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Abstract

‘Our most advanced machines are like toddlers when it comes to sight.’ 1 When shown a tennis
video to kid, he mostly probably would blabber words like ‘tennis’, ‘racquet’, ‘ball’ etc. Similar is the
case with present day state-of-art video understanding algorithms. We in this work try to solve one such
multimedia content analysis problem – ‘How to get machines go beyond object and action recognition
and make them understand lawn tennis video content in a holistic manner ?’. We propose a multi-facet
approach to understand the video content as a whole - (a) Low level Analysis: Identify and isolate court
regions and players (b) Mid Level Understanding: Recognize players actions and activities (c) High
Level Annotations: Generate detailed summary of event comprising of information from full game play.

Annotating visual content with text has attracted significant attention in recent years. While the focus
has been mostly on images, of late few methods have also been proposed for describing videos. The
descriptions produced by such methods capture the video content at certain level of semantics. However,
richer and more meaningful descriptions may be required for such techniques to be useful in real-life
applications. We make an attempt towards this goal by focusing on a domain specific setting – lawn
tennis videos. Given a video shot from a tennis match, we intend to predict detailed (commentary-like)
descriptions rather than small captions. Rich descriptions are generated by leveraging a large corpus
of human created descriptions harvested from Internet. We evaluate our method on a newly created
tennis video data set comprising of broadcast video recordings of matches from London Olympics
2012. Extensive analysis demonstrate that our approach addresses both semantic correctness as well
as readability aspects involved in the task.

Given a test video, we predict a set of action/verb phrases individually for each frame using the fea-
tures computed from its neighbourhood. The identified phrases along with additional meta-data are used
to find the best matching description from the commentary corpus. We begin by identifying two players
on the tennis court. Regions obtained after isolating playing court regions assist us in segmenting out
the candidate player regions through background subtraction using thresholding and connected com-
ponent analysis. Each candidate foreground region thus obtained is represented using HOG descriptors
over which a SVM classifier is trained to discard non-player foreground regions. The candidate player
regions thus obtained are used to recognize players using using CEDD descriptors and Tanimoto dis-
tance. Verb phrases are recognized, by extracting features from each frame of input video using sliding
window. Since this typically results into multiple firings, non-maximal suppression (NMS) is applied.

1Fei-Fei Li
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This removes low-scored responses that are in the neighbourhood of responses with locally maximal
confidence scores. Once we get potential phrases for all windows along with their scores, we remove
the independence assumption and smooth the predictions using an energy minimization framework. For
this, a Markov Random Field (MRF) based model is used which captures dependencies among nearby
phrases. We formulate the task of predicting the final description, as an optimization problem of se-
lecting the best sentence among the set of commentary sentences in corpus which covers most number
of unique words in obtained phrase set. We even employ Latent Semantic Indexing (LSI) technique
while matching predicted phrases with descriptions and demonstrate its effectiveness over naı̈ve lexical
matching. The proposed pipeline is benchmarked against state-of-the-art methods. We compare our
performance with recent methods. Caption generation based approaches achieve significantly low score
owing to their generic nature. Compared to all the competing methods, our approach consistently pro-
vides better performance. We validate that in domain specific settings, rich descriptions can be produced
even with small corpus size.

The thesis introduces a method to understand and describe the contents of lawn tennis videos. Our
approach illustrates the utility of simultaneous use of vision, language and machine learning techniques
in a domain specific environment to produce human-like descriptions. The method has direct extensions
to other sports and various other domain specific scenarios. With deep learning based approaches be-
coming a de-facto standard for any modern machine learning task, we wish to explore them for present
task in future augmentations. The flexibility and power of such structures have made them outperform
other methods in solving some really complex vision problems. Large scale deployments of combi-
nation of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have already
surpassed other comparable methods for real time image summarization. We intend to exploit the power
of such combined structures in VIDEO TO TEXT regime and generate real time commentaries for the
game-videos as one of the proposed future extensions.
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Chapter 1

Introduction

‘If we want our machines to think, we need

to teach them to see and understand.’Fei-Fei

Li, Stanford AI Lab

WIRED, April’15

‘IN, Winner: Djokovic!!! Monaco goes for a out-wide serve, Djokovic works a backhand return,
hard fought rally, Monaco forehand goes outside the court.’ The ease with which a human describes
an ongoing game scene (lawn tennis in this case) still remains unmatched with present day state-of-art
vision and machine learning algorithms. Multitude of algorithms running behind the scene still find it
difficult to achieve such ‘human like’ details in the text they generate describing the given scene. This
work takes a step towards smart vision for ‘videos’ and propose a pipeline comprising of vision, learn-
ing and language algorithms to generate descriptions for ‘lawn-tennis’ videos. It is indeed challenging
to develop a generic approach for such tasks. We hence are confined to a specific domain and focus on
generating fine grained and rich descriptions for tennis videos. We address the problem of automatically
generating human-like descriptions for unseen videos, given a collection of videos and their correspond-
ing human-generated descriptions. Here, we present a method which simultaneously utilizes the visual
clues, corpus statistics and the available text to construct final commentary like textual descriptions.

Videos convey visual information of scene bounded by temporal ordering. They tend to hold abun-
dance of information which needs to be catered by underlying algorithm to generate natural text. Com-
puter vision for long has strived to design such algorithms, with an ultimate goal of generic multimedia
(image/video) understanding. To date much of the video understanding has been tackled by object and
subject detection, but it does not cater to holistic needs for full video content. Only a limited content of
videos are summarized by such approach, leading to ‘machine like’ or ‘robotic’ description generation
for the scene. We tackle the challenge of natural description generation for videos by adding a new
dimension of fine-grained action recognition over object and subject recognitions. We present a com-
prehensive set of experiments and results to prove the effectiveness of constrained setting on quality of

1



Figure 1.1: Sport Analysis in Soccer: Real-time football analysis include automatic game summariza-
tion, player tracking, highlight extraction etc.

descriptions. Ours is a supervised learning method that considers video-text associations to generate the
commentary. We generate richer description for videos through a retrieval based approach.

With the amount of video data growing rapidly on the web, one has to resort to the techniques that
analyse these videos and index them for human consumption. We need to develop methods that assist
us in fine grained video analysis. Such methods should impart semantic meanings and associations
among identified events in the video and generate better insights for the overall video content. Talking
in terms of text based video understanding, the final descriptions generated for a given video should be
a culmination of smaller but related texts (each smaller text describing an event). This project looks
at the ways to identify the salient events in a given video, describe them and finally generate a holistic
text combining all the event information to describe the full video. We analyse and study various video
features and text features to learn the associating models and exploit the complimentary nature of the
‘pixels’ in videos and the ‘characters’ in text to generate our final description. The challenges associated
with our present work can be summarized as – (a) generate a rich vocabulary to create ‘human like’
descriptions. (b) use appropriate video features to capture maximum video information. (c) exploit
domain information to reproduce most effective description.

This project has direct significance to various tasks that access videos and their textual descriptions
simultaneously – video search, browsing, question-answer system, commercial applications such as
tennis coaching (‘virtual assistance’) and societally important applications such as assistance for the
blind. Additionally, the outputs of this work, have potential for cross impact on both computer vision
and natural language communities.

1.1 Computer Vision and Language Processing

With recent technological advancements we have witnessed a sudden surge in image and video con-
tent on-line. Millions of images and more than hundred hours of video get uploaded on daily basis.
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Figure 1.2: Sport Analysis in Ice-Hockey: Player recognition and tracking on field.

This huge chunk of data is mostly left untagged and unlabelled on web space with no semantic associ-
ations. This gives us huge opportunity to discover the automated methods to add semantic descriptions
to available multimedia content. Although there has been much progress in developing theories, models
and systems in the areas of Natural Language Processing (NLP) and Vision Processing (VP), there has
heretofore been little progress on integrating these two subareas of Artificial Intelligence (AI). We focus
on one such integration – we generate commentary like description for lawn tennis videos. Describing
the visual content with natural language labels have attracted large number of people in vision commu-
nity. While majority of the work has been done in image domain, works related to video descriptions
are still in nascent stages. However, even for simple videos automatically generating such descriptions
may be quite complex, thus suggesting the hardness of the problem.

Figure 1.3: Sport Analysis in snooker and volley ball: (Left) Analysis of shot trajectories and stroke
analysis in snooker. (Right) Player identification and action recognition in volley-ball.
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Figure 1.4: Sport Analysis in Cricket: Temporal segmentation and annotation of actions with semantic
descriptions.

1.2 Sports Video Analysis

Sports content is easily one of the most popular new age infotainment content available on web.
Due to its mass appeal and massive popularity across the globe there has been a tremendous growth in
the areas of sports video analysis. Volleyball [78, 79], basketball [68, 48] ,cricket [66], handball [28],
snooker [67],ice-hockey [53], football [89] etc. all major sporting events are being analysed and studied
in great depth. High amenability to automatic video analysis processing has made sport analyses a pop-
ular genre in vision and machine learning community. Areas like performance assessments, which were
previously mainly of interest to coaches and sports scientists are now finding applications in broadcast
and other mainstream media applications. Driven by the increase in use of on-line sports viewing tools
detailed performance statistics in every sports is just a click away from viewers. Enormous commercial
investments with humongous viewer-ship involved sport analyses has poured in tons of opportunities
for researchers and data experts.

A significant amount of resources are been channelled into sports in order to improve understanding,
performance and presentation. Computer vision and Machine Learning have recently began playing
an important and indispensable role in sports – real-time football analysis [Figure 1.1], annotations in
cricket [Figure 1.4], player recognition and tracking in handball, game analysis of ice-hockey[Figure 1.2],
shot detections in volleyball [Figure 1.3] and much more. Computer vision algorithms have a huge po-
tential ranging from automatic annotation of broadcast footage, through to better understanding of sport
injuries, and enhanced viewing etc. So far the use of computer vision in sports has been scattered
between different disciplines.

From viewers point of view, only few portions in game are interesting. These parts of video often
have associated high-level concepts, such as goals in soccer, point in tennis, homerun in baseball games
etc. . The detection and extraction of such events are termed as ‘semantic analysis’ of sports video. It
aims at detecting and extracting information that describes facts in a video. In contrast, we also have
‘tactic analysis’ of sports video which aims to recognize and discover tactic patterns and match strategies
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Figure 1.5: For a test video, the description predicted using our approach is dense and human-like.
Above figure demonstrates our approach – a) Player Identification b) Verb Phrase Prediction c) Descrip-
tion Generation

in sport videos. This kind of analysis is more focused on coaches and team staff. Computer vision and
machine learning in sports is gradually attracting the attention of large sports associations. Baseball
team ‘Boston Red Sox’ and football club ‘AC Milan’ were among the first few organizations that started
to apply such methodologies for sports analysis. Appropriate use of large amounts of video and other
data available to sports organizations led to growth of this field. Application of such analysis could
lead to better overall team performance by analysing player behaviors in varied situations, determining
their individual impact, revealing the opponent’s tactics and pointing possible weaknesses in play etc.
. While the use of advance machine learning, statistics and data mining in decision making is certainly
an improvement over present day semi-automated works but it comes with its own set of challenges and
inhibitions. We in our present work focus our attention to understand the game of lawn tennis using
vision based approaches and generate a text ‘commentary’ that best describes the input scene.

1.3 Contributions

We propose an approach which explicitly splits the problem of analysis and understanding lawn ten-
nis videos into first ‘action localization’ for player identification followed by ‘verb phrase recognition’
for fine grained action classification. A retrieval based approach is thereafter used for final description
generation. To this end we make following notable contributions:
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(i) New Dataset: release of a new dataset comprising of over 1000 lawn tennis game and com-
mentary aligned videos for public consumption 1. The dataset even comprises of over 400K unaligned
commentary text lines.

(ii) Content Analysis – Player and Court Recognition: use of domain information for action lo-
calization and player identification.

(iii) Fine grained action recognition: use of action trajectories for recognizing lawn tennis actions
and representing them with ‘verb phrases’. Our main contributions in this direction are – (a) joint model
to assign video frames into appropriate phrase bins under weak label supervision. (b) probabilistic label
consistent dictionary learning for sparse modelling and classification.

(iv) Commentary Generation for lawn tennis: use of action phrases for fine grained retrieval
which assists in creation of florid and verbose commentary text.

We demonstrate that in a domain restrictive setting, limited number of labelled video data is sufficient
enough to generate rich descriptions for a new input video. We exploit the untapped potential of group of
pre-trained weak-classifiers and leverage the hidden information of parallel (but related) text to produce
human like descriptions for video inputs.

1.4 Thesis Outline

In our present work, we address the problem of analysing and understanding the contents of an input
lawn tennis video. Chapter 2 introduces the technical background needed for the later sections of the
thesis. We begin by formally defining our problem statement in Chapter 3 and introduce a new ‘lawn
tennis’ dataset. The new dataset has been publicly released for the community. Chapter 4 deals with
identification and localization of active action zones (players), Figure 1.5(a), in the video which act
like a precursor for fine grained action recognition in subsequent chapters. Chapter 5 describes a novel
‘verb phrase’ recognition module, Figure 1.5(b). Action verb phrases thus identified are used for final
description generation using a retrieval based approach, Figure 1.5(c), in Chapter 6. Chapter 6 also deals
in comparisons with other present state of art methods and demonstrates the effectiveness of our method
over others. We conclude with a short discussion and future directions of our work in Chapter 7

1http://cvit.iiit.ac.in/research/projects/cvit-projects/fine-grained-descriptions-for-domain-specific-videos
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Chapter 2

Background

In this chapter, we briefly discuss the machine learning, vision and text analysis tools which have
been used in the thesis. In Section 2.1, we look at the popular linear as well as non-linear feature
extraction strategies used for most of the upcoming tasks. Section 2.2, describes various classification
techniques used for both phrase detections and player identification. The penultimate section describes
the optimization techniques to compute the best commentary text for an input video clip. We end the
chapter by describing evaluation techniques used for both quantitative and qualitative analysis.

2.1 Feature Extraction

Feature extraction begins from an initial set of measured data and builds derived values (features)
intended to be informative and non-redundant, facilitating the learning and generalization, and in some
cases leading to better human interpretations. In (majority of) cases it is related to dimensionality re-
duction and involves reducing the amount of resources required to describe a large set of data. Feature
extraction is a general term of constructing combinations of the variables to create a succinct represen-
tation and to get around the problems of large memory and power requirements while still describing
the data with sufficient accuracy. The extracted features are expected to contain the relevant informa-
tion from the input data, so that the desired task can be performed by using this reduced representation
instead of the complete initial data.

2.1.1 HOG - Histograms of Oriented Gradients

Detecting humans in tennis videos is a challenging task owing to the variability in appearances and
poses. We need a robust feature set that allows the human form to be discriminated cleanly, even in
cluttered backgrounds under difficult illumination. Histogram of oriented gradients HOG is a feature
descriptor [11] used to detect objects in computer vision and image processing. The HOG descriptor
technique counts occurrences of gradient orientation in localized portions of an image - detection win-
dow, or region of interest. The HOG descriptors are reminiscent of edge orientation histograms SIFT
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Figure 2.1: Visualization of HOG descriptors: (a) Down Player (b)Up Player (c) No Player

descriptors and shape contexts, but they are computed on a dense grid of uniformly spaced cells and
they use overlapping local contrast normalizations for improved performance.

HOG divides the input image into square cells of size ‘cellSize’, fitting as many cells as possible,
filling the image domain from the upper-left corner down to the right one. For each row and column,
the last cell is at least half contained in the image. Then the image gradient is computed by using
central difference (for colour image the channel with the largest gradient at that pixel is used). The
gradient is assigned to one of 2×numOrientations orientation in the range [0, 2π). Contributions are
then accumulated by using bilinear interpolation to four neigbhour cells, as in Scale Invariant Feature
Transform SIFT. This results in an histogram hd (of dimension 2 × numOrientations) of directed
orientations. It accounts for the direction as well as the orientation of the gradient. A second histogram
hu of undirected orientations of half the size is obtained by folding hd into two.

Let a block of cell be a 2×2 sub-array of cells. Let the norm of a block be the l2 norm of the stacking
of the respective unoriented histogram. Given a HOG cell, four normalisation factors are then obtained
as the inverse of the norm of the four blocks that contain the cell. Each histogram hd is copied four times,
normalised using the four different normalisation factors, the four vectors are stacked, saturated at 0.2,
and finally stored as the descriptor of the cell. This results in a numOrientations× 4 dimensional cell
descriptor. Blocks are visited from left to right and top to bottom when forming the final descriptor.

2.1.2 CEDD - Color and Edge Directivity Descriptor

This feature is called ‘Color and Edge Directivity Descriptor’ and incorporates color and texture in-
formation in a histogram. CEDD size is limited to 54 bytes per image, rendering this descriptor suitable
for use in large image databases. One of the most important attribute of the CEDD is the low computa-
tional power needed for its extraction.

To make detection resilient to lighting, occlusion and direction our framework extracts monocular
cues, viz. color and texture features, from each candidate object and stores in the form of histogram-
Color and Edge Directivity Descriptor (CEDD) [6]. The size of histogram is 144 bins with each bin
represented by 3 bits (144 × 3 = 432bits). The histogram is divided into 6 regions, each determined
by the extracted texture information. Each region is further divided into 24 individual sub regions,
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Figure 2.2: CEDD Histogram: Each Image Block feeds successively all the units. Color unit extracts
color information and Texture unit extracts texture information. The CEDD histogram is constituted
by 6 regions, determined by the Texture Unit. Each region is constituted by 24 individual regions,
emanating from the Color Unit.

with each sub region containing color information 6 × 24 = 144. The HSV color channel is provided
as input to fuzzy system to obtain color information. The texture information is composed of edges
characterized as vertical, horizontal, 45o, 135o and non-directional, more details in [6]. This histogram
is used as feature vector to describe the candidate object (player candidate regions in present case) and
provided as input to the learning framework, figure 2.2.

2.1.3 Dense Trajectories

In our present work we employ dense trajectories for action recognition [80].The trajectories are
obtained by tracking densely sampled points using optical flow fields. The number of tracked points
can be scaled up easily, as dense flow fields are already computed. Furthermore, global smoothness
constraints are imposed among the points in dense optical flow fields, which results in more robust
trajectories than tracking or matching points separately. Dense trajectories [80, 81] are extracted for
multiple spatial scales, figure 2.3. Feature points are sampled on a grid spaced by W pixels and tracked
in each scale separately. Each point in a frame is tracked to the next frame by median filtering in a dense
optical flow field. Once the dense optical flow field is computed, points can be tracked very densely
without additional cost. Points of subsequent frames are concatenated to form a trajectory. The length
of a trajectory is limited to L frames to avoid problem of drift. As soon as a trajectory exceeds L, it is
removed from the tracking process. The shape of a trajectory encodes local motion patterns and thus
assists in identifying actions.

Motion is the most informative cue for action recognition. It can be due to the action of interest,
but also be caused by background or the camera motion. This is inevitable when dealing with realistic
actions in uncontrolled settings. To overcome the problem of camera motion, [80] introduced a local
descriptor that focuses on foreground motion. The descriptor extends the motion coding scheme based
on motion boundaries developed in the context of human detection to dense trajectories. Moreover, in
game of ‘lawn tennis’ the camera motion is negligible after the onset of ‘serve’.
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Figure 2.3: Dense Trajectories: Feature points are sampled densely for multiple spatial scales and
tracking is performed in the corresponding spatial scale over L frames. Trajectory descriptors are based
on its shape represented by relative point coordinates as well as appearance and motion information over
a local neighborhood of N ×N pixels along the trajectory. The trajectory neighborhood is divided into
a spatio-temporal grid of size nσ × nσ × nτ

The motion information in dense trajectories are included by computing descriptors within a space-
time volume around the trajectory. The size of the volume is N × N pixels and L frames. To embed
structure information in the representation, the volume is subdivided into a spatio-temporal grid of size

For each trajectory descriptors comprise of Trajetory, HOG (Histogram of Oriented gradients), HOF

(histograms of optical flow) and MBH (motion boundary histogram). HOG captures static appearance
information and HOF, MBH measure motion information based on optical flow. The final dimension
of descriptors are 30 for Trajectory, 96 for HOG, 108 for HOF and 192 for MBH (quantizes derivatives
into horizontal and vertical component - MBHx and MBHy). For both HOF and MBH descriptors, the
dense optical flow that is already computed to extract dense trajectories is reused. This makes feature
computation process very efficient.

2.1.4 Text Features

Text Analysis is a one of the major application field for machine learning algorithms. Most of the
machine learning algorithms expect numerical feature vectors with a fixed size rather than the raw text
documents with variable length. So an essential task to generate such features is core of text processing.
Vectorization is the term of the general process of turning a collection of text documents into numerical
feature vectors. This strategy comprising of tokenization, counting and normalization is called the Bag
of Words or ‘Bag of n-grams’ representation in text domain. Documents (in our case commentaries and
phrases) are described by word occurrences while completely ignoring the relative position information
of the words in the document. Tokenizing refers to giving an integer id for each possible token, for in-
stance by using white-spaces and punctuation as token separators. Counting refers to frequency count
of the occurrences of tokens in each document. Normalizing and weighting with diminishing impor-
tance tokens that occur in the majority of samples and documents is key for text feature computation.
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In a large text corpus, frequently occurring words (e.g. ‘the’, ‘a’, ‘is’ in English) hence carry very
little meaningful information about the actual contents of the document. If we were to feed the direct
count data directly to a classifier those very frequent terms would shadow the frequencies of rarer yet
more interesting terms. In order to re-weight the count features into floating point values suitable for
usage by a classifier it is very common to use the TFIDF transform. Tf means term-frequency while
TFIDF means term-frequency times inverse document-frequency. This was originally a term weighting
scheme developed for information retrieval (as a ranking function for search engines results), that has
also found good use in document classification and clustering.

The term frequency is the term count within a document divided by the number of words in that
document ):

tf(t, d) =
count(t), t ∈ d

|d|
(Term frequency of term t, document d)

A term’s document frequency is the count of documents containing that term divided by the total
number of documents (probability of seeing t in a document):

df(t,N) =
|{di : t ∈ di, i = 1..N}|

N
(Document frequency of t in N documents)

In order to attenuate the TFIDF scores for terms with high document frequencies, we need the doc-
ument frequency in the denominator:

tfidf(t, d,N) =
tf(t, d)

df(t,N)
(First approximation to TFIDF)

This formula is meaningful but gives a poor term score because the document frequency tends to
engulf the term frequency in the numerator so we take the log of the denominator first.

tfidf(t, d,N) = tf(t, d)× log(
1

df(t,N)
) (TFIDF with attenuated document frequency)

To prevent division by 0 errors when a term does not exist in a corpus (e.g., df(t,N) = 0 when
we pass unknown term(s) t), we add 1 to the denominator. This is similar to additive smoothing and
pretends that there is an imaginary document with every unknown word. To keep document frequencies
in [0..1], we can to bump the document count, N , as well.

df(t,N) =
|{di : t ∈ di, i = 1..N}|+ 1

N + 1
(df with smoothing)

2.2 Classification

The term ‘classification’ in machine learning is the problem of identifying the category (or class) to
which a new observation belongs, on the basis of a training set of data containing observations whose
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category membership is known. It is considered an instance of supervised learning, i.e. learning where
a training set of correctly identified observations is available. The individual observations are converted
into a set feature vectors and thereafter classified into respective category using pre-trained models. An
algorithm that implements classification is known as a classifier. Its a mathematical function that maps
input data to a category.

2.2.1 SVM - Support Vector Machines

Given a setK of training samples from two lineally separable classes P and N: {(xk, yk), k = 1, · · · ,K},
where yk ∈ {1,−1} are class labels. We find a hyper-plane in terms of w and b, that linearly separates
the two classes. For a decision hyper-plane xTw + b = 0 to separate the two classes P (xi, 1) and N
(xi,−1), it should satisfy

yi(x
T
i w + b) ≥ 0

for both xi ∈ P and xi ∈ N . Among all such planes satisfying this condition, we find the optimal one
that separates the two classes with the maximal margin (the distance between the decision plane and the
closest sample points).

The optimal plane should be in the middle of the two classes, so that the distance from the plane to
the closest point on either side is the same. We define two additional planesH+ andH− that are parallel
to H0 and go through the point closest to the plane on either side:

xTw + b = 1, and xTw + b = −1

All points xi ∈ P on the positive side satisfy xTi w + b ≥ 1, yi = 1 and all points xi ∈ N on the
negative side satisfy xTi w + b ≤ −1, yi = −1. These can be combined into one inequality:

yi(x
T
i w + b) ≥ 1, (i = 1, · · · ,m)

The equality holds for those points on the planes H+ or H−. Such points are called support vectors, for
which xTi w + b = yi i.e., the following holds for all support vectors:

b = yi − xTi w = yi −
m∑
j=1

αjyj(x
T
i xj)

Moreover, the distances from the origin to the three planes H−, H0 and H+ are, respectively, |b −
1|/||w||, |b|/||w||, and |b + 1|/||w||, and the distances between planes H− and H+ is 2/||w||, which
is to be maximized. Now the problem of finding the optimal decision plane in terms of w and b can be
formulated as:

minimize
1

2
wTw =

1

2
||w||2 (objective function)

subject to yi(x
T
i w + b) ≥ 1, or 1− yi(xTi w + b) ≤ 0, (i = 1, · · · ,m)
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This QP problem is solved by Lagrange multipliers method to minimize

Lp(w, b, α) =
1

2
||w||2 +

m∑
i=1

αi(1− yi(xTi w + b))

with respect to w, b and the Lagrange coefficients αi ≥ 0 (i = 1, · · · , αm). We let

∂

∂W
Lp(w, b) = 0,

∂

∂b
Lp(w, b) = 0

These leads, respectively, to

w =
m∑
j=1

αjyjxj , and
m∑
i=1

αiyi = 0

Substituting these two equations back into the expression of L(w, b), we get the dual problem (with
respect to αi) of the above primal problem:

maximize Ld(α) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
T
i ,xj

subject to αi ≥ 0,

m∑
i=1

αiyi = 0

Solving this dual problem (an easier problem than the primal one), we get αi, from which w of the
optimal plane can be found. Those points xi on either of the two planes H+ and H− (for which the
equality yi(wTxi + b) = 1 holds) are called support vectors and they correspond to positive Lagrange
multipliers αi > 0. The training depends only on the support vectors, while all other samples away
from the planes H+ and H− are not important.

For a support vector xi (on the H− or H+ plane), the constrained condition is yi
(
xTi w + b

)
=

1 , (i ∈ sv). Here, sv is a set of all indices of support vectors xi (corresponding to αi > 0). Substituting

w =

m∑
j=1

αjyjxj =
∑
j∈sv

αjyjxj

we get
yi(
∑
j∈sv

αjyjx
T
i xj + b) = 1

For the optimal weight vector w and optimal b, we have:

||w||2 = wTw =
∑
i∈sv

αiyix
T
i

∑
j∈sv

αjyjxj =
∑
i∈sv

αiyi
∑
j∈sv

αjyjx
T
i xj

=
∑
i∈sv

αi(1− yib) =
∑
i∈sv

αi − b
∑
i∈sv

αiyi

=
∑
i∈sv

αi
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The last equality is due to
∑m

i=1 αiyi = 0 shown above. The distance between the two margin planes
H+ and H− is 2/||w||, and the margin, the distance between H+ (or H−) and the optimal decision
plane H0, is

1

||w||
=

(∑
i∈sv

αi

)−1/2

2.2.1.1 Kernel Mapping: Non-Linear Case

The algorithm above converges only for linearly separable data. If the data set is not linearly separa-
ble, we can map the samples x into a feature space of higher dimensions:

x −→ φ(x)

in which the classes can be linearly separated. The decision function in the new space becomes:

f(x) = φ(x)Tw + b =
m∑
j=1

αjyj(φ(x)Tφ(xj)) + b

where w =
∑m

j=1 αjyjφ(xj) and b are the parameters of the decision plane in the new space. As the
vectors xi appear only in inner products in both the decision function and the learning law, the mapping
function φ(x) does not need to be explicitly specified. Instead, all we need is the inner product of the
vectors in the new space. The function φ(x) is a kernel-induced implicit mapping. A kernel is a function
that takes two vectors xi and xj as arguments and returns the value of the inner product of their images
φ(xi) and φ(xj):

K(x1,x2) = φ(x1)
Tφ(x2)

As only the inner product of the two vectors in the new space is returned, the dimensionality of the new
space is not important. The learning algorithm in the kernel space can be obtained by replacing all inner
products in the learning algorithm in the original space with the kernels:

f(x) = φ(x)Tw + b =

m∑
j=1

αjyjK(x,xj) + b

The parameter b can be found from any support vectors xi:

b = yi − φ(xi)
Tw = yi −

m∑
j=1

αjyj(φ(xi)
Tφ(xj)) = yi −

m∑
j=1

αjyjK(xi,xj)

2.2.2 SSVM - Structured Support Vector Machines

Structured SVM is a Support Vector Machine (SVM) learning algorithm for predicting multivariate or
structured outputs. It performs supervised learning by approximating a mapping using labelled training
samples. Unlike the regular SVMs which consider only univariate predictions like in classification and
regression, SSVM can predict complex objects like trees, sequences or sets.
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In the SSVM model, the initial learning model parameters are set and the pattern-label pairs are read
with specific functions. The user defined special constraints are then initialised and then the learning
model is initialised. After that, a cache of combined feature vectors is created and then the learning
process begins. The learning process repeatedly iterates over all the examples. For each example,
the label associated with most violated constraint for the pattern is found. Then, the feature vector
describing the relationship between the pattern and the label is computed and the loss is also computed
with loss function. The program determines from feature vector and loss whether the constraint is
violated enough to add it to the model. The program moves on to the next example. At various times
(which depend on options set) the program retrains whereupon the iteration results are displayed. In the
event that no constraints were added in iteration, the algorithm either lowers its tolerance or, if minimum
tolerance has been reached, ends the learning process.

2.2.3 Nearest Neighbors

Nearest neighbors are one of the most classifiers, possibly because it does not involve any training.
This technique simply consists of storing all the labeled training examples and given a test images, the
label of closest training sample(or majority label of k-neighbors) is assigned to the test image. Nearest
neighbors can be easily kernelized or coupled with metric learning. For classification techniques such
as LDA or linear SVM, only a single weight vector needs to be stored per class(in a one-vs-rest setting),
however, a nearest neighbor classification strategy typically consists of storing all the training samples.
This is one of the major demerits of nearest neighbors.

2.3 Graphical Models - Optimization

A graphical model (in probability theory, statisticsparticularly Bayesian statisticsand machine learn-
ing) is a probabilistic model for which a graph expresses the conditional dependence structure between
random variables. PGMs use a graph-based representation as the foundation for encoding a complete
distribution over a multi-dimensional space and a graph that is a compact or factorized representation of
a set of independences that hold in the specific distribution.

2.3.1 MRF - Markov Random Fields

A Markov Random Field (MRF) is a graphical model of a joint probability distributions that encode
spatial dependencies. It consists of an undirected graph G = (N,E) in which the nodes N represent
random variables. Let XS be the set of random variables associated with the set of nodes S. Then, the
edges E encode conditional independence relationships via the following rule: given disjoint subsets
of nodes A, B, and C, is conditionally independent of given if there is no path from any node in A to
any node in B that doesn’t pass through a node of C. The neighbour set Nn of a node n is defined to
be the set of nodes that are connected to n via edges in the graph. Given its neighbour set, a node n is
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Figure 2.4: Belief Propagation : Figure shows an example of a message passing from x1 to x2. A
node passes a message to an adjacent node only when it has received all incoming messages, excluding
the message from the destination node to itself. x1 waits for messages from nodes A,B,C,D before
sending its message to x2.

independent of all other nodes in the graph (Markov Property). MRF has plentiful applications in both
vision and language community [36].

We solve an optimization problem over a MRF network to smoothen our phrase prediction result.
An optimisation problem is one that involves finding the extremum of a quantity or function. Such
problems often arise as a result of a source of uncertainty that precludes the possibility of an exact
solution. Optimisation in an MRF problem involves finding the maximum of the joint probability over
the graph, usually with some of the variables given by some observed data. Equivalently, as can be
seen from the equations above, this can be done by minimising the total energy, which in turn requires
the simultaneous minimisation of all the clique potentials. Techniques for minimisation of the MRF

potentials are plentiful. Many of them are also applicable to optimisation problems other than MRF.
Gradient descent methods are well-known techniques for finding local minima, while the closely-related
method of simulated annealing attempts to find a global minimum.

2.3.2 BP - Belief propagation for Inference

Belief propagation (sum-product message passing), is a message passing algorithm for perform-
ing ‘inference’ on graphical models – Bayesian networks and Markov random fields. It computes the
marginal distribution for each unobserved node, conditional on any observed nodes [86]. BP are pre-
sented as message update equations on a factor graph, involving messages between variable nodes and
their neighboring factor nodes and vice versa. Considering messages between regions in a graph is one
way of generalizing the belief propagation algorithm. There are several ways of defining the set of re-
gions in a graph that can exchange messages, e.g. Kikuchi’s cluster variation method. Improvements in

16



the performance of belief propagation algorithms are achievable by breaking the replicas symmetry in
the distributions of the fields (messages).

The original belief propagation algorithm was proposed by Pearl in 1988 for finding exact marginals
on trees. Trees are graphs that contain no loops. It turns out the same algorithm can be applied to general
graphs, those that contain loops, hence the ‘loopy BP’ [51]. LBP is a message passing algorithm. A
node passes a message to an adjacent node only when it has received all incoming messages, excluding
the message from the destination node to itself. The choice of using cost/penalty or probabilities is
dependent on the choice of the MRF energy formulation. LBP is an iterative method. It runs for a fixed
number of iterations or terminate when the change in energy drops below a threshold.

2.4 Retrieval

Information retrieval in general is done by naively matching terms in documents with those of a
query. However, such lexical matching methods can be inaccurate. Since there are usually many ways
to express a given concept (synonymy), most words have multiple meanings (polysemy) etc. the end
task doesn’t remain that simple. A robust approach should allow users to retrieve information on the
basis of a conceptual topic or meaning of a document. LSI is one such approach.

2.4.1 LSI: Latent Semantic Indexing

LSI uses linear algebra techniques to learn the conceptual correlations in text collection. It involves
constructing a weighted term-document matrix, performing a Singular Value Decomposition on the
matrix, and using the matrix to identify the concepts contained in the text Latent Semantic Indexing [60]
overcomes the problems of lexical matching by using statistically derived conceptual indices instead of
individual words for retrieval. It assumes underlying or latent structure in word usage that is partially
obscured by variability in word choice. A truncated singular value decomposition SVD is used to
estimate the structure in word usage across documents. Retrieval is then performed using the database
of singular values and vectors obtained from the truncated SVD.

This technique projects queries and documents into a space with ‘latent’ semantic dimensions. In
such space, a query and a document can have high cosine similarity even if they do not share any
terms - as long as their terms are semantically similar in a sense. The latent semantic space has fewer
dimensions than the original space (which has as many dimensions as terms). LSI is thus a method for
dimensionality reduction. Latent semantic indexing is the application of Singular Value Decomposition
to a word-by-document matrix. SVD (and hence LSI) is a least-squares method. The projection into the
latent semantic space is chosen such that the representations in the original space are changed as little
as possible when measured by the sum of the squares of the differences.

Textual documents are represented as vectors in a vector space. Each position in a vector represents
a term (typically a word), with the value of a position i equal to 0 if the term does not appear in the
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document, and having a positive value otherwise. Positive values are represented as the log of the total
frequency in that document weighted by the entropy of the term. As a result, the corpus can be looked
at as a large term-by-document (t × d) matrix X , with each position xij corresponding to the presence
or absence of a term (a row i) in a document (a column j). This matrix is typically very sparse, as most
documents contain only a small percentage of the total number of terms seen in the full collection of
documents.

The SVD of the t×dmatrix, X , is the product of: TSDT , where T andD are the matrices of the left
and right singular vectors and S is the diagonal matrix of singular values. The diagonal elements of S
are ordered by magnitude, and therefore these matrices can be simplified by setting the smallest k values
in S to zero. The columns of T andD that correspond to the values of S that were set to zero are deleted.
The new product of these simplified three matrices is a matrix X̂ that is an approximation of the term-
by-document matrix. This new matrix represents the original relationships as a set of orthogonal factors.
When used for retrieval, a query is represented in the same new small space that the document collection
is represented in. This is done by multiplying the transpose of the term vector of the query with matrices
T and S−1. Once the query is represented this way, the distance between the query and documents can
be computed using the cosine metric, which represents a numerical similarity measurement between
documents. LSI returns the distance between the query and all documents in the collection. Those
documents that have higher cosine distance value than some cutoff point are returned as relevant to the
query.

2.5 Evaluation Measures

This section describes various terms/keywords used to measure the effectiveness of our methods.
It talks about importance of ‘robust’ evaluations schemes and justifies the harnessing of well known
evaluations techniques for our experiments.

2.5.1 Classification Accuracy

We use classification accuracy for quantifying performance for the phrase recognition tasks. For
defining classification accuracy, we first define the following quantities

• True Positive(tp):number of correctly classified positive samples.

• True Positive(tn):number of correctly classified negative samples.

• False Positive(fp):number of positive samples misclassified as belonging to the negative class.

• False Negative(fn):number of negative samples misclassified as belonging to the positive class.

Accuracy is defined as

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(2.1)
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2.5.2 BLUE scores

Human evaluations of machine translation are extensive but expensive. Human evaluations can take
months to finish and involve human labor that can not be reused. BLEU [55] is a method of automatic
machine translation evaluation that is quick, inexpensive, and language-independent, that correlates
highly with human evaluation, and that has little marginal cost per run.

It is a score for evaluating the quality of text which has been generated by any underlying algorithm.
Quality is considered to be the correspondence between a machineś output and that of a human: ‘the
closer a machine translation is to a professional human translation, the better it is’ – this is the central
idea behind BLEU. Scores are computed for individual sentences comparing them with a set of good
quality reference sentences (ground truths). Scores are then averaged over the whole corpus to reach an
estimate of the overall quality of system. Intelligibility or grammatical correctness are not taken into
account. BLEU output is a number between 0 and 1. This value indicates how similar the candidate and
reference texts are, with values closer to 1 representing more similar texts. BLEU correlates well with
human judgement, and remains a benchmark for the assessment of many evaluation metric [55]. BLEU

cannot in its present form deal with languages lacking word boundaries.

2.5.3 Human Evaluation

There are several venues where development of machine algorithms can benefit from human involve-
ment. Humans can be involved in the task of collecting, labelling and evaluating data. Especially with
the increasing popularity of tools like LabelMe [62] and Amazon Mechanical Turk [38], one finds it
very easy to involve human ‘experts’ in large scale studies. From labelling task in vision to machine
translations in NLP, micro-task markets, such as Amazon’s Mechanical Turk, offer a potential paradigm
for engaging a large number of users for low time and monetary costs.

Experiments have shown high agreement between Mechanical Turk non-expert annotations and ex-
isting gold standard labels provided by expert labels [69]. Using non-expert labels for training machine
learning algorithms can be as effective as using gold standard annotations from experts. Many large
labelling tasks can be effectively designed and carried out in this method at a fraction of the usual ex-
pense. The need for efficient, reliable human evaluation of text output has led to the creation of several
judgement tasks [14]. Evaluations investigating the quality of text output often elicit absolute quality
judgements such as adequacy or fluency ratings. Several problems are encountered with this approach
– annotators have difficulty agreeing on what factors constitute ‘good’ or ‘bad’ quality and are often
unable to reproduce their own absolute scores. Relative judgement tasks such as ranking address these
problems by eliminating notions of objective ‘good’ or ‘bad’ of translations in favor of simpler com-
parisons. While these tasks show greater agreement between judges, ranking can prove difficult and
confusing when translation hypotheses are nearly identical or contain

Since we did not have control over evaluators involved in AMT, we in our present work use in
house developed human evaluation schema and use ‘experts’ for evaluations. ‘Experts’ in our case
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comprise of people with decent lawn-tennis exposure. Experts were asked to give relative scores to
generated descriptions and the final score was obtained by averaging the scores obtained over top five
retrieval. Utmost care was taken while deciding the experts evaluators involved and we believe this has
strengthened our evaluations.
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Chapter 3

Problem Statement and Dataset

We make an attempt towards the goal of creating ‘richer and human-like descriptions’ by focusing on
a domain specific setting – lawn tennis videos. For such videos, we aim to predict detailed (commentary-
like) descriptions rather than small captions. Figure 3.1 depicts the problem of interest and an example
result of our method. It even depicts the difference between a caption and a description. Rich description
generation demands deep understanding of visual content and their associations with natural text. This
makes our problem challenging.

3.1 Introduction

The majority of previous work in multimedia recognition has focused on image labeling with a fixed
set of visual categories [85, 20]. While closed vocabularies constitute a convenient modeling assump-
tion, they are vastly restrictive when compared to the enormous amount of variability that a human can
compose. Other approaches that focus on generating much more dense image descriptions [40, 19]
often rely on hard-coded visual concepts and sentence templates, which imposes limits on their vari-
ety. Number of approaches have even posed the task as a retrieval problem, and transfer the most most

Figure 3.1: For a test video, the caption generated using an approximation of a state-of- the-art
method [34], and the description predicted using our approach. Unlike recent methods that focus on
short and generic captions, we aim at detailed and specific descriptions.
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Figure 3.2: Trend illustrating saturation of word-level trigram, bigram and unigram counts in domain
specific settings. Emphasized(*) labels indicate corpus of unrestricted tennis text (blogs/news) and
remaining labels indicate tennis commentary corpus. Bigram* and Trigram* frequencies are scaled
down by a factor of 10 to show the comparison.

compatible annotation in the training set to a test image [29, 19, 70, 54] or where training annotations
are fragmented and stitched together [41, 44]. Several other image caption generating approaches are
based on fixed templates [24, 40, 19, 84] or generative grammars [85, 49]. Much more recent works use
combination of combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
to generate image descriptions [34, 47, 76, 37, 16].

One of the earliest works in tennis video analytics [72, 50] focuses on detecting court area and play-
ers in significant frames. The relative positions of both the players with respective to court lines and net
are used to determine action types. Using special set-ups to detect people, ball, court lines with utmost
precision [56] have been explored by many. Use of audiovisual and textual cues [33] to summarise the
game by set of static representative frames (shot boundaries) has also received considerable attention in
past. None of these works have still focused on creation of ‘text based’ commentaries for lawn-tennis in
realistic settings. Although soccer ‘commentary’ generation has been explored in past by few [77, 73]
but the methods described by them are not generic and can not be extended for our case. While Rocco
uses simulation to track players (robots) and ball, Mike uses soccer server information for same task.
Rocco uses template based method to create descriptions. We are keen on generating systems like above
and generate final output as detailed as [87]. Authors in [87] use discriminative model for action at-
tribute detection and use contextual constraints to produce detailed attributes labels. They detect major
action attributes so as to generate extremely detailed video description.

For the game of tennis, which has a pair of players hitting the ball, actions play the central role. Here,
actions are not just simple verbs like ‘running’, ‘walking’, ‘jumping’ etc. as in the early days of action
recognition but complex and compound phrases like ‘hits a forehand volley’, ‘delivers a backhand
return’ etc. Although learning such activities add to the complexities of the task, yet they make our
descriptions diverse and vivid. To further integrate finer details into descriptions, we consider constructs
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Figure 3.3: Dataset contents: (a) Annotated-action dataset: short videos aligned with verb phrases. (b)
Video commentary dataset: game videos aligned with commentary.

that modify the effectiveness of nouns and verbs. Though phrases like ‘hits a nice serve’ ,‘hits a good
serve’ and ‘sizzling serve’ describe similar action, ‘nice’, ‘good’ and ‘sizzling’ add to the intensity of
that action. We develop a model that learns the effectiveness of such phrases, and builds upon these to
predict florid descriptions. Empirical evidences demonstrate that our approach predicts descriptions that
match the videos.

Lawn tennis is a racquet sport played either individually against a single opponent (singles), or
between two teams of two players each (doubles). We restrict our attention to singles. Videos of such
matches have two players – one in the upper half and the other in the lower half of a video frame. A
complete tennis match is an amalgamation of sequence of ‘tennis-sets’, each comprising of a sequence of
‘tennis-games’ played with service alternating between consecutive sets. A ‘tennis-point’ is the smallest
sub-division of match that begins with the start of the service and ends when a scoring criteria is met.
We work at this granularity.

3.2 Motivation

We seek to analyse how focusing on a specific domain confines the output space. We compute the
count of unique (word-level) unigrams, bigrams and trigrams in tennis commentaries. Each commentary
sentence in the Tennis-text corpus is processed individually using standard Natural Language ToolKit
(NLTK) library, and word-level n-gram frequencies of corpus are computed. The ‘frequency’ (count)
trends of unigrams, bigrams and trigrams plotted over ‘corpus size’ (number of lines in corpus) are
depicted in Figure 3.2. We compare these with the corresponding frequencies in unrestricted tennis text
mined from on-line tennis news, blogs, etc. (denoted by ‘*’ in the figure). It can be observed that in case
of tennis commentary, the frequency of each n-gram saturates well within a small corpus as compared to
corresponding frequencies of unrestricted text. The frequency plots reveal that the vocabulary specific
to tennis commentary is indeed small, and sentences are often very similar. Hence, in a domain specific
environment, we can create rich descriptions even with a limited corpus size.
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Figure 3.4: Text Corpus: Glimpse of online scraped commentary text. Each commentary line is com-
prised of ‘player names’, ‘dominant shots’ and other details.

3.3 Dataset

We use broadcast video recordings for five matches from London Olympics 2012 for our experiments.
The videos used are of resolution 640 × 360 at 30 fps. Each video is manually segmented into shots
corresponding to ‘tennis-points’, and is described with a textual commentary obtained from [1]. This
gives a collection of video segments aligned with corresponding commentaries. In total, there are 710

‘tennis-points’ of average frame length 155. We refer to this collection as ‘Video-commentary’ dataset.
This serves as our test dataset and is used for the final evaluation. In addition to this, we create an
independent ‘Annotated-action’ data set comprising 250 short videos (average length of 30 frames)
describing player actions with verb phrases. Examples of the verb phrases include ‘serves in the middle’,
‘punches a volley’, ‘rushes towards net’, etc. In total, we have 76 action phrases. We use this collection
to train our action classifiers. Figure 3.3 and 3.4 show samples from our dataset. ‘Annotated action’
dataset comprises of video shots linked with corresponding action phrases. Figure 6.3 showcases some
of the contents of ‘Annotated action’ dataset.

As an additional linguistic resource for creating human readable descriptions, we crawl tennis com-
mentaries (with no corresponding videos). This text corpus is built using (human-written) commentary
of 2689 lawn tennis matches played between 2009-14 from [1]. A typical commentary describes the
players names, prominent shots and the winner of the game. We refer this collection as ‘Tennis-text’.
Table 3.1 summarizes the three datasets. Note that all the datasets are independent, with no overlap
among them.

Name Contents Role

Annotated-action 250 action videos and phrases Classification and Training

Video-commentary 710 game videos and commentaries. Testing

Tennis Text 435K commentary lines Dictionary Learning, Evaluation and Retrieval

Table 3.1: Dataset statistics: Our dataset is a culmination of three standalone datasets. Table describes
them in detail, along with the roles they play in the experiments.
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Chapter 4

Action Localization

Recognition of human actions and activities is one of the most sought out topics in automatic video
analysis. The two most relevant and related problems in this area are localization and classification of
human actions. Much of the learning has been successfully applied to object localization in past, where
the mapping between an image and an object bounding box can be well captured. Extension of such
approaches action localization in videos is much more challenging. One needs to predict the locations
of the action patterns both spatially and temporally, i.e., identifying a sequence of bounding boxes that
track the action in video. The problem becomes intractable due to the exponentially large size of the
video space enriched with actions. In this chapter we deal with preliminaries and explain how does
domain restrictions eases the the task of action localization.

4.1 Introduction

While the idea of action localization is not new, it has been applied to video restricted to a static
cameras [30, 88] or videos with simple background with limited clutter [18, 45]. It is easy to apply
simpler methods such as background subtraction (to localize actors) in such restricted cases which is
nearly an impossible case with moving cameras. Figure 4.1 explains one such scenario. Localizing
natural actions in realistic cluttered videos has been challenging – localizing actions by training an
action-pose specific human detector [43] and use visual words [82] to discriminate actions are slow and
data dependent. We instead use ‘domain knowledge’ to generate a real time solution in our case.

Early work on action recognition [15, 31, 65] in video used sequences with prominent actions,
mainly static cameras, simple backgrounds and full bodies visible, as in the KTH [9] and Weizmann
[21] datasets. This enabled action classifiers to be explored with variation in the actors and actions, but
without the added complexity of change of viewpoint, scale, lighting, partial occlusion, complex back-
ground etc. Predicting the locations of the action patterns is far more demanding than classification. In
the case of action classification, which is often the aim in action analysis, sequences with pre-defined
temporal extent are labeled as belonging to one of the action classes. However, for video search and
annotation applications, action localization is far more important and acts like a precursor to classifica-
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Figure 4.1: Camera motion makes localization a difficult task: (UP) Trajectories with no camera motion
(BELOW) False trajectories due to camera motion

tion. It enables temporal sequence containing the action to be delimited and also the actor carrying out
the action to be identified, when there are multiple actors in a shot.

We take a similar approach and focus our attention on identifying active action zones. We use an
approach which splits the spatio-temporal action localization into first detecting court area and sub-
sequently tracking the players. This determines the spatial localization of the action, followed by a
temporal action classification of the computed trajectories, and hence detect and localize the actions in
time.

4.2 Action Localization

4.2.1 Court Detection

We begin by identifying/tracking both players on the tennis court. The playing court in lawn tennis
has a set of prominent straight white lines, each of which adds meaning to the game in a unique way. We
detect these lines using the Hough transform and consider only the most prominent lines (by keeping
a threshold on length). A bounding-box is created encompassing the set of identified lines, which is
then considered as foreground seed for the GrabCut algorithm [61]. This in turn returns the playing
field as shown in Figure 4.2. We tested our algorithm on the extended dataset of others tournaments
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Figure 4.2: Court detection for various cases: Overlapping structures, lack of prominent field lines (due
to lack of contrast) and other occlusions

(random videos from youtube.com) to test the robustness of our court detection solutions. Figure 4.2
showcases some of success and failure cases.

4.2.2 Player Detection

In a tennis broadcast video background is (nearly) static after the serve begins, and remains the same
till a player wins a point. Based on this, the candidate regions for players are segmented through back-
ground subtraction using thresholding and connected component analysis. Each candidate foreground
region thus obtained is represented using HOG descriptor [10]. To prune away false detections (i.e., non-
player regions), multi-class SVM with RBF-kernel is employed distinguishing between ‘upper-player’,
‘lower-player’ and ‘no player’ regions. Figure 4.4(b) visualizes HOG features for few examples. As
done in the case of court detection we tested our algorithm on extended dataset of others tournaments
(random videos from youtube.com). Figure 4.3 depicts few unique cases.

Figure 4.3: Player detection for various success and failure cases.

27



(a) (b) (c) (d) (e)

Figure 4.4: Retrieving player details: (a) Extracted foreground regions. (b) Visualization of HOG fea-
tures for players and non-player regions. (c) Court detection. (d) Player Detection. (d) Some examples
of successful and failed player detections.

4.2.3 Player Recognition

The detected windows thus obtained are used to recognize players. In any particular tournament (and
in general) players often wear similar colored jerseys and depict unique stance during game play, we use
these cues to recognize them. We perceive both color and stance information using CEDD [6] descriptor.
This descriptor captures both colour and edge (for stance) information of each detected candidate player
region. We use Tanimoto distance [6] to build our classifier. Classifier scores averaged over initial ten
frames are used to recognize both the players. Figure 4.4(d) highlights the players detected in a frame,
and Figure 4.4(e) shows some true and false detections.

4.3 Experiments and Results

There are two players in the game and they are typically in the top and bottom half of the video
when they play. To process the videos, we begin by tracking both the players on the field. We begin
by isolating the playing area from rest of the field using hough lines and grabCut algorithm [61]. We
create a bounding box encompassing the set of lines identified. Area inside this box is considered as
foreground seed for grabCut algorithm which in turn returns playing field as shown in Figure 4.4(c). We
extract HOG features for each of the candidate foreground regions (identified player regions) so obtained
after background subtraction and prune away false detections (non-player regions) by using classifier
built over HOG features. Thereafter the players are identified using CEDD features. Some of the true and
false positives detections are depicted in and Figure 4.4(e).

Since major activities during game take place on each side of the net we analyse videos by dividing
them across net. In almost all tennis broadcasts net is at the center of the frame. The upper and lower
videos thus formed are analysed separately in subsequent sections. Note that the activities taking place
in these two halts are correlated. We use this larger game structure when we refine the action labels
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using MRFs. We begin by foreground extraction to identify the players in input video. This step results
in many potential candidate regions. To prune out the false candidate regions we learn SVM classifier to
differentiate between regions that contain a player from regions that do not contain them. We train this
classifier using hand labelled examples. Player bounding boxes (for both upper and lower players) were
identified by randomly drawing bounding boxes across players in video frames of training set. Training
set comprised of 2432 ‘lower player’, 2421 ‘upper player’ and 13050 ‘no players’ windows. We extract
HOG features for each of these candidate bounding boxes and model it as a multi-class classification
problem for three identified categories.

For recognition purpose we learn classifiers over CEDD features built using 2432 ‘lower players’ and
2419 ‘upper players’ windows. Each window is identified by one of the eight unique player names in our
training set. We run our player recognition classifier over selected candidate regions generated by the
previous module and predict the player name. Since in any frame we can have only two players we use
this information to suppress left over false positives (if any) by considering only top two classifier scores.
Table 4.1 summarize both court detections and player detections results. Our recognition accuracies are
0.98 and 0.978 for lower and upper players respectively.

Correct # Actual #

Court 621 710

Player 746 1420

Table 4.1: Court and Player Detection: Detections on test videos each with two players on single court.
In all we have 710 videos in our test dataset and hence 710 × 2 = 1420 players in all. The players thus
detected are then identified using recognition module.
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Chapter 5

Weak Learners for Action recognition

Field of human activity recognition has grown dramatically over last few years. Much of the credit
of such growth goes to usage of activity recognition in many high-impact applications such as smart
surveillance, query based video retrieval etc. With advent of new devices and technological advance-
ments this growth is destined to grow even more in coming days. The field is no more restricted to
limited set of actions and is gradually moving towards more structured interpretation of complex human
activities. We describe one such case in this chapter and use recently proposed ‘improved dense trajec-
tories’ [81] for action classification. We learn fine grained action classifiers to generate ‘action phrases’.
The trajectory features used for classification encode the optical flow based motion information and are
robust to fast irregular motions as well as camera motions. [80, 81]

5.1 Introduction

Action classification has been studied in a variety of settings [9, 18]. Initial attempts used the labo-
ratory videos of few well defined actions. Of late, interest has been shifted to the actions captured in the
natural settings like movies [42, 17]. They have even taken help of contextual information [23, 63, 83]
and movie scripts [17, 42] as means of weak supervision to describe human actions in videos. In all
these cases, the actions of interest are visually and semantically very different. Some of the recent meth-
ods have also started looking into the fine grain classification of human actions. At times when there is
low inter-action and high intra-action variability in human actions people have used such approaches to
distinguish between subtle variations in actions [59].

Videos were annotated with natural sentences by aligning the parallel scripts available elsewhere [64].
However, this was applicable only for a very limited class of videos. In recent years, there has been many
successful attempts that created natural language sentences for images and videos without any parallel
textual descriptions. Focus has now shifted from recognizing nouns, verbs to more complex task of
observing actor-action-object relationships. Niveda et al. [39] generate descriptions for short videos
by identifying the best SVO (subject-verb-object) triplet. They determine the likelihood of various SVO

combinations from large corpus and select best among all to generate the sentences. Sergio et al. [22]
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Figure 5.1: Example frames depicting varied actions. Upper frames are shown at the top, and lower
frames at the bottom. Here, upper and lower frames do not correspond to same video.

extend this for out-of domain actions (not in training set) by generating brief sentences that sum up main
activity in the video with broader verb and object coverage. Barbu et al. [4] produce rich sequential de-
scriptions of video using detection based tracking and body-posture codebook to determine the subject,
verb and object.

Our goal is to automatically describe video segments of tennis points in the Video-commentary
dataset. We begin by learning phrase classifiers using Annotated-action dataset. Given a test video, we
predict a set of action/verb phrases individually for each frame using the features computed from its
neighbourhood. Since this sequence of labels could be noisy, these are smoothed by introducing priors
in an energy minimization framework. The identified phrases along with additional meta-data (such
as player details) are used to find the best matching description from the Tennis-text dataset. Major
activities during any tennis game take place on each side of the net, we analyse videos by dividing them
across the net in the subsequent sections (referred as ‘upper’ and ‘lower’ video/frame). In almost all
tennis broadcast videos, this net is around the center of a frame, and thus can be easily approximated.

For the game of tennis, which has a pair of players hitting the ball each other, actions are the central
component. Here, actions are not simple verbs like ‘running’, ‘walking’ and ‘jumping’as in the early
days of action recognition. Many recent methods [39] use verbs in interchangeable fashion to describe
activities in videos (‘hits a forehand return’, ‘delivers a forehand return’). In our case, such richer action
labels are obtained by mining a large text data and learning the semantic relationships that are able
to differentiate between lesser and more frequent action words [22]. We also add finer details to our
descriptions by placing constructs that modifies the effectiveness of nouns and verbs in our sentences.
‘hits a nice serve’,‘hits a good serve’and ‘sizzling serve’etc. describe similar task yet nice, good and
sizzling add to the intensity of similar action. We develop a model that learns effectiveness of phrases
and build upon these phrases to generate descriptions that are florid and verbose.

5.2 Learning Action Phrases

5.2.1 Supervised Approach

We learn phrase classifiers using ‘Annotated-action’ dataset. For representation, we use descriptors
as described in [80], and extract dense trajectory features over space-time volumes (using default pa-
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Figure 5.2: Effect of using MRF based Temporal Smoothing. Coloured segments represent various
‘action phrases’.

rameters). For each trajectory, we use Trajetory, HOG, HOF (histograms of optical flow) [7] and MBH

(motion boundary histogram) [11] descriptors. While HOG captures static appearance information, HOF

and MBH measure motion information based on optical flow. The dimensions of each of these descrip-
tors are: 30 for Trajectory, 96 for HOG, 108 for HOF and 192 for MBH. For each descriptor, bag-of-words
(BOW) representation is adopted (with vocabulary size 2000). We take square root of each element in
a feature vector before computing the codebook (similar to RootSIFT [3]). The final representation is
concatenation of BOW histograms of all the descriptors. Using this, a 1-vs-rest SVM classifier (with RBF

kernel and χ2 distance) is learned for each phrase. In all, we have 76 verb phrases - 39 for upper and 37

for lower player. Figure 6.3 illustrates some examples of player actions.

5.2.1.1 Verb Phrase Prediction and Temporal Smoothing

Given a (test) video, we recognize verb phrase for each frame by extracting features from neighbour-
ing frames using sliding window (neighbourhood of size 30 frames). Since this typically results into
multiple firings, non-maximal suppression (NMS) is applied. This removes low-scored responses that
are in the neighbourhood of responses with locally maximal confidence scores. Once we get potential
phrases for all windows along with their scores, we remove the independence assumption and smooth
the predictions using an energy minimization framework. For this, a Markov Random Field (MRF) based
model is used which captures dependencies among nearby phrases. We add one node for each window
sequentially from left to right and connect these by edges. Each node takes a label from the set of action
phrases. The energy function for nodes ν, neighbourhood N and labels L is:

E =
∑
p∈ν

Dp(fp) +
∑
p,q∈N

Vpq(fp, fq) (5.1)
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Figure 5.3: Semi-Supervised approach: (Input:) Given a collection of tennis videos along with linked captions,
(Output:) Our approach generates annotations for constituent frames of each input video. The approach aligns
video frames with corresponding ‘action phrases’. Window size of ‘two’ assigns similar labels to adjacent two
frames.

Here, Dp(fp) denotes unary phrase selection cost. This is set to 1 − p(lj |xp), where p(lj |xp) is
the SVM score of the phrase label lj for node xp, normalized using the Platt’s method [57]. The term
Vpq(fp, fq) denotes pairwise phrase cohesion cost associated with two neighbouring nodes xi and xj
taking some phrase label. For each pair of phrases, this is determined by their probability of occurring
together in the game play, and is computed using frame-wise transition probability. In our case, since
there are two players, and each player’s shot depends on the other player’s shot and his own previous
shot, we consider four probability scores: p(liP1 , ljP1), p(liP1 , ljP2), p(liP2 , ljP2) and p(liP2 , ljP1). Here,
p(liP1 , ljP2) refers to the probability of phrase li of player1 and lj of player2 occurring together during
game play. We compute pairwise cost, 1−p, for each of the four probabilities and solve the minimization
problem using a loopy belief propagation (BP) algorithm [35].

5.2.2 Weakly Labelled Semi-Supervised Approach

In this section we propose a that method encodes local temporal structure in tennis videos and aligns
frames with appropriate find grained annotations ,i.e. ‘phrases’ that best describe the constituent video
frames. Our solution bears resemblance to method [2] that learns sequence of steps to complete certain
tasks – discriminative joint clustering scheme is proposed by authors to identify prominent steps from
verbal descriptions and align them to appropriate video frames. We take a step towards weakly labelled
semi-supervised ‘action phrase’ recognition for tennis videos and suggest a unified objective function
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Figure 5.4: The proposed approach: Every frame is associated with a corresponding tag which is a
collection of similar ‘action phrases’. Both trajectory matrix (Y) and phrase-cluster matrix (H) are
stacked together to compute the dictionary. The dictionary is used to generate frame level annotations
for the input videos. We represent each group of ‘phrases’ by a cluster number.

comprising of probabilistic label consistent constraint and classification error. The proposed objective
function solved using KSVD yields dictionaries such that local temporal structures of videos bearing
similar actions have similar action phrases. We use probabilistic label constrained KSVD for learning
sparse dictionaries for recognition [32]. The suggested approach utilizes video descriptions at hand to
learn different varied constructs and associates them with actions features extracted from videos. It
extracts various linguistic phrases [26] from available sentences and clusters them into group of seman-
tically similar [27] ‘action phrases’, for e.g. phrases like ‘huge rally’ and ‘contested rally’ are part of
one cluster and ‘backhand catches net’ and ‘Serena catches net’ belong to same cluster. The phrase
clusters are thereafter used for classifying action features – similar looking actions are labelled with
similar phrase clusters. A group of semantically similar phrases belong to same ‘phrase clusters’ and
group of frames encoding similar actions are assigned similar phrase clusters as corresponding labels.

5.2.2.1 Phrase Extraction and Clustering

We automate the process of phrase extraction from given video descriptions using CoreNLP toolkit 1.
We use ‘collapsed-coprocessed-dependencies’ [12], i.e. dependencies involving prepositions and con-
juncts are collapsed to reflect direct relation between content words. Each sentence is mapped to list
of nine distinct types of phrases encoding order preference information – (subject), (object), (sub-
ject;verb), (object;verb), (subject;prep;object), (object;prep;object), (attribute;subject), (attribute;object)

1http://nlp.stanford.edu/software/corenlp.shtml
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Figure 5.5: Parsed dependencies (collapsed and propagated) for an input commentary text. We only
keep nine selected encodings and discard others to assimilate all possible phrase information in the
linked sentence.

and (verb;prep;object), Figure 5.5. We believe these nine encodings are sufficient to assimilate all pos-
sible information in linked sentence. Since generated phrases are targeted to increase overall retrieval
efficiency we kept player names en-tact in the extracted phrases.

The extracted phrases are clustered using hierarchical agglomerative clustering using Semantic Tex-
tual Similarity (STS) measure described in [27]. In an agglomerative setting each phrase starts with its
own cluster and subsequently the pairs of text clusters are merged as one climbs up the hierarchy. The
similarity scores describe the degree of equivalence in the underlying semantics of paired snippets of
text (phrases). The distance metric uses a word similarity feature combining both LSA word similarity
and WORDNET knowledge. The text clusters so obtained are visualized using a dendrogram as shown
in Figure 5.6

5.2.2.2 Dictionary Learning for Action-Phrase Alignment: Probabilistic Label Consistent KSVD

For action representation, we extract dense trajectory features to describe actions and process them
similar to previous sections. Given set of videos, we extract action features from both upper and lower
part of frames (capturing actions of both upper and lower player respectively). Features are computed
from neighbouring frames using sliding window (neighbourhood of size 30 frames with no overlap).
Computed action features (from both halves) when stacked over each other represent the feature vector
of frames in sliding window. We aim to classify stacked action features depended on phrase clusters
computed in section 5.2.2.1. A compact and discriminative dictionary is learnt for sparse coding which
is thereafter used for classification, 5.6

Let, Y be a matrix of stacked video features (from upper and lower halves) of training videos
(collection of N sliding windows). A single training video is represented by consecutive columns
of Y and number of such columns equate to count of sliding windows encompassing whole video.
Every column represents feature vector of frames in one sliding window, each of n dimensions, i.e.
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Figure 5.6: Qualitative Result for phrase clustering in semi-supervised regime: (a) Dendrogram of
clusters of all generated phrases (b) Dendrogram of prominent phrases.

Y = {y1, y2 . . . yN} ∈ Rn×N . We learn a single re-constructive dictionary, D, with K items for sparse
representation of Y :

< D,X >= arg min
D,X
‖ Y −DX ‖22, s.t.∀i, ‖ xi ‖0≤ T (5.2)

Here, D = {d1, d2 . . . dK} ∈ Rn×K is the learnt dictionary, X = {x1, x2 . . . xN ∈ RK×N are sparse codes of

Y and T is sparsity constraint factor (each sparse code has fewer than T items). We leverage the supervised infor-

mation (i.e. phrase labels obtained after text clustering) of feature vectors to learn a more efficient dictionary. In

order to make dictionary optimal for classification we include the classification error term in the objective function

for dictionary learning. Similar to [32] we use a linear predictive classifier f(x;W ) = Wx and learn weights,W .

Following objective function for learning a dictionary, encompasses both reconstruction and classification errors:

< D,W,X >= arg min
D,W,X

‖ Y −DX ‖22 + ‖ H −WX ‖22, s.t.∀i, ‖ xi ‖0≤ T (5.3)

There is an explicit correspondence between dictionary items and the phrase labels. The term ‖ H −WX ‖22
represents classification error, with W being the classifier (weights) parameters. H = {h1, h2 . . . hK} ∈ Rm×N

are the class labels of Y . A video (represented by consecutive columns of Y) can have multiple (extracted)

phrases, so we assign equal probabilities to corresponding phrases to each column of H . Number of columns

depends on number of features columns in Y for each video.
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Figure 5.7: Illustration of semi-supervised approach: First two rows correspond to videos and the linked de-
scription. The extracted phrases and assigned phrase clusters are shown in next two rows. Last row demonstrates
output phrase clusters obtained using proposed approach (Number of such clusters depend on duration of video
input)

A video with 90 frames will constitute (90/30)=3 columns (sliding window size: 30 frames) in matrix Y and

H; yi corresponds to stacked dense trajectory feature of 30 frames and hi represents equal probabilities of phrase

labels (all three corresponding columns in H will be identical). hi = [0, 0.33, 0.33, 0, 0.33, . . . , 0, 0] would mean

that phrase identified from linked description belong to phrase clusters 2, 3, 5 (non-zero entries in hi), Figure 5.8.

In such case we assign each phrase cluster an equal probability (1/3 = 0.33). Intuitively this would mean this

video is comprised of these three cluster labels and hence classification error should be minimized with respect to

all three. We use KSVD to find optimal solution for all parameters simultaneously. The objective function can be

re-written as:

< D,W,X >= arg min
D,W,X

‖

 Y

H

−
 D

W

X ‖22, s.t.∀i, ‖ xi ‖0≤ T (5.4)

< D,W,X >= arg min
D,W,X

‖ Y ∗ −D∗X ‖22, s.t.∀i, ‖ xi ‖0≤ T (5.5)

D∗, is the final dictionary with ‘optimal’ reconstruction and classification error. The learned dictionary makes

sure that the features from same class have similar sparse codes and those from different classes have dissimilar

sparse codes; hence can be used for action classification.

Initialization: To begin with dictionary learning using KSVD, we initialize the parameters D0 and W0 similar

to [32]. We use the multivariate ridge regression, with the quadratic loss and L2 norm regularization. Parameters

used are similar to what suggested in [32].
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Figure 5.8: Matrix structure: Considering the sliding window size of ‘n’ frames, a video with m frames
(n < m) will constitute (m/n) columns in matrix Y and H; Each column of Y corresponds to the dense
trajectory feature of frames in sliding window and each column of H represents equal probabilities of
phrase cluster labels detected in the input linked text (m/n adjacent columns in H are identical).

Classification: Both D and W are transformed and normalized using
dk

‖ dk ‖2
and

wk
‖ wk ‖2

(for every kth col-

umn) before we begin classification. For a test video, we compute sparse representation (xi) of dense trajectories

action features (yi) using modified dictionary, D̂ :

xi = arg min
xi

‖ yi − D̂xi ‖22, s.t.∀i, ‖ xi ‖0≤ T (5.6)

We use the linear predictive classifier Ŵ to estimate the label j (where l ∈ Rm is the class label):

j = arg max
j

(l = Ŵxi) (5.7)

5.3 Experiments and Results

5.3.1 Supervised Action Learners

For classification experiments we randomly partition our annotated-action dataset into 150 training videos and

100 test videos. We repeat this process for five trials and report average classification accuracy. Labels like ‘hits

a forehand return’, ‘returns a forehand return’, ‘works a forehand return’ etc. are significantly similar in our

case (high correlation between the classes); as a result looking for exact matches could be a strict constraint. We

relax these conditions by looking for label matches which are considerably near rather than exact. Phrase pairs
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Approach Upper Lower
Relaxed 0.869 0.705

Exact 0.770 0.613

Table 5.1: Verb phrase recognition accuracy averaged over top five retrieval.

Class Upper Player Lower Player
Freq. Acc. Freq. Acc.

waits for ball 64 0.87 44 0.64
player focused 30 0.93 30 0.91
audience seems enjoying 13 0.33 13 0.25
serves a good one 5 0.5 7 0.33
crafts a forehand return 8 0.33 8 0.53
hits a backhand return 3 0.60 7 0.14

Table 5.2: Class classification accuracy for frequent phrases. Freq. refers to number of times these
phrases occur in annotated-action dataset and Acc. refers to classification accuracy.

having overlapping subtopics have high similarity values when measured by standard cosine similarity. For exact

matches the cosine similarity score is 1 while for relaxed case we consider pairs with cosine similarity score of

more than 0.50. We report our results in Table 5.1, averaged over top five retrievals for both exact and relaxed

matches. We also report average class wise accuracy of frequent classes in Table 5.2. Figure 6.3 illustrates some

actions classes for both upper and lower players. In all we have 76 verb phrases - 39 for upper and 37 for lower

player.

5.3.2 Semisupervised Action Learners

For experiments, we partition dataset into 60% train and 40% test data. The training set is used to learn dictio-

nary and other model parameters. At time of text based phrase clustering we use all available linked descriptions.

Clusters (Only Description) Aligned Clusters (Joint Model)

4,23 4,23,23,23

2,16,26,32,36,43 16,43

4,9,16,23,40 23,4,23,16,4,40,4,16,4,9

23,29,48 23,29

4,15,23,26,29,32 23,32,29,23,15

4,23 23,4,23,23,23,4,23,4,4,23,23,2,2,23,18,23,18,49

Table 5.3: Qualitative Result for assigned clusters: Clusters computed using proposed solution bind temporal
information and depend on the length of the video.
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Figure 5.9: Correct match v.s. Dictionary sparsity: Initial phrase clusters (computed using only linked descrip-
tion) act as ground truth and are compared to clusters computed using proposed approach.

While extracting phrases from available descriptions we replace all possible words with respective synonyms de-

termined using WordNet synsets [26]. Overall we had 50 phrase clusters during text based phrase clustering –

these clusters determine groups and bin to which a descriptions would belong. Figure 5.7 summarises the steps

involved in our method. We compute action phrases and assign clusters to them as described in section 5.2.2.1.

The assigned clusters in turn act like a ground truth for comparison purpose. One should note that count of

phrases generated and phrase clusters may differ – In video 3 (Fig. 5.7), ‘quick return’ and ‘Williams return re-

turn’ fall into same clusters. We determine output of the proposed system by using learnt classifiers described in

section 5.2.2.2. Number of such assigned phrase clusters depend on the size of the (test) video, which is evident

from all examples shown in Figure 5.7.

To evaluate the temporal localization, we need to have a one-to-one mapping between the identified phrase

clusters in the video and the ground truth alignment. Owing to lack of such data we demonstrate the effectiveness

of proposed system by comparing it with only text based model. Table 5.3 illustrates subtleness involved in the

phrase alignments using a joint model. The clusters obtained using join modelling bind temporal information and

depend on the length of input video which is not the case with text based modelling which depends only on size of

description. We consider clusters computed using only descriptions as ground truth and compare them to clusters

obtained using proposed solution. Figure 5.7 illustrates the match between ground truth and computed clusters –

an overlap of one cluster is considered as a match.
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Approach
Without Frame Division With Frame Division
Upper Lower Upper Lower

Relaxed 0.713 0.636 0.869 0.705

Exact 0.672 0.516 0.770 0.614

Table 5.4: Impact of harnessing domain relevant cues on verb phrase recognition accuracy.

5.4 Baselines and comparisons

Using Domain Specific cues: Compared to a naive use of phrase classifier, our verb phrase classifier performs

better by dividing the frame into upper and lower halves. Table 5.4 summarizes the effects of domain specific

cues, i.e. division across the net.
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Chapter 6

Commentary Generation

Mere a cursory glance of a video content is sufficient for users to describe it in great depth. However, such

remarkable ability has proven to be an elusive task for present day state of art visual recognition systems and

models. We aim to mimic this unique ‘human ability’ and describe the lawn-tennis video contents using fine-

grained descriptions. The chapter describes the final stage of the proposed pipeline and demonstrates the overall

efficacy of our approach.

6.1 Introduction

With reincarnation of ‘deep learning’ and other neural network based approaches, caption generation for

multimedia content has taken central stage in both vision and language community [34]. Both video [22, 39]

and image [75, 46] annotation generation are present day active field of research – given a multimedia content

the gaol is to create most descriptive and relevant annotation. Some of these methods find most appropriate

phrases/sentence from a database by formulating the problem as a structured output prediction [75]. Another

successful paradigm has been to identify objects (nouns) and actions (verbs), and thereafter construct natural

language sentences using computational linguistic techniques. In case of images [40], objects localized using

precomputed detectors and their spatial arrangements helped in creating meaningful sentences. Videos provide

more reliable information about the verbs in those sentences. For example, one can detect “Human” and “running”

in a video clip, and then form a sentence like “A person is running towards the left”. While such sentences capture

the visual content at certain level of semantics, richer and more meaningful descriptions are required for these

techniques to be useful in diverse applications. We aim of describing the video content similar to the way a

human expert does. For example, “Serena rushes towards left and punches a backhand volley” could have been

far more apt for the same video clip. A commentary is actually more elaborate than this.

We attempt to generate descriptions (rather than captions) for broadcast videos of lawn tennis. Figure 6.1

depicts the problem of interest and an example result of our method. We also depict the difference between the

captions and descriptions for the same video. Richer descriptions demand deeper understanding of the visual
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Figure 6.1: Distinction between captions and descriptions. We generate more descriptive sentences
when compared to present state of art

content. We address this by limiting our attention to a specific domain. Though these videos were captured in

natural setting for human use, they are not diverse like those harvested from youtube [22]. However, the fine

variations in the data and the granularity of the description, make the problem challenging. The actions that

we need to recognise are of finer granularity compared to the popular action recognition tasks. Richer natural

descriptions also demand the sentences to be of higher linguistic quality. We address this by exploiting a large

corpus of human commentaries crawled from a public web site [1].

6.2 Description Prediction

Let, W = {w1, w2, . . . , wn} be set of unique words present in the group of phrases along with player names,

and S = {s1, s2, . . . , sm} be the set of all the sentences in the Tennis-text corpus. Here, each sentence is a separate

and full commentary description. We formulate the task of predicting the final description as an optimization

problem of selecting the best commentary from S that covers as many words as possible. Let, xi be a variable

which is 1 if sentence si is selected, and 0 otherwise. Similarly, let aij be a variable which is 1 if sentence si

contains word wj , and 0 otherwise. A word wj is said to be covered if it is present in the selected sentence

(
∑
i aijxi = 1). Hence, our objective is to find a sentence that covers as many words as possible:

max
∑

i∈{1,2,...,m},j∈{1,2,...,n}

aijxi, s.t.

m∑
i=1

xi = 1, ∀aij , xi ∈ {0, 1} (6.1)
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Figure 6.2: Illustration of our approach. Input sequence of videos is first translated into a set of phrases,
which are then used to produce the final description.

In the above formulation, doing naı̈ve lexical matching can be inaccurate as it would consider just the pres-

ence/absence of words, and fail to capture the overall semantics of the text. To address this, we adopt Latent

Semantic Indexing (LSI) [13], and use statistically derived conceptual indices rather than individual words. LSI

assumes an underlying structure in word usage that is partially obscured by variability in word choice. It projects

derived phrases and corpus sentences into a lower dimensional subspace, and addresses the problems of synonymy

(similar meaning words). Figure 6.2 illustrates the steps involved in our method by taking two examples. The verb

phrase prediction and smoothing steps provide a set of relevant phrases. Number of such phrases depend on the

size of the (test) video. This is evident from the second example (right), which is of longer duration and thus has

more phrases predictions. These phrases are used to select the best matching commentary from the Tennis-text

corpus. Since similar events are described by identical descriptions in text corpus, there could be instances where

the retrieved descriptions are same – first example (left) in Figure 6.2.

6.3 Experiments and Results

We use an action classifier similar to that presented in chapter 5. During test time the classifier is evaluated on

every frame by extracting features from neighbourhood of 30 frames. To encode the contextual information into

the classifier they are trained on annotated-action dataset by jittering the clip boundaries. A frame-wise transition

probability is computed from the annotated frames that constitute the videos of Annotated-action classifiers and

is used as pair wise costs to solve MRF using loopy BP implementation of [35]. Using these phrases we build

retrieval system over our corpus using both naive lexical and LSI approach.

44



Corpus # Vector # B-1 B-2 B-3 B-4

100 85 0.3789 0.2348 0.1545 0.0954

500 118 0.4279 0.2510 0.1676 0.1071

1K 126 0.4312 0.2554 0.1689 0.1084

5K 128 0.4578 0.2647 0.1785 0.1111

10K 134 0.4607 0.2754 0.1818 0.1115

30K 140 0.4601 0.2766 0.1821 0.1128

50K 144 0.4612 0.2765 0.1826 0.1136

Table 6.1: Comparison between corpus size and BLEU scores averaged over top five retrieval. B-n stands
for n-gram BLEU score. Vector size represent the dimension of tf-idf vector.

Table 6.3 (left) demonstrates the effect of variations in corpus size on BLEU scores. It can be observed that

the scores saturate soon, which validates our initial premise that in domain specific settings, rich descriptions

can be produced even with small corpus size. In Table 6.3 (right), we compare our performance with some of

the recent methods. Here we observe that caption generation based approaches [22, 34] achieve very low BLEU

score. 1 This attributes to their generic nature, and their current inability to produce detailed descriptions. On

the other hand, cross-modal retrieval approaches [58, 75] perform much better than [22, 34]. Compared to all

the competing methods, our approach consistently provides better performance. The performance improvements

increase as we move towards higher n-grams, with an improvement of around 50% over [75] for 4-gram. These

results confirm the efficacy of our approach in retrieving descriptions that match the semantics of the data much

better than cross-modal retrieval approaches.

6.4 Baseline and Comparisons

The proposed system is benchmarked against state-of-the-art methods from two streams that are popular in

predicting textual descriptions for visual data: description/caption generation and cross-modal description re-

trieval.

(1) Description generation: Since the approaches in this domain are either too generic [22, 39, 34], or designed

for images [34], we evaluate by adapting them to our setting. In both [22, 39], a template-based caption is gen-

erated by considering a triplet of form (SVO). To compare with this setting, we align the best predicted verb

phrase into a template ‘player1 − verbPhrase1 , player2 − verbPhrase2’. Since a verb phrase is a combination

of an action verb and an object, this template resembles the ‘SVO’ selection of [22, 39]. To compare with [34],

we use the publicly available pretrained model and generate captions for key frames in a video. Since this is a

generic approach, the captions generated are nearly similar, and the set of distinct captions is far less than the total

1Recall that [22, 34] work for generic videos and images, we approximate them for comparisons.
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Figure 6.3: Success and failure cases: Example videos along with their descriptions. The ‘ticked’
descriptions match with the ground truth, while the ‘crossed’ ones do not.

number of key-frames. To associate a caption with a video, we pick the one with the highest frequency. Figure,

6.4 showcases the qualitative comparisons with present state of the art methods.

(2) Cross-modal description retrieval: Cross-modal retrieval approaches [58, 75] perform retrieval by match-

ing samples from the input modality with those in the output modality (both of which are represented as feature

vectors). While comparing with [75], we consider the best performing variant of their approach; i.e., the one

that uses projected features with Euclidean distance as loss function. Note that our approach is also based on

retrieving a description; however, it makes explicit use of low-level visual and textual cues unlike cross-modal

retrieval approaches. This difference is also evident from the experimental results, where our approach is shown

to retrieve better descriptions than [58, 75].

(2.1) Extension and detailed comparison [75]:

Method [75] Vector# B-1 B-2 B-3 B-4
CCA-Cosine 144 0.4299 0.2414 0.1493 0.0796

CCA-L2 144 0.4219 0.2334 0.1417 0.0747

CCA-L1 144 0.4132 0.2279 0.1356 0.0723

Table 6.2: Detailed comparison with cross-modal retrieval method of [75]. Various distance functions
are tried and final scores are reported in above table.
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Each video VSi is represented using p-dimensional feature vector xi in space X = <p and each text (com-

mentary) TSi is represented using q-dimensional feature vector yi in space Y = <q . Our objective is to learn a

discriminant function F : X × Y −→ < that can be used to predict optimal output using input output pairs.

y∗ = argmax
y∈Y

F (x, y;w) (6.2)

We make an assumption of F = w.Ψ(x, y); i.e. F is linear function of joint feature representation Ψ(.) of

input-output pair.The task of learning w is formulated as following:

min
w,ξ≥0

1

2
||w||2 +

C

N

N∑
i=1

ξi (6.3)

s.t. w.Ψ(xi, yi) ≥ w.Ψ(xi, y) + ∆(yi, y) − ξi∀i, yεY \{yi} where ||.||2 denotes L2norm, C > 0 controls trade

off between regularization term and loss term,ξi denotes slack variable and ∆(yi, y) is loss function.

Both Ψ(.) and ∆(.) are problem specific. Similar to [75] we define Ψ(x, y) = x ⊗ yε<r, r = p × q. Since

phrases are represented by tfidf (term frequency-inverse document frequency) vectors one of the obvious choice

of loss function would be cosine distance. As cosine distance is not a distance metric, we instead use angular

distance, ∆(yi, y) = 2
Π cos−1 (cosSimilarity) as our loss function. We solve the above equation using cutting

plane algorithm [74] which requires efficient computation of the most violated constraint during each iteration.

The following equation describes most violated constraint corresponding to incorrect prediction ŷ:

argmax
y∈Y \{yi}

∆(yi, y) + w.Ψ(xi, y)− w.Ψ(xi, yi) (6.4)

Since, w.Ψ(xi, yi) is constant with respect to y, we have

argmax
y∈Y \{yi}

∆(yi, y) + w.Ψ(xi, y) (6.5)

Under the assumption that a video and its corresponding text are two heterogeneous representation of similar

information we map each representation into maximally correlated vector subspaces using CCA. The results are

reported in Table 6.2.

6.4.1 Performance of Individual Modules

To validate the utility of our design choices, we discuss performance of various modules in this section.

(1) Verb Phrase Recognition: Compared to a straightforward use of state-of-the-art technique [80] to recognize

verbs, our verb phrase recognition module performs better by around 15%. This suggests the utility of harnessing

relevant cues (dividing a frame into two halves) while working in a domain specific environment.

(2) Smoothing Vs. No Smoothing of Verb Phrase Predictions: In practice, using MRF for smoothing phrase

predictions improved average BLEU score from 0.204 to 0.235.

(3) LSI-based Matching Vs. Lexical Matching: Employing LSI technique while matching predicted phrases

with descriptions achieves an average BLEU score of 0.235, whereas naı̈ve lexical matching achieves 0.198.
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Figure 6.4: Qualitative comparison of output of present state of the art methods: Youtube2Text [22] and
RNN [34]. Both [22, 34] work for generic videos and images, we approximate them for comparisons.

Method B-1 B-2 B-3 B-4
Guadarrama [22] 0.119 0.021 0.009 0.002

Karpathy [34] 0.135 0.009 0.001 0.001

Rasiwasia [58] 0.409 0.222 0.132 0.070

Verma [75] 0.422 0.233 0.142 0.075

This work 0.461 0.276 0.183 0.114

Table 6.3: Performance comparison with previous methods using the best performing dictionary. ‘Cor-
pus#’ denotes the number of commentary lines, ‘Vocab#’ denotes the dimensionality of the textual
vocabulary/dictionary and ‘B-n’ means n-gram BLEU score.

6.5 Human Evaluation

We created an online testing portal and asked twenty people with decent tennis exposure to evaluate our

annotations (commentary). Videos were presented in form fifteen sets comprising of six videos each. Every

evaluator was randomly presented (atleast) two sets and asked to rate the text on subjective scale of ‘Perfect ’,

‘Good ’, ‘OK ’, ‘Poor ’, ‘Flawed ’. Participants were asked to give scores for both structure and semantics of

commentary. We converted this on scale of 1-5 with ‘Perfect ’being 5 and ‘Flawed ’being 1 and took average over

both scores. On scale of 5 we scored 2.8 on semantics and 4.7 on structure of the generated descriptions.
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Chapter 7

Conclusions and Future Directions

We have introduced a novel method for predicting commentary-like descriptions for lawn tennis videos. Our

approach demonstrates the utility of the simultaneous use of vision, language and machine learning techniques in

a domain specific environment to produce semantically rich and human-like descriptions. Though we demonstrate

our method on tennis videos, we believe it is fairly generic and has direct extensions to similar situations where

activities are in a limited context, the linguistic diversity is confined and the description has to be semantically

rich. Similar approaches can be developed for driver assistance systems (for human interface), entertainment

(creating narrations for classical dance performances), commentaries for wide variety of sports (e.g. baseball,

soccer) and many more. Each of these applications need domain specific tracking, recognition modules and a

corpus of examples to generate novel rich descriptions. Our method generates semantically richer descriptions,

and not just captions. This is possibly the first time such a task is being attempted, as far as we are aware

of. Previous methods [22, 39, 46, 54] were interested in annotating images and videos with words, phrases or

captions (simple sentences). Their objective has been primarily to make images and videos searchable, while our

descriptions are aimed at direct human consumption. Our method is novel in the sense that we take advantages of

two complementary approaches that match and retrieve [54, 75] and recognize and synthesize [22, 39, 40].

7.1 Applications

The proposed method is generic and can be adopted to similar situations where activities are in a limited con-

text and the linguistic diversity is confined, however the output description can be semantically rich. Applications

of our solution could range from content based retrieval to real life tennis coaching. In this section we describe

some of the explored applications of the pipeline.

7.1.1 Search and Retrieval

Following the solution in Chapter 6 each video is associated with a set of descriptive tags. We can build a

text-based search engine over these annotated scenes. We perform a standard stop-word detection before indexing
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the scenes. Our system accepts text queries given by the user and searches through the index to retrieve the

scenes matching the query. The user could thus query for all scenes involving a particular player, or with a

certain outcome. For e.g. a user query of ‘Sharapova all forehand shots’ would result in collection of videos

where Sharapova has hit forehand shot. To retrieve the scenes most suitable to user query, we use standard vector

space models popular in text retrieval. Each annotated scene is considered as a bag-of-words of its corresponding

annotations. The query too is considered as a bag-of-words. Both the scenes and queries are assumed to be points

in a space whose dimensions are given by all unique words (sans stop words) in the annotations. The similarity

between the query and annotation is given by the cosine similarity measure.

7.1.2 Automatic match Summarization

An extension in form of automatic full-match summary is also one of the probable extension. Match sum-

maries or highlights generated by our proposed method have potential to be descriptive and less machine like.

An additional module of automated transitions detection [5, 71] in tennis videos, i.e. shot transition detection to

localize game scenes, would be sufficient to achieve such a goal. Every identified game scene passes through our

‘proposed solution’ in a time-serial manner and the descriptions thus generated summarize the match in totality.

7.1.3 Mine rare-shots

Action trajectories computed for every localized action in Chapter 5 could assist in mining rare and unique

shots from the set of inputs. A joint clustering model [8] learnt over multimedia (video) features and text features

could be designed to isolate rare and unique shots. Sparse clusters generated using co-clustering framework

correspond to rare and unique shots with action phrases linked to them.

7.2 Future directions

Future research extensions of the proposed technique would be application of present work in other video-

text pairs. There are many other video collections, figure 7.1 ,that have parallel text information that are yet to

be exploited for both annotation and retrieval, for example, (a) Smart theatrics: Narration generation for dance

dramas have huge potential of such applications. Any classical dance form narrating a story has a common story

line and plot and hence this domain restriction makes our method apt. (b) Commentary generation [25] for other

sports events like cricket, baseball etc. could be well be generalized using described procedure. (c) Cooking

Instructions [52]: A cooking recipe is one more example of restricted domain. Generally a recipe of a dish tends

to pretty similar hence the problem can be framed as two step process as in our case – generate phrases for

actions like ‘sprinkle salt’, ‘pick pan’ etc. could be generated and later used for full recipe generation. We believe

that annotation and retrieval based pipeline is a stepping stone for multimedia understanding. We showcase the
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Figure 7.1: Future directions: (a) Smart theatrics: Narration generation for dance dramas. (b)
Sports [25]: Commentary generation for various sporting events. (c) Cooking Instructions [52]: Au-
tomated generation of cooking instructions.

effectiveness of leveraging parallel text for multimedia understanding and hence take a step towards what Fei-Fei

Li said ‘If we want our machines to think, we need to teach them to see and understand.’
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Appendix A

Qualitative auxiliary
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Figure A.1: Success Cases: Example videos along with their generated descriptions that are similar to
ground truth descriptions

Figure A.2: Failure Cases: Example videos along with their generated descriptions which fail to match
with ground truth descriptions. Descriptions in failed category involve wrong action sequences in de-
scriptions.
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Figure A.3: Annotated-action dataset: Video shots aligned with verb phrases. Every video shot is
labelled with two phrases, the upper text correspond to actions of upper player and lower text to actions
of lower player.

Figure A.4: Human Evaluations: Testing portal used for human evaluation. Fifteen sets comprising of
six videos each was presented randomly to twenty people with exposure to game of tennis.
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