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Abstract

Two view stereo problem is a subset of multiview stereo problem where only two views or orienta-
tions are available for estimation of depth or disparity. Given the constrained nature of the setup, tradi-
tional algorithms assume either the intrinsic or extrinsic parameters to be available in advance in order
to build the homographies between the views to rectify the images. Stereo rectification allows epipolar
constraint to be enforced such that the corresponding projections of a 3D point could be searched in
one dimension along the epipolar lines. When both calibration matrices are not available, the two view
stereo problem reduces to estimating the fundamental matrix. A condition number which measures the
instability of a function when input conditions change, is high for a fundamental matrix when estimated
using an 8 point algorithm. Deep learning methods have been the sought after solutions to numerous
computer vision problems as the state of the art research have exposed the power in terms of learning
capability of neural networks in general. We explore stereo correspondences in an uncalibrated setting
in general by estimating a depthmap given a pair of unrectified stereo images. An end-to-end solution
is sought after in a setting where the relative depths of pixels with respect to a single view point could
be extracted with the aid of another view. Extending the capabilities of the correlation layer as devised
by the flownet architecture, a modified flownet architecure is designed to regress depthmaps with an
extension of multiscale correlations for handling textureless surfaces and repetitive textured surfaces.
Due to unavailability of dataset for deep learning of unrectified images, a constrained setup of turn table
sequences is constructed for this purpose using Google 3D warehouse models.Following the concepts
of Attention modelling, we implement an architecture for combining correlations computed at multi-
ple resolutions using a simple element-wise multiplication of the correlations to aid the architecture
to resolve correspondences for textureless and repeated textured surfaces. Our experiments show both
qualitative and quantitative improvements of depth maps over the original Flownet architecture and pro-
vide a solution to the unrectified stereo depth estimation which in literature, most algorithms work on
stereo rectified image pairs to compute depthmaps/disparities.
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Chapter 1

Introduction

A visual system is a collection of entities which interpret measurement of light as intensities to infer
spatial and material properties of a scene. Among the various entities, we need Photosensitive sensors (
like sensors, retina, etc ) and computational mechanisms ( like computers, brain, etc ) that make sense
of raw sensor readings. To appreciate the complexity of Vision, it is enlightening to note that around
half of the brain is dedicated to interpretation of visual sensory signals from the retina in our eyes.

The pixel values recorded with a camera are affected by various properties of the scene namely
- geometry of the scene, material properties of the objects in the scene, illumination sources in the
scene, dynamics of the scene with respect to motion etc. Computer vision is the study of the inverse
problem of inferring the above mentioned properties of a scene from 2D images captured by a camera.
Its important to note that when a 2D image is captured by a camera and recorded as pixel values, one
dimension (depth) is lost in the process. One single image could be explained by an infinite no of models
of 3D geometry, Illumination, material properties etc. The inverse problem of inferring such properties
of scene which live in an infinite dimension space from finite dimensional images is truly a Hard if not
impossible without imposing additional constraints on the problem.

Stereo vision is the computational theory for recovering quantitative and reliable information of
a scene based on two of more images of the scene. On of the major applications of this theory is
recovering the 3D structure of the scene which is during image formation. The general pipeline of
any stereo vision algorithm is as follows: 1) Calibration of cameras, 2)Rectification of stereo images,
3) Stereo Correspondence, 4)Triangulation. There are two main approaches to stereo vision namely -
Active and Passive techniques.

Active techniques uses specific patterns to be projected on the object or scene whose 3D structure
is to be reconstructed. The disparity of pixels from the pattern image and the image of the scene illu-
minated under the projected pattern is used as a cue to extract depth information of the pixel in world
coordinates.

Passive techniques addresses the general Stereo vision problem wherein the input is primarily 2D
images. In this case, image features are used as cues to identify correspondences among images and

1



with the help of triangulation the necessary 3D structure is computed. The classic problem of Two-view
stereo is the main subject of this thesis.

Before we delve deep into the problem of Two view stereo, let us examine its applications as Stereo
vision is one of the active research fields in computer vision:-

• Robot Navigation - The robot needs to navigate in complex, dynamic environments which would
require study of relative motion of objects, obstacle avoidance to navigate safely which would re-
quire depth information with respect to the robot. Stereo vision can be used to efficiently estimate
the depth information of objects with respect to the robot.

• Automotive Applications - Using Stereo vision, the depth data estimated of the car’s surround-
ings provide driver assistance. The 3D perception gained through this system could be used to
predict events which can jeopardize the safety of the car.

1.1 Motivation and Objectives

Two view stereo problem is a special case of Multiview stereo problem wherein only two views of the
scene are available to extract the 3D geometry of the scene. In a stereo vision systems, three scenarios
exist with respect to availability of calibration information :-

• Case 1: When the camera projection matrices i.e the intrinsic and extrinsic matrices are known,
the stereo matching is reduced to a 1D search problem owing to epipolar constraint. Epipolar
rectification is a geometric transformation of a pair of images mapping their epipolar lines onto
the scanlines, such that corresponding epipolar lines are on the same row.

• Case 2: In an alternative setup wherein only the intrinsic parameters are known, the problem is
the well known Structure from Motion (SfM) problem. To find correspondence between images,
features such as corner points (edges with gradients in multiple directions) are tracked from one
image to the next. The feature trajectories over time are then used to reconstruct their 3D positions
and the camera’s motion. This process involves computing the Essential matrix which captures
the epipolar constraint among corresponding points in a calibrated setting i.e the intrinsic camera
parameters are already known.

• Case 3: Incase of both Intrinsic and Extrinsic matrices are not available, the problem boils down
to computation of Fundamental matrix. Fundamental matrix is basically a mapping or a transfor-
mation between two camera views. It captures the relation between corresponding points which
is termed as the Epipolar constraint in more general and fundamental sense.

It is important to note that computation of these transformation matrices especially the fundamental ma-
trix becomes hard when only two views of a scene are presented. Consider applying Multiview stereo
(MVS) algorithms to solve the two view stereo problem. MVS algorithms rely on redundancy across
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different views to compensate for finding keypoint correspondences owing to handcrafted feature repre-
sentations. On the other hand, most two view stereo algorithms work on Rectified images. Rectification
in an uncalibrated setting would require computation of fundamental matrix which is guaranteed to be
sub optimal. The sub optimal nature of fundamental matrix will cause faulty correspondences after rec-
tification.
An end-to-end deep learning solution designed to learn feature representations and the fundamental
matrix given many examples of unrectified images is explored in this thesis.

1.2 Contributions

Our main contribution are two fold:-

1. We propose a multi scale fully convolutional CNN using a modified Flownet network to predict
pixel-wise depthmaps given two unrectified images without any calibration information. The
correlations computed at multiple scales are combined using a simple dot product, thus enforcing
attention in a hierarchical manner.

2. Due to unavailability of unrectified stereo image dataset, we have created a Synthetic unrectified
stereo dataset by sampling views of 3D models of everyday objects downloaded from Google
Warehouse. A good combination of non textured and repeated textured objects was compiled and
used for this purpose.
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Chapter 2

Background Theory

2.1 Two-View Geometry

This section describes the geometry of two perspective views, the process of image formation, the
concept of epipolar geometry and finally derives the fundamental matrix for two-view stereo in general.

2.1.1 Projective Geometry Concepts

In this chapter, we use the bold format in the naming convention to denote vectors. Specifically for
2D column vectors we use a bold lower case eg. (a,b,c) and for 3D column vectors, a bold upper case
is used eg. (A,B,C)

Homogeneous representation of Lines: A line in a plane defined by a set of points can have two
representations:

• An equation ax+ by + c = 0 for a set of constants a,b,c.

• A column vector in 3D (a, b, c)T

Interesting thing to note is that there is a one-one correspondence between vectors and lines. Consider
the following case of vectors k(a, b, c)T and (a, b, c)T . They are different vectors lying on the same
line ax + by + c = 0 since (ka)x + (kb)y + kc = 0 i.e k(ax + by + c) = 0 for any k 6= 0. Hence
the vectors (ka, kb, kc)T and (a, b, c)T are equivalent. The vectors with such equivalence are called as
homogeneous vectors.

Homogeneous representation of Points: For a point represented by a ordered pair of real numbers
x = (x, y)T and a line l = (a, b, c)T on a plane, the point x lies on line l iff ax + by + c = 0. It
can also be represented as a dot product (x, y, 1)l= 0, where x is represented as a 3D vector (x, y, 1)T

by appending 1 as a final coordinate. Similar to lines, the point (x, y, 1)T lies on line l iff the point
k(x, y, 1)T = (kx, ky, k)T also lies on line l. Hence, both (x, y, 1) and (kx, ky, k) are associated with
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the same point (x, y) in R2. In general, for a point x = (x1, x2, x3)
T ) to lie on a line l = (a, b, c)T , the

following must be hold true:
xT l = 0 (2.1)

In summary, a point in R2 can be represented as a homogeneous 3-vector (kx, ky, k) or an in-
homogeneous 2-vector (x, y) for any non-zero value of k.

Line joining points: Consider two points x and y represented in homogeneous coordinates. A line l
passes through x and y if the following cross product holds true:

l = x× y (2.2)

To validate the above fact, consider the point x. It lies on line l iff xT l = 0 which in turn means that
xT l = xT (x× y) = 0. Similarly we can show that the line passes through the point y

Cross product as a matrix-vector multiplication: Consider two 3D vectors x = (x1, x2, x3)
T and y.

Let us try to represent the cross product x × y as a multiplication operation of a matrix and a vector .
We do this by expressing an operator that converts a 3D-vector into a matrix of 3× 3 dimensions:

[x]× =

 0 −x3 x2

x3 0 −x1
−x2 x1 0

 (2.3)

and hence the cross product can be given by :

x× y = [x]×y (2.4)

Central Projection: Consider a 3 × 4 matrix P. We define a linear mapping from homogeneous 4D-
vectors to homogeneous 3D-vectors as p(X) = PX . The matrix P is known as the projection matrix.

2.1.2 Basic Pinhole Camera

A mathematical representation to the basic camera model has the following assumptions:

• The pinhole model (fig 2.1) of cameras should follow the rules of the central projection defined
in the previous section.

• The image plane is denoted by Z = f where f is the focal length of the camera .The center of
projection is at C = (0, 0, 0)T which is called the camera center or optical center.

• principal axis is defined as the line which is perpendicular to the image plane Z = f and passes
through the optical center. The principal point is the intersection of the image plane Z = f and
the principal axis.
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Figure 2.1 Pinhole camera and the pinhole camera model. The image plane is in the front of the camera
center.

Under the central projection, a point X = (X,Y, Z) is mapped to the intersection of the line the line
joining C and X and the image plane. Using similar triangles let us establish the mapping of 3D scene
points to 2D image points.(figure 2.2):

(X,Y, Z)T 7−→ (f(X/Z), f(Y/Z))T (2.5)

For mathematical convenience, we have assumed that the image plane lies in front of camera center.

Figure 2.2 A depiction of projection using similar triangles

Central Projection Using Homogeneous Coordinates

Central projection can be used to represent world and image points using homogeneous coordinates
using the Equation 2.5 .
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
X

Y

Z

1

 7−→
fX

fY
Z

 =

 f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

1

 (2.6)

The 3 × 4 projection matrix in Equation 2.6 can be broken down into product of two matrices: a
diagonal matrix diag(f, f, 1) of dimension 3 × 3 and [I|0] is a 3 × 4 matrix composed of an identity
matrix of dimension 3 × 3 and a zero vector of dimension 3 × 1. For a world point X = (X,Y, Z, 1)

represented as a homogeneous 4-vector and an image point x represented as a homogeneous 3-vector,
the central projection under the basic pinhole model can be written as

x = diag(f, f, 1)[I|0]X (2.7)

Principal Point Offset

Origin of image is generally represented as the bottom left corner. In order to shift the origin from
the principal point we follow the Equation 2.5:

(X,Y, Z)T 7−→ (f(X/Z) + px, f(Y/Z) + py)
T (2.8)

where (px, py) is the new origin of the image plane.
To represent it as a central projection using homogeneous coordinates:

X

Y

Z

1

 7−→
fX + Zpx

fY + Zpy

Z

 =

 f 0 px 0

0 f py 0

0 0 1 0



X

Y

Z

1

 (2.9)

Post the offset introduced to the principal point, the projection becomes P = K[I|0], where the 3×3

matrix K defined as ,

K =

 f 0 px

0 f py

0 0 1

 (2.10)

K is known as the camera calibration matrix,
As a result the pinhole model is, therefore, defined as, x = K[I|0]X.

Camera rotation and translation

The camera coordinate frame is assumed to have the camera/imaging device at origin of the Eu-
clidean coordinate system along the z-axis. This assumption does not hold good for the points in the
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world coordinate frame. The relation between the two coordinate frames are described by a rotation and
a translation operation:

X̃cam = R(X̃− C̃) (2.11)

where X̃ is a point in the world coordinate frame, X̃cam is the corresponding point in the camera coordi-
nate frame, R is a 3× 3 rotation matrix capturing the orientation of the camera with respect to the world
coordinate frame and camera center in the world coordinate frame is represented by C̃. The tilde sign
indicates that the vectors X̃, X̃cam, C̃ are represented as in-homogeneous 3D-vectors. Equation 2.11
when written in homogeneous coordinates becomes:

Xcam =

[
R −RC̃
0 1

]
X, (2.12)

and the projection is defined as:

x = K[I|0]Xcam = KR[I| − C̃]X. (2.13)

The parameters R and C̃ represent the orientation and position of the camera relative to the world
coordinate system. The three parameters in the matrix are the internal camera parameters while R and
C̃ are known as external camera parameters.

Digital Camera

The rectangular and in some cases square pixels that exist in a Digital camera requires us to change
our model for representation. Let mx and my be the number of pixels per unit distance in the x and
y direction, respectively. To handle the uneven pixel scales, matrix K, defined in Equation 2.10, is
modified as :

K =

αx 0 x0

0 αy y0

0 0 1

 (2.14)

where αx = fmx and αy = fmy represent the focal lengths of the digital camera in pixels. Likewise,
x0 = mxpx and y0 = mypy represent the camera center in pixels.

Summary

From the previous sections we can see that given a world point represented as a homogeneous 4-
vector X be and an image point x represented as a homogeneous 3-vector, and a 3× 4 projection matrix
P the process of image formation, can be defined mapping:
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Figure 2.3 Epipolar geometry: Camera centers C and C’, the point X and its projections x and x’ lie on
the same plane, called the Epipolar plane

x = PX = KR[I|C̃]X =

αx 0 x0

0 αy y0

0 0 1

R[I| − C̃]X (2.15)

.

2.1.3 Epipolar Geometry

The epipolar geometry is the projective geometry between two views and depending only on the
camera’s intrinsic parameters and their relative position and orientation. Epipolar geometry is critical
in solving the stereo correspondence problem, as it the search for correspondences is limited to a one
dimensional search along a line.

Consider a two camera system with camera centers C and C′, observing a scene point X. Let x and x′

be the projections of the point X on the image planes in the first camera and second camera respectively.
Let us examine the relation between x and x′.

As shown in Figure 2.3, the epipolar plane is the plane where all the points—the camera centers C
and C′, the scene point X and its two images x and x′ lie on . The points e on the left and e′ on the right
image plane are known as the epipoles which are intersections of the baseline with the image planes.
The point x′ is, constrained to lie on the intersection of the epipolar plane and the image plane called the
epipolar line. Assuming Intrinsic and extrinsic parameters are known, given a point x in the first image
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Figure 2.4 Epipolar Constraint: The epiploar line in the second view l’ is defined as the intersection of
the second image plane and the epipolar plane which is defined by x. This figure illustrates that given a
point x in first image, its corresponding x’ has to lie on the epipolar line l’

we wish to find its corresponding point x′ in the second image. We have already seen that point x′ is
constrained to lie on the epipolar line l′ which has a dependency only on the point x in the first image.

The figure 2.4 shows the epiplolar constraint more clearly. Given an image point x, the world point
X is constrained to lie on the line passing through C and x. If we project points from the line onto the
second image plane, we can see that all lie on the epipolar line l′.

2.1.4 Fundamental Matrix

Fundamental matrix is a projection matrix that describes the mapping from image points to the
epipolar lines. Consider the following two points: (a) C , the first camera center, and (b) P+x, where x
is a point on the image plane of the first camera, P is the projection matrix of the first camera, and P+

is pseudo-inverse, PP+ = I . Both points lie on the line that passes through C and x: The first point,
C, by definition; and the second, P+x, as it is a projection to the point x, i.e, PP+x = x.

According to the epipolar geometry, the projections of the two points in the second view lie on the
epipolar line l′. Let P ′ be the projection matrix of the second camera, then the two points are projected
in the second view as P ′C and P ′P+x. Note that P ′C is equal to e′ is the epipole as it is the image of
the camera center in first image in the second view. The epipolar line l′ is defined as

l′ = (P ′C)× (P ′P+x) = e′ × (P ′P+x) (2.16)
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From Equation 2.2, we have seen that the line l joining points x and y is represented as the cross
product l = x× y. Equation 2.16 can be modified as a single matrix-vector multiplication by expanding
the epipole e′ into the 3× 3 matrix [e′]× (see Equation 2.4). Hence, we derive l′ = [e′]×P ′P+x or

l′ = Fx, (2.17)

where F = [e′]×P ′P+ is the fundamental matrix- the 3×3 matrix that maps points to epipolar lines.

The fundamental matrix is homogeneous:

F ∼ kF for k 6= 0 (2.18)

That is, F and kF are equivalent; as mapping from points to lines produced by them is the same. This
is true because Fx = l′ , kFx = kl′, and since lines are represented as homogeneous 3D-vectors, lines
l′ and kl′ represent the same line.

Correspondence condition

According to epipolar geometry, since point x′ lies on the epipolar line l′ = Fx, and from Equation
2.1 we see that

x′TFx = 0 (2.19)

i.e, points x and x′ correlated iff x′TFx = 0 . Equation 2.20 enables computation of Fundamental
matrix from image correspondences alone as it defines the fundamental matrix in terms of point corre-
spondences, without reference to the camera projection matrices P and P ′.

Fundamental matrix for a Calibrated Camera stereo rig

Consider two camera system with the projection matrices: P = K[I|0] and P ′ = K ′[R|t]; such that
the first camera is located at world origin with its principal axis being the z-axis. The camera C and the
pseudo-inverse of the projection matrix P+ are defined as

C =

(
0
1

)
and P+ =

[
K−1

0T

]
(2.20)

The fundamental matrix F can be defined in terms of intrinsic parameters and its relative position
and orientation as

F = [e’]×P ′P+ = [P ′C]×P
′P+ = [K ′t]×K ′RK−1 (2.21)
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Fundamental Matrix for a Parallel Camera Stereo Rig

Consider a stereo rig system consisting of two cameras having the following configuration:

• identical intrinsic parameters, K ′ = K = diag(f, f, 1)

• both cameras aligned to the z-axis, R = I , and

• camera centers differ only in the x-coordinate, that is, t = (tx, 0, 0)
T .

Following from Equation 2.18, The fundamental matrix F in this setting can be defined as,

F = [K ′t]×K ′RK−1 = [Kt]×KIK−1 = [Kf]× =

ftx0
0



=

0 0 0

0 0 −ftx
0 ftx 0

 ∼
0 0 0

0 0 −1
0 1 0


(2.22)

Let us examine how the fundamental matrix imposes restriction on search of corresponding points
in both images. Expanding Equation 2.20.

x′TFx = 0

(
x′ y′ 1

)0 0 0

0 0 −1
0 1 0


xy
1

 = 0

− y′ + y = 0

y = y′

(2.23)

if points x = (x, y)T and x’ = (x′, y′)T are corresponding points, it results in y = y′, or, in other
words, the epipolar line of x = (x, y)T becomes the horizontal line y = y′. Aligning of epipolar lines
simplifies the computation of stereo correspondences as the search is restricted to horizontal lines. Since
constructing a perfect parallel rig is nearly impossible in practice, we can transform the two views in a
process known as Image rectification.

Image Rectification is a transformation process used to project images onto a common image plane
by resampling stereo pairs to ensure epipolar lines are parallel to baseline and corresponding points have
the same y-coordinates. As a result of rectification process, the epipolar geometry is the identical to if
the images were taken from a perfectly parallel stereo rig.

2.2 Deep Learning - Artificial Neural Networks

Biological processes in the brain are powered by billions of neural cells, connected via a) axons and
dendrons which conduct electrical impulses away and from from nerve cells, and b) synapses which are
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structures that allow transfer of electrical impulses across neurons (nerve cells). They form a huge com-
plex communication network which involves complex activation patterns enabling the brain as whole
to interpret and extract useful information from the sensory organs. Artificial neural networks are in-
spired by the biological processes with an aim to interpret and extract information from digital/analog
representations of the natural world in terms of sound signals, light waves, digital images etc.

A general mathematical model for an artificial neural network is represented by a neuron with n
inputs xi ∈ R with weights wi and bias b which is help in fitting the model to the data. All the
weighted inputs are added and fed through activation function ϕwhich is generally a non-linear function
producing output o.

o = ϕ

( n∑
i=1

wixi + b

)
(2.24)

Activation functions: These are transformation functions which help in building complex functions
to capture the complex functions present in input data to infer useful information. Typically a multi-
layer artificial neural network uses a non-linear activation function ϕ between consecutive layers. The
following are most commonly used activation functions in deep learning.

sig(x) =
1

1− e−t
: Range : (0, 1)

relu(x) = x+ = max(x, 0) : Range : (0, inf)

tanh(x) =
ex + e−x

ex − e−x
: Range : (−1, 1)

(2.25)

Training: The goal of developing an artificial neural network is to enable it to learn patterns that
can map input sources of information to the desired information as output. The weights of each layers
have to be chosen such that for a given set of inputs, the desired output is achieved when passed through
the neural network. A lossfunction enables this process by measuring how much deviation is present
between the predicted output and the desired output thereby the network weights could be adjusted
accordingly. Hence the training process is defined as a mechanism where for a neural network initialised
with weights, the loss value between predicted and desired output is minimized. This is achieved using
the classical gradient decent algorithms which uses the gradient of the loss function with respect to all
the weights in the network to adjust the weights of the layers.

Let W be the set of all weights in the network and l(oW (xi), ti) be the loss for the given data point
(xi, ti) with the data set be defined by D = (wi, ti), The objective function is given by

L(W,D) =
∑

(xi,ti)∈D

l(oW (xi), ti) (2.26)

To determine the ideal/optimal weights :

Wopt = argmin
w
L(W,D) (2.27)
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The gradient from each layer is analytically determined using chain rule and propagated to earlier layers
starting from the loss layer. This process is called back propagation.

Convolutional Neural Networks : Most of the data available are present in a grid-like format where
the global position in relation to the entire data and local position in relation to its immediate neighbors
are interpretable patterns having useful information. They are an essential representation of context in
both global and local scale useful to analyze the data in the most optimal way possible.

One such patterns widely observed in real - world images specifically is the dependence of neigh-
boring pixels values, i.e in most cases, they are likely to have similar intensities . This greatly reduces
the number image patches to generalize over when trying to interpret an image as a whole. Certain local
structures such as edges and corners are patterns that could be found anywhere in the images. This can
be taken as an advantage as opposed to learning such appearances at every location independently.

Convolutional neural networks are designed to process such grid-like structures to take advantage of
the aforementioned patterns ubiquitous in real world grid sources like images.

2.2.1 Convolutional layer

Convolution of functions in the context of a neural network are defined as for any input function
x : < → < and weights represented by w : < → < as a discrete convolution :

(x ∗ w)(t) =
∑
a

xawt−a (2.28)

In general, convolutions for a matrix representing an input image, have to be carried out on multiple
axes at the same time. For an image I and weights K represented by matrices , the discrete convolution
is defined as

(I ∗K)(i, j) =
∑
m

∑
n

I[m,n]K[i−m, j − n] (2.29)

where I[m,n] denotes the element in the m-th row and n-th column of matrix I .

A fully-connected layer (figure 2.5) in a neural network connects all input neurons to all of the output
neurons of the previous layer. The number of connections grows significantly with size of layer as in the
number of neurons per layer. For example, for a 1000× 1000 colored image, there are 3 million pixels
or input values. A fully-connected layer with 1000 neurons leaves us with around 3 billion weights
to be learnt for a single layer only. A convolutional layer restrict such connections to a local spatial
neighborhood thereby reducing the number of connections drastically. Also, the neurons share their
weights which is similar to applying the same neuron at all different locations.

In general, a convolutional neural network consists of a convolution layer followed by a non-linear
activation function, typically the rectified linear unit (ReLU).
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Figure 2.5 Fully connected layer vs Convolutional layer: Here we see that as every input node is con-
nected to every other output node as opposed to a convolutional layer where the weights are shared
between two output nodes in this case.

2.2.2 Pooling layer and Sub-sampling layer

In order to further extend the dependency range of neurons between layers as just using convolutional
layers would require us to define an extremely deep network, striding and pooling layers are used.

A pooling layer is designed to compute an aggregation of input values at and nearby locations of
the input data point. Let z and a denote 3D matrices representing the input and output, with the first
dimension representing the feature map and the last two dimensions representing the spatial location. A
max pooling layer with a window size of d is defined as

a[j, k, l] = max{z[j, k +m, l + n]] : m,n ∈ {0, ..., d− 1}}. (2.30)

The max pooling layer j-th feature map at location (k, l) essentially computes the maximum value
in a d× d spatial window of the j-th input feature map with its upper left corner at (k, l) .

Similarly, an average pooling function computes the average value instead of the maximum value in
the specified spatial window:

a[j, k, l] =
1

j

∑
m,n∈(0,d−1)

{z[j, k +m, l + n]] (2.31)

Also, there a possibility to replace the max function in Equation 2.30 with other summary statistics,
such as an L2 norm, or a weighted average based on the distance from the central pixel.

The invariance to the exact location of the feature as opposed to existence of a feature is imposed
by the use of pooling layer wherein small changes in the input do not affect the output until the desired
feature is captured in the max pool function.
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After the max pooling operation described in 2.30 many neighbouring units will have the same value,
due to the nature of the max function. To remove this redundancy, a sub-sampling usually follows. The
output of the sub-sampling layer with stride s is defined as

a[j, k, l] = z[j, sk, sl] (2.32)

where z and a are three-dimensional tensors of inputs and outputs. The sub-sampling layer keeps the
s-th value and discards the rest. The width and height of output sensor a are s-times smaller than that
of the input tensor z, and, because of this reduction in spatial resolution, sub-sampling also improves
computational efficiency.
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Chapter 3

Literature Survey

The goal of an image-based 3D reconstruction algorithm can be described as ”given a set of pho-
tographs of an object or a scene, estimate the most likely 3D shape that explains those photographs, un-
der the assumptions of known materials, viewpoints, and lighting conditions”. The definition highlights
the difficulty of the task, namely the assumption that materials, viewpoints, and lighting are known.
If these are not known, the problem is generally ill-posed since multiple combinations of geometry,
materials, viewpoints, and lighting can produce exactly the same photographs.

Any vision algorithm, explicitly or implicitly, makes assumptions about the physical world and the
image formation process. It could fall in any of the following:

• Surface Assumptions: Assumptions on modelling the appearance of surfaces as imaged by imag-
ing devices- The most common assumption is the Lambertian Surface assumption, surfaces whose
appearances do not vary with the viewpoint. In effect, a point rotated around its normal vector
will not change the way it reflects light. Specular reflection, in which the luminance is the max
when observer is situated at at the perfect reflection direction and falls off sharply when moved
away, is particularly omitted in such cases.

• Scene geometry and visual appearance of objects: Starting from the fact that the physical world
consists of piecewise-smooth surfaces, algorithms have built-in smoothness assumptions (often
implicit) without which the correspondence problem would be underconstrained and ill-posed.

• Camera Calibration and epipolar geometry: Most of the algorithms assume a setup of stereo
rectified images with calibration information available as input.

In a stereo vision system, when the cameras are calibrated, i.e the intrinsic and extrinsic matrices are
known, the images can be rectified and computing correspondences under the epipolar geometry con-
straint becomes a 1-D search problem. In an alternative setup wherein only the intrinsic parameters are
known, the problem is posed as Structure from Motion problem (SfM) which is a well researched area
in 3D computer vision. Incase of both intrinsic and extrinsic parameters being unknown, the problem is
of Fundamental matrix computation, which is a challenging problem in computer vision. It is important
to note that all these problems become hard when only two-views of the scene are available.
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Figure 3.1 3D reconstruction from 2D images

3.1 Stereo Algorithms

The stereo-based depth reconstruction process can be formulated as the problem of estimating a map
D (D can be a depth/disparity map, or an optical flow) which minimizes an energy function of the form:

E(D) =
∑
x

C(x, dx) +
∑
x

∑
y∈Nx

Es(dx, dy) (3.1)

Here, x and y are image pixels, dx = D(x) is the depth / disparity at x, C is a 3D cost volume
where C(x, dx) is the cost of pixel x having depth or disparity equal to dx, Nx is the set of pixels that
are within the neighborhood of x, and Es is a regularization term, which is used to impose various
constraints, e.g., smoothness and left-right depth/disparity consistency, to the final solution. The first
term of Equation 3.1 is the matching cost. In the case of rectified stereo pairs, it measures the cost of
matching the pixel x = (i, j) of the left image with the pixel y = (i, j − dx) of the right image. In
the more general multiview stereo case, it measures the inverse likelihood of x on the reference image
having depth dx.

In general, this problem is composed of four building blocks as explained in [25]: (a) feature extrac-
tion, (b) matching cost calculation and aggregation, (c) disparity/depth calculation, and (d) disparity /
depth refinement. The first two blocks construct the cost value C. The third and fourth blocks define
the regularization term and find the depth/disparity map D that minimizes the energy function E(D) in
the Equation 3.1.

As explained in the introduction, let us familiarize with some of the important contributions towards
Stereo Computer Vision with a focus on Depth Estimation.
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3.2 Deep Learning based Stereo Algorithms

3.2.1 Stereo Matching : Early approaches

Early on, the approaches focused their attention on using deep learning to replace hand crafted feature
extractions mechanisms and similarity computations for finding correspondences. The feature extraction
module typically was implemented as a multi-branch network, with shared weights for each of the views.

The feature matching pipelines tasked to compare/match at feature level has been proposed in the
following ways:

• a fixed correlation layer (implemented as a convolutional layer) [34], [22],

• fully connected neural network [35], [27], [9], [33], which takes as input the concatenated features
of the patches from the left and right images and produces a matching score.

• convolutional networks composed of convolutional layers followed by ReLU

The standard convolutional layers were implemented in feature extraction by Zbontar et al. [34],
[35] and Han et al. [9] while residual blocks with multilevel weighted connections were used to aid
training of deep networks. Chen et al. [2] use extract features at multiple scales, two of different sizes
and produce matching scores which are then combined using voting. They share the similarities with the
central-surround dual stream network by [33] with a difference that instead of voting, a top level fusion
fusion network is used for similarity computation. To enable patches of arbitrary sizes be compared,
Zagoruyko and Komodakis [33] implement a spatial pyramid pooling layer is implemented at the end
of each of the feature computation layers.

Inference of raw cost from a pair of stereo images with the approaches mentioned above would
involve a sliding window approach for matching and hence require a number of forward passes. Since
correlations are parallelizable the number of forward passes can be drastically reduced. Luo et al. [22]
propose a siamese network composed of tow branches, one focusing on a smaller patch around a pixel
while the other explores a larger patch for larger context. A number of works for eg. [27], [32], [16],
[37], [12], [15], [36], have proposed to compute features of both the stereo images in a single forward
pass however due to high memory requirements by the networks, the images are processed at a lower
resolution.

The approaches listed in this section till now produce matching scores that can be aggregated into a
cost which corresponds to the data term in the equation 3.1. However, they rely extensively on hand-
crafted post processing schemes which are not jointly trained with as part of the feature extraction and
matching process to refine the disparity/depth estimates. [35], [22], [2], [26].

3.2.2 Stereo Matching : End-end approaches

The next generation of stereo matching algorithms have proposed to solve the stereo correspondence
problem as an end-end pipeline. Knbelreiter et al ?? proposed a hybrid CNN-CRF where CNN part
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computes the matching term of Equation 3.1 which then becomes the unary term of a CRF module which
performs the regularization. CNN-CRF pipeline is trained end-end has shown competitive performance
using less parameters.

Others papers [4], [23],[27], [32], [16], [37], [11], [15], [36] implement the entire pipeline using con-
volutional networks. In these approaches, the matching cost is computed in a single forward pass, with
a high memory footprint. To reduce the memory footprint, some methods such as [4], [23] compute the
raw cost at a lower resolution whole some methods, e.g., [27], [1], [37], [15], omit the matching module
entirely with the left-right concatenated features fed directly to the regularization to predict depth. On
the other hand Tulyakov et al. [29] introduced a matching module that consumes less memory , with-
out sacrificing accuracy, which compresses the concatenated features into compact matching signatures.
Mean pooling instead of concatenation of features is used in this approach thereby reducing the memory
footprint incurred by previous methods.

The regularization module proposed by the various algorithms either takes as input the cost and
concatenated features separately or with cost volume concatenated with the desired view image [4]
along with its features [4] or either semantic features like a segmentation mask [32] or an edge map The
regularization module takes the cost volume, the concatenated features, or the cost volume concatenated
with the reference image [4], with the features of the reference image [4], [19], and/or with semantic
features such as the segmentation mask [32] or the edge map [28] by using them as semantic priors. It
then regularizes it and outputs either a depth/disparity map [4], [23], [24], [19], [28] or a distribution
over depth/disparities [1], [37], [14], [15].

The regularization module is usually implemented as convolution-deconvolution (hourglass) as an
encoder-decoder network fashion with skip connections between the contracting and expanding parts
[4], [23], [24], [19], [1], [37], [15], or as a convolutional network [7], [16]. It can use 2D convolu-
tions [4], [23], [24], [19] or 3D convolutions [1], [37], [14], [15]. Depth can be computed from the
regularized cost volume using (1) the softargmin operator [7], [16], [15], [36], which is differentiable
and allows sub-pixel accuracy but limited to network outputs that are unimodal, or (2) sub-pixel MAP
approximation [29], which can handle multi-modal distributions.

3.2.3 Depth estimation by regression

There exists other class of methods that instead of computing each of the components of stereo
matching problem separately, directly try to regress disparity/depth maps from input images with no no-
tion of feature matching but rather learning a view-based representation for depth/disparity estimation.
[4], [23], [30], [8].

A latent representation computed by an encoder network is decoded into a coarse depth map either
using a series of fully-connected layers [18], [20], [6], [31], or upconvolutional layers [5], [23], [38],
[8], [17].

Dosovitskiy et al. [4] extended the approach of Eigen et al. [6] by passing the feature map into a
decoder network composed of up convolutional layers to regress optical flow in case of FlowNetSimple
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of [4], and a depth map in the case of [5]. Dosovitskiy et al. [4] use variational refinement to refine the
coarse optical flow.

FlowNetSimple of [4] has been later extended by Ilg et al. [13] to FlowNet2.0, with the idea to
combine multiple FLowNetSimple networks to compute large displacement optical flow.
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Chapter 4

Unrcalibrated Two view Stereo

4.1 Stereo problem in an unconstrained setting

Consider a two view stereo problem with absence of any calibration information. As a result, rec-
tification of these pairs is considerably harder problem to solve, which would require computation of
fundamental matrix, a homography constrained on the epipolar geometry of the system.

Figure 4.1 Example of ‘unrectified’ stereo images. The goal is from images which are turn table se-
quences with arbitrary rotation angle≤ 15◦ , and we try to predict the depth map with respect to the left
view.

• Consider a sub problem to Unrectified stereo images, images of turntable sequences, where an
object is placed and our stereo images are rotations about the axis passing through their center.

• The idea is to regress depth map with respect to one view given two images of turn table se-
quences.

• Specifically, we are trying to see how correspondences can be established for textureless and
repeated textured surfaces.
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Figure 4.2 Stereo rectification: It is a process of transforming a stereo system in such a way that all
the epipolar lines are parallel to the baseline of the camera system and all corresponding points have
disparity only in the horizontal direction.

4.1.1 Stereo rectification

Image Rectification (fig 4.2) is a transformation process used to project images onto a common image
plane. This process has several degrees of freedom and there are many strategies for transforming
images to the common plane.The precise 3D reconstruction task requires an accurate dense disparity
map, which is obtained by image registration algorithms. By estimating the epipolar geometry between
two images and performing stereo-rectification, the search domain for registration algorithms is reduced
and the comparison simplified, because horizontal lines with the same y component in both images are
in one to one correspondence. Stereo-rectification methods simulate rotations of the cameras to generate
two coplanar image planes that are in addition parallel to the baseline.

4.2 Estimation of Epipolar geometry

Two perspective images of a single rigid object/scene are related by the so-called epipolar geometry,
which can be described by a 3 × 3 singular matrix. If the internal (intrinsic) parameters of the images
(e.g., the focal length, the coordinates of the principal point, etc) are known, we can work with the
normalized image coordinates, and the matrix is known as the essential matrix; otherwise, we have to
work with the pixel image coordinates, and the matrix is known as the fundamental matrix. In order
to successfully exploit the benefits of stereo cameras, one needs to estimate the fundamental matrix
accurately from the noisy matching point correspondences in the stereo image pair. Thus, the obtained
fundamental matrix can be successfully used to reproduce 3D reconstruction of the scene for further
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Photometric Variations

Reflections Repeated Textures

Sensor noises Textureless Surfaces

Table 4.1 Here we can see the various challenging situations for a stereo vision algorithm to extract
correspondences.

analysis, such as determining the distance to other objects ahead of the autonomous vehicle, buildings
or obstacles ahead, traffic lights, poles, and pedestrians. However, noises in the images captured by
these stereo cameras are inevitable due to

1. Unpredictable disturbances in the camera system. For example, an intelligent vehicle might be
running through a rough terrain or the stereo cameras might be affected due to the presence of dust,
rain, fog, irregular illumination, reflectance, occlusion, and other surrounding electromechanical
or electromagnetic interferences.

2. Instances like inconsistent feature extraction, depth discontinuities or cyclic patterns.

Table 4.1 shows some of the challenging situations for a stereo vision algorithm to extract corre-
sponding points in stereo images.

The eight-point algorithm is an algorithm used in computer vision to estimate the essential matrix
or the fundamental matrix related to a stereo camera pair from a set of corresponding image points. It
was introduced by Christopher Longuet-Higgins in 1981 for the case of the essential matrix. In theory,
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Stereo Images Variable window sizes (W = 3, W = 20)

Table 4.2 Effects of Window sizes: Smaller window size results in detailed yet noisy disparity maps,
while larger window size results in smoother yet low detailed disparity maps.

this algorithm can be used also for the fundamental matrix, but in practice the normalized eight-point
algorithm. Let us examine the stability of Fundamental matrix estimated by 8 point algorithm which
gives us a sense of how ill-posed the stereo correspondence problem becomes when both extrinsic and
intrinsic parameters are not known in advance.

4.3 Stability of Fundamental matrix using the 8 point algorithm

The mapping of epipolar lines l from image 1 to the corresponding epipolar lines l′ in image 2 is
a collineation defined on the 1D pencil of lines through e in image 1. Let A be one such collineation:
l′ = Al

The epipolar constraint enforced by image rectification can be seen in terms of fundamental matrix
as though for points m and m′ being corresponding points only if m′ lies on the epipolar line

l′ = Fm (4.1)

and hence
m′T l′ = 0 (4.2)

The epipolar constraint can therefore be written as:

m′TFm = 0 (4.3)

It is evident from equation 4.3 that every pair of corresponding points between the stereo images
enforces a linear constraint on F . Hence, the fundamental matrix F can be estimated from 8 independent
matching points upto to an arbitrary scale factor. However, only seven degrees of freedom namely two
from C (the epipoles ) and 5 from the matrix A. Algebraically a 3 × 3 matrix F has a total of 9
linear coefficients mod one for overall scale factor. However the additional constraint from rank 2
condition det (F ) = 0 is also present. Hence, the fundamental matrix F can be computed from only 7
correspondences in general in addition tot the rank constraint.
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Let us assume that some correspondences have already been established m ↔ m′ between the
images. As discussed above, each correspondence match enforces a linear constraint on the coefficients
of F : m′TFm = 0.

xx′f11 + xy′f12 + xf13 + yx′f21 + yy′f22 + yf23 + x′f31 + y′f32 + f33 = 0 (4.4)

where (x, y, 1)′ and (x′, y′, 1)′are the coordinates of m and m′ respectively. We obtain a linear
system on combination of these constraints/equations which can be expressed as Af = 0, where f is
a vector that contains the 9 coefficients of F , and each row of A denotes the constraints enforced by
the coordinates m and m′ of a single match. Since the fundamental matrix F is defined only up to a
arbitrary scale factor, the solution has to be restricted to a unit norm. Since more than 8 corresponding
points can be extracted, a least square solution is a good option in this situation as most of the them are
noisy matches.

min
‖f‖=1

‖Af‖2 (4.5)

The above equation in which ‖Af‖2 = fTATAf translates to estimating the eigenvector corre-
sponding the least eigenvalue of a symmetric positive semidefinite matrixATA. Since rank constraint is
not enforced in the above formulation, the solution F has to be projected to a rank 2 subspace by using
the Singular value decomposition of F and setting the least singlular value to zero.

F = QDR (4.6)

where Q and R are orthogonal while D is diagonal.
The stability of the 8-point algorithm can be estimated by examining the condition number k of the

symmetric positive semidefinite normal matrixATA, which typically measures how sensitive a matrix is
to noise. The condition number k is obtained by examining the ratio of the largest diagonal element with
the smallest after taking SVD. A large value of the condition number will indicate numerical instability
while smaller number indicates far less instability. It turns out that the k of ATA is very large.

Consider a typical coordinate pixel on the order of U = (1001001). Every row in the matrix A will
be in the order rT = (104104102104104102102102100) and hence the diagonal elements of the matrix
ATAwill be in the range of This means that every row of theAmatrix will be on the(108108104108108104104104100).

Consider a matrix Xr constructed by the last
The actual value for k can be bounded in the following way. Define Xr as the matrix that is last

r rows and columns of ATA, and λi(Xr) is the ith largest eigenvalue of that matrix. In this notation,
k = λ1(X9)/λ8(X9). Now, according to the interlacing principle of matrices, we know that

λ8(X9) ≤ λ7(X8) ≤ ... ≤ λ1(X2) (4.7)

Since sum of the two eigenvectors λ1(X2) and λ2(X2) is equal to the net sum of diagonal elements
of of X2, which amounts to 104. Hence, λ8(X9) ≤ 104. Also according to the interlacing principle,
λ1(X9) is larger than the largest diagonal element of X9, so λ1(X9) ≥ 108. Therefore, k ≥ 104, and in
general will be significantly larger.
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If the condition number is not too much larger than one, the matrix is well conditioned which means
its inverse can be computed with good accuracy. If the condition number is very large, then the matrix
is said to be ill-conditioned. Practically, such a matrix is almost singular, and the computation of its
inverse, or solution of a linear system of equations is prone to large numerical errors. A matrix that is
not invertible has condition number equal to infinity.

4.4 Complexity of Uncalibrated Two view stereo

We assume that a pair of 2D images of a 3D object or environment are taken from two distinct
viewpoints and their epipolar geometry has been determined. Corresponding points between the two
images must satisfy the epipolar constraint. For a given point in one image, we have to search for its
correspondence in the other image along an epipolar line. In general, epipolar lines are not aligned with
coordinate axis and are not parallel. Such searches are time consuming since we must compare pixels
on skew lines in image space.

The pixels corresponding to point features from a rectified image pair will lie on the same horizontal
scan-line and differ only in horizontal displacement. This horizontal displacement, or disparity between
rectified feature points is related to the depth of the feature. This means that rectification can be used
to recover 3D structure from an image pair without appealing to 3D geometry notions like cameras.
Stereo-rectification methods simulate rotations of the cameras to generate two coplanar image planes
that are in addition parallel to the baseline. From the algebraic viewpoint, the rectification is achieved by
applying 2D projective transformations (or homographies) on both images. This pair of homographies
is not unique, because a pair of stereo-rectified images remains stereo-rectified under a common rotation
of both cameras around the baseline. This remaining degree of freedom can introduce an undesirable
distortion to the rectified images.

In an uncaliberated setting, we no longer know the camera calibration parameters associated with the
image pair and hence we can no longer easily find the epipolar lines. By using a set of non-degenerate
correspondences, the Fundamental matrix which is a mapping or homography between the images can
be estimated.

4.5 Deep Learning solution

Convolutional neural networks have become ubiquitous solution and in some cases the ”go-to” so-
lutions to large number of problems in computer vision. They initially were tasked to interpret low
dimension information such as classification labels in case of a Image classification problem or a digit
classification problem or regression of single values.

While many tasks would require estimation of higher dimension information output from images
such computing a segmentation mask of equal size as that of the input image essentially estimating
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the class label for each pixel. Other examples would be problems of multi-label classification, multi-
instance object detection, depth map estimation, optical flow computation, normal map computation.

A basic approach for a convolutional network with the same input and output size is to have a
sequence of similar convolutional layers with padding but without stride and pooling. The thing to note
here is that the spatial size of the features remains the same throughout while the size of features or the
number of channels would differ. Considering the flow of information in the network, we can see that
the information propagates rather slowly along the spatial dimensions. A dependency on two pixels on
either side of the image would require a deep layers to establish relationship.

On the other hand, Pooling and striding can be used to infer global information across the whole
input image but at the cost of feature representation that are spatially smaller in size and hence details are
prone to loss. (Ciresan et al.[3]) propose a network with pooling where for a small patch of input image,
a single output describing the segmentation value for the center pixel is returned. When implemented in
a sliding window fashion, one can obtain the output for every pixel except for boundary regions. For a
continuous convolutional network with pooling this is suboptimal and not desirable. Also, a tradeoff is
also present between choosing the size of input patch versus localization accuracy. (Hariharan et al.[10])
approached the problem in a different way. A hypercolumn consisting of low-level information and high
level context at precise pixel location is extracted which contains the outputs across all layers stacked
into a single vector. Layers with lower resolution are bilinearly upsampled to the same resolution prior to
extraction. A basic classifier or another convolutional network is then used to process the hypercolumn
features for classification of the input pixel. Another interesting approach is presented in (Long et al.,
[21]) where the authors define a skip architecture that connects lower network layers to higher layers to
combine fine and coarse information.

4.5.1 Up-Convolutional Layers

Up-convolutional layers, or mistakenly deconvolution, invert the concept of a strided convolutional
layer (see Figure 4.3). They map a single column with multiple channels from the source feature map
to a region with larger spatial extent and often fewer channels. A simple convolutional layer with a
kernel of size k, an input feature map with cin channels and an output feature map with cout channels is
equivalent to applying a fully connected layer with cink2 inputs and cout outputs at multiple positions
of the feature map.

An up-convolutional layer with a stride of s is hence equivalent to a so called bed-of-nails upsampling
by factor s, followed by a non-strided convolution. The bed-of-nails upsampling produces a feature map
s times larger than the input map. Along every spatial dimension, the upsampling fills every s-th entry
with the values from the input; all other values are set to zero and the channels remain unchanged.
For the up-convolution as shown in Figure 4.3 every single output value of the filter (before summing)
is a linear combination of the values from only a single column (vector along channels) of the input
map. The bed-of-nails equivalent combines these linear mapping of neighboring output values into a

28



Figure 4.3 Convolutional layer (left) versus up-convolutional layer (right). In this example, we are given
a one- dimensional input feature map with 3 channels. The strided 3-convolution produces a feature map
with 5 output channels. For the up-convolutional layer, the input and output dimensions are exchanged.
Overlapping outputs are summed up.

single mapping from multiple input pixels to a single output pixel. To yield the same result, the filter is
arranged in the exact opposite orientation along every spatial dimension.

4.5.2 Correlation Layer

Consider the information flow withing the encoding part of a feature extraction network working on
a set of stacked input images would combine information for example 40 pixels apart in the input only
after a few convolutional layers. For every possible displacement, the network is tasked to learn to relate
patches accordingly.

To this end, [4] developed a correlation layer to aid the network. In the FlowNetCorr network,
[4] employ this layer after conv3 as shown in Figure 4.4. The basic idea for this layer is to enable
correlating patches of features between two different feature maps within a certain spatial neighborhood.
Interestingly, the layer is basically a convolution not between data and a kernel map but a convolution
between data and data itself at feature level. To ensure that the input features to the correlation layer
have the identical meaning for every channel, the images are processed in separate convolutional streams
which share the same weights and hence apply the same filters to both images.

Ideally it is expected that every patch from conv3 features of first view must be correlated with every
patch from features of the second view. Due to computational limitations , the search range in the
second view feature map is limited to a constrained local neighborhood around the first image patch.
Also striding is used to further reduce the number of comparisons required.

Consider a pair of feature maps f1, f2 : R2 ⇒ Rc, with width w, height h, and c number of
channels. A correlation layer compares every patch from f1 to f2. Consider a single comparison of two
patches centered at x1 and x2 in the first and send feature map, the correlation can be mathematically
devised as
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Figure 4.4 FlowNetCorr: In this version of FlowNet, the input images are processed in two separate
streams with shared weights before they are correlated using our correlation layer after the third con-
volution. The remainder of the network including the expanding part (depicted by a green placeholder)
remain the same.

c(x1, x2) =
∑

o∈[−k,k]×[−k,k]

< f1(x1 + o), f2(x2 + o) > (4.8)

for a square patch of size K := 2k + 1. As mentioned in the introduction of correlation layer,
Equation 4.8 is similar to a single step of a convolution in neural networks, wherein data and data
convolution takes place instead data and a filter and hence have no trainable weights.

A total of c ·K2 multiplications are involved in correlating the patches by computation of c(x1, x2)
while comparing every combination of patches amounts to w2 ·h2 computations. This is the reason why
striding is introduced to restrict the displacement for comparisons.

The correlations c(x1, x2) are computed in a constrained neighborhood of size D := 2γ+1 for each
location x1 and maximum displacement γ by limiting the range of x2 in the second feature map. Strides
s1 and s2 are used to represent the source x1 and target feature maps x2 with the neighborhood centered
around x1 defined by maximum displacement γ.

Let us now examine how the backward pass through correlation layer is processed.

4.5.3 Correlation layer - Derivative

Equation 4.8 shows a compact vectorized form of how two patches are correlated using the correla-
tion layer. For computing the derivative of this layer, let us examine a more detailed expression for the
full correlation. For simplicity, let us assume that the result blob has four dimensions, i.e. width, height,
and both correlation dimensions, which are indexed by x, y, o, p. In practice, o and p are fused in one
dimension as mentioned above. Let b1 and b2 be the three dimension input data blobs indexed as width,
height, channels such that b1x,y,c is the cth element of f1((x, y)T ) and for b2 accordingly. Let s1 and s2
be the two strides, k the correlation kernel radius, and γ the maximum displacement for the correlation.
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Then one element of the correlation result is

tx,y,o,p =

k∑
i,j=−k

Nc∑
c=1

b1s1x+k+γ+i,s1y+k+γ+j,c · b
2
s1x+k+γ+i+s2o,s1y+k+γ+j+s2p,c (4.9)

During the backward pass in network training, the derivative of the network loss with respect to all
network weights and data blobs has to be computed. This is done using the chain rule. Hence we
assume that we are given t̂, the derivative with respect to the top blob t (i.e. the output of the correlation
layer). To determine the derivative with respect to each of the bottom blobs b1 and b2, we can again
apply the chain rule to obtain b̂1and b̂2

b̂1l,m,n =
∑
x,y,o,p

t̂x,y,o,p
∂tx,y,o,p
∂b1l,m,n

(4.10)

i.e. the outer derivative times the inner derivative. We can now expand the partial derivative on the
right by defining δ indicator function that is 1 iff both subscripts are equal and 0 otherwise:

=
∑
x,y,o,p

t̂x,y,o,p
∑

i,j∈[−k,k],
c∈[1,Nc]

(δl,s1x+t+γ+i · δm,s1y+k+γ+j · δn,c · b2s1x+k+γ+i+s2o,s1y+k+γ+j+s2p,c) (4.11)

By the definition of the indicator function, we can simplify this to

=
∑
x,y,o,p

t̂x,y,o,p
∑

i,j∈[−k,k],
c∈[1,Nc]

b2l+s2o,m+s2p,n (4.12)

where
i = l − s1x− r − γ

j = m− s1y − r − γ

c = n

(4.13)

Hence, ensuring the limited range for i, j and n, we can drop the second sum:

=
∑
x,y,o,p

t̂x,y,o,p · b2l+s2o,m+s2p,n (4.14)

with
i ∈ [−r, r] ⇒ −s1x ∈ [γ − l, 2r + γ − l]

⇒ s1x ∈ [2r − γ −+l, l − γ]

⇒ x ∈
[⌈
l − 2r − γ

s1

⌉
,

⌊
l − γ
s1

⌋]

j ∈ [−r, r] ⇒ −s1y ∈ [γ −m, 2r + γ −m]

⇒ s1y ∈ [2r − γ −+m,m− γ]

⇒ x ∈
[⌈
m− 2r − γ

s1

⌉
,

⌊
m− γ
s1

⌋]
(4.15)
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We can compute the derivative with respect to the second input analogously. From

b̂2l,m,n =
∑
x,y,o,p

t̂x,y,o,p
∂tx,y,o,p
∂b2l,m,n

(4.16)

we will obtain

b̂2l,m,n =
∑
x,y,o,p

t̂x,y,o,p · b1l−s2o,m−s2p,n (4.17)

with

x ∈
[⌈
l − 2r − γ − s2o

s1

⌉
,

⌊
l − γ − s2o

s1

⌋]
,

y ∈
[⌈
m− 2r − γ − s2p

s1

⌉
,

⌊
m− γ − s2p

s1

⌋] (4.18)

4.5.4 Multi-Scale Correlations

Reliable resolution of depth requires information context at multiple scales to be correlated. In
general, for correspondences which, in terms of disparity, cover more than one or two pixels between
stereo images the local context in which the correlations is being applied would not be enough to resolve
the correspondences. Consider the following cases:

• Large baseline/displacement between stereo images : Since we are looking at a general stereo
problem and not rectified stereo, the disparity of pixels will be large comparatively. In general,
object pixels closer to the camera will have far greater disparity than object pixels that which are
further away. Important thing to note here is that the corresponding pixels have to be searched
in two-dimensions as opposed to a rectified stereo problem. The challenge of large baseline in
rectified stereo translates to large movements in translation and rotation (in our case) along with
objects been capture close to the camera.

• Textureless and repeated textured surfaces: These include one of the hardest correspondences
to be resolved as there are multiple matches at finer scales for each candidate pixel from such
surfaces.

The most intuitive way to handle the above mentioned cases is to compute correlations at multiple
scales and combine the two. This translates to a case where trickier situations like the ones mentioned
above would be handled by computing correlations at a coarser scale, which would help fine tune the
correlations computed at finer scale. In essence, the correlations at coarser scale act as a sort of attention
mechanism for the finer correlations which greatly improves the resolution of the correspondences as a
whole.

In general, any pixel wise computation, including depth prediction naturally gains from multi scale
correspondences as there prediction resolution is more accurate and robust.
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Figure 4.5 Modified FlowNetCorr (multiscale version): We modify the FlowNetCorr architecture to
depthmap prediction for unrectified images by introducing a correlations at two resolutions and combin-
ing them using a simple dot product. The correlations at halved resolution act as weights to correlations
at full resolution providing a sort of attention in terms of context.

4.5.5 Modified flownet architecture and its multiscale counterpart

The flownet architecture [4] devised to predict optical flow between video frames, has been modified
to predict depthmaps for a pair of stereo images. The network consists of 3 convolutional layers ex-
tracting meaningful representations of the stereo pairs separately. The weights are shared between them
since these are generic features extractors. The convolutional features need to be combined to depict the
matching process essential for depthmap reconstruction. To help the network in this matching process, a
‘correlation layer’ is used that performs data -data patch convolutions between two feature maps. Given
a pair of multi-channel feature maps f1, f2 : R2 ⇒ Rc , with widthw, height h, and c being the number
of channels, the correlation layer computes the correlations for each patch from f1 with that of f2.

The key highlights of multiscale correlations are as follows:-

• Attention models in neural networks are loosely based on human attention mechanism which es-
sentially is able to focus on certain region of an image at high resolution based on the surrounding
region at low resolution and adjusting focal point over time.

• Displacement window at half resolution is effectively covering double the size as compared to full
resolution. Hence by computing correlations at half resolution we obtain correlations at a lower
resolution spanning a larger area.
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Figure 4.6 Multiscale correlations inducing attention: Here we see that the halved resolution provide
more context to the full resolution correlations thus enabling the resolution of correspondences in case
of repetitive textured surfaces and homogeneous or textureless surfaces.

• The correlations at full resolution and at half resolution are combined by using bilinear interpola-
tion on half resolution correlations and performing an elementwise dot product.

• Correlations at half resolution act as weights to correlation at full resolution thereby providing
attention to correlation at full resolution.
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Chapter 5

Unrectified Stereo dataset

We have seen how stereo correspondences in an uncaliberated setting is ill-posed and the condition
number of the fundamental matrix estimated from 8 point algorithm is high enough for it to be sensitive
to small changes. We have proposed a modified flownet architecture deep learning based end-end solu-
tion to learn to estimate relative depth values by learning correspondences using a correlation layer at
multiple scales.

We want evaluate our network on particularly challenging situations of repetitive textures and homo-
geneous or textureless surfaces to validate our hypothesis of multi-scale correlations aiding the correct
computation of correspondences and hence the relative depths.

Since datasets with unrectified images do not exist for depthmap estimation for deep learning, we
have created a dataset of turn table sequences of Google Warehouse 3D models using OpenGL.

Figure 5.1 A constrained version of unrectified stereo where the motion of object is restricted about an
axis not running through the optical center of the camera.

35



5.1 Turn Table sequences

Turntable systems (fig 5.1) have been used in numerous graphics and computer vision papers to
compute the 3D reconstruction of 3D solid models by volume intersection from multiple views. Most
authors use projective geometry properties and multiview relations to perform the 3D reconstruction.
These algorithms belong to a set of methods called Structure-From-Motion (SFM) techniques. The 3D
reconstruction of an object, constrained to an axial rotation motion, is possible when the rotation axis
does not go through the optical center of the camera.

For our experiment of estimation of depthmaps from a pair of images, the learnable cue in a turn
table setup in particular is that the 3D points closer to the camera show larger disparity than the 3D
points further away from the camera.

Figure 5.2 The image depicts a 3D point when b closer to the camera moves a larger distance as opposed
to a 3D point a located further away from the camera. An important cue for relative depth estimation.

5.2 Dataset description

The main highlights of the dataset are as follows :
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• A total of 80 carefully selected 3D models from Google 3D warehouse consisting of everyday
objects with focus on models having repetitive textures and textureless surfaces were compiled.

• Using OpenSceneGraph, the models were rendered at multiple orientations.

– The rotations were carried out about the x and y axis considering the center of the object to
be the origin. The camera is at negative z axis.

– We have restricted the rotations to ≤ 15◦ so as to not introduce too many occlusions among
a pair of orientations. We have chosen the angle at 12◦. So we have a total of 30×30 = 900

images for each model.

– The corresponding depthmaps representing relative depths with the infinity plane at depth
value 255 are constructed for each view.
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Table 5.1 Turn table sequences and their depthmaps
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Chapter 6

Experiments and Results

6.1 Experimental setup

The goal of this thesis is to validate the hypothesis of multiscale correlations improving correspon-
dences for textureless and repetitive textured surfaces of turn table sequences of every day structures.

The problem is modeled as depthmap regression problem from a pair of consecutive turn table se-
quences. Specifically, given a pair of images from turn table sequence - left and right images rotated at
an angle ≤ 15◦ about either the x or y axis, a depth map depicting relative depths from the left view is
to be estimated.

Network details:

A total of 9 conv layers blocks which include max pooling (in 6 of them) and ReLU activation layers
are employed each with strides 2. Since we are trying to estimate the depthmap with the same resolution
as the imput, we have used a fully convolutional network without the used of any fully connected
layer. Consequently, images of arbitrary sizes are compatible with this network. The filter sizes for the
convolutional layer have been set to start for a 7 × 7 for the first layer, gradually decreasing as we go
deeper in the encoding phase, to 5 × 5 for next two layers and 3 × 3 from the fourth layer. Also we
aim to extract more features as we go deeper in the network and hence we employ increasing feature
map sizes roughly doubling each layer. For the correlation layer , the trainable weights are non existent
while, we restrict the maximum displacement to d = 20 while using strides s1 = 1ands2 = 2.

For the multiscale network, we downsample the input images by two, and extract features through
the same convolutional layers used for full resolution images. The correlation layer Corr2 uses a dis-
placement half of the full resolution correlation layer as it is working at half the resolution of the images.

The output of correlationsCorr1out andCorr2out have to be combined to reconstruct the depth map.
Corr2out is upsampled using bilinear interpolation and both Corr1out and Corr2out are normalised
and are combined using a simple element-wise multiplication.

Refinement: In order to estimate dense per pixel depth maps, Upconvolutional layers are applied
which mirror the convolutional layers used in encoding/feature extraction part of the network. The
Upconvolutional layers gradually build finer depth map estimates with coarser estimates from correla-
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tion layer using skip connections of corresponding convolutional layers as context. This enforces the
depthmap to estimate the view-dependent property intended in the work.

LossFunction : For training, we use a avg L2 loss for depthmap reconstruction.
Training data: : 60 models are used for training with each of 900 images. A list of stereo pairs

along with depthmap with respect to left image are created and are fed at random to remove any bias
related to order of training data.

The validation loss and a sample test set loss of the different models - modified flownet and multi-
scale model are shown in the following figure.

Figure 6.1 Graph shows the performances of our model(multiscale) and FlownetCorr (modified) model
on Training models with random orientations.

Figure 6.2 Graph shows the performances of our model(multiscale) and FlownetCorr (modified) model
on Test models with random orientations. Our model performs slightly better quantitatively as compared
to the original FlownetCorr architecture on unseen models

40



6.2 Results

Experiment 1: We compare the normalised L2 norm for our test set comprising of 10 models each
having 900 images, for two models modified flownet and multiscale flownet when trained with L2 loss
loss function. The results are in Table 6.1

Model Modified flownet Multiscale flownet
Model1 44.75 41.65
Model2 93.53 90.91
Model3 95.96 95.69
Model4 224.00 218.48
Model5 121.67 120.63
Model6 136.26 139.81
Model7 130.97 132.78
Model8 165.56 163.86
Model9 240.031 235.85
Model10 56.78 53.65

Table 6.1 Avg L2 loss per model for each of Modified flownet and Multiscale flownet

We can clearly see that the multiscale correlation are helping in reducing the total L2 error in most
of the cases as compared the single scale correlation. Following the same trend, lets see the qualitative
results of both modified flownet and Multiscale flownet in the figures 6.3, 6.4, 6.5 when trained with L2
loss function. and 6.6.

Experiment 2: We experimented with the scale invariant loss function provided by Eigen et al. [6].
As we have seen that since we are estimating depth maps from unrectified images, the sense of scale
is non-existent here. Since we are computing only a relative depth map, a scale invariant loss function
is beneficial in order to ensure consistency with respect to relative depth. Consider the estimated depth
map y and ground truth y∗, consisting of ni pixels. The mean squared error in log space is defined as

D(y, y∗) = (
1

2n

n∑
i=1

log yi − log y∗i + α(y, y∗))2 (6.1)

where α(y, y∗) = 1
n

∑
i(log y∗i − log yi).

The Table 6.2 clearly shows that the multiscale correlation network outperforms the modified flownet
network which uses a single resolution for correlation in terms of average L2 error computed. The scale
invariant loss function also validates the effectiveness of using multiple scale correlations to infer depth
map. For qualitative results refer Table 6.3. We can see that the results of both models are almost similar
but certain details are much more accurate in terms of depth resolution in case of multiscale correlation
network.
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Model Modified flownet Multiscale flownet
Model1 73.69 73.62
Model2 161.35 160.27
Model3 140.02 136.52
Model4 194.51 189.01
Model5 181.76 189.84
Model6 30.41 30.33
Model7 181.39 176.15
Model8 63.45 63.44
Model9 231.90 227.55
Model10 76.46 76.38

Table 6.2 Avg Scale Invariant loss per model for each of Modified flownet and Multiscale flownet

Figure 6.3 Qualitative result: Row 1 : left , right image. Row 2: Ground truth, Flownet modified ,
Multiscale Flownet

Figure 6.4 Qualitative result: Row 1 : left , right image. Row 2: Ground truth, Flownet modified ,
Multiscale Flownet
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Figure 6.5 Qualitative result: Row 1 : left , right image. Row 2: Ground truth, Flownet modified ,
Multiscale Flownet

Figure 6.6 Qualitative result: Row 1 : left , right image. Row 2: Ground truth, Flownet modified ,
Multiscale Flownet
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Table 6.3 Models trained with Scale invariant loss function. A row contains: left image, right image,
ground truth, modified flownet(single resolution) and multiscale flownet outputs.
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Chapter 7

Conclusions

We have hypothesised that for a two view stereo problem in absence of any calibration parameters,
and hence unrectified setup, a deep learning network capable of computing correspondences at a feature
level using a correlation layer can regress a depthmap with respect one view. We have demonstrated
that incase of tricky surfaces like repetitive textures and textureless surfaces, correlations at multiple
scales can help resolve correspondences much better. We have designed two networks - a modified
flownet network to regress depthmaps and a multiscale flownet network extracting correlations at half
and full resolutions. A dataset of turn table sequences constructed from google 3D warehouse was built
with everyday objects and structures which have a lot of repeated textures and textureless surfaces. We
have demonstrated that the multiscale correlation network outperforms the modified flownet network
operating at a single scale both qualitatively and quantitatively.

7.1 Future Work

We have attempted a fairly unexplored area of two-view stereo using unrectified images and there
are few possible future directions :

• A more robust dataset with more 3D models with variety of surfaces can benefit the validation of
the current work. Specifically a real world dataset of unrectified stereo images is the need of the
hour for more practical applications.

• Stereo rectification process is also interesting problem when the calibration parameters are not
available. It will involve enforcing fundamental matrix constraints in a deep learning setup.
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