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Abstract

In the realm of biometric security, face recognition technology plays an increasingly pivotal role.
However, as its adoption grows, so does the need to safeguard it against adversarial attacks. Attacks
involve presenting images of a person printed on a medium or displayed on a screen. Detection of such
attacks relies on identifying artifacts introduced in the image during the printing or display and capture
process. Adversarial Attacks try to deceive the learning strategy of a recognition system using slight
modifications to the captured image. Evaluating the risk level of adversarial images is essential for safely
deploying face authentication models in the real world. Among these, physical adversarial attacks present
a particularly insidious threat to face antispoofing systems. Popular approaches for physical-world attacks,
such as print or replay attacks, suffer from some limitations, like including physical and geometrical
artifacts. The presence of a physical process (printing and capture) between the image generation and
the PAD module makes traditional adversarial attacks non-viable. Recently adversarial attacks have
gained attraction, which try to digitally deceive the learning strategy of a recognition system using slight
modifications to the captured image. While most previous research assumes that the adversarial image
could be digitally fed into the authentication systems, this is not always the case for systems deployed in
the real world.

This thesis delves into the intriguing domain of physical adversarial attacks on face antispoofing sys-
tems, aiming to expose their vulnerabilities and implications. Our research unveils novel methodologies
using white box and black box approaches to craft adversarial inputs capable of deceiving even the most
robust face antispoofing systems. Unlike traditional adversarial attacks that manipulate digital inputs, our
approach operates in the physical domain, where printed images and replayed videos are utilized to mimic
real-world presentation attacks. By dissecting and understanding the vulnerabilities inherent in face
antispoofing systems, we can develop more resilient defenses, contributing to the security of biometric
authentication in an increasingly interconnected world. This thesis not only highlights the pressing need
to address these vulnerabilities but also motivates towards a pioneering approach by exploring simple yet
effective attack strategy to advancing the state of the art in face antispoofing security.
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Chapter 1

Introduction

1.1 Background

In a world where faces unlock secrets and identities of an individual, automatic face recognition
systems stand as the gatekeepers of truth and security. In many spiritual traditions, the face is considered a
sacred vessel that carries the imprint of our experiences, emotions, and spiritual journey. It is believed that
the face can convey a person’s true nature, revealing their inner beauty, wisdom, and even their spiritual
advancement. Our thoughts, emotions, and intentions shape our inner being. They are believed to leave
an imprint on our faces. Hence, our facial expressions, lines, and radiance are seen as manifestations of
the state of our soul.

Figure 1.1: Automatic Face Recognition Systems
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Automatic face recognition systems are powerful technologies that can identify and verify individuals
by analyzing their facial features. These systems have become increasingly popular and are used in
various applications, such as security, law enforcement, and personal device authentication. One of
the most notable uses is in the field of security and access control. Airports, for instance, employ face
recognition technology to match travelers’ faces against databases of known individuals, enhancing
security and streamlining the boarding process. Law enforcement agencies also leverage the power of
automatic face recognition in their investigative efforts. By comparing faces captured in surveillance
footage or photographs with databases of known individuals, these systems aid in identifying suspects,
locating missing persons, and solving crimes. Moreover, automatic face recognition has found its way
into our everyday lives through personal devices like smartphones and tablets. Many of these devices
incorporate facial recognition as a secure and convenient means of unlocking the device or accessing
sensitive information. By analyzing the unique features of the user’s face, these systems ensure that only
authorized individuals can gain access, safeguarding personal data and enhancing privacy. In addition
to security and personal devices, face recognition systems have impacted the areas of marketing and
retail. Retailers employ these technologies to analyze customer demographics, understand shopping
patterns, and offer personalized experiences. By studying facial features and expressions, businesses
can tailor their marketing strategies and improve customer engagement. Furthermore, automatic face
recognition has become a common feature in social media platforms. Users can upload photos, and the
system suggests tags by recognizing and identifying individuals present in the images. This simplifies
the process of connecting with friends and family and enhances the overall social media experience.
Additionally, face recognition algorithms are used to create entertaining filters and augmented reality
effects, adding fun and creativity to online interactions. The basic idea behind automatic face recognition
is to capture an image or video of a person’s face and analyze it to extract unique characteristics that
differentiate them from others. These characteristics include the distance between the eyes, the shape of
the nose, and the contours of the face, which are then transformed into mathematical algorithms that serve
as a digital representation of the individual’s face. To recognize a face, the system compares the captured
facial representation, called the probe face representation, with a database of known faces known as
gallery images. This comparison involves complex algorithms that measure the similarity between the
captured image and the stored facial templates.

1.2 Automated Face Recognition (AFR) Pipeline

The goal of all automatic face recognition (AFR) systems is to compute the similarity between two
face images. A reliable AFR system aims to produce a high similarity measurement when comparing
images of the same person (known as a genuine pair) and a low similarity measurement when comparing
images of different individuals (known as impostor pairs). Achieving this involves multiple components
within the system, each playing a crucial role in determining the final face similarity measurement and,
consequently, the accuracy of the face recognition results. A typical AFR system consists of the following
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modules: (i) face detection, (ii) face alignment, (iii) face liveness Detection, (iv) face feature extraction
and face representation learning, (v) similarity matching.

• Face Detection: The first step is to detect and localize faces within an image or video frame. Face
detection algorithms analyze the input data and identify potential face regions, typically marking
them with bounding boxes or facial landmarks. The task is trivial for humans but poses significant
challenges to machines. The complexity of this task arises because of the interplay of various
factors, including diverse lighting conditions, poses, occlusions, and varying facial expressions.
These algorithms scan an image pixel by pixel, looking for patterns that resemble facial features.
They focus on characteristics like color, contrast, and texture to distinguish between facial and
non-facial regions. Some algorithms employ machine learning techniques like convolutional neural
networks, where the model is trained with a large set of labeled images to recognize key facial traits.
Once a face or multiple faces are detected, the algorithm typically creates a bounding box around
each face to indicate its location. This output enables subsequent tasks in the face recognition
pipeline.

• Face Alignment: Faces in images or videos can appear in different pose, illumination, and
expression due to factors like camera angles, head tilts, and facial expressions. Face alignment
ensures that all faces are presented in a standardized and consistent manner. These algorithms
utilize facial landmarks, which are specific points on the face, like the corners of the eyes, the tip of
the nose, and the edges of the mouth. By identifying these landmarks within the detected face, the
algorithm calculates the necessary adjustments needed to align the face. This may involve rotating,
scaling, and translating the face to fit a predefined template. Once the alignment is complete, the
face is presented in a standardized pose, allowing subsequent recognition algorithms to work with
a consistent face representation. This standardization is essential as it minimizes variations caused
by differences in pose, lighting, and facial expressions, ensuring accurate and reliable subsequent
analysis.

• Face Liveness Detection: Face antispoofing is a sophisticated defense mechanism in face recogni-
tion systems to avoid fraudulent activities. After the initial stages of detecting and aligning faces,
face antispoofing distinguishes between authentic human faces and deceptive tactical inputs like
using photos, videos, or masks to trick the system. This crucial phase adds a layer of protection,
ensuring that the system only grants access to legitimate individuals and maintains the integrity of
the face recognition process. Face antispoofing involves algorithms that examine specific visual
cues to differentiate between real and fake faces. These algorithms analyze elements such as
texture, movement, and depth information. For instance, they can identify the lack of natural
facial movements that occur in living individuals, such as blinking or micro-expressions. These
movements are generally absent in static images or impersonations. These algorithms are trained
on extensive datasets that equip the algorithms with the ability to recognize intricate patterns that
set genuine faces apart from manipulated ones. By integrating face antispoofing into the face

3



recognition pipeline, the technology ensures that only actual individuals can access the system,
significantly bolstering security and bolstering the credibility of the overall process.

• Feature Extraction and Encoding: In this stage, relevant facial features are extracted from the
preprocessed face images. Feature extraction algorithms analyze the unique characteristics of the
face, such as texture, shape, or appearance, and transform them into a compact and representative
feature vector. Popular techniques for feature extraction include Local Binary Patterns (LBP), Scale-
Invariant Feature Transform (SIFT), or deep Convolutional Neural Networks (CNN). Essentially,
feature extraction breaks down the complex face structure into disciminative numerical values,
which computers can easily process. The extracted facial features are then encoded into a format
suitable for efficient comparison and matching. Encoding methods may involve reducing the
dimensionality of the feature vector, applying mathematical transformations, or encoding it into
a compact representation, such as a face template or a feature descriptor. The encoded features
retain the essential discriminative information required for accurate matching while minimizing
computational complexity.

• Similarity Matching: When a query face is presented, the face recognition system compares its
feature vector or encoded representation with the computed feature vectors. Similarity matching
algorithms calculate the similarity or distance between the query face and each stored face rep-
resentation, determining the most similar or matching faces. Common distance metrics used for
matching include Euclidean distance, cosine similarity, or Mahalanobis distance. Cosine Similarity
is most commonly used in recent literature.

1.3 Vulnerabilities in Face Biometrics

In the thesis we concentrate on Presentation Attacks, i.e., attacks against the sensor of a FRS [28]
(point V1 in Figure 1.2). Indirect attacks (corresponding to points V2-V7 in Fig. 1.2) target the internal
components of the Face Recognition System (FRS), including the preprocessing module, feature extractor,
classifier, and enrolling database. For a comprehensive definition of indirect attacks in face systems,
please refer to [35]. Enhancing specific aspects of the FRS, such as communication channels, equipment,
infrastructure, and perimeter security, can help mitigate indirect attacks [62]. The strategies required to
bolster these modules align more with traditional cybersecurity practices rather than biometric techniques.
While these attacks and their countermeasures fall outside the scope of this thesis, their significance
should not be underestimated.

Presentation attacks represent a unique biometric vulnerability that requires dedicated countermea-
sures, distinct from other IT security solutions. In these attacks, perpetrators employ various artifacts,
often artificial in nature (such as a facial photo, mask, synthetic fingerprint, or printed iris image), or
attempt to mimic the genuine characteristics of authorized users (like gait, signature, or facial expression
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Figure 1.2: Diagram of a typical biometric system structure. This system comprises multiple modules

and potential points susceptible to attacks, denoted as Vulnerabilities V1 to V7. Presentation attacks

occur at the sensor level (V1) and don’t require access to the system’s internal modules. Indirect attacks

(V2 to V7), however, can target databases, matchers, communication channels, etc., demanding access to

the system’s inner workings and, in many instances, specific knowledge of their operations.

[68]). They present these elements to the acquisition scanner in an effort to deceitfully gain access to the
biometric system.

A significant volume of biometric data, including photographs, videos, and audio recordings of
individuals’ faces, eyes, voices, and behaviors, are readily available through platforms like social media.
Presentation attackers are well aware of this reality and leverage these sources of information to attempt to
bypass face recognition systems [64]. This underscores a well-known limitation of biometrics: ”biometric
characteristics are not secrets” [39]. Interestingly, the very qualities that make the face an attractive
biometric trait for person recognition, namely its non-intrusive and distance-capturing nature, also render
it susceptible to misuse by attackers.

In addition to the accessibility of legitimate users’ facial images, it is recognized that face recognition
systems exhibit vulnerabilities to presentation attacks, falling into one of three primary categories:

• Photograph-Based Attacks: Attackers may use a photograph of the intended user to impersonate
them [84].

• Video-Based Attacks: Videos featuring the target user can be employed for impersonation attempts
[14, 58].

• 3D Model-Based Attacks: Attackers can construct and use 3D models of the target’s face, such as
hyper-realistic masks, as a means of attack [22].”

Most state-of-the-art facial biometric systems are susceptible to straightforward attacks that would
appear to an average person unless Presentation Attack Detection (PAD) measures are integrated. For
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instance, attempting to impersonate someone using a mere photograph of their face is a vulnerability.
Thus, when designing a secure Face Recognition System (FRS) for real-world applications, such as
replacing password-based authentication, prioritizing Presentation Attack Detection (PAD) techniques is
paramount right from the system’s inception.

1.4 Face Presentation attack

Face presentation attacks (PAs) aim to deceive real-world automatic face recognition (AFR) systems
by introducing facial images onto physical mediums like photographs, videos, or 3D masks of targeted
or concealed individuals in front of imaging sensors. Fig. 1.3 illustrates some representative PA types.
These PAs can be categorized into two main groups based on the attackers’ intentions:

• Impersonation: In this category, attackers seek to mimic targeted identities by replicating a genuine
user’s facial features on presentation instruments like photos, electronic screens, or 3D masks.

• Obfuscation: Here, the goal is to conceal or remove the attacker’s own identity by decorating the
face, which may involve wearing glasses, wigs, makeup, or tattoos.

PAs can be further classified into two-dimensional (2D) and three-dimensional (3D) attacks based on
geometric depth. Common 2D PAs include print and replay attacks, such as using flat or wrapped printed
photos, photos with eye or mouth cutouts, or replaying face videos on electronic screens. In contrast, 3D
presentation attacks involve more realistic representations, like 3D face masks and mannequins. These
3D objects exhibit lifelike color, texture, and geometric structures, constructed from various materials
like paper, resin, plaster, plastic, silicone, and latex.

Another categorization of PAs considers the proportion of the facial region they cover. Some PAs
cover the entire face, while others target only specific facial regions. For instance, attackers may cut
out eye regions from a printed face photo to spoof eye-blinking-based PAD systems. Alternatively, they
might wear eyeglasses with adversarial patterns in the eye region to challenge face PAD algorithms.
Compared to attacks on the entire face, partial attacks are more elusive and pose greater challenges for
defense.”

1.4.1 Presentation Attack Methods

Typically, a Face Recognition System (FRS) can be deceived by presenting a photograph, video, or 3D
mask of a targeted individual to the sensor (e.g., a camera) as illustrated in Fig. 1.2. There are alternative
methods to circumvent FRS, including the use of makeup [18, 13] or even resorting to plastic surgery.
However, the most prevalent types of attacks involve photographs and videos due to the widespread
availability of facial imagery (e.g., on social media and in video surveillance) and the affordability of
high-resolution digital cameras, printers, and digital screens.
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Figure 1.3: Examples of face presentation attacks: The top image depicts a genuine user, while the

images below showcase various presentation attacks using different Presentation Attack Instruments

(PAIs) presented to the sensor. These include photos, videos, 3D masks, DeepFakes, makeup, surgery,

and others.

In terms of attack classification, a general categorization considers the nature and complexity level
of the Presentation Attack Instrument (PAI) used for the attack. This classification typically includes
photo-based, video-based, and mask-based attacks, as depicted in Fig. 1.2. It’s important to note that
while these categories encompass the most common attack types, some sophisticated attacks may not
neatly fit into any single category or may belong to multiple categories simultaneously. One such example
is DeepFake techniques, which are capable of creating fraudulent videos by swapping one person’s face
with another’s. These methods can be classified as photo attacks, video attacks, or even mask attacks. In
this chapter, we classify these more intricate and specialized attacks under the category ’Other attacks.

Photo Attacks

A photo attack involves presenting a photograph of the targeted individual to the sensor of a face
recognition system [5, 69], as shown in the example in Fig. 1.2. Photo attacks are particularly concerning
for several reasons. Firstly, printing color images of a genuine user’s face is both inexpensive and easily
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achievable, often referred to as print attacks in the literature [6]. Alternatively, photos can be displayed
on high-resolution screens of devices such as smartphones, tablets, or laptops [5, 14, 97]. Secondly, the
proliferation of social media platforms like Facebook, Twitter, and Instagram has made it effortless to
obtain authentic face samples [64]. Furthermore, the recent reduction in the price and size of digital
cameras has made it feasible to capture high-quality photos of legitimate users using concealed cameras.

Within the realm of photo attacks, there exist more sophisticated techniques like photographic masks.
This approach entails printing a photograph of the subject’s face and then creating openings for the eyes
and mouth [97]. This method effectively circumvents presentation attack detection techniques reliant on
blink detection and the tracking of eye and mouth movements [78].

While these attacks may seem overly simplistic, some studies have indicated vulnerabilities in many
state-of-the-art systems [65, 77, 74]. Given their simplicity, implementing robust countermeasures that
effectively mitigate these attacks should be a priority for any facial recognition system.

Information needed to perform the attack: An image of the face of the subject to be impersonated.
Generation and acquisition of the PAIs: Various options exist to obtain high-quality face images of users
to be impersonated, including social networks, internet profiles, and hidden cameras. These photographs
can then be printed or displayed on a screen to present them to the sensor of the Face Recognition System
(FRS). Expected impact of the attack: Most basic face recognition systems are susceptible to this type
of attack if specific countermeasures are not in place. However, the literature offers a wide array of
approaches with good detection rates for printed photo attacks [5, 7].

Video based Attacks
Much like photo attacks, the acquisition of videos featuring individuals intended for impersonation

has become increasingly convenient due to the proliferation of public video-sharing platforms, social
networks, and the availability of hidden cameras. Another advantage of using this form of attack is that it
enhances the likelihood of success by introducing a sense of liveliness to the fake biometric sample [79,
70].

Once a video of the genuine user is procured, an attacker can play it on any device capable of video
playback, such as a smartphone, tablet, or laptop, and then present it to the sensor or camera [52], as
depicted in Fig. 1.2. This category of attacks is commonly known as replay attacks, which represent a
more sophisticated iteration of simple photo attacks. Replay attacks are considerably more challenging
to detect compared to photo attacks, as they not only mimic facial texture and shape but also replicate
dynamic aspects, such as eye blinking, mouth movements, and other facial expressions [14]. Given
their heightened complexity, it’s reasonable to assume that systems vulnerable to photo attacks will
exhibit even greater susceptibility to video attacks. Additionally, resilience against photo attacks does not
necessarily translate to robustness against video attacks [97]. Consequently, specific countermeasures
must be developed and implemented, such as authentication protocols based on challenge-response
mechanisms [78].

• Information needed to perform the attack: A video of the face of the subject to be impersonated.
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• Generation and acquisition of the PAIs: Similar to photo attacks, obtaining face videos of users
to be impersonated is relatively straightforward, thanks to the prevalence of video sharing platforms
(e.g., YouTube, Twitch), social networks (e.g., Facebook, Instagram), and the availability of hidden
cameras. These videos are then displayed on a screen to present them to the sensor of the Face
Recognition System (FRS).

• Expected impact of the attack: Much like photo attacks, most face recognition systems are
inherently vulnerable to these attacks. Consequently, countermeasures, such as challenge-response-
based authentication or mechanisms considering facial appearances, are typically implemented.
With these countermeasures in place, classic video attacks tend to have a low success rate.

1.5 Adversarial Attacks

Adversarial attacks in deep learning are a profound challenge that has sent ripples through the realm of
artificial intelligence. At their core, these attacks involve sneaky tweaks to input data, carefully designed
to trick even the most advanced neural networks. The targeted vulnerability here is the extraordinary
sensitivity of these AI systems. In the realm of deep learning, the existence of adversarial examples
serves as a profound reminder of the complex and sometimes fragile nature of artificial neural networks.
Think about it like this: we, humans, can easily recognize everyday things like stop signs. However,
imagine a slight, nearly invisible change to that stop sign, one that we wouldn’t notice but would confuse
an autonomous vehicle’s neural network. It might suddenly see that stop sign as something entirely
different, like a yield sign, and you can imagine the potential for chaos on the road. These attacks are
like optical illusions for machines, and they pose a serious challenge to the reliability and safety of AI
systems in various fields, from computer vision to understanding human language.

The inception of adversarial attacks can be traced to a seminal paper in 2013, which introduced the
concept of ”adversarial examples.” These are input data, like images or sequences, that have undergone
carefully calculated perturbations. To the human eye, these perturbed inputs appear indistinguishable
from their clean counterparts, but they are engineered to perplex and mislead deep neural networks. The
perturbations are so subtle that they mirror imperceptible changes one might encounter in the real world,
such as slight lighting variations or noise. Yet, these nearly invisible alterations can lead to catastrophic
failures in AI models.

To illustrate the perplexity of these attacks, let’s consider the famous example of a panda. Imagine
you have a perfectly normal image of a panda, one that any human would identify without hesitation.
Now, an adversarial attack subtly tweaks a few pixels in this image, changes so tiny that you’d barely
notice. But when you show this slightly modified image to a deep learning model, it confidently declares
that it’s looking at a gibbon instead of a panda! It’s like magic, but a kind that exposes a chink in the
armor of AI. These attacks are disconcerting because they reveal that our most sophisticated AI systems
are vulnerable to tiny, calculated manipulations that we can hardly perceive. It’s as if a slight change in
the brushstroke of a painting could make us see a completely different picture. This vulnerability raises
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profound questions about the reliability and security of AI, echoing through fields where AI is used to
make critical decisions, from self-driving cars to medical diagnosis to face recognition.

Adversarial examples are carefully crafted perturbations applied to input data that are imperceptible
to humans but cause deep learning models to make incorrect predictions with high confidence. This
phenomenon raises critical questions about the robustness and security of deep neural networks. we delve
into the mathematics behind adversarial examples, shedding light on how these subtle manipulations can
deceive even the most advanced neural networks.

1.5.1 Notation and Preliminaries

The goal of an adversarial attack is to find a perturbation δ to add to the original input x in a way that
maximizes the model’s prediction error. This can be formulated as an optimization problem:

maximize J (x+ δ, y; θ),

subject to ∥ δ ∥< ϵ
(1.1)

where:

• x: Original input data

• y: The true label associated with x

• J (x+ δ), y; θ): The loss function measuring the model’s error on the input-label pair (x, y) with
parameters θ

• δ: The perturbation to be added to x

• ϵ: A small constant controlling the magnitude of the perturbation to ensure it remains imperceptible
to humans.

1.5.2 Types of Adversarial Attacks

Adversarial attacks can be classified into two broad categories: white-box and black-box.

White Box Adversarial Attacks on Face Presentation Attack Detection Systems
White-box adversarial attacks are a category of adversarial attacks in deep learning where the attacker

has complete knowledge of the target model being attacked. This knowledge includes detailed information
about the model’s architecture, its parameters (weights and biases), and access to the training data used
to train the model. White-box attacks are often considered the most straightforward and well-understood
type of adversarial attacks.

White-box adversarial attacks on face presentation attack detection (PAD) systems are attempts to
craft malicious inputs (adversarial examples) that can successfully deceive these systems while the
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attacker has complete knowledge of the PAD model. These attacks exploit the sensitivity of PAD models
to subtle input changes and are aimed at undermining the security and reliability of facial recognition
systems designed to distinguish between genuine and fake face presentations (spoofing attacks).

Key Components of White-Box Adversarial Attacks on PAD Systems:

• Access to PAD Model Architecture: In a white-box attack scenario, the attacker knows the
precise architecture of the target PAD model. This includes the type of neural network used (e.g.,
convolutional neural network or recurrent neural network), the number of layers, the number of
neurons in each layer, activation functions, and any other architectural details.

• Knowledge of Model Parameters: The attacker is aware of the exact values of the model’s
parameters, including the weights and biases associated with each neuron in the network. This
information is typically considered highly sensitive and is not publicly disclosed for most machine
learning models.

• Training Data: The attacker has access to the training data that was used to train the PAD model.
This training data typically consists of genuine face images and various types of spoofing attack
samples (e.g., printed photos, videos, masks) designed to mimic real-world presentation attacks.

Process of White-Box Adversarial Attacks on PAD Systems The attacker utilizes their in-depth
understanding of the PAD model to generate adversarial examples that can bypass the system’s spoof
detection. Here’s a step-by-step explanation of how this process works:

• Identify Vulnerabilities: The attacker analyzes the PAD model to identify vulnerabilities or areas
where the model might fail to detect presentation attacks. These vulnerabilities could be related to
the model’s decision boundaries, feature extraction, or any weaknesses in its design.

• Compute Gradients: Similar to white-box attacks in general deep learning, the attacker calculates
gradients of the model’s loss function with respect to the input data. In the context of PAD, this
loss function aims to differentiate between genuine and spoofed face presentations.

∇xJ (x, y; θ) (1.2)

Where:

– ∇x is the gradient operator with respect to the input data x.

– J (x, y; θ) is the loss function measuring the model’s error for input x and true label y with
model parameters θ.

• Generate Adversarial Perturbation: Using the computed gradients, the attacker generates an
adversarial perturbation δ designed to make the PAD model misclassify a spoofed face presentation
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as genuine. The perturbation is added to the original input x to create the adversarial example.

δ = ϵ · sign(∇xJ (x, y, θ))

xadv = x+ δ
(1.3)

Here, ϵ controls the magnitude of the perturbation to ensure it remains inconspicuous.

• Generate Adversarial Example: The attacker crafts the adversarial example by adding the pertur-
bation δ to the original input x. This adversarial example is designed to evade the PAD model’s
detection.

Black Box Adversarial Attacks on Face Presentation Attack Detection Systems
Black-box adversarial attacks on face presentation attack detection (PAD) systems are a challenging

yet crucial area of research in computer vision and security. These attacks involve crafting adversarial
examples to deceive PAD systems while having limited knowledge about the target system. In this
explanation, we’ll delve into the details of black-box adversarial attacks on PAD systems, focusing on
their use of Generative Adversarial Networks (GANs):

Understanding Black-Box Adversarial Attacks on PAD Systems

• Limited Knowledge: In a black-box scenario, the attacker possesses minimal information about
the PAD system they intend to deceive. They may know that a PAD system is in place but lack
knowledge about its architecture, parameters, or training data. This mimics real-world scenarios
where attackers often have limited access to system details.

• Crafting Adversarial Perturbations: The central objective of a black-box adversarial attack is to
generate adversarial examples that can bypass the PAD system’s detection while still appearing
as legitimate inputs. To achieve this, attackers utilize generative models like GANs to create
perturbations.

• Generative Adversarial Networks (GANs): GANs consist of two networks - a generator and
a discriminator - engaged in a constant struggle. The generator aims to create realistic data (in
this case, adversarial examples) to deceive the discriminator, which, in turn, strives to distinguish
between real and generated data. This adversarial training process results in the generation of
highly realistic, hard-to-distinguish adversarial examples.

• Train the GAN: The attacker trains a GAN on the collected genuine samples. The generator learns
to produce perturbations that, when added to genuine samples, make them appear different from
the original but still classified as genuine by the PAD system.

• Adversarial Perturbation Generation: The generator of the GAN creates adversarial perturba-
tions designed to transform live samples into convincing spoofed samples. These perturbations are
carefully crafted to maximize the likelihood of being classified as live by the PAD system.
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• Adding Perturbations: The attacker adds the adversarial perturbations to live images, creating
adversarial examples. These examples are specifically designed to confuse the PAD system, making
it perceive the adversarial examples as live even though they have been altered.

1.6 Physical Adversarial Attacks

Unlike digital attacks that manipulate images through software, physical attacks are aimed at fooling
PAD systems by introducing real-world modifications to the presentation of a biometric trait, such as a
human face. These attacks are designed to mimic the traits that a PAD system is supposed to detect as
presentation attacks, thereby bypassing the system’s defense mechanisms.

One of the primary forms of physical adversarial attacks involves print attacks. In this scenario, an
attacker creates a physical replica of a legitimate user’s face, often using high-resolution prints on various
materials like paper, silicone, or 3D masks. These replicas are carefully crafted to closely resemble the
appearance of the authorized user. When presented to the PAD system, these print attacks aim to be
classified as genuine, thereby tricking the system into granting unauthorized access. The success of such
attacks is concerning, as it highlights the need for PAD systems to be robust not only against digital
manipulations but also against real-world physical presentation attacks.

Another type of physical adversarial attack is the replay attack. In a replay attack, an attacker captures
a legitimate user’s biometric data, typically through video or audio recordings, and replays this data
during an authentication attempt. This attack exploits the fact that some PAD systems may struggle to
distinguish between live biometric data and previously recorded data, especially if they lack liveness
detection mechanisms. As a result, the replayed data may be accepted as genuine, leading to unauthorized
access.

Physical adversarial attacks on PAD systems have real-world implications for security and privacy.
They highlight the need for PAD systems to incorporate robust liveness detection mechanisms that can
differentiate between live biometric data and presentation attacks. Additionally, research and development
efforts are ongoing to improve the resilience of PAD systems against physical attacks by leveraging
techniques like texture analysis, thermal imaging, or 3D depth sensing to detect and deter presentation
attacks effectively. As biometric authentication becomes more prevalent in various applications, including
smartphones, access control systems, and financial services, addressing the vulnerability of these systems
to physical adversarial attacks is of paramount importance to ensure the security and trustworthiness of
biometric-based authentication mechanisms.

1.7 Motivation

Face recognition systems are extensively used in real-time applications, such as surveillance systems,
forensics, automated border control, user authentication [43], payment processing, and security control
systems. To prevent unauthorized access and attacks, Presentation Attack Detectors (PADs) are integrated
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Figure 1.4: Physical Adversarial attacks on Face Presentation Attack Detection Sytems

into these systems (Fig 1.5) to detect and reject presentation attacks, such as print attacks and replay
attacks. As presentation attacks try to bypass the authentication system, understanding and correcting the
potential pitfalls of a PAD module is as essential as designing high-accuracy recognition algorithms. Most
of the current state-of-the-artapproaches use auxiliary information [55, 3, 53] to improve the performance
and generalizability of the presentation attack detectors. Presentation and adversarial attacks on face
recognition systems are still a significant concern. In a presentation attack, attacks are created using
printed photographs, replayed videos, wearing a mask or makeup, etc. For generating presentation
attacks, the hacker must actively participate by wearing a mask or replaying a photograph/video of the
genuine individual, which may be conspicuous in scenarios involving human operators. Adversarial
attacks, on the other hand, do not require active participation during verification.

Figure 1.5: Face recognition pipeline

14



Attacks on PADs can be divided into two categories: presentation attacks and digital adversarial attacks.
Presentation attacks are created using printed photographs or replayed videos. For generating presentation
attacks, the hacker needs to actively participate by wearing a mask or replaying a photograph/video of
the genuine individual, which may be conspicuous in scenarios where human operators are involved.
Adversarial faces, on the other hand, do not require active participation during verification.

Figure 1.6: Two types of face spoofing attacks: The first row shows the physical presentation attacks, (a)

a printed photograph, (b) replaying the targeted person’s video on a screen, and (c) a print attack image of

the target’s face. The second row shows digital adversarial attacks, created by adding slight modifications

to the captured image. To a human observer, face presentation attacks (a-c) are more conspicuous than

adversarial faces.

The use of deep learning has significantly improved the accuracy of Presentation Attack Detectors.
However, these systems are known to be vulnerable to adversarial examples [40, 19, 34, 13], which are
constructed to fool models by adding perturbations to live face images. Adversarial attacks have been
explored extensively and have exposed some of the vulnerabilities of deep learning-based PAD models.
This is a concern, especially in the safety-sensitive fields, as these attacks require a small intensity
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Figure 1.7: Experimental pipelines to evaluate the performance of the adversarial attacks. (a) shows

the pipeline used when we attack a PAD in the digital domain, and (b) shows our testing pipeline in a

physical domain. The digital image has to undergo two transformations and has to be effective after

distortions are introduced in these processes.

of adversarial perturbation and are usually imperceptible to the human eye. Adversarial images can
lead recognition models to falsely reject a genuine subject or falsely match an impostor, known as an
obfuscation attack and impersonation attack, respectively. Some adversarial attacks such as FGSM and
PGD [19, 32] are very potent as they generate adversarial examples by back-propagating through the
target model. These methods can easily mislead the PAD model, resulting in missed presentation attacks.
However, these attacks need access to the internals of the capture system to modify the captured image.

Adversarial image attacks can further be of two forms: untargeted and targeted. In untargeted
adversarial attacks, we cannot control the output label of the adversarial image. Whereas, in targeted
adversarial attacks, we can control the output label of the image.

Fig 1.6 shows the difference between the two attacks that we have mentioned so far. As seen in the
fig, physical adversarial attacks require significant adversarial perturbations as they must survive the
print and capture process. The physical and environmental conditions, such as the surface nature and
deformations of the paper, screen characteristics, and illumination during the physical capture process,
make the problem much more challenging. Compared to digital-world attacks, attacks in the physical
world are more challenging because they require robust perturbations to overcome various constraints
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and disturbances. Therefore, a series of operations need to be taken to ensure generated adversarial
perturbations obtain physical-world robustness.

Adversarial attacks in the physical domain have gained significant attention in recent times due to
their practicality and complexity. To attack the face anti-spoofing system in a physical world setting, the
spoof image created by the attacker must be printed or displayed in the real world and then captured
by the system’s camera. This process of converting digital images to physical and then back to digital
is called image rebroadcast [1]. The changes made to the image during this rebroadcast process help
the anti-spoofing detector to recognize that the digital image is fake by looking exactly for the spoofing
artifacts introduced during the rebroadcast process and prevent unauthorized access to the system. As a
new spoofing pattern may be introduced after the attack, adversarial attacks need to act in a pre-emptive
manner. Therefore, it is challenging to create an adversarial example that can effectively attack an
anti-spoofing system in a physical domain setting. We show the difference between a physical and digital
domain attack in Fig 1.7.

1.8 Contributions

The contributions of the thesis can be summarized as follows:

1. We explore a new physical adversarial attack strategy that can fool a PAD. The system detects and
recognizes the facial region as a face while also preserving the subject’s identity.

2. AdvPrint, A gradient-based white-box attack strategy that can perform an adversarial attack and
learns to generate visually realistic adversarial face images that simulate a physical print and
video-replay attack.

3. We design an identity preservation regularization term to enhance the identity preserving capability
of a cycleGAN and name it IdGAN. IdGAN, given a real image, can generate a printed or replayed
spoof version of it by preserving identity.

4. We propose AdvGen, a generative adversarial network trained to generate perturbations that are
robust to distortions introduced to an image during physical transformations. It is a whitebox
adversarial attack generator.

5. A systematic mathematical formulation for the problem of generation of adversarial physical
perturbation and modeling it as the learning objective of a deep generative model.

6. We show that AdvGen is a more effective use of generating robust physical adversarial perturbations
by comparing it against four datasets: SiW [57], MSU-MFSD [48], Replay-Attack [9] and OULU-
NPU [5].
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1.9 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 provides background on face presentation attack detection methods, generative adver-
sarial networks and adversarial attacks on face recognition system.

• Chapter 3 introduces a whitebox physical adversarial attacks using a method called AdvPrints. It
uses contrastive methods and a conventional adversarial attack strategy to generate a image which
is an adversary for the PAD systems.

• Chapter 4 discusses a black-box physical adversarial attack on face PAD systems. A generative
adversarial network is trained to generate an adversarial perturbation which shows superior attack
success rate on state-of-the-artface PAD systems.

• Chapter 5 summarizes this thesis and presents ideas for future work.

18



Chapter 2

Literature Survey

2.1 Taxonomy of Face Presentation Attack Detection

Face recognition systems are primarily designed to distinguish between genuine users and are not
inherently equipped to determine whether the biometric sample presented to the sensor is real or fake. In
this context, a presentation attack detection method is broadly defined as any technique that automatically
distinguishes between authentic biometric characteristics presented to the sensor and artificially generated
Presentation Attack Instruments (PAIs).

There are four main approaches to conducting presentation attack detection [40]: (i) with dedicated
hardware to detect an evidence of liveness, which is not always possible to deploy, (ii) with a challenge-
response method where a presentation attack can be detected by requesting the user to interact with the
system in a specific way, (iii) employing recognition algorithms intrinsically resilient against attacks, and
(iv) with software that uses already available sensors to detect any pattern characteristic of live traits.

Figure 2.1: Taxonomy of Face Presentation Attack Detection methods.

• Hardware-based: Presentation Attack Detection (PAD) methods that rely on dedicated hardware
leverage specialized sensors such as Near Infrared (NIR) cameras, thermal sensors, Light Field
Cameras (LFC), multispectral sensors, and 3D cameras. These sensors exploit the unique properties
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of different types of dedicated hardware to more effectively measure and distinguish the biological
and physical characteristics of genuine faces from Presentation Attack Instruments (PAIs). For
instance, thermal cameras can process temperature information, and 3D acquisition sensors can
estimate the 3D volume of artifacts. Although these approaches tend to achieve high presentation
detection rates, they are not widely adopted because the required hardware is often expensive and
not readily available.

• Challenge-Response: In Challenge-Response PAD methods, users are presented with a challenge,
such as completing a predefined task or responding to a stimulus. The user’s voluntary or invol-
untary response to this challenge is then analyzed to determine if the access attempt is from a
legitimate user or an attacker. For instance, some methods study involuntary eye responses to visual
stimuli, while others ask users to perform specific eye movements or say predefined words. While
challenge-response methods can be effective against many presentation attacks, they typically
require more time and cooperation from users, which may not always be feasible or desirable.

• Robust Algorithms: Existing face recognition systems can be designed or trained to learn how to
differentiate between legitimate faces and PAIs, making them inherently robust to certain types
of presentation attacks. However, developing face recognition algorithms that are intrinsically
robust to presentation attacks is a complex task. The most common approach involves relying on
multimodal biometrics, which combines information from other biometric modalities to enhance
security.

Despite the advantages of hardware-based and challenge-response methods, the ease of deploying
software-based PAD methods has led to significant research focusing on software-based approaches.
In the following section of this chapter, we will delve into software-based PAD, exploring its different
categories and components.”

Fig 2.1 provides an organizational framework for PAD methods based on this proposed taxonomy.

2.2 Software-based face PAD

Software-based PAD methods are often convenient because they offer the flexibility to enhance
existing systems without the need for additional hardware. They also enable real-time authentication
without requiring extra user interaction. Whether they fall into the hand-crafted or deep learning category,
software-based PAD methods can be broadly categorized based on their consideration of temporal
information into two main groups: static and dynamic analysis.

2.2.1 Static Analysis

This subsection refers to the development of techniques that analyze static features like the facial
texture to discover unnatural characteristics that may be related to presentation attacks. The key idea of
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the texture-based approach is to learn and detect the structure of facial micro-textures that characterise
real faces but not fake ones. Micro-texture analysis has been effectively used in detecting photo attacks
from single face images: extraction of texture descriptions such as Local Binary Patterns (LBP) [14] or
Gray-Level Co-occurrence Matrices (GLCM) followed by a learning stage to perform discrimination
between textures

2.2.1.1 Handcrafted Feature based Face PAD

Based on distinct feature properties, handcrafted feature-based face Presentation Attack Detection
(PAD) approaches are categorized into five primary cues: structural material, image quality, texture,
micro motion, and physiological signals. These handcrafted features are typically combined with binary
classification models like Support Vector Machines (SVM) or Multi-Layer Perceptrons (MLP). The aim
is to differentiate between genuine faces and presentation attacks effectively.

Approaches Based on Structural Materials: In real-world scenarios, presentation attacks (PAs)
often involve physical presentation attack instruments (PAIs) like paper, glass screens, and resin masks.
These PAIs have distinct material properties that differ from human facial skin. These differences can
be described as meaningful cues for detecting spoofing attempts, such as variations in structural depth
and specular reflection. To obtain information about the 3D structure or material composition of the
face, one direct approach is to use binocular or depth cameras, as they can capture depth information.
However, in practical applications, single RGB cameras are more commonly used. Consequently, many
face Presentation Attack Detection (PAD) research efforts focus on estimating 3D and material cues
using monocular RGB cameras.

On one hand, considering that 2D PAs on paper and screens typically lack depth information, Wang
et al. [68] proposed a method to recover the sparse 3D shape of face images, enabling the detection of
various 2D attacks. On the other hand, the differences in illumination and reflection between human facial
skin and 2D PAs are leveraged as significant spoof cues. Kim et al. [16], for instance, utilized illumination
diffusion cues based on the observation that illumination from 2D surfaces of 2D attacks diffuses more
slowly and exhibits a more uniform intensity distribution than that from 3D surfaces. Additionally, Wen
et al. [71] introduced a technique to calculate statistical features based on the percentage of specular
reflection components in face images to detect screen replay attacks. While methods based on structural
material cues hold theoretical promise for detecting 2D PAs, estimating depth and material information
from a monocular RGB camera poses challenges due to ill-conditioned problems, and these methods
tend to have high computational complexity.

Image Quality-Based Approaches: In the realm of Presentation Attack Detection (PAD), the quality
of the presented face images serves as a crucial indicator. Spoofed faces often exhibit degraded image
quality owing to color distortions and instrument artifacts stemming from specific physical Presentation

21



Attack Instruments (PAIs). Researchers have harnessed this degradation in image quality as a significant
cue for effective face PAD.

For instance, Galbally et al. [21] employed a battery of 25 image quality assessment (IQA) metrics,
comprising 21 full-reference and 4 non-reference metrics, to facilitate face liveness detection. In a similar
vein, Wen et al. [71] adopted three distinct IQA features, namely blurriness, color moment, and color
difference, to enhance face PAD. These IQA features prove effective in capturing the intrinsic distortions
present in spoofed images.

Image quality-based methods excel in detecting screen-replayed faces, low-quality printed faces, and
roughly constructed 3D mask-based spoofed faces. However, they do exhibit limitations when confronted
with high-quality printed faces and sophisticated, high-fidelity 3D mask-based attacks, which can result
in elevated false acceptance rates for these methods.

Texture-based approaches: Texture-based approaches in Presentation Attack Detection (PAD) take
advantage of specific characteristics of Presentation Attack Instruments (PAIs). Typically, PAIs result
in spoofed faces with coarser and smoother textures compared to genuine faces captured directly by
cameras, which retain finer-grained local texture details. To address this, various texture-based methods
have been developed for face PAD.

These methods often utilize classical local texture descriptors such as Local Binary Pattern (LBP)
and Histogram of Oriented Gradients (HOG) to capture intricate texture features from facial images.
Notably, some researchers have observed that texture features in the HSV color space exhibit greater
invariance across different environments. For instance, Boulkenafet et al. propose extracting LBP-based
color texture features from the HSV space, which proves efficient and versatile.

However, it’s crucial to note that texture-based methods require high-resolution input to effectively
discern subtle texture distinctions between genuine and spoofed faces. In scenarios where image quality
is suboptimal, these methods may yield a high false rejection rate. Furthermore, the diversity of image
acquisition conditions and spoofing instruments can lead to varying extracted texture patterns, limiting
the generalizability of these approaches under complex real-world circumstances.

2.2.1.2 Dynamic Analysis

Micro Motion based Approaches: Approaches based on capturing micro motions to detect liveness
involve observing short-term facial dynamics, such as expressions and head movements, as well as
dynamic textures that distinguish live from spoof samples. For instance, Tirunagari et al. [63] proposed a
method that temporally amplifies facial motion and extracts dynamic features, including the Histogram
of Oriented Optical Flow (HOOF) and Local Binary Pattern histograms from Three Orthogonal Planes
(LBP-TOP) for face PAD. However, motion magnification often introduces external noise, affecting the
robustness of subsequent feature representation.

In an alternative approach, Siddiqui et al. [59] employ dynamic mode decomposition to select the most
reliable dynamic mode for facial motion feature extraction, avoiding some of the noise issues associated
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with motion magnification. Nonetheless, micro motion-based methods may not be effective against
certain attacks, such as wrapped or shaking paper attacks and video replay attacks, due to interference
from undesired dynamics. These methods assume that there is a clear distinction in non-rigid motion
between genuine and presentation attacks. However, explicitly describing and representing such micro
motions can be challenging.

Remote Photoplethysmograph based Approaches: Physiological signal is another important liv-
ing body signal, and it is also an intrinsic cue for distinguishing live faces from artificial materials. In
recent years, remote photoplethysmograph (rPPG) technology [79] has developed quickly, which aims at
measuring blood pulse flow by modeling the subtle skin color changes caused by the heartbeat. Due to
the low transmittance characteristics of artificial materials, rPPG signals from the live faces are usually
periodic, but more noisy on the PAs such as 3D mask and printed paper. Therefore, rPPG signals are
suitable for face liveness detection. Li et al. [37] analyze the live/spoof rPPG cues via calculating
the statistics of the rPPG frequency responses. Different from the method of spectrum analysis using
long-term observation of rPPG signals in the frequency domain, Liu et al. [41] propose to leverage the
temporal similarity of facial rPPG signals for fast 3D mask attack detection, which can be within one
second by analyzing the time-domain waveform of the rPPG signal. However, rPPG cues are sensitive
to the head motion, light condition, and video quality. Another disadvantage is that the replayed video
attack on electronic screen might still contain weak periodic rPPG signals.

2.3 Deep Learning based Face PAD

The prevalence of deep learning in computer vision has extended to the realm of face Presentation
Attack Detection (PAD). In this context, traditional deep learning approaches are worth mentioning.
Initially, let’s explore conventional deep learning methods that employ cross-entropy and pixel-wise
supervision. Subsequently, we will delve into domain-generalized deep learning techniques.

2.3.1 Traditional Deep Learning Approaches with Cross-Entropy Supervision

Traditional deep learning approaches for face Presentation Attack Detection (PAD) have often
employed cross-entropy (CE) loss for supervision. This treatment is rooted in the notion that face PAD is
essentially a classification task, which can be binary (bonafide vs. presentation attack) or multi-class
(bonafide, print, replay, mask, etc.). In these approaches, deep models ϕ are utilized to extract features F
from the input face X , followed by classification heads that make binary predictions Y . These predictions
are then supervised using binary cross-entropy (BCE) loss.

In the context of BCE loss, Ygt represents the ground truth, where Ygt = 0 denotes presentation attacks
(PAs), and Ygt = 1 signifies bonafide samples. The pioneering work by Yang et al. [73] introduced an end-
to-end deep face PAD method employing shallow convolutional neural networks (CNN) for bonafide/PA
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feature representation. CNN, through stacked convolutional layers, captures critical semantic cues
indicative of spoofing, such as the hand-hold contour of printed paper. However, training CNN models
from scratch for face PAD poses challenges due to limited data and coarse supervision signals from BCE
loss. To address these issues, recent research endeavors [12, 24] often fine-tune pretrained ImageNet
models (e.g., ResNet18 and vision transformers) with BCE loss for face PAD. Transferring well-tuned
model parameters, originally designed for large-scale generic object classification tasks, to face PAD data
proves relatively efficient. Alternatively, some approaches modify BCE loss into a multi-class CE version
to provide CNNs with more fine-grained and discriminative supervision signals. For instance, Xu et al.
[72] rephrase face PAD as a fine-grained classification problem, supervising deep models with multi-class
CE loss (e.g., bonafide, print, and replay). This approach explicitly represents intrinsic properties of
bonafide samples and particular attack types. However, models supervised with multi-class CE loss still
grapple with convergence issues due to class imbalance, and the global constraints in these supervision
signals may lead to overfitting by neglecting crucial local spoof patterns.

2.3.2 Traditional Deep Learning Approaches with Pixel-wise Supervision

Compared to genuine facial images, presentation attacks (PAs) often exhibit distinct physical char-
acteristics in local responses. For instance, 2D PAs like printed paper or electronic screens lack local
geometric facial depth information, whereas genuine faces possess such depth information. Recognizing
this, recent research efforts [3, 84, 70] have introduced pixel-wise pseudo depth labels (depicted in the
fourth column of Fig. 4) to guide deep learning models. These labels prompt the models to predict
genuine depth for bona fide samples while generating zero maps for PAs. To enhance accurate facial
depth estimation using multi-level features, Atoum and colleagues [3] introduced the ”DepthNet,” a
multi-scale fully convolutional network. Supervised with pseudo depth labels, the DepthNet generates
comprehensive depth maps for genuine faces and coarse zero maps for 2D PAs, serving as interpretable
decision evidence. To improve the fine-grained intrinsic feature representation, Yu et al. [84] devised a
novel deep operator known as ”central difference convolution” (CDC). CDC can replace conventional
convolution in DepthNet without additional learnable parameters, forming the CDCN architecture. This
CDC operator can be mathematically expressed as:

y(p0) = θ ·
∑
pn∈R

w(pn) · (x(p0 + pn)− x(p0))︸ ︷︷ ︸
Central Difference Convolution

+(1− θ) ·
∑
pn∈R

w(pn) · x(p0 + pn)︸ ︷︷ ︸
Vanilla Convolution

(2.1)

where x, y and w denote the input features, output features, and learnable convolutional weights,
respectively. p0 denotes the current location on both input and output feature maps while pn enumerates
the locations in neighbor region R. The hyperparameter θ in the range [0, 1] balances the contribution
between intensity-level and gradient-level information. CDCN, known for its outstanding representation
capacity for both low-level details and high-level semantic cues, is favored in pixel-wise supervision
frameworks and widely adopted in the deep face Presentation Attack Detection (PAD) community.
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Figure 2.2: The multi-scale architecture of DepthNet [46] with vanilla convolutions (‘Conv’ for short)

and CDCN [84] with CDC. Inside the blue block are the convolutional filters with 3x3 kernel size and

their feature dimensionalities.

Considering the resource-intensive generation of pseudo depth maps and their limited relevance
for 3D face PAs with realistic depth, binary mask labels (depicted in the second column of Fig. 4)
offer a more practical alternative. Binary supervision entails providing deep embedding features with
binary labels in each spatial position corresponding to the bona fide/PA distributions in original patches
(e.g., 16×16). With binary mask supervision, models can identify PAs in the corresponding patches,
irrespective of the attack type, and the results are spatially interpretable. Other auxiliary pixel-wise
supervisory techniques, such as pseudo reflection maps (depicted in the third column of Fig. 4) and 3D
point cloud maps (depicted in the last column of Fig. 4), are also employed. The former provides cues
related to physical material reflection, while the latter encompasses denser 3D geometric cues. To learn
more intrinsic material-related features, multi-head supervision was developed in [76] to simultaneously
supervise PAD models with multiple pixel-wise labels, including pseudo depth, binary mask, and pseudo
reflection. The corresponding pixel-wise loss functions can be formulated as:

Ldepth =
1

HW

∑
i∈H,j∈W

||D(i,j) −Dgt(i,j)||22,

Lreflection =
1

HWC

∑
i∈H,j∈W,c∈C

||R(i,j,c) −Rgt(i,j,c)||22,

Lbinarymask =
1

HW

∑
i∈H,j∈W

−(Bgt(i,j) log(B(i,j)) + (1−Bgt(i,j)) log(1−B(i,j)))

(2.2)

where Dgt, Rgt and Bgt denote ground truth depth map, reflection map and binary mask map respectively
and H,W and C represent the height, width, and channels of the maps. In summary, pixel-wise auxiliary
supervision contributes to developing physically meaningful and explainable representations. However,
it’s worth noting that pseudo-auxiliary labels are often generated coarsely without human annotations,
leading to occasional inaccuracies and noise in cases of partial attacks. For example, the binary mask for
FunnyEye glasses attacks should ideally cover the eye regions rather than the entire face.
Adversarial Attacks Many adversarial attack algorithms have indicated that deep learning models are
broadly vulnerable to adversarial samples. For white-box attacks, where the attacker has complete
knowledge of the target model, including its architecture and parameters, the gradient-based approaches

25



Figure 2.3: Visualization of pixel-wise supervision signals [77] including binary mask label [23], pseudo

reflection maps [76], pseudo depth labels [84] and 3D point cloud maps [38] for face PAD.

[19, 8, 32, 13, 15, 6, 44] can be conducted by adding adversarial perturbations to the pixels of the
original images, where all the perturbations are derived from the back-propagation gradients regarding
the adversarial constraints. For black-box attacks, where the attacker has limited knowledge of the target
model and must make queries to the model to infer its behavior in order to craft an effective attack,
one interesting direction is to utilize a substitute/surrogate model to perform transfer-based attacks.
Recent works [60, 50, 14] claim that input diversity can further boost attack transferability. In the image
classification domain, semi-whitebox approaches based on Generative Adversarial Networks (GANs)
rely on softmax probabilities [49, 45, 39, 52]. Compared to digital attacks, physical attacks require much
larger perturbation strengths to enhance the adversary’s resilience to various physical conditions such as
lightness and object deformation [2, 51]. Min-max optimization problem and transferability phenomenon
are being explored for adversarial training [6, 41]. These explorations focus mostly on the region around
natural examples where the loss is (close to) linear.

Generative Adversarial Networks (GANs) Generative Adversarial Networks [18] are now being used
in a wide variety of applications. These include image synthesis applications [36, 12], style transfer
[42, 23, 17], image-to-image translation [20, 61], and representation learning [36, 37, 33]. Previous
studies with GAN have shown that it is possible to generate high-resolution images up to 1024 × 1024
resolution in various domains such as the human face, vehicles, and animals [25, 26]. In [19] proposes a
Fast Gradient Sign Method (FGSM) to generate adversarial examples. It computes the gradient of the
loss function with respect to pixels and moves a single step based on the sign of the gradient. While this
method is fast, using only a single direction based on the linear approximation of the loss function often
leads to sub-optimal results.
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Adversarial Attacks on Face Recognition Current adversarial face synthesis methods include works by
AdvFaces [10], which learns to perturb the salient regions of the face, unlike FGSM [19] and PGD [32],
which perturbs every pixel in the image and image is generated by gradient-based methods. LatentHSJA
[35] manipulates the latent vectors for fooling the classification model, and [56] which crafts replay-attack
only to fool CNN-based face recognition system. Methods that rely on white-box manipulations of face
recognition models are discussed first here. Bose et al. craft adversarial examples by solving constrained
optimization such that a face detector cannot detect a face [4]. The adversarial eyeglasses can also be
synthesized via generative networks [38]. But since these works are based on a white-box approach,
it seems impractical in real-world scenarios. Dong et al. [15] proposed an evolutionary optimization
method for generating adversarial faces in black-box settings. This method requires at least 1, 000 queries
to the target face recognition system before a realistic adversarial face can be synthesized. Song et
al. [52] employed a conditional variation autoencoder GAN for crafting adversarial face images in a
semi-whitebox setting. Here, they only focused on impersonation attacks and require at least five images
of the target subject for training and inference.

27



Chapter 3

Whitebox Adversarial Attacks

In this chapter, we adopt a white-box approach to craft adversarial faces with specific, targeted outputs,
leveraging the principles of contrastive learning. This methodology allows us to meticulously manipulate
facial data to create images that can effectively deceive facial recognition systems. Our focus here is
on developing a white-box attack strategy, which proves highly effective in generating these adversarial
faces. This white-box approach involves training a neural network in a manner that enables it to generate
perturbed instances of facial images, all while having access to the internal workings of a single, known
face recognition system. The beauty of this method is that it imparts a deep understanding of the network,
enabling it to create adversarial faces that exploit the vulnerabilities and weaknesses of the chosen face
recognition system.

3.1 Introduction

White-box adversarial attacks pose a significant threat to face antispoofing systems. In a white-
box attack scenario, the attacker has access to detailed knowledge about the underlying architecture,
algorithms, and parameters of the antispoofing system. Armed with this information, they can craft
highly targeted and effective attacks that exploit vulnerabilities in the system’s design. These attacks
often involve making subtle modifications to the input data, such as facial images or videos, in a way that
is imperceptible to the human eye but can easily deceive the antispoofing system.

White-box adversarial attacks on face antispoofing systems can take various forms. Attackers may
leverage optimization techniques to generate adversarial examples—modified inputs designed to fool the
system. These adversarial examples can be carefully crafted to evade detection and appear as genuine
faces, allowing unauthorized access or fraudulent activities. Moreover, the knowledge gained about
the system’s inner workings can aid attackers in identifying weak points or vulnerabilities that can be
exploited to bypass the antispoofing mechanisms. As face recognition and antispoofing technologies
continue to evolve, so does the sophistication of white-box attacks, making it crucial for developers and
security experts to assess and fortify these systems against such threats continuously.
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Figure 3.1: Input: real face image and corresponding synthesized adversarial images. (a) Two sample

real-face images taken from OULU-NPU dataset [5] (b) the same subject’s spoof image, adversarial

images generated from (c) our proposed method, Adversarial Prints (d) PGD [32] (e) FGSM [19]. PAD

scores are given below the images. A score above 0.4 (threshold @ 0.1 % False Accept Rate) indicates

that the images belong to the same person and will be classified as real.

We propose ”Adversarial Prints,” a pioneering leap in the domain of physical adversarial spoof
image generation. It exploits a Conditional Generative Adversarial Network (GAN) to automatically
create adversarial face images specifically designed to deceive state-of-the-art spoof classifiers. What
distinguishes our method is its incorporation of both major attack types, print attacks and replay attacks,
within a single framework—a novel approach in the field. This comprehensive coverage ensures that our
generated images effectively emulate the complexities of real-world presentation attacks.

Through rigorous ablation experiments, we have convincingly showcased the superiority of our
generated images when compared to the existing state-of-the-art spoof classifiers. These images not
only outperform previous attempts but also exhibit a remarkable degree of authenticity when assessed by
real-world evaluation metrics. The crux of our methodology lies in its ability to replicate the mechanics
of physical presentation attacks, such as print attacks while operating in the digital domain. When a live
image is processed through our GAN, it effectively simulates the intricacies of a physical printing process,
resulting in an adversarial image. This image possesses the characteristics of a printed representation,
yet it defies conventional spoof classifiers by consistently being classified as genuine. Importantly, our
method also maintains the integrity of the original individual’s facial identity, ensuring that the adversarial
image remains indistinguishable from the authentic face.
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Once the training phase is complete, the resulting adversarial attacks can be seamlessly transferred to
target any black-box face recognition system. This means that the knowledge gained during the training
process, which is specific to one system, can be effectively applied to deceive other face recognition
systems with unknown architectures or internal workings. This adaptability is a key strength of our
approach, as it allows for the widespread applicability of our adversarial faces across various recognition
systems. Our method achieves this by combining the power of the white box approach, the strategic
insights from contrastive learning, and the versatility of the semi-whitebox attack.

The ultimate objective of Adversarial Prints is to bridge the gap between physical and digital ad-
versarial attacks. By infusing the properties of physical presentation attacks into the digital domain,
our approach not only enhances the effectiveness of spoofing techniques but also underlines the critical
need for robust countermeasures and further advancements in facial recognition security. As adversaries
become increasingly sophisticated, our research represents a significant stride towards fortifying facial
recognition systems and protecting the privacy and security of individuals in the digital age.

The contributions of the chapter can be summarized as follows:

1. PAD-GAN, A network capable of simulating real-world physical processes such as printing or
replay while preserving the identity of the input.

2. AdvPrint, A gradient-based attack strategy that can learn to perform an adversarial attack to
generate visually realistic adversarial face images that synthesize a physical print and video-replay
attack.

3. We explore a new physical adversarial attack strategy that can fool a PAD. The system detects and
recognizes the facial region as a face while also preserving the identity of the subject.

4. We also propose to release an experimental dataset for experiment purposes synthesized using
AdvPrint.

3.2 Method

The goal is to synthesize a print or replay face image that deceives both a PAD and a face recognition
system by retaining the identity of the target, thus illegally gaining access to the system. AdvPrint consists
of three components i) a simulator network that emulates printing and replaying input images, ii)
a similarity-matching module that computes a similarity score between PAD representations of the
simulated and real image, and iii) a gradient-based adversarial generation module that is supervised by
the similarity-matching module.

Formulation of our Physical attack generation using an adversarially attacked Conditional Generative
Adversarial Network in Section 3.1. First, we train PAD-GAN, a Conditional GAN [61] which learns
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real to spoof translation. We describe itś architecture in Section 3.2. Next, we use FGSM [19] to perform
an adversarial attack on the trained PAD-GAN. The attack generation strategy is explained in section 3.3.

3.2.1 Problem Formulation

In this section, we formulate the problem of adversarial attack generation on Face PAD Systems.
Presentation attacks like printing/replay attacks include some form of a physical process like printing or
displaying the real capture on a device which adds noise to the real capture. PAD relies on identifying
these noise patterns introduced to perform classification. Equation 3.1 shows physical attack as a function
of real input Ir ∈ Rd and degradation function ϕ(Ir) due to printing or displaying it on a screen.

Is = Ir + ϕ(Ir) (3.1)

Conventional adversarial attacks directly attack the PAD module to deceive its decisions but in case of
physical attack, the intermediate physical medium need to be handled skillfully. Our Goal is to simulate
the intermediate physical process, Fn(I) using neural networks and perform an attack the simulation to
generate an adversarial image Iadv. This constitutes a semi-whitebox attack on the PAD module.

Iadv = Ir + Fn(I) (3.2)

We propose an adversarial attack on the simulation network guided by gradients of a PAD , ∇IrL(Ir, w)
and identity preserving loss, as an optimization problem with J (Ir, Iadv) as a loss function

min
r

∇IrL(Ir, w) · r+L(Ir, w)

s.t. ∥r∥∞
(3.3)

of which solution is given by:

Iadv = Ir + ϵ · sign(∇IrL(Ir, Iadv)) (3.4)

Here L(.) is a loss function which gives loss(obtained by computing similarity) between image
embeddings.

3.2.2 PAD-GAN Architecture

We train an architecture derived from CycleGAN to learn the simulation from Real to spoof. The
architecture is shown in fig:short-a.

Generators: The network consists of 2 based generators Grs and Gsr. Generators are based on
Convolution based encoder-decoder architectures and generate a feature representation of the input
image Ir and the decoder generates the corresponding presentation attack variants of the input Ir. The
corresponding discriminators Dr and Ds are supposed to distinguish between the captured examples and
the generated samples by the generators. Discriminators are PatchGAN discriminators and project the
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input to a patch-based matrix where each value in the matrix corresponds to the score of the particular
patch’s discriminative score. The network is trained using 2 types of losses:

Figure 3.2: In the absence of constraints, the adversarial loss does not produce good images. A domain-

appropriate output is enforced, but not recognizably identical inputs and outputs. The cycle consistency

loss addresses this issue. By successively feeding the image through both generators, you should get

back something similar to what you put in when you convert an image from one domain to the other.

Here, Grs is learning to synthesize replay and printed spoofs, which are fed through Discriminator Dr to

check whether they are synthetic spoofs or captured spoofs. Gsr is learning to reconstruct real images,

which are fed through Discriminator Ds to check whether they are reconstructed images or captured real

images.

1. Adversarial Loss: Adversarial loss creates a 2 player adversary between the generator and
discriminator leading to better training through competition. An MSE-based adversarial loss is
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used and defined as,

Ladv(Grs,Ds,Ir,Dr) = EIs∼pdata(Is)log[Ds(Is)]+

EIr∼pdata(Ir)log[1−Ds(Grs(Ir))]

Ladv(Grs,Ds,Ir,Dr) = EIs∼pdata(Is)log[Ds(Is)]+

EIr∼pdata(Ir)log[1−Ds(Grs(Ir))]

Ladv = Ladv(Grs,Ds, Ir,Dr)+

Ladv(Grs,Ds, Ir,Dr)

(3.5)

2. Cycle Consistency Loss: Only adversarial loss leaves the learning unconstrained. Hence the Cycle
Consistency Loss 4.3 is added as a regularization term to the generator’s objectives. This loss is
defined as,

Lcyc(Grs, Ir) = EIr∼pdata(Ir)[∥Gsr(Grs(Ir))− Ir∥1]

Lcyc(Gsr, Is) = EIs∼pdata(Is)[∥Grs(Gsr(Is))− Is∥1]

Lcycle = Lcyc(Grs, Ir) + Lcyc(Gsr, Is)

(3.6)

Here ∥·∥1 denotes L1 norm

3. Identity Regularizer: The generated image should preserve the identity as in the input face. This
would be a critical component in the adversarial attack generation. We add an identity-preserving
regularization term. The CycleGAN, at every iteration, tries to preserve identity by minimizing
the cosine similarity between face embeddings of the generated image and the input image that is
defined as,

Lidentity(Grs,Gsr, Ir, Is) = F [Gsr(Grs(Ir)), Ir]

+ F [Grs(Gsr(Is)), Is]
(3.7)

Finally, PAD-GAN is trained using the following objective,

L = Ladv + λcycle × Lcyclic + λidentity × Lidentity (3.8)

3.2.3 Adversarial Attack Framework

Perturbing the input image to generate an adversarial variant is a common strategy in standard attacks
like FGSM [19]. We adopt an FGSM-based attack on the pretrained(Print Synthesiser(PAD-GAN))
which is guided by a self-supervised loss. FGSM is an efficient one-step attack which is formally defined
as

Iadv = Ir + ϵ · sign(∇IrL(Ir, Iadv)) (3.9)

where ϵ is the max perturbation, L(·) is the loss function and Iadv is the adversarial image generated by
perturbing input image Ir.
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((a)) Training of AdvPrint

((b)) Generating adversarial attacks

Figure 3.3: Architecture of AdvPrint comprises of two generators Grs and Gsr, two discriminators Dr

and Ds, and a face PAD. Synthesizing adversarial face images using AdvPrint consists of two stages: (a)

Training of AdvPrint using CycleGAN, which when given a real image learns to generate a captured

spoof. Identity loss is introduced as an identity regularizer to preserve the subject’s identity (b) After

training, this network synthesizes a printing attack and replay attack process. Here, we backpropagate the

gradient of the loss which is calculated by maximizing the cosine similarities between PAD embeddings

and identity embeddings (generated from a face recognition model, ArcFace [11]). When we input a

real image through this network, we get an adversarial print image which, when passed through a face

PAD would be classified as a real image. (c) shows how a generated adversarial image moves from the

spoof space to the real space.
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We want to perform an attack over the PAD-GAN to generate a spoof image that i) can deceive the
PAD hence the PAD feature representations should lie close in the PAD latent space and ii) recognized
correctly by a face detector, hence identity should be preserved. To achieve that, the loss in eq:fgsm is a
negative cosine similarity between the generated and real image’s embeddings.

The embedding used to compute the similarities comprises of 2 components i) Feature representation
of the images from a PAD classifier V pad is used to retain presentation attack features and ii) to the
presentation attack features, identity features V identity are added using feature representations from a
pretrained face recognition module. Both these representations are concatenated to form the final feature
representation.

Vr = Vpad
r ||V identity

r

Vadv = Vpad
adv ||V

identity
adv

(3.10)

where | · | denotes the concatenation of the vectors. Cosine similarity is computed over these embeddings
and the negative of this is used as the loss which is back-propagated.

J = −similarity(Iadv, Ir) =
Ir · Iadv

∥Ir∥ · ∥Iadv∥
(3.11)

The parameters of both the PAD model and face detector module are frozen and stacked one over another
and, the gradients are back-propagated to the input real image. This perturbs the input image such that
when it is printed using the PAD-GAN generates an adversarial spoof that resembles a real image.

3.3 Experiments

In this section, we first introduce the datasets used and the experimental setup. Then we evaluate the
performance of our framework on PADs with adversarial training.

3.3.1 Dataset for Experiments

OULU-NPU is used as the base dataset to generate the adversarial images. With 55 subjects in the
OULU-NPU dataset, we propose to release 10 frames per subject replicating print and replay attacks and
generating adversarial variants of it. This can serve as a tool to experiment with different methods to
defend against such attacks. We plan to extend the generation to other spoof types(mask, makeup, etc.).
Sample images are provided as a reference in Fig 4.4. We have released a dataset for experimentation
comprising adversarial images generated using our proposed method.

3.3.1.1

Evaluation protocols for the evaluation of the generalization capability of the face PAD methods, four
protocols are used in OULU-NPU.
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Figure 3.4: Sample images from the proposed dataset synthesized by AdvPrint. (a) represents a real

image that is fed into AdvPrint, which generates two types of adversarial images: (b) adversarial replay

image, which when printed and captured by a camera results in (c) adversarial print image.

• Protocol I:

The first protocol is designed to evaluate the generalization of the face PAD methods under
previously unseen environmental conditions, namely illumination and background scene. As the
database is recorded in three sessions with different illumination condition and location, the train,
development and evaluation sets are constructed using video recordings taken in different sessions.

• Protocol II:

The second protocol is designed to evaluate the effect of attacks created with different printers
or displays on the performance of the face PAD methods as they may suffer from new kinds of
artifacts. The effect of attack variation is assessed by introducing a previously unseen print and
video-replay attack in the test set.

• Protocol III:

One of the critical issues in face PAD and image classification in general is sensor interoperability.
To study the effect of the input camera variation, a Leave One Camera Out (LOCO) protocol is
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used. In each iteration, the real and the attack videos recorded with five smartphones are used to
train and tune the algorithms, and the generalization of the models is assessed using the videos
recorded with the remaining one.

• Protocol IV:

In the last and most challenging protocol, all above three factors are considered simultaneously
and generalization of face PAD methods are evaluated across previously unseen environmental
conditions, attacks and input sensors.

3.3.2 Experimental Setup

Figure 3.5: Experimental setup to perform physical attack on the deployed face presentation attack

detection system.

In our experimental setup, we meticulously address the challenges posed by print and replay attack
scenarios. For the printing phase, we employ an HP Smart Tank 580 printer, ensuring the authenticity of
our simulated print attacks. To display and scrutinize the results, we utilize two distinct mediums—a
MacBook Pro equipped with Intel Iris Plus Graphics 640 (1536 MB) and a Redmi K20 Pro featuring a
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Super AMOLED display with HDR10 support. This diverse range of display devices allows us to assess
the versatility of our adversarial attack method. During data collection, all images are captured within a
proximity range spanning from 20cm to 40cm, replicating real-world usage scenarios and ensuring the
relevance of our findings.

To rigorously validate the efficacy of our developed adversarial attack methodology, we integrate
it into a user-friendly streamlit application. This application serves as a practical platform for real-
time evaluation. It ingests live image feeds and promptly returns not only the predicted identity of
the individual but also a binary classification of ’spoof’ or ’live,’ accompanied by a confidence score
quantifying the prediction’s certainty.

Our evaluation encompasses a meticulously curated test set comprising 300 images sourced from the
OULU-NPU dataset, which features a diverse array of identities. Specifically, we sample 20 distinct
identities from the OULU-NPU dataset. These sampled images are handpicked with utmost care to
encompass the widest possible spectrum of variations in terms of facial expressions, lighting conditions,
and poses. This comprehensive approach ensures that our evaluation is robust, accounting for many
real-world scenarios and challenges.

3.3.3 Experimental Settings

While training AdvPrint, we are using the ADAM optimizer with β1 = 0.5 and β2 = 0.9, for the entire
network. We are training our network on the OULU-NPU [5] dataset. Each mini-batch consists of 1 face
image. We train AdvPrintfor 100 epochs with a fixed learning rate of 0.0002. We also use identity loss
with parameters λi = 1.0. We train two separate models for print and video-replay attacks. A unified
model for both attacks is also trained with the same hyperparameters. We iteratively perform FGSM over
AdvPrintwith ϵ = 0.1. All experiments are conducted using PyTorch.

3.3.4 Evaluation Metrics

By comparing our network against state-of-the-art baselines, we measure adversarial attacks’ effec-
tiveness through their attack success rate (ASR) as well as structural similarity (SSIM) [46].

The attack success rate (ASR) is computed as

ASR =
No. of attacks classified as real

Total number of attacks
× 100% (3.12)

The Structural Similarity Index (SSIM) metric extracts 3 key features from an image: luminance,
contrast, and structure. Here, Luminance is a comparison of µx and µy, Contrast is a comparison of
σx and σy, and Structure is calculated by dividing the input signal with its standard deviation so that
the result has unit standard deviation which allows for a more robust comparison. SSIM is calculated
between adversarial image and real image:

SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1
) (

σ2
x + σ2

y + c2
) (3.13)
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Print Attack AdvPrint PGD FGSM

Attack Success Rate %

Protocol 1 74.43 23.70 19.96

Protocol 2 57.24 19.34 15.71

Protocol 3 44.53 18.25 12.30

Protocol 4 22.98 8.74 5.48

Structural Similarity 0.73 0.49 0.24

Table 3.1: Attack success rates and structural similarities between various protocols in the OULU-NPU

dataset. The Protocols signify that PAD-GAN is trained on the corresponding train and test set in the

protocol. The other 2 attacks are directly performed on the PAD-GAN and printed without handling the

physical printing process

Here, x and y are the two images that are compared, µx, µy, σx, and σy are the means and variances
of x and y, respectively. σxy is the covariance of x and y. Parameters c1 = (k1L)

2 and c2 = (k2L)
2

are constants to ensure stability when the denominator becomes zero, k1, k2 are constants, and L =(
2(no. of bits per pixel ) − 1

)
is the dynamic range for pixel values.

3.3.5 Comparison Studies

Replay Attack AdvPrint PGD FGSM

Attack Success Rate %

Protocol 1 71.67 20.44 17.58

Protocol 2 53.22 18.57 16.20

Protocol 3 36.53 16.61 11.74

Protocol 4 19.98 6.89 4.93

Structural Similarity 0.68 0.35 0.18

Table 3.2: Attack success rates and structural similarities between various protocols in the OULU-NPU

dataset. The Protocols signify that PAD-GAN is trained on the corresponding train and test set in the

protocol. The other 2 attacks are directly performed on the PAD-GAN and replayed without handling the

physical printing process.
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((a)) ((b))

Figure 3.6: t-SNE visualization of the datasets. (a) the t-SNE plot of feature representation from the

PAD module for generated images by PAD-GAN for a mini-batch of images from the corresponding

sets. (b) t-SNE plot of feature representation from the PAD module for adversarial images generated by

PAD-GAN

Table 3.1 and 3.2 show quantitative evaluations of our proposed method on different protocols in
the OULU-NPU dataset. We have mostly compared our methodś performance against the standard
attach methods FGSM and PGD directly on PAD-GAN before generating the spoofs and then printing
those adversarial images and presenting them to the PAD . The results clearly demonstrate i) simply
generating an adversarial attack without taking into consideration the physical process doesn’t prove
to be a successful attack strategy ii) Our method performs fairly even on a difficult Protocol 3 with the
Leave One Camera Out(LOCO) constraint. The method is able to learn to generate fairly on unseen
presentation attacks and, iii) compared to replay attack, presentation attack is easier to simulate as replay
involves complex ways to capture and present the image.

Table 3.3 demonstrates quantitative results across protocols. All the data from one of the protocols
(in case of 2) and multiple (in case of multiple protocols) are used as the train set and the test set is
curated from the other set. Such a kind of evaluation is commonly followed in standard PAD works
[55, 30, 59, 24] to test the generalizability of the proposed approach.

Our method outperforms standard attack strategies on all possible combinations of protocols. It gives
an idea of the generalizable capability of the proposed approach. Preserving both PAD features and
identity features in the generation and attack strategies helps the attack to be quite robust even in unseen
conditions.
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Print Attack AdvPrint PGD FGSM

Attack Success Rate %

Protocol 1 & 2 64.76 21.54 18.74

Protocol 2 & 3 61.83 17.47 13.09

Protocol 3 & 4 46.87 12.21 8.45

Protocol 1 & 4 51.61 13.70 10.20

Protocol 1, 2, 3 56.29 16.81 14.59

Protocol 1, 2, 3, 4 41.43 6.22 4.86

Structural Similarity 0.76 0.52 0.34

Table 3.3: Attack success rates and structural similarities in cross protocols evaluation in the OULU-NPU

dataset. The Protocols signify that PAD-GAN is trained on one of the corresponding protocol’s entire

data and test and validation set are curated from the other protocol. The other 2 attacks are directly

performed on the PAD-GAN and printed without handling the physical printing process

3.3.6 Ablation Studies

We undertake a series of ablation studies with the primary objective of illustrating the critical
significance of incorporating identity embedding within the similarity computation framework, as
depicted in Fig 3.7. The implications of this inclusion are profound, directly influencing the nature of
perturbations introduced into the generated images. It is important to highlight that these perturbations
are not arbitrary but rather meticulously designed to manipulate the image in a manner that aids in
evading detection by face recognition systems.

The role of identity embedding within this context cannot be overstated. Without incorporating
identity information, the generated images experience a significant loss of critical identity-related details.
This loss is highly detrimental, as it adversely affects the recognition performance of the adversarial
attacks. In simpler terms, when identity information is omitted from the computation, the generated
adversarial images deviate substantially from the original identity, leading to a misalignment between the
generated image and the expected identity. Consequently, recognition scores go down, and the adversarial
attack’s effectiveness is severely compromised. This highlights the pivotal role that identity embedding
plays in the overall success of our approach, emphasizing the need for a holistic and comprehensive
consideration of identity information in the adversarial image generation process.
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Figure 3.7: Variants of AdvPrint trained without identity loss and with identity loss. Images trained

without identity loss affects the recognition score.

3.4 Conclusion

Attacking Presentation Attack Detection (PAD) systems in the physical world, like using a printed
photo, is often more challenging than fooling them digitally. To tackle this challenge, we’ve developed a
unique method called AdvPrint. This method allows us to create special deceptive images that mimic the
appearance of printed photos and replayed videos. AdvPrint is highly effective. It enables us to generate
these tricky images that can successfully bypass the anti-spoofing measures and trick the face recognition
system. What’s more, our method ensures that the identity of the person in the image remains intact. In
simpler terms, we’ve found a way to make photos that look real but can outsmart the system, all while
keeping the person’s identity unchanged.
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Chapter 4

Blackbox Adversarial Attacks

In this chapter, we shift our focus to a black-box adversarial attack strategy, departing from the
white-box approach previously discussed. Our aim now is to craft adversarial faces with specific, targeted
outputs while operating under the constraints of limited knowledge about the internal workings of
the target face recognition system. To achieve this, we harness the power of Conditional Generative
Adversarial Networks (GANs) and Generative Adversarial Networks (GANs). These sophisticated
deep learning architectures enable us to generate adversarial images that can effectively deceive facial
recognition systems.

4.1 Introduction

Face recognition technology has become a part of our daily lives, offering unparalleled convenience
and security. However, this widespread adoption has also exposed these systems to new challenges,
particularly the need to safeguard them from adversarial attacks. Among these threats, black-box
adversarial attacks stand out as a significant menace to the reliability of face-presentation attack detection
systems. These attacks are notorious for their capacity to subvert the effectiveness of facial antispoofing
models, all while operating with limited knowledge of the model’s internal workings. This paper ventures
into the intriguing domain of black-box adversarial attacks, with a specific focus on their impact on
face antispoofing models. We introduce an inventive approach that harnesses Conditional Generative
Adversarial Networks (GANs) in combination with a Spoof Decomposition Network and Expectation
over-transform techniques to tackle this challenge head-on.

In an era where facial recognition technology is becoming increasingly prevalent, the convenience and
security it offers are undeniable. However, this ubiquity has given rise to a pressing concern: how can we
shield these systems from adversarial attacks? Among the various threats, black-box adversarial attacks
pose a particularly daunting challenge. These attacks are distinguished by their ability to subvert the
defenses of facial antispoofing models, all without an intricate understanding of how these models work
internally. This paper takes a deep dive into the captivating world of black-box adversarial attacks, with
a specific emphasis on their impact on face antispoofing models. Within these pages, we introduce an
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Figure 4.1: Example live images and corresponding adversarial images generated by AdvGen. First

Column: live images from presentation attack datasets, second column: the corresponding adversarial

images generated by AdvGen, third column: the predicted class along with the confidence score and

recognized identity for a generated image(presenting an adversarial image generated by our model to the

face recognition, fourth column: replay attack on a mobile screen, fifth column: replay attack on a laptop

screen. The proposed method generates visually indistinguishable adversarial images from the input that

is robust to distortions introduced after physical transformations.

innovative approach that harnesses the power of Conditional Generative Adversarial Networks (GANs),
working in tandem with a Spoof Decomposition Network and Expectation over Transform techniques.
Together, these elements form a robust strategy to address the complexities of this problem.

Black-box adversarial attacks pose intricate challenges when they target face-presentation attack
detection systems. In these attacks, the assailant operates with only partial knowledge of the inner
workings of the target model. This scenario mirrors real-world situations where adversaries attempt
to trick facial recognition systems without comprehensively understanding the system’s architecture.
Crafting adversarial inputs that can successfully deceive the system in such circumstances becomes a
daunting task. While white-box attacks, which rely on full knowledge of the model, have been extensively
studied, the realm of black-box attacks demands innovative strategies. These strategies must be able
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to bypass facial antispoofing systems stealthily and adapt to their defenses. To tackle this captivating
challenge, we present AdvGen, a pioneering method that harnesses the capabilities of Conditional
Generative Adversarial Networks (GANs) and sophisticated loss functions to generate adversarial inputs.
Remarkably, our approach accomplishes this while operating within the constraints of limited knowledge
about the internal workings of the target model.

The contributions of the paper can be summarized as follows:

1. We design an identity preservation regularization term to enhance the identity preserving capability
of a cycleGAN and name it IdGAN. IdGAN, given a real image, can generate a printed or replayed
spoof version of it by preserving identity.

2. We propose AdvPrint, a generative adversarial network trained to generate perturbations that are
robust to distortions introduced to an image during physical transformations.

3. A systematic mathematical formulation for the problem of generation of adversarial physical
perturbation and modeling it as the learning objective of a deep generative model.

4. We show that AdvGen is a more effective use of generating robust physical adversarial perturbations
by comparing it against four datasets: SiW [57], MSU-MFSD [48], Replay-Attack [9] and OULU-
NPU [5]. (Fig 4.1).

4.2 Methodology

AdvGen consists of three components i) a simulator network that emulates printing and replaying
input images, ii) a decomposition network that can decompose spoof faces into noise signal and live
faces, and iii) a generator network supervised using a formulated loss to generate physical adversarial
perturbations.

We formulate the problem of generating a robust physical adversarial perturbation as an optimization
objective in Section 3.1. Then we describe the architecture of the simulator network in Section 3.2. In
Section 3.3, we elaborate on modeling the formulated optimization objective using a Generative Neural
network.

4.2.1 Problem Formulation

First, we formulate the creation of an adversarial image in the digital domain, and then we modify it
to the physical domain.

Let I denote an input image and ltrue its corresponding label. Let ltarget ̸= ltrue be the target label of
the attack. Let f (·) denote the output of the target neural network.
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IdGAN
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Sampling from the set of
geometric distortions
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Figure 4.2: Synthesizing adversarial face images using AdvGen consists of two stages: Stage 1: Training

of IdGAN which, given a live image, learns to generate geometrically diverse spoof images. These

generated images produced by IdGAN simulate printing and replay. Identity loss is introduced as an

identity regularizer to preserve the subject’s identity in the generated images. Stage 2: We apply de-

spoofing and EOT on the generated spoof images to get the physical and geometric noises. These are fed

into AdvGen’s generator to generate the adversarial perturbation. The generated image from AdvGen is

robust to physical as well as geometric distortions.
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The process of generating an adversarial perturbation δ involves solving the following optimization
problem:

argmin
δ

L(f(I + δ), ltarget),

subject to ∥ δ ∥p< ϵ
(4.1)

where L(·) is the neural network’s loss function, and ∥ · ∥p denotes the Lp-norm. To solve the above-
constrained optimization problem efficiently, we reformulate it in the Lagrangian-relaxed form:

argmin
δ

L(f(I + δ), ltarget) + λ ∥ δ ∥p (4.2)

where λ is a hyper-parameter that controls the regularization of the distortion ∥ δ ∥p.
In a physical domain setting, we denote a spoof image as Is. The spoof detection network is not fed

directly with Iadv = Is + δ∗ (δ∗ is the optimal digital perturbation obtained by using Eq. 4.2 with its
physically recaptured version Ir = P(Iadv) = P(Is + δ∗) where we use P(·) to denote the physical
broadcasting and recapture procedure. P(·) is capable of destroying the effect of ρ∗.

In order to ensure that the perturbation remains effective even after the image has been rebroadcasted,
it is important to consider the possible transformations that the image may undergo during this process.
This will allow us to create a robust perturbation that can withstand these transformations. T denotes
the set of all transformations in the physical process. Perturbation ρ can be obtained by optimizing the
average loss over T ,

argmin
ρ

Et∼T [J (fs(t(I) + ρ), ltarget)] + λ ∥ ρ ∥p (4.3)

Here fs denotes the output of a face presentation attack detector for a transformed image I after applying
a broadcasting transform t selected from a set of physical transforms T and then applying a perturbation
ρ obtained using Eq. 4.3.

4.2.2 Physical Simulator Network

We train IdGAN, an architecture derived from CycleGAN, to learn the simulation from real to spoof.
This network learns to add physical and geometrical perturbations to an input image. It has two benefits:
i) the simulated image will be useful in the next stage of attack generation, ii) This network is trained on
data exposed to physical augmentations(rotation, random crop, resize, etc.), making the network capable
of generating spoof images with physical variations.
Generators: The network consists of two generators Grs and Gsr. Generators are based on Convolution
based encoder-decoder architectures and generate a feature representation of the input image Ir, and the
decoder generates the corresponding presentation attack variants of the input Ir. The discriminators Dr

and Ds distinguish between the captured examples and the generated samples by the generators. The
network is trained using three types of losses:

1. Identity Regularizer: The generated image should preserve the identity of the input. This would
be a critical component in the adversarial attack generation. We introduce an identity-preserving
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Figure 4.3: Loss terms used to train IdGAN. along with conventional Ladv and Lcycle, we introduce a

Lid to preserve identity in the generated image, which is a crucial step for the stage 2.

regularization term to CycleGAN. The network, at every iteration, tries to preserve identity by
minimizing the cosine similarity between the face embeddings of the generated image and the
input image. The face embeddings are generated using a pretrained ArcFace [11]. The identity
regularizer is defined as,

Lid(Grs,Gsr, Ir, Is) = Ex[1−F [Gsr(Grs(Ir)), Ir]]

+ Ex[1−F [Grs(Gsr(Is)), Is]]
(4.4)

2. Adversarial Loss: Adversarial loss creates a 2-player adversary between the generator and
discriminator, leading to better training through competition. An MSE-based adversarial loss is
used and defined as,

Ladv(Grs,Ds,Ir,Dr) = EIs∼pdata(Is)log[Ds(Is)]+

EIr∼pdata(Ir)log[1−Ds(Grs(Ir))]

Ladv(Gsr,Dr,Is,Ds) = EIr∼pdata(Ir)log[Dr(Ir)]+

EIs∼pdata(Is)log[1−Dr(Gsr(Is))]

Ladv = Ladv(Grs,Ds, Ir,Dr)+

Ladv(Gsr,Dr, Is,Ds)

(4.5)
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3. Cycle Consistency Loss: Adversarial loss leaves the learning unconstrained. Hence the Cycle
Consistency Loss is added as a regularization term to the generator’s objectives shown in Fig 4.3.
This loss is defined as,

Lcyc(Grs, Ir) = EIr∼pdata(Ir)[∥Gsr(Grs(Ir))− Ir∥1]

Lcyc(Gsr, Is) = EIs∼pdata(Is)[∥Grs(Gsr(Is))− Is∥1]

Lcycle = Lcyc(Grs, Ir) + Lcyc(Gsr, Is)

(4.6)

Here ∥·∥1 denotes L1 norm

Finally, IdGAN is trained using the following objective,

L = Ladv + λcycle × Lcycle + λid × Lid (4.7)

4.2.3 Modelling the Physical Transformation

A real image I undergoes physical transformations such as color distortion and display, printing,
and imaging artifacts to become a spoof image [24]. In addition, the presenter may wish to introduce
geometric distortions like rotation, capture distance, folding the presentation medium, etc. These distor-
tions need to be carefully modeled. To generate the perturbation, we use a generative neural network to
model the optimization problem. AdvGen is optimized over the formulated loss. Fig 4.2 outlines the
proposed architecture. AdvGen consists of a generator G, a discriminator D, a spoof noise synthesiser S
and a geometric distortion sampler F . Together these modules model every necessary component in the
formulated objective.

Generator The generator G of AdvGen takes in an input image x ∈ X and generates a perturba-
tion G(x). In order to maintain the original visual quality of the input image and avoid generating a
completely new face image, the generator produces an additive perturbation that is applied to the input
image as x+ G(x). The generator’s loss has the following components:

Physical Perturbation Hinge Loss: To generate perturbations that include physical distortions, we use a
pretrained noise decomposition network [24]. It is in the synthesized spoof image from AdvGen , and
returns decomposed physical noise and live faces. This synthesized noise serves as the perturbation to be
added to the real image. This noise is an unbounded physical noise. Hence we introduce this noise to
the generation pipeline using a soft hinge loss on the L2 norm bounding the amount of physical noise
introduced by [8, 29] formulated as:

Lphy = Ex[max(ϵ1, ∥Phy(x)∥2)] (4.8)

ϵ1 is a user-specific bound on the added perturbation and Phy(·) denotes physical noise from the decom-
position network.

49



Geometric Distortion Hinge Loss: Presentation of a physical medium is always subject to geometric
distortions such as rotation, zooming, folding, etc., due to human errors. To make the attack robust to
geometric distortions, AdvGen is trained with geometric augmentations to generate spoof images with
diverse geometric variations. To model these distortions, Expectation over Transforms(EOT) [2] is applied
over the generated spoof images. Modeling these transformations diversifies the set of physical transforms
modeled by the generator. The generated geometric perturbation is controlled using a geometric hinge
loss

Lgeom = Ex[max(ϵ2, ∥Geom∥2)] (4.9)

ϵ2 is a user-specific bound on the added perturbation and Geom(·) denotes geometric perturbation ob-
tained from EOT.

Identity Regularizer Loss: The perturbation must preserve the identity of the target. We introduce
an identity regularizer to the generator loss, which maximizes the cosine similarity between the identity
embeddings obtained from a pretrained ArcFace [11] matcher. We define it as,

Lidentity = Ex[1−F(x, x+ G(x))] (4.10)

Discriminator: We introduce a discriminator D which distinguishes between the generated samples
x+ G(x) and the corresponding real sample x. This Discriminator is based on PatchGAN and projects
the input to a patch-based matrix where each value in the matrix corresponds to the score of the particular
patch’s discriminative score. trained using the adversarial loss:

LGAN = Ex[logD(x)] + Ex[log(1−D(x+ G(x))] (4.11)

AdvGen is trained to generate identity-preserving physical perturbation in an end-to-end on the
following objective:

L = λphy × Lphy + λgeom × Lgeom+

λidentity × Lidentity + λGAN × LGAN

(4.12)

4.3 Experiments

In this section, we first introduce the datasets used and the experimental setup. Then we evaluate the
performance of our framework in different settings and explain the evaluation metrics:

4.3.1 Datasets and Baselines

We train AdvGen on OULU-NPU [5] and test on SiW [57], MSU-MFSD [48], Replay-Attack [9] and
OULU-NPU [5]1 datasets. OULU-NPU [5] face presentation attack detection database contains 4,950

1We train on training and validations sets of Protocol 1 of OULU-NPU and test on the corresponding test set
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Attack Success Rate on OULU-NPU(%) and SSIM after attack

BIM [28] EOT [2] RP2 [16] D2P [21] Ours

CDCN [55] 41.19 55.82 63.12 68.37 81.02

CDCNpp [58] 37.47 51.61 59.39 64.26 78.22

C-CDN [54] 38.38 51.58 60.83 65.49 79.34

DC-CDN [54] 39.95 53.83 61.36 66.03 80.55

SSAN-M [47] 40.06 52.02 61.40 65.27 80.42

SSAN-R [47] 34.54 49.83 57.03 61.79 75.15

DBMNet [22] 38.78 52.69 59.89 62.74 79.63

STDN [31] 40.92 53.93 61.67 63.29 80.98

Meta-FAS [7] 35.38 47.67 57.25 59.53 76.19

De-Spoofing [24] 46.44 58.43 65.41 68.66 84.67

SSIM in [0,1] 0.64 0.38 00.32 0.45 0.98

Table 4.1: Comparison of attack success rates on different models and ours using four different datasets.

real access and attack videos belonging to 55 different subjects. SiW [57] contains 4,478 15s long videos
for 165 subjects. For each subject, there are eight live and up to 20 spoof videos. MSU-MFSD [48]
contains 280 video recordings of genuine and attack faces for 35 individuals. Replay-Attack [9] consists
of 1300 video clips of photo and video attacks for 50 clients under different lighting conditions.

We compare our proposed method with four state-of-the-artphysical attack generation methods
BIM [28], EOT [2], RP2 [16], D2P [21]. To compare our method’s effectiveness in the physical vs.
digital domain, we implement four standard digital adversarial attacks FGSM [19], PGD [32], BIM [28],
and Carlini & Wagner [8]. We use TorchAttack’s [27] implementations of the above methods by
perturbing the necessary parameters to generate effective attacks. To establish the effectiveness and
generalizability of our proposed attack across different spoof detection models, we compare the ASR of
our generated images from OULU-NPU across ten state-of-the-art face anti-spoofing models in Table
4.1.

51



4.3.2 Evaluation Metrics

By comparing our network against state-of-the-art baselines, we quantify the adversarial attacks’
effectiveness via i) attack success rate (ASR) and ii) structural similarity (SSIM) [46].

The attack success rate (ASR) is computed as

ASR =
No. of attacks classified as real

Total number of attacks
× 100% (4.13)

To quantify the effectiveness of the generated adversarial images with the input image, we compute the
Structural Similarity Index (SSIM) metric calculated between the adversarial image and the real image as
proposed in research[46]:

SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1
) (

σ2
x + σ2

y + c2
) (4.14)

Here, x and y are the two images that are compared, µx, µy, σx, and σy are the means and variances
of x and y, respectively. σxy is the covariance of x and y. Parameters c1 = (k1L)

2 and c2 = (k2L)
2

are constants to ensure stability when the denominator becomes zero, k1, k2 are constants, and L =(
2(no. of bits per pixel ) − 1

)
is the dynamic range for pixel values.

4.3.3 Experimental Setup

All experiments are conducted on print and replay attack scenarios. We use an HP Smart Tank 580
printer to print all the images. For display, we use two mediums, MacBook Pro (Intel Iris Plus Graphics
640 1536 MB) and Redmi K20 pro (Super AMOLED, HDR10 display). All images are captured from a
distance ranging from 20cm to 40cm.

To validate the effectiveness of our developed attack method, we deploy four state-of-the-art face
anti-spoofing methods to a streamlit app. The app takes a real-time feed and returns the predicted identity
of the person along with spoof/live prediction along with its confidence.

We create a test set of 300 images per dataset comprising different identities. From OULU-NPU,
we sample 20 identities; from SiW, we sample 50 identities; from REPLAY-ATTACK, we sample 15
identities; from MSU-MFSD, we sample 15 identities. The sampled images are manually handpicked to
ensure that maximum diversity is covered in terms of variations. To validate results for EOT, we manually
perform physical distortions like rotation on the print and replay displays, change of brightness in the
replay attacks, and folding the presentation medium in print attacks.

4.3.4 Experimental Settings

We use ADAM optimizers with β1 = 0.5 and β2 = 0.9. Each mini-batch consists of 1 face image.
We train AdvGen for 100 epochs with a fixed learning rate of 0.0002. We also use identity loss with
parameters λi = 1.0. We train two separate models for print and video-replay attacks. A unified model
for both attacks is also trained with the same hyperparameters. We iteratively perform FGSM over
AdvGen with ϵ = 0.1. All experiments are conducted using PyTorch.
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Figure 4.4: Experimental setup to perform physical attack on the deployed face presentation attack

detection system.

4.4 Results and Analysis

4.4.1 Effectiveness in Physical Domain

To evaluate the effectiveness of the proposed method in the physical domain, we perform a digital
attack using conventional attack strategies and our method on the test set of 300 images curated from
OULU-NPU. Then the adversarial images are printed and presented physically to a presentation attack
detector. The performance of all attacks is optimal in the digital domain but significantly drops when
transferred to the physical domain, as demonstrated in Table 4.2. The ASR of the standard methods
is less than 50 in the physical domain, while our method clearly outperforms these values. These
empirical results clearly demonstrate that including physical spoofing noise makes the attack robust to
transformations incurred through physical processes.
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Figure 4.5: Experimental pipelines to evaluate the performance of the attacks. (a) shows the pipeline

used when we attack a PAD in the digital domain, and (b) shows our testing pipeline in a physical world

setting.
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Attack Success Rate (%)

Digital Domain Physical Domain

BIM [28] 98.04 41.22

FGSM [19] 75.32 23.13

GA 79.56 26.92

IGSA 100.00 34.22

IGA 99.64 31.48

PGD [32] 98.63 36.42

AdvGen 100 81.02

Table 4.2: Performance of state-of-the-artadversarial attack methods in the digital and physical domain.

4.4.2 Comparison Studies

In Table 4.1, we present the findings from our comparative studies against state-of-the-art physical
adversarial attack methods. Compared to the state-of-the-art methods, our method is significantly better
at generating robust attacks in terms of achieved ASR. In terms of structural similarity, our method stands
out in preserving visual information in the generated image and outperforms the other methods. Our
method learns to generate imperceptible noise signals at locations on the face that are not significant for
identity recognition. BIM [28] iteratively generates perturbations on the input image, hence preserving
visual features to some extent, but the ASR on the generated images is low because of its inability to
model physical perturbations. Attack images generated using EOT, RP2, and D2P have higher ASR
by virtue of their design to address generic physical distortions in their noise modeling. They are
able to generate physically robust attacks as compared to BIM, but these are not specifically physical
perturbations introduced on a face image due to physical transformations like printing or display on a
screen. Our method models this noise and hence is better at modeling.

4.4.3 Effectiveness with Geometric Distortions

In physical presentations, geometric distortions like capturing viewpoint, rotation, scaling, and
perspective changes of the display medium and folding of the printed medium are unavoidable. Being
trained on distortions sampled by Expectation Over Transformation(EOT) [2], our method is robust
to geometric distortions like viewpoint changes, rotation, and brightness. Fig 4.6 demonstrates the
effectiveness of our methods through various geometric distortions.
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(a) Rotation (b) View Point (c) Physical Distortion (d) Brightness

Figure 4.6: Effectiveness of AdvGen after applying geometric distortions. Adversarial image is classified

as real (a) after rotation, (b) changing the viewpoint of the camera, (c) applying physical distortions, like

folding the image, and (d) changing the brightness level of the setup.

4.4.4 Ablation Study

(a) Input Image (b) without
LGAN

(c) without
Lphy

(d) without
Lgeom

(e) without
Lidentity

(f) with all

Figure 4.7: Variants of AdvGen trained without GAN loss, physical perturbation hinge loss, geometric

distortion hinge loss, and identity loss, respectively.

AdvGen is trained using four loss terms, each contributing to one component to be added to the
generated perturbation. To analyze the importance of each module, we train four variants of AdvGen
for comparison by dropping Lphy, Lgeom, Lidentity and LGAN and show results in Fig 4.7. Without
a discriminator, i.e., with LGAN , the visual quality of generated images is affected, and undesirable
artifacts are introduced. Without a physical perturbation hinge Lphy, the generated perturbation is not
robust enough to physical transformation and gets classified as a ”spoof.” Perturbations generated without
being regulated by any geometric distortion Lgeom fail even when even a small geometric distortion is
performed. Without an identity regularizer, though, the generated perturbation is robust for a presentation
attack generator but fails to pass the identity check. The generated perturbation by such a generator
perturbs the identity. We conclude that to generate a perceptually realistic and robust perturbation, every
component is necessary.
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(c) Adversarial Image(b) Perturbation(a) Input Image

Figure 4.8: Visualization of the generated perturbation. (a) shows the input image, which can be live or

spoof, (b) the locations of the input face resulting in perturbation we get from AdvGen , and (c) shows

the final adversarial image.

4.5 Explainability

The primary objective of our perturbation method is to craft a perturbation mask that delicately
preserves the identity of the subject while effectively making the spoofing attempt appear genuine. To
achieve this, we focus on a profound understanding of the facial regions responsible for an individual’s
unique identity. These key identity-bearing regions, including the eyebrows, eyeballs, and nose, remain
largely untouched by our perturbation process. By safeguarding these regions, we ensure that the subject’s
identity remains intact, even as we manipulate other areas to create a convincing presentation attack.

Our approach extends beyond preserving identity; it also strategically targets the areas of the face
where face presentation attack detectors tend to concentrate their scrutiny. These detectors often analyze
low-frequency regions such as the forehead and cheeks to identify patterns indicative of spoofing
attempts. Therefore, our method introduces noise deliberately to these specific facial regions, enhancing
the effectiveness of our attack. The elegance of our approach lies in its ability to identify and perturb
these critical areas of the face, rendering our attack both successful and deceptively authentic.

This research serves as a pivotal step in unraveling the vulnerabilities of state-of-the-art face presen-
tation attack detection models. By shedding light on the significance of low-frequency regions on the
face in the context of face antispoofing, we pave the way for more targeted and robust face presentation
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attack detection models. Future research can place specific emphasis on fortifying these regions against
attacks, ultimately advancing the reliability and security of facial recognition systems. Moreover, our
work underscores the importance of explainability in these models, providing valuable insights into how
they function and how they can be enhanced to address the evolving landscape of face presentation
attacks.

4.6 Conclusion

We develop a physical attack strategy aimed at a Convolutional Neural Network (CNN)-based face
authentication system that attack a robust anti-spoofing module. What sets our study apart is the
formidable challenge we tackle: attacking an anti-spoofing face authentication system in the physical
domain. This endeavor presents unique and intricate difficulties differentiating it from attacking systems
in other application scenarios. Our pioneering framework, which we’ve aptly named AdvGen , represents
a significant leap in adversarial attack research. Its primary function is to generate adversarial images
that impeccably mimic the intricacies of a printing and replay procedure.

Through rigorous experimentation and a series of compelling findings, we provide compelling
evidence that AdvGen is more than just a theoretical concept. It’s a practical solution with real-world
implications. Our method excels at producing synthetic adversarial prints that possess the remarkable
capability to outsmart Presentation Attack Detectors (PADs) and deceive a face recognition system.
What’s truly remarkable is that these adversarial prints, crafted with precision by AdvGen , accomplish
this feat while maintaining the unmistakable identity of the individual in question. In essence, we’re
not merely introducing a new concept; we’re demonstrating its tangible effectiveness in the complex
landscape of facial recognition security.
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Chapter 5

Future Work and Conclusion

In this paper, we have created a physical attack on a CNN-based face authentication system that has
an anti-spoofing module. We demonstrate that attacking an anti-spoofing face authentication system in
the physical domain is more challenging and comes with additional difficulties than attacking systems
in other application scenarios. Our new framework, called AdvPrint, can produce adversarial images
that mimic a printing and replay procedure. Through experimentation, we have demonstrated that
AdvPrintcan generate synthetic adversarial prints that are capable of bypassing the Presentation Attack
Detectors (PADs) and fooling a face recognition system, all while maintaining the subject’s identity.

Focusing on the print and reply attack scenario, we proposed AdvPrint, which generates adversarial
images to fool a face PAD. Below, we list a few points that we would like to pursue in the future:

1. Extending our attack to a scenario in which the attack is carried out by showing a 3D and paper
mask, make-up, mannequin, etc., of the adversarial example to the authentication system.

2. From the defender’s side, future research has to be performed to recover robustness against
anti-spoofing and design new CNN-based face authentication systems capable of working in the
presence of adversarial spoofing attacks.

3. Having demonstrated the threats posed by replay and print attacks exploiting adversarial examples,
we plan to propose a defense for such attacks. We will create a system that would be capable of
working in the presence of such adversarial print and replay images.
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