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Abstract

Learning computational models for visual attention (saliency estimation) is an effort to inch ma-
chines/robots closer to human visual cognitive abilities. Data-driven efforts have dominated the land-
scape since the introduction of deep neural network architectures. In deep learning research, the choices
in architecture design are often empirical and frequently lead to more complex models than necessary.
The complexity, in turn, hinders the application requirements. In this work, we identify four key com-
ponents of saliency models, i.e., input features, multi-level integration, readout architecture, and loss
functions. We review the existing state of the art models on these four components and propose novel
and simpler alternatives. As a result, we propose two novel end-to-end architectures called SimpleNet
and MDNSal, which are neater, minimal, more interpretable and achieve state of the art performance
on public saliency benchmarks. SimpleNet is an optimized encoder-decoder architecture and brings
notable performance gains on the SALICON dataset (the largest saliency benchmark). MDNSal is a
parametric model that directly predicts parameters of a GMM distribution and is aimed to bring more
interpretability to the prediction maps. The proposed saliency models can be inferred at 25fps, making
them suitable for real-time applications. We also explore the possibility of improving saliency prediction
in videos by using the image saliency models and existing work.
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Chapter 1

Introduction

In this era of rapidly growing information on the internet, there are numerous images online. Accord-
ing to Mary Meeker’s annual Internet Trends report, people uploaded an average of 1.8 billion digital
images every single day 1. If we think of this as a huge dataset, we need to look for patterns or common
occurrences of tiny things in order to draw a line between the meaningful and non meaningful data.
Consider the examples of image classification, object detection and image style transfer which are done
by extracting the required features. Identifying the major patterns plays an important role in helping us
achieve the specific tasks.

Visual attention enables humans to quickly analyse complex scenes and devote the cognitive abil-
ities towards important regions. Simulating this behaviour with images/videos will decrease the com-
putational complexity for many problems in various fields such as computer vision, robotics, human
computer interaction etc. and this is modelled as saliency prediction. It consists of predicting human
eye fixations and interesting regions in an image. Saliency is represented as a heat map having higher
values at more significant regions. Figure 1.1 shows various applications like drone surveillance, indoor
navigation and social interactions

In this thesis we propose new models and provide extensive study on the choice of each component in
the model. We propose a) Encoder-decoder model which is simple and shows real-time inference, b) A
novel parameter based model which predicts parameters of GMM model instead of predicting saliency
map. Before going into the thesis let’s look at the what saliency is and the datasets used to train saliency
models and the metrics used to evaluate them. Section 1.1 and 1.2 focuses on datasets and metrics used
for saliency

Saliency prediction has RGB image as input and the predicted image is distribution map called pre-
dicted saliency map as shown in figure 1.2. There are two types of ground truths i.e ground truth

1https://www.theatlantic.com/technology/archive/2015/11/how-many-photographs-of-you-are-out-there-in-the-
world/413389/
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Figure 1.1 Example results of our approach on images from Salicon dataset. Saliency models can

play key role in application like (a) drone surveillance , (b) robotics cameras for sports , (c,d) indoor

navigation and (e,f) social interactions

.

saliency map and fixation map. Fixation map is a binary map with values either 0 or 1 having eye fix-
ations where as saliency map is a distribution based map to which the output has to match. In figure
1.2 (b) and (c) are ground truth saliency and fixation maps respectively and (d) is the predicted saliency
map using our model MDNSal.

Predicting the salient regions in a scene is a fundamental ability, which empowers primates to rapidly
analyze/interpret the complex surroundings by locating and devoting the focus only on sub-regions of
interest [26]. The work by [20] triggered early interest in the computational modeling of visual saliency
from images, i.e., identifying areas that are salient in a scene. Since then, a large variety of saliency
detection models have been proposed and find usages in a wide range of applications involving ma-
chine vision. Many recent works show that availability of saliency maps enhance cognitive abilities

2



Figure 1.2 a) RGB Image b) Ground truth saliency map c) Ground truth fixation map d) Predicted

saliency map using model MDNSal

of robots and helps improving performance in variety of tasks including human-robot interaction [50];
identification, and recognition of objects [47]; scene classification [4]; detecting and tracking regions of
interest [15]; proposal refinement [10] and visual search in unknown environments (allowing search of
regions with higher importance first) [43]. Our work is application agnostic and focuses on improving
the general saliency prediction and can cater to large variety of applications in robotic vision. Some
example results from our SimpleNet model are illustrated in Figure 1.1.

The last few years have seen tremendous advancements in the field, mainly due to the application of
Deep Neural Network architectures for the task and the availability of large scale datasets [23]. Let’s
look into datasets available for saliency prediction so far.

3



1.1 Datasets

There are three popular datasets available for image saliency prediction, SALICON, MIT and CAT.

1.1.1 SALICON

SALICON is the largest crowd-sourced image saliency dataset [23]. Images for this dataset have
been taken from Microsoft COCO dataset. It consists of 10,000 training, 5000 validation, and 5000 test
images. It was labeled based on mouse-tracking (shown to be equivalent to the eye-fixations recorded
with an eye-tracker). All images in this dataset has equal resolution of 640x480 but we resize these
images to 256x256 while training.

We use the SALICON dataset for training our models. The benchmark on SALICON test set is
known as LSUN saliency challenge 2. It offers seven evaluation scores and our experiments are based
on the newest release, SALICON 2017, from the LSUN challenge.

1.1.2 MIT300

MIT300 test dataset consists of 300 natural images with eye-tracking data of 39 observers. This
dataset is a collection of images from the Flickr Creative Commons and personal collections. The labels
of MIT300 are non-public.

We use MIT1000 [24] consisting of 1003 images to fine-tune the initial model trained on SALICON
dataset. We have done 10 fold cross-validation by splitting the images into 903 train, and 100 validation
and have chosen the best model for test submission. This dataset has images with various resolutions
such as 1024x768, 685x1024 etc and also synthetic images, thus becomes challenging for model to pre-
dict and becomes crucial in comparison of efficiency of model.

1.1.3 CAT2000

CAT2000 consists of 4000 images(2000 train and 2000 test) taken from 20 different categories like
Action, Art, Cartoon, Inverted, Sketch, Social etc., with eye-tracking data from 24 observers. Each cat-
egory contains 100 images each with 1920x1020 resolution. These images are collected from various
computer vision datasets and also by using search engines.

Similar to MIT1003, we split the images into 1800 train and 200 validation and perform fine-tuning
on our model. Both CAT and MIT test sets are evaluated at MIT saliency benchmark 3. Figure 1.3

2http://salicon.net/challenge-2017/
3http://saliency.mit.edu/
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shows one each from each of the above datasets.

Figure 1.3 RGB images and ground truth saliency maps from MIT, CAT and SALICON datasets re-

spectively.

The above MIT and LSUN benchmarks uses different evaluation metrics to compare submitted mod-
els. Let’s look into the metrics in this section.

Formally, computational saliency models predict the probability distribution of the location of the eye
fixations over the image, i.e., the saliency map. Where human observers look in images is often used
as a ground truth estimate of image saliency. The predictions are evaluated using a variety of metrics,
which are broadly classified as location-based or distribution-based [7]. The location-based metrics
measure the accuracy of saliency models at predicting discrete fixation locations. Distribution based
metrics compute the difference/similarity between predicted and ground truth distributions (assuming
that the ground truth fixation locations are sampled from an underlying probability distribution).

1.2 Metrics

There are various evaluation measures for saliency prediction that are broadly classified into two
types of metrics i.e distribution based and location based metrics. As the names suggest, distribution
takes ground truth saliency map and location takes fixation locations as ground truth. Kldiv, Similarity
and Correlation(CC) metrics are distribution based metrics where as NSS, AUC metrics are location
based metrics. A detailed analysis on how these metrics work as loss functions is shown in Chapter 3.
The P, Q terms used below represent predicted saliency map and ground truth respectively.

5



1.2.1 Distribution based metrics

In distribution based metrics ground truth is saliency map. Some of the distribution based metrics
are as follows

KLDiv - Kullback-Leibler(KL) measures the difference between two probability distributions. So,
it evaluates the loss of information between predicted saliency map and ground truth saliency map.

KLdiv(P,Q) =
∑
i

Qi log(ε+
Qi

Pi + ε
) (1.1)

here P , Q are predicted and ground truth maps respectively and ε is a regularization term.

CC - The Pearson’s Correlation Coefficient(CC) is a statistical method used generally in the sciences
for measuring how correlated or dependent two variables are. CC can be used to interpret predicted
saliency and ground truth saliency maps, P and Q, as random variables to measure the linear relation-
ship between them.

CC(P,Q) =
σ(P,Q)

σ(P )× σ(Q)
(1.2)

SIM - The similarity metric, SIM(also referred to as histogram intersection), measures the similarity
between two distributions, viewed as histograms. SIM is computed as the sum of the minimum values
at each pixel, after normalizing the input maps. If P is the predicted saliency map and Q is ground truth
saliency map.

SIM(P,Q) = Σimin(pi, qi) (1.3)

1.2.2 Location based metrics

In location based metrics ground truth is fixation map.

NSS - The NSS function was defined specifically for the evaluation of saliency models. NSS aims
to quantify the saliency map values at the fixated locations and to normalize it with the predicted map
variance.

6



NSS(P,Q) =
1

M
Σi
pi − µ(P )

σ(P )
× qfixi (1.4)

where M is the total number of fixation points, P is normalised to have zero mean and unit standard
deviation.

AUC-JUDD - The Area Under the ROC Curve is one of the most widely used metric for evaluating
saliency maps. In particular, the AUC-JUDD version, for a given threshold, the true positive rate is
the ratio of true positives to the total number of fixations, where true positives are saliency map values
above threshold at fixated pixels. And the false positive rate is the ratio of false positives to the total
number of saliency map pixels at a given threshold, where false positives are saliency map values above
threshold at unfixated pixels.

sAUC - Psychological studies show that the gazes of observers are biased towards center when they
look at images [51, 53]. This is because photographers tend to place the object of interest at center of
the image. This is called center-bias and sAUC metric captures this if model is also biased to the center
of the image.

Most of the datasets tend to include a higher density of fixations around the center of the images.
So, if a model has a center bias to predict, it will be able to account for at least part of the fixations
on an image, independently of the image content. So, sAUC penalizes models that include this bias by
sampling negatives from fixation locations from other images, instead of uniformly at random.

1.3 Contribution of this thesis

Recent works have analyzed the saliency estimation models over different evaluation metrics to add
interpretability to saliency scores [7]. Interestingly, the interpretability of saliency model architectures
has not been systematically explored. To this end, we propose a componential analysis which can be
used to compare a model from another; reduce redundancies in the model without compromising the
performance and can help customizations based on application requirements.

We identify four key components in saliency models(figure 1.4). First is the input features i.e., to
directly send the image to the saliency models or employ transfer learning using pre-trained networks.
The second component is the multi-level integration. It is understood that multiscale features (at differ-
ent spatial and semantic hierarchy) capture a broad spectrum of stimuli, and the combination improves

7



model performance. This aspect concerns how the hierarchy is imbibed in the model. The third aspect
is the readout architecture, which concerns the form of output i.e., to directly predict a saliency map
or to predict parameters of an assumed underlying distribution. The fourth aspect is the loss function.
Different works use a different combination of loss functions; however, most of these choices are only
justified empirically. We explore ways to validate these combinations more formally. Overall, our work
makes the following contributions:

Figure 1.4 Models are analysed in four components a) Input features b) Multi-scale Integration c) Read-

out Architecture d) Loss Function

• We separate components of saliency models and discuss the progress on each of them in reference
to the literature. Such analysis can help better interpret the models i.e., assess component-wise
weaknesses, strengths, and novelty. The analysis allows to optimize saliency models by trying
alternates for a particular component while freezing the rest of them.

• We propose an encoder-decoder based saliency detection model called SimpleNet. The main nov-
elty of SimpleNet is a UNet like multi-level integration [46]. SimpleNet is fully convolutional; end
to end trainable; has lower complexity than counterparts and allows real-time inference. It gives
consistent performance over multiple metrics on SALICON and MIT benchmarks, outperform-
ing state of the art models over five different metrics (with significantly notable improvements on
KLdiv metric).

• We propose a parametric model called MDNSal, which predicts parameters of a GMM instead of a
pixel-level saliency map. The main novelty of MDNSal is in readout architecture with a modified
Negative Log Likelihood (NLL) loss formulation. It achieves near state of the art performance on
SALICON and MIT benchmarks.

8



1.4 Thesis Overview

The following chapters are organised as follows: Chapter 2 discusses the related work and recent
architectures of image saliency which are compared to our models. Chapter 3 explains our models
in detail by discussing the selection of components empirically and theoretically. Chapter 4 explores
datasets, related work and experiments of saliency on videos. Chapter 5 is the conclusion to thesis.

9



Chapter 2

Related Work

This chapter has two sections. First section discusses on the related work of saliency and the second
sections goes deep into the architectures of different models which we use to compare our models.

2.1 Key Components of Saliency Models

2.1.1 Input features

Early attempts relied on handcrafted low-level features for saliency prediction. Seminal work by
Itti [20] relied on color, intensity, and orientation maps (obtained using Gabor filter). Valenti [6] use
isophotes (lines connecting points of equal intensity), color gradients, and curvature features. Zhang [57]
computes saliency maps by analyzing the topological structure of Boolean maps generated through ran-
dom sampling. Bruce [5] use low-level local features (patch level) in combination with information-
theoretic ideas. Jude [24] included high-level information by using detectors for faces, people, cars, and
horizon. However, most of these methods remain elusive on generic high-level feature representation.

Recent works are dominated by deep learning architectures owing to their strong performance. Most
of this success can be attributed to Convolutional architectures [30, 29, 11, 21]. Some works have also
explored combining CNN with recurrent architectures [12]. The breakthrough happened via transfer
learning of high-level features trained for image classification [27, 48, 16, 58, 18]. The large scale
SALICON dataset [23] was pivotal in transfer learning process (allowing efficient fine-tuning). Initial
approaches relied on Alexnet or VGG features [30, 11, 35]. Other notable architectures like ResNet,
DenseNet and NasNet [12, 21] were then explored. Recent works also explore the combinations of
features from multiple pre-trained networks [21]. There is enough evidence to agree that using pre-
trained features brings significant gains on the task of saliency prediction. We analyze two important
design choices: (a) which pre-trained network to pick and (b) should pre-trained weights be frozen or
fine-tuned.

10



2.1.2 Multi-level integration

It is evident that deep learning models utilizing high-level features significantly outperform the older
counterparts, which rely on low-level handcrafted features. However, recent work [32] suggests that the
simple low-level model better explains a substantial proportion of fixations when compared to the state-
of-the-art model. They quantitatively show this by changing the input features to low-level intensity
contrast features (ICF) and keeping the rest of the architecture the same.

Deep networks have employed two main strategies to resolve this concern. The first is to send dif-
ferent image scales as input in parallel. SALICON [19] model uses two different image scales and the
idea was then extended to multiple scales [36, 33]. The multi scale spatial stimuli can be tackled by
this approach, but not necessarily the semantics. An alternate approach is to take features from different
stages of pre-trained CNN. Different levels of semantics (from low, mid, and high-level features) can
be thus directly incorporated into the model to resolve the concerns raised in [32]. The work by [30]
takes a weighted sum of features at different levels post resizing, where the weights are trained through
the network. ML-Net [11] resizes and concatenates features from different levels of VGG-16 model
and passes it through additional convolutions layers to predict the map. The work in [54] individually
predicts saliency maps for features from different stages of VGG-19 and then fuses them. In this work,
we propose a novel UNet [46] like architecture for incorporating multi-level features. The single-stream
network with skip connections speeds up training, and the structure allows for an organic hierarchi-
cal refinement from high to low-level features (symmetric expansion over high-level context to enable
precise localization).

2.1.3 Readout Architectures

The commonly used readout architecture consists of few convolutional layers post the encoder fol-
lowed by 1×1 convolutions to control the size of the output saliency map. It is also common to learn an
additional prior [30, 11, 32]. The prior is often aimed to compensate for the central fixation bias. Work
by [12] employs an LSTM based readout architecture and learns a set of 2D Gaussian priors parame-
terized by their mean and variance (instead of a single one). In this paper, we employ minimal readout
architecture with only convolutional layers. We show that combined with an UNet like multi-resolution
encoder; such architecture can outperform state of the art models which rely on priors, complex archi-
tectures [12] or multi-network feature combinations [21].

Interestingly, most of the state of the art models directly predict an image as output (the saliency
map). Parametric models for computing image saliency have not been explored. Although paramet-
ric models come with a bound on the complexity of the model (even if the amount of data is un-
bounded), they come with several advantages; especially, they are easier to understand and interpret
(Where saliency models should look next? [8]). Furthermore, they allow better integration with down-
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stream applications. The importance of predicting distributions has been nicely motivated in [31]. To
this end, we propose a novel readout architecture, which directly predicts parameters of a 2D GMM
(mean, variance, and mixture weights). The proposed readout architecture can be plugged at the end
of any given architecture to output a parametric distribution. We show that, although bounded, the
parametric models can achieve near state of the art performance.

2.1.4 Loss functions

Mean Squared Error (MSE) between predicted and ground truth has been employed as loss func-
tion [29]. ML-Net introduced a normalized version of MSE [11]. Most of the recent efforts directly use
one of commonly used evaluation metrics or a combination of them as a loss function. The most com-
monly used loss is computing KL-divergence (KLdiv) between the estimated and ground-truth saliency
maps [19]. Some papers use a variation of it like negative log likelihood [30] or cross entropy [54] in-
stead. Recent works use KLdiv in combination with other metrics like Pearson’s Correlation Coefficient
(CC), Normalized Scanpath Saliency(NSS), and Similarity. These combinations bring clear improve-
ment in performance [21, 12]. However, the combinations are often decided empirically. In this work,
we provide formal insights to choose a minimal and comprehensive loss function.

2.2 Related Architectures

In this section, we are going to analyse some architectures with which we compare our models.

2.2.1 SAM NETs

This paper [12] has Attentive ConvLstm model to predict saliency from images. The input image is
sent through VGG or Resnet and the output(let’s call it as X) will have 512 channels which is sent to
Conv LSTM with each LSTM having the previous timestamp output and X. If the output from LSTM is
Xt , then a set of 16 gaussian channels are appended to it which are called priors and these are learned
during training. These priors add center bias to the system which makes the model closer towards hu-
man vision as humans tend to see the center region most. They also used dilated convolutional networks
in VGG or ResNet.

The loss function used for this network is a linear combination of KLDiv, CC an NSS as shown
below.

L(P,Q,Qfix) = αL1(P,Qfix) + βL2(P,Q) + γL3(P,Q) (2.1)

here L1, L2, L3 are NSS, CC and Kldiv respectively and α, β, γ are scalars with values -1, -2 and
10 respectively. Qfix is the fixation map.
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Figure 2.1 SAM Net Architecture

2.2.2 GazeGAN

GazeGAN [9] trains model by data augmentation using multiple transformations like cropping, rotat-
ing etc. to the existing datasets by generating 1800 images using 18 transformations from 1000 images
of CAT2000(It makes a total of 1900 images for CAT2000) and 60,000 images using 10,000 SALICON
images(This makes a total of 70,000 images for SALICON).

MIT1003 is divided into 600 train, 100 validation, 303 test images and data augmentation has been
done and fine tuned with the parameters learned using SALICON dataset.

The proposed dataset of GazeGan consists of 19 transformation groups, Thus having 1140 training
samples, 190 validation samples and 570 test samples, fine tuned with parameters using SALICON
dataset.

Model - GazeGAN(in figure 2.2) uses Conditional GAN for training the network and some additional
ideas to improve the model and learn the salient regions. It uses Center-surrounded connection(CSC) to
highlight semantic information and suppress artifacts, Skip-Connections to use multiscale information
and Local-Global GANS to improve robustness in the model. It is using multiple discriminators at dif-
ferent scales. In this model two discriminators have been used, one for original size input images (GL)
and the other for images which are scaled down by 4 times to original size(Gg). In the end, the decision
of these two discriminators are considered for loss function.

Generator has modified U-Net with CSC included in it. U-Net is an encoder decoder network in a
symmetric fashion with skip-connections used for bio-medical image segmentation.
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Figure 2.2 GazeGAN Architecture

2.2.3 SALICON

The architecture(in figure 2.3) of this model is applied on two image scales and the output of these
are concatenated and passed to 1x1 convolution layer to get the map. Image is passed through image
classification models (VGG, ResNet, GoogleNet). Input Image is 600 x 800, output of fine will be 37 x
50 x C. C is 512 for VGG, 256 for AlexNet, 832 for GoogleNet. The Coarse output will be upsampled
and concatenated with the output of fine. Metrics are calculated both with and without fine tuning the 3
models.

Figure 2.3 SALICON Architecture

14



2.2.4 EMLNET

EMLNET [21] in figure 2.4 is an encoder-decoder based approach consisting of deep models like
NasNet and DenseNet. Both the encoder and decoder are trained seperately to deal with the complexity
and space.

In the encoding stage, both the NasNet and DenseNet are separately optimized for saliency predic-
tion by replacing FC with conv layers. In order to relax the requirements on space, the output prediction
is compressed into one feature map by applying conv1. In the decoding stage, they train a decoder to
combine the learned features from the two CNN models that have been trained at the encoding stage.
Multi-Layer features are extracted from both the networks (4 layers from the DenseNet and 3 from Nas-
Net totaling 13,536 feature maps). These 7 maps are upsampled to the same size and are concatenated
which is then used in the prediction.

Figure 2.4 EMLNET Architecture
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Chapter 3

Proposed Architectures

We propose two end-to-end architectures SimpleNet and MDNSal. SimpleNet is an encoder-decoder
architecture that predicts the pixel-wise saliency values, while MDNSal is a parametric model that pre-
dicts parameters of a GMM distribution. We now describe each of the models in detail.

3.1 SimpleNet

The overall architecture of the SimpleNet is shown in figure 3.1. It is a fully convolutional, single-
stream encoder-decoder architecture, which is end to end trainable. The name SimpleNet is derived
from the design goal to keep each component simple and minimal, resulting in an architecture which is
easy to train, comprehend and reproduce, without compromising the performance.

Figure 3.1 SimpleNet Architecture
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3.1.1 Input features

SimpleNet directly takes input from the pre-trained architectures designed for image classification.
We explore four different architectures VGG-16, ResNet-50, DenseNet-161, and PNASNet-5 and com-
pare their performance. The feature extraction layers (shown as encoder blocks in Figure 3.1) are ini-
tialized with the pre-trained weights and later fine-tuned for the saliency prediction task.

3.1.2 Multi-level integration

SimpleNet employs a UNet like architecture that symmetrically expands the input features starting
at the final layer of the encoder (input features). The symmetric expansion enables precise localization.
Every step of the expansion consists of an upsampling of the feature map, a concatenation with the
corresponding scale feature map from the encoder. The number of channels are then reduced using 3×3
convolutions followed by ReLU). Figure 3.2 shows that adding skip connections increases the localisa-
tion and also distributes the saliency to high contrast images rather than high-level features as mentioned
in [32].

There are four skip connections in the SimpleNet model and to empirically examine how skip con-
nections are effecting the model, A set of experiments are done by removing skip connections i.e no skip
connections, adding first skip connection then second, third and fourth respectively. Table 3.1 shows
SimpleNet having skip connections has better performance

no. of skip connections CC KLdiv NSS

0 0.856 0.212 1.871

1 0.906 0.205 1.913

2 0.904 0.197 1.909

3 0.904 0.197 1.909

4 (SimpleNet) 0.907 0.193 1.926

Table 3.1 SimpleNet’s validation results on SALICON with varying skip connections

3.1.3 Readout architecture

The readout architecture consists of two 3×3 convolutional layers; the first is followed by ReLU,
and the second uses a sigmoid to output the saliency map.
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Figure 3.2 Output of SimpleNet architecture with and without skip connections on SALICON validation

dataset.

3.1.4 Loss function

The loss function compares the output saliency map with the ground truth. We use a combination
of Kullback-Leibler Divergence(KLdiv) and Pearson Cross Correlation (CC) metrics as a loss function.
KLdiv is an information-theoretic measure of the difference between two probability distributions:

KLdiv(P,Q) =
∑
i

Qi log(ε+
Qi

Pi + ε
), (3.1)

where P , Q are predicted and ground truth maps respectively and ε is a regularization term.
CC is a statistical method used generally in the sciences for measuring how correlated or dependent two
variables are

CC(P,Q) =
σ(P,Q)

σ(P )× σ(Q)
. (3.2)
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KLdiv is an asymmetric dissimilarity metric with lower score indicating better approximation of the
ground truth [7]. Wherever the ground truth value Qi is non-zero but Pi is close to or equal to zero, a
large quantity is added to the KL score. This makes Kldiv highly sensitive to false negatives as shown
in figure 3.3.

CC considering the values as random variables, finds correlation between the maps and treats false
positives and false negatives symmetrically. SIM measures the histogram intersection between the maps
and thus it becomes less sensitive to false positives than false negatives as shown in figure 3.3(taken
from [7]). SIM score for both the images are similar whereas CC score is different.

Figure 3.3 CC, SIM score comparison and SIM, KLDiv score comparison

The combination of KLdiv and CC in the loss function is motivated by the analysis presented in
figure 3.4 (the analysis is inspired by [7]). We synthetically varied saliency predictions with respect to
ground truth in order to quantify effects on the loss functions. Each row corresponds to varying a single
parameter value of the prediction: (a) Variance, (b) location on a single mode, (c) location between
two modes, (d) relative weights between two modes. The x and y-axis in the graphs spans the parame-
ter range and values of loss functions respectively and the dotted red line corresponds to the ground truth.
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Figure 3.4 We synthetically varied saliency predictions w.r.t the ground truth in order to quantify effects

on the loss functions. Each row corresponds to varying a single parameter value of the prediction: (a)

Variance, (b) location on a single mode, (c) location between two modes, (d) relative weights between

two modes. The x and y-axis spans the parameter range and values of loss functions respectively and

the dotted red line corresponds to the ground truth (if applicable).

KLdiv being highly sensitive to false negatives results in steeper costs (consider case (a), (b) in Fig-
ure 3.4). Steeper costs lead to larger gradients, which are crucial in initial training (which motivates the
use of KLdiv or its variants as a backbone of loss function). CC as it is symmetric to false positives
and false negatives gives typical behavior in each scenario of Figure 3.4. The combination provides
appropriate behavior in each of the studied scenarios while maintaining steeper costs (scenarios (a), (d)
(Figure 3.4). We also explore the use of Normalized Scanpath Saliency (NSS) as a loss function in
the ablation studies. Table 3.2 empirically shows Kldiv and CC combination loss gives best validation
metrics.

Loss Functions CC KLdiv NSS AUC SIM

KL 0.904 0.223 1.935 0.870 0.797

KL + CC 0.906 0.192 1.925 0.871 0.798

KL + CC + NSS 0.900 0.204 1.998 0.872 0.794

Table 3.2 SimpleNet’s validation results on SALICON with various Loss Functions
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Considering the above loss function, input features are varied with various pre-trained architectures
such as VGG-16, ResNet-50, DenseNet-161 and PNASNet-5. The quantitative results in table 3.3 shows
PNASNet giving better results than the others.

Models CC NSS KLdiv AUC SIM

VGG-16 0.871 1.863 0.238 0.864 0.772

ResNet-50 0.895 1.881 0.211 0.868 0.786

DenseNet-161 0.902 1.930 0.210 0.87 0.795

PNASNet-5 0.907 1.926 0.193 0.871 0.797

Table 3.3 SimpleNet’s validation results on SALICON with various Encoders

3.2 MDNSal

The overall architecture of the MDNSal is shown in Figure 3.5. The network is inspired by the
literature on Mixture Density Networks [3]. MDNSal is a parametric model which gives a compressed
representation, allowing faster processing at the application level.

Figure 3.5 MDNSal Architecture

3.2.1 Input features

Similar to SimpleNet; we apply transfer learning from pre-trained image classification networks.
The fine-tuning of the pre-trained features is extremely crucial in MDNSal and leads to significant
performance improvements.
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3.2.2 Multi-level integration

MDNSal only uses the features from the last convolutional layer of the pre-trained networks and
is devoid of multi-level integration. Since the outputs are parameters instead of a per-pixel map, the
multi-level features do not play a significant role.

3.2.3 Readout architecture

The readout architecture consists of a convolutional layer to reduce the number of channels followed
by a ReLU. The output is then passed to three parallel fully connected layers predicting mixture weight
(π), mean (µ), and the covariance matrix (Σ) for each Gaussian. For C mixtures, the sizes of the output
layers are C, C× 2 and C× 2 for π, µ and Σ respectively. We predict only the diagonal elements of the
covariance matrix Σ.

We also relax the constraint of only predicting the diagonal values of the covariance matrix. We
predict the full covariance matrix with positive-definite constraints, which is necessary to compute the
loss. To enforce this constraint we adopt the method by [13], where Cholesky decomposition is used to
calculate covariance matrix. If A is the precision matrix and L is the lower traingular matrix, then

A = LLT

Σ−1 = A
(3.3)

We predict lower triangular matrix(L) and get covariance matrix using equations 3.3. Using full
covariance matrix however did not give any visible improvements (CC remained same as 0.899 on
SALICON validation set). Hence, we use the diagonal approximation in all the remaining experiments
on MDNSal.

As the number of gaussians(C) are also variable, we change the number of gaussians to understand
it’s impact. The results are presented in Table 3.4 and it is observed that using 32 Gaussians gives best
performance and thus we use the same number of mixtures in the later experiments.

3.2.4 Loss function

We define Negative log-likelihood (NLL) loss function to train the parameters of the Gaussians as
follows:
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No of Gaussians(C) CC KLdiv NSS AUC SIM

8 0.882 0.256 1.849 0.864 0.778

16 0.892 0.240 1.881 0.867 0.787

24 0.895 0.233 1.887 0.867 0.789

32 0.899 0.224 1.892 0.868 0.797

48 0.896 0.231 1.889 0.868 0.790

64 0.896 0.230 1.892 0.868 0.790

Table 3.4 MDNSal’s validation results on SALICON with various number of Gaussians

NLL(P,Q) = −
∑
i

qi log(pi + ε). (3.4)

Where i represents exhaustive sampling across spatial dimensions of the image, pi is the likelihood
of the sampled point to fit the distribution with C Gaussians, qi is the corresponding ground truth value
and ε is a small constant. pi is further defined as follows:

p(x;π, µ,Σ) =
C∑
c=1

πc
1√

(2πc)2|Σc|
e−

1
2

(x−µc)T Σc
-1(x−µc). (3.5)

Similar to SimpleNet we use a combination of NLL and CC for training MDNSal.

3.3 Training and Experimental Setup

Both SimpleNet and MDNSal are evaluated on three datasets SALICON, MIT300 and CAT2000.
Both the models are first trained on SALICON dataset which has 10000 training images and 5000 val-
idation images. As MIT has only 1003 images, 903 images are used to fine tune the models trained on
SALICON dataset and 100 images are used for validation. Similarly, CAT has 2000 images and 1800
images are used for training and 200 are used for validation. Both MIT and CAT are trained using cross
validation and the best model is chosen for test submission. Validation results of the three datasets on
both the models are in table 3.5.
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We resize the input images into 256x256 resolution for both the models. We train SimpleNet for 10
epochs with learning rate starting from 1e-4 and reducing it after 5 epochs. MDNSal is trained for 50
epochs with learning rate 1e-4. We use 32 Gaussians (C = 32) in MDNSal. Backpropagation was per-
formed using ADAM optimizer in both the networks. The model trained on SALICON was fine-tuned
using MIT1003 and CAT2000. We submitted the test results for SALICON to LSUN171 and MIT300
test results to MIT Saliency Benchmark2. We only present validation results on the CAT2000 dataset.
The test results comparison for both SALICON and MIT datasets can be seen in tables 3.6 and 3.7.

SimpleNet MDNSal

KLdiv CC AUC NSS SIM KLdiv CC AUC NSS SIM

SALICON 0.193 0.907 0.871 1.926 0.797 0.217 0.899 0.868 1.893 0.797

MIT1003 0.558 0.786 0.907 2.870 0.626 0.634 0.779 0.904 2.814 0.624

CAT2000 0.256 0.895 0.883 2.400 0.758 0.293 0.889 0.878 2.329 0.751

Table 3.5 Validation results on all three studied datasets

KLdiv↓ CC↑ AUC↑ NSS↑ SIM↑ IG↑ sAUC↑

EMLNET [21] 0.520 0.886 0.866 2.050 0.780 0.736 0.746

SAM-Resnet [12] 0.610 0.899 0.865 1.990 0.793 0.538 0.741

MSI-Net [28] 0.307 0.889 0.865 1.931 0.784 0.793 0.736

GazeGAN [9] 0.376 0.879 0.864 1.899 0.773 0.720 0.736

MDNSal (Ours) 0.221 0.899 0.865 1.935 0.790 0.863 0.736

SimpleNet (Ours) 0.201 0.907 0.869 1.960 0.793 0.880 0.743

Table 3.6 Our proposed models performance on the SALICON TEST(Red values represent the best and

blue represent the second best).

3.4 Comparison with state of the art

We quantitatively compare our models with state of the art on SALICON and MIT300 test sets. Ta-
ble 3.6 shows the results on the SALICON dataset in terms of KLdiv, CC, AUC, NSS, SIM, IG, and
sAUC metrics. SimpleNet gives consistent results on all seven metrics. It achieves the best perfor-
mance on five different metrics and outperforms state of the art by a large margin on KLdiv and IG. We

1http://salicon.net/challenge-2017/
2http://saliency.mit.edu
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KLdiv↓ CC↑ AUC↑ NSS↑ SIM↑ sAUC↑ EMD↓

EMLNET [21] 0.84 0.79 0.88 2.47 0.68 0.70 1.84

DeepGaze2 [32] 0.96 0.52 0.88 1.29 0.46 0.72 3.98

SALICON [19] 0.54 0.74 0.87 2.12 0.60 0.74 2.62

DPNSal [41] 0.91 0.82 0.87 2.41 0.69 0.74 2.05

DenseSal [40] 0.48 0.79 0.87 2.25 0.67 0.72 1.99

DVA [54] 0.64 0.68 0.85 1.98 0.58 0.71 3.06

MDNSal (Ours) 0.47 0.78 0.86 2.25 0.67 0.71 1.96

SimpleNet (Ours) 0.42 0.79 0.87 2.30 0.67 0.71 2.06

Table 3.7 Our proposed models performance on the MIT Saliency Benchmark.

are third-best in NSS metric; however, if crucial, that can be compensated by adding an NSS loss, as
indicated in the ablation studies. Although parametric, surprisingly, MDNSal also gives competent per-
formance across various metrics (only second to SimpleNet on four metrics). SimpleNet and MDNSal
also achieve state of the art performance on MIT300 test dataset, as shown in Table 3.7. SimpleNet gives
the best results on KLdiv and is competent in all other metrics. MDNSal gives a similar performance
with the second-best results on KLdiv and EMD.

The work by [7] recommends CC as one of the ideal metrics to report, as it makes limited as-
sumptions about input format and treats both false positives and negatives symmetrically. They further
suggest KL and IG as good choices concerning benchmark intended to evaluate saliency maps as prob-
ability distributions. Both our models give a leading performance on KLdiv and CC on both MIT300
and SALICON test sets, which makes them an ideal choice for the task of saliency prediction.

We qualitatively compare results of the proposed models with other state of the art methods. The
results on couple of images from MIT300 test dataset are shown in Figure 3.6. The ground truth images
are chosen from the carefully curated set in [8]. Our model performs well both in terms on coverage
(predicting all the salient regions), accurate localization and the relative order of importance.

3.5 Ablation Analysis

We examine the effects of (a) changing the input feature, (b) using different combinations of the loss
function, and (c) the significance of hierarchy. The analysis is made using SimpleNet model on SAL-
ICON validation set. Table 3.3 illustrates the results by varying the pre-trained network for the input
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Figure 3.6 Examples of predicted saliency maps. Both images are taken from MIT300 test set and

ground truth images are taken from [8]. We compare results of the proposed SimpleNet and MDNSal

models with other state of the art approaches. First row (action): SimpleNet and MDNSal accurately

predicts both the person’s face and where he is looking (indicated by yellow boundary). In contrast

other models miss out on either the action or the face. Second row (Faces with relative importance): our

model gives accurate localization on all three faces and preserves relative importance.

feature component. PNASNet-5 achieves the best overall results and is used as the backbone for all the
following experiments. Ablation results by adding CC and NSS to the KLdiv loss are presented in Ta-
ble 3.2. Adding CC improves the performance over just using KLdiv loss (on both KL and CC metrics).
Higher performance on the NSS metric can be achieved by adding an NSS term to the loss; however, it
brings minor reductions in the KLdiv and CC metric. To keep things minimal, we use KLdiv+CC loss
for later experiments.

We also explore the significance of multi-level integration by learning SimpleNet by just using the
last conv layer of PNASNet-5. The CC drops to 0.89 from 0.907, and KLdiv increases to 0.22 from
0.193, indicating the importance of multi-level integration. Finally, the results of the validation set on
all three datasets are presented in Table 3.5. We also explore the optimiser influence in training and
explore three different optimisers Adabound, Adamod, and Adam. Adam is fixed for training as per
table 3.8
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We perform another set of experiments on MDNSal. The first ablation experiment is aimed to under-
stand the impact of changing the number of Gaussians(C). The results are presented in Table 3.4 and it is
observed that using 32 Gaussians gives best performance and thus we use the same number of mixtures
in the later experiments. As next experiment, we relax the constraint of only predicting the diagonal
values of the covariance matrix. We predict the full covariance matrix with positive-definite constraints,
which is necessary to compute the loss. To enforce this constraint we adopt the method by [13], where
we predict lower triangular matrix(L) and get covariance matrix using A = LLT and Σ−1 = A. Using
full covariance matrix however did not give any visible improvements (CC remained same to 0.899 on
SALICON validation set). Hence, we use the diagonal approximation in all the remaining experiments
on MDNSal.

optimiser CC KLdiv NSS

Adabound 0.9017 0.209 1.9303

Adamod 0.9042 0.2072 1.9277

Adam 0.907 0.193 1.926

Table 3.8 SimpleNet’s validation results on SALICON different optimisers
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Chapter 4

Video Saliency

This chapter aims in extension of image saliency to videos, explore the work that has been done,
datasets used and experiments we have done. Unlike saliency prediction in images, videos have extra
information like temporal aspect and audio which should be considered to achieve better results.

The below sections 4.1 talks about the datasets, 4.2 discusses various work that has been done and
4.3 talks about the experiments done on video saliency.

4.1 Datasets

There are two main datasets available for video saliency.

4.1.1 DHF1K

It contains 1000 videos with diverse content and length with eye-tracking annotations from 17 ob-
servers(10 males and 17 females) [55]. Each video is 30 fps with 640x360 spatial resolution. In total
DHF1K has 582,605 frames with total duration of 19,420 seconds. The dataset is mainly classified into
7 categories which include human(daily activities, sports, social activities and art), animal, artifact and
scenery. The dataset is split into 600 training, 100 validation and 300 test videos.

4.1.2 Hollywood

Hollywood movie dataset [38] has 1707 action videos. It contains 12 classes: answering phone,
driving a car, eating, fighting, getting out of a car, shaking hands, hugging, kissing, running, sitting
down, sitting up and standing up [37]. These actions are collected from a set of 69 Hollywood movies.
The data set is split into a training set of 823 sequences and a test set of 884 sequences. There is no
overlap between the 33 movies in the training set and the 36 movies in the test set. The data set consists
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of about 487k frames, totaling about 20 hours of video.

4.1.3 UCF Sports

UCF Sports [45, 49] dataset consists of a set of actions collected from various sports which are
typically featured on broadcast television channels. The dataset includes a total of 150 sequences with
the resolution of 720 x 480. It includes 10 actions i.e diving, golf swing, kicking, lifting, riding horse,
running, skateboarding, swing-bench, swing-side, walking.

4.2 Related Work

Recently there has been lot of work on video saliency. Some works relied on optical flow and
LSTM [17] based networks. STSConvNet [1] uses two stream network and processes spatial and tem-
poral streams independently, with temporal features extracted using optical flow. OM-CNN [22] first
extracts spatial and temporal features from YOLO [44] and FlowNet [14] subnets, which represent ob-
jectness and motion respectively, and feed them into a twolayer LSTM. RMDN [2] extracts spatio-
temporal features using C3D [52] whose output becomes the input of a LSTM network. Then a linear
layer projects the LSTM representation to the parameters of a Gaussian mixture model. ACL-Net [55]
has attention modelling where attention is trained on static saliency data(SALICON). It uses attention
and learns temporal information using LSTM.

SalEMA and SalCLSTM are proposed in [34], by modelling and comparing temporal part differ-
ently. The architecture follows an encoder-decoder adopted from SALGAN [42] and processes the
temporal recurrence. The temporally aware component into the SalBCE network. This is either the
addition of a ConvLSTM layer or an exponential moving average (EMA) applied on a pre-existing
convolutional layer. Tased-Net [39] also uses encoder decoder architecture where encoder is S3D [56]
trained on kinetics dataset [25] and uses auxilary pooling for unpooling layers in the decoder.

4.3 Experiments

4.3.1 Experiment 1

This experiment is to use image saliency prediction for videos by learning temporal information by
using LSTM(Long Short Term Memory) Network. LSTM has input gate(it), forget gate(ft), output
gate(ot), cell state(ct) and hidden state(ht). At each time stamp t LSTM takes the previous cell state
ct−1, hidden state ht−1 and outputs current cell state(ct) and hidden state(ht).
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Figure 4.1 LSTM Cell

The following are the equations( 4.1) showing computations of LSTM cell.

ft = σg(Wfxt + Ufhf + bf )

it = σg(Wixt + Uiht + bi)

ot = σg(Woxt + Uohf + bo)

ct = ft · ct−1 + σc(Wcxt + Ucht−1 + bc)

ht = ot · σh(ct)

(4.1)

This model has SimpleNet with LSTM [17] before the last convolutional layer. LSTM will have
256x256x128 channel input from SimpleNet and output of LSTM will have same resolution. The last
convolutional layers after LSTM reduces the channel dimension to one. A set of 32 frames are sent each
time covering all the frames in all videos for training. The loss function used for training this model is
KLdiv.

4.3.2 Experiment2

This is encoder decoder based architecture with 3D convolutional layers. The encoder is S3D [56]
model which is trained for action classification on kinetics dataset. Kinectics dataset is collected
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Figure 4.2 This architecture has LSTM after some decoder layers of SimpleNet.

from youtube videos and has 240k samples and 400 classes. S3D has been trained on mini kinec-
tics dataset [25] which has 80k samples and 200 classes with each class having 200 samples.

The architecture in figure 4.3 is inspired from TasedNet [39]. Encoder blocks i.e base1, base2,
base3 and base4 consists of set of convolutional layers and pooling layers to reduce the dimension of
the frames and extract features. Decoder blocks i.e., Convspts(1,2,3,4) consists of transpose convolu-
tions and increases the spatial size of the features. Each decoder layer has an input of previous decoder
layer concatenated with the corresponding spatial dimension features from the encoder blocks, with
concatenation along the time dimension.

Figure 4.3 Experiment 2 takes 32 frames as input and gives output as one frame for the 32nd frame.

Base 1,2,3 and 4 are from S3D model and Convspts are decoder blocks

Exp2 takes 32 frames as input and outputs one frame which corresponds to the output of 32nd frame
in the input. So, all the saliency maps for a video are generated by sliding window fashion. During
training, A set of 32 consecutive frames are selected from random start point from all the videos for

31



every epoch. The loss function used for training this model is KLdiv

Model CC KLdiv NSS

Tased-Net 0.481 2.465 2.706

Exp1 0.457 2.214 2.584

Exp2 0.507 1.956 2.613

Table 4.1 Validation results on DHF1K dataset

Experiment 2 has shown better results than Experiment 1 as shown in the table 4.1. Exp2 after
adding skip connections performed better than Tased-Net in CC and KLdiv.
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Chapter 5

Conclusions

In this thesis, we identify four key components of the saliency detection architectures and analyze
how the previous literature has approached the individual components. The analysis helps to explore
agreements, redundancies, gaps, or need for optimization over these components. Using that as a basis,
we propose two novel architectures called SimpleNet and MDNSal. SimpleNet improves upon the
encoder-decoder architectures, and MDNSal opens up a new paradigm of parametric modeling. Both
models are devoid of complexities like prior maps, multiple input streams, or recurrent units and still
achieve the state of the art performance on public saliency benchmarks. Our work suggests that the way
forward is not necessarily to design more complex architectures but a modular analysis to optimize each
component and possibly explore novel (and simpler) alternatives.
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