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Abstract

Human brain is undoubtedly the most magnificent yet delicate arrangement of tissues. This serves as
the seat of such a wide span of cognitive functions and behaviors. The neuronal activities within every
neuron, collectively observed over network(s) of these interconnected neurons, manifest themselves into
patterns at multiple scales of observations. Many brain imaging techniques such as fMRI, EEG, MEG
etc. measure these patterns as electro-magnetic responses. These patterns supposedly play the role of
unique neuronal signatures of the vast repertoire of cognitive functions. Experimentally, it is observed
that different neuronal populations participate coherently to generate a signature for a cognitive function.
These signatures could be investigated at the micro-scale corresponding to responses of individual
neurons to external-current stimuli, at the meso-scale related to populations of neurons that show similar
metabolic activities and in turn these populations, also known as regions of interest (ROIs), communicate
via complex arrangement of anatomical fiber pathways leading to signatures at the macro-scale. The holy
grail of neuroscience is thus to computationally decipher the interplay of this complex anatomical network
and the complex functional patterns corresponding to the cognitive behaviors at various scales/levels.

Each scale of observation, depending on the instruments of measurement, has its own rich spatio-
temporal dynamics that interacts with higher and lower levels in complex ways. Large-scale anatomical
fiber pathways are represented in a matrix that accounts for inter-population fiber strength known as
structural connectivity (SC) matrix. One of the popular modalities to capture large-scale functional
dynamics is resting-state fMRI, and statistical dependence between these inter-population BOLD signals
is captured in functional connectivity (FC) matrix. There are many models that provide computational
accounts for the relationship between these two matrices as deciphering this relationship will provide the
mechanism by which cognitive functions arise over the structure. On one hand, there are many non-linear
dynamical models that describe the biological phenomenon well but are expensive and intractable. On
the other hand there are linear models that compromise on the biological richness but are analytically
feasible. This thesis is concerned with the analysis of the temporal dynamics of observed resting-state
fMRI signals over the large-scale human cortex. We provide a model that has a bio-physical explanation
as well as an analytical expression for FC given SC.

Reaction-diffusion systems provide a computational framework for the emergence of excitatory-
inhibitory activities at the populations as reactions and their interactions as diffusion over space and
time. The spatio-temporal dynamics of the BOLD signal governed by this framework is constrained with
respect to the anatomical connections thereby separating the spatial and temporal dynamics. Covariance
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matrix of this signal is estimated thus getting an estimate of the functional connectivity matrix. The
covariance matrix or the BOLD signal in general is expressed in terms of the graph-diffusion-kernels
thus forming an analytically elegant expression. Most importantly, the model for FC abstracts out
biological details and works in the realm of spectral graph theoretic constructs providing the necessary
ease for computational analysis. As this model learns the combination parameters of multiple diffusion
kernels and kernels themselves, it is called Multiple Kernel Learning (MKL) model. Apart from superior
quantitative performance, the model parameters may act as biomarkers for various cognitive studies.

Albeit, the model parameters are learned for a cohort, the model preserves subject-specificity. These
parameters can be used as a measure for inter-group differences and dissimilarity identification as
has been employed for age-group identification as an example in this thesis. Essentially MKL model
partitions FC into two constituents: influence of the underlying anatomical structure into diffusion kernels
and the cognitive theme of temporal structure into the model parameters, thus predicting FCs specific
to subjects within the cognitive conditions of the cohort. Even though MKL is a cohort based model, it
maintains sensitivity towards anatomy. Performance of the model drastically drops down with alterations
in SC and model parameters, but does not overfit to the cohort.

Resting state fMRI BOLD signals have been observed to show non-stationary dynamics. Such multiple
spatio-temporal patterns, represented as dynamic FC matrices, are observed to be cyclically repeating in
time motivating use of a generic clustering scheme to identify latent states of dynamics. We propose
a novel solution that learns parameters specific to the dynamic states using a graph-theoretic model
(temporal-Multiple Kernel Learning, tMKL) and finally predicts the grand average FC of the unseen
subjects by leveraging a state transition Markov model. We discover the underlying lower-dimensional
manifold of the temporal structure which is further parameterized as a set of local density distributions, or
latent transient states. tMKL thus learns a mapping between anatomical graph and the temporal structure.
Unlike MKL, tMKL model obeys state-specific optimization formulation and yet performs at par or
better than MKL for predicting the grand average FC. Like MKL, tMKL also shows sensitivity towards
subject-specific anatomy. Finally, both tMKL and MKL models outperform the state-of-the-art in their
own ways by providing bio-physical insights.
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Chapter 1

Introduction

1.1 The human brain

The human brain (see Figure 1.11) is the central organ of the human nervous system. With the spinal
cord, it forms the complete central nervous system. The brain is responsible for coordinating the entire
body. It receives information from senses, integrates them, processes and then releases decisions to
control all the activities in the body. The soft constituent tissues are contained and protected by the bones
of the skull in the head. Grey matter neurons form the thin outer layer, also called cortex, of the brain
responsible for major cognitive tasks. These neurons are connected by the neurons in the white matter.
These neurons are long fibers that can connect thalamus region with cortex. These two tissues are placed
inside the cerebrospinal fluid.

Neurons are arranged into groups or populations that are locally densely connected, and in turn these
populations are globally sparsely connected. Neurons process information and communicate though
this arrangement. This becomes key for the cognitive abilities of humans beings. In this arrangement,
different populations specialize in their functional properties that are responsible for processing a kind
of stimulus. Different brain areas communicate and coordinate their roles in successfully completing a
higher-order task. A growing body of researchers is suggesting that the brain areas are anatomically well
connected within themselves facilitating higher-order tasks.

1.2 Resting state activity

Functional Magnetic Resonance Imaging (fMRI) studies are based on blood oxygen level dependent
(BOLD) signal which is very active even in the absence of any perceptible input. A vast majority of
functional neuroscience studies focus on task-based inferences of the brain’s functional organization.
The blood oxygen level dependent (BOLD) signal is modulated based on the experimental variables and
these changes are observable in specific regions thereby allowing inferences that can be related to brain’s

1please go to this link https://www.youtube.com/watch?v=dAIQeTeMJ-I for a video of the same.
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Figure 1.1: The human brain. The picture depicts a glass visualization of human brain replacing many
of the biological details. The fibers seen carry neural information to the grey cells present on the outer
layers of brain tissue. Adapted from https://www.youtube.com/watch?v=dAIQeTeMJ-IYoutube.

cognitive functions. Intriguingly, task-positive (and -negative) activations of regions are only less than
5% higher (and lower) in energies than spontaneous fluctuations in brain activity over those regions [42].

These spontaneous fluctuations were considered as ‘noise’ before a decade. Even though these signals
are slow (≤ 0.1 Hz) in nature, they consume upto 20% of body’s energy [84, 71]. This spontaneous
activity, which is not related to any task, is called resting state activity of the brain. When a participant is
lying down with his eyes closed or fixated at a point without falling asleep, she is said to be in resting
state. BOLD signals captured in such a state are called resting state fMRI signals. Many groups around
the world have repeatedly reported that spontaneous activities of specific regions correlate in their signal
variations. For example, left and right somatomotor cortices are functionally correlated with right medial
cortex in the absence of any task [17]. Such empirical observations, one of them depicted in figure 1.2,
have been suggesting that indeed this resting state activity has a well defined functional organization
whose understanding and analysis would provide insights into functional topography of the brain.

After scanning, the raw data undergoes several pre-processing steps to isolate the spontaneous fluctua-
tions from physiological parameters or in general non-neuronal noise sources [26]. After emphasizing on
the neurobiologically meaningful BOLD signals, next step towards understanding this activity is to find
spatial patterns of synchrony. In this regard, the simplest way is to look at how the regional activities
correlate with each other, i.e forming a functional connectivity matrix and identifying communities
within. A competitive method, known as independent component analysis (ICA) [102], finds spatial
maps that are statistically independent of each other.

The topographical pattern of spontaneous activity is used to predict response of the participant in a
task condition and/or disease states [30, 107, 41, 40]. In addition, it is also used to predict the quality
of task preformance. Moreover, these spatial patterns may also predict the behavior of a participant.
These spatial patterns are related to the temporal patterns originating from signals of frequencies less
than 0.1Hz. In recent years it had been found that the spontaneous activity is not temporally consistent, it
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Figure 1.2: Activities persistent in the human brain in the absence of any particular task. Neural
activities measured by fMRI at each voxel is depicted with color. The hotter(cooler) the color, the
positive(negative) the activity value. Tremendous amount of topological synchronization of these resting
state patterns is observed across the brain. Modified from [99].

shows non-stationary behavior [60, 61]. The spontaneous activity influences a participant’s behavior in a
task condition and vice versa [42].

A major bottleneck is interpreting this spontaneous activity. A natural question to ask is whether
this activity is related to the structural connectivity. Studies show indeed it is so [29, 58], but the exact
relations are still not understood. Regions that have no direct anatomical connection also show functional
correlations. Studies have shown that it is better to segregate spontaneous activity into two layers [43]:
one, occurring due to conscious mentation, and second, due to intrinsic activity which persists across
different resting state conditions. Activity in the first layer may be considered as task-evoked modulations,
and the activity in the second layer, underlying the first, is related to temporal fluctuations over the
anatomical connections.

Apart from such conceptual layers of activities, an observation from imaging is that some regions
are activated more at rest and de-activate themselves during a task-condition [93, 83]. This organization
during rest was termed as default mode of brain function. This default mode, unique with respect to task
conditions is considered to mediate necessary processes at rest, but there are other networks at rest which
play their respective roles.
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1.3 Diffusion MRI

There are many ways of capturing the structural human brain network; invasive technique such as tract
tracing or non-invasive ones such as structural Magnetic Resonance Imaging (MRI), Diffusion Tensor
Imaging (DTI) , Diffusion Spectrum Imaging (DSI), etc. Different brain tissues respond to the magnetic
signals differently. This is the basis of any MRI scan. Structural MRI maps the 3-dimensional arrangement
of structural subdivisions on the brain. Depending on the variations in the volume and/or surface area
regional subdivisions, structural MRI allows inference of structural connectivity by correlating the
region-specific volume sizes [55].

As the connections between the cortical neurons are provided by the white matter fibers, it becomes
apt to measure the number and direction these fibers between two cortical regions. Brain tissue contains
water molecules abundantly. Changes in the orientation of the magnetic signals does not change the
direction of water molecules’ movement much in the grey matter, but result significant changes in the
white matter. In the grey matter, diffusion of water molecules is isometric, whereas that in the white
matter it is dependent on the fiber orientation. In the direction of fibers, rate of diffusion will be maximum,
thus becoming a viable measure for non-invasively tracing the white matter fibers [64, 11, 95, 63]. This
phenomenon is called diffusion anisotropy. This technology, called diffusion tensor imaging (DTI),
provides information about the direction of the fibers in each voxel. Instead of only one direction in
a voxel, technology has improved to provide multiple directions by improving the angular resolution.
These techniques are called q-ball [100], DSI [110] etc.

There are broadly two types of DTI technologies. Probabilistic DTI [12] provides a statistical estimate
of the probable direction of the fiber, and deterministic DTI find optimal streamlines within the tensor
field. Finally, after getting the estimates of fibers, between two voxels and /or large-scale regions density
of the fibers connecting them is usually considered as the anatomical or structural connection, thus
becoming an entry in the SC matrix [51]. DTI provides a symmetric weighted connectivity matrix and is
often thresholded to get a binary pattern.

1.4 Network Science

1.4.1 Networks

In the contemporary period, the two fields of neuroscience and complex networks are merging
together providing insights into both the fields that earlier was never possible. Over the last decade, with
the increase of data, spread of the field of complex systems is seen evolving into many domains and
hence linking them. The connectivity between the individual elements comes in many natural ways:
through synapses between neurons, web hyper-links, co-author connections, etc. These connectivity
patterns depict highly organized geometries of interactions between the elements. All these individual
elements have their own specialized functions, but but the complexity of the phenomenon produced by
their selective interactions is tremendous. Over this complex system lie the vast repertoire of functional
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Figure 1.3: From tissues to a network representation of a human brain. Neural activities of millions
of interconnected neurons can be efficiently described in terms of networks that are further mathematically
treated to infer about the cognitive phenomena over this complex biological system. Each area of the
brain, a region of interest, is a node in the network representation and the edges represent anatomical
connections between them. Adapted from [103].

patterns resulting into cognition. All the cognitive functions displayed are possible because of interactions
of individual neurons by a dense web of complex connectivity. This system of neuronal interactions
is the seat of consciousness. Every system can be analyzed through multiple scales. Especially brain
networks span from the micro-scale of cellular interactions through the large-scale functional interactions
of regions to the macro-scale of cognitive systems. In the multi-scale analysis, no level operates in
isolation, but in highly coordinated ways of inter-level dependence; both from the lower and higher levels.
Dynamics happening at the cellular level travel above through these multi-scale interactions to manifest
themselves as cognition and behavior.

Formally, the field of network science is expanding to study much larger systems and statistically
characterize their structure and functional dynamics as shown in figure 1.3. Further this description can
be used to predict global phenomenon over the network. The core mathematical field that studies such
complex networks is called graph theory.

1.4.2 Brain Networks

As there are many modalities for observing the brain, there are these many ways for describing the
brain connectivity [70]. The following are the three main connectivity representations of the brain:
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• Structural connectivity, SC, is literally a ‘wiring diagram’ of the physical links present in the
brain. These physical connections link the neural elements at multiple scales of observation; from
single-cell connections to large-scale networks of interregional pathways. This patten is considered
as relatively stable over short time periods of say few minutes but is plastic - changes the pattern -
over few years. This information is captured from the dMRI modality.

• Functional connectivity, FC, captures the statistical dependence between the temporal measures of
neural activities of two regions. The regions may be topologically very far from each other. The
timeseries data is captured by non-invasive measures such as EEG, MEG, and fMRI. FC is highly
time dependent and exhibits statistical non-stationarity. This matrix is measured using a symmetric
measure, hence does not provide any causal relationships between the regions.

• Effective connectivity, EC, describes the effect on a region’s activity due to another region’s that
may vary with time. There is no direct measure for estimating this matrix and can to come from
generative models such as DCM [45] or through temporal ordering which model-free.

This thesis will be focusing on large-scale networks where nodes are the functionally grouped neural
populations, also called regions of interest (ROI)s, and edges will be white matter fiber tracts connecting
these ROIs in case of SC and correlation coefficient between the BOLD timeseries in case of FC.

1.5 Research Problem and Contributions

The holy grail in cognitive neuroscience is understanding how the static brain structure gives rise
to dynamic function both during rest and task conditions. SC and FC matrices capture the above
two parts and are generated from different modalities, hence necessitating a computational model
that links the two matrices. Several models have been proposed to characterize the structure-function
relationship [23, 77, 36, 104, 81]. Simple linear diffusion models [2, 89] as well as complex non-linear,
whole-brain computational models [36] have been proposed. Linear graph models [2] admit closed form
deterministic and testable solution to macroscopic interactions of brain activity without requiring any
details of neural coding or their biophysical substrate. On the other hand nonlinear complex drift-diffusion
models based on excitatory and inhibitory neuronal populations, though not analytically tractable, give
rise to rich dynamics [36].

Research problem statement this thesis deals with is - ‘relating the relatively static structural connec-
tivity matrix to the functional connectivity dynamics obtained from the resting state fMRI time series’.
Primary contributions of this thesis are the following:

• Model: The model uniquely links SC to FC spectral graph theoretic constructs, especially combines
multiple diffusion kernels, retaining subject-specificity in prediction of FC. The proposed model
possesses the analytical beauty of linear models and yet is complex enough to capture the biological
details.
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• Hypothesis: We hypothesize that the presence of regional multi-scale co-activations that initiate
diffusion would be necessary to bridge the gap between structurally confined diffusion phenomenon
and empirically observed FC and that these co-activations would be common across the cohort.

• Formulation: We further provide a plausible mathematical reasoning for the existence of these
co-activations along with diffusion kernels by linearizing a variant of reaction-diffusion model and
extending it to generate FC. Moreover, we also describe a succinct multiple kernel learning (MKL)
procedure to retrieve these co-activations by formulating it as an optimization problem.

• Temporal dynamics: The proposed model is also extended to characterize temporal non-stationarity
and relates it to the underlying structure. The model discovers temporal topology and relates it to
the structural topology.

• Robustness: Our detailed empirical results demonstrate the validity of the proposed model on a
larger dataset. This is a generalized scheme that incorporates the existing large-scale diffusion
models for characterizing temporal dynamics over SC.

1.6 Thesis Overview

The outline of the thesis is as follows. Next chapter provides the required background regarding
the preprocessed data, and methods used. Chapter 3 introduces the notion of diffusion over a graph
and motivation for combination of multiple diffusion kernels. Chapter 4 details out the multiple kernel
learning (MKL) model, a vital contribution towards understanding the relationship between structure
and function. Chapter 5 extends the MKL model to incorporate temporal dynamics. Finally chapter 6

summarizes the main contributions of the thesis and directs towards future investigations.
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Chapter 2

Background

This chapter introduces the reader to the basic concepts and the dataset used in the thesis.

2.1 Data Description and pre-processing

All participants were asked to give diagnostic psychiatric interviews in order to acquire comprehensive
phenotypic information for the purpose of exploring brain/behavior relationship. We used the data
comprising of 47 healthy participants (age: 18-80; mean: 41.55 years; 19 males) scanned at the Berlin
Centre for Advanced Imaging, Charité University, Berlin, Germany. All participants gave written
informed consent and the study was performed under compliance of laws and guidelines approved
by the ethics committee of Charité University, Berlin. Participants did not show any sign of age-
related neurodegenerative diseases under clinical testing procedures at the time of imaging. Details of
preprocessing are mentioned in Vattikonda et al. [104].

2.1.1 Empirical DTI data and tractography

Images were taken with the following parameters: acquisition time=13:32, TR=10000ms, TE=91ms.
Images have 64 diffusion directions with b values=1000s/mm2. DTI data was corrected for motion and
eddy current, skull stripped, and fiber assignment was done using (FACT) algorithm [73]. Fractional
anisotropy map was registered to MNI152 template. voxels were parcellated into 188 regions using
Craddock’s spectral clustering parcellations [27]. We downloaded data from the website whose details
are in [20]. The empirical SC matrix of second dataset is generated by using an automated pipeline [90]
for reconstruction of fiber tracks from T1 structural MR images and Diffusion-weighted images (DWI).
Diffusion-Tensor-Imaging (TR 7500 ms, TE 86 ms, 61 transversal slices (2.0 mm), voxel size 2.3 ×
2.3× 2.3 mm, FoV 220 mm, 96× 96 matrix) and GRE field mapping (TR 674 ms, TE1 5.09 ms, TE2
7.55 ms, 61 transversal slices (2.3 mm), were measured directly after the anatomical scans. The images
obtained from these scans are used as input to the reconstruction pipeline to generate the SC matrix for
each subject (Please refer to [90] for a detailed outline of the pipeline for generating SC matrix). In
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Figure 2.1: Formation of structural connectivity matrix. (I) Basic outline and the intermediate data
files, after preprocessing, required for SC generation. Processed DTI data file is registered onto the
subject’s anatomical T1 image on which the tractograms are aggregated and collected into SC matrix.
We only consider individual weighted SC matrices as the graph would possess more information. (II)
The parcellation scheme used is known as Desikan Killiany atlas consisting of 34 cortical regions and
7 sub-cortical regions per hemisphere. The figure also consists of the names of all regions. Adapted
from [103].
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Figure 2.2: An overview of the processing steps of raw fMRI data to BOLD time series. From the
scanner to collecting average BOLD time series of each individual region-of-interest, this pipeline gives
an outline of the important steps. Modified from [85].

this pipeline, high resolution T1 anatomical images are used to create segmentation and parcellation of
cortical and subcortical gray matter. For each subject, binary white matter(WM) masks were used to
restrict tracking to WM voxels. dw-MRI data are pre-processed using FREESURFER after extracting
gradient vectors and values (known as b-table) using MRTrix. Upon extraction of gradient vectors and
values using MRTrix, dw-MRI data are pre-processed using FREESURFERs Using the registration rule
created by FREESURFERs function dt-recon we transform the high-resolution mask volumes from the
anatomical space to the subjects diffusion space, which will be used for fiber tracking. The cortical and
subcortical parcellations contained in aparc+aseg.nii are resampled into diffusion space, one time using
the original 1 mm isotropic voxel size (for subvoxel seeding) and one time matching that of our dw-MRI
data, i.e., 2.3 mm isotropic voxel size. Based on that, a fractional anisotropy (FA) and an eigenvector
map are computed and masked by the binary WM mask created previously. In order to improve existing
methods for capacities estimation the approach makes use of several assumptions with regard to seed-ROI
selection, tracking and aggregation of generated tracks [90]. Upon tractography the pipeline aggregates
generated tracks to structural connectome. The normalized weighted distinct connection counts used
here contain only distinct connections between each pair of regions yielding a symmetric matrix. Major
preprocessed data files and the atlas used are depicted in figure 2.1.

2.1.2 Imaging Protocol and Functional Connectivity Matrices

Resting-state fMRI for the dataset was performed on a Siemens Trio 3T with acquisition time = 10:55,
TR = 2500 ms, TE = 30 ms, on 38 slices with a voxel size = 3 mm3. fMRI data was slice time corrected,
linearly registered, skull stripped, and spatially smoothed. All samples were registered to MNI152 atlas
template. Residual BOLD data analyzed with the method elaborated in [27]. Time series of all pairwise
ROIs were correlated to calculate FC matrix. Functional MRI and T1-weighted scans for second dataset
were acquired using using a 3 Tesla Siemens Trim Trio MR scanner and a 12-channel Siemens head coil.
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BOLD time-series were acquired at TR 1940 ms lasting 22 minutes (TE 30 ms, FA 78◦, 32 transversal
slices (3 mm), voxel size 3 x 3 x 3 mm, FoV 192 mm). For functional imaging, subjects were asked
to keep awake and keep their eyes closedno other controlled task had to be performed. In addition a
localizer, DTI and T2 sequence were recorded for each subject. Each scan session started a localizer
sequence (TR 20 ms, TE 5 ms, 3 slices (8 mm), voxel size 1.9× 1.5× 8.0 mm, FA 40◦, FoV 280 mm,
192× 192 matrix). For each participant anatomical T1-weighted scans (TR 1900 ms, TE 2.25 ms, 192
sagittal slices (1.0 mm), voxel size 1× 1× 1 mm, FA 9◦, FoV 256 mm, 256× 256 matrix) as well as
T2-weighted scans (TR 2640 ms, TE1 11 ms, TE2 89 ms, 48 slices (3.0 mm), voxel size 0.9× 0.9× 3

mm, FA 150, FoV 220 mm, 256× 256 matrix) were acquired. The Virtual Brain pipeline was used for
the preprocessing of the data. Further details regarding the preprocessing steps and image acquisition
parameters can be found in [90].

2.1.3 FMRI connectivity

Figure 2.2 outlines the major steps to generate clean BOLD region wise time series. In order to
generate the functional connectivity (FC) matrices, raw fMRI DICOM files are first converted into a single
4D Nifti image file. After this step, FSLs FEAT pipeline is used to perform the following operations:
deleting the first five images of the series to exclude possible saturation effects in the images, high-pass
temporal filtering (100 seconds high-pass filter), motion correction, brain extraction and a 6 DOF linear
registration to the MNI space. Functional data is registered to the subjects T1-weighted images and
parcellated according to FREESURFERs cortical segmentation. By inverting the mapping rule found by
registration, anatomical segmentations are mapped onto the functional space. Finally, average BOLD
signal time series for each region are generated by computing the mean over all voxel time-series of
each region. From the region wise aggregated BOLD data, FC matrices are computed within MATLAB
using pairwise mutual information (on z-transformed data), and Pearsons linear correlation coefficient
as FC metrics. Any pre-processing technique, which implies a normalization of data must be avoided
when using our analytic operation, for this reason it is important to stress that we did not perform global
signal regression on data. Global regression, in fact, changes the distribution of the eigenvalues of the
FC and, in particular, shifts the correlations towards negative values. In resting- state BOLD data, this
means that zero and negative correlations are introduced. While the debate on the meaning of these
negative correlations and on the appropriateness of the use of global regression is open, this procedure
must absolutely be avoided when using the analytical operation here presented as the introduction of
zero eigenvalues leads to the impossibility of inverting FC to obtain SC. This, not only causes the loss of
some information, but it is also based on the assumption that the distribution of the positive eigenvalues
is unaffected by global regression, which is not the case as all the eigenvalues become more negative.
The major steps involved in generating rs-FC matrix are brain extraction, motion correction, six-degrees
of freedom (DOF) linear registration to the MNI space and high pass temporal filtering. Each participants
functional images were registered to pre-processed T1-anatomical images and parcellated into 68 regions
of interest (ROIs) using FREESURFERs Desikan-Killiany atlas [38]. Regional time-series were obtained
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Figure 2.3: Exploration of structural and functional networks through graph theory. Following the
four steps leads to brain networks: 1. Define network nodes, 2. Define a measure of node-association
(edge), 3. Generate the association matrices, and 4. Calculate the network properties. Adapted from [21].

by considering weighted average from voxel-wise time-series. Subject-specific resting state functional
connectivity (rs-FC) matrices were obtained by applying z-transformed pairwise Pearson correlation
between each pairs of regional BOLD time-series.

2.2 Network Theory

After the data is preprocessed, SC and FC matrices are considered as the structural and functional
networks and their properties have been extensively studied. Figure 2.3 highlights the scheme for
constructing structural and functional networks of the human brain.
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Figure 2.4: Network properties. Visualization of the network properties defined for analyzing human
brain. Modified from [21].

2.2.1 Network properties of a graph

Figure 2.4 depicts some of the key network properties. One of the elementary properties of the graph
is the degree distribution of the nodes. This is important to observe as it tells the importance of each node
to connect to its neighbors, i.e. the number of nodes that maintain the topology of the graph. Two nodes
may be directly connected with an edge or indirectly through a path via intermediate nodes. Such paths
determine the flexibility of information exchange between two nodes. Longer the paths, lesser the effect
of communication. Adjacency matrix, W, provides a succinct representation of all the possible paths.

Functional interactions diminish away between nodes that are topologically far apart, i.e. large path
lengths. Hence this defines a natural way to segregate nodes into clusters containing local neighbor-
hoods [109]. Different neighborhoods may have different patterns of connectivity, thus forming the
elemental units of sub-graphs called motifs. Besides segregating nodes into communities, there are
measures of integration of information between these communities measuring the capacity of network
to pass and distribute information. One of them is the characteristic path length - global average of the
graph’s distance matrix. A short path length indicates that nodes are reachable with small paths. Another
measure is the global efficiency [69] computed as the average of the inverse of the distance matrix. Low
efficiency means that nodes are disconnected, and large efficiency means nodes can be easily reached.
Segregation and integration act as two opposing forces for constructing the network.
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The above global measures tell about the overall arrangement of the graph, but do not describe the
importance of each node in the communication mechanisms. The impact of each node may be different,
and the nodes that are most influential are called hubs of the network. Degree of the nodes can be a
measure to identify the strongly connected nodes. In case of modular architectures, the intra-module and
inter-modules connectivity determines the hub nodes. Nodes that facilitate inter-modules communication
are termed as hubs, and this is measured via participation coefficient [49]. A related notion to hubs is
the centrality of a node in terms of it control over the information flow [44]. There are many ways of
measuring centrality. One of them is the betweenness centrality that describes how many edges intersect
at a given node. The higher this number, the central the node is. Consequently this measure can be
associated with an edge as well. The measures of centrality are based on underlying assumptions of the
dynamics over the network [18]. Another relatively recent centrality measure takes into consideration
of the indirect influences and makes nodes close to central nodes central themselves. This is called
eigenvector centrality. Categorizing nodes and edges based on centrality is important as nodes that are
structurally central may participate in a large number of functional processes.

2.2.2 Network architectures

Networks in the real world fall into distinct classes of architectural constructs, and these constructs
play a major role in shaping the dynamics over the graphs.

• Random vs. Regular Random graphs are attributed to ErdsRnyi. First a set of disconnected nodes
is taken. With a uniform probability distribution, two nodes are randomly connected. Random
graphs do not have any order in the connections. Because of uniform probability, degree distribution
has a characteristic scale. Two connected nodes may not be sharing the same neighbors. In contrast,
in a regular graph, nodes are connected in an orderly fashion. An example is the regular lattice.
Two connected nodes are highly likely to share the same neighbors. These graphs are locally dense.
Many real world graphs do not show such ideal behaviors. Degree distribution of such graphs is
spread out in a wide range, but two nodes can be reached with a average path length of 6 hops.
Such networks are called small-world-networks with a measure defined by Humphries et al. [59].
Small-worldness is a global property satisfied by many real-world networks, thus architectural
design in particular cannot be determined.

• Scale-freeness Another property of real-world networks is the broad width of non-homogeneous
degree distribution. This distribution is called a power law. It can be understood as follows - if x is
a possible degree with a probability p(x), then the ratio p(2x)

p(x) is a constant. This implies that the
nature of the distribution does not change when zoomed in at any degree location, thus suggesting
non-presence of any scale of connectivity in the network [8, 7].

Small-worldness and scale-freeness are the two major properties of real-world networks, and thus also
manifested by brain networks. Almost all fields are respecting the abstract representation of a physical
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system as a network, but the subtleties in the meanings of nodes and edges need to be clearly understood
requiring us to understand these physical systems in some depth. The same goes for networks of the
brain. As a fact, there are many representations of brain as a network coming from multiple modalities
used to capture it!

2.3 Spectral Graph Theory

A graph is defined as a set of elements and their pairwise connections. These elements are mathe-
matically abstracted as nodes (or vertices) and their connections as edges. The set of nodes is denoted
as V = (v1, · · · , vn) and set of edges as E = {(vi, vj)|(vj ∼ vi) = wi,j ≥ 0}. An edge exists only if
two nodes have a relationship, wi,j is the weight of the relationship between nodes vi, and vj . These
nodes on themselves can be lying in a Euclidean space, but because of their pairwise relationships, the
graph defines an underlying non-Euclidean space for the nodes. An edge can represent many sorts of
relationships; similarity, dis-similarity, or a constraint (that two nodes should not be related!). Here we
consider the relationships that capture similarity as such graphs have been analyzed in depth. A graph
can be represented by a matrix, called weighted adjacency matrix, Wn×n whose (i, j)th entry wi,j is the
similarity between vertices vi and vj , n being the number of nodes. Such an underlying non-euclidean
topology is analyzed in terms of eigenvalue-eigenvector spectrum of graph in the field of spectral graph
theory [24]. Spectral analysis of a graph starts first by constructing its Laplacian matrix Ln×n. L is the
gram matrix of the incidence matrix of the graph. If Dn×n is the degree matrix of the graph with its
diagonal entries di,i representing the degree of node i, then L is defined as L = D−W.

In order to understand the graph Laplacian, consider a regular grid, i.e. nodes, vm,n at the spatial
location (m,n), are points on a regular two-dimensional plane connected to their four neighbors with
a weight say 1

(δx)2
. Then the graph Laplacian is the five-point stencil approximation of the continuous

Laplacian operating over a function, f = f(m,n) at (m,n), defined over the nodes of this regular mesh
(abusing the notations) [53].

Lf(m,n) =
4f(m,n)− f(m+ 1, n)− f(m− 1, n)− f(m,n+ 1)− f(m,n− 1)

(δx)2
. (2.1)

The continuous Laplacian on a function is approximated in this standard way. Laplacian matrix represents
the second-order derivative operator on the functions on a graph. In this respect it captures the topology
of the graph and becomes a basis for defining all the operators over the graph.

Laplacian matrix provides a link between discrete graph representations and vectors in continuous
Euclidean space. Mathematical operators defined in the continuous space are extended in the discrete
space via the graph Laplacian matrix. Continuous-space kernels operate on vector valued functions
defined by physical processes in that space. The discrete counterparts of these operators are the kernels
defined as functions of the graph Laplacian. These kernels operate on functions or signals defined on the
nodes of the graph.
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An important random process over a graph is diffusion. The kernel that captures the spatio-temporal
extent of diffusion is the diffusion kernel H. These graph kernels operate on the real valued functions
f : V → R on the set V of the graph. Diffusion of a function on a graph captures the spatial extent of
spread of the function with time - at node vi the time evolution of the function will be as follows:

d

dt
fvi = −γ

n∑
j=1

wi,j(fvi − fvj )

= −γ
(
fvi

n∑
j=1

wi,j −
n∑
j=1

wi,jfvj

)
= −γ

n∑
j=1

(
δ[i]di,i − wi,j

)
fvj ,

(2.2)

where γ is a scalar constant and δ[i] is the impulse function:

δ[i] =

1 when at node i

0 otherwise.

Writing Equation 2.2 for all the nodes,
d

dt
f = −γLf, (2.3)

graph Laplacian plays a crucial role in the differential equation. Being a linear first order differential
equation, its closed form solution is:

f(t) = e−Lγitf(0). (2.4)

The exponential function of the graph Laplacian is the kernel over the graph that represents the extent of
diffusion of the function f at the diffusion scale γt. Diffusion (or heat) kernel is uniquely defined at its
scale given the graph.

One of the important properties of Laplacian matrix is that it is a positive semi-definite matrix, hence
it is eigen-decomposable:

L = Ψn×nΛn×nΨ
>
n×n,

Hi = Ψe−ΛγiΨ> = e−Lγi .
(2.5)

L has a complete set of orthonormal eigenvectors Ψ = [ψ1, · · · , ψn], a column being one, and their
corresponding non-negative eigenvalues Λ = diag(λ1, · · · , λn) arranged in non-decreasing order from
top to bottom rows. Specific to the solution of Equation 2.3, function at time t is a linear combination of
the eigen-functions with their amplitudes modulated by the exponential kernel:

f(t) =

n∑
i=1

(e−γλiψi)(ψ
>
i f(0)). (2.6)

All these kernels can be principly put in another framework also. This framework extends the conpcets
of signals and systems onto irregular domains such as graphs.
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2.4 Graph Signal Processing

In the signal processing domain, a function is treated as a signal, now if on every node of the graph
there is a signal, this combined signal over the entire graph is called a graph-signal u ∈ Rn. This
graph-signal forms a pattern over the graph-topology. The emerging field of graph-signal-processing
analyzes such graph-signals in terms of their components on defined harmonics based on the algebraic
and spectral properties of graph-topologies [94].

We will first conceptualize the notion of frequency over a graph and the corresponding Fourier basis
defining the transform. For a 1-dimensional signal u(t) varying with time t, the Fourier transform is as
follows:

U(ω) =< u(t), ejωt >=

∫
R
u(t)e−jωtdt, (2.7)

where ω is the angular frequency of the complex exponential basis signal and j =
√
−1. Every component

of the signal on a Fourier basis signal is the inner product between the two. Consider the eigenfunctions
of the 1-dimensional Laplacian operator:

∆(ejωt) =
∂

∂t

( ∂
∂t

(ejωt)
)

= jω
∂

∂t
(ejωt) = −ω2ejωt. (2.8)

These eigenfunctions are the Fourier basis signals with their corresponding eigenvalues as the square of
the frequency. Thus the graph Fourier transform is defined as the expansion of a graph-signal in terms of
the eigenvectors of graph-Laplacian:

ûi =< u,ψi >=
n∑
k=1

ukψ∗i (k)

ûn×1 = Ψ>n×nun×1

(2.9)

Ψ> representing the conjugate of the eigenvectors and Λ representing the square of the frequencies of
the graph-topology.

In the classical Fourier analysis the angular frequencies ω carry a specific meaning of frequency. The
smaller the ω the slower the oscillation of the Fourier basis signal and vice versa. And for ω = 0 the
basis signal takes a constant value. Similarly in the case of graphs, the graph Laplacian eigenvectors
corresponding to lower (higher) λi’s vary slowly (rapidly) on the graph, introducing the concept of graph
harmonics. If there is a strong edge between two nodes, the dissimilarity between the values of the
eigenvector on the two locations will increase with λ.

The inverse graph Fourier transform is also easily deducible:

u(t) =< U(ω), e−jωt >

u(t) = Ψû.
(2.10)

In the above equation, the graph-signal u is represented as a linear combination of graph harmonics
(columns of Ψ) where elements of û form the coefficients of linear combination which represent
contribution of each component graph harmonic.
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Filtering of signals form an important aspect in signal processing with their applications ranging
from noise-removal, compression, communication etc. Filtering operations in spatial domain require
convolution operations. Euclidean spaces such as time-signals and images have a notion of a regular
neighborhood of every point in the space, which aids spatial convolution by simply sliding the window
to every point and compute the integral of the point-wise multiplication of the signal and the filter.
Following equation is example of convolution of a signal g and a filter h, both defined in time-domain.

(f ? g) (t) =

∫ ∞
−∞

f(t) ∗ g(τ − t)dτ (2.11)

The symbol ? defines the convolution operation. However in case of a graph, neighborhood at each vertex
v ∈ V is not constant. Coming up with a spatial filter for a graph is hence not trivial. It is important to
see that the convolution operation in the original domain, or the vertex domain, is easily becoming a
multiplication in the graph Fourier domain. Frequency filtering of graph signals preserves this notion of
convolution by modulating the contribution coefficients of the component graph harmonics, which can
be mathematically expressed as follows:

ŷ = ĥ� û. (2.12)

Here û, ĥ and ŷ are the graph signal, filter and the filtered output defined in spectral domain respectively.
The low (high) valued elements in the function ĥ attenuate (amplify) the contribution of the component
graph harmonics thereby filtering the graph signal. The operator � defines Hadamard product / element-
wise product of two vectors. The above operation can be generalized by considering spectral domain
signals as functions over the eigenvalues of the graph, which carry the notion of frequency of the
component graph harmonics.

ŷ(λ) = ĥ(λ)û(λ). (2.13)

We can take an inverse graph Fourier transform of ŷ to get the final filtering output in vertex domain:

y = Ψŷ

= Ψ
(
ĥ(Λ)û

)
= Ψĥ(Λ)Ψ>u

= ĥ(L)u

(2.14)

The graph filtering approach can be used to conduct various techniques such as smoothing, translation,
diffusion etc. As a special case, if ĥ is considered to be an exponential function, we get a diffusion kernel
or heat kernel over the graph Laplacian as defined in Equation 2.5.

2.5 Computational Models of the Large-Scale Brain Dynamics

Processes happen at the cellular level, impulses are generated and transmitted to other nerve cells.
This phenomenon is expressed via connectivity, i.e. the way neurons demonstrate mutual functional
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dependence allowing each neuron to function independently and collectively. All the cognitive functions
such as memory, attention, etc require this large-scale integrative coordination manifest as complex
patterns. At the same time, cognitive processes are better captured in large-scale indirect measurements
such as functional MRI (fMRI), DTI, Electroencephalography (EEG) and Magnetoencephalography
(MEG), etc. This demands urgent necessity for computational models to decipher these patterns and map
them to neural and/or regional functions.

To understand the rich spatio-temporal nature of brain’s complex system, computer simulations
become inevitable. The data is rich enough that neither only theoretical analysis nor only empirical
experimentation would match the complexity of data. Computer simulations rather provide the middle
ground between mathematical underpinnings and experimentations. In order to explain the neuroscience
data and to make predictions from them requires computational modeling. In a computational model,
each unit and their interactions must be well parameterized. The parameters must clearly describe the
qualitative concepts; either implicitly or explicitly [76]. Typically a computational model is described as
a set of coupled partial differential equations. Each individual partial differential equation takes different
forms and describes the rate of change of a system variable. Coupling between these equations is given
by the anatomical connectivity. This setup represents the state in which the system is currently in, hence
also called state equations. Solution of this coupled system is via integrating the equations, which is
usually numerical in nature. This process, carried out through a computer, results into time-series that can
be analyzed after embedding in a geometric phase space or loosely the space of the model parameters.

The system variables combined together become a vector lying in a trajectory in this space. Each
point in this space becomes a state of the system. In this space, the system moves towards some points
called attractors. An attractor may be a single point or a grand geometric shape. An attractor is stable if
the system maintains a certain balance under perturbations and returns to the attractor. With changes in
the parameters of the model and initial states the model traverses different trajectories towards different
attractors. These trajectories are called attractor basins. This dynamics in the phase space is mapped
to the empirically observed time-series data such as BOLD activity facilitating tuning of the model
parameters. This allows relating the various dynamic regimes attained by the system with the variations
in the parameters, making them possess a bio-physical meaning.

Most of the modeling techniques are composed of non-linear differential equations that require
computer simulations. Some of the models are linear in nature, such as in Galan [46]. Such models can be
analyzed with relative ease. Such linear models provide a fair estimate of large-scale functional patterns
over structural patterns, but do not resemble any direct relationship with the underlying bio-physics.
For an overview of all the classes of models, please refer to Nakagawa et al. [76]. Broadly, there are
dynamic mean field models that consider a neuronal activity obeying a coupled differential equation that
is generated as a stable oscillating noise. Another broad class is the reaction-diffusion systems that uses
the spectral analysis of structural connectome. Both the models generate rs-fMRI time series over the SC.
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2.6 Discussion

This chapter introduces the reader to the dataset used in this thesis and the methods applied to develop
the models. We have a set of SC-FC pairs of 47 healthy subjects. The models developed will be based on
the concepts of spectral graph theory and graph signal processing. The subsequent chpater introduces the
reader to the notion of diffusion over a brain graph thus motivating the proposed models.
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Chapter 3

Diffusion over a Brain-graph

In this chapter we describe the basic diffusion models, their advantages and limitations and directions
for extensions.

3.1 Diffusion over a graph

This model is developed by Abdelnour et al. [2] where authors propose a diffusion scheme to explain
the relationship between SC and FC. This model is connected to a linear first-order system over the SC.

3.1.1 Model

Consider an isolated region, ri, in the brain. Let the aggregate neuronal activity of all the neurons
within the region be denoted by xi(t) at time t. If a simple linear damped system is assumed to govern
the evolution of this activity, the activity at time t is the solution of the following:

d

dt
xi(t) = −γxi(t). (3.1)

Largely possible due to the refractory period of the neuronal activities, the large-scale regional activity
damps down with a decay rate of γ. Now consider an isolated pair of regions ri and rj with the anatomical
connectivity strength of wi,j between them. Activity of ri is affected by that of rj and vice versa through
the anatomical connectivity. The regions obey the following equation:

d

dt
xi(t) = γ (wi,jxj(t)− xi(t)) . (3.2)

For the sake of simplicity it is assumed that the decay rate is constant for all the regions. Now consider
all the n regions in the large-scale brain graph and their interactions as follows:

d

dt
xi(t) = γ

 n∑
j=1

wi,jxj(t)− xi(t)

 . (3.3)
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When such linear differential equations for all the regions are combined the final equation takes the
following form:

d

dt
x(t) = −γLx(t), (3.4)

where L is the graph Laplacian. The solution of this equation is the graph diffusion kernel, H:

x(t) = exp (−γLt) x(0), (3.5)

with the diffusion scale being γt. The evolution of the graph signal x from t = 0 to t = t is governed by
the diffusion kernel.

Now consider that only node, node i, is the heat source and others are sink nodes, i.e. one of the
elements of x(0) is non-zero. At time t = t the graph signal of mean regional activities is the ith column
of diffusion kernel. This column of diffusion kernel tells about the amount of heat reached to other
regions, or the statistical dependence between the two regions, when ri is the source. This points to the
hypothesis that ith column of diffusion kernel resembles the ith column of FC:

x(0) = ei, (3.6)

where ei is the cardinality vector in ith direction or node. Intuitively, the diffusion kernel represents the
influence of a source node onto its neighbors and the diffusion scale encodes the extent over the node
space. As the diffusion kernel is symmetric, ri also receives the same amount of heat it provides to others
when those regions are heat sources. Considering that each node is independently a heat source, the
collective matrix resembles the FC:

FC = exp (−γLt) [e1, · · · , en] = exp (−γLt) In×n = exp (−γLt) , (3.7)

thus providing the diffusion kernel a meaning that resembles the functional connectivity. There are two
aspects to the model:

• representation of functional integration in terms of graph kernels, especially modeling temporal
dynamics as a diffusion process over the graph, and

• the provision of identity matrix governing independent heat sources that initiates the diffusion
process.

As the diffusion kernel is uniquely defined by its scales of diffusion, Abdelnour et al. iterate over the
space of scales, and plot the Pearson correlation between the empirical FC and the predicted FCs, or the
diffusion kernels. We will be calling this model as Single Diffusion Kernel (SDK) model from now on.

3.1.2 Major claims and limitations of the model

Their results suggested the possibility of a single-scale of diffusion that enables maximum correlation
between observed FC and estimated FC in experiments with eight subjects. Consequently we investigated
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(a) Pearson correlation curves with
thresholding

(b) Distribution of scales with thresholding

(c) Pearson correlation curves without
thresholding

(d) Distribution of scales without thresholding

Figure 3.1: Variation in the Optimum Scale across all Subjects in the Single Scale Diffusion Kernel
(SDK) Model. We simulated the SDK model for the Berlin dataset and found that there is a variation in
the subject-wise optimum scale. When the SC matrices are pruned by removing edges less than 0.07% of
the maximum edge value (in the adaptation of Abdelnour et al.’s implementation code [2]), there seems
to be a unique scale for the cohort. (a) shows the Pearson correlation curves for all the subjects. The
histogram of the optimum subject-specific scales also has some variations as shown in (b). But, when
the SCs are not thresholded, the correlation is higher but there seems to be significant variation in the
optimum scale required for the SDK model; as shown in (c) and (d). This experiment motivated us to
investigate diffusion at multiple scales, resulting in the current proposal of a multi-scale diffusion model.
We thank the authors for kindly providing their code which was used for reproducing the results with
SDK model.
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Figure 3.2: Multiple diffusion kernels. Shown here is the similarity between diffusion kernels and the
empirical FC. The kernels are derived from the empirical SC at three diffusion-scales. It can be seen that
each kernel shares some similarity with FC and these similarities are complementary among the kernels.
Small (large) diffusion-scales contribute to local (global) diffusion. Both of these aspects seem to be
present in the FC.

the viability of this hypothesis over a larger subject pool [97]. In our simulation experiments we found
that the diffusion scale for maximal correlation (between the empirical and observed FCs) varies widely
across subjects as shown in Fig. 3.1.

On the other hand, we also observed that for an individual subject, diffusion at different scales reveals
multiscale relationships among various ROIs. Thus, multiple scale dependent diffusion kernels over SC
can be interpreted as components of FC at different scales (see Figure 3.2).

According to the model, functional connections are explainable via a single diffusion kernel which is
scale dependent. This forces all the regions to participate in the diffusion phenomenon with the same
extent of their influences. Additionally, the identity matrix may mean that prior to diffusion all regions
are independent sources not modulated by any factor(s), but we hypothesize that even in resting state,
non-physically connected regions may modulate initial source configurations at multiple diffusion scales.
Moreover, the model hand-picks the optimal diffusion scale for each subject. This makes their claim of
existence of single-diffusion-scale weaker as it might be only an empirical artifact.

3.2 Combining multiple diffusion kernels

3.2.1 Model

We extend the linear graph-theoretic dynamic model proposed in [2] for learning the structure-function
relationship using a novel MKL formulation. The model represents FC as a linear combination of multiple
diffusion kernels as shown in Eq. 3.8:

Cf =

m∑
i=1

Hiαi. (3.8)

As diffusion kernels transform SC into nonlinear spaces, we hypothesize that the linear combination
of these nonlinear mappings would give rise to a good estimation of FC. Let τ = {γ1, · · · , γm} be the
set of m diffusion scales. For each γi a corresponding Hi is obtained. Let α = {α1, · · · , αm} be the
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set of coefficients of linear combination (also called here as mixing coefficients) for the corresponding
m kernel matrices. These mixing coefficients are subsequently learned while solving an optimization
formulation that minimizes the squared error between empirical FC and predicted FC.

Let the number of subjects for whom SC-FC pair is considered during the training phase be p. We can
write the optimization function as:

α̂ = argmin
α

p∑
j=1

‖FCj − Cj
f‖

2
L2

= argmin
α

p∑
j=1

‖vec(FCj)−
m∑
i=1

vec(Hj
i )αi‖

2
L2
,

(3.9)

where, vec(·) converts an n× n matrix into an n(n−1)/2× 1 vector.

Let Xj =
(

vec
(

Hj
1

)
, . . . ,

(
Hj
m

))
n2×m

, Yj = vec
(
FCj

)
n2×1, Ψ =

(
X1> · · · Xp>

)>
n2p×m

,

and Φ =
(

Y1> · · · Yp>
)>
n2p×1

. Then,

α̂ = argmin
α

(Ψα−Φ)> (Ψα−Φ) .

=
(
Ψ>Ψ

)−1 (
Ψ>Φ

)
.

(3.10)

We find the least squares solution and divide α̂ by its sum to normalize the values.

3.2.2 Experiments and results

For all the experiments, we used the dataset described in an earlier chapter. Total of 46 subjects
were used out of which 23 subjects were taken for training the model and the model was tested on the
remaining 23 subjects.

3.2.3 Parameter Selection and Analysis of the MKL Model

We partitioned the subject pool into two sets - training and testing sets. LASSO method can optimize
for one vector instead of a matrix, hence we trained individual columns of Π separately. Ascending
order of scales focus on further local connections. i.e. scale index 1 corresponds to global diffusion
phenomenon and scale index 16 corresponds to local diffusion phenomenon. Rest of the scale indices
correspond to intermediate diffusion phenomena in sequence.

3.2.3.1 Choice of scales

A scale of a diffusion kernel represents the extent of spread of the graph signal from the source
node where it is deployed. Depending on the graph topology, a fixed scale for all graphs will result in
different extents of spread of the signal on individual graphs. Diffusion kernels capture the extent of
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Figure 3.3: Procedure for selection of scales. The procedure for choosing scales from the fixed
normalized exponential values and a chosen eigenvalue λ of L. Laplacian matrix L of each SC is eigen
decomposed whose 2nd eigenvalue is used to determine subject-specific scale set from the normalized
values, kept the same for all subjects. Each exponential curve is a function of the scale (γ) and represents
the contribution of every eigen-component of the Laplacian matrix. Grey horizontal lines denote the
fixed normalized scale values. If a larger eigen-value is chosen, then all the large scales will be ignored.
Hence, the closer the eigen-value towards 0, the better is the scale variation. Hence, justifying the choice
of second eigen-value. Intersection points of all the grey lines on the vertical line at second eigen-value
allow only one exponential curve to intersect. The scales determining the exponential curves are the
subject-specific scales.

spread with their scale parameter γ. Hence to normalize the spread across subjects in the cohort, we fixed
the multiple spreads and selected graph (or subject) specific scales. Normalization of diffusion scales is
very important as the diffusion scale value is relative to the graph structure/topology, a fixed value may
not be suitable for all graphs. Therefore, we fix a set of exponential values αi’s which remain the same
for all participants. Figure 3.3 shows the procedure for selecting the subject-specific scales, here for a
subject. One fixed exponential value f(λ, γi) = αi provides one diffusion scale. A diffusion scale is then
calculated as:

αi = e−λγi

γi = −ln(αi)/λ.
(3.11)

Exponential curves represent the 16 selected scales for a sample subject.

3.2.3.2 Choosing sufficient number of scales

Here we answer the question of the required number of scales m for the proposed MKL model. This
analysis also demonstrates the robustness of the MKL method with respect to the choice of the number
of scales, i.e., the choice of the parameter m. Here we analyze with 5 different values of m using the
same training and testing sets used to train the model. We ran the MKL model for each m separately
and plotted box-plots for the same in figure 3.4. The yellow line passing through the boxes joins the
mean performance of the models, dotted line. The figure suggests that model performance decreases as
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Figure 3.4: Choice of number of scales, m. Shown is the MKL model’s performance on test subjects.
Each bar-plot corresponds to a number of scales, m. The thick line inside each box and the dotted line
are the median the mean correlation values respectively. As observed, performance increases from m = 4
to m = 16 and then slightly goes down. For m = 16, test performance has the lowest inter-subject
variance and highest mean correlation, hence naturally becoming a choice in the design of the model.

m changes from 2 to 4 and then increases till m = 16. Further decrease in performance suggests that
model might start over-fitting on the training data for scales beyond 16.

3.2.3.3 Configuration of scales

Next we intend to see how important the arrangement of scales is, i.e., how the configuration of scales
affects the prediction of FC. To show that the chosen scale set is close to optimal, we randomly generated
several scale sets, with uniform distribution between [0, 1] (normalized scale space), and trained our
model on each of them separately. The generated scale sets had the property that the scales may not
be spread equally in the normalized space. Figure 3.5 plots a histogram of the Pearson correlation
coefficients between the test subjects whose mean correlation is plotted in the histogram. The histogram
suggests that not only should the scales span the entire space, but they also should be evenly spread in the
space. Further it also suggests that the number of scales (16) may be more important than the particular
scale values.

3.2.3.4 Model comparison

In the first experiment, we compared the results of SDK model [2] with our proposed MKL model.
We use the Pearson correlation (PC) as a measure [58, 2] for comparing observed/ empirical FC and
predicted FC. In the single kernel case, we are directly picking the best kernel and computing the PC
values for the test subjects. On the other hand, for the MKL model, parameters are estimated from
training data and PC values are computed for each of the remaining 23 test subjects. Figure 3.6 shows
the comparative results.
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Figure 3.5: Procedure for selection of scale configuration. Behavior of the model is studied by varying
scale sets, m being fixed at 16. Each scale set was uniformly sampled from the domain [0, 1]. Each scale
set consists of m instances of normalized scales. The MKL model was trained and tested on the same
split separately for each scale configuration. Histogram shows the mean performance of the models.
Eigenvalue of Laplacian L at second index was used to determine equivalent subject-specific scales.
Figure suggests that number of scales is more important than particular scale values. We have shown
performance by keeping the normalized scales at uniform intervals.

Figure 3.6: Comparison of the proposed MKL model w.r.t. the single scale model. As can be seen,
the MKL model performs better than the single scale model. It is to be noted that optimal scale for the
single scale model was selected on the test subjects’ data by searching individually. On the other hand,
the optimal parameters for the MKL model were learned through the optimization process on training
data.
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Figure 3.7: Performance stability of the proposed MKL model for different values of number of
scales parameter. There are 5 box-plots one for each value of number for the number of scales, m. For
a value of m, Pearson correlation for all the testing subjects was plotted in the corresponding box-plot.
The dotted (continuous) line is the mean (median) across subjects.

Table 3.1: Pearson correlation w.r.t. different number of scales (parameter m).

m Subjects

sub 1 sub 2 sub 3 sub 4 sub 5

02 0.4274 0.5921 0.5309 0.5854 0.6071
04 0.4257 0.5896 0.5438 0.5834 0.6223
08 0.4776 0.5740 0.5565 0.6117 0.6425
16 0.4749 0.5768 0.5604 0.6073 0.6419
32 0.4736 0.5787 0.5605 0.6057 0.6412

3.2.3.5 Robustness of the model

The next experiment demonstrates the robustness of the proposed method w.r.t. the choice of the
number of scales i.e., parameter m. Here we experimented with 5 different values of m (using the same
train and test set used in the first experiment) and we can see in Figure 3.7 that the model performance is
relatively stable. As shown in Table 3.1 the performance of our method shown for five randomly chosen
subjects improves with increasing values of m till m = 8 and then stabilizes. This was indeed the case
with all other subjects. The increase in performance (from m = 2 to m = 8 ) is attributed to the fact
that with higher multiscale resolution our MKL model perhaps leads to a better reconstruction of the
observed FC.

In the final experiments, we try different configurations of scale values (i.e., τ ) for m = 8. Table 3.2
shows the values for 6 different scale configurations. Figure 3.8 shows the corresponding plot of PC
curves. We can clearly see that these PC curves are highly overlapping thereby suggesting that the choice
of scale values does not affect the performance of our proposed MKL model.
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Figure 3.8: Performance of the MKL model across different scale sets or scale configurations. For
each of the testing subject, mean and 3×standard deviations are plotted in the error-bars. It is observed
that as the standard deviations for all the subjects are very small, the model performance is robust with
respect to change of configurations.

Table 3.2: Various set of scales τ

Scale Configurations

conf 1 conf 2 conf 3 conf 4 conf 5 conf 6

t1 25.17 5.27 4.48 4.18 4.04 3.86
t2 11.64 2.43 2.10 1.94 1.87 1.79
t3 8.08 1.70 1.44 1.35 1.30 1.24
t4 5.95 1.25 1.06 0.99 0.95 0.92
t5 3.22 0.67 0.57 0.54 0.51 0.50
t6 2.24 0.47 0.40 0.37 0.35 0.34
t7 1.41 0.30 0.25 0.24 0.23 0.21
t8 0.05 0.12 0.01 0.01 0.01 0.01

3.3 Discussion

Inferring resting state functional connectivity FC from the underlying structure of the brain (SC) is a
challenging open problem in computational neuroimaging. There are broadly two categories of models
that attempt this problem - predictive versus generative. Simplistic network communication based models
( [48], [106]) as well as diffusion kernel models fall in the former category. A range of generative models
have also been proposed to this end using neuro-biologically detailed dynamical models ( [32], [72]).
Even though each model predicts FC fairly well, the onus of finding the right balance between biological
realism and computational tractability remains on the modeler. Recently an elegant tractable dynamical
model has been proposed by [2] which assumes linear dynamics between network nodes and predicts
FC based on the assumption of macroscopic interactions of brain activity. However, our observation
based on the simulation of the same model on another parcellation of SC suggests that the hypothesis
of a single best-fitting diffusion kernel applicable across subjects seems to be not viable. This led us to
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formulate a more detailed MKL model, which obviates the need for manually searching for the single
optimal kernel. More importantly, MKL model involves learning of the SC-FC mapping parameters on
training set which can be directly used on unseen individual test subjects.

The results demonstrate that the proposed method predicts individual (subject-specific) FC better
than the previous model. Further, the model also has the power to explain inter-individual variability
in SC-FC relationships. This possibly suggests the existence of latent variables across subjects, which
when learnt, can explain the SC-FC relationship. This would in turn avoid the need for generating the
long time course signals as is the case with more detailed computational models. Such machine learning
approaches with the promise of simplicity might relieve the modelers from cumbersome subject-specific
parameter tuning or an educated guess of parameters and initial conditions that are required in other
non-linear dynamical models that are designed with a range of free parameters.

As part of future work, it will be interesting to find a better interpretation of the latent variables
α’s, or some equivalent parameters, and associated kernel matrices. Additionally, we would like to
automatically discover the optimal scale configurations instead of assuming them to be chosen a priori.
Further, more complex optimization formulations will be explored in order to improve the performance of
the SC-FC mapping. In the next chapter we will explore the generic multiple kernel learning framework
that incorporates multi-scale analysis along with characterization of the initial states at each scale.
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Chapter 4

Multiple Kernel Learning

This chapter describes the bio-physical framework used to build the model. This framework will
be linked to spectral graph theoretic constructs, diffusion kernels. This simplifies the analysis as only
the parameters of the well-known diffusion kernels need to be tuned. This work was published in
Nature/Scientific Reports [98].

4.1 Bio-physical attempts for relating SC to FC

The question of how SC shapes FC has been the object of computational modeling but remains an
open question [19]. In the recent years, connectivity analysis using whole brain computational models and
graph theoretic techniques have given unprecedented insights about brain-wide correlations during rest
and task conditions [34, 37, 78]. Computational models are designed to expand our understanding and
explaining the functioning of the brain. The more biologically real the model is, the more computationally
expensive it is. Hence, gaining analytical insights becomes increasingly difficult with complex models.

In the realm of noise-induced correlated deviations, there are linear and non-linear mean field models
that attempt to answer this open question incorporating various kinds of dynamics and biological
details [46, 9, 57, 2]. As described in detail in an earlier chapter, a biophysical attempt to relate SC to FC
is a linear model based on graph diffusion of brain dynamics, the diffusing quantity, firing rate of the
neuronal population, undergoing random walk on the SC graph. This linear diffusion model considers
that the mean regional activity diffuses over the anatomical fibers governed by a ‘deterministic’ linear
differential equation [2]. The analytically tractable solution becomes the graph diffusion kernel which is
hypothesized to resemble the FC. This model fixes one global parameter across all subjects. Another
model proposed by Saggio et al. [89] considers a linear auto-regressive model with additive Gaussian
white noise, coupling matrix being SC. This model becomes a linear system of coupled ‘stochastic’ first
order differential equations, specifically OrnsteinUhlenbeck process, in which the BOLD activities diffuse
on the anatomical constraints, i.e. SC. This model computes covariance between regional activities whose
analytical expression works out to be a function of SC. Such a model would find it difficult to account
for inter-subject variability in the functional expression. Extending the idea of linearity to super-critical
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bifurcations and multi-stability, a series of non-linear stochastic models have been proposed that explain
the underlying biological behavior efficiently [33, 31, 52]. These models differ in their representation
scheme for the ROIs [75]. Whereas Kuramoto oscillator model [67] abstracts out the biophysical details,
Deco and Jirsa’s mean-field-models [31, 33] consider dynamics of specific biological analogues such as
mean firing rate and mean activity of the regions. These neural and meso-scopic models can be seen as
variants of reaction-diffusion system at the heart of which lie the Wilson-Cowan equations [111, 112].
Wilson-Cowan equations, a variant of reaction-diffusion systems, provide a coarse-grained description
of the large-scale neuronal network in terms of oscillatory self-organizing patterns. New experimental
evidence supports these equations [39].

Recently, a new paradigm of understanding the oscillatory patterns of cortico-cortical activity is
proposed that utilizes spectral analysis of the connectome or structural connectivity (SC) [6]. It has
been observed that these connectome-specific harmonics predict oscillatory functional networks of the
human brain possibly through interplay of excitation; for instance mediated by the glutamatergic principal
cells, and inhibition; for instance mediated by the GABAergic interneurons. The push-and-pull between
diffusing excitatory cells and suppressing inhibitory cells can result in self-organizing pattern formation.
The emergent harmonics or the standing waves are the allowed spatial frequencies, or the eigenfunctions
of the graph Laplacian operator on the anatomically constrained SC largely determined by the selection
of the diffusion parameters of excitation and inhibition. Surampudi et al. [97] observed that physical
diffusion on large-scale graphs, i.e. SC, at multiple diffusion scales exhibits scale-dependent relationships
among various regions of interest (ROIs) [97]. These multi-scale diffusion kernels are similarly motivated
to capture reaction-diffusion systems operating on a fixed underlying connectome (SC) and hence can be
interpreted as components of FC at different diffusion scales. However, our investigations revealed that a
combination of multiple diffusion kernels was not sufficient to explain the self-organizing resting state
patterns found in FC and hence necessitates the need of additional explanatory parameters.

The extant whole brain computational models can be characterized along two dimensions – inter-
pretability and complexity, where the linear and non-linear models lie at the opposite ends of the spectrum.
The former are analytical models with few parameters that can be interpreted and tuned easily, whereas
the latter are fairly complex models with richer dynamics but tend to be analytically intractable. The
proposed model possesses the analytical beauty of linear models and yet is complex enough to capture
the biological details. We hypothesize that the presence of regional multi-scale co-activations that initiate
diffusion would be necessary to bridge the gap between structurally confined diffusion phenomenon and
empirically observed FC and that these co-activations would be common across the cohort. We further
provide a plausible mathematical reasoning for the existence of these co-activations along with diffusion
kernels by linearizing a variant of reaction-diffusion model and extending it to generate FC. Moreover,
we also describe a succinct multiple kernel learning (MKL) procedure to retrieve these co-activations
by formulating it as an optimization formulation. MKL techniques are well explored in the machine
learning community [68, 47]. Our proposed model while retaining the parsimony of a simple linear
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approach, proposes a novel learning scheme for optimizing the best-fitting kernels for SC-FC mapping.
Our detailed empirical results demonstrate the validity of the proposed model on a larger dataset.

4.2 Existing frameworks

4.2.1 Dynamic Mean Field models

We used the reduced dynamic mean field model as the non-linear model for comparative analysis [36].
This approach considers models with synaptic gating variable with passive decay differential equation
along with Gaussian fluctuations. Firing rate was approximated based on input-output sigmoid function
of the synaptic gating variable. The whole dynamics of each local network of excitatory and inhibitory
populations of spiking neurons interconnected via excitatory synapses can be expressed by a single
one-dimensional equation. The global brain dynamics of the network of interconnected local networks
can be described by the following set of coupled non-linear stochastic differential equations [36]:

dSi
dt

= −Si
τS

+ (1− Si))γH(xi) + σνi(t) (4.1)

H(xi) =
axi − b

1− exp(−d(axi − b))
(4.2)

xi = wJNSi +GJN
∑
j

CijSj + I0 (4.3)

Here Si is synaptic gating variable of area i. xi is population mean firing rate for region i. JN is the
excitatory synaptic coupling. νi in (4.1) is uncorrelated standard Gaussian noise with noise amplitude
σ = 0.001 nA. I0 is the external input current. Cij represents entries of the SC matrix which captures
the structural connectivity between regions i and j. Parameter values were selected as in Deco et al. [36].
A forward BOLD model was used that converts the local synaptic activity of a given cortical area into an
observable BOLD signal. The simulated BOLD signal was down-sampled at 2 secs to have the same
temporal resolution as in the empirically measured BOLD signal. Simulation length for computing the
model FC was equivalent to 8 minutes. The coupling parameter G (see Equation (4.3)) is varied between
0 to 3. We use individual empirical SC - FC matrices for exploration of subject-wise parameters for
optimal fit. The optimal G value varied among the subjects from 0.5 to 3. The mode of the distribution
of the parameters obtained for training subjects was taken as the optimal Gs for the training cohort and
was found to be 2.85. The same value was used to estimate predicted FCs for all the test subjects.

4.2.2 Reaction-diffusion systems

Fields of neural activity exist because of mutual interaction between the elements of the complex
system, based on which self-organizing patterns form. The mathematical framework that explains such a
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spatio-temporal change in the field is called Reaction-Diffusion systems. Reaction-Diffusion systems
have been employed to model interaction among populations of neurons and the emerging patterns of
functional connectivity among neural ensembles [62, 101, 66, 5]. The excitatory and inhibitory neural
elements react and the resultant neural activity spreads over the structural pathways. Because of the
difference in the parameters of reacting elements, the collective activity evolves spontaneously and forms
non-linear patterns. A variant of Reaction-Diffusion system is Wilson-Cowan model that explains the
evolution of neural field. Just as statistical thermodynamics relates brownian motion of fluid particles to
mean motion of a whole fluid, Wilson-Cowan equations characterize the macro-scopic statistical behavior
of mean fields of the resulting neural activities [112, 65].

At time t and at a spatial location x ∈ R3 let E(x, t) and I(x, t) be the local spatio-temporal
mean neuronal activity. Their time evolution of these activities obeys the following system of coupled
differential equation:

τs
∂

∂t
E(x, t) = −dEE(x, t) + S (αEEDEE [E(x, t)]− αIEDIE [I(x, t)])

τs
∂

∂t
I(x, t) = −dII(x, t) + S (αEIDEI [E(x, t)]− αIIDII [I(x, t)]) ,

(4.4)

where DEE ,DIE ,DEI ,DII are the spatial diffusion operators separately acting on the excitatory and
inhibitory populations with their corresponding diffusion strengths αEE , αIE , αEI , αII respectively.
S denotes the sigmoidal activation function. dE , dI are the excitatory and inhibitory decay rates. τs
denotes the characteristic time constant that determines the speed of evolution or the frequency range of
oscillations [6]. In the continuous domain the diffusion phenomenon is understood as integration against
Gaussian kernels, in case of of discrete domains the diffusion operator takes the form of graph-diffusion-
kernel [6].

4.3 Proposed MKL model

We propose the multiple kernel learning model as a variant of Reaction-diffusion (RD) systems [74]
wherein the regional mean activities diffuse on the graph determined by anatomical pathways (SC).
Recent models incorporate the random-walk stochastic process on network of connected components
and model the process as an RD system [5]. Atasoy et al. [6] embed anatomical constraints in terms of
the graph Laplacian matrix of the SC matrix in the Wilson-Cowan equations to explain the macro-scale
excitatory and/or inhibitory interactions of the regional activities. These excitatory and/or inhibitory
interactions result in the formation of complex functional patterns such as RSNs. We extend our model
from Atasoy et al. [6] and explain the formation of FC through RSNs. We hypothesize that the cumulative
mean activities of all the regions is generated by intra-regional micro-scale dynamics which diffuses
inter-regionally on the structural connectome. We propose a physical model that implicitly captures
the pairwise functional interactions between ROIs by explicitly associating them with their extent of
influence through the diffusion kernels on the SC.
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4.3.1 Notations

Please refer to the table 4.1 for all the notations used in the MKL model.

4.3.2 Biophysics of the model

The derivation of the expression for FC consists of five major stages. We consider that FC matrix
encompasses effects of diffusion from multiple reactions. In the first stage, we formulate the differential
equation for the time evolution of regional activities (Eq. 4.5 - 4.7). In second stage, we characterize
the time evolution of the regional activities in an arbitrarily small time interval (Eq. 4.8). In the third
stage, we integrate the diffusion process over all the connectome harmonics (Eq. 4.9). In the fourth stage
we accumulate the diffusions happening in various time intervals to generate the complete expression
for FC (Eqs. 4.10 - 4.17). This FC assumes the form of a combination of diffusion kernels weighted
by scale-specific parameters (Eq. 4.17). In the final stage, we propose an optimization framework for
estimating these global parameters (Eqs. 4.18 - 4.19).

Let the cumulative mean activities for all regions be denoted by u(t)n×1 at time t. We assume that
these activities belong to either excitatory and/or inhibitory interactions. The temporal evolution of
regional activities are modeled as the following linear variant of Wilson-Cowan equations:

τ
∂

∂t
u(t) = −u(t) +D [u(t)] . (4.5)

where D is the spatial propagation operator. τ is a characteristic time scale that speeds up or slows down
the evolution of the system. Mean activity of a region i, ui(t), can be abstracted out from biological
details as a one-dimensional (1-D) time varying signal. A vector of these 1-D signals indexed by the
nodes of the graph represents a graph signal. We represent the graph signal in terms of its Fourier
components using graph Fourier transform [94]:

u(t) = Ψβ(t), (4.6)

where Ψ is the eigenvector matrix of graph Laplacian and β(t) is its Fourier representation at time
t. With this decomposition temporal dynamics is explicitly represented using spatial basis functions.
Further we conceptualize the spatial operator D in the form of a diffusion kernel defined at scale σ2/2 on
the structural brain graph Laplacian (Λ) corresponding to the time interval τ between two consecutive
reaction instances:

D[u(t)] = Ψe−Λ σ2/2Ψ>u(t) = Ψe−Λ σ2/2β(t). (4.7)

Substituting Equations (4.6) and (4.7) and combining the fact that Ψ is invertible, differential Equa-
tion (4.5) can be solved for β(t) which represents the signal evolution in the time interval between two
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Object Description

n Number of ROIs or the number of nodes in the brain graph.

p Number of training subjects.

SC Structural connectivity matrix.

SCs SC matrix for subject s.

Ds Degree matrix for subject s; sum of edge weights for every region.

FC Functional connectivity matrix.

FCs FC matrix for subject s.
[fs1 , · · · , fsn]

Wn×n Weighted adjacency matrix of a graph.

Dn×n Degree matrix of a graph,
computed by taking the sum of all weights
on every node and diagonalizing the vector.

Lsn×n Laplacian matrix of subject s.

Ψs
n×n Eigenvector matrix of the graph Laplacian of subject s.

Λs
n×n Eigenvalue matrix,

diagonal matrix with increasing order of eigenvalues,
of the graph Laplacian of subject s.

γi A scale at which diffusion kernel is defined.

Hs
i n×n Diffusion kernel at scale γi for subject s.

m Number of scales

Hs
n×mn Collection of all m diffusion kernels of a subject s.[

Hs
1n×n · · · Hs

mn×n
]

πin×n Interregional co-activations corresponding to scale γi.

Πmn×n Interregional co-activations collectively
represented at all scales.π1n×n

...
πmn×n

 =
[
π1

mn×1 · · · πnmn×1
]

Xpn×mn

H1

...
Hp


Y pn×n

FC1
n×n
...

FCpn×n

 =

f
1
1 · · · f1n

...
fp1 · · · fpn

 =
[
Y1pn×1 · · · Ynpn×1

]
Cs
f Predicted FC∑m

i=1 Hs
iπi

Cf |k0 Functional connectivity FC when reaction only happens at k0τ .

Table 4.1: Notations. The table shown here summarizes all the notations used in the models and
optimization formulation in this chapter.
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reaction instances, as follows:

τ Ψ
d

dt
β(t) = −Ψβ(t) + Ψe−Λσ2/2β(t)

d

dt
β(t) = −1

τ
(In − e−Λσ2/2)β(t)

β(t) = e−
1/τ(In−e−Λσ

2
/2)tβ0,

(4.8)

where β0 represents the initial mean activity. Equation (4.8) depicts how the mean activity (β0) of every
region diffuses on the graph. Finally the graph signal between two reaction times can be expressed in a
closed form as follows:

u(t) = Ψe−
1/τ(In−e−Λσ

2
/2)tβ0 = Ψe−

1/τ(In−e−Λσ
2
/2)tΨ>u0, (4.9)

where, u0 = Ψβ0 captures initial activity just after reaction, or at the start of diffusion. u0 depends
on the magnitude of reaction phenomenon, hence may change after every reaction instance. Given the
temporal evolution of graph signal, we will next derive how this leads to the evolution of functional
connectivity and RSNs. RSNs have unique correspondence with graph-harmonics/eigenvectors of the
structural graph Laplacian [6]. We develop the model for a single graph-harmonic, i.e., for all RSNs
corresponding to that graph-harmonic. Finally, we superpose all the patterns of the resting state networks
and explain the formation of FC.

The graph signal u0 may not change significantly in every reaction. Equation (4.9) represents the
diffusive phenomenon of the graph signal over the characteristic time τ . Let u0 change significantly
at scalar multiples of τ , i.e., t + k0τ, t + k0τ + k1τ, · · · with corresponding amplitudes a0, a1, · · · ,
respectively. For now we consider generating the functional connectivity (Cf |k0) for the time interval
between two consecutive reactions; at times t+ k0τ and t+ k0τ + k1τ :

Cf |k0 =

∫ t+k0τ+k1τ

t+k0τ
u(t)u(t)>dt

=

∫ t+k0τ+k1τ

t+k0τ
Ψe−

1/τ(In−e−Λσ
2
/2)tΨ>(a0u0)(a0u>0 )Ψe−

1/τ(In−e−Λσ
2
/2)tΨ>dt.

(4.10)

As u0 is also a signal on graph, we can express the positive semi-definite (PSD) matrix u0u>0 in terms
of its eigen-decomposition. And as it is only a single harmonic, ∆ is a diagonal matrix with only one
non-zero entry as follows:

u0u>0 = Ψ∆Ψ>. (4.11)
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Hence, Cf |k0 takes the following form:

Cf |k0 = a20

∫ t+k0τ+k1τ

t+k0τ
Ψe−

1/τ(In−e−Λσ
2
/2)t∆e−

1/τ(In−e−Λσ
2
/2)tΨ>dt

= a20

∫ t+k0τ+k1τ

t+k0τ
Ψe−

2/τ(In−e−Λσ
2
/2)t∆Ψ>dt

= a20

∫ t+k0τ+k1τ

t+k0τ
{Ψe−

2/τ(In−e−Λσ
2
/2)tΨ>}{Ψ∆Ψ>}dt

= Ψ

∫ t+k0τ+k1τ

t+k0τ
e−

2/τ(In−e−Λσ
2
/2)tdt Ψ>{a20θk0}.

(4.12)

We can denote the initial activity matrix as a20θk0 . As reaction instances are not usually far apart in time,
instead of double exponentiation we utilize the first order Taylor approximation for the exponent of the
integrand; i.e. In − e−Λσ2/2 ≈ Λσ2/2. Hence, Cf |k0 becomes:

Cf |k0 = (Ψe−
σ2/τΛ(t+k0τ)Ψ> −Ψe−

σ2/τΛ(t+k0τ+k1τ)Ψ>)(a20τ/σ
2Λ−1θk0). (4.13)

We call the matrix independent of time as

π0 = a20
τ

σ2
Λ−1θk0 (4.14)

Now with multiple reactions happening at multiples of τ , we sum over all the reaction instances to get
the functional connectivity matrix:

Cf =
∑
i

Ψe−
σ2/τΛkiΨ>πi, (4.15)

where,

πi = (a2i − a2i−1)τ/σ2Λ−1θki . (4.16)

Observing the structure of the FC matrix, FC is conceptualized as being represented by diffusion kernels
and their corresponding inter-regional mean activities. So, the larger the value of ki, the lesser is its
contribution to FC. This means that summation on a finite number of diffusion scales is sufficient for
reproducing FC (we considered 16 diffusion scales based on pilot simulations). Now after combining the
functional patterns of all the graph-harmonics, we approximate empirical FC with m number of diffusion
scales, γi’s. The model thus takes the form as follows:

Cf =

m∑
i=1

Ψe−ΛγiΨ>πi

=

m∑
i=1

Hiπi,

(4.17)

where Hi denotes the diffusion kernel at scale γi. Further the model in Equation (4.17) suggests that the
scale of diffusion is determined by a characteristic time constant (τ ), spatial diffusion variance (σ2) and
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the time interval between consecutive reaction instances. Matrix πi represents the scale-specific initial
relationships in the mean regional activities. Proposed model represents the functional connectivity in
terms of diffusion kernels operating on scale-specific matrices. It can be inferred that Adelnour et al. [2]
envisage FC comprising only one diffusion kernel defined at an optimal scale. The optimal kernel operates
on an identity matrix; meaning only the concerned region has non-zero mean activity independent of
other regions. Surampudi et al [97] demonstrated that FC can be decomposed into multiple diffusion
kernels whose combination coefficients are unique to the cohort. In addition to the multiple scales,
proposed model provides inter-regional relationships instead of individually active regions. The proposed
model generalizes both the aforementioned models as statistical dependence between two regions may
be modulated by some intermediate regions without physical proximity that too at multiple resolutions
or scales. Moreover, the model provides a biological interpretation of the diffusion scales and has an
organic relationship to the reaction-diffusion system.

4.3.3 Optimization framework

We hypothesize that the global parameters πi’s are estimated from the training subjects (indexed by
s and varies from 1 to p) and remain fixed for all the test subjects. In order to estimate πi’s we utilize
an optimization formulation that minimizes an objective function J comprising the mean squared error
between empirical and predicted FCs.

J 1 =

p∑
s=1

‖Cs
f − FCs‖2F

=

p∑
s=1

‖
m∑
i=1

Hs
iπi − FCs‖2F

=

p∑
s=1

‖HsΠ− FCs)‖2F

(4.18)

where, ‖ · ‖F denotes the Frobenius norm, Hs =
(

Hs
1, · · · ,Hs

m

)
, and Π =

(
π>1 , · · · ,π>m

)>
. Let,

X =
(

H1>, · · · ,Hp>
)>

, and Y =
(

FC1>, · · · ,FCp>
)>

. We solve this objective function one column

at a time, and to keep the activation matrix sparse, we employ L1 norm on each of the jth column of Π,
i.e. Πj :

J =

n∑
j=1

‖XΠj − Y j‖2F + λ‖Πj‖1, (4.19)

where Y j is the jth column of Y . The objective function takes the form well known in regression
analysis as least absolute shrinkage and selection operator (LASSO) that performs both variable selection
and regularization.

1The equations here are corrected version of the optimization formulation. Equations in SciRep need an erratum.
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4.4 Results

4.4.1 Model performance

We compared performance of the proposed model with two previously proposed approaches: single-
diffusion-kernel (SDK) model of Abdelnour et al. [2] and the non-linear dynamic-mean-field (DMF)
model described in Deco et al. [36]. To remain consistent with the previous studies, we used Pearson
correlation coefficient between empirical and predicted functional connectivities (FC) as the measure of
model performance. To obtain a benchmark, we computed the Pearson correlation between empirical
SC-FC pairs for all subjects and found mean value for these correlations to be 0.3 with a standard
deviation of 0.02. These values are taken as baseline correlation values henceforth.

Fig. 4.1 shows the performance comparison of the proposed method with other two models in three
different setups. In the first setup, a randomly chosen set of half of the subjects was used for training
(23 pairs) and the other half (23 pairs) for testing. Fig. 4.1(a) shows the model performance for all the
test participants for the three models. Since SDK and DMF models do not incorporate learning in their
formulation, we gleaned the optimal values based on the training subjects. The optimal parameter settings
were taken as the values at the mode of the performance distribution histogram for the training set and the
same were used for estimating FC for test subjects. We took the best fitting scale on the training subjects
for the SDK model and similarly selected the optimal global coupling parameter, G, for the DMF model.
Optimal scale for SDK model worked out to be 0.8 and similarly optimal value of G for DMF was 2.85.

As can be seen from Figs. 4.1(a) and 4.1(b), the MKL model performs consistently better for each test
subject when compared to the other two models. In the remaining two setups, in order to crosscheck
whether MKL model suffers from over-fitting, we computed leave-one-out (Fig. 4.1(b)) and 5-fold
cross-validation (Fig. 4.1(c)) results. These results clearly show the consistency in the performance of
MKL model and indicate that the performance is not due to over-fitting nor it is due to any particular
optimistic train-test split.

In all the experiments and for all the three models in order to compare group statistics, we compute the
predicted FC for each test subject and then find the Pearson correlation coefficient with the corresponding
empirical FC, followed by taking the mean of all these correlation coefficients. We designate the resulting
mean correlation as mean FC in the rest of the paper.

4.4.2 Edge-based and Seed-based Connectivity Analysis

Mean FCs are visualized primarily in two modes, via the edge-connectivity pattern analysis and using
the seed-based connectivity analysis. To understand the edge and node distribution across the commu-
nities, we rendered the mean predicted FCs on brain surface. The visualization of edge-connectivity
patterns of four mean FCs is shown in Fig. 4.2. In the figure, the colors demarcate the communities
for a particular model on the corresponding brain surface. It can be seen that the community structure
of the mean FC predicted by the MKL model (shown in Fig. 4.2(b)) best resembles that of the mean
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(a) Performance of models.

(b) Leave-one-out validation.

(c) 5-fold cross-validation

Figure 4.1: Comparison of Model Performance on Individual Test subjects. (a) Pearson correlation
between empirical and predicted FCs of all the test subjects by multiple kernel learning (MKL) model and
performance comparison with the predictions by the other two models. While MKL model has superior
performance compared to that of dynamic mean field (DMF) and single diffusion kernel (SDK), DMF
model performs slightly better than the SDK model. (b) Results of leave-one-out cross-validation on the
test subjects also yield similar comparative performance. Note that the subject indices are kept identical
between sub-figures (a) and (b). This plot suggests that MKL model can handle an increase in the number
of training subjects without necessarily any over-fitting. (c) Box-plots of Pearson correlation measure on
9 randomly chosen validation subjects for each of the 5 folds for the MKL model. Points lying outside
the quartiles are the suspected outliers. Compactness of boxes suggests inter-subject consistency of
model’s performance. Further, these 5-fold cross-validation results suggest that MKL model performs
consistently well on unseen subjects.
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(a) Emp (b) MKL (c) DMF (d) SDK

Figure 4.2: Functional Connectivity (FC) Networks Derived from Group-Mean FCs of the Test
Dataset. The mean FC networks depict edge-connectivity patterns for (a) Empirical FC and FCs predicted
by (b) MKL model; (c) DMF model [36]; and (d) SDK model [2], respectively. Note the similarity of the
MKL model and the empirical FC in terms of community assignment and inter-hemispheric connections.
DMF model predicts a denser network while the single scale model predicts coarser network than the
empirically observed FC. Brain-net-viewer [113] was used for visualization of the four communities
detected from the Louvian algorithm available in brain-connectivity-toolbox [87]. Colors of the edges and
nodes are only to demarcate the communities observed and do not have any correspondence across brain
surfaces for different models. Thus the comparison of community structure across models is qualitative
in nature.

empirical FC (shown in Fig. 4.2(a)). The other two models predict either a denser FC network (as shown
in Fig. 4.2(c) for the DMF model) or a sparser FC network (as shown in Fig. 4.2(d) for the SDK model),
where both the scenarios are far from the empirically observed network. Additionally, the predicted mean
FC by MKL model and the empirical mean FC seem similar in terms of community assignment and
inter-hemispheric connections.

Further, to see element-wise variance in the mean predicted FCs, we also drew scatter plots between
the predicted and empirical FCs in Fig. 4.3, where only the non-diagonal lower triangular matrix entries
were displayed. These plots suggest that MKL model preserves the global structure of the empirical FC
as well as the element-wise connectivity patterns significantly better than the other models.

To further validate the nature of reconstruction of the connectivity patterns for various ROIs, we
performed a seed-based correlation analysis using the mean FC matrices predicted from the three models.
We chose the left posterior cingulate cortex (PCC) as a seed region since it has been known to have an
important functional role as a hub region of the default mode network [28]. Fig. 4.4 plots the correlation
values between left PCC and all other regions on the brain surface reconstructed from the Desikan-
Killiany atlas [38]. Cool (hot) colors suggest low (high) connectivity (correlation) of that particular
region with the left PCC (shown as dark red color in the mean empirical FC). The MKL model could
reconstruct the connectivity pattern with higher precision than the other two models. It appears that due
to very high correlation of left PCC with all other regions, DMF model could not as clearly distinguish
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(a) MKL (b) DMF (c) SDK

Figure 4.3: Comparison of Scatter Plots. Scatter plots for mean FCs of the test-subject-wise empirical
vs predicted FCs for (a) MKL; (b) DMF; and (c) SDK models. Only the non-diagonal lower triangular
matrix from all the FCs has been taken to generate the plots. Each connection was identified as belonging
to one of the four different lobes represented by their color codes; resulting in 16 colors representing
4×4 inter-hemispheric connections. Higher R2 value for the MKL model suggests tighter bound on the
element-wise error while predicting FC. Even though prediction of DMF model appears to be closer to
that of MKL model, predicted elements are much more scattered for the DMF model.

the boundary between regions. SDK model could not possibly distinguish them due to very sparse
connectivity between left PCC and all other regions.

4.4.3 Effect of Thresholding

The rich-club organization of the structural connectivity (SC) matrix is previously demonstrated to be
the backbone for generating the functional connectivity patterns [103, 25, 91]. Therefore we set out to
investigate the impact of using thresholded SCs for predicting FCs. We pruned the SCs of all subjects by
keeping only top T% of the connections. Each of these sparse matrices was passed as input to the learned
MKL model. For each sparse SC, corresponding FC was predicted. Pre-learned πi’s were used for
predicting FCs in the MKL model. Similarly, fixed diffusion scale and G parameters were used for SDK
and DMF models for comparative evaluation. Fig. 4.5 shows the mean correlation between empirical FC
and predicted FCs for each of the sparse SC matrices. As can be seen, DMF and SDK models attain their
respective optimum performance even when only few (as low as 10%) strongest edges in SC remained.

On the other hand, MKL model requires both strong edges and few local edges, and hence its
performance starts increasing from T = 15% and is significantly superior at all thresholds above this
value. This result suggests that functional patterns may be primarily decided by the initial co-activations
captured by πi’s and that the structural constraints of individual SCs provide paths for these activities to
diffuse, giving support to our hypothesis. Nevertheless, stable performance with sparsification as high as
with T = 20% indicates that all the models obey the basic rich-club principle.

Interestingly, MKL model captures the differences in sparsity levels better when compared to the
other two models, especially when SC was pruned to keep the strongest edges between 10− 20%. This
behavior suggest that pre-trained πi’s in MKL model do not compensate for major loss of information in
sparsified SCs, thereby indicating avoidance of overfitting.
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(a) Emp (b) MKL (c) DMF (d) SDK

(e) Emp (f) 0.71 (g) 0.52 (h) 0.37

Figure 4.4: Results of Seed-based Correlation. Mean correlation maps resulting from considering the
left Posterior Cingulate Cortex as a seed region and then calculating the seed-based correlations of all
other regions. These maps are rendered on the left lateral sagittal view in the top sub-figures (a)-(d) and
on the medial sagittal surface in the bottom sub-figures (e)-(h). While sub-figures (a) and (e) depict the
maps for Empirical FC, the maps from the predicted FCs of MKL model are in (b) and (f); those of
DMF in (c) and (g); and those of SDK in (d) and (h), respectively. Captions in the top row mention the
model name and those in the bottom row indicate the mean correlation value on the test subjects. As
can be observed, the correlation maps of MKL model seem to have greater correspondence with those
of the mean empirical FC. Moreover, as depicted by the contrasts in the colors, MKL model is able to
distinguish between the correlations at a better resolution than the other two models.

To keep edges more than T% of the maximum edge weight, we defined 0 ≤ ε ≤ 1 as the factor for
thresholding. Based on the mean SC, we selected 6 values for ε which are (0.0960, 0.0657, 0.0354,
0.0152, 0.0051, 0.0000) and applied them to get the thresholded empirical SCs. We only selected
elements of SC above ε times the maximum value of SC. This mask was applied on SC to generate the
set of thresholded SCs. Equation 4.20 describes the process succinctly in the form of a MATLAB R©

pseudocode statement.

SC← (SC > ε max(SC))� SC, (4.20)

where � is element-wise product.

4.4.4 Robustness of the MKL Model

The proposed model learns a latent representation, Π that maps the relationship between SC and FC.
This being the crucial difference between MKL and other models, we performed extensive robustness
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Figure 4.5: Model Performance on Sparse / Thresholded SCs. Structural Connectivity (SC) matrices
for each subject were sparsified using 9 sparsification values. The three models were tested using these
sparsified SCs. The plot shows the mean correlation values along with the standard deviation across
subjects at each sparsification level. While MKL model was pre-trained with the un-sparsified SCs, a
single optimal parameter was derived from the training data for each of the DMF and SDK models and
used for estimating FC for the test subjects. The performance of MKL model starts to be superior after
the sparsification level of 15% of the remaining edges. It appears that since MKL model selects the scales
closely based on the SCs, the model performance degrades at very high sparsification levels.

tests to verify the usefulness of learning the πi’s. To ascertain that the model’s representation learns
important features and does not capture the SC-FC mapping by chance, we conducted the following four
randomization experiments. In the first one we randomize the input to the model (i.e., SCs) (see Fig. 4.6)
and in the second the learning itself is conducted based on perturbed SCs. In the third experiment we
disturb the scale-specific relation between the learned πi’s and Hi’s (see Eq. 4.17) and finally in the
fourth experiment the constituent rows of πi’s are randomly permuted (see Fig. 4.8).

4.4.4.1 Procedure for perturbation of input

We generated random SC matrices respecting the power law distribution of the connectivities of the
ROIs. These are the following steps:

1. We assume that power law distribution takes the form pK(k) = k1/α+1. k being the edge value.
We chose α as 2.

2. We generated a random matrix using uniform distribution and applied this function element-wise
on the random matrix.

3. Addition of the transpose to itself followed by division with the maximum matrix element provides
us with a random SC.

4. We repeated this procedure for all the subjects 250 times.
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(a) MKL (b) DMF (c) SDK

Figure 4.6: Model Performance with Perturbed Structural Connectivity (SC) Matrices. Randomly
perturbed SCs (N = 250 sets) of the test subjects were used for estimating the FCs with the trained
models. Sub-figures depict histograms of model’s mean performance (Pearson correlation between
empirical and predicted FCs): (a) MKL; (b) DMF; and (c) SDK model, respectively. The sub-plots (top
right corners) within these sub-figures zoom in on the histograms for clarity. As expected, all the models
depict degradation in performance with perturbed SCs.

4.4.4.2 Perturbing the model input

To verify whether the model learns the SC-FC relationship correctly or predicts the average FC
independent of SC, we provided the MKL model with perturbed SCs in two possible scenarios: first,
while testing, and second, while training.

Each subject-wise SC was perturbed N = 250 times, hence forming 250 sets of subject-wise
perturbed SC-empirical FC pairs. In the first perturbation analysis, we trained the MKL model with
the original subject-wise training SC-FC pairs, and tested the model with these 250 perturbation sets.
These same sets were used for evaluating the other two models. We calculated the mean correlation
values between predicted and empirical FCs, thus obtaining 250 mean correlation values for every model.
Figs. 4.6(a), 4.6(b), and 4.6(c) show the histograms of these mean correlation values for MKL, DMF and
SDK models, respectively. As expected, all the three models have significant drop in their performance
indicating their sensitivity towards meaningful SC matrices while arriving at predictions.

In the second perturbation analysis, we trained N = 250 MKL models using the 250 perturbed sets
and evaluated them using the subject-wise empirical SC-FC pairs. We did not have to perform this
analysis for the other two models as this analysis is the same as that of the above for these models.
Fig. 4.7 shows the histogram of the 250 mean correlation values that is distributed across a wide range
of correlation values instead of peaking at a particular value, thus indicating a garbage-in, garbage-
out phenomenon from a machine learning perspective! This result, along with the results in Fig. 4.5,
demonstrate that MKL model is not learning just a transformation from a subgraph of SC to an average
FC but that the learning is holistic.
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Figure 4.7: Input perturbation while training MKL model. The 250 perturbed sets of SCs were used
train independent MKL models. These trained models were used for testing with the correct test SC-FC
pairs. Histogram shows the mean performances across all the sets. As observed, most of the mean
correlations are around −0.2.

4.4.4.3 Altering the model parameters

After confirming that the model does not learn a random mapping between SC-FC pairs, we alter
the learned mapping to further confirm model’s robustness. We considered two ways of altering the
model parameters (πi’s). These parameters are mathematically represented as a set of m matrices
(πi’s) corresponding to m diffusion scales (m here is set to 16, also see Equation 4.17). We sought
to experimentally verify that Π can be interpreted as holding complementary information of a cohort
of SCs. Hence it is likely that any perturbation of Π would disturb the synergistic correspondence to
empirical SCs and cause performance degradation. In order to experimentally validate this intuition, we
ran two types of permutation tests.

Firstly, we sought to estimate the importance of the arrangement of πi’s, i.e., the ordering of the
scale-specific matrices constituting Π. For this we swapped every matrix πi (1 ≤ i ≤ m) one at a time
with πm (corresponding to the lowest scale, i.e., π16). Fig. 4.8(a) shows the mean correlation while
performing swapping. Pearson correlations are plotted against the swapped indices. Because of no-swap
the last correlation (corresponding to i = 16) depicts optimal performance. The sub-figure suggests
that indeed the constituent parameter matrices share their similarity with their corresponding scales.
Constituent matrices learnt against larger scales of diffusion ought not be similar to those against local
scales of diffusion. Component of π corresponding to global scale of diffusion represents co-activation
patterns of regions topologically far apart, and component of π corresponding to local scales capture co-
activations in the neighborhood . Thus, this is an empirical verification that when swapped performance
of the model decreases. This plot suggests that indeed matrices have positional significance (in other
words, scale-specificity), so they cannot be reorganized to predict FC. This is a property that is also subtly
captured in Equation (4.17) in the sense that these matrices have a strict correspondence to their scales,
consequently they embed scale-specific diffusion kernels to enable correct prediction of FC.
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(a) Constituent matrices of Π are swapped
with the lowest scale constituent matrix.

(b) Histograms of Pearson correlations when Π
is altered. Rows of constituting Π are permuted.

Figure 4.8: Investigation of the Impact of Altering the Scale-specificity of the Parameters π’s. Two
studies are conducted where the first study (a) looks at the impact of changing the scale-specificity of
the π’s and the second study (b) looks at the impact of a larger-scale alteration when the components
of individual π matrices are themselves altered. (a) This sub-figure depicts the result of swapping each
of the πi matrices with the last matrix, i.e., with π16. For example, the first data point shows the mean
performance when π1 is swapped with π16, the second data point corresponds to the case when π2 is
swapped with π16 and so on for each of the 16 πi matrices being swapped with the last matrix π16. Thus
the last data point corresponds to the case when the original order was retained. The error bars represent
the standard deviation. The results suggest scale-specificity of the learned parameters, i.e., in the sense
that the performance degrades drastically if the π matrices of one scale are swapped with a π matrix
of a distant scale. (b) The histogram of Pearson correlations depicts the performance when all the πi
matrices are stacked together and the rows of the resulting stacked Π-matrix are swapped randomly 250
times. Such global alteration drastically degrades the performance. Together, these results indicate that
the learned parameters do not predict FCs by chance but play a crucial role in the MKL model.

Secondly, we sought to estimate regional importance of the entries of πi matrices across scales. We
concatenate all m πi’s into a single matrix (Π) of size mn× n. We permute the rows of this matrix and
test the model performance. A row of Π captures regional co-activations at that scale between the region
corresponding to that row and all other regions. In this sense, this analysis amounts to permuting the
rows of the mn× n matrix. We permute the rows of this large matrix 250 (N ). Each newly generated
Π is used for testing the model performance. Fig. 4.8(b) shows the histogram of the mean correlations
of all the N permutations. Clearly the plot shows that permuted Π significantly deteriorates the model
performance. This figure underlines the importance of maintaining the structure of co-activation between
pairs of regions.

4.5 Application of MKL for Identifying Inter-group Variations

Here we describe an application using Π. We used Π to learn the functional patterns in two age
groups, young and old. Before learning Π’s for both age groups, we sought to validate the requirement
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of multiscale model instead of a single-scale one. We are using the dataset after thresholding the SC
matrices. The data set comprises of young-age group covering ages less than 30 years and old-age group
comprising more than 50 years. Fig. 4.9 shows Pearson correlation curves for subjects categorized by
their age groups. Albeit data tends to satisfy single-scale hypothesis, the optimum scale seems to be same
for both the age-groups. However, the scales and the actual Π’s for the two age groups are significantly
different as can be inferred from Figure 4.10.

(a) Young age group (b) Old age group

Figure 4.9: Inter-group variations. Pearson Correlation curves for two age groups: (a) Young age
group; (b) Old age group. Looking at the figure, it is difficult to comment on the age group of the subject.

Figure 4.10 shows the differences Π captures between the two age groups. Clearly, elements of Π

span different ranges at global scales and these ranges come closer near local scales of diffusion (that
is, for higher indices in Figure 4.10). Moreover, different regions participate in diffusion process in the
young and old age groups. We call Π learned from young age group as Πyoung and similarly that from
old group as Πold. To further highlight the differences, we used Πyoung and Πold for predicting subject
specific FCs. Fig. 4.11 captures the predictive power of Π’s learned separately for the two age groups.
We compared subject-wise Pearson correlations with the native and other age group’s Π. The two plots
clearly show that native Π’s predict subject-specific FCs better than other group’s Π’s.

4.6 Model Inversion

This section describes a procedure to recover the structural connectivity (SC) from the functional
connectivity (FC) data, given Π. The procedure is very simple and described in the following steps.

1. Find the set of diffusion kernels for subject s by solving the linear system of equations.

[π1, · · · ,πm]


Hs

1
...

Hs
m

 = FCs. (4.21)
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(b) Old age group

Figure 4.10: Age-group specific Π’s. Different age groups learn significantly different Π’s. Clearly, the
set of regions influencing other regions are different in both the age groups. Moreover, ranges of Π’s
even for individual scale-components are also different. The numbers in the title of each sub figure index
the scale-components. Thus, Π can be considered as a viable model for classification.

(a) Young age group. (b) Old age group.

Figure 4.11: Comparing the performances of the learned Π’s on both age-groups. Performance of
the young age group was tested on both Πyoung and Πold. Similarly old age group’s performance was
also tested with both the Π’s. As seen, Π’s capture behavior of both groups and are able to distinguish
between them.
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2. As the set of exponential values is known, and we choose second index of eigenvalues for finding
the scale set; when each diffusion kernel is eigen-decomposed, the second eigenvalue of these Hi’s
should be 1.

Hs
i = e−Lsγi = Ψse−ΛsγiΨs> (4.22)

Λs =


λs1/λs2

1
. . .

λs1/λs2.

 (4.23)

3. Laplacian Ls can be obtained from the eigenvector-eigenvalue matrices obtained from the previous
step.

Ls = ΨsΛsΨs> = Ds − SCs.

4. Removing the diagonal entries of Ls and negating the remaining values, we obtain SCs.

Note that this method has some numerical inconsistencies which need to be resolved before it can be
deployed.

4.7 Discussion

The holy grail in cognitive neuroscience is understanding how the static brain structure gives rise to
dynamic function both during rest and task conditions. Several models have been proposed to characterize
the structure-function relationship [81]. Simple linear diffusion models [2, 89] as well as complex non-
linear, whole-brain computational models [36] have been proposed. Linear graph models [2] admit
closed form deterministic and testable solution to macroscopic interactions of brain activity without
requiring any details of neural coding or their biophysical substrate. On the other hand nonlinear complex
drift-diffusion models based on excitatory and inhibitory neuronal populations, though not analytically
tractable, give rise to rich dynamics [36].

Abdelnour et al. [2] conceived a model of functional connectivity (FC) with only one diffusion
kernel defined at an optimal scale. This optimal kernel operates on an identity matrix, meaning that
the amount of activity reaching other regions from a single source is representative of the statistical
dependence between those regions. This statistical dependence resembles activity heat maps which
exhibit inter-individual variations. However, Surampudi et al. [97] showed that single kernel models do
not generalize to a larger cohort and demonstrated that FC can be decomposed into multiple diffusion
kernels with subject non-specific combination coefficients.

We proposed a multiple kernel learning (MKL) method that learns inter-regional co-activations
(denoted as πi’s) and reshapes the structurally confined diffusion kernels to give rise to functional
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connectivity estimates. MKL model is a generalization of the SDK diffusion model. Resting state
functional connectivity could be considered as a signal on a brain graph expressed at multiple different
spatio-temporal scales. Our approach essentially finds a way to unfold these solutions on the brain
graph combining multiple scales to accurately estimate the empirical FC. One way to interpret the
proposed multi-scale diffusion model is to treat it as a variant of a reaction-diffusion system on the graph
determined by the underlying structural connectivity (SC) matrix.

We adopt the representation of the graph signal in terms of eigenvectors of the graph Laplacian similar
to what has been recently proposed [6]. The proposed MKL framework devises a scheme for learning
the hidden parameters (πi’s) to estimate FC. The initial regional activity u0 in the reaction-diffusion
type model is a vector, hence the matrix u0u>0 is a rank 1 matrix. As it is a positive semi-definite (PSD)
matrix, it will only have one non-zero eigenvalue. Eigen-decomposition in Eq. (4.11) suggests a possible
physical interpretation, that the initial mean activity distribution, an eigenvector of the graph Laplacian,
resembles standing wave patterns on the graph. Total number of such standing waves is equal to the
number of nodes of the graph. Hence our hypothesis is that the initial regional co-activations (πi’s)
correspond to one of the standing waves present at some time kiτ significantly changing the pattern at
that reaction instance (please refer to subsection 4.3.1 for notations). Functional connectivity can then be
articulated as a superposition of such standing wave patterns and their regional co-activations.

In order to predict FC from the proposed diffusion model, we estimated Π by solving a LASSO
optimization formulation. We hypothesized that these hidden parameters are learnable from the training
data and remain fixed at the time of testing. Consequently different FC matrices for the test subjects
would be arising by virtue of the underlying differences in the respective structural connectivity matrices
(SCs). This would mean that the parameters Π are not merely a derivative of SCs but instead they
complement the missing aspects by capturing the statistical dependence between two regions that are
modulated by some intermediate region that may not be in physical proximity and that too operating
at multiple resolutions or scales. Thus by incorporating the inter- and intra-hemispheric functional
connectivity terms for a brain region, the learned optimal Π parameters enable more accurate matching of
the structure-function correlation. All the computational models can be visualized to lie on the spectrum
spanned by biological interpretability and analytical ease. Whereas linear models enjoy simplicity of
solution of their models, non-linear models tend to explain the complex biological reality. MKL model
seems to find a sweet spot and enjoys best of both by analytically providing the solution and explaining
the patterns in terms of large-scale excitatory-inhibitory interactions. Since LASSO optimization is the
most expensive computational step, the computational complexity of the proposed MKL model would be
dominated by the cost of LASSO optimization.

In summary, on the model continuum, the proposed MKL model lies somewhere between simple linear,
SDK diffusion models [89, 2] and complex non-linear drift diffusion models [36]. Consequently, we
compared our simulation results predicting BOLD functional connectivity using the proposed model with
models at either end of the complexity spectrum. The experimental results showed that the correlation
structure of BOLD functional resting state brain networks is significantly well captured by our model.
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Prediction accuracy of the MKL model for the 23 test subjects is close to 0.70 whereas that of the non-
linear model comes second best at 0.52 and that of the SDK model around 0.37. We conducted a series of
tests that perturbed the inputs to the model as well as permuted the learned parameters Π. The test results
attest to the robustness of the proposed model. Interestingly the model not only captures the variability
of scales across participants but also demonstrates a possible application in characterizing age-related
differences in learning optimal parameters for the accurate estimation of FC (refer to section 4.5). Even
in the face of considerable amount of variability present in the data, the proposed MKL model is still
able to predict subject-specific FCs with high accuracy. Beyond this, functional connectivity subsumes
the influence of different regions across scales and age groups providing a viability of Π being a useful
parameter for classification purposes for other domains of application in health and disease. Overall,
our method might be considered the missing link in the estimation and improvement of predicting
subject-specific resting-state functional connectivity that remained elusive so far for complex non-linear
and linear models. Given the strength of the analytical approach and tractability, the proposed model
could be a suitable method for predicting task-based functional connectivity across different age groups.

One major limitation of our work is that it is not so straightforward like the linear diffusion model
to invert the FC to recover the SC matrix. Currently, in the MKL model the procedure to predict SC
from FC would rely on a given Π. One way of finding SC is by estimating the diffusion kernels for
individual subjects by solving the same system of linear equations used to find FC. Laplacian of a
graph could then be estimated. Carefully recovering multiple diffusion kernels might turn out to cause
numerical instability to the Laplacian (please refer to section 4.6) and this issue needs to be resolved in
the future. While in the current formulation we are empirically determining the number of scales (m)
and their spacing, optimization formulation could be modified to estimate these automatically. Moreover,
the current model does not consider the non-stationary nature of functional connectivity, the so called
functional connectivity dynamics (FCD).

In the next Chapter, we investigate optimization procedures of MKL for modeling the dynamic
functional connectivity which is more realistic than modeling stationary FC.

54



Chapter 5

Temporal Multiple Kernel Learning

5.1 Temporal dynamics in the BOLD time series

Since its discovery over two decades ago, there has been a keen interest in investigating the slow
correlated fluctuations in the functional magnetic resonance images (fMRI) when subjects are at rest and
not engaged in any task [16]. Studies capturing the resting-state blood-oxygen level-dependent (BOLD)
functional magnetic resonance imaging signals (rs-fMRI) have usually analyzed patterns of functional
connectivity that are static within the duration of the scanning. The spontaneous patterns of co-activity
across pairs of regions of interest (ROIs) is measured by computing the Pearson correlation coefficient
between the rs-fMRI time series of the two regions. The resulting matrix of correlation coefficients is
termed the functional connectivity (FC) matrix. The topography of the brain anatomy, called the structural
connectivity (SC) is estimated from diffusion tensor images (DTI). How the static SC sculpts the FC has
been a challenging open research problem in the brain connectome research domain. Recently it has been
recognized that time-averaged grand FCs (gFC) ignore the temporal fluctuations that occur in the rs-fMRI
time series within a scanning session. In the last five years the field has moved on to characterizing
temporal fluctuations in the functional connectivity within a session, referred to as dynamic functional
connectivity (dFC) [60, 22, 82]. A straight forward approach for incorporating temporal fluctuations is
using windowed FCs (wFCs) estimated by sliding a window over the rs-fMRI time series and calculating
the Pearson correlation coefficient as a co-activation measure between pairs of regions of interest (ROIs),
thus giving rise to dFC over consecutive temporal windows within a session [54, 35, 105]. This way
we obtain a sequence of wFC matrices that in turn can be used to assess the temporal structure of the
fluctuations in a session.

This simple approach has several shortcomings, the primary one being the uncertainty as to whether
the observed fluctuations in the wFC time sequence are due to noise or due to statistical uncertainty [56].
The other weakness is the lack of models for identifying time-varying brain states and for quantifying
transition probabilities between brain states. A related issue is the uncertainty about the alignment of
the brain states across the fMRI time series of different participants. Recently hidden Markov model

55



Figure 5.1: Outline for temporal Multiple Kernel Learning (tMKL) model. Figure shows the entire
pipeline for predicting grand FC for a testing subject. The model incorporates subject specificity along
with temporal variation characterization. Part (I) of the model, training phase, consists of three blocks.
The first one, learns temporal variations in terms of distinct states via GMM clustering over the underlying
manifold of wFCs (steps 1. and 2.). The second block utilizes the empirical transitions between these
distinct states and captures dynamics in the first order Markov chain (steps 3. and 4.). The third block
learns subject-specificity by modeling each state by its MKL model [98] (step 5.). Part (II) of the model
validates its generalizability on unseen subjects. Importantly, only SC of a testing subject is required
(step 6.). Each state for the testing subject is characterized in step 7.. Each state-specific predicted FC is
decomposed into a latent time series which are then concatenated using the steady state distribution of
the Markov chain (steps 4. and 8.). Finally, grand average FC is predicted for that subject (step 9.).

(HMM) based schemes have been proposed to characterize the dynamic connectivity patterns among a
small number of resting state networks (RSNs) [88].

They use selected few ROIs and modeled clusters of individual fMRI time-points as the transient brain
states while considering the covariance matrix of each cluster as the corresponding transient network
dFC. Thus, their state representation is not subject-specific and hence the learned HMM model can not
be used for subject-specific characterization.

Linear models based on graph diffusion of brain dynamics have been proposed recently wherein
neuronal firing rates are hypothesized to perform random walks on the SC graph to give rise to FC [3].
The linear diffusion models consider that the mean regional activity diffuses over the anatomical fibers
governed by a system of coupled ‘deterministic’ differential equations whose solution becomes the graph
diffusion kernel which is hypothesized to resemble the FC. However these models consider static FCs
and consequently temporal fluctuations in the FC are not directly modeled.

56



To address these issues, we propose a novel solution for characterizing the dynamic evolution of
functional connectivity patterns over time. This is achieved by proposing two novel constructs: 1) t-MKL
model that learns the static SC to dynamic FC mapping for generating transient state wFC for each of the
states; 2) first-order Markov model that learns the state transition probabilities. The proposed solution
obtains gFC from SC by predicting multiple wFCs along with capturing their temporal evolution. This
is achieved by characterizing the transitions between transient states using a first-order Markov model.
This model is used for generating a long state sequence using the steady state distribution of Markov
random walk. This state sequence is further replaced by sequence of corresponding wFCs generated by
the t-MKL model. Finally, these wFCs are factorized to recover a latent time-series sequence. gFC is then
computed on the reconstructed time series and compared with the empirical FC. The proposed model
recovers the gFCs that are very close to empirical FCs as the wFCs recovered with the t-MKL model
enable realization of subject-specific functional dynamics. Further, various perturbation experiments
demonstrate the robustness and validity of the proposed scheme. The specific contributions of the work
are the following:

• Novel approach for learning the SC-FC mapping through characterizing the dynamic functional
connectivity (dFC) over time windows.

• Proposal of a novel multiple diffusion kernel model that learns to predict wFCs from SC (t-MKL
model).

• Characterizing the transition of transient brain states in the rs-fMRI time series using first-order
Markov model.

• Estimating the latent fMRI time series by using the Markov transition probability matrix in
conjunction with the t-MKL model.

5.2 Proposed Model

In this section we describe in detail the whole pipeline of the proposed parametric-model to map
the relation between SC and FC for a cohort at rest. The proposed model considers the importance
of underlying anatomical constraints to generate the temporal richness as well as to characterize and
assess whole-brain FC dynamics. Figure 5.1 shows a flowchart of the essential elements of the whole
pipeline. Proposed model partitions aspects of the whole-brain dynamics succinctly into two parts:
characterizing temporal dynamics through identification of latent transient states and linking them to the
underlying structural geometry. These two aspects are parameterized using a novel combination of unique
methods. The model utilizes wFCs for identifying states and SC-wFC pairs for learning dependence
from the structure. Once these two parts successfully characterize the above mentioned aspects by tuning
respective parameters, the model is tested for its generalizability on unseen subjects.
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For identifying latent states within the dynamics, we discover the underlying globally-nonlinear-
manifold over which all the wFCs lie, thus recovering the lower-dimensional space for a meaningful
characterization. We employ a probabilistic framework for estimating the number of states and shape of
each state in the lower-dimensional space, ensuring soft assignments of wFCs to its neighboring states.
These soft assignments are further used to estimate the transition dynamics between these states. With
respect to second aspect of the model, we adapt the multiple kernel learning (MKL) framework [98]
for parameterizing the dependence of SC on wFCs for each state. We observe that the parameters to
be learned form a non-convex combination, necessitating an iterative algorithm. Thus we formulate
the learning objective into an optimization formulation and adapt an iterative algorithm for solving this
non-convex combinations of these parameters.

The model predicts state-specific FCs for an unseen subject. These sFCs are decomposed into a latent
time-series which further is concatenated using the relative frequency of occurrence of states to generate
a global time-series for calculating the static FC of a subject. Thus, for a new subject, given the SC, static
FC along with its state-specific FCs are predicted by the proposed model. In the subsequent subsections
we elaborately describe each part of the proposed model. From now on, let D = {F1

w, · · · ,Fsw, · · · ,Fpw}
be the set of all wFC matrices obtained by sliding a window of fixed size ω over the n-dimensional fMRI
time-series belonging to all the training subjects.

5.2.1 Spectral Embedding

We propose to soft-cluster these wFC matrices into K states, first by vectorizing the lower triangular
part to a size of n(n−1)2 × 1. These wFCs are sparsely spaced in this higher-dimensional space, but may
originally lie on an intrinsic space that may be a globally non-linear manifold [13]. Spectral embedding
method is employed to reduce the dimensionality of the data, by finding a mapping to a lower dimensional
manifold over which these wFCs reside [14]. The graph constructed over the data points provides discrete
approximation of this continuous manifold. The solution embedding is provided from the eigenmaps
(eigenvectors) of the Laplacian operator over the graph, which approximates a natural mapping onto the
entire manifold. The Laplacian eigenmaps preserve the local structure in the graph, thus keeping the
solution embedding robust to outliers and noise.

The spectral embedding method is applied as follows. Firstly, an affinity matrix is created by applying
a radial basis function over the L1 distance between every pair of wFCs. This matrix captures pairwise
relationship between wFCs in a relational graph. Next, we form the corresponding normalized graph
Laplacian matrix and use the eigenvectors corresponding to its lowest K eigenvalues to define the basis
vectors embedding space [108, 79, 92]. The value of these eigenvectors against each wFC represent its
resulting transformation into the embedding space. Finally these K-dimensional embedded wFCs are
clustered using GMM, as explained in the next subsection.
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5.2.2 GMM Clustering

Following the discovery of an approximation to the continuous lower-dimensional manifold, we now
parameterize the local density distribution of wFCs over the manifold into a probabilistic framework,
Gaussian mixture model (GMM) [15]. Gaussian mixture model is a factor analysis model that represents
the probability density of a sample as a weighted combination of component Gaussians. Such a represen-
tation facilitates them to represent a large class of sample distributions. Specifically, distribution of wFCs
over the manifold are modeled as a GMM.

Let the density of Fsw be a linear combination of K component Gaussian densities, represented as
follows:

p(Fsw; Θ) =

K∑
k=1

Ψk(s)N (Fsw;µk,Σk)

K∑
k=1

Ψk(s) = 1, ∀s = 1, · · · , S

(5.1)

where p denotes the probability density of a wFC. Each component Gaussian is a K-variate Gaussian
probability density function of the form:

N (Fsw;µk,Σk) =
1

(2π)
K/2 det (Σk)

1/2
exp

{
(Fsw − µk)>Σk−1(Fsw − µk)

}
.

GMM thus represents the manifold as a set of Gaussian densities and parameterizes it in terms of Θ:

Θ =
{

Ψk(·), µk,Σk
}
, k = 1, · · · ,K. (5.2)

As the collection of these component Gaussians forms the manifold, the component Gaussians can
be interpreted as a latent transient state visited by the brain. Each state is a Gaussian but at different
locations and shapes governed by µk and Σk respectively in the manifold.

5.2.3 State Transition Markov Model

The wFCs now being quantized into these finite states S = {s1, · · · sK} by GMM clustering,
transitions between these states is representative of the dynamics in time series. We assume first-
order dependence amongst these transitions and learn the Markov transition probability matrix, TK×K .
Figure 5.2 shows a depiction of Markov model forK = 5 and corresponding transition probability matrix.
Each edge ti,j captures the probability of transition from state i to state j. Similarly, self-loop edges ti,i
depict the probability of remaining in the same state. For each state i we compute ti,j by counting the
number of first-order transitions to state j in the state sequence. Finally, we normalize each row of T to
make it a transition probability matrix. This Markov matrix learned on training wFCs is used to generate
a random state sequence. As any Markov chain converges to its steady state distribution regardless of
its initial distribution with time, we find the steady state distribution over transition matrix and use this
distribution as frequency of occurrence of states over the time course. This gives us a state transition
sequence.
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Figure 5.2: Graphical depiction of proposed Markov state transition model. An illustration of the
first-order Markov chain used as a part of the proposed tMKL model. Each state has its unique distribution
of FCs, represented as a Gaussian in the embedding space, from which subject-specific FCs can be
sampled. The corresponding transition matrix (for K=5) and an example state sequence generated with a
Markov random walk over the transition matrix is also depicted.

Subsequently, we obtain the wFC matrix for each of the states using the input SC matrix of the testing
subject and the learned t-MKL model. This is achieved by first defining diffusion kernels over the SC
matrix of a testing subject and then multiplying them with Πks learned for each state using t-MKL model.
This would yield state-specific wFCs for that subject. In summary, based on a realization of the Markov
chain, a sequence of wFCs is generated.

5.2.4 tMKL Model

Mean regional activities of all regions are assumed to be in a random walk over the SC graph. This
phenomenon is represented by a linear differential equation whose analytical solution is the diffusion
kernel over the graph defined by SC which is hypothesized to be representing FC [3]. [97] discover that
physical diffusion over such large scale graphs exhibits multi-scale relationships with FC, thus a linear
combination of multiple diffusion kernels is considered more representative of FC (this model is referred
to as MKL NIPS from now on). The linear combination coefficients are scalar values which equally
weigh all regional activities at each diffusion-scale. But it may so happen that activities of non-physically
connected regions may be modulated by other regions. To represent this phenomenon we introduce the
variables πis of size n × n, that capture the inter-regional co-activation patterns at diffusion-scale i,
∀i = 1, · · · ,m, m being the number of diffusion-scales.

Let a diffusion kernel defined at scale i be denoted by Hi.

Hi = e−τiL (5.3)

Here τi is the spatio-temporal scale of heat diffusion and L is the Laplacian matrix corresponding of the
SC. We propose that a wFC matrix can be decomposed into a set of diffusion kernels multiplied with

60



their co-activation pattern:

Cf =

m∑
i=1

Hiπi, (5.4)

Cf denoting the predicted wFC. We hypothesize that co-activation patterns of a state will be distinct than
those of other states and hence we add a superscript index k to get πki . As the parameter πki s are state
dependent, the state specific predicted functional connectivity, Cs,k

f , will be as following:

Cs,k
f =

m∑
i=1

Hs,k
i π

k
i =

m∑
i=1

e−τ
k
i Lsπki (5.5)

Here Ls is the Laplacian matrix of the SC corresponding to wFCs. This results in the following
optimization problem for Πk and τ k:

minimize
Πk,τk

p∑
s=1

∥∥∥Ψk(s)
(
Fs
w −Cs,k

f

)∥∥∥2
F

+
m∑
i=1

‖πki ‖1 +
m∑
i=1

‖πki ‖2

subject to Cs,k
f =

m∑
i=1

e−τ
k
i Lsπki

πki ∈ Sn+, i = 1, · · · ,m

τ k � 0.

(5.6)

Here Sn+ is the convex set of positive semi-definite matrices. The objective function takes the form
well known in regression analysis as least absolute shrinkage and selection operator (LASSO) that
performs both variable selection and regularization. We arrived at the model parameters experimentally,
for example, the number of scales m is empirically chosen (see Subsection 5.3.1).

5.2.5 Factorization of predicted wFCs for time series generation

Pearson correlation between two time-series A, B is ρ(A,B) = cov(A,B)
σAσB

. Hence for a zero-mean and
unit variance time-series Zn×ω, wFC matrix is the covariance of times-series. we factorize the wFC as
follows:

Fw = UΛU>

= (
√

ΛU>)>(
√

ΛU>)

Ẑ =
√

ΛU>.

(5.7)

Thus, using Eq. 5.7, we recover latent time-series matrix Ẑ that can be taken as approximated time-series
used for obtaining wFC. For a subject, each cluster-specific wFC is decomposed into latent time-series
and these are concatenated into a grand time-series. The latent time series are concatenated by considering
the steady state distribution of the Markov chain. Steady state distribution is the probability of being in
a state which remains the same throughout transitions. Every random walk over the transition matrix
approximates this distribution after infinitely long time. Finally, as Pearson correlation is order agnostic,
calculating Pearson correlation matrix of the grand time-series generates the predicted gFC for that input
testing subject.
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5.3 Experiments & Results

5.3.1 Parameter Selection

• Performance Evaluation: Performance of the proposed solution was evaluated in the following
setup. We use Pearson correlation coefficient between empirical and predicted FCs to keep the
measure of model performance consistent with the extant literature[3, 10]. Half of the cohort, 23

subjects, were randomly selected for training, and the remaining half were included in the testing
set.

• Choice of ω: Within extant literature, the choice of a suitable sliding window size is an open
problem with respect to the analysis of temporal dynamics in rs-fMRI [82]. The sliding window
size should be small enough so as not to miss the state transitions and should be large enough to
capture the state transitions reliably. Keeping this in mind, we followed [4] by using a sliding
window of ω = 22 TRs. The window was tapered at the ends by convolving it with a Gaussian of
σ = 3 TRs and was slid with a stride of 5 TRs to create wFCs.

• Choice of GMM parameters: Each latent transient state in which these wFCs lie is represented
using a component Gaussian of the GMM. In order to choose the optimal number of these states,
K, we selected the GMM model corresponding to minimum BIC score. Bayesian information
criterion (BIC) is a statistical measure based on the log-likelihood function used for selecting a
model amongst a finite set, where the model corresponding to the lowest BIC score is chosen.
The plot in Figure 5.3 shows BIC scores for the models obtained by fitting GMM for a large
range of K, where the minimum value was reported for K = 12. To retain generality of the
component Gaussians, we ran our experiments by considering a unique full covariance matrix for
each component Gaussian.

• Choice of m: The scale values were sorted in ascending order, where lower values correspond to
local diffusion phenomenon and higher values correspond to global diffusion phenomenon. Scale
values lying in-between correspond to intermediate diffusion phenomena. In order to be consistent
with that of MKL model, we chose the number of scales as m = 16.

5.3.2 Grand average FC (gFC) prediction

We compare the performance of the proposed model with several existing approaches: Abdelnour et
al. [3] (SDK), the non-linear dynamic-mean-field (DMF) model of [36] and Multiple Kernel Learning
model of [98]. To our knowledge, ours is the only model that incorporates structural information along
with temporal dynamics for predicting grand average FC, hence we are comparing with these models.
DMF and SDK models do not incorporate learning in their formulation and tune the parameters for
each subject separately. DMF model inherently captures non-stationarity, therefore it is directly used for
gFC prediction without computing wFCs. We estimated the optimal parameters of the DMF and SDK
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Figure 5.3: Bayesian information criterion (BIC) score for selecting the number of components
in Gaussian mixture model. The GMM is fit over the training wFCs lying in the lower dimensional
manifold. The BIC score is reported by varying the number of component Gaussians (K) from 2 till
19. The Gaussian mixture model corresponding to K = 12 (shown in red) has the lowest BIC score
among others and is therefore preferred. The plot shows local minima at K = 4, 7, and 15 which may
mislead the user while selecting the optimum model. This local minima suggests the choice of number of
components in Allen et al. [4].

models from the training wFCs and predicted the gFCs of testing subjects based on this subject-specific
parameter. The mode of the performance distribution histogram for the training set was used to select the
optimal model parameters. Figure 5.4 shows that tMKL has superior performance compared to others.

5.3.3 Robustness of the model

In order to validate the robustness of our model we performed various experiments to assess whether
our solution overfits the training data and also whether the prediction of the grand average FC is agnostic
to the particular SC matrix.

• Reproducibility of states As mentioned in Section 5.2.2, the GMM yields K soft assignment
vectors for the training wFCs. We validated reproducibility of this clustering by ensuring replication
of the same for testing subjects’ wFCs. We generated wFCs for all the testing subjects using the
sliding window approach. Soft assignment vectors were generated for these testing wFCs using
the GMM employed on the training data, which is then used to compute the Markov transition
matrix and the corresponding steady state distribution. Figure 5.5 shows an example of the steady
state distribution for our proposed method . We evaluated the similarity between the Markov
transition matrix and steady state distributions of the training and testing wFCs by finding the
Pearson correlation coefficients. Table 5.1 shows that the states are highly replicable for multiple
training-testing splits of the data.
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Figure 5.4: Model performance comparison between tMKL and existing models. Pearson correlation
between the empirical and predicted gFCs for all the testing subjects is shown for all models. As can
be seen, MKL model outperforms other two models, and tMKL model is at par or better than MKL for
all but one testing subjects. Even though there is marginal gain in the overall prediction quality, tMKL
provides rich insights into the temporal dynamics thus gaining its superiority over extant models.

• Cross-validation experiments We performed k-fold cross-validation experiment whose results
are listed in Table 5.2. These results suggest that performance of our solution is consistent across
various splits, hence supporting our claim of generalizability of our model on unseen data.

• Perturbation experiments Each testing subject SC was perturbed N = 150 times and using the
learned model we predict the grand average FC. We perturbed every SC by randomly generating it
from the power law distribution followed by its elements. The generated state-specific wFCs may
have non-positive eigenvalues. Here we considered only the real part of the generated time series
in order to estimate (predict) grand average FC. Figure 5.6 shows this observation over all the 23
testing subjects. Box plots for each subject depict the range of correlation values for random SCs.
Here we observe less correlations between empirical and predicted gFCs using the perturbed SC,
validating that our model respects the topology of input SC. This suggests that the model is not
overfitting the data and is sensitive to perturbation in SC.

5.3.4 Analysis of states

Empirically, fluctuations in the wFC sequence are shown to give rise to distinct transient wFC states
that are reproducible in random re-sampling of subjects [4]. Our model also achieves reproducibility
of these states for random splits of training subjects (See Table. 5.1). As wFCs lying on the lower-
dimensional manifold are clustered using GMM, a wFC belongs to all states (component Gaussians)
with different probabilities, Ψk(·). A wFC is assigned to a state which it belongs to with the maximum
probability of belongingness. Further, two wFCs assigned to the same state should have a higher
correlation with each other in contrast to a lower correlation value when assigned to distinct states. Our
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Figure 5.5: Markov chain steady state distribution. After the states are retrieved using GMM, the
Markov chain transition matrix was learnt over the resulting state-sequences of the training subjects’
wFCs. The figure shows the steady state distribution of the transition matrix, which represents the
probability distribution of occurrence of a state after infinite amount of time.

Run Index ρTM ρTM eTM eSSD

1 0.9947 0.9509 0.1337 0.0564
2 0.8683 0.8546 0.7379 0.2703
3 0.9440 0.8839 0.5120 0.1433
4 0.9035 0.9809 0.7154 0.1004
5 0.8624 0.9604 0.7094 0.1332
6 0.9665 0.8337 0.3824 0.1119
7 0.9131 0.8563 0.6263 0.1107
8 0.9746 0.6824 0.3381 0.1521
9 0.9275 0.8691 0.6671 0.0950
10 0.8623 0.9599 0.7299 0.1608
11 0.9777 0.9596 0.3250 0.0482

mean 0.9301 0.8692 0.5068 0.1358
stdev 0.0501 0.1155 0.2093 0.0636

Table 5.1: Comparison of Markov chain transition matrix (TM) and its steady state distribution
(SSD) between training and testing subjects. Comparison is done computing the Pearson correlation
coefficient (ρ) and the L2 distance (e) between the training-TM, testing-TM and training-SSD, testing-
SSD respectively. This experiment is repeated for 11 training-testing splits of the data. Consistent high
values of ρ and low values of e across multiple splits show similarity of the states and their transition
behavior across training-testing subjects, therefore establishing reproducibility of states.
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k fold-1 fold-2 fold-3 fold-4 fold-5 mean
2 0.757 0.732 - - - 0.745
3 0.771 0.811 0.778 - - 0.787
5 0.785 0.809 0.813 0.809 0.808 0.805

Table 5.2: Cross-validation experiments suggesting generalizability of tMKL model. Mean k-fold
cross-validation results for k = 2, 3, 5 are shown in the corresponding rows for k-values. As the number
of training samples increases with the number of folds, the mean performance also increases suggesting
that the model is learning well with increased samples ans is able to replicate the same for testing subjects.

model should inherit this distinctness of states which should further be reflected on testing subjects. This
property of the model is validated in the following ways.

During the training phase of the pipeline, the tMKL framework parameterizes the dependence of these
clustered wFCs on the SC for each state, as captured in πks. In other words, the learnt state-specific
πks are expected to be distinct from each other. This property is shown in Figure 5.7. Following, in
the testing phase of the pipeline, the framework is used to predict the state-specific FCs given the SC of
a training subject. Also, the predicted state-specific FCs should be distinct from each other as well as
should belong to their respective component Gaussians with a greater probability in comparison to other
components. These properties are quantitatively justified via accuracy experiments in Figure 5.8. Overall
accuracy of this state-belongingness for the testing subjects is 82.25%. Figure 5.9 qualitatively shows the
communities identified in the mean state-specific FC predictions across all test subjects. Clearly, regions
in each state show distinct interaction patterns among themselves whose temporal alignment, along
with these communities, is recovered by our model, thus playing a major role in the model’s superior
performance than other models.

5.4 Discussion

Besides understanding the relationship between the anatomical architecture and the functional depen-
dencies, over the last decade, characterization of the temporal richness also has been the major trend in
the field of cognitive neuroscience. Several approaches have been proposed to understand this inherent
richness observed in the intrinsic activity. Operator-based formulations of neural dynamics [86, 36] pro-
pose a generative model to predict functional connectivity from structural connectivity via incorporating
temporal dynamics into the model. Another class of techniques introducing spectral graph theoretic
methods [3, 1] focus on mapping the eigen-spectrum of SC and FC of individual subjects, but with
minimal focus on the temporal richness. This class of models needs further investigation for a better
prediction. Allen et al. [4] and subsequent works have focused only on the temporal structure of the
windowed FCs and were able to characterize state transitions well, but without relation to the underlying
structure.
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Figure 5.6: Effect on performance of tMKL model due to perturbation of SC matrices of test
subjects. Shown here are the box plots (blue) of Pearson correlation between empirical and predicted
grand FCs when SCs are perturbed for all the testing subjects. Red dots at the top of each box plot
indicates the actual subject-wise model performance, i.e. with unperturbed SCs. SCs were perturbed
with the procedure mentioned in the Subsubsection 4.4.4.1. This suggests that proposed solution does
not overfit the data and is sensitive to perturbation in SC.

Figure 5.7: Distinctness of πki s. After state-specific MKL models are learnt, we check the distinctness
of πki s for every scale value ranging from i = 1 to m using Pearson correlation coefficient between every
pair of states. In general the off-diagonal entries in these pairwise correlation matrices are mostly zero,
indicating the distinctness πki s. As observed, πki s are significantly distinct for global scales (lower values
of i) in comparison to local scales (higher values of i), where they are similar.
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Figure 5.8: Quantitative state specificity of the model. This simulation experiment measures the
accuracy of state-specific predictions. For each testing subject there are K number of state-specific FCs.
The state label against which a state-specific FC is predicted from tMKL model serves as the ground truth
for this experiment. Empirically, each state-specific FC must be nearer to the training wFCs belonging to
that state than from the training wFCs belonging to other states, thus attesting the accuracy of model
prediction. For this purpose, we searched for 21 nearest neighbors for each state-specific FC and voted for
the empirical state-belongingness sequence, serving as the prediction only for this simulation experiment.
(a) shows the confusion matrix to measure the accuracy of the prediction of each state. Rows (columns)
depict the actual (predicted) states. Overall accuracy of tMKL model prediction is 82.25%. It can be
seen that non-zero off-diagonal entries result in reduced accuracy. To get a subject-specific measure
of the state-specificity, we ran the same experiment for all the testing subjects independently. Pearson
correlation between all the possible pairs of the K state-specific FCs for a subject was calculated and
stored in a K ×K matrix. Element-wise mean and standard deviation across all the subject-specific
matrices is shown in (b) and (c) respectively. Noticeably, mean matrix is similar to the confusion matrix
with very less standard deviation.

Allen et al. collect all the wFCs from the training subjects and fit a k-means clustering model to
discover distinct latent states visited by the brain that are common to the cohort. In our preliminary
attempts to replication of results and to link the structural constraints with the temporal structure
discovered by Allen et al., we trained MKL model for each of the states identified with k-means
clustering technique over the wFCs. Even though the overall grand average FC was predicted with high
Pearson correlation values, the reproducibility of states in the predicted state-specific FCs is not accurate
(see Figure 5.10).

One of the apparent problems might be confrontation with the curse of dimensionality for applying any
of the unsupervised techniques. A wFC during clustering ought to be assigned to the same state as that of
its neighbors. wFCs lie in a high dimensional space, but based on their similarity with respect to their
neighbors, they may lie on an intrinsic lower-dimensional manifold. This lower dimensional manifold
becomes the space over which temporal structure can be precisely identified. Spectral embedding
techniques utilize this similarity between the neighboring wFCs to discover the underlying manifold.
After representing the temporal structure as a manifold, the next task was to parameterize this lower-
dimensional structure. K-means clustering would yield spherical clusters, limiting the shape and size
of states, whereas GMM clustering is a generalized clustering scheme. We parameterized the local
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(b) Visualization of states

Figure 5.9: Qualitative state specificity State specific FCs predicted for every subject are averaged across
all testing subjects. (a) Visually distinct FC matrices are shown for all the 12 states. (b) Communities
are identified for these mean FCs using Louvian algorithm available in brain-connectivity-toolbox [87]
and Brain-net-viewer [113] was used for visualization of these communities. The distinct community
structures clearly suggest that transient states are modeling different brain dynamics.
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Figure 5.10: State specificity of k-means. This figure illustrates similar experiments as shown in
Figure 5.8 to demonstrate state specificity of the model when using k-means to cluster the state-specific
FCs for the testing subjects in their original space as one in Allen et al. [4]. With respect to k-means
clustering of training wFCs, K was chosen to be 7 according to the elbow criterion which is computed as
the ratio between within-cluster distance to between-cluster distance. The ground truth state label for each
state-specific FC remains the same as mentioned before. For the K such FCs for every testing subject,
each state-specific FC is assigned its state label according to the nearest cluster centroid. The confusion
matrix in (a) clearly evidences the poor reproducibility of the clustering in testing data, where almost
all of the state-specific FCs are misclassified to belong to state 1. Overall accuracy of the prediction
is 14.23%. (b) and (c) show the element-wise mean and standard deviation matrices of the Pearson
correlation between all pairs of the state-specific FCs across all testing subjects. Evidently, the mean
matrix has more high-valued off diagonal entries in comparison to the mean matrix in our method,
suggesting lack of distinctness of states when using k-means on this dataset.

density-distribution of wFCs over the manifold into a factor analysis model that further represents the
manifold as a set of component Gaussians at various locations whose shape, orientation, and size depend
on the local densities of the wFCs.

The proposed model is cohort based and hence the underlying assumption is of the generalizability
of the model to unseen subjects. We have learned the Markov transition probability matrix on training
wFCs and used this to generate long sequences of time series of testing subjects. Concatenation of the
latent time-series of the predicted state-specific FCs results into the grand average FC well. This implies
that the transitions are generalizable over the cohort and are not restricted only to the subjects used for
learning. Thus, the temporal dynamics of fMRI time series are well represented by the learned Markov
model. One of the future directions would be to investigate the relation between the latent time-series
and the actual BOLD time-series. State-specific FCs were eigen-decomposed, hence one possibility is
that the latent time-series might correspond to the connectome harmonics.

We have characterized the SC-FC mapping by gaining understanding of the temporal dynamics.
We learn the distinct states of dynamics, and their transitions. The proposed model first learns the
intermediate relationship between SC and wFCs and use this relation to predict grand average FC. In
order to verify whether the state-specific FCs predicted for a subject are distinct, hence showing its
efficacy in learning meaningful states, we performed community detection over these matrices. Figure 5.9
shows the communities identified in distinct states by taking average over all the testing subjects. Clearly,
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regions in each state show distinct interaction patterns among themselves whose temporal alignment,
along with these communities, is recovered by our model, thus playing a major role in the model’s
superior performance than other models. Importantly, the model was learned only over the individual
states without any global error measure. Still the grand average FC prediction is at par or better than
that of the MKL model. This seems to be possible only because of characterizing the latent temporal
structure. As part of the future work, it will be interesting to explore the bio-physical meaning of the
model parameters and better characterize the dynamics and hence predicting the time series themselves.
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Chapter 6

Conclusions and Future Work

Since spontaneous brain activity has been observed in 1980’s, its purpose has been questioned and
yet not fully understood. Investigations using task based paradigms had assumed that this metabolic
activity is sufficiently random for it to be averaged out. But many studies have observed spatial patterns in
spontaneous activity coherent with their respective task conditions [80, 93]. Such observations initiated
the study on characterizing this spontaneous activity through its metabolic markers such as BOLD activity.
These studies were converging at observing spatially distributed patterns of activity, known as resting
state networks (RSNs), primarily default mode network (DMN) [16, 83]. A common understanding
of the importance of intrinsic activity was emerging, that the spontaneous activity was not random but
highly structured. This led to investigating this activity through computational models as these provide
an access to the bio-physics.

Initial attempts on understanding this activity via relating it to the underlying anatomy promised
some results but not fully conclusive, thus leading to representing the dynamics over the structure a
possible way for a better appreciation of the cognitive role of the intrinsic activity [33]. Another line of
investigation looked at network theoretic perspective of the RSNs [96]. This chain of thought summarized
RSNs in terms of networks properties such as node-degree, modularity, centrality etc. The notion of
structural core [51, 50], moved the field in understanding the importance of ROIs in allowing dynamics
to flow through them thereby becoming central to pathways of inter-regional communications.

Bio-physical computational models and network theoretic models provide different perspectives of the
functioning of the brain at rest. While the former variety of models incorporate details of the underlying
bio-physics, the latter framework abstracts out all those details and takes a general network perspective to
brain function. Consequently there is a need to find a fundamental basis linking both of these viewpoints.
Atasoy et al. [6] points towards the link between the two via eigenmodes: eigenmodes of the connectome
play a major role in shaping the intrinsic temporal dynamics and RSNs show unique correspondences
to these graph-eigenmodes. Thus the graph-eigenmodes or the harmonics of the connectome seem to
bridge the gap between biological detail and abstraction. Concretely, the emerging field of graph signal
processing (GSP) [94] can be used as the mathematical tool to analyze the transient network properties
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of the resting brain incorporating biological details and yet simplifying them into abstract concepts of
signals and systems over graphs.

This thesis extends this bridge into further relating a well known computational framework known
as the Reaction-Diffusion systems, especially Wilson-Cowan equations. A linear variant of Wilson-
Cowan equation(s) was segmented into two components, one responsible for interactions over the space
(connectome) and the other responsible for temporal patterns. The spatial and temporal components
manifest into diffusion kernels and Π respectively. Moreover, this signal-system abstraction provides
additional insights into the mechanism. In terms of reaction-diffusion system, Π capture the reactions
at multiple spatio-temporal scales of diffusion whose diffusion is governed by the diffusion kernels.
Moreover, as Π captures the initial inter-regional co-activation patterns, it also points towards the
phenomenon of modulation even at rest.

In general, the proposed multiple kernel learning scheme has been shown to be bio-physically well
motivated and tested on its performance in both static and dynamic paradigms. Apart from abstraction, the
MKL model preserves some important properties like sensitivity towards input and parameter changes.
The model does not overfit to the training subjects. Model performance degrades when input and
parameters are changed, thus preserving subject-specificity and cohort-specificity respectively. This
property has been verified by showing that the learned Πs for the two age groups are very different.

As MKL was a pioneer proving itself to be a state-of-the-art model for linking structure and static
function, it was extended into a broader problem of temporal dynamics constrained by the structure.
Temporal patterns of the spontaneous activity repeat themselves at different frequencies in time. The
patterns tend to have a definite temporal-structure [4]. In this context, there are two graphs that need to be
related via signal processing tools: one is the anatomical network and the second is the temporal-network,
both having their own topologies and interacting with each other. Before characterizing this relationship,
prior task was to identify the temporal topology and parameterize its local density distribution. This
density then could be related to the anatomy. Eigen decomposition of the graph-Laplacian holds the
topology in a finite set of eigenvector-value pairs. The necessary bio-physics of these local densities, also
called latent transient states, is stored into their topologies and state-specific Πs.

Another important aspect, subtly present in this work, is subject-specificity of the models. Predictions
are for individual subjects and not for the mean SC-FC pair of the cohort. Given the SC, the model
outputs a prediction unique to the subject significantly different from the mean FC prediction. This aspect
is also present in the tMKL framework as each state is a Gaussian density of non-zero size. This means
that the subjects are spread around within the component, and the only way to recover those non-center
points is through subject’s SC. This aspect must be improved in future for many clinical applications.

Broadly, to complete such a signal processing perspective of the resting state dynamics and its relation
to the anatomy, in future this framework can be used to predict the structure from the BOLD time series
(FC-to-SC, the model inversion problem). An initial theoretical attempt was made by inverting the MKL
model to obtain the graph-Laplacian of the structural connectivity. This model can be improvised by
principally forming an optimization framework and solving it. Similar treatment can be followed for
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the optimization framework of MKL. The current framework, LASSO, regresses the diffusion kernel
combinations with empirical FCs to estimate Π only considering sparsity constraint. In the tMKL
framework, convex optimization is solved to estimate Π, but it is computationally expensive. It would
be advantageous to have an iterative framework that has a higher convergence rate. Another future
investigation would be to look into community structures found in each Π. This might provide some
insights into how the structural communities interact through the ‘communities’ of Π to form the
functional communities.

In a nutshell, bio-physics can be abstracted out in a principled way through graph-signal-processing
techniques and this thesis contributes towards this goal and beyond.
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Appendix A

Attempts on generating HCP Data

Human Connectome Project is a huge consortium dedicated to build a network map of the human
brain. This map provides minimally preprocessed datasets for structural, functional, and diffusion
MRI within the healthy and diseased participant cohorts. These minimal processing pipelines over the
unprocessed MRI data ensure a standard of data quality and also avoid duplication of preprocessing of
unprocessed data, in anticipation investigators being less interested in the complications of preprocessing
required and being more interested in direct analysis over the preprocessed HCP data. One of publicly
available studies, “HCP Young Adult” dataset, is a 1206 Subjects Release which includes behavioral and
3T MR imaging data from 1206 healthy young adult participants. For our purposes, the dataset contains
minimally pre-processed high-resolution data-files of both DTI and rfMRI modalities.

This dataset was attempted to be downloaded and preprocessed for use in our model. The first problem
was of downloading and storing the data. HCP website recommends to use a third party web-based
application that does not launch because of network proxy and port issues. The workaround was to search
files in Amazon S3’s HCP bucket, which has a complex directory structure. HCP provides datasets with
all ranges of preprocessing done on the unprocessed data, leading to several folders. The documentation
for these folders is not trivial without prior pre-processing knowledge, leading to difficulty in choosing
appropriate files. The next issue to resolve was to storage of the files locally. Files for DTI are around
1.3 GB and those for the rfMRI are around 5 GB, which when processed generate connectome files are
around 70 KB. Even to generate one connectome file at a time, a standard and principled procedure was
needed to be followed.

Due to lack of exposure in pre-processing, we failed to process DTI because of many factors: selecting
inappropriate files for the pipeline, and tweaking procedural parameters that parallelize the code for
efficient run-time. The tutorial followed is in the following link : http : //mrtrix.readthedocs.io/en

/latest/quantitative structural connectivity/ismrmhcptutorial.html. Original pipeline took around
15 days to run, we brought it down to 2 days and deployed the code on the server. The generated structural
and functional connectomes were with the dataset acquired at Charité University, Berlin, Germany. Albeit,
few HCP subjects’ SC matrices were resembling those of acquired in Berlin, the HCP SC matrices were
very similar with each other which is not realistic. Later it was realized that the preprocessing resolution
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parameters were low which led to the observed similarity. Optimal (highest) resolution parameters in
the tutorial needed to be used as the connectome though looked realistic, was not. rfMRI preprocessing
is straightforward. One of the major issues was due to the misalignment of the input files leading to
problems in their registration. The preprocessed voxel-wise time-series lies in the standard MNI space
whereas the region-wise masks lies in the native space causing the problem of registration between native
and MNI space.

Now after gaining knowledge and experience in the pre-processing literature, the correct list of files
and procedures have been identified and results are verified. We hope to get the connectome matrices
soon.
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