ETHZ Pascal [31] amateur photographs Images

Poses in the wild [25] natural images Images

CVIT Sports [87] sports images Videos

Football I & II [57] sports images Images

YouTube Pose [23] amateur youtube videos Videos

BBC Pose & extended [74] BBC videos with sign language signers Videos

JHMDB [51] action clips Videos

Movie Stickmen [49] images from hollywood movies Images

H3D [17] natural images Images

Table 2.4: List of datasets with Human Pose annotations.

Table 2.4 shows a list of few datasets which have human pose key-point annotations. Human pose
can help in reasoning and solve many other problems. For example, in cloth parsing accessories like
belt will be around hip and tie will start from neck till waist (which are known from the human pose).

Annotating human pose will give information about the person i.e., the position of head, wrist and so
on etc. But concise details regarding some body parts like the hand (gesture or pose), face (viewpoint)
is not known. For example, using human pose, we get to the position of wrists, but the hand gesture
(fingers and their positions) is not captured.

Hand Pose. To capture the hand pose, 21 hand-joint positions are annotated. Table 2.5 shows few
datasets which capture hand pose annotations. By capturing hand pose, we can know the position of
each and every finger joint, which has many applications. A few applications would be sign-language
recognition, augment reality games, hand gesture recognition etc.
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Figure 2.5: Image showing the 21 key-points of hand pose annotation where ‘T’, ‘I, ‘M, ‘R, ‘P denote ‘Thumb,

‘Index, ‘Middle, ‘Ring, ‘Pinky fingers taken from [96].

Figure 2.5 shows the 21 hand-joint positions which are captured for annotation. The joints are
ordered in this way: Wrist, TMCP, IMCP, MMCP, RMCP, PMCP, TPIP, TDIP, TTIP, IPIP, IDIP, ITIP, MPIP,
MDIP, MTIP, RPIP, RDIP, RTIP, PPIP, PDIP, PTIP, where ‘T’, ‘I, ‘M, ‘R, ‘P denote ‘Thumb, ‘Index,
‘Middle, ‘Ring, ‘Pinky fingers. ‘MCP, ‘PIP, ‘DIP, ‘TIP as in the figure 2.5.

Dataset Name Description Format

NYU-Hand pose [90] RGBD hand images Images

Big Hand 2.2M [96] hand images using 6D sensors Images

ICVL [89] RGBD hand images Images

MSRC [84] RGBD hand Synthetic images Images

SHPTB [99] RGBD hand videos Videos

Table 2.5: List of datasets with Hand Pose annotations.

Head Pose. To capture the head pose of person, yaw, pitch and roll are required to be annotated.
Figure 2.6 show the yaw, pitch and roll along Y, X and Z axis respectively. Capturing head pose is
important in some applications and is a part of other problems like capturing eye gaze. For example,
to score the driver’s driving attention in videos, the driver attention score depends on the head pose.
Table 2.6 shows few datasets which caputre the head pose annotations.
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Figure 2.6: Sample of Head Pose Annotation

Dataset Name Description Format

UPNA Head Pose [11] head tracking and pose videos Videos

HPID [40] images of faces Images

HPED [98] images of faces Images

AFW [100] face images Images

AFLW [67] face images Images

Table 2.6: List of datasets with Head Pose annotations.

Facial Points. Head pose captures the head position but it does not provide detailed information of
face like eyes, nose, lips, cheeks etc. To capture the facial expressions, it is required to annotate the
facial points. Table 2.7 shows a list of few datasets which have facial points annotations. Figure 2.7
shows example of 68 facial landmarks annotated on a sample face image. These facial landmarks can
be used for identification, gesture recognition, person mood estimation etc.

Other Annotations. Apart from the above discussed annotations, other annotations include 3D
object representations (like 3D shape, 3D human pose etc), eye gaze, lip reading (associates speaker
utterances to words), scene summary etc. For example given an image, the scene summary annotation
would be a sentence describing the image (example: A cat is under the table). The applications in-
clude visual-dialog system, image captioning. Extending it to videos, the annotation would be a video
summary (retaining only the important segments in video).
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Figure 2.7: Sample of Facial Landmark Annotation

Dataset Name Description Format

Helen & extended [60] face images Images

LFPW [14] face images Images

LFW [46] face images Images

SCFace [42] face images Images

COFW [21] face images Images

ibug 300W [80] face images Images

ibug 300VW [85] face images Videos

AFLW [67] face images Images

CAS-PEAL [39] face images Images

PUT Face [55] face images Images

Table 2.7: List of datasets with Facial Point annotations.
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Chapter 3

Efficient Object Annotation in Videos

3.1 Introduction

Accurately annotated large video data is critical for the development of reliable surveillance and
automotive related vision solutions. In this work, we propose an efficient and yet accurate annotation
scheme for objects in videos (pedestrians in this case) with minimal supervision. We annotate objects
with tight bounding boxes. We propagate the annotations across the frames with a self training based
approach. An energy minimization scheme for the segmentation is the central component of our method.
Unlike the popular grab cut like segmentation schemes, we demand minimal user intervention. Since
our annotation is built on an accurate segmentation, our bounding boxes are tight. We validate the
performance of our approach on multiple publicly available datasets.

Figure 3.1: Sample Bounding Box Annotation of objects

In the recent years researchers have developed and demonstrated robust computer vision methods
based on supervised machine learning techniques. They show impressive results on tasks such as large
scale object detection, object recognition and image classification [4, 34, 58, 79, 83], reinstating the
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hope that they are nearing mainstream adaptation. Most of these methods find applications in fields
such as image search, web based face recognition engines [88] and other applications [61]. However
these methods are far from mature when it comes to deploying in mission critical applications such as in
surveillance, robotics, and autonomous driving. Accuracy and reliability of the vision algorithms need
further improvement.

Since the state-of-the-art computer vision schemes depend on supervised learning techniques, such
a deficiency in performance can be attributed to the following reasons. Firstly, it is difficult to annotate
and generate large sets of training data covering a wide gamut of foreseeable working conditions which
is necessary for supervised learning algorithms to generalize. The second hurdle is to generate a large
amount of validation and test datasets that can help to find the model complexity and benchmark the
performance. For example, one needs to test a solution for several hundreds of hours to reliably estimate
the performance in an autonomous driving to be practical. Finally, the complex models that can be
trained with the computational resources and evaluated on a wide range of hardware. There have been
many success stories of deep learning in recent years which is known to be data intensive. A common
underlying component is the generation of large scale reference data, also known as Ground Truth (GT).
We are interested in this. In this work we restrict the scope of GT to a bounding box enclosing the
spatial extent of articulate objects (humans) within a video frame. They are the most common and
vulnerable subjects in the context of surveillance and autonomous driving scenarios. There have been
many attempts in generating annotated data in computer vision in the past (eg. ImageNet). However,
large industrial scale annotation efforts are not often reported in the literature.

In most cases GT is generated via manual annotators [35, 43, 66] who mark the object of interest in
a set of images. More recently researchers have started to use video sequences to generate GT as they
provide much richer representations of the object [1, 56]. As pointed out in [93], manual annotation
especially in videos involves a huge cognition load, and is subject to inefficiency and inaccuracies. This
is more evident while annotating humans as the limbs might move in a nonlinear manner and is difficult
to capture the resulting variation in shape and extent of object within neighboring frames. Recently
researchers have engineered various approaches to address the above aspects. Some of them are based
on crowd-sourcing [1] and others use computer vision and machine learning techniques to develop
semi-automatic annotation methods [2, 3, 16, 29, 56, 97]

In this work we focus on one of the aspects of video annotation namely the annotation propagation.
This step plays a vital role in reducing the cognition load by incorporating human inputs - in the form
of annotations - at certain frames and automatically transferring them to the neighboring frames. This
eliminates the need to manually annotate every frame in the video. Our annotation propagation method
involves segmenting an object and propagating the segmentation mask across the frames.
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3.2 Video Annotation Tools

There have been many attempts in annotating images and videos in the past. Researchers from IBM
developed a video annotation tool namely VideoAnnEX [3]. The objective of the tool is to generate GT,
so as to facilitate the process of video/information retrieval based on certain user query (e.g., provide me
all the frames/information related to a particular public figure). This uses a supervised learning method
to label scenes in the video but lacks object level annotation and propagation.

ViPER [2, 29] is an open-source tool developed by Language and Media Processing lab (LAMP) at
University of Maryland to generate GT in video sequences and also an evaluation framework to evaluate
performance of algorithms for tracking, recognition and detection. To speed up annotation process
ViPER provides a mechanism to interpolate bounding box position of objects in between key frames.
In addition to this it is also possible to propagate object specific attributes between key frames by using
the copy functionality or dragging across video frames. Although ViPER has annotation propagation
method, in general it is not effective and scalable while generating GT of articulated objects as the
accuracy of propagation is directly proportional to the granularity of key frame interval and nature of
object motion which in our case is nonlinear (e.g. limbs and legs). In other words, it would be difficult
to fully capture the limbs of a person moving across the camera 's field of view.

LabelMe video (LMV) [97] is another open source web accessible video annotation system that al-
lows to annotate object category, shape, motion, and interactions between them. It is an extension of
the popular LabelMe image annotation tool. Here the GT is generated by automatically propagating
manual annotation across neighboring frames with the help of offline recorded camera motion param-
eters. These parameters are used to estimate homography between adjacent frames which is then used
to accurately propagate the annotation. Although the method works reasonably well, in most cases
it might not be practical as it would involve expensive additional hardware to record precise camera
motion parameters.

The authors of Innovative Web based collaborative platform for video annotation [56] provide ways
to share annotations through a collaborative web based platform. In addition the tool derives annotations
based on annotations from multiple users. Also the tool provides GrabCut based features to extract
boundaries of an object. The major limiting factor of this tool is that it doesn't involve propagation of
object boundaries or GT across frames.

Another web based video annotation tool known as VATIC [1] is based on crowd-sourcing and de-
veloped at University of California at Irvine with collaborations from Massachusetts Institute of Tech-
nology. The tool is in experimental stages and was hosted on amazon's mechanical turk to investigate
the potential of crowd sourcing platforms for the task of video annotation. The tool incorporates active
learning based methods to propagate annotation across frames. However, the authors do not place much
importance on the accuracy of an object's spatial extent and hence might not readily fit our purpose to
generate GT for mission critical applications and articulated objects.
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Figure 3.2: Proposed framework: Given a set of videos, user annotates selected key frames. We propagate the

annotations for the entire sequence and use it as initialization for our approach and get a tight bounding box.

An interesting video annotation tool named as iVAT [16] incorporates incremental learning based
approach to build online detector that aids linear interpolation and template matching based annotation
propagation across video frames. The role of the detector is mainly to resolve occlusions and handle
any non-uniform/non-linear motion of an object. However, the tool doesn’t determine the spatial extent
of an object in each frame and hence may significantly affect the accuracy of GT in our case.

As a complementary component to the existing tools, we propose a method where annotations on key
frames are propagated automatically using motion cues. We adopt GrabCut [22] based segmentation
method for videos to obtain highly accurate annotations for objects in large scale videos efficiently.
GrabCut is a successful interactive segmentation scheme. We adapt it for our problem so that it demands
very minimal user intervention (say on selected key frames). The advantages of our method are two fold,
firstly we only need user interactions on key frames, and hence it reduces the human effort drastically.
Secondly, since our method tracks the object using segmentation, we obtain more accurate bounding
boxes around objects.

3.3 Proposed Approach

Given a large collection of videos our goal is to design a method which can automatically propagate
the annotations for the objects in those videos with very minimal user interaction. We propose a method
for accurate propagation of annotations of objects in videos using segmentation. Our proposed scheme
is illustrated in Figure 4.3.

For this our method is inspired by the success of GrabCut [22] and thereafter works such as obj-
Cut [59] for natural image segmentation. Nevertheless, we propose several useful modification to the
original GrabCut [22] to suit our problem. GrabCut has shown state-of-the-art image segmentation re-
sults on some of the standard benchmarks. But it has some limitations in real time applications for
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videos. For example: (i) initialization is critical in GrabCut and often performed by user. On large
collection of videos asking for user interaction in all frames (or most frames) is not a feasible solution.
(ii) computing min cut on every frame is a costly operation. We resolve the above limitations with a
semi-automatic approach and also reducing the computations.

In this section we first formulate the problem as energy minimization problem, briefly describe Grab-
Cut method and discuss about our proposed semi-automatic initialization scheme.

3.3.1 Energy Minimization Framework

We formulate the problem of segmenting objects in video frames in an energy minimization frame-
work. Segmentation of an image can be expressed as a vector of binary random variables

X = {X1, X2, ..., Xn}, where each random variable Xi takes a label xi ∈ {0, 1} based on whether
it is object or background.

Figure 3.3: Energy Minimization Framework. Iteratively estimate the foreground and background GMMs and

perform graphcut (graph min-cut). Given an image and bounding box which represents the object of interest,

output is the object segmented from background.

We represent pixels of frames as nodes in a graph where all the neighbouring nodes are connected
by edges. We associate a unary and pairwise cost of labeling these nodes and define a cost (or energy)
function as the sum of these cost for all the nodes as follows:

ψ(x,θ, z) =
∑
i

ψi(xi,θ, zi) +
∑

(i,j)∈N

ψij(xi, xj , zi, zj), (3.1)
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where, N denotes the neighborhood system defined in the MRF, and ψi and ψij correspond to unary and
pairwise costs respectively.

A typical unary cost can be expressed as:

ψi(xi,θ, zi) = −log p(xi|zi), (3.2)

where zi is the rgb color vector, p(xi|zi) is the likelihood of pixel i taking label xi. This likelihood is
computed from learnt foreground and background GMM model. Reader is encouraged to refer [22] for
more details. The pairwise cost is the given by [18]:

ψij(xi, xj , zi, zj) = λ
[xi 6= xj ]

ed(i, j)
exp

(
β(zi − zj)2

)
, (3.3)

where the parameter λ controls the degree of smoothness, ed(i, j) is the Euclidean distance between
neighboring pixels i and j. The constant β allows edge-preserving smoothing, and is computed as
follows: β = 1/2E[(zi − zj)2], where E[u] is expected value of u.

The problem of segmentation is now to find the global minima of the cost function in 3.1, i.e.,

x∗ = argmin
x
ψ(x,θ, z). (3.4)

The global minima of this cost function can be efficiently computed by graph cut [19]. We use
iterative graph cut based approach for computing this.

3.3.2 Semi-automatic Initialization

Given a set of video frames {f1, f2, · · · , fm} we need to run iterative graph cuts in all the m frames.
This is computationally not smart way. Moreover, foreground and background region needs to be initial-
ized in each frame. In original GrabCut foreground and background are initialized by performing user
interaction. However, we wish to avoid such user interactions to make our annotation process efficient
and minimal human intensive. In other words we need two modifications from the original GrabCut
method: (i) we wish to avoid performing iterative graph cuts in every frame, and (ii) we wish to mini-
mize user interaction to great extent. To achieve this we propose following three automatic initialization
schemes.

3.3.2.0.1 M1: Bi-linear interpolation. Given the annotation of key frames we extend the annota-
tions to all the in-between frames by simply interpolating these annotations. These interpolated annota-
tions are used to initialize the Gaussian mixture models of foreground and background in these frames.

3.3.2.0.2 M2: Relaxed interpolation. In the relaxed interpolation we extend the width and height
of the interpolated bounding boxes by a small offset (w, h). Relaxed bounding boxes contain most or
all the object inside them and achieve higher pixel level recall. Figure 3.4 shows an example of relaxed
interpolation which is used as initialization for our method.
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Figure 3.4: Semi-automatic Initialization. Extending the width and height of the interpolated bounding boxes

by a small offset such that object lies inside the bounding box. Orange and Green bounding box represent

interpolation prediction and extended bounding box.

3.3.2.0.3 M3: Using motion cues and dynamic GMM update. Each pixel is initialized with mix-
ture of Gaussian mixture models (GMM). Using optical flow, we estimate the new position of each pixel.
The new position can have different pixel value. Hence, we update the GMM for each frame dynamically.

Further, we estimate the number of Gaussian's to fit the model as the appearance changes across
frames. This adapts to the incremental changes in the appearance of the object e.g., changes in illumina-
tion, object appearance. Assumption is moving pixels are considered as pixels belonging to the object
or foreground. Again, there might be multiple moving objects, to get only the object of interest, we use
the relaxed bounding box (M2) to eliminate the other pixels. Once we have an approximate estimate of
the foreground pixels, the above estimated foreground mask is used as initialization seeds for GrabCut.

In brief, we propose the following simple but effective modifications for efficient segmentation and
propagation to accurately annotate objects from the videos:

• We use relaxed interpolation to get the relaxed bounding box for the object of interest. It is
calculated initially for the entire sequence (using the user annotations on key frames).

• Compute foreground and background GMM model at the key frames using the user annotations
and these models are propagated to in-between frames.

• The above pre-computed models are used to segment object in nearby frames. As the object will
be very similar in the nearby frames.

• The object neighborhood is sufficient to segment the object rather than taking the entire image.
This reduces the computations drastically without effecting the results.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.5: Sample results of segmentation by using motion cues and dynamic GMM update. (a), (e), (i) Image to

be segmented and the green bounding box is used as initialization for segmentation, (b), (f), (j) shows the result

of GrabCut on every frame , (c), (g), (k) shows the result of key frame segmentation and propagation and (d), (h),

(l) shows the result of foreground estimation and segmentation.

Summarizing our approach, our method initiates with a very minimal user interaction (say drawing
loose bounding box around objects on key-frames). We obtain annotations in the key-frames by seg-
menting them using iterative graph cuts. We propagate these annotations to the in-between frames using
motion cues and dynamically update the GMMs for those frames. With these propagated annotations,
segmentation and bounding boxes around all the objects in all the frames are obtained (refer figure 3.5).
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Sample dataset images. Challenges: (a), (b) - change in object size, moving camera and moving

object, (c), (d), (e), (f) - complex surroundings, occlusion and object pose variation.

3.4 Dataset

We have performed experiments on a variety of publicly available datasets for object tracking shown
in Table 3.1. Each dataset has its own challenges, for example movement through cluttered areas, objects
overlapping in the visual field, lighting changes, moving background, slow-moving objects, and objects
being introduced or removed from the scene (refer Figure 3.6). For analysis, we selected a set of objects
from these datasets with the above challenges. Sample images from the datasets we use are shown in
Figure 3.6.

Figure 3.6 (a) and (b) show the case where a camera is moving and objects size change with time.
Figure 3.6 (c), (d), (e) and (f) show the case where a camera is mounted and the objects are in mo-
tion (typically surveillance videos). All the cases have overlapping objects, dynamic entry and exit of
objects, background clutter and objects moving with different speeds.
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Dataset Name Number of Objects Number of Frames

TUD-Stadtmitte [8] 10 178

TUD-Campus [6] 9 71

TUD-Crossing [6] 13 201

ETH-Bahnhof [32] 224 999

ETH-Jelmoli [32] 74 936

ETH-SunnyDay [32] 36 354

Table 3.1: List of datasets. Each dataset has multiple annotated objects and the number of frames in each dataset

is shown above.

3.5 Evaluation Protocol

There exists abundant performance measures in the field of object annotation in videos. We chose to
use average area overlap and recall, as these performance measures the accurateness of annotations (as
we aim for tight bounding box). We briefly introduce these measures here.

3.5.0.0.1 Average area overlap: It is the intersection area divided by union of ground truth (GT) and
the bounding box (BB) generated by an annotation approach. The mean of this measure is calculated by
dividing with total number of frames in the database.

AreaOverlap =
1

N

n∑
k=1

Area(B1
k ∩B2

k)

Area(B1
k ∪B2

k)
(3.5)

where B1
k , B2

k are bounding boxes of GT and annotation approach for kth frame and N is the total
number of frames.

3.5.0.0.2 Recall: Recall is computed as a fraction of true positive and true positive plus false nega-
tive, which are defined as follows.

TP =

n∑
k=1

Area(B1
k ∩B2

k)

Area(B1
k ∪B2

k)
(3.6)
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FN =

n∑
k=1

Area(B1
k)

Area(B1
k ∪B2

k)
− TP (3.7)

Recall =
TP

TP + FN
(3.8)

where B1
k , B2

k are bounding boxes of GT and annotation approach for kth frame, N is the total number
of frames, TP , FN are True Positive and False Negative respectively.

3.6 Experiments and Results
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Figure 3.7: Frame interval vs Area overlap for the objects TS1: TUD-Stadtmitte 1 and J1:ETH-Jelmoli1. Red

and green lines correspond to M1 and M3 respectively. It can be seen that the area overlap of our method (M3)

increases indicating hih recall over M1.

We have applied the proposed approach on the datasets by varying the number of key frames, which
accounts for user interactions. We have experimented the same in multiple settings by varying the key
frame interval. The segmentation based method is not very successful in frames, where the user is
occluded or improperly initialized (user initializes object where it is not completely visible). Also, we
detect the frames where segmentation is unsuccessful and replace them with the interpolation result,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8: Results of our approach on object TUD-Stadtmitte 1. (a), (b), (c), (d) shows the initialization sequence

and (e), (f), (g), (h) shows the result of our method respectively. We observe that the object is segmented accurately

using our method which results in an accurate annotation.

which is not effected by occlusions. Hence, the proposed work clearly outperforms simple interpolation
based technique.

Table 4.1 shows the area overlap and recall for objects with varying key frame intervals. Each object
has a different context, TUD-Stadtmitte 1 object is for static camera, ETH-Jelmoli 1 object is for the case
where both object and camera motion are in same direction and ETH-Banhof 3 object moves in opposite
direction to the camera motion. From this table, we observe that (i) our proposed scheme M3 which
uses motion cues performs better than M1 and M2, (ii) as expected with lower key frame interval we
achieve higher recall and higher overlap (i.e., more accurate annotations).

Further, it should be noted that for ETH-Banhof 3, there are drastic changes in object size, due to
movement in opposite direction. Hence, the errors are higher compared to TUD-Stadtmitte 1 and ETH-
Jelmoli 1. Figure 3.7 shows the variation in area overlap for the methods discussed in Section 3.3.2
namely M1 and M3 with the change in frame interval for two different objects. To compare area overlap
we use M1 and M3, as the annotations generated by M2 are relaxed bounding boxes, due to which the
area overlap is less for M2. We also observe that for the object ETH-Jelmoli1, the area overlap for M3
is very high compared to M1 as our approach yields very accurate segmentations.

The proposed method achieves high area overlap and high recall using very few user annotations
(refer Figure 3.8). We can see that our approach yields accurate segmentation which leads to accurate
annotations. This is very helpful for large scale video annotations as we generate accurate annotations
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(a) (b) (c) (d)

Figure 3.9: Results of our approach on object ETH-Jelmoli 1. (a), (b) show the initialization sequence and (c), (d)

show the result of our method respectively.

with drastic reduction in the human annotation efforts. Consider an example where an user have a video
of 10, 000 frames to be annotated. For a key frame interval of 10, user has to annotate only 1000 frames
in our approach. This reduces the human efforts by 90 % without compromising on the accurateness of
the annotations.

3.7 Summary

We have presented a framework for semi-automatic object annotation to generate accurate Ground
Truth (GT) data in large scale from videos. Especially, our approach is suitable for generating GT for
mission critical applications like surveillance and autonomous driving. Our method of object annotation
is based on segmentation and its propagation which results in accurate bounding boxes around the ob-
jects. The proposed framework outperforms interpolation based approaches and almost mimics human
annotation ability with only minimal user interaction (predominantly at key frames) which makes it
scalable to generate large sets of GT . We have verified our claims by conducting comprehensive experi-
ments on multiple challenging video datasets. Our approach can prove useful in generating ground truth
and annotations for large scale surveillance and automotive related videos with substantial reduction in
human efforts.
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Object Area Overlap Recall

M1 M2 M3 M1 M2 M3

TUD-Stadmitte1 (5) 0.873 0.843 0.869 0.923 0.922 0.931

TUD-Stadmitte1 (15) 0.851 0.831 0.867 0.901 0.894 0.927

TUD-Stadmitte1 (50) 0.837 0.771 0.855 0.883 0.866 0.906

TUD-Stadmitte1 (100) 0.828 0.761 0.847 0.871 0.857 0.896

ETH-Jelmoli1 (5) 0.884 0.894 0.938 0.937 0.96 0.965

ETH-Jelmoli1 (15) 0.846 0.856 0.906 0.907 0.937 0.963

ETH-Jelmoli1 (50) 0.812 0.836 0.903 0.883 0.924 0.963

ETH-Jelmoli1 (100) 0.793 0.825 0.898 0.868 0.916 0.964

ETH-Banhof3 (5) 0.831 0.684 0.84 0.831 0.836 0.847

ETH-Banhof3 (15) 0.76 0.701 0.77 0.901 0.813 0.907

ETH-Banhof3 (50) 0.65 0.655 0.67 0.829 0.791 0.834

ETH-Banhof3 (100) 0.61 0.634 0.65 0.801 0.784 0.903

Table 3.2: M1: Bi-linear interpolation, M2: Relaxed interpolation, M3: Our approach which uses motion cues to

propagate annotations (Section 3.3.2). The value in the parenthesis indicates the key frame interval.
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Chapter 4

Pose Annotation in Videos

4.1 Introduction

The power of ConvNets has been demonstrated in a wide variety of vision tasks including pose
estimation. But they often produce absurdly erroneous predictions in videos due to unusual poses, chal-
lenging illumination, blur, self-occlusions etc. These erroneous predictions can be refined by leveraging
previous and future predictions as the temporal smoothness constrain in the videos. In this paper, we
present a generic approach for pose correction in videos using sequence learning that makes minimal
assumptions on the sequence structure. The proposed model is generic, fast and surpasses the state-of-
the-art on benchmark datasets. We use a generic pose estimator for initial pose estimates, which are
further refined using our method. The proposed architecture uses Long Short-Term Memory (LSTM)
encoder-decoder model to encode the temporal context and refine the estimations. We show 3.7% gain
over the baseline Yang & Ramanan (YR) [95] and 2.07% gain over Spatial Fusion Network (SFN) [73]
on a new challenging YouTube Pose Subset dataset [23].

‘
(a) (b)

Figure 4.1: Human Pose Correction. Pose predictions on sample images from the datasets used in this work. Red

and yellow correspond to joints predicted using baseline (initialization) and our method respectively.
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4.2 Pose Estimation Algorithms

Estimating 2D human pose from images is a challenging task with many applications in computer
vision, such as motion capture, sign language, human-computer interaction and activity recognition.
Profuse amount of work has been done on articulated pose estimation from single images [7, 30, 31, 36,
75, 82]. Despite steady advances, pose estimation remains as an intricate problem. Recent advances in
2D human pose estimation exploit complex appearance models and more recently convolutional neural
networks (ConvNets) [24, 47, 50, 73, 74, 91, 92]. We focus on the task of 2D human pose estimation
in videos “in the wild” : single-view, uncontrolled settings typical in movies, television and amateur
videos. This task is made difficult by the considerable background clutter, camera movement, motion
blur, poor contrast, body pose and shape variation, as well as illumination, clothing and appearance
diversity. Even the state-of-the-art ConvNets often produce erroneous predictions in videos due to these
challenges (Figure 4.1).

To date, CNN models for video processing have successfully considered learning of 3-D spatio-
temporal filters over raw sequence data [12], and learning of frame-to-frame representations which
incorporate instantaneous optic flow or trajectory-based models aggregated over fixed windows or video
shot segments [54]. Such models explore two extrema of perceptual time-series representation learning:
either learn a fully general time-varying weighting, or apply simple temporal pooling. Following the
same inspiration, the video sequence learning models which are also deep over temporal dimensions;
i.e., have temporal recurrence of latent variables. Recurrent Neural Network (RNN) models are “deep
in time” - explicitly so when unrolled - and form implicit compositional representations in the time
domain.

Pose predictions from neighbouring frames are not independent of each other and they form a se-
quence. We formulate the correction problem as sequence-to-sequence learning problem, while lever-
aging the temporal smoothness implicitly encoded in the target sequence. There have been a number of
related attempts [13, 26, 41, 53] to address the general sequence-to-sequence learning problem with neu-
ral networks. Instead of correction of one prediction at a time (CRF based post processing), this model
can capture the complex pose configurations over time while the body undergoes numerous appearance
changes, resulting in a more reliable correction model.

In this work, we propose pose correction model in videos as a sequence-to-sequence learning prob-
lem (Figure 4.3). The neural network architecture, which we will refer to as an LSTM encoder-decoder,
consists of two recurrent neural networks that act as an encoder and a decoder pair. The encoder maps
an input source sequence to a fixed-length vector, and the decoder maps the vector representation back
to a target sequence. The two networks are trained jointly to maximize the conditional probability of
the target sequence given a source sequence.

32



4.3 RNN Encoder-Decoder

Figure 4.2: Illustration of RNN Encoder-Decoder model where x1, x2, · · · , xt and y1, y2, · · · , yt are input and

output sequences respectively and c is the context vector.

In a recurrent neural network (RNN), for an input sequence x = (x1, · · · , xT ) at each time step t, the
hidden state of the RNN is updated by

ht = f(xt, ht−1) (4.1)

where f is a non-linear activation function. f can be a simple logistic sigmoid function or a complex
Long Short-Term Memory (LSTM) cell.

By training RNN to predict the next symbol in a sequence, it can learn a probability distribution over
a sequence. So, the output at each time step t is the conditional distribution p(xt|xt−1, · · · , x1).

The encoder is an RNN which reads each token of the input sequence x sequentially. The hidden
state of the RNN changes according to Eq. 4.1 as it reads tokens from input sequence. Once the entire
sequence is read, the hidden state of the RNN is a context vector c of the whole input sequence.

Decoder is another RNN which is trained to generate the output sequence by predicting the next token
yt given the hidden state ht. But, here both yt and ht are also conditioned on yt−1 and on the context
vector c of the input sequence unlike the RNN described above. Hence, the hidden state of the decoder
at time t is computed by,

ht = f(ht−1, yt−1, c) (4.2)

and the conditional distribution of next token is computed as,

P (yt|yt−1, · · · , y1, c) = g(ht, yt−1, c) (4.3)

where f and g are activation functions.
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Figure 4.3: Overview of our method (a) Input videos, (b) Generic pose estimator, (c) Initial pose estimates (xi, yi)

for all joints, (d) Correction model where ht, st are the hidden states at time t and aij is an alignment model which

scores how well the inputs around position j and the output at position i match, (e) Refined pose estimates (x′i, y
′
i)

for all joints and (f) Pose visualization. A bidirectional LSTM encoder is used in the refinement model as shown

in (d). The correction model corrects the erroneous poses (predicted by a generic pose estimator (b)).

Both components of RNN Encoder-Decoder are jointly trained to maximize the conditional log-
likelihood

max
θ

1

N

N∑
n=1

log pθ(yn|xn) (4.4)

where θ is the set of the model parameters and each (xn, yn) is an (input, output) sequence pair from
the training set.

4.4 Pose Correction Model

An overview of our algorithm is shown in Figure 4.3. Our approach can be broadly divided into 2

stages. Each stage is independent, and the details of each stage are discussed below.

4.4.1 Initialization

Our method receives frames from videos and generates initial pose estimates for all the frames inde-
pendently. We can use any generic pose estimator to generate initial pose estimates. It is often observed
that these estimates are erroneous in videos, due to self-occlusion, blur, unusual poses, etc (Figures 4.1
and 4.8). For our experiments, we use the Spatial Fusion Network (SFN) [73] and the more traditional
Yang & Ramanan [95] models to generate initial pose estimates (discussed briefly in 4.7.1).
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4.4.2 General Decoder

The conditional probability in Eq. 4.3 is defined as

p(yi|yi−1, · · · , y1, c) = g(yi−1, hi, ci) (4.5)

where hi is an RNN hidden state for time i, computed by

hi = f(hi−1, yi−1, ci) (4.6)

It should be noted that unlike the existing encoder-decoder approach (see Eq. 4.3), here the proba-
bility is conditioned on a distinct context vector ci for each target yi.

The context vector ci depends on a sequence (h1, · · · , hTx) to which an encoder maps the input
sentence. Each token hi contains information about the whole input sequence with a strong focus on the
parts surrounding the ith token of the input sequence. The context vector ci is then computed as:

ci =

Tx∑
j=1

αijhj (4.7)

The weight αij of each hj is computed by

αij =
exp(eij)∑Tx
k=1 exp(eik)

(4.8)

where

eij = a(hi−1, hj) (4.9)

is an alignment model which scores how well the inputs around position j and the output at position i
match. The score is based on the RNN hidden state hi−1 and hj . The alignment model directly computes
a soft alignment, which allows the gradient of the cost function to be backpropagated through. This
gradient can be used to train the alignment model as well as the whole translation model jointly.

Let αij be the probability that the target token yi is aligned to a source token xj . Then, the ith context
vector ci is the expected annotation over all the annotations with probabilities αij . The probability αij ,
or its associated energy eij , reflects the importance of hj with respect to the previous hidden state hi−1
in deciding the next state hi and generating yi. Intuitively, this implements a mechanism of attention
in the decoder. The decoder decides parts of the source sequence to pay attention to. By letting the
decoder have an attention mechanism, we relieve the encoder from the burden of having to encode all
information in the source sequence into a fixed length vector. With this approach the information can be
spread throughout the sequence, which can be selectively retrieved by the decoder accordingly.
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Figure 4.4: The graphical illustration of the model to generate the t-th target token yt given a source sequence

(x1, x2, ..., xT ).

4.4.3 Bidirectional LSTM Encoder for pose correction

The usual RNN, described in Section 2, reads an input sequence x in order starting from the first
symbol x1 to the last one xTx . However, in the proposed scheme, we would like each word to summarize
not only the preceding words, but also the following words. Hence, we use a bidirectional RNN, which
has been successfully used recently in speech recognition (see, e.g., Graves et al. [41] ).

For each token xj , hj is obtained by concatenating the forward hidden state ~hj and the backward one
�
hj . In this way, the hj contains the summaries of both the preceding tokens and the following tokens.
Due to the tendency of RNNs to better represent recent inputs, hj will be focused on the words around
xj . This sequence is used by the decoder and the alignment model later to compute the context vector
(Eqs. 4.7, 4.8).

We have initial pose estimates for each frame from the initialization stage. The correction model is
trained to refine these sequences. We train the model to map the input pose sequence to target sequence
(ground truth pose). There is a soft alignment between the input and output sequence elements. We now
demonstrate the results of our approach on standard baselines and benchmark datasets.

4.5 Datasets

YouTube Pose. This new dataset consists of 50 videos of different people from YouTube by [23],
each with a single person in the video. Videos range from approximately 2, 000 to 20, 000 frames in
length. For each video, 100 frames were randomly selected and manually annotated (5, 000 frames in
total). Frames are annotated with 7 key-points i.e., head, left-right shoulder, left-right elbow, left-right
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: Sample images from the dataset. (a), (b), (c), (d) are sample images from YouTube Pose Subset dataset

and (e), (f), (g), (h) are sample images from CVIT-Sports videos dataset.

wrist. The dataset covers a broad range of activities, e.g., dancing, stand-up comedy, how-to, sports,
disk jockeys, performing arts and dancing sign language signers.

YouTube Pose Subset. A five video subset from YouTube Pose. The videos distribution for subset
dataset is as follows: two disc jockeys, a mime artist, a dancing sign language signer, and one aerobics
instructor.

CVIT-Sports. For our experiments, we use the CVIT-SPORTS- videos dataset by [87]. It is an
extremely challenging dataset of humans playing sports. This set has a total of 11 videos of a human
playing sports retrieved from YouTube. It includes intricate activities like cricket-bowling, cricket-
batting, football. In total, this set has a total of 1457 frames averaging out to 131 frames per video. All
the frames in the dataset have been annotated with 14 key-points i.e., head, neck, left-right shoulder,
left-right elbow, left-right wrist, left-right hip, left-right knee and left-right ankle. In our experiments,
we use only the upper body joints i.e., head, left-right shoulder, left-right elbow, left-right wrist.

These datasets vary in terms of activities, sampling rate, shape variance, and illumination. We
demonstrate our experiments on a wide variety of datasets, which indicates the robustness of the pro-
posed model.
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4.6 Evaluation Measures

In all the experiments, we compare the estimated joints against frames with manual ground truth.
We present results as graphs that plot accuracy vs normalized distance from ground truth, where a joint
is deemed correctly located if it is within a set threshold distance from a marked joint centre in ground
truth. Higher pck implies more accurate estimations.

4.7 Experiments and Results

4.7.1 Baselines

SFN. SFN [73] is a state-of-the-art ConvNet for human pose estimation. It is a fully convolutional
network with an implicit spatial model that predicts a confidence heatmap for each body joint in images.

Figure 4.6 shows the architecture of SFN. It consists of a spatialNet (8 convolution layers) which
regresses heatmap for each joint separately. The Spatial fusion layers take as an input pre-heatmap acti-
vations (conv3 and conv7), and learn dependencies between the human body parts locations represented
by these activations. It learns to encode the dependencies between joints and learns an implicit spatial
model to prune the kinematically impossible poses.

Figure 4.6: SFN. SpatialNet is a fully convolutional network. It regresses heatmap for each joint separately. The

second part of network is Spatial Fusion Net, which takes intermediate activations from SpatialNet. The spatial

fusion layers learn to encode dependencies between human body parts locations, learning an implicit spatial

model.

YR. [95] is a method for detecting articulated people and estimating their pose from static images
based on a new representation of deformable part models. The flexible mixture model jointly captures
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spatial relations between part locations and co-occurrence relations between part mixtures, augmenting
standard pictorial structure models that encode just spatial relations.

Figure 4.7: YR. First and second model, represent the classic articulated limb model of Marr and Nishihara [64]

and Felzenszwalb and Huttenlocher [36] respectively. Third model, shows different orientation and foreshortening

states of a limb, each of which is evaluated separately in classic articulated body models. On the right, Yang and

Ramanan [95] approximates these transformations with a mixture of non-oriented pictorial structures, in this case

tuned to represent near-vertical and near-horizontal limbs.

4.7.2 Training

The videos are split into fixed length sequences. To increase the total number of samples to train the
model, we perform data augmentation. The frames are randomly rotated between −30◦ and 30◦ and
only horizontally flipped. Data augmentation has to be done carefully so that the video generated after
augmentation should be semantically meaningful. By considering overlapping sequences, there are two-
fold advantages: (i) this increases the number of samples for training, and (ii) overlapping sequences
generate multiple estimates for a single frame, which reduces the total error.

The data is split into mini-batches of size 64. The correction model is trained on the YouTube Pose
dataset. We used Keras for our experiments. For experiments on CVIT-SPORTS, the correction model
is fine-tuned on a subset of CVIT-SPORTS videos dataset. The model is trained for 100 epochs, using
RMSProp optimizer. The learning rate is set to 0.01.

The YouTube Pose Subset accuracy (%) at d = 20 pixels is shown in Table 4.1. Our method surpasses
SFN [73] by 2.07% . There is 5% boost in accuracy for head and shoulders improve by 6% (Table 4.1).
Our method performs equal to the baseline on wrists and elbows. Table 4.1 shows that we surpass
YR [95] by 3.7%. We see that our method corrects head, elbows and shoulders but doesn’t improve on
wrists (which are harder to define in complex poses). We show 18%, 1%, 3% boost over YR on head,
elbows and shoulders respectively. Charles et al. [23] mentioned that YR model doesn’t perform well on
the YouTube Pose dataset. Hence, they have re-trained the model to improve the estimates. Hence, we
see that the YR average pck is 44.0% (ref table 4.1) which is less compared to the accuracies mentioned
in [23]. Experiments demonstrate that the proposed approach refines predictions given generic pose
estimates.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Comparing human poses on sample images from YouTube Pose Subset and CVIT Sports videos

dataset. (a), (b), (c), (d) show examples of pose corrections and (e), (f) show failure cases where red and yellow

correspond to joints predicted using initialization (baseline) and our method respectively.

The PCK (Percentage of Correct Keypoints) accuracy on the CVIT-SPORTS videos dataset is shown
in Table 4.2. We see improvement in head, elbows and shoulders over SFN. The head joint accuracy
enhances by 26.2%. The accuracy averaged over all joints exceeds baseline by 3.1%. While using YR

baseline, there is boost in wrists, elbows and shoulders and the average pck gain is 0.7%.

Figures 4.8 and 4.1 show the visualizations of pose corrections on sample dataset images. The red
and yellow represent the initialization (baseline predictions) and the corrected pose predictions respec-
tively. In Figure 4.8(a) and (b), the initial predictions for left elbow and left wrist are erroneous, but our
approach corrects the poses as shown in the figure. Figure 4.8(c) predicts left wrist on the right wrist
while Figure 4.8(d) predicts right wrist on the left wrist, and our method successfully corrects the pose.
Our method fails to correct the poses, if the initial predictions are erroneous across the neighborhood.
In Figures 4.8(e) and (f), it is not able to refine the pose well enough, as the neighborhood frames also
have erroneous predictions, which makes it difficult for refinement. Adding to that, these videos have
low sampling rate and large motion changes across frames. For example, Figure 4.8(f) is the only frame
where the head position lies in center but its previous and next frames have head position in the top (as
shown in Figure 4.8(a)) and this leads to the errors.
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Method Head Wrsts Elbws Shldrs Average

Pfister et al. [73] 74.4 59.0 70.7 82.7 71.3

SFN [73] 79.2 58.4 71.1 82.4 71.9

SFN++(Ours) 84.9 56.8 71.0 88.3 73.9

YR [95] 44.6 30.3 37.9 64.1 44.0

YR++(Ours) 62.8 29.4 38.9 67.3 47.7

Table 4.1: Component analysis on YouTube Subset Pose datasets. Accuracy (%) at d = 20 pixels. SFN++ and

YR++ indicates refinement using the proposed method. (We have highlighted all results where the proposed

method shows improvement.)

The PCK plots for head, wrists, elbows and shoulders on the YouTube Pose Subset dataset are shown
in Figure 4.9. It is clear from the figure that the proposed approach has high recall. Also, the gain in
accuracy is highest for head, followed by shoulders, elbows and wrists. Higher recall is an indication of
refinement in joint predictions (Figure 4.1and 4.8).

4.8 Summary

In this paper, we showed that the proposed pose correction model refines pose estimates obtained
from generic models, independent of the pose estimator used to generate the initial pose estimates.
We successfully posed the pose correction problem as a sequence-to-sequence learning problem. We
demonstrated our results on challenging datasets which cover a wide range of activities, and are sampled
at different sampling rates. The results show great promise in this approach to get more accurate pose
estimation results in a simple, fast and generalizable manner.

41



Method Head Wrsts Elbws Shldrs Average

SFN [73] 20.7 46.7 38.9 55.7 43.2

SFN++(Ours) 46.9 42.7 38.9 56.7 46.3

YR [95] 78.9 43.9 49.8 73 59.1

YR++(Ours) 78.6 44.0 51.2 74.3 59.8

Table 4.2: Component analysis on CVIT SPORTS videos dataset. Accuracy (%) at d = 20 pixels. SFN++ and YR++

indicates refinement using the proposed method.(We have highlighted all results where the proposed method

shows improvement.)
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(a) (b)

(c) (d)

Figure 4.9: Results of our approach on YouTube Pose Subset dataset. We observe that the refined estimates

using our approach have higher recall compared to the baselines: Yang & Ramanan [95] and Spatial Fusion

Network [73].
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Chapter 5

Conclusions and Future Work

With the success of deep learning and also to strive towards robust problem solving and benchmark-
ing, it is essential to have large scale annotated data. It is evident that annotating huge amount of data
manually is not feasible and prone to human error. There is a need for automation in data annotation, and
there have been multiple attempts to address this task. Earlier works have either crowd-sourced the an-
notation task (which is expensive and not reliable) or have used vision and machine learning algorithms
to develop annotation mechanisms.

In this thesis, we propose methods using vision and machine learning algorithms to automate the
annotation task for multiple object annotations in video sequences. The aim is to increase awareness
and prioritize building large datasets. We have shown that by using redundant information in videos,
the human annotation efforts can be reduced significantly. The proposed solutions makes it feasible to
generate large scale object annotations efficiently.

5.1 Future Work

Future research extensions of the proposed methods would be, application of present work for other
object annotations (discussed in chapter 3) in video sequences.

• The method proposed in chapter 3, for tight bounding box annotation of objects can be directly
extended for semantic labelling annotation of objects in video sequences.

• The annotation scheme for human pose in chapter 4, can be extended for hand pose annotation
for hand gesture videos.

Apart from application of the proposed methods, future directions in terms of algorithm are

• In chapter 3, user annotates only the key-frames and the annotations are propagated across neigh-
borhood. The key-frame selection strategy used in chapter 3, can be made more sophisticated
based on the video content so that the user annotates minimum frames.
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• Semi-automatic annotation scheme in chapter 3, requires human to annotate key-frames. This can
be automated with the help of multiple algorithms for object bounding box detection, and select
the most confident detection from set of predictions based on confidence scores for initialization.

• In chapter 4, the sequence to sequence learning formulation, is independent of the initialization
scheme. By designing an end-to-end architecture and backpropagating the errors not only through
the LSTM architecture but also till the initialization scheme, the initialization scheme itself can be
improved.

We highlight the necessity of large scale annotated data specially in the era of deep learning. By
proposing the automatic object annotation methods, we hope it would motivate the community in build-
ing larger datasets and not underrate the importance of data.

45



Related Publications

Conference

1. Efficient object annotation for surveillance and automotive applications.
IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW), 2016
Sirnam Swetha*, Anand Mishra* , Guruprasad M. Hegde+ , C.V. Jawahar*
CVIT, KCIS, International Institute of Information Technology, Hyderabad*
Bosch Research and Technology Centre, India+

2. Sequence-to-Sequence Learning for Human Pose Correction in Videos
4th Asian Conference on Pattern Recognition (ACPR), 2017
Sirnam Swetha* , Vineeth N Balasubramanian+ , C.V. Jawahar*
CVIT, KCIS, International Institute of Information Technology, Hyderabad*
Indian Institute of Information Technology, Hyderabad+

46



Bibliography

[1] http://web.mit.edu/vondrick/vatic/. 1, 18, 19

[2] http://viper-toolkit.sourceforge.net/. 18, 19

[3] http://www.research.ibm.com/videoannex/index.html. 18, 19

[4] G. Cheung A. Frome, A. Abdulkader, M. Zennaro, A. Bissacco B. Wu, and L. Vincent H. Adam,
H. Neven. Large-scale privacy protection in street-level imagery. In ICCV, 2009. 1, 17

[5] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici, Balakrishnan
Varadarajan, and Sudheendra Vijayanarasimhan. Youtube-8m: A large-scale video classification
benchmark. arXiv preprint arXiv:1609.08675, 2016. 9

[6] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. People-tracking-by-detection and people-
detection-by-tracking. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on. IEEE, 2008. 9, 10, 26

[7] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. Pictorial structures revisited: People de-
tection and articulated pose estimation. In CVPR, 2009. 32

[8] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. Monocular 3d pose estimation and tracking
by detection. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 623–630. IEEE, 2010. x, 2, 9, 10, 26

[9] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human pose esti-
mation: New benchmark and state of the art analysis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2014. x, 11, 13
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