
Fingerprint Image Enhancement Using Unsupervised Hierarchical
Feature Learning

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science (by Research)
in

Computer Science and Engineering

by

Mihir Sahasrabudhe
200802023

mihir.s@research.iiit.ac.in

Centre for Visual Information Technology
International Institute of Information Technology

Hyderabad - 500 032, INDIA
July 2015



Copyright © Mihir Sahasrabudhe, 2015

All Rights Reserved



International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Fingerprint Image Enhancement Using Unsu-
pervised Hierarchical Feature Learning” by Mihir Sahasrabudhe, has been carried out under my super-
vision and is not submitted elsewhere for a degree.

Date Adviser: Dr. Anoop Namboodiri



To my family.



Acknowledgements

I couldn’t have completed this work without the support, help, guidance, and company of several
people in my life. First and foremost, I would like to send my sincerest thanks to my adviser, Dr.
Anoop Namboodiri. He is the most humble and down-to-earth professor I have ever met. He has been
a guiding light in all matters, not only academic, and has always been available and helpful whenever I
found myself stuck on problems. He has helped me immensely in determining a direction of research,
which has been a source of inspiration for further studies. I would also like to thank Rama Reddy K
N V for helping me kick-start my research. His enthusiasm and patience in teaching me was pivotal. I
would also like to thank Siddhartha Chandra for helping me grasp deep learning. I have always found
learning from a teacher more efficient and less tedious than learning from a book, and that was realised
here.

I would like to thank Dr. Abhijit Mitra and his family for helping me adjust to life at IIIT-Hyderabad.
We had probably the most varied and diverse discussions together.

I send thanks to the professors in CVIT - Dr. Jawahar, Dr. PJN, and Dr. Jayanthi, for driving the
research here. I thank Satya sir for helping out in all administrative matters. I would also like to thank
my lab-mates - Aditya, Ankit, Chandrasekhar, Harshit, Jay, Mayank, Parikshit, Prabhu, Rajvi, Revanth,
Rohan, Siddhartha, Srinath, Saurabh, Ujjwal, Akhil, Aniket, Ayush, Divyansh, Yash - with whom I
exchanged ideas, discussed topics, and shared laughs and stories.

I thank my band-mates at Karmic Blend - Sankalp, Siddhartha, Pulkit, Soumen. We shared a common
passion for, and taste of music. I thoroughly enjoyed all the practice sessions, live shows, and the dinners
we had together.

I thank my friends, fellow dual-degree students and partners in crime - Dabba, Darinda, Dubey,
Fugga, Gandhi, Kharaab, Masala, Tondua, Majay, Dosa, Vyas, Speaker Dhillon, Cracky, Singhal,
Moidu, Reddy, Fakka, Chhutka, Macchi, Thaki. The post-graduate years at IIIT-Hyderabad are one
of my most treasured memories, thanks to them.

Last but certainly not the least, I would like to thank my family. Any amount of thanks will not
be enough for the constant support and encouragement they have given me throughout my research;
always ensuring I wouldn’t digress; keeping me on the right path. They have shown incredible patience
with my Masters research, and guided me in important decisions I had to take with respect to future
commitments.

v



Abstract

The use of fingerprints is an important method for identification of individuals in today’s world.
They are also one of the most reliable biometric traits, besides the iris. Fingerprint recognition refers
to various tasks that are associated with fingerprint identification, verification, feature extraction, index-
ing, enhancement and classification. There are a lot of systems, in a variety of domains, that employ
fingerprint recognition. That being a given, precision in fingerprint recognition is essential.

Identification using fingerprints is done using a feature extraction step, followed by matching of these
features. The features that are extracted to be matched depend on the algorithm being used for identifi-
cation. In large databases of fingerprints, like government records, fingerprints might be indexed before
they are matched. This significantly reduces the time required to identify an individual from records, as
comparing his/her prints with every entry in the database will take a enormous amount of time. In either
case, feature extraction plays an important role. However, feature extraction is affected directly by the
quality of the input image. A noisy or unclear fingerprint image might affect the extraction of features
strongly. To counter noise in input images, a step of enhancement is introduced before feature extraction
and matching are performed. The goal of extraction is to improve quality of ridges and valleys in the
fingerprint by making them clearly distinguishable, but in the process, also preserve information. The
enhancement algorithm should not only not omit or remove existing information from the fingerprint,
but also not introduce any spurious features that were not present in the original image.

The considerable research into fingerprint recognition, and in fingerprint enhancement, has con-
tributed to the large number of existing algorithms for image enhancement. These include pixel-wise
enhancement, contextual filtering, and short-time Fourier analysis, to name a few. Contextual filtering
uses specific filters to convolve the input image with, the filters themselves being governed by certain
parameters dependent on the input image. These parameters are determined by the values of certain
features at every pixel in the input image. This requires extraction of pre-defined features from the fin-
gerprint. For instance, the filter used at a point is affected by the ridge orientation at that point. Hence,
to decide the filter to be used, the ridge orientation at that point needs to be extracted. A similar case
can be observed in other types of algorithms too.

In this thesis, we propose that unsupervised feature learning be applied to the fingerprint enhance-
ment problem. We use two different scenarios and models to show that unsupervised feature learning
indeed helps improve an existing algorithm, and also when applied directly to greyscale images, can
complete with robust contextual filtering and Fourier analysis algorithms. Our motivation lies in the fact
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that there is vast amount of available data on fingerprints; and with the recent advances in deep learn-
ing, and unsupervised feature learning in particular, we can use this available data to learn structures in
fingerprint images.

For the first model, we show that continuous restricted Boltzmann machines can be used to learn
local fingerprint orientation field patterns, after which their learning can be used to correct noisy, lo-
cal ridge orientations. This extra step is introduced between orientation field estimation and contextual
filtering. We show that this step improves the performance of matching done on the enhanced images.
In the second model, we use a 2-layered convolutional deep belief network to learn features directly
from greyscale fingerprint images. We show that having a deep neural network significantly improves
the quantitative and qualitative performance of the enhancement. The deep network helps in predicting
noisy regions, that were otherwise not reconstructed by the first layer only. Further, a trained convo-
lutional deep belief network can estimate or extract other features from fingerprint images too. For
instance, the orientation field used to determine the parameters of a filter used in contextual filtering is a
feature that can be estimated by the neural network. This is possible by performing a weighted average
of the values of these features for the first layer filters, weighted by the reconstruction performed by the
network.

In conclusion, we have explored a new direction to attack the fingerprint enhancement problem. We
conjecture that it is possible to extend this work to other problems involving fingerprint recognition
too. For instance, synthetic fingerprint generation might be accomplished using the convolutional deep
belief network trained on fingerprint features. Our experiments show potential, which opens up several
potential experiments for the future which can give promising results. Future work also includes de-
veloping or training a single network that is capable of performing major fingerprint recognition tasks:
enhancement, matching, and classification.
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Chapter 1

Introduction

In today’s world, the task of identifying a person carries much importance. Be it for access to e-mail
or a secure facility, identification of a person/suspect in an investigation, creating a central database
for citizens of a country, or many more such jobs, we require systems that can efficiently and robustly
identify and verify individuals. We can point out such systems quite frequently in our day-to-day life.
Fingerprint scanners on laptops and in classrooms serve, respectively, the purpose of identifying an
individual and granting access, and verifying an individual to mark their presence. Further, security
holds a major share in the employment of such systems. While the fingerprint scanner in the classroom
isn’t used to keep anything secure, a scanner at a secure facility certainly does. The large stake held by
security here is a driving factor for the requirement of high accuracy of these systems. Depending on
what level of security is required and what kind of systems are feasible, a method of identification is
chosen.

1.1 Biometric Recognition

We saw that systems that can identify a person are an essential requirement in today’s technology.
There are several ways to achieve this identification - passwords, word of a trusted authority, biometric
traits are a few of them. A biometric trait is an anatomical and/or behavioural trait of a person, which
can be used to identify him/her. For instance, in every day life, we identify people primarily based on
their face; sometimes we identify them with their voice too. When we see a person walking towards us
from far away, we figure out who that person is by looking at how he/she walks. Face, voice, and gait
are thus some examples of biometric traits. There are some which are not used by people in every day
life, but they can identify a person. Examples of such traits are fingerprints, iris of the eye, the retina and
the vein-pattern on the hands. Employment of biometric traits for automatic recognition or verification
of individuals is called biometric recognition, or simply, biometrics.

Of the many available biometric identifiers, the fingerprint is the one which offers the highest score
on the following requirements, which are deemed essential for a biometric to be used to identify a
person.
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1. Universality: The biometric trait should be possessed by everyone.

2. Distinctiveness: It should be sufficiently distinct for every person.

3. Permanence: The trait should not fade/change/disappear over time.

4. Collectability: It should be easily collectible.

A biometric system is a system that recognises an individual based on one or many of the available
biometric traits. A biometric system may be classified into the following two categories:

• Identification system: An identification system is a system which takes as input(s) a person’s
biometric trait(s), and scans its database to find a match for these traits, hence identifying the
person based on the traits.

• Verification system: A verification system is a system which takes as input(s), biometric trait(s)
of a person, compares them with the records in its database, and verifies whether the said person
really is the one he/she is claiming to be.

Biometric systems have been built which use fingerprint as the biometric trait to verify/identify
individuals. However, besides the above properties for a biometric trait, we also have to consider the
following factors when building a biometric system:

1. Performance: Performance encompasses factors such as computation time, running time, accu-
racy, robustness and resource requirements.

2. Acceptability: This defines the extent to which users would be willing to accept the biometric
system.

3. Circumvention: The ease with which such a system can be circumvented.

Given in table 1.1 is a comparison of the various biometric traits, and their suitability for each of
the factors mentioned above (Taken from Handbook of Fingerprint Recognition [47], by Maltoni, Maio,
Jain and Prabhakar).

This table suggests fingerprints have high potential of being parameters for biometric identification.

1.2 Fingerprints as Reliable Biometric Identifiers

A fingerprint is an inherent pattern on the skin of a person’s finger. It has been observed that a fin-
gerprint remains consistent throughout the lifetime of a person. Even if the finger suffers from cuts or
bruises, the fingerprint reappears after it has healed. This gives fingerprints a very high score on per-
manence. Further, fingerprints have been demonstrated to be unique to every individual, and hence can
serve as an identification parameter. Fingerprints are being used as an identification parameter for over
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Figure 1.1 Examples of biometric traits used for identification and verification of individuals. Clock-
wise from top-left: (1) face; (2) fingerprint; (3) hand veins; (4) voice; (5) iris; (6) palmprint; and (7)
signature.

a century now, with the first effort being made by Alphonse Bertillon. The uniqueness of fingerprints
was accepted in 1893 by the Home Ministry Office of the UK. Few anomalies have been found in the
100+ years of study of fingerprints. By this observation, it is safe to assign a high score to fingerprints
on distinctiveness. Until recently, verification and identification tasks using fingerprints were primarily
being performed by experts who were well versed with the processes. That is to say, there weren’t
automated systems that would perform these tasks. The advent of computers and the use of comput-
ers and computer-systems for identification and verification is a fairly recent phenomenon, compared
to the time for which fingerprints have been around as identification parameters. This has certainly
made the process more convenient, less cumbersome and much faster, and with the tremendous strides
achieved by researchers in fingerprint recognition, we can safely assign a score of high to fingerprints on
the ‘performance’ metric. However, fingerprints as biometrics don’t perform so well on other primary
metrics:

1. Universality. Not every person on earth has a fingerprint, unlike the face, which is possessed by
almost any one who is alive. Some people lose their prints, while some others aren’t born without
them. Examples of this include severe burns on hands, amputations, and being born without
limbs.

2. Collectability. Fingerprints, although easily available, aren’t as easily collectible. They cannot
be collected using the common cameras. Collection of fingerprints requires special sensors, the
availability, suitability and usability of which drags down the rating on this metric.

3. Acceptability. As they aren’t a traditional means of identification of an individual (traditionally,
faces or signatures would suffice), fingerprints aren’t very accepted by the general public. Further,
recording a fingerprint can be a bit of a hassle, given that one might need to dirty their hands or
deal with faulty or dirty sensors.
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Fingerprint M H H M H M M 27
Iris H H H M H L H 27
Face H L M H L H L 23
Hand Geometry M M M H M M M 23
Hand Vein M M M M M M H 21
Signature L L L H L H L 17
Voice M L L M L H L 17

Table 1.1 A comparison of various biometric traits on primary requirements. The total score is cal-
culated by assigning H a score of 5, M a score of 3 and L a score of 1. Instead of rating the ease of
circumvention, the last column rates the difficulty in getting around the system. High scores indicate
higher difficulty in breaking the system (Taken from Handbook of Fingerprint Recognition [47]).

4. Circumvention. Getting around a system that uses fingerprints to authenticate isn’t as hard as
it may seem. We leave our fingerprints almost everywhere during our day-to-day lives. It is
extremely easy for an impostor to collect the fingerprint left by us, although a little difficult to
fool a sensor into thinking that the fingerprint shown to it is authentic.

1.3 Fingerprint Features

As is the case with any data, the features that can be extracted from fingerprints are crucial. Feature
extraction forms an integral part of all fingerprint recognition tasks: enhancement, alignment, matching,
and classification. There are four primary features that are helpful in achieving these tasks. These will
be discussed to a considerable extent in this section.

However, before we move to that, we introduce definitions for ridges and valleys in a fingerprint
image. The inherent pattern present on the epidermis is made up of gaps and protrusions. These protru-
sions, as we shall see in Section 1.4, result in the black lines in the resultant fingerprint image. These
protrusions are called ridges. Also, the gaps between ridges result in the white area in the resultant
image. These gaps are called valleys. Figure 1.2 illustrates this nomenclature in a better manner.

Now that we have established definitions for ridges and valleys, we can move to defining features in
fingerprint images. We will look at four categories: ridge orientation, ridge frequency, singularities, and
behaviours of ridges. As expected, all of these features are of how ridges and valleys appear at a point
in the fingerprint image.
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Delta
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Figure 1.2 A fingerprint image showing a ridge, a valley, a ridge ending (red), a ridge bifurcation
(yellow), a loop (green), and a delta (blue). Ridges cause the black pixels in the captured fingerprint
image, whereas the valleys don’t leave marks in the image.

1.3.1 Orientation

Orientation, as the name might suggest, refers to the direction of ridge-flow at a point. More pre-
cisely, the orientation at a point (x, y) in a fingerprint image is the angle made by the ridges with the
horizontal in an arbitrarily small neighbourhood centered at (x, y) (Figure 1.3). Further, an orientation
field, D, is the image formed by setting the value at every pixel to be equal to the orientation at that
pixel. Figure 1.4 illustrates the orientation field.

Neighbourhood
around a point

The orientation
at the point

x,y

Figure 1.3 The orientation at a point. The arrow heads indicate that the orientation is independent of
towards which of the two ends we consider the ridge-flow to be and hence, orientation values of θ and
π + θ are equivalent.

As the ridges are not directional (for example, we don’t say whether a horizontal ridge is flowing
to the left or to the right), an orientation value of θ is equivalent to a value of the form kπ + θ. This
implies that the orientation lies in the range [0, π[ (The notation [x, y[ says that this range folds over
itself, i.e., y + t ≡ x+ t). Further, a reliability measure is also generally included with the orientation.
Reliability measure at a point tells us the quality of the fingerprint region at that point. High quality
regions have a high reliability measure, whereas low quality regions have a low measure. One way to
determine the reliability is to calculate the coherence of the orientation field in that region. Kass and
Witkin [34] determine the coherence as the norm of sum of the orientation vectors divided by the sum
of norms of the vectors:

rxy = coherencexy =

∣∣∣∣∣∑
W

d

∣∣∣∣∣∑
W

|d|
(1.1)
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Figure 1.4 left: The original fingerprint image; centre: the orientation field illustrated as an image; and
right: the orientation field depicted as a plot of orientated lines, the directions of which are determined
by the values of the orientations at pixels.

Here, W is a neighbourhood around the point (x, y). d (defined in the next section) is an orientation
vector in the neighbourhood W . The thinking behind this is simple: as fingerprint ridges are continuous
in a small neighbourhood, orientations at all points in this neighbourhood should be approximately in
the same direction. In such a case, the norm of the sum of the orientation vectors would be close to the
sum of norms of individual orientation vectors. Orientation vectors in the window W around a point
(x, y) in a noisy region are expected to be not parallel to each other (parallel vectors would generate
the most coherence). Hence, the reliability for a noisy region drops, as the value of the numerator in
Equation 1.1 drops.

Calculating the orientation field. Over the years, several methods have been suggested to estimate
the orientation field of a fingerprint image. Gradient-based estimation is most common. It functions on
the fact that the direction of maximum gradient of pixel values at a point is perpendicular to the orienta-
tion at that point. Hence, to estimate the orientation at a point, we first compute the x and y gradients at
that point. The orientation is then simply π/2 + arctan(∇y/∇x), where ∇y and ∇x are, respectively,
the gradients along y and x directions. However, this is susceptible to even minor inconsistencies in
pixel values, which are to be expected as fingerprint ridges aren’t perfectly regular. Also, this presents
discontinuities around an orientation of π/2, as it discards the circularity of orientation angles. Kass
and Witkin [34] proposed a work-around for this by introducing a small change in the way orientations
were calculated, where an orientation vector would be represented by 2θ, instead of θ. This adjusts the
circularity of angles:

d = (r cos(2θ), r sin(2θ)) (1.2)
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r, here, is proportional to the length of the gradient vector, i.e., ∇2
x +∇2

y. By averaging orientations in
an n× n window W , we get a more robust estimation:

d =

(
1

n2

∑
W

r cos(2θ),
1

n2

∑
W

r sin(2θ)

)
(1.3)

Two further similar methods for estimating the orientation field are slit- and the projection-based
methods. In these methods, the orientation values are first quantised, i.e., possible orientation values for
every point in the image are fixed as multiples of a fraction of π. Hence,

D(x, y) = arg min
k

[
cost

(
k
π

ns

)
; for k = 0, 1, . . . , ns − 1

]
(1.4)

To find the orientation at a point, all of these possible orientation values are tested according to a
“cost” function. Lower the cost of an orientation at a point, higher the preference for it at that point.
One way is to compute standard deviations of pixel values along a slit and perpendicular to the slit, and
choose the setting which gives the highest difference between standard deviations along these two slits
[54]. Using projections, we can also find the direction of smallest variance of the pixel values. The
direction along which the projection has the least variance corresponds to the direction of the ridge [64].

Instead of working in the spatial domain to estimate the orientation, we can also work in the fre-
quency domain. It is interesting to note that a fingerprint patch resembles a 2-dimensional surface,
which behaves like a sine wave in one direction. Kamei and Mizoguchi [32, 31] proposed a method for
enhancement using directional filters in the frequency domain. The orientation at a point is determined
by the highest filter response and local smoothing. Chikkerur et al. proposed the use of Short-time
Fourier Transform [14] to estimate the orientation at a point. In this method, a sliding window operation
is applied on the fingerprint image, and for each window, an orientation is estimated from the power
spectrum of the Fourier transform of that region. Even further approaches to estimate the orientation
field including smoothing orientation fields locally and modelling a global orientation field structure
using MRFs.

1.3.2 Frequency

The ridge frequency at a point (x, y) in a fingerprint image is defined as the number of ridges per pixel
in the direction perpendicular to the orientation at that point. The frequency image, like the orientation
field, is an image where every pixel gets a value equal to the ridge orientation at that point. It is denoted
by F. Usually, ridge frequency varies from pixel to pixel in a fingerprint. Sometimes, this variation can
be considerable. We can expect large variations between images of different fingers.

The local orientation is useful in determining the ridge frequency at a point. Hong et al. [47] devised
a method which counted the average distance between ridges in a 32×16 oriented window. By oriented
window, we mean a rectangular window with its longer side perpendicular to the ridge orientation. In
this window, the x-signature is computed, which is the signal representing the sum of pixel values along
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the columns of the rectangle. The ridge frequency is then the average distance between two peaks.
However, peaks can be ambiguous at times. Hence, some processing needs to be done before the x-
signature can be used. This includes interpolation and low-pass filtering. Another method to estimate
the frequency at a point is to work in the frequency domain, just like measuring the orientation.

1.3.3 Singularities

Singularities, also called level 1 features, are features that can be observed at the broadest level of the
fingerprint. These are formed by particular ridge structures and curvatures, and hence do not concern
themselves with the structure of individual ridges. Singularities can be broadly classified into three
types: loops, deltas, and whorls. However, sometimes whorls aren’t included as a different singularity
as they can be represented by two loops (Figure 1.5)

Core

WhorlLoop

Delta

Figure 1.5 Examples of whorls, deltas and loops in fingerprint images. Loops and whorls have a com-
mon feature: the core.

1.3.4 Minutiae

Minutiae are points of interest on a fingerprint. They are characterised by behaviour of particular
interest of ridges. Such behaviour can be classified into several types (Figure 1.6). The most commonly
occurring minutiae in fingerprints are ridge endings, ridge bifurcations, independent ridges, lakes, spurs,
islands, and crossovers. Of primary interest amongst these are ridge endings and ridge bifurcations. As
the name suggests, they represent, respectively, an abrupt ending and a division into two of a ridge. The
others can be broken down into a combination of these two. For example, a lake can be broken down
as two closely spaced bifurcations, a spur can be looked at as a ridge bifurcation followed by a ridge
ending, and an independent ridge is two closely spaced ridge endings.

Minutiae are level 2 features. Sir Francis Galton [20] was the first to recognise the presence of
minutiae, and their permeability. They are sometimes called “Galton details”, to honour him. A minutia
is represented by three parameters: the x- and y-coordinates of the point where the minutia is present,
and the orientation, θ, associated with it. This forms a triplet: 〈x, y, θ〉. The orientation associated with
a ridge ending is the orientation at the point of the ending. Determining the orientation for a bifurcation,
however, can be ambiguous. Hence, a convention is followed which not only removes this ambiguity,
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Figure 1.6 The most commonly found minutiae in fingerprints. The most commonly used, however, are
only the first two, as the others can be decomposed as a combination of these two (Image taken from
Handbook of Fingerprint Recognition [47]).

but also introduces a tolerance towards minutiae that are incorrectly classified. Figure 1.7 illustrates
how θ is defined.

Following this convention, the angle associated with a bifurcation is equal to the orientation of the
negative ridge ending of that bifurcation. Here, a negative ridge implies the ridge structure that is
obtained by flipping over the pixel values of the image (hence transforming ridges into valleys, and
vice versa). At a bifurcation, the negative ridge will show an ending, the orientation of which is easily
defined. It is observed that sometimes ridge endings and ridge bifurcations are confused in multiple
impressions of the same finger. This might happen due to different finger pressure at the time of taking
the print, which might disrupt the connection between the two ridges in a ridge bifurcation, thus making
it look like a ridge ending. This convention is tolerant towards such a scenario, and this convention
doesn’t introduce a considerable inconsistency in the associated orientation.

Figure 1.7 Minutiae angles associated with (a) ridge endings and; (b) bifurcations. The angle associated
with bifurcation is the angle the negative ridge is oriented at (taken from Handbook of Fingerprint
Recognition [47]).

1.4 Fingerprint Sensing

The process of gathering a digital copy of the imprint of a person’s finger is referred to as fingerprint
sensing. For a majority of the time period in which fingerprints have been used as methods as of
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identification and verification of individuals, the task of fingerprint sensing was performed by gathering
an inked print and scanning it to convert it into a digital copy. To gather an inked print, the hands of
the person whose prints needed to be gathered were smeared in ink, and he/she was asked to place
them on a sheet of paper. Next, this copy was digitised to be used by a computer by scanning it at
a comfortable resolution, usually 500 dots per inch (dpi). However, as technology progressed and
requirements evolved, a fast method to gather fingerprints was required. This gave rise to fingerprint
sensors, which are electronic devices to register fingerprints. The process of recording of fingerprints is
called enrolment. Hence, a person is said to be enrolled if he/she has provided his/her fingerprints to go
on the record. There are several reasons for the need of enrolment. For instance, governments can link
records of citizens with their fingerprints, secure facilities will need authorised persons’ fingerprints to
go on the record, so that they can be identified and verified within the facility, and personal computers,
phones and other devices might have fingerprint sensors which also record the owner’s prints to allow
them access without a password. Sensors, hence, are spread across the scale of the task for which
they are required. This emphasises the need for an efficient, easy-to-use, and robust device that can
accomplish this task. Figure 1.8 is an example of the working of sensors.

Figure 1.8 An example of a fingerprint sensor that outputs digital images of collected fingerprints.
There is an analogue-to-digital converter applied on the sensed image so that it can be directly used by
a computer. Some sensors don’t require this converter as the image scanned by them is already digital.
Image taken from Handbook of Fingerprint Recognition [47].

For each of the three scenarios mentioned here, taking gathering an inked fingerprint of the person in
consideration, digitising it, and then verifying or identifying the individual is not feasible. Apart from
being a great inconvenience to the involved parties, it is a time-consuming arrangement. If we use an
electronic sensor instead, the prints can be gathered and digitised in a matter of seconds. This reduces
the time taken by and effort required to identify someone several fold.

The fingerprint that is enrolled can be either a plain impression, or a rolled impression. A plain
impression is obtained by pressing down a part of the finger on the sensor. This records only a portion
of the fingerprint. A plain impression doesn’t have complete information of a fingerprint. For instance,
for it to match another plain impression of the same finger, the overlap between these two prints should
be substantial. The two prints can’t be matched at all if they have zero overlap. A rolled impression,

10



Figure 1.9 A plain impression (left) and a rolled impression (right) of the same finger. The part of the
rolled impression highlighted corresponds to the plain one. Image taken from Handbook of fingerprint
recognition [47].

on the other hand, is a “nail-to-nail” impression of a fingerprint. As the name suggests, it is obtained
by “rolling” a finger on the sensor from one end to another, so that as much information is gathered as
possible. Figure 1.9 gives an example of plain and rolled impressions.

Existing fingerprint scanners can be broadly classified into two classes: multi-finger scanners, and
single-finger scanners. As the name suggests, multi-finger scanners have the ability to scan prints of
multiple fingers at a time. These are usually used in systems which require mass enrolment of people -
registering of citizens of a country by a government, for instance. The enrolment procedure is completed
in three steps using a multi-finger scanner: all fingers (excluding the thumb) of one hand are scanned at
once, then the same is done for the other hand, and finally, the two thumbs are scanned. However, the
scanner doesn’t generate a separate image for every finger that was scanned. Hence, a post-processing
algorithm is included with the process which finds fingerprints, distinguishes them from each other, and
assigns a finger to every fingerprint.

Figure 1.10 Some examples of fingerprint scanners. left: A single-finger scanner; centre: A multi-finger
scanner; and right: A single-finger sweep scanner. Unlike the touch scanner, the sweep scanner asks the
user to swipe his/her finger over it. This gives a sequence of overlapping slabs of the fingerprint image,
which the scanner then stitches together.

Unlike multi-finger scanners, single-finger scanners can scan only one fingerprint at a time. This
minimalist design results in a lower cost of the device as compared to multi-finger scanners. They can
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hence be used at a non-commercial and personal level. They can be found on laptops to authenticate
users, and outside classrooms to identify individuals for attendance.

Further, there are several methods to build a fingerprint sensor. The most common sensors can be
classified as optical, thermal, capacitive, and ultrasound. The working of a general optical sensors
involves flashing light on the surface of the sensor once a finger is placed on it. As only the ridges
will touch the surface, they absorb most of the light that falls on them. The valleys, on the other hand,
reflect all the light off the surface, as the light is incident so as to cause total internal reflection. The
reflected light is gathered and an image is produced, which has different responses for valleys and ridges.
Capacitive sensors work by forming small capacitors between the skin of the finger, and capacitive plates
placed beneath the sensor-surface. As only the ridges touch the surface, the capacitance developed
between a plate and a valley is different from the one developed between a plate and a ridge. From the
resultant capacitive patterns, an inference is drawn of the fingerprint. Thermal sensors also rely on the
fact that ridges touch the surface and valleys don’t. A thermal sensor is heated up so that the surface
of the sensor is at a high temperature. Next, when a finger is placed on it, the portion of the fingerprint
that has ridges produce a different temperature than the region with valleys, and hence generates the
resultant fingerprint pattern. The ultrasound sensor is has a transmitter and a receiver of sound waves.
Operating on a concept similar to that of SONAR, these sensors sense ridges and valleys based on the
sound reflected off them. Figure 1.11 shows some scanned fingerprints.

Figure 1.11 Fingerprints scanned using different types of scanners. From left to right: optical, capac-
itive, thermal and ultrasound. The thermal fingerprint was sensed using a sweep method, instead of a
touch method. The sweep method requires the person to swipe his fingerprint over the scanner, instead
of pressing down upon it. As a finger’s surface reaches thermal equilibrium with the sensor surface very
quickly, it is difficult to get a good print from the thermal scanner using the touch method.

1.5 Fingerprint Classification

Fingerprints can be classified into several classes based on their ridge flow. As was stated in Section
1.3.3, we observe singularities in fingerprint structures which are caused by certain ridge flow patterns.
For example, the loop is formed when ridges take a 180° turn, and a delta is formed when ridges meet
at a Y-intersection. However, only a certain number of relative placements of these singularities have
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been observed in fingerprints throughout history. Based on the presence of singularities, their placement
relative to each other, and general ridge flow, fingerprints are divided into classes.

1.5.1 Classes

There are five primary classes into which fingerprints can be classified: left loops, right loops, whorls,
arches and tented arches. Figure 1.12 shows examples of fingerprints from different classes.

Figure 1.12 Fingerprints belonging to the five different classes. A circle denotes a loop, whereas a
triangle denotes a delta. The number of singularities and their relative placement is the deciding factor
in classification (taken from Handbook of Fingerprint Recognition [47]).

1.5.2 Classification Techniques

Classification of fingerprints into these classes is done based on several criteria. For instance, the
positions of singularities present in the fingerprint image relative to each other is one way to classify
the print. However, if the impression that is being classified isn’t a rolled impression, then it is possible
that there aren’t any singularities present in the fingerprint. From Figure 1.12 we can observe that such
a fingerprint would be classified into an arch category, which might be incorrect. Further, left and right
loops might not show the presence of a delta for the same reason, even though they have one. Again, a
classification based only on the singularities wouldn’t conclusively determine the class of the fingerprint,
as the relative position of the delta with respect to the core determines whether the print is a left loop
or a right loop. Algorithms which use singularities to classify a fingerprint were proposed by Kawagoe
and Tojo [35], Karu and Jain [33], Ratha et al. [61], Hong and Jain [25], Wang and Dai [74], and Zhang
and Yan [85]. A better approach is to use the orientation field image or ridge flow to determine the class.
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Based on a pattern in the ridge flow, we can distinguish a left loop from a right loop, even if there the
presence of a delta isn’t recorded.

Neural networks have also been used for the task of classification. They are of particular importance
to this thesis, as they are amongst the first applications of neural networks to some fingerprint recognition
task. Popular approaches that use neural networks for classification were proposed by Hughes and Green
[28], Bowen [6], Wilson, Candela, and Watson [80] and Jain, Prabhakar, and Hong [29].

1.6 Fingerprint Matching

Fingerprint matching is the task of comparing two fingerprint images, and assigning a similarity
score to the pair of images. This is a particularly hard task because of the extreme variations that might
arise in different impressions of the same finger. The goal of a fingerprint matching algorithm is to
assign a high similarity score to a pair of impressions of a finger disregarding properties like contrast,
brightness, saturation, noise, size, translation, and rotation.

As a matching algorithm takes in two fingerprint images, one of them is a pre-recorded image,
usually stored on a centralised server or database. The second image is a live-scan that needs to be
authenticated. The pre-recorded image is called the template, and the live-scan is called the target, the
input, or the query.

The large intra-class variability can stem from various factors: displacement, rotation, sensor type,
finger pressure, moisture levels, presence of dirt, non-linear distortions, partial overlap, and noise. Fur-
ther, errors in feature extraction can also affect fingerprint matching. To counter these factors, specific
algorithms need to be employed. Various matching algorithms have been proposed, which can be clas-
sified into three categories: correlation-based, minutiae-based and non-minutiae based.

Correlation-based matching refers to assigning a score to two fingerprint images by computing the
amount of overlap between the two images, after suitable alignment has been done. By alignment, we
mean applying translations, rotations and scaling on one of the images, so that it aligns perfectly with
the other image. Let T denote a template fingerprint image, and I denote an input image. Then, a
correlation between the two images can be computed as

C(T, I) = TT I (1.5)

But this doesn’t include any translations and rotations that might need to be applied to the input image.
Call I(∆x,∆y,θ) the image obtained from I, after applying a translations of (∆x,∆y) and a rotation of θ
on it. The similarity score is then given by

S(T, I) = max
∆x,∆y,θ

C(T, I) (1.6)

This simple method, however, doesn’t tolerate intra-class variations that were mentioned earlier.
Several improvements have been suggested to counter this. These include normalising correlation [15],
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differential correlation [23], enhancing the fingerprints and thinning them before calculating the scores
[38], and block processing [4, 83, 39].

Minutiae-based matching has several sub-approaches that work by extracting minutiae from a fin-
gerprint image first. However, a general line of attack on the problem is aligning the extracted minutiae
with each other. For this, let us define the problem more concretely:

We are given two sets of minutiae extracted from the template and the input fingerprint images.
Let us call them M and M ′, respectively. Each minutia is typically represented by three values: the
x-coordinate, the y-coordinate, and the orientation associated with the minutia. Hence, we have:

M = {m1,m2,m3, . . . ,mm};mi = 〈xi, yi, θi〉; 1 ≤ i ≤ m

M ′ = {m′1,m′2,m′3, . . . ,m′n};m′j = 〈x′j , y′j , θ′j〉; 1 ≤ j ≤ n (1.7)

We need to determine a translation, rotation, and scaling of M ′, so that we have the highest similarity
score between minutiae from M and M ′. The similarity score is directly dependent on how closely
two minutiae match. Further, two minutiae are said to match, if their spatial distance, and directional
distance fall under a predefined threshold. So, mi and m′j match if:

SD
(
mi,m

′
j

)
=
√

(xi − x′j)2 + (yi − y′j)2 ≤ r0; and (1.8)

DD
(
mi,m

′
j

)
= min

(∣∣θi − θ′j∣∣ , 2π − ∣∣θi − θ′j∣∣) ≤ θ0 (1.9)

But we further require handling of non-linear transformations and scaling (in case the two finger-
prints were taken by different sensors of different resolutions). There is vast amount of literature
on this topic. However, as this isn’t the focus of the thesis, we have decided to leave further ex-
ploration to the reader. Various algorithms proposed on minutiae-based matching can be found in
[11, 30, 71, 78, 72, 9, 75, 61]

Non-minutiae-based matching algorithms are varied. Some of them use neural networks to deter-
mine whether two given fingerprints are a match or not [68, 58, 48]. Some methods propose the use of
fingerprint curvature, rather than minutiae, to match them. If overlap between the template and input
fingerprints isn’t significant, minutiae based methods might fail to give a high score to a positive match.
Matching on curvature, however, is feasible even in small overlaps (Yager and Amin, [82]). Another ap-
proach suggested by Parziale and Niel [57] suggests using Delaunay triangulation to achieve fingerprint
matching.

1.7 Scope of the Thesis

In this thesis, we will talk about enhancement of fingerprint images using learning methods that are
of unsupervised nature. These methods will focus on feature learning on the fingerprint images, or some
property of the fingerprint images. Further, the enhancement of images shall be done using this learning,
in that we will reconstruct fingerprint images based on what we learn from datasets of fingerprints.
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Unsupervised feature learning is performed using continuous RBMs and convolutional deep belief
networks, which have been briefly described in their respective chapters. The learning and enhancement
processes have been described along with each algorithm. Each chapter has sections on experimental
analysis, so as to compare results of existing algorithms with the proposed ones.

1.8 Outline of the Thesis

This thesis contains five chapters. Chapter 1, Introduction, serves as an introduction to biometrics,
fingerprints, fingerprint features, and fingerprint recognition tasks. Fingerprint enhancement, which is
the focus of this thesis, has been excluded from the introduction. Chapter 2, Fingerprint Enhancement
serves as a literature review of existing enhancement algorithms. This chapter is more detailed than the
introduction, and existing approaches are discussed more in-depth than their counterparts in Chapter 1.
Chapter 1 presents a bird’s-eye view of fingerprint recognition, and is essential to the rest of the thesis.
Terminologies, conventions, details of fingerprints, and the like are detailed in this chapter.

Chapter 3, Learning Local Fingerprint Orientations, presents a contribution of the thesis. In this
chapter, we explore how the task of fingerprint enhancement can be solved using machine learning and
neural networks. We formulate the enhancement problem as learning the orientation field, after which
contextual Gabor filtering can be used to give the enhanced image.

Chapter 4, Hierarchical Learning of Fingerprint Features, also presents a contribution of this the-
sis. This chapter, however, can be studied independently from Chapter 3, but we encourage the reader
otherwise. Chapter 4 presents an approach to learn fingerprint structures directly from pixel images,
without using previously extracted features. Further, we enhance fingerprint images using this learning
at multiple resolutions.

Finally, Chapter 5, Conclusions, lists out the conclusions of the work included in this thesis. It
highlights the importance and distinctiveness of the proposed work, and also outlines several possible
paths for exploration that can be built upon the work included in Chapters 3 and 4.
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Chapter 2

Fingerprint Enhancement

The performance of fingerprint identification systems is heavily dependent on the quality of finger-
print images that they are given as inputs. While good, clean fingers scanned using a clean sensor
usually output images that can be directly used for feature extraction, the added process of fingerprint
enhancement before recognizing them only adds to the accuracy of the system [26]. There are several
ways in which distortions can be introduced in fingerprint images. Firstly, the sensors used to scan the
fingerprints might be damaged themselves. A particular scenario is sensors that are used by the Gov-
ernment to mass-enroll citizens (for example, the recent introduction of Aadhaar Card required citizens
to scan their fingerprints to store in a centralised system). During such enrolment drives, one scanner is
used by thousands of people. Eventually, the scanner accumulates dirt, its parts might be damaged by
improper use, or, if not cleaned properly, faded impressions from previously scanned fingers would still
remain on the surface. All of these factors contribute towards noise in the fingerprint image. Secondly,
the fingerprint to be scanned might itself contribute towards noise. If the person scanning his/her prints
doesn’t have clean hands, or have the right amount of moisture, his/her prints might get damaged. Fur-
ther, a person’s fingerprints might be degraded due his/her age or occupation (e.g., manual labourers,
elderly people, people who have suffered burns). Their fingerprints are also usually not of a quality that
allows recognition to be performed on them directly. Finally, fingerprints left at crime scenes have the
most amount of noise. They are mostly clouded by large amounts of dirt, texture on the surfaces they
were left on, or inter-mixed with other fingerprints. Such fingerprints, called latent fingerprints, are
extremely important in forensic science, and their enhancement plays a crucial part in the identification
process.

The reasons recounted above stress the need for fingerprint enhancement, and its help in fingerprint
recognition and identification systems. In this chapter, we will form a background on the current work
done in this area, which will help in a better understanding of the work presented in this thesis.

A fingerprint image has regions that can be classified into three types: well-defined, recoverable,
and unrecoverable. Well-defined regions have clearly separable ridges and valleys, with consistent ridge
flow. Recoverable regions might have small gaps, smudges, creases, etc,. but ridge structure can still be
interpreted from them. Unrecoverable regions are so noisy that ridges are barely visible. With fingerprint

17



enhancement, we aim to improve consistency in ridge structure, make ridges and valleys distinguishable
even in wet regions, and remove creases, in recoverable regions. Further, we also mark unrecoverable
regions, so that they can be processed further. Some enhancement algorithms aim to also estimate the
ridge structure in unrecoverable regions.

Figure 2.1 Fingerprint images of varying quality. From left: good quality; medium quality, distorted
mostly by cuts; poor quality, varying moisture, cuts, and a lot of noise; latent fingerprint, taken from a
crime scene, very little information.

2.1 Pixel-wise Enhancement and Median Filtering

Pixel-wise enhancement aims at enhancing individual pixel values so that some global parameters are
satisfied. These algorithms generally introduce a greater disparity between values of pixels belonging to
ridges and valleys. For example, Hong et al. [26] proposed a normalisation method in which pixel values
are manipulated so as to attain a global mean and variance. Greenberg et al. [22] employ Weiner filtering
in their approach. [37, 67] have also proposed adaptive normalisation techniques. Like Hong et al. , Kim
and Park [37] use target parameters for mean and variance, except that they perform this operation block-
wise, instead of setting them globally. Arpit and Namboodiri [3] proposed using Constrast-Limited
Adaptive Histogram Equalisation (CLAHE) to stabilise the contrast in the input image before processing
it. Another method to remove salt-and-pepper noise is to apply median filtering on the image. This
removes small, pixel-sized, outliers. However, pixel-wise enhancement techniques don’t include the
essential information in the neighbourhood of a pixel. They, however, serve as good pre-processing
steps for further enhancement.

2.2 Contextual Filtering

Contextual filtering is the most common method used for enhancement. By contextual filtering, we
refer to filtering an image using separate filters for different pixels. The filter to be used at a point is
determined by values of certain parameters at that point, that is, by the context of that point. Parameters
that usually determine the filter are ridge orientation and ridge frequency. However, designing a separate
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filter for every pixel is a time-consuming process. A workaround is to quantise different orientations
and frequencies (thus reducing the unique number of orientations and frequencies), creating a filter
corresponding to each pair of values, and then storing them in a bank. Filters from this bank can then
directly be used when required.

In literature on enhancement, we will find numerous approaches to fingerprint enhancement that are
based on contextual filtering. Some suggest filters that perform well for enhancement, while others
improve existing algorithms by suggesting modifications to filtering and/or the way they are applied to
the image. Overall, contextual filtering has the following two goals:

• Low-pass filtering along the direction of the ridges. This operation is aimed at connecting any
discontinuities in ridge structure that might be present in the fingerprint. By rejecting high fre-
quency data along the direction of the ridge, we effectively remove these discontinuities because
they behave like edges.

• Band-pass filtering perpendicular to the direction of ridge-flow. This operation is aimed at
increasing the distinctiveness of ridges and valleys. The frequencies that are allowed by the
band-pass filter are determined by the frequency of ridges at that point. This removes data that
inadvertently connects two ridges.

O’Gorman and Nickerson [51, 52] were the first to introduce contextual filtering for enhancement of
fingerprint images. Their version involved generating a filter-bank from one filter, by orienting it in 16
directions. However, they didn’t use ridge frequency as a parameter, and, instead, worked with minimum
and maximum ridge and valley widths. Sherlock, Monroe, and Millard [66, 65] proposed filtering in
the Fourier domain. They filter the input image with all filters from a filter-bank in the Fourier domain,
which is equivalent to element-wise multiplication of the Fourier transforms of the image and the filters.
Next, an inverse FFT is computed for the resultant images, and the best filter is chosen for each point,
which determines the enhanced image. Hong, Wang, and Jain [26] proposed the use of Gabor filters
for enhancement. This method became a widely-accepted standard for enhancement. The Gabor filter
(Appendix A) is a two-dimensional Gaussian surface, that is multiplied along one direction by a cosine.
The filter to be applied at a point is determined by the ridge orientation and ridge frequency. These
two parameters also determine the direction the cosine will be oriented in, and its frequency. There
are two more parameters used, which are variances along the ridge direction and perpendicular to it, of
the Gaussian surface. A filter-bank is created using globally-observed values of these parameters, thus
reducing computation. Yang et al. [84], Zhu, Yin and Yang [86], Erol, Halici and Ongun [18], Wu and
Govindaraju [81], and Bernard et al. [5] have suggested approaches that build upon this using several
modifications.
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Figure 2.2 A fingerprint enhanced using Hong, Wang and Jain’s [26], and Chikkerur, Cartwright, and
Govindaraju’s [14] algorithms. A binarisation is also performed on the enhanced image, by simply
thresholding the enhanced image at its mean.

2.3 Frequency-domain Analysis

There have been approaches that work in the frequency-domain too, instead of the spatial domain,
in while contextual filtering and pixel-wise enhancement work. Sherlock, Monroe, and Millard [66]
proposed performing the filtering operation in the frequency domain, which is transforms convolution
to element-wise multiplication. Watson, Candella and Grother [76], and Willis and Myers [79] proposed
a block-processing algorithm which doesn’t require computation of the orientation in the block. In this
approach, the Fourier transform of the block is multiplied with a power of its power spectrum, and an
inverse Fourier transform is computed, which gives the enhanced image:

Ienh[x, y] = F−1
(
F (I[x, y]) · |F (I[x, y])|k

)
(2.1)

The power spectrum contains information on the ridge-flow direction. Figure 2.3 illustrates.

Figure 2.3 The power spectrum of the Fourier transform of a fingerprint patch. The original patch is
on the left, and the power spectrum is shown as an image on the right. It can be seen that the peaks
in the power spectrum, when joined, produce a line perpendicular to the direction of ridge-flow. This
determines the orientation at that point.

Further work in enhancement in the Fourier domain, perhaps the most influential of them, was done
by Chikkerur, Cartwright, and Govindaraju [14] in 2007. They used Short-time Fourier Transform
(STFT) to determine local orientations and frequencies. These values were used to construct contextual
filters in the frequency domain. They modelled the fingerprint structure in a block as a sine/cosine wave.
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The idea was to use sliding window on a fingerprint image, and enhance each window separately. The
window size was chosen so that orientation and frequency can be assumed to be constant in the window.
Next, the orientation and frequency were calculated as a weighted average from the power spectrum of
the Fourier transform.

2.4 Multi-Resolution Enhancement

Multi-resolution enhancement aims at analysing a fingerprint image at multiple frequency bands.
Consider a fingerprint image at the scale of level 3 features (i.e., at individual ridges and pores). The
irregularities that may arise due to presence of pores, or stray pixels, is high-frequency data. Further,
consistent ridges and valleys are low-frequency data. Thus, appropriate processing on high-frequency
data can smooth out ridges and valleys, thereby giving continuous ridges and valleys.

Algorithms based on multi-resolution analysis were proposed by Hsieh, Lai, and Wang [27], Cheng,
Tian, and Zhang [12], and Almanasa and Lindeberg [1].

2.5 Formulating an Energy-Minimisation Problem

Fingerprint enhancement can also be looked at as an energy-minimisation problem. There have been
recent developments on this too. The most promising one is enhancement of fingerprint images using
Markov random fields (MRFs). Dass [16], Lee and Prabhakar [13] and Rama Reddy and Namboodiri
[60], are some efforts towards enhancement using Markov random fields. Dass [16] suggested a Markov
random field model for smoothing out orientation field over noisy regions and detecting singularities in
images. Lee and Prabhakar [13] propose using a two-component MRF model, where the first component
is a global mixture-model trained on two training images from each class of fingerprints, and the second
component introduces a smoothness constraint over the orientation field. Their model was able to reduce
the number of spurious minutiae considerably. Rama Reddy and Namboodiri [60] use a hierarchical
Markov random field (HMRF). The HMRF has two stages (layers) that look at two different levels of
the fingerprint. The enhancement process is iterative, and oscillates between these two layers. The
input fingerprint is divided into overlapping patches, and for every patch, an ideal match is found from
a set of existing patches. However, the best fit also depends on the four neighbouring patches. In very
noisy regions, where the estimate of such a patch isn’t possible, the iterative process ensures that the
orientation field is estimated gradually.
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Chapter 3

Learning Local Fingerprint Orientations

3.1 Introduction

Enhancement of fingerprint images plays an important part in fingerprint based authentication sys-
tems. This step plays a vital role so that noise from fingerprint images can be removed before they are
subject to feature extraction or matching, and hence, decrease the probability of a false match. Noise
in fingerprints can appear because of several reasons including, but not limited to, sensor noise, damp
finger at the time of recording of the fingerprint, bruises and cuts in fingers, and non-uniform finger
pressure [47]. Several approaches to fingerprint enhancement have been proposed in the past. Some of
these approaches try to model the noise in the fingerprint image and remove it. Such methods include
median filtering, contrast limited adaptive histogram equalisation, and Wiener filtering [22]. These tech-
niques, however, are not very successful in modelling the kind of noise present in the fingerprint image
for it can be a mixture of several kinds of noise. These techniques, however, aren’t completely unused,
and serve as pre-processing steps for more complicated enhancement algorithms.

Neural network approaches to pattern recognition and classification tasks had fallen out of favour in
the 1990s after the advent of support vector machines (SVMs). However, they started gaining popularity
again in the mid-2000s as new methods to train them surfaced [8]. The use of many-layered neural
networks to learn patterns gave rise to the term “deep learning”. Deep learning can be achieved using
a variety of models. Deep belief nets, for instance, are examples of deep networks. Deep belief nets
are built by stacking several restricted Boltzmann machines (RBMs) over each other. The RBMs, as
independent models, have been used as generative models for several years [70, 63, 62, 59] with the
problems addressed by them [24] spanning from bag-of-words for document representation [62], to
user ratings of movies [63], and modelling video [70], and speech [59]. RBMs have a visible layer
and a hidden layer of neurons, with every neuron in the visible layer connected to every neuron in the
hidden layer, and there being no intra-layer connections. Traditionally, however, RBMs work only on
binary inputs. Chen and Murray [10] proposed a model which was a variant of the RBM, and can work
on continuous inputs. The neurons in the model proposed by Chen and Murray (a Continuous RBM),
are continuous stochastic units formed by adding a zero-mean Gaussian noise to the total input received
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by them. We shall use this model in this chapter to encode and learn orientation fields of fingerprint
images.

3.2 Related Work: A Recall

Several techniques currently used in fingerprint enhancement involve contextual filtering - a primary
filter used being the Gabor filter. The use of Gabor filter for fingerprint enhancement was proposed by
Hong, et al. [26]. Parameters for the filters used on the image are determined by local ridge orienta-
tion, local ridge frequency and reliability of ridge orientation. Yet earlier attempts involved the use of
elongated filters in the direction of ridges [53]. Unlike these, methods that operate in the frequency
domain [66] and those which work in both domains [14] have also been attempted. The algorithm
proposed by Hong et al. involves a bank of Gabor filters that have optimal joint resolution in both spa-
tial and frequency domains. This method has undergone several changes, with major improvements
being proposed by Greenberg et al. [22], Bernard et al. [5], Yang et al. [84] and Zhu et al. [86]. A
recent effort by Sutthiwichaiporn et al. [69], enhances fingerprints using a spatial-frequency domain
approach with matched filtering and diffusion of high quality enhanced zones into low quality zones in
an iterative-feedback manner. Lee et al. [13] incorporated steerable filters with Markov random fields
for enhancement.

In this chapter, we attempt to learn various types of local orientation field patterns observed in finger-
prints by training neural networks. We used two continuous restricted Boltzmann machines for this task.
They were trained in an unsupervised manner initially, and then a pass of backpropagation learning was
introduced to further correct the weight matrices.

In this chapter, we explore an approach in which we learn orientation fields over local regions, of size
60 pixels×60 pixels, and use this learning to reconstruct distorted fields observed in noisy images. This
tries to formulate the problem as learning of ideal orientation fields instead of the noise, and removing
the noise. This is unlike other methods which try to model the noise observed in fingerprints, and try to
remove it. To achieve this, we look at the restricted Boltzmann machine as the required model. An RBM
can be trained on several images to learn patterns present in them. This is an example of unsupervised
feature learning. Furthermore, this trained RBM, when shown a random input, will try to reconstruct it
to reflect the patterns it has already learnt.

Figure 3.1 gives an example of how an RBM learnt on images of hand-written 2s sticks to features
that it has extracted from these images, and tries to see all input images as instance of other 2s. The
reconstruction of the image of the hand-written 3 is closer to a 2 than it is to a 3.

This property enjoyed by restricted Boltzmann machines prompted us to explore its application in
this task. The proposed hypothesis is as follows: given that a trained RBM can reconstruct input images
to look like ones it was trained on, we expect an RBM trained on local and ideal orientation fields to
remove noise, if present, from an input orientation field.
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Figure 3.1 Reconstructions performed by an RBM which was learnt on images of the hand-written
instances of the digit “2”.

3.3 Restricted Boltzmann Machines

Before we move to the proposed approach, it is important to recall the restricted Boltzmann machine.
A restricted Boltzmann machine (RBM) is a special form of an energy-based model. It has two layers
of units - visible or input, and hidden. Each visible neuron is connected to every hidden neuron via. a
weighted and undirected edge. This weight denotes the weighing factor that is applied to any signals
that are sent from this visible neuron to the hidden neuron, or vice versa. The graph thus formed, by
considering every neuron as a vertex and every weight as an edge, has “restrictions” on it This graph
must be a bipartite graph, with the visible neurons and the hidden neurons forming two disjoint sets.
This means that there shall be no weights between visible neurons, as shall there not be weights between
two hidden neurons. A graphical representation of the RBM is given in Figure 3.2.

Figure 3.2 A graphical representation of the restricted Boltzmann Machines. There are two sets of
neurons: visible and hidden, with connections between every pair of visible and hidden neurons. Con-
nections are weighted and undirected, which is why this network isn’t a feed-forward neural network.
Solid connections denote weights between visible and hidden neurons. Non-coloured neurons are bias
units. Values of these units are always set to 1. The connections between them and a neuron denote the
bias for that neuron.

Let us denote the number of visible units (neurons) by V , and the number of hidden units by H .
Each unit has a bias term associated with it, which is an integral part of the learning. At each update
of the parameters, the bias terms are also updated along with the weights. Bias terms play an important
part in learning representations. Let us call the set of biases for visible units (or “visible biases”) by the
vector b = [b1, b2, . . . , bV ]T . Similarly, the hidden biases are c = [c1, c2, . . . , cH ]T . Denote by wji, the
weight between the i-th visible unit and the j-th hidden unit. We arrange these weights into an H × V
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matrix to get the weight matrix, W:

W =


w11 w12 . . . w1i . . . w1V

w21 w22 . . . w2i . . . w2V

...
...

. . .
...

wH1 wH2 . . . wHi . . . wHV

 (3.1)

As the RBM is an energy-based probabilistic model, there is a probability associated with every
configuration of the variables of interest. To define this probability, we have to first define the energy
associated with a configuration of the network. This energy is dictated by the hidden and visible units,
and the weights and biases. The energy of the RBM for a certain set of visible and hidden units is given
by

E(v,h) = −bTv − cTh− hTWv (3.2)

where v = [v1, v2, . . . , vV ]T and h = [h1, h2, . . . , hH ]T are activations of the visible and hidden
units, respectively. This model is ready for us to train now. If we look at the energy function in terms of
a function of the weights and biases (each of which are an independent dimension), we can imagine it to
be a surface in a very high-dimensional space. Any configuration of the network can be represented as a
point on this surface, and it is possible to move on it by applying updates or changes to the parameters.
As the dimensions are independent of each other, changes with respect to one parameter aren’t affected
by any other parameter. The training process starts with a random configuration of the network (random
values for the weights and biases), which can be denoted as a point on this surface, and aims to lead the
system to a configuration which will have as low an energy as possible. It follows, then, that we need an
update rule which will reduce the energy of the system after every epoch, i.e., every iteration of training.
It is the weights and biases, that we had initialised randomly, that the training algorithm applies updates
to after every epoch. To calculate these updates, we differentiate the energy function with respect to
each of these quantities, and then follow a gradient descent update, which will add a quantity to the
weights and biases so that the new configuration moves in a direction exactly opposite to the direction
of maximum gradient.

Consider the weight between the i-th visible neuron and the j-th hidden neuron -wji. Given this state
of the network, we have certain configurations of the visible and hidden units: v and h. To calculate the
change to weight wji, we differentiate the energy function with respect to wji. From Equation 3.2, we
have

E(v,h) = −bTv − cTh− hTWv

= −
∑
i

bivi −
∑
j

cjhj −
∑
i,j

hjwjivi (3.3)
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Differentiating with respect to wji,

∂E

∂wji
= − ∂

∂wji

∑
i′

bi′vi′ −
∑
j′

cj′hj′ −
∑
i′,j′

hj′wj′i′vi′


= − ∂

∂wji

∑
i′,j′

hj′wj′i′vi′


= −hjvi −

∑
i′ 6=i,j′ 6=j

hj′wj′i′vi′

= −hjvi (3.4)

Because the parameters are independent of each other, derivatives of the biases with respect to wji
are zero, and so are derivatives of wj′i′ , (i′ 6= i, j′ 6= j). The update to weight wji is hence dependent
on hj and vi.

3.3.1 Alternate Gibbs Sampling and Contrastive Divergence Learning

We have established so far, the structure of the RBM. We know that the RBM is a bipartite graph.
Hence, the visible units are independent of each other, and so are the hidden units. This is a good
advantage for calculating probabilities of visible units given a set of hidden units, and vice versa, and
can be done in an alternate manner. This can be easily visualised as follows: v0 → h0 → v1 → h1 . . .

This process of calculating probabilities and sampling from subsequent distributions in a back-and-forth
manner is called alternate Gibbs sampling. To calculate activations of neurons at each step of this path,
we need to write equations for probabilities P (h|v) and P (v|h). It is found that an update rule given
in Equation 3.5 is a well fit for training an RBM [8].

∆wji ∝
(
v0
i h

0
j − v∞i h∞j

)
= η

(
v0
i h

0
j − v∞i h∞j

)
(3.5)

However, to perform an update using this training algorithm would mean performing alternate sam-
pling forever, which isn’t feasible when considering real-world algorithms. Hinton showed [8] that
performing the sampling for only K steps, instead of going to infinity, approximates the original ob-
jective function closely. Even though this introduces a bias in the learning, this bias doesn’t affect our
model much. This modifies our learning algorithm as follows:

∆wji = η
(
v0
i h

0
j − vKi hKj

)
(3.6)
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Algorithm 1 Training Algorithm for an RBM
Input: Training Images, T
NT ← size(T)
Initialise W with normally distributed random numbers
repeat

∆W,∆b,∆c← 0
for m = 1→ NT do
v← T(m) {T(m) is the m-th image}
Compute h from v and c
for k = 1→ K do

Compute v from h and b
Compute h from v and c

∆W ← ∆W + η
(
(v0)Th0 − (vK)ThK

)
∆b← ∆b+ η

(
v0 − vK

)
∆c← ∆c+ η

(
h0 − hK

)
W ←W + 1

NT
∆W

b← b+ 1
NT

∆b

c← c+ 1
NT

∆c
until convergence

3.3.2 Calculating Activations of Neurons

The states of neurons are derived from their activations. The activation of a neuron is determined
by the total input received by the neuron from all neurons connecting to it. For instance, for a visible
neuron, the total input is calculated as the weighted sum of states of all hidden neurons, with the weights
being the weights of the connections. Consider a hidden neuron j. The total input received by j is:

Xj = cj +
V∑
i=1

wjivi (3.7)

This input is passed through a sigmoid function to give us the probability that it is turned on. Hence,

P (hj = 1|v) = σ(Xj) =
1

1 + exp(−Xj)
=

exp
(
cj +

∑V
i=1wjivi

)
1 + exp

(
cj +

∑V
i=1wjivi

) (3.8)

Once we have calculated the probability of being on for every hidden neuron, we sample from these
probabilities to get states of the hidden neurons. This is simple binomial sampling, where there are two
possible outcomes with probabilities p and 1− p. Sampling is done by drawing a random sample from
a uniform distribution, and choosing ON or OFF depending on whether this chosen value is greater
than p or less than p. The activations of visible neurons are calculated from hidden neurons in a similar
manner. The entire training algorithm for an RBM is summarised in Algorithm 1.
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3.4 Proposed Approach

The proposed approach is divided into three stages: generating orientation fields of query images
using a gradient-based method; training two continuous restricted Boltzmann machines (CRBMs) on a
database of orientation field images; and feeding the orientation fields of query images to these RBMs
and using the outputs for Gabor filtering. We will describe each stage here.

3.4.1 Gradient-based approach to estimate orientation field

We use the algorithm given by Hong et al. in [26] for an initial estimate of the orientation field. This
algorithm performs very well in noiseless images, but doesn’t give robust estimates of the orientation
field for noisy images as it considers a small region during estimation. The process of obtaining this
orientation field is summarised here:

1. Divide the given image into blocks of sizes W ×W . Consider a block centred at a pixel (i, j).
Compute the horizontal and vertical gradients using Sobel operators to obtain ∂x(i, j) and ∂y(i, j),
respectively.

2. Obtain an estimate of the orientation field, θ(i, j) using the following equations:

Vx(i, j) =

i+W
2∑

u=i−W
2

j+W
2∑

v=j−W
2

2∂x(u, v)∂y(u, v) (3.9)

Vx(i, j) =

i+W
2∑

u=i−W
2

j+W
2∑

v=j−W
2

∂x(u, v)2∂y(u, v)2 (3.10)

θ(i, j) =
1

2
arctan

Vy(i, j)
Vx(i, j)

(3.11)

3. Convert the orientation field into a continuous vector field:

Φx(i, j) = cos(2θ(i, j)) (3.12)

Φy(i, j) = sin(2θ(i, j)) (3.13)

Perform Gaussian smoothing to get Φ′x and Φ′y:

Φ′x(i, j) =

wφ
2∑

u=
−wφ

2

wφ
2∑

v=
−wφ

2

G(u, v)Φx(i− uw, j − uw) (3.14)

Φ′y(i, j) =

wφ
2∑

u=
−wφ

2

wφ
2∑

v=
−wφ

2

G(u, v)Φy(i− uw, j − uw) (3.15)
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where G is a Gaussian low-pass filter of size wφ × wφ. The orientation field is now obtained as:

O(i, j) =
1

2
arctan

Φ′y(i, j)

Φ′x(i, j)
(3.16)

The orientation field calculated using this approach is used as input in the next step. It is important to
note that the orientation field values generated by this algorithm lie in the range [0, π], as an orientation
of α and π + α is essentially the same.

3.4.2 Training the CRBMs

The focus of this approach is training of the continuous restricted Boltzmann machines. The RBMs
are trained using noiseless orientation fields so that they learn fingerprint ridge patterns. The training
images used in this step were obtained by orientation field estimation of fingerprint patches taken from
enhanced images. It was ensured that these enhanced images did not have noise, so that the training
samples were noiseless.

The Model: The classical RBM takes only binary inputs, so we used a variant of the same - the con-
tinuous restricted Boltzmann machine (CRBM) [10] - as our model. The CRBM inputs are normalised
to [0, 1]. We train two CRBMs, hence the significance of 0 and 1 for both of them is different. To ensure
that we get continuity in our output, we don’t use the orientation value directly for training. To empha-
sise this, consider the orientation field values near the apex of an upward-curved ridge. Approaching
the apex from left, the orientation tends to π, whereas approaching it from the right, it tends to 0. It is
due to this inconsistency that we do not use orientation values for training. Training a CRBM using the
orientation field, θ, gives rise to anomalies in the resulting image when the orientation has to jump from
π to 0. This gives rise to inconsistent outputs of the CRBM, wherein it doesn’t jump directly from π to
0. To counter this, we break down θ into two functions, s(θ) and c(θ) as follows:

s(x) =


4
πx for 0 ≤ x < π

4 ;

− 4
πx+ 2 for π4 ≤ x <

3π
4 ;

4
πx− 4 for 3π

4 ≤ x ≤ π

(3.17)

c(x) =

− 4
πx+ 1 for 0 ≤ x < π

2 ;

4
πx− 3 for π2 ≤ x ≤ π

(3.18)

Both s(θ) and c(θ) are continuous functions even when the range [0, π] is looped, i.e., s(0) = s(π)

and c(0) = c(π). s(θ) and s(θ) together are enough to encode θ. One CRBM (referred to as “c-CRBM”
here onwards) is trained with the images obtained by applying c(x) on the orientation angles, and other
CRBM (referred to as “s-CRBM” here onwards) with those formed by applying s(x). Figure 3.3 shows
the two functions s(x) and c(x).
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Figure 3.3 The functions s(x) and c(x) used to encode θ. Both s(x) and c(x) are continuous over [0, π],
with s(x+ π) = s(x) and c(x+ π) = c(x). These functions are applied on the orientation field images
to generate two images which are then fed to the s-CRBM and c-CRBM, respectively.

Figure 3.4 Training images for the c-CRBM (top) and the s-CRBM (bottom). These images were gen-
erated after applying the functions s(x) and c(x) (Figure 3.3) to 60 pixels ×60 pixels-sized orientation
field images extracted from Gabor-enhanced fingerprints.

Figure 3.4 gives examples of training images used for the c-CRBM and the s-CRBM. Each orien-
tation field patch, of size 60 pixels ×60 pixels, extracted from a Gabor-enhanced fingerprint gave two
images after applying s(x) and c(x).

Parameters and training: As described in [10], a CRBM is different from the traditional RBM.
The CRBM has two layers - input (or visible) and hidden - wherein every neuron in the input layer is
connected to every neuron in the hidden layer. These are undirected, weighted edges, hence the hidden
layer can feed inputs to the visible layer as well. A neuron in either layer emulates a sigmoid function.
This sigmoid is applied on the total input received at that neuron plus a zero-mean Gaussian noise. Let
j be a neuron in the hidden layer, and let v = [v1, v2, . . . , vV ]T be the vector denoting the values at
neurons at the visible layer. Let wj = [wj1, wj2, . . . , wjV ]T be the set of weights corresponding to the
j-th neuron in the hidden layer. An additional parameter is introduced for every neuron in a layer for
the CRBM. This parameter, called the “noise-control” parameter and denoted by aj , controls the nature
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of the neuron’s stochastic behaviour. The output of the j-th neuron in the hidden layer is then given by

sj = φ(θj) =
1

1 + exp(−θj)
; where θj = ajxj (3.19)

and xj denotes the total input at neuron j:

xj =
V∑
i=1

wjivi + bj + σN(0, 1) (3.20)

σ and N(0, 1) make up the noise component, where σ is a constant for the whole network, and N(0, 1)

is a Gaussian random variable with zero mean and unit variance. Both wj and aj are updated for every
neuron j after each epoch. The quantity bj is the bias added to every unit (Figure 3.5). The update rules
are given by

∆wji = ηw (〈visj〉 − 〈v̂iŝj〉) (3.21)

∆aj =
ηa
a2
j

(
〈s2
j 〉 − 〈ŝ2

j 〉
)

(3.22)

where v̂i, ŝj denote the one-step sampled state of neurons i and j, respectively; ηw and ηa are learning
rates; and 〈·〉 denotes the expected value over all training samples. The learning rates for the c-CRBM
used in training were ηw = 5 and ηa = 0.5, while those used for the s-CRBM were ηw = 4 and
ηa = 0.5. The set of weights used to calculate activations of hidden neurons from the visible neurons
is the transpose of the set of weights used to calculate the activations of the visible neurons from the
hidden neurons.

In this work, we focused on training with fingerprint patches of sizes 60 pixels× 60 pixels. However,
exploiting the similarity in orientation field observed in pixels which are neighbours, we used only 100

neurons in the visible layer of CRBMs. This was done by first resizing the training patches to 10× 10,
and then assigning each pixel in the resulting patch a unique neuron in the visible layer. In the hidden
layer, we used 90 neurons. Training was performed using 4580 training samples, with 25000 epochs per
CRBM.

The CRBMs were trained in an unsupervised manner according to these training rules, and were
then subject to a pass of backpropagation learning to further correct the weights. Before this pass,
the CRBMs are “opened” up to get an output layer independent of an input layer. In this process,
the symmetric nature of weights in the pre-training phase is removed, and both set of weights become
independent of one another. The backpropagation algorithm for the CRBM is different from the one
for an RBM because of parameters not included in the RBM. The updates for backpropagation learning
hence needed to be deduced. These have been laid out here. Call the number of layers in the opened
up network, L (starting from 0). Here, L = 2 for the CRBMs. Let yi denote the expected/ideal value
of the output at neuron i in the output layer. Let X l

i denote the output of the i-th neuron in layer l, wlij
denote the weight between i-th neuron in layer l and j-th neuron in layer l− 1; nl denote the number of
neurons in layer l; and ali denote the noise-control parameter at the i-th neuron in layer l. The backward
pass equation for layer L is as follows:

δLi = (yi −XL
i ) · aLi · φ′(θLi ) (3.23)

31



Figure 3.5 The model, training and testing processes. top (training): A representation of the continuous
RBM used in this work. The first two steps of the proposed approach are summarised. bottom (testing):
A representation of the third step in the proposed approach.

where φ′(x) = φ(x)(1 − φ(x)) is the derivative of the sigmoid function, and θLi is the product of the
noise-control parameter and the total input at neuron i given by

θLi = aLi

nL−1∑
j=1

wLijX
L−1
j + bj + σN(0, 1)

 (3.24)

Backward pass in the remaining layers is given by:

δli = φ′(θli) · ali ·
nl+1∑
t=1

δl+1
t wl+1

ti ; where 0 < l < L (3.25)

Equations 3.25 and 3.23 lead to the following update rules for wj and aj :

∆wlij = νw · δli ·X l−1
j (3.26)

∆ali = νa ·
δli
ali
· xlj = νa ·

δli
(ali)

2
· θli (3.27)

where xlj =

nl−1∑
j=1

wlijX
l−1
j + bj + σN(0, 1)

 is the total input received at the j-th neuron in layer l,

and νw and νa are learning rates for the weights and the noise-control parameter, respectively. In our
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experiments, we set the learning rates for the weights and the noise control parameter to be equal. The
values used were νw = νa = 1 for the c-CRBM, and νw = νa = 0.9 for the s-CRBM.

Both CRBMs are trained with backpropagation learning according to these update rules for 50000

epochs.

3.4.3 Gabor filtering using outputs of the CRBM

Once the CRBMs have been trained, they are fed inputs from a database. We use the FVC 2002
Db3 a [46] database to run our tests. Before feeding these images to the CRBMs, their orientation fields
are calculated using the algorithm mentioned in section 3.4.1. Then two images are generated for every
image in the database by applying the functions s(x) and c(x) on the orientation fields. These images
are then fed to the respective CRBMs and their outputs recorded. Now, using the two output images
for every image in the database, we can generate the orientation field for that image. Let cIm and
sIm denote, respectively, the outputs for the c-CRBM and the s-CRBM for an image Im. To get the
orientation field using these matrices, the following steps are performed:

1. A matrix oIm with the same dimensions and size as cIm and sIm is created.

2. For all pixels in sIm whose value is greater than or equal to 0.5, the corresponding pixel in oIm
is assigned a pixel value of π4 (1− c), where c is the value at the corresponding pixel in cIm.

3. The same is done for pixels in sIm with values less than 0.5, except that a value of π
4 (3 + c) is

assigned instead.

4. The matrix oIm now has the desired orientation field.

The above sequence of steps generates an orientation field from the s- and c-CRBM outputs, which
can directly be used for Gabor filtering. Instead of orientation generated using our gradient-based
method (section 3.4.1), we use the orientation field generated by the CRBMs. The frequency image
can directly be obtained from the original image. The frequency and orientation images together dictate
the natures of the Gabor filters, which are then used appropriately to filter and enhance images from the
database.

3.5 Experimental Results

We show, on the basis of results of experiments conducted using the above set-up, that this model
can correct orientation fields in fingerprints where noise is present in small-sized, local regions.
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Original Gradient-only CRBMs

Figure 3.6 Correction performed in the orientation field by the Continuous RBMs. Orientation fields in
the center of the fingerprint patch were distorted by creases. These have been corrected by the CRBMs.

Figure 3.7 A plot of error progression for each of the two Continuous RBMs plotted versus epochs in
training.

3.5.1 Experimental Set-up

The Continuous RBM required for this task was programmed in Python 2.6.5 [GCC 4.4.3]. The
program was setup to work on an Nvidia CUDA GeForce GTX 580 graphics processing unit with 512
cores and 1 GB of memory. The cudamat [49] library for python was used to call GPU operations.
Unsupervised pre-training for 25000 epochs took 88 minutes per CRBM and backpropagation training
for 50000 epochs took 83 minutes. The error progression during unsupervised pre-training is shown in
Figure 3.7.

3.5.2 Weights

It is possible to visualise the weights learnt by the continuous RBMs. Recall that we have 100

neurons in the visible layer and 90 neurons in the hidden layer. As all visible neurons are connected
to all hidden neurons, we have 100 weighted connections for every hidden neuron. To visualise all the
weights of the continuous RBM, we partition the set of connections into 90 sets - one for each hidden
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Figure 3.8 A comparison between Gradient-only orientation field estimation and the proposed approach.
The proposed approach is more successful in removing creases, and doesn’t distort the rest of the orien-
tation field estimated by the gradient-based method.

neuron. In the j-th set, we place all the weights corresponding to the j-th hidden neuron. Each set
of weights can now be converted into an image for visualisation. This is done by re-stacking the 100

weights associated with a visible neuron into a 2-D matrix. The order of stacking is dictated by the order
in which training images were flattened into an array to be fed to the visible units. So, if images were
flattened in a row-first manner, the re-stacking is done in the same way. In our implementation we used
the row-first flattening rule.

Using this technique, we visualised the weights learnt by both the networks. Figures 3.9 and 3.10
are visualisations of weights of the c-CRBM and the s-CRBM, respectively.

Figure 3.9 Visualising the weights of the cosine CRBM after unsupervised pre-training. The weights
are flattened in the weight matrix, and have been stacked in a row-first manner for this visualisation.

Figure 3.10 Visualising the weights of the sine CRBM after unsupervised pre-training. The weights are
flattened in the weight matrix, and have been stacked in a row-first manner for this visualisation.
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3.5.3 Qualitative Analysis

We perform a qualitative analysis with the gradient-based orientation field enhancement algorithm.
We used the code provided by Peter Kovesi [40] to test the gradient-based algorithm against ours. We
have tested our algorithm on all fingerprints from the Db3 a database of the FVC 2002 set of databases.
It was observed that this algorithm improves on this orientation field generated by the gradient-based
algorithm in images where noise is present in small regions and which causes small, local discontinu-
ities in the ridge structure. Further, it was observed that regions where the gradient method performed
well weren’t distorted by the outputs of the CRBMs. The proposed approach also performs better than
gradient-only coupled with Gabor in removing creases from fingerprints. Figure 3.8 illustrates an ex-
ample.

Patches from
greyscale images

Gradient-only
enhancement

After correction
using CRBMs

Figure 3.11 Examples of corrections in orientation fields and the resulting enhancements on noisy
patches from some fingerprints. It can be seen that the corrections performed by the CRBMs remove
local discontinuities in ridge structures. Further, they do not disrupt ridge structures that weren’t noisy
or distorted, thus indicating that the learning of local orientation fields was sound.

3.5.4 Quantitative Analysis

Quantitative analysis was performed on this algorithm by plotting the false accept and genuine ac-
cept rates output by the NIST matcher, bozorth3 [50], when fingerprints enhanced with the proposed
approach were given as input. For comparison, we have also shown the plot of false accept and gen-
uine accept rates corresponding to the gradient-based Gabor enhancement of fingerprints. Figure 3.12
displays these ROC curves. The database of fingerprints used was again Db3 a of the FVC 2002 set
of databases. ROC curves have been plotted after performing 2800 genuine comparisons, and 4950

impostor comparisons.

It can be seen from the ROC curves that the proposed algorithm performs better than just gradient-
based Gabor enhancement.

We also calculated the number of spurious and missing minutiae generated by our algorithm on the
FVC2002 Db3 a database, using the ground truth data provided by Umut Uludag [36]. We observed
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Figure 3.12 ROC Curves: Genuine Accept Rate plotted vs False Accept Rate. It is seen that the pro-
posed approach is an improvement over gradient-only.

that CRBMs reduce the number of spurious and missing minutiae detected by the gradient-only method.
We report in table 3.1, the spurious and missing minutiae count:

Method Ground Truth Total detected Spurious Missing EER

Gradient-only
19032

53389 38415 (71.95%) 4058 (21.32%) 24.34

STFT-analysis 48963 33096 (67.59%) 3165 (16.63%) 21.99

CRBMs 41764 26324 (63.03%) 3592 (18.87%) 22.65

Table 3.1 A comparison of the number of spurious and missing minutiae detected by three algorithms:
gradient-only [26], STFT-analysis [14], and the proposed method. The total number of minutiae as
indicated by ground truth was 19032. The last column shows the equal error rates on the same dataset.
We see that CRBMs are an improvement over Gabor-based enhancement.

3.6 Summary

We have demonstrated the use of continuous restricted Boltzmann machines in correcting orientation
fields that have been estimated by a gradient method. We have moved a bit further in the direction of
unsupervised feature learning applied to fingerprint orientation field estimation and correction. Possi-
ble directions for the future include converting to deep networks, and learning directly from greyscale
images without an initial step of feature extraction. The database of gathered fingerprints makes this
direction of research worth exploring, simply because of the sheer variety, number, types, and easy-
availability of fingerprint images.
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Chapter 4

Hierarchical Learning of Fingerprint Features

4.1 Introduction

Fingerprint recognition is the most widely used biometric to identify individuals. With a history of
over a century, fingerprint recognition has been observed to be applied to a host of systems and tasks.
The list includes authentication systems, forensic science, and academic institutions, to name a few.
[47]

It is now apparent that fingerprint recognition tasks should be as robust as possible. As expected,
much has already been achieved in this field ([47, 22, 14, 13, 60, 86, 5, 19, 44, 7]). Having started out as
a manual task, where fingerprint experts would sit down with pairs of fingerprint images and try to find a
match between them, recognition tasks have been taken over by computers since their advent. Advances
in image processing have enabled development of robust algorithms, and technology has allowed these
algorithms to be available to end-users for small costs. However, this easy availability has been possible
only because extensive research has tackled challenges faced during fingerprint recognition. A promi-
nent and ever-present challenge is tolerance of noise. The most widely available fingerprint sensors
today induce at least one kind of noise in the images they output. This noise ranges from skin condi-
tions such as dirt, injuries, cuts and bruises, and moisture, to that introduced by the sensors themselves,
typically via. a worn-out sensor-surface [47]. It is essential, then, to remove these types of noises and
extract the fingerprint image without losing information.

From the perspective of pattern recognition, this can be seen as presence of large intra-class vari-
ations - prints from the same finger can vary significantly, especially if taken via. different sensors.
It is important, then, to clean up fingerprints before proceeding with the detection and matching of
minutiae. Several approaches for this have been explored, and are referred to collectively as fingerprint
enhancement.
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4.2 Related Work: A Recall

The orientation field of a fingerprint image is very essential in enhancing the fingerprint. Filtering the
image using Gabor filters based on ridge direction and frequency at a point gives a robust enhancement
of the print. Since Hong, Wan and Jain proposed the use of Gabor filters, [26], several modifications of
the approach have been developed. Zhu, Yin and Zhang [86] achieve faster enhancement using circular
Gabor filters. Yang et al. [84] developed a modified version of this technique to obtain more consistent
enhancement, without damaging fingerprint structure. Bernard et al. [5] use wavelet filtering to arrive
at a multiscale approach. Algorithms which pursue other filtering techniques have been developed, but
couldn’t gather as much momentum as Gabor filters. Greenberg et al. [22], for instance, used Weiner
and anisotropic filtering. However, the task of orientation field estimation still remains very important
to fingerprint enhancement, especially for very noisy images and latent prints [19]. Several frontiers
have been explored to achieve robust estimation of orientation fields. These can be broadly classified
into location estimation and global models.

The most popular and significant algorithms falling in the former class is estimation using gradient-
based methods [26]. These methods typically consider the neighbourhoods of a point while estimating
the orientation field there. Hence, they are quite susceptible to noise in the image. A small distortion in
ridge structure can cause an error in estimation of the orientation field, thus giving false enhancements.

To counter this, the orientation field generated by the gradient-based methods is subjected to a
smoothing operation. Low-pass filtering is the most common form of smoothing, but its effectiveness is
not up-to-the-mark when it comes to very noisy images.

Global models, on the other hand, try to model whole fingerprint structures, instead of using local
ridge structures to estimate orientation fields. Popular approaches in this category employ the use of
Markov random fields (MRFs) to arrive at a fingerprint structure that minimises energy. Some examples
of these are Dass [16], and Lee and Prabhakar [13]. Rama Reddy and Namboodiri [60] improve upon
these further by employing hierarchical MRFs which use loopy belief propagation.

Researchers have also explored the frequency domain, in contrast to the spatial domain, to enhance
fingerprints. The most popular work in this category, by Chikkerur, Cartwright and Govindaraju [14],
uses the analysis of short time Fourier transform. A given fingerprint image is divided into regions,
and intrinsic properties of the fingerprint are estimated for these regions. Intrinsic properties include
the orientation in those regions, the local ridge frequency, and the mask which indicates the presence
of a fingerprint. Based on these, filters are constructed and instead of the convolution operation, an
equivalent operation of matrix multiplication in the frequency domain is done, after which the final step
is to take an inverse Fourier transform of the resulting image. Results of STFT analysis are comparable
to Gabor-based enhancements, which opens up new prospects.

Although we have observed a lot of success with these approaches, we can conclude that all of them
are ‘supervised’ in some sense. On the opposite side, few attempts have been made on unsupervised
fingerprint enhancement or recognition. It can be argued, however, that supervised approaches have
worked so well because they are specific to fingerprint image, and thus can be tailored specifically to
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perform fingerprint recognition tasks. To move in the direction of unsupervised learning, we need robust
models which perform competitively in feature learning. For instance, Leung, Engeler and Frank [43]
incorporated the use of neural networks to extract fingerprint minutiae. The extraction of minutiae is
performed on Gabor-filtered images. In another work, Pais Barreto Marques and Gay Thome [56] train
MLPs on Fourier transformed patches. Some progress was also made by Altun and Allahverdi [2] in
using neural networks for fingerprint recognition. In the previous chapter, we presented an approach
which explored the correction of fingerprint orientation fields using restricted Boltzmann machines. We
learnt patterns in orientation field images, and used CRBMs to reconstruct noisy regions. Results indi-
cated an improvement over traditional Gabor-based algorithms in terms of both, matching and minutiae
detection. However, such attempts have been far fewer compared to other methods.

In this chapter, we look to use a deep, generative neural network to achieve fingerprint image en-
hancement. Strides have been made in deep learning over the past decade, and a host of models suited
to different tasks have emerged. Deep belief networks (DBNs) arose as suitable many-layered (deep)
models to learn patterns. DBNs have the restricted Boltzmann machines (RBMs) as their building
blocks. Each layer of the DBN is an RBM. As newer methods to train neural networks surfaced [8], it
became more feasible to use neural networks in pattern recognition.

For this chapter, we were interested in a generative, deep model that is capable of working directly
on pixels and extracting features in an unsupervised manner. Convolutional networks fit the choice
very well, in that they are scalable to large images, and feature detection performed by them is robust
([41]) and they now are known to perform very well at several real-world classification problems ([73,
21]). However, convolutional neural networks themselves aren’t generative models. Instead, we use
the convolutional deep belief network (CDBN) for our task. Desjardins and Bengio [17], developed
convolutional RBMs, and were closely followed by Lee et al. [42], who introduced probabilistic max
pooling and hierarchical probabilistic inference - both of which prove very essential in making the
convolutional DBNs generative models. A convolutional RBM has several feature detectors working on
the visible layer, which generate feature maps. The feature detectors (weights) work on entire images,
in that the same weight is convolved with the entire image which introduces translational equivariance.
Further, a pooling layer sits on top of the feature maps. Several such convolutional RBMs stacked on
top of each other make up a convolutional DBN [42]. Unless otherwise stated, we will use the acronym
CRBM to mean Convolutional Restricted Boltzmann Machine, and CDBN to mean Convolutional Deep
Belief Network.

4.3 Convolutional Deep Belief Networks

To maintain continuity in this chapter, we give a brief description of the convolutional deep belief
networks in this section. We will start with the basic building block for a convolutional DBN - the
convolutional RBM - and move on to the DBN, later to computing the network’s representation of the
image, and then reconstructing from this representation using the learnt parameters.
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4.3.1 Convolutional RBM

A convolutional RBM is a neural network that, like an RBM, has a visible layer and a hidden layer.
In addition to an RBM, though, it also has a pooling layer. The visible layer of an RBM is shown
images from which features need to be learnt. This data, called training data, is a very essential factor
in learning representations. A detailed description of the training data we used for our learning is given
in Section 4.4.1.

From images shown to the visible layer, the network draws an inference, in that it computes states
of neurons in the hidden layer. Let the visible layer be called V , and have a size of NV × NV (Figure
4.1). The hidden layer, H , consists of K groups of units, each NH pixels × NH pixels in size. With
each group of hidden units, hk, we associate a group of pooling units, pk. The size of this group of
units is 1/q2 times the size of the group of hidden units (q usually being 2 or 3), and each pooling unit
is connected to a q × q contiguous block of units in the hidden group. Two pooling units never have
overlapping blocks, and the union of all blocks is all of the hidden units. Further, with each group of
hidden units, we associate a weight that connects the visible units with the group. Call this weight W k,
where k refers to one of the K groups of units. If v denotes the values of visible units, then the energy
of the network is given by

E(v,h) = −
K∑
k=1

hk •
(
W̃ k ∗ v

)
−

K∑
k=1

bk∑
i,j

hki,j

− c∑
i,j

vi,j (4.1)

where bk is the bias associated with the k-th group of hidden units, whereas all the visible units share a
single bias c. Here, ∗ is used to mean convolution, W̃ represents a horizontally- and vertically-flipped
W , and • denotes element-wise product of two matrices followed by summation of elements of the
result.

Neurons in the k-th group of hidden units are obtained by a ‘valid’ convolution of the visible layer
with the weight W k. Hence, the size of the weight is related to the sizes of the visible and hidden layers
according to the formula NW = NV −NH + 1. Similar to the RBM, values of visible neurons are also
computed from the hidden neurons, but this step involves a full convolution. Now, to get activations of
neurons in the hidden layer, we define a probability distribution which determines probabilities for each
neuron’s ON state. To define this probability, we first look at the input a neuron in the k-th group of
hidden units receives from the visible layer:

I{hki,j} =
[
W̃ k ∗ v

]
i,j

+ bk (4.2)

Here, [X]i,j is used to refer to the (i, j)-th pixel in the image X . The neurons in this group of hidden
units are then separated into disjoint blocks of size q× q. Each block in this group of units is connected
to exactly one unit in the k-th group of pooling units. Call this block of hidden units α, and the said
pooling unit pkα. Let Bk

α = {(x, y)|hkx,y ∈ α}. The probability that a neuron (i, j) in this block is ON is
given by:

P (hki,j = 1|v) =
exp(I{hki,j})

1 +
∑

i′,j′∈Bkα exp(I{hki′,j′})
(4.3)
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Further, at most one unit from the block Bk
α can fire at a time. To achieve this, sampling is done from

a multinomial distribution given by the probabilities P (hki′,j′), (i′, j′) ∈ Bk
α. This gives q2 + 1 possible

states of the block Bk
α - one each for one of the q2 units being ON, and one state where none of the units

fire. The latter has a probability 1 −
∑

i′,j′∈Bkα P (hki′,j′). The pooling unit pkα takes a value of either 1

or 0, with the value being 1 if any of the units in Bk
α are ON. The probability that this pooling unit fires

is, hence,

P (pkα = 1|v) =

∑
i′,j′ exp(I{hki′,j′})

1 +
∑

i′,j′∈Bkα exp(I{hki′,j′})
(4.4)

This method of sub-sampling the hidden units to get pooled units is called probabilistic max-pooling.
Unlike other pooling algorithms used mostly in convolutional neural networks (for example, max-
pooling), this method of sub-sampling is probabilistic in nature. That is, given the same scenario of
hidden units, different samplings might generate different hidden units. It was observed ([42]) that this
strategy works better than max-pooling in making the convolutional deep belief network a generative
model.

We perform alternate Gibbs sampling to get the activations of visible and hidden neurons. Training
is done with an update to the weights that is proportional to the difference of positive and negative
associations, like the RBM. The associations corresponding to a weight are calculated by convolving
the visible layer, which is the same for all weights, with the group of hidden units corresponding to that
weight. To approximate the objective function, contrastive divergence learning with 1 step (CD-1) was
employed throughout this chapter, unless otherwise stated. Hence, we compute h(0) from v(0), and also
compute h(1) and v(1) in the next step of alternate Gibbs sampling. The update to weight W k is then
given by

∆W k ∝ 1

N2
H

(
v(0) ∗ h(0),k − v(1) ∗ h(1),k

)
(4.5)

where h(n),k denotes the k-th set of hidden units at the n-th step of alternate Gibbs sampling. Likewise
for v(n).

To ensure that the representation that we learn is sparse, a sparsity update is done at every step of
learning. This is defined as

∆bsparsityk ∝ s− 1

N2
H

∑
i,j

P (hki,j |v), (4.6)

where s is the target sparsity. This update is added to the update to the hidden biases:

∆bk ∝
1

N2
H

∑
i,j

(
h

(0),k
i,j − h(1),k

i,j

)
+ ∆bsparsityk (4.7)

Recall that hidden and pooling units are calculated using probabilistic max pooling. This method defines
a multinomial distribution for every block, which dictates probabilities of being ON for each of the units
in that block. Also, this probability uses the exp function on the total input received at a unit. Since we
add the hidden bias to the total input received, and exp is a monotonically increasing function, using
smaller values of the bias will lead to lower probabilities. This ensures that few units are ON at a time,
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Figure 4.1 A convolutional deep belief network, with 2 layers. The further layers work on the data that
is found in the previous layer’s pooling units. The notation W a,b

c refers to the b-th weight corresponding
to the a-th channel in the c-th layer, where a channel is one of the components of the input. We use
greyscale images and so have only one channel in the visible units of the first layer

and as the hidden units directly reflect in the weight updates, we find that a sparsity update of the given
type to the hidden biases learns a sparse representation.

4.3.2 Converting to a Deep Network

With this building block at our disposal, we can now stack multiple convolutional RBMs on top of
each other to build a convolutional DBN. We refer to each such stacked convolutional RBM (CRBM)
as a layer in the convolutional DBN (CDBN). In such a model, the pooling units of a layer in the
DBN (which is a CRBM) serve as visible units for the next layer. As stated earlier, a value of 2 or
3 for q is used. This sub-samples the input images by a factor of q, and enables higher layers of the
convolutional DBN to learn higher-level features. Quite predictably, we observe the same results when
the convolutional DBN is trained on a set of fingerprint images.

Training the convolutional DBN involves layer-wise training of each layer using the algorithm stated
in the previous section. Once this training is complete, pooling units are generated using the learnt
weights on complete images.

4.3.3 Hierarchical Probabilistic Inference

Hierarchical probabilistic inference (HPI) is an algorithm to reconstruct an image using the network’s
representation of it. The term hierarchical says we use data from higher layers to affect values of hidden
units in lower layers, and in-turn the reconstructions of images. The algorithm is probabilistic because
it uses probabilistic max-pooling, described in Section 4.3.1, to draw an inference. To use data from
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higher layers, we modify hidden neurons in a layer to receive inputs from the layer’s visible units, as
well as from the next layer’s hidden units. This redefines the probability of a neuron firing.

Consider a layer, l, in the network. To get the top-down signal from layer l + 1, we calculate a full
convolution between the next layer’s hidden units and its weights. This gives us an image the size of
l’s pooling units. Now, each neuron in this group of units forwards the signal it gets to the q × q sized
group of hidden units of layer l that it connects with. Call Hk

l , the k-th groups of layer l’s hidden units.
Let W c,k

l represent the weight corresponding to the c-th channel in the k-th set of hidden units of the
l-th layer. Then the top-down signal received by Hk

l is (to improve readability, we denote Hk
l by h′ in

the next three equations. The (i, j)-th unit in Hk
l can then be denoted by h′i,j):

T{h′i,j} =

Kl+1∑
r=1

Hr
l+1 ∗W

k,r
l+1


α

(4.8)

where the (i, j)-th unit is in block Bα of h′. We now get new probability distributions for h′i,j and pkα
by substituting I{h′i,j} with I{h′i,j}+ T{h′i,j} in Equations 4.3 and 4.4:

P (h′i,j = 1|vl,Hl+1) =
exp(I{h′i,j}+ T{h′i,j})

1 +
∑

i′,j′∈Bkα exp(I{h′i,j}+ T{h′i,j})
(4.9)

and

P (pkα = 1|vl,Hl+1) =

∑
i′,j′ exp(I{h′i,j}+ T{h′i,j})

1 +
∑

i′,j′∈Bkα exp(I{h′i,j}+ T{h′i,j})
(4.10)

where pkα is the pooling unit corresponding to the (i, j)-th unit in h′.
These equations establish a dependence between the hidden units of a layer on one side, and the

layer’s visible units and the next layer’s hidden units on the other. Hence, hierarchical probabilistic
inference is computed using block Gibbs sampling, in which we compute all quantities dependent on
one set of quantities in one half of an iteration, and vice versa in the other half. Appendix B describes
this process in more detail on a two-layered and a three-layered network.

4.4 Enhancing Fingerprint Images Using a CDBN

In this section, we will describe the training and use of a CDBN for fingerprint image enhancement.

4.4.1 The Training Data

The training data used is very important to learning. The network learns features depending on the
training data. The reconstruction performed by this network also relies heavily on the training data.
As we’re trying to perform reconstruction of fingerprint images which should serve as enhancement,
we use noise-free fingerprint images to train our network. We hand-picked images from standard fin-
gerprint datasets (FVC 2000 Db1 a [45], FVC 2002 Db1 a [46], and NIST-4 special database [77]).
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While selecting images, we followed some rules: (a) significant variety in ridge orientations and ridge
frequencies should be present in the image; (b) the images should have the least patches of noise, i.e.,
inconsistent ridges, cuts, bruises, smudges, wet fingers, pores, dirt, stray ink, lettering, and noise from
sensors; (c) the images should have uniform contrast; and (d) the images should have uniform moisture,
and shouldn’t be too wet or too dry. Further, the selected images were trimmed so as to include min-
imal regions that don’t belong to the fingerprint. Before being used for training, the training data was
normalised [47, 26] and whitened [55] before it is fed to the network for training. Whitening ensures
that the training images have equal variance in different directions, and hence helps the gradient descent
learning in its search for a solution.

Our training data consisted of 15 different images of varying sizes, and resolutions. Due to repetitive
patterns in fingerprint images, a small number of images is enough to learn a model that can reconstruct
test images.

4.4.2 Training the CDBN on Fingerprint Images

We train the convolutional deep belief network on the preprocessed images. We used a two-layered
network with greedy layer-wise training. Greedy layer-wise training refers to training each layer of the
convolutional DBN by considering it to be a convolutional RBM. We start with the first layer, and the
training data for this layer is our set of training images. When the first layer is trained, training data for
the next layer is generated. This is done by calculating the first layer’s representation of every greyscale
training image, and pooling these units to get the training data for the second layer. The same process
is then done with the second layer. To reconstruct the entire image, we used hierarchical probabilistic

45



inference. The layer-wise training isn’t done on complete images, but on patches randomly chosen from
these images. This choice considerably quickens the training process and also leads to better features
being learnt. It is easy to see that this choice doesn’t affect the learnt filters either. To emphasise, the
sparsity update to the bias, bsparsityk , is calculated so that it is averaged over N2

H hidden units. As the
number of hidden units is directly defined by the size of the input images and the sizes of the filters we
are learning in a layer, and we have averaged the update to the bias over the hidden units, the size of
the input images doesn’t affect the learning. We only have to ensure that the size of the input images
for a layer is adjusted so that we have a considerable amount of fingerprint structure in the area that the
filters in that layer operate on. Hence, the size of the input images should always be greater than the size
of the learnt filters. The initial weights are drawn from normally distributed random numbers and then
multiplied by a factor of 0.01. Further, the visible biases are set to zero initially, and the hidden biases
are also drawn from normally distributed random numbers but are multiplied with a factor of −0.1.

Layer 1

Layer 2

Figure 4.3 Weights learnt by the first and second layers. The training data contained fingerprints with
various ridge frequencies, which is visible in the diversity in ridge frequencies in the learnt weights.

The first layer learns single, oriented ridges. The weights learnt in this layer are similar to Gabor and
other oriented filters that are used for fingerprint image enhancement. We empirically chose the number
of feature maps in the first layer to be 60 because the training has combinations of many orientations
and frequencies. The weights learnt by the first layer are shown in Figure 4.3. The size of weights used
in the first layer was 10 pixels × 10 pixels. To achieve this set of weights, we used a target sparsity of
0.003.

The second layer learnt higher level features than the first. This is because of a pooling operation
on the hidden units of the first layer which down-samples the image at the hidden units. This factor by
which the image is down-sampled was set to 2 in our implementation. Further, the second layer had 60
features, each of size 10 pixels × 10 pixels. A weight now covers a larger portion of the input image.
Weights learnt in the second layer are visualised in Figure 4.3. A target sparsity of 0.005 was used for
this layer. The second layer is essential in drawing hierarchical probabilistic inference of an image, and
“filling up” regions of the fingerprint image which couldn’t be reconstructed by the first layer alone.

4.4.3 Visualising the Features in Higher Layers

LetKl be the number of designated weights in layer l. A layer l (l > 1) will actually learn more than
Kl weights. As the input to this layer is multi-channelled, the specified number of weights are learnt
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for each channel (we didn’t notice this in the first layer because our input consisted only of greyscale
images). Hence, the l-th layer trains Kl−1 · Kl kernels. However, the learning that happened in the
l-th layer is seldom understood by viewing each of these Kl−1 · Kl matrices. Instead we represent
these kernels in a better manner - as a combination of weights from lower layers. The second layer
features are, hence, visualised as a combination of the weights in the first layer. The m-th feature in the
visualisations is given by Ωm

2 =
∑K1

k=1W
k,m
2 ∗W 1,k

1 ; 1 ≤ m ≤ K2, where W c,k
l represents the weight

corresponding to the c-th channel in the k-th basis of the l-th layer; and ∗ represents a full convolution
(we have only one channel in the first layer).

4.4.4 Reconstructing Fingerprint Images Using a Learnt Model

Now that we have trained a model, we can use it to reconstruct fingerprint images. These recon-
structions serve as the enhancement which we are targeting. To reconstruct an image, we show it to
the visible units of the first layer, and calculate the network’s representation of it. We then reconstruct
the image from this representation using hierarchical probabilistic inference, in which we iterate over
20 steps of block Gibbs sampling. More information on the actual reconstruction steps can be found in
Appendix B.

Once we have completed 20 iterations of block Gibbs sampling in hierarchical probabilistic infer-
ence, we look at the hidden units of the first layer. The enhanced image is generated using only these
units and the weights of the first layer using the following equation:

v′ =

K1∑
k=1

W 1,k
1 ∗Hk

1 (4.11)

where Hk
1 are the activations of the k-th set of hidden neurons in the first layer after 20 iterations of

block Gibbs sampling.
We observe the reconstructions computed by the network at every iteration of block Gibbs sampling,

and we see that the second layer progressively reconstructs regions that the first layer alone was unable
to represent (Figure 4.4).

4.4.5 Estimating Orientation Field, Frequency Image and Region Mask

Now that we are able to perform a reconstruction of the fingerprint image using the convolutional
deep belief network, we show a method to estimate intrinsic images of the fingerprint, viz., the orienta-
tion field the frequency image, and the region mask. Just like the reconstruction of the image itself, we
show that hierarchical probabilistic inference can help in reconstructing the orientation fields in regions
where the the first layer alone couldn’t perform a reasonable reconstruction. To estimate these images,
we look at weights learnt in the first layer. These are very close to oriented filters used for enhancement,
and hence have a ridge orientation and ridge frequency associated with them. The associated orientation
and frequency for a weight can be found using the Fourier transform of the weight. To get a reasonable
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association of a weight with an orientation and frequency, we calculate a weighted average of the orien-
tations and frequencies given by the Fourier transform, weighed according to the energy of the Fourier
transform corresponding every orientation. Chikkerur, Cartwright, and Govindaraju [14] show a method
to use the Fourier transform for this task. We borrowed from their method to associate orientations and
frequency with a weight. If Φk is the shifted Fourier transform of weight W 1,k

1 and θ is the matrix
signifying the orientation angle for every point in Φk, the orientation associated with W 1,k

1 is given by

dk =
1

2
arctan

∑
sin
(
2θ · |Φk|2

)∑
cos (2θ · |Φk|2)

, (4.12)

where · is element-wise multiplication of two matrices.

Frequency, fk, for a filter can be calculated from the Fourier transform too. We use the distance of
peaks in the power spectrum from the centre - R - instead of θ.

fk =
1

Ws

∑
R · |Φk|2∑
|Φk|2

, (4.13)

where Ws is the size of a weight in the first layer, and also the size of the computed Fourier transform
of a weight. Once we have associated an orientation and a frequency with every weight in the first layer,
we perform hierarchical probabilistic inference. This involves 20 steps of block Gibbs sampling, after
which we have activations and states of hidden units of the first layer. The reconstruction, v′, of an
image is now given by

v′ =

K∑
k=1

W 1,k
1 ∗Hk

1 (4.14)

To calculate the orientation field, we calculate a weighted average of the orientations from K groups of
hidden units, weighed according to W 1,k

1 ∗Hk
1 . However, instead of averaging dk, we average sin(2dk)

and cos(2dk). This ensures that we preserve the allowed range of the orientation, which is [0, π[, and
also maintains continuity in the orientation field, as it jumps abruptly from 0 to π at some places (the
apices of downward-curved ridges, for instance). We then retrieve the orientation field using an inverse
tangent operation on the results of these two averages. An estimate of the orientation field is obtained
using Equations 4.15, 4.16, and 4.17:

Ds =

(
K∑
k=1

sin(2dk)
(
W 1,k

1 ∗Hk
1

))
�

(
K∑
k=1

W 1,k
1 ∗Hk

1

)
; (4.15)

Dc =

(
K∑
k=1

cos(2dk)
(
W 1,k

1 ∗Hk
1

))
�

(
K∑
k=1

W 1,k
1 ∗Hk

1

)
; (4.16)

D′ =
1

2
arctan (Ds �Dc) , (4.17)

where � is element-wise division. Finally, we smoothen the complete orientation image using a 5 × 5

Gaussian smoothing kernel. This is done by smoothing sine and cosine images obtained from the
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orientation field D′, and then combining the two using an inverse tangent operation. The final orientation
field image, D, is given by:

D =
1

2
arctan

(
G ∗ sin(2D′)

G ∗ cos(2D′)

)
(4.18)

The frequency image can be estimated in a similar way, using fk instead of dk:

F′ =

(
K∑
k=1

fk

(
W 1,k

1 ∗Hk
1

))
�

(
K∑
k=1

W 1,k
1 ∗Hk

1

)
(4.19)

We smoothen the estimated frequency image F′, using isotropic diffusion, as proposed by [14]:

Fα = (F′α ·G)�G; ∀α (4.20)

where α represents corresponding blocks in F′ and F, andG is a Gaussian smoothing kernel. This gives
a smoothened frequency image.

The region mask can be estimated in a similar manner. Note that the network performs reconstruc-
tions of only those regions that match a learnt fingerprint pattern. Hence, the region mask can be thought
of consisting of all those pixels where the convolutional DBN performs reconstruction. Hence, a pixel
(x, y) is set to 1 in the region mask, M, if there is a response from the network at that pixel. However,
considering that there might be other points in the image where pixel values will be zero (for example,
pixels where reconstruction was done, but the convolution resulted in a pixel-value of zero or near-zero),
we perform a morphological operation on the detected mask to remove such stray pixels. Instances of
such pixels are often “sprinkled” on the region mask obtained using Equation 4.21, much like salt-and-
pepper noise is scattered over an image. Hence, closing the mask using a 2 × 2 matrix of ones helps
in removing these stray pixels. The result of this operation is a uniform region mask which determines
where in the image the fingerprint is.

[M]x,y =

1; if [v′]x,y 6= 0

0; if [v′]x,y = 0
; where v′ =

K∑
k=1

W 1,k
1 ∗Hk

1 (4.21)

4.5 Experimental Results

Performance of an enhancement algorithm in terms of fingerprint matching is very essential to its
importance. How an enhancement algorithm fares on fingerprint matching is crucial to its acceptability.
This, of course, means that the operation of enhancement on a fingerprint should not destroy the individ-
uality and distinctiveness of the fingerprint. The ability of an enhancement algorithm to maintain them
is judged using how the enhanced images score on genuine and impostor comparisons. Given a set of
several impressions of the same finger, a comparison performed between two of these impressions using
a matching algorithm is called a genuine comparison. Matching with impressions that aren’t of the same
finger is also important, and such comparisons are called impostor comparisons. In other words, these
comparisons count the number of false positives and false negatives. Ideally, an enhancement algorithm
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should enable the fingerprint matcher to provide high scores on genuine comparisons, and low scores on
impostor comparisons. In this section, we evaluate our model in terms of the performance of a matching
algorithm on it. We will also compare our results with existing Gabor-based and STFT-based enhance-
ment algorithms. We will plot Receiver Operating Characteristics (ROC) for the performances on some
standard FVC (Fingerprint Verification Competition) datasets ([45, 46]).

20100 5

Input
(greyscale)

image

Reconstructions

Binarisation

Figure 4.4 The network’s reconstruction of a fingerprint image as the number of iterations of alternate
Gibbs sampling in hierarchical probabilistic inference increases. The representation of the input in the
hidden units of a layer is affected by both - the bottom-up inference coming from the layer’s visible units,
and the top-down inference coming from the next layer’s hidden units. The figure shows reconstructions
at various iterations. 0 iterations correspond to reconstruction using only the first layer. The images in
the first row are reconstructed images, and they were thresholded based on their mean values to give the
images in the second row.

4.5.1 Experimental Setup

The convolutional deep belief networks used in this chapter were programmed in MATLAB. The
program was run on a Linux system with a 3.3 GHz quad-core processor and 4 GB of memory. The
layers were trained on patches of size 50 pixels × 50 pixels randomly chosen from 15 training images,
which themselves were of different sizes. Training was done for 500 epochs at each layer. We show in
this section that the model proposed in this chapter fares well on these tests.

4.5.2 Qualitative Analysis

We perform a qualitative analysis of our algorithm on images from three datasets: FVC2000 Db1 and
Db2 [45], and FVC2002 Db3 a [46]. Images from the dataset were shown to the trained convolutional
deep belief network, and reconstructions of these images were recorded.

Figure 4.4 is an example of the reconstruction performed by a trained network. “CDBN-k” denotes
the reconstructions obtained using k iterations of block Gibbs sampling in HPI. The binary images in
the figure have been generated by thresholding the reconstructed images according to their mean values.
Pixel values greater than the mean constitute valleys, while the rest of them constitute ridges.
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Original CDBN-20CDBN-1STFTGabor

Figure 4.5 A comparison of enhancements and binarisations performed using Gabor [26], STFT anal-
ysis [14], CDBN-1 and CDBN-20 (“CDBN-k” signifies reconstructions obtained after k iterations of
Gibbs sampling in hierarchical probabilistic inference). Each row shows performance on the left-most
image.

Figure 4.5 shows a comparison between Gabor-based enhancement, STFT analysis, and reconstruc-
tions using the CDBNs for 1 and 20 iterations of Gibbs sampling in hierarchical probabilistic inference.
We see that using higher-level data, we can “fill-up” regions of the fingerprint which the first layer is
not able to comprehend. The first layer is “helped” by the higher layers in filling up this data. However,
it is important that this filling up shouldn’t destroy information of minutiae present in the input image.
To achieve this, we propose a modification to the hierarchical probabilistic inference (HPI) algorithm.
HPI involves partitioning all variables in all the layers into two disjoint sets and performing block Gibbs
sampling on these variables (Section 4.3.3). We propose that during each iteration of block Gibbs sam-
pling, the visible units be replaced by the input image, instead of using the values obtained from other
units in the network. The reason for this is discussed in more detail in Appendix B. We saw that this
modification to the reconstruction algorithm keeps the fingerprint structure intact, and tremendously
improves enhancement. We also don’t get spurious minutiae, which result from incorrect enhancements
of fingerprints.

Using HPI, we are able to remove minor creases and ridge discontinuities from fingerprint images.
The hierarchical inference also smoothens ridges in the enhanced images by removing a majority of the
pores.

51



4.5.3 Quantitative Analysis: Evaluation Using Fingerprint Matching

The proposed algorithm was evaluated by conducting a matching exercise on fingerprints from stan-
dard datasets enhanced using the network. We used two datasets: FVC2000 Db1 b and Db2 b [45].
For minutiae extraction, we used the software FingerJetFXOSE developed by Digital Persona Inc. 1.
Fingerprint matching was performed using the NIST matcher, bozorth3 [50]. To compare our approach
with existing techniques, we have also stated the performance of Gabor-based enhancement [26] and
short time Fourier transform analysis [14] on the same datasets. The choice of these two algorithms
was motivated by their nature. Gabor-based enhancement and STFT-analysis are standard enhancement
algorithms. Further algorithms usually start with either of these as building blocks. We propose that the
algorithm stated in this thesis be counted as a different point of attack to the enhancement problem, and
hence the comparison. Receiver operating characteristics for the three algorithms are given in Figure
4.6. This graph describes reconstructions using the CDBN for four values of number of iterations in
HPI.

Equal error rates for the three approaches on these two datasets are tabulated in Table 4.1. A lower
equal error rate indicates better accuracy of the corresponding enhancement algorithm. The equal error
rate is the rate at which percent of false accepts are equal to the percent of false rejects, and have be-
come the accepted measurement criterion for biometric systems. We observe that the reconstructions
performed by the CDBNs are significantly better than Gabor enhancement and STFT analysis on FVC
2000 Db1 a, and comparable with these two algorithms on FVC 2000 Db2 a. We also observe that
introducing more layers in the convolutional DBN and more iterations in hierarchical probabilistic in-
ference gives substantially better results (CDBN-1 refers to reconstructions using only the first layer,
while CDBN-20 refers to reconstructions using the second layer and twenty iterations of hierarchical
probabilistic inference).

Dataset\Algorithm Gabor STFT CDBN-20 CDBN-10 CDBN-5 CDBN-1
2000 Db1 a 8.47 8.79 6.62 8.19 9.59 10.57
2000 Db1 b 9.46 6.67 5.82 6.55 11.65 13.11
2000 Db2 a 7.71 7.98 8.52 9.14 10.24 10.66
2000 Db2 b 14.00 9.24 10.44 17.32 16.29 19.65
2002 Db3 a 24.34 21.99 23.95 25.00 25.45 24.48

Table 4.1 Equal error rates (in percentage) for the performance of the algorithms mentioned above
on FVC 2000 Db1 a, Db1 b, Db2 a, Db2 b[45], and FVC 2002 Db3 a[46]. Lower equal error rates
indicate better performance.

4.5.4 Quantitative Analysis: Evaluation Using Minutiae Count

Besides evaluating our approach using a fingerprint matching exercise, we conducted an evaluation
using the detected minutiae too. The enhanced images were subject to feature extraction using Fin-

1https://github.com/FingerJetFXOSE/FingerJetFXOSE
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Figure 4.6 Receiver Operating Characteristics (ROC) plotted for the proposed algorithm, and compared
with Gabor [26] and STFT-analysis [14]. This graph corresponds to performance on the (clock-wise
from top-left) FVC 2000 Db1 a, FVC 2000 Db2 a, FVC 2000 Db1 b, and FVC 2000 Db2 b datasets.
Plots for reconstructions from different number of iterations in hierarchical probabilistic inference are
also shown for comparison (“CDBN-k” represents ROC curves from reconstructions obtained using k
iterations).

gerJetFXOSE (referenced in the previous section), and a count of the total detected minutiae, and total
spurious and missing minutiae extracted was made. We performed this exercise on the FVC 2002 Db3 a
[46] dataset. To count the number of spurious and missing minutiae, we used ground truth data provided
by Umut Uludag [36] for this dataset. We record the observed values in Table 4.2.

It is interesting to note that images from FVC 2002 Db3 a were not a part of the training set used to
train the CDBN. Further, FVC 2002 Db3 a is a dataset with relatively noisy fingerprints. Our approach
using the convolutional deep belief network detected fewer minutiae than either STFT analysis or Gabor-
based enhancement. It also performed at-par with Gabor enhancement and STFT analysis in terms of
performance on a matching exercise. The equal error rates for the proposed approach on FVC 2002
Db3 a are tabulated in Table 4.1.
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Algorithm Ground Truth Detected Spurious Missing
Gabor

19032
53389 38415 (71.95%) 4058 (21.32%)

STFT-analysis 48963 33096 (67.59%) 3165 (16.63%)
CDBN-20 31151 16211 (52.04%) 4092 (21.50%)

Table 4.2 A comparison of the number of spurious and missing minutiae detected by Gabor-based
enhancement [26], STFT analysis [14], and the proposed approach on the FVC 2002 Db3 a dataset.

4.5.5 Varying the Number of Features in Layers

The number of features, or weights, in every layer plays a crucial role in the reconstructions achieved
by that layer. A higher number of weights directly means that more number of features will be learnt
from the training data, and hence, we will achieve better reconstructions. However, it is also essential
to show that this holds true based on quantitative analysis. We experimented with several networks,
varying the number of weights in each one of them. We compare our results with two more networks -
one with 20 weights in layer 1 and 30 weights in layer 2, and another with 40 weights in layer 1 and 60
weights in layer 2. The weights learnt by these networks are displayed in Figure 4.7.

Layer 1

Layer 2

Layer 1

Layer 2

20 L1; 30 L2 40 L1; 60 L2

Figure 4.7 Two networks trained on the same training data with different number of weights. left: This
network has 20 weights in layer 1, and 30 weights in layer 2, while; right: has 40 weights in layer 1,
and 60 weights in layer 2.

It can be seen from Figure 4.7 that having fewer weights in the first layer restricts the number of
learnt oriented ridges, and hence the network is not able to capture all orientations of fingerprint ridges.
It also restricts the number of frequencies. Overall, the learnt filters will show a good response at fewer
places in test images, as compared to networks that have more weights.

We perform the matching exercise on images reconstructed by these two networks too. It is observed
that as the number of weights in the layers increases, the quality of reconstruction also increases signif-
icantly. The ROC curves and EERs are superior for the network with 60 weights in both layers than the
other two. Further, there is a significant qualitative improvement as the number of weights is increased.
Figure 4.8 shows comparative ROC curves for the three networks, with equal error rates being tabulated
in Table 4.3.
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Figure 4.8 ROC curves for three networks on the FVC 2000 Db1 b (left) and FVC 2000 Db2 b (right)
datasets. We see a gradual increase in performance of the convolutional DBNs as the number of weights
in increased. The notation a× b denotes a network with a weights in layer 1 and b weights in layer 2.

Network FVC 2000 Db1 a FVC 2000 Db1 b FVC 2000 Db2 b
60×60 6.62 5.82 10.44
40×60 8.31 6.78 16.48
20×30 11.47 14.11 22.48

Table 4.3 Equal error rates (in percentage) for three different networks on two datasets. An improvement
in EER is observed as the number of weights in layers is increased. The notation a×b denotes a network
with a weights in layer 1 and b weights in layer 2.

A qualitative comparison of reconstruction of the same fingerprint using the three networks is given
in Figure 4.9. As hypothesised, we find that using more weights in a layer increases the learning capacity
of the convolutional deep belief network, and the quality of its reconstructions also increases.

Original 60 x 6040 x 6020 x 30

Figure 4.9 Reconstructions of the same fingerprint using three different networks. All of the shown
reconstructions are after 20 iterations of hierarchical probabilistic inference.

4.5.6 Intrinsic Images’ Estimation

We can estimate the orientation field, frequency image, and region mask for an input fingerprint
using the learnt weights. The estimation is done using equations described in Section 4.4.5. We only
require the visible and hidden units in the first layer to compute the intrinsic images. Figure 4.10 shows
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the estimates of orientation field, frequency image, and region mask for a fingerprint. We also see how

Figure 4.10 Intrinsic images inferred using the convolutional DBN. From left to right, original image,
enhanced image, binarised image, orientation field, frequency image, and region mask. Each row shows
these intrinsic images generated from the left-most image of the row.

the reconstruction is affected by the presence of more layers in the convolutional DBN, hence giving
better estimates of orientation field, frequency image, and region mask.

Of particular importance here is the region mask obtained from the reconstructions. Several finger-
print segmentation algorithms used currently work by dividing the images into blocks. However, using
a trained convolutional deep belief network, we are able to find the region mask with a precision of one
pixel.

The second fingerprint in Figure 4.10 is a case where region mask estimation doesn’t work very
well. As can be seen, the top-most region of the fingerprint has been excluded from the mask. This was
observed particularly in the dataset that this image has been taken from (FVC 2000 Db1 b), because
the images in this dataset have a significantly low contrast. The ridges and valleys, hence, become
inseparable in some regions. Consequently, the convolutional deep belief network, when calculating the
inference at the first layer, doesn’t detect a fingerprint structure at these points, and hence it is is not
reconstructed.

4.6 Summary

In this chapter, we presented the use of convolutional deep belief network for unsupervised fea-
ture learning of fingerprint images. As convolutional deep belief networks are generative models, we
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are able to perform reconstructions of fingerprint images using what the network learns. These re-
constructions serve as enhancements of these images. Due to the convolutional nature of the CDBN,
which goes hand-in-hand with the traditional contextual filtering approach applied for fingerprint en-
hancement so extensively, the reconstructions using a learnt network are also in-line with Gabor- and
Fourier transform-based enhancements. We have also shown that adding higher layers to our network
significantly improves the quality of enhancement. Experiments showed that the matching accuracy on
enhanced images was better than Gabor-based enhancement on three datasets.

Future work on this path includes adding more layers to the network so that extremely noisy fin-
gerprints can also be recovered. Adding more layers gives us greater hierarchical inference which can
be used to extrapolate orientations for noisy regions. We also aim at developing a scalable model on
an efficient architecture which can work on huge training data sets, and can learn multiple layers of
features.
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Chapter 5

Conclusions

In this thesis, we have proposed the use of unsupervised feature learning and generative neural net-
works to enhance fingerprint structures. On the way to doing so, we saw a preliminary use of learning
to perform enhancement: the use of continuous restricted Boltzmann machines to represent patterns in
local orientation fields of fingerprint images. Restricted Boltzmann machines are capable of learning
patterns in training data, and then “seeing” the patterns learnt by them in the given input. This is evident
from the fact that if an RBM is trained on a certain pattern, and it is then given a random input, the
output it produces is an effort to locate or extract the learnt patterns in the random input.

In this thesis, we have presented an alternative approach to attacking the problem of fingerprint image
enhancement. We have presented algorithms to incorporate neural networks for unsupervised feature
learning of fingerprint structures. We used the continuous restricted Boltzmann machine to learn patterns
in local orientation fields, which were reflected in the weights learnt by the network. The continuous
RBMs were able to perform noise removal while reconstructing orientation fields of a fingerprint. How-
ever, this required a preliminary estimate of the orientation field taken by the gradient-based method.
To eliminate any steps which require pre-computation, and move towards working directly on greyscale
images, we used convolutional deep belief networks to learn ridge structures in fingerprints. There were
several advantages of working on greyscale images using a convolutional network:

1. Scalability: We could now work on complete fingerprint images instead of working on patches,
with the learning on complete images being feasible with respect to time.

2. The convolutional nature: Popular fingerprint enhancement approaches include applying contex-
tual filters to fingerprint images. Such filters are designed so that they perform low-pass filtering
along the direction of ridges, and band-pass filtering perpendicular to ridges (Section 2.2). The
nature of the features learnt by a convolutional DBN is such that these motives are achieved.

3. No pre-computation: We don’t need preliminary feature extraction to train the convolutional net-
work, unlike the continuous RBMs where we had to extract orientation fields.

58



4. Hierarchical probabilistic inference works well with point 1. to enable higher-level data to “fill-
in” regions in the enhanced fingerprint, which were too noisy to be inferred from the first layer
only.

5. One learnt model can be used to estimate several properties of a fingerprint image. For example,
orientation fields, frequency images and region masks were successfully generated solely from
greyscale fingerprint images using a learnt network, as shown in Section 4.5.6.

We hope that the exploration presented in this thesis can serve as the spawn of a new direction of
research on the subject. We have reason to believe that deep learning can involve itself more in the task
of fingerprint image enhancement. Recent successes in deep learning have shown that there lie vast and
unexplored territories ahead of us. Several problems that have been attacked with training of deep neural
networks in mind have been able to beat existing state-of-the-art methods for that problem. Although
we might be quite a distance from reaching that mark, we can expect a strong and robust network when
scaled up to include many training images, more layers and higher number of weights per layer.

Convolutional DBNs were shown to learn sparse features even from training data that had several
classes in it. For instance, a network trained on images of faces, cows, chairs, and elephants was able to
learn higher-level features that did not mix lower level features of two different classes. Sparse feature
learning in the higher layers was seen to perform well. Extending this to fingerprints, a vast diversity in
the training data, in terms of print type, changes in the orientation and frequency of ridges, difference
in classes of fingerprint images, and variations in the contrast and pixel intensity of the training images
can be tolerated by the convolutional DBN. It should be fruitful, then, to analyse and evaluate the results
of scaling of the training data.

Furthermore, the generative nature of the convolutional DBN enables us to reconstruct images from
learnt representations. Thinking along the lines of elementary deep belief networks, which are able
to generate a belief from only the representation, a possible direction of further research can be into
synthetic fingerprint generation using convolutional DBNs. For instance, setting certain hidden neurons
in the highest layers of the CDBN to fire, and propagating the data downward into the network can
generate a fingerprint from the representation that was set only in the highest layer.

We also saw that a convolutional DBN trained on fingerprint images estimates the region mask.
We estimated the region mask using a trained network by looking at places in a given image where
the network performs any reconstruction. Since the CDBN has learnt only fingerprint patterns, any
reconstruction by the network is indicative of the presence of a fingerprint pattern. We might extend this
line of thinking to detection of minutiae in a fingerprint. Given a network trained on minutiae patterns,
it should be interesting to note what kind of detection and/or localisation the network is able to make.

The future work using this as a starting point is vast. Only by going deeper into it, shall we find out
what impact it might have on current fingerprint recognition systems and tasks.
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Appendix A

Gabor Filters

A.1 Equation

A Gabor filter is a filter in the spatial domain and can be presented as a 2-dimensional Gaussian sur-
face, with a cosine decay along one of the directions. More formally, it is the product of a 2-dimensional

Gaussian of the form exp

(
− x2

2σ2
x

− y2

2σ2
y

)
and a cosine along a direction, cos(2πfx). Hence, it has

the following parameters:

• The frequency, f . This determines the frequency of the cosine along the direction of tapering, d.

• The orientation, θ. The orientation determines the direction of the cosine decay, i.e., d.

• Phase of the cosine, φ. The phase shift in the cosine signal.

• The standard deviations, σ1 and σ2. The standard deviations of the Gaussian surface along the
d-direction, and the direction perpendicular to it.

The equation of a Gabor filter is hence:

G(x, y : f, θ, φ, σ1, σ2) = exp

(
−x
′2 + γy′2

2σ2

)
cos
(
2πx′f + φ

)
(A.1)

where x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ represent rotations of the axes by θ; and
γ =

σ1

σ2
is the aspect ratio of the surface. Figure A.1 shows two representations of the filter.

If we compare the ridge structure at point in a fingerprint with a Gabor filter designed with the
appropriate orientation and frequency (which would be dictated by the ridge orientation and frequency
at that point), we find that a strong correlation between them. This filters the image and what remains
is an almost ideal ridge structure, which resembles the Gabor filter. As the Gabor filter takes only one
orientation, we have to consider a small-enough region so that that the orientation of ridges can be
assumed constant. Further, the decay along both directions of the Gabor filter is consistent with this
assumption.
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Figure A.1 Two representations of a Gabor filter with θ = π/4, f = 0.125, φ = π/3, σ1 = 6, γ = 2,
and σ2 = σ1/γ = 3. On the left is a 2-dimensional plot. To visualise this, grey pixels can be assumed
to be zero, white pixels to be positive, and black pixels to be negative. On the right is a 3-dimensional
surf plot.

It is interesting to note that the values of σ1 and σ2 play a crucial role in introducing spurious minutiae
after enhancement. [22] noted that reducing σ1 with respect to σ2 makes the enhancement more robust
to noise, and also reduces spurious ridges. This happens because reducing σ1 results in better tolerance
in frequency errors. [66] proposed increasing σ2 instead near the singularities.
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Appendix B

Block Gibbs Sampling in Hierarchical Probabilistic Inference

Hierarchical probabilistic inference, introduced in Chapter 4, is an algorithm to draw an inference
using the higher layers of a convolutional deep belief network, which learn high-level features, and
combine this top-down inference with bottom-up inference to generate a reconstructed image which is
governed by low-level as well as high-level features. It was mentioned in that chapter that we used
block Gibbs sampling in hierarchical probabilistic inference. Block Gibbs sampling says that when
drawing from probability distributions, two or more variables are clubbed together (which are otherwise
independent) to infer the rest of the variables. Next, the remaining variables are clubbed together to
infer the first set. An instance of this was observed in restricted Boltzmann machines (RBMs), where
we used visible units to calculate the activations of hidden units, and vice versa. However, it gets
complicated with a convolutional deep belief network. As all units in all layers are considered to have
a joint probability distribution, clubbing variables together in this scenario needs to be done carefully.
We will discuss two cases in this appendix: one where the network has two layers, and another where it
has three.

Recall from Chapter 4 that we use the visible units of a layer l, and the hidden units of the next layer,
l+1, to calculate activations of hidden and pooling neurons in layer l. Call V1, the set of visible neurons
in the first layer. Similarly, call Hk and Pk, the set of hidden and pooling neurons, respectively, in the
k-th layer. Then, hierarchical probabilistic inference says that we combine Hk+1 and Pk−1 to infer Hk

and Pk. To simplify, we group the units of every alternate layer. Hence, units of the first layer, third
layer, fifth layer, and so on, shall be put into one set of units; and units of the second layer, fourth layer,
sixth layer, and so on, into the other set.

B.1 Two-layered network

For a two-layered network, as mentioned in the previous section, we draw H1 and P1, conditioned
on V1 and H2 (there are no pooling units before H1, hence there’s no P0. V1 is used instead). From P1,
we now calculate H2, using the weights in the second layer. We can continue by drawing H1 and P1,
again conditioned on V1 and H2. Figure B.1 illustrates this process.
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V 1 V 1 V 1 V 1 V’

H 1, P1 H 1, P1 H 1, P1 H 1

H 2, P2 H 2, P2 H 2, P2
...

...

...

1 iteration Reconstruction

Input

Figure B.1 Hierarchical probabilistic inference using two layers. All variables are divided into two sets:
{V1, H2, P2} and {H1, P1}. At every iteration, each set of variables is computed using the other set.
The solid arrows indicate that the variables at the end of the arrows were computed from the variables
at the bases. The dotted arrows indicate that the variables weren’t computed, but only used in the next
calculation.

B.2 Three-layered network

...

...

...

...

...

V 1 V 1 V 1

H 2, P2

H 1, P1 P1

H 2, P2 H 2, P2

H 1, P1 H 1, P1

H 3, P3 H 3, P3 H 3, P3

1 iteration

V’V 1 V 1

H 2, P2 H 2, P2

H 1, P1 H 1, P1

H 3, P3

Reconstruction

...

...

...

...

...

Input

Figure B.2 Hierarchical probabilistic inference using three layers. All variables are divided into two
sets: {V1, H2, P2} and {H1, P1, H3, P3}. At every iteration, each set of variables is computed using the
other set. The solid arrows indicate that the variables at the end of the arrows were computed from the
variables at the bases. The dotted arrows indicate that the variables weren’t computed, but only used in
the next calculation.

Again, we need to group variables into two sets. We first traverse all the layers, and generate H3.
Next, we calculate H2, which is given by H3 and P1. We now use H2 to generate H3 and P3, and
compute H1 and P1 from P2 and V1. Figure B.2 illustrates this process.
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B.3 A Note on the Sampling Process

It is important to note that even though V1 can be inferred from H1 (solely) at each iteration (in
both, a 2-layered and a 3-layered network), we do this only at the last iteration, which gives us the final
reconstruction of the input image. Intuitively, this can be thought of as trapping high level data in the
higher layers, and using top-down inference to push the effects of this high level learning onto the first
layer. Empirically too, this modification gives far better results than using the reconstructed visible units
at every iteration. Another way to interpret this is asking the network to form a combined inference form
top-down data and the input image.
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