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Abstract

Terrain, representing features of an earth surface, plays a crucial role in many applications such as

simulations, hazard prevention and mitigation planning, route planning, analysis of surface dynamics,

computer graphics-based games, entertainment, �lms, to name a few. With recent advancements in digital

technology, these applications demand the presence of high-resolution details in the terrain. However,

currently available public datasets, providing terrain scans in the form of Digital Elevation Models

(DEMs) have low resolution compared with the terrain information available in other modalities like

aerial images. Publicly available DEM datasets for most parts of the world have a resolution of 30 m

whereas the aerial images or satellite images are available at a resolution of 50 cm. The cost involved

in capturing of such high-resolution DEMs (HRDEMs) turns out to be a major hurdle for making such

high-resolution available in the public domain. This motivates us to provide a software solution for

generating high-resolution DEM from the existing low-resolution DEMs (LRDEMs).

In natural image domain, super-resolution has set up higher benchmarks by incorporating deep

learning based solutions. Despite such tremendous success in image super-resolution task using deep

learning solutions, there are very few works that have used these powerful systems on DEMs to generate

HRDEMs. A few of them used additional modalities as aerial images or satellite images, temporal

sequence of DEMs etc., to generate high-resolution terrains. However, the applicability of these methods

is highly subject to the available input formats. In this research effort, we explore a new direction in

DEM super-resolution by using feedback neural networks. Availing the capability of feedback neural

networks to rede�ne the features learned by shallow layers of the network, we design DSRFB, a DEM

super-resolution architecture that generates high-resolution DEM with a super-resolution factor of 8X

with minimal input. Our experiments on Pyrenees and Tyrol mountain range datasets show that DSRFB

can perform near to the state-of-the-art without using information from any additional modalities like

aerial images.

Further, by understanding the limitations of DSRFB, which primarily occur in case of highly degraded

low-resolution input. In such cases, the major structures are entirely lost and the reconstruction becomes

challenging. In such cases, to avail the elevation cues from alternate sources of information becomes

necessary. To utilize such information from other modalities, we inherit the attention mechanism from

natural language processing (NLP) domain. We integrate the attention mechanism into the feedback

network to present Attentional Feedback Module (AFM). Our proposed network, Attentional Feedback

vi
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Network (AFN) with AFM as a backbone, outperforms the state-of-the-art methods with the best margin

of 7.2%.

We also emphasize on the reconstruction of the structures across patch boundaries. While generating

HRDEM by splitting large DEM tiles into patches, we propose to use overlapped tiles and generate an

aggregated response to dilute the artefacts due to structural discontinuities.

To summarize, in this research, we propose two methods DSRFB and AFN to generate a high-

resolution DEM from existing low-resolution DEM. While DSRFB achieves near to the state-of-the-art

performance, coupling DSRFB with attentional mechanism (i.e., AFN) outperforms state-of-the-art

methods.
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Chapter 1

Introduction

1.1 Motivation: Why super-resolution of DEM?

Real-world terrain is a complex structure consisting of bare land, high range mountains, river paths,

arches, canyons and many more. The terrains and their surface geology are digitally represented using

Digital Elevation Models (DEM). The terrain data coupled with Geographical Information Systems (GIS)1

extract topological information for various applications like modelling water �ow or mass movements,

analysis of the dynamic behaviour of the earth surface, performing disaster mitigation planning such

as �ood modelling, landslides, etc (Figure 1.1)2. Real-time simulations of terrains are used for fast

adaptation and route planning of aerial vehicles such as drones, air-crafts and helicopters to name a few.

Realistic terrain rendering also �nds its application in ranging simulations, entertainment, gaming etc

(Figure 1.2). As the visual detail and depth in many of these applications mentioned above, demand

terrain information of high-resolution and �delity, capturing or generating such information as accurately

as possible is the need of the hour.

As shown in Figure 1.3 the diversity and combinations of the complex topological structures make

capture/synthesis and analysis of the terrain a challenging task while considering realism. For instance,

computer games with high realistic graphic environments include terrain features for users to experience

better realism and allow for detailed exploration. The synthetic or ampli�ed terrain can be used as a

background for science fantasy �lms also, as the synthetic terrain does not exist and ampli�ed terrain

may be dif�cult for the �lming process.

Out of many other available formats to represent the elevation of terrain like LiDAR scan, elevation

contours etc, DEMs are favoured by the ease of their processing and interpretation as a raster. However,

DEMs captured with satellite or other airborne vehicles are still of relatively low resolution (� 30m/pixel)

[7, 1], etc. On the other hand, the resolution of satellite imagery is relatively higher (� 50cm/pixel). Of

course, there are a few geographical locations where the DEMs have been captured in high-resolution

1We would like to advise the readers new to GIS to refer section 2.1 for getting acquainted with the terminologies used in
this thesis.

2Same version of this thesis with high resolution images and supplementary material is available in this path.
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(a) Landslides Modelling

(b) Flood Model Simulation (c) Terrain Analysis.

Figure 1.1: Applications of DEM in GIS: Figure (a) shows landslide hazards Image Source: Flicker.
Figure (b) shows terrain application in �ood modelling. Figure (c) shows virtual maps of mountain
ranges near Kedarnath, India, generated by Google Earth

(� 2m/pixel) using customized captured [2, 6, 5] or using airborne LiDAR technology. Though LiDAR

technology can provide very high-resolution DEM, they are still currently limited in use due to their high

setup cost and processing requirements. Currently, LiDAR is being used only as on demand method for

critical projects. Most often these captures can not be made public due to proprietary rights.

This problem can also be solved by transforming the available low-resolution DEMs (LRDEM)

to super-resolved DEMs. Hence, we explore scalable solutions for generating high-resolution DEMs

(HRDEMs) using their low-resolution counterparts ( 30m/pixel). These techniques are often discussed

under the umbrella term Terrain Modelling and can be broadly classi�ed as Terrain Ampli�cation and

Terrain Synthesis. Terrain ampli�cation enhances the high-frequency 3D texture details of the scanned

low-resolution terrain captured from the real world, thereby making it as close as possible to actual

ground truth terrain. On the other hand, terrain synthesis deals with generation of terrain with speci�c

user controls giving a near-realistic appearance.

2



(a) Modelling of airfield for simulation (b) Modelling of real world terrain

Figure 1.2: Other Major Applications of Terrains: Figure (a) shows Bezmiechowa airfield 3D Digital
Surface Model captured with Pteryx UAV. Image Source: Kbosak Wiki. Figure (b) shows 3D model of
parks in Athence genereated via Google Earth. Source: Google Earth

1.2 Challenges

To summarise, we enlist some critical challenges in super-resolution of DEM as follows:

1. Diverse nature of the terrains makes the learning of these features a complex task. Figure 1.3
shows a few of such variations in terrains surfaces. Based on the geological phenomenon, terrains
undergo various degradations. Some of which results in erosion, smoothing, cracking etc.

2. Talking in terms of feature scales, the features in DEM are often present at a smaller scale and vanish
out easily even with simple degradation. While creating a dataset from existing high-resolution
DEM by downsampling, features get vanished completely and recovering the high-resolution
counterpart becomes more challenging. Figure 1.5 shows hillshade models for one such case where
some of the smaller scale features are completely lost and making it a challenging case to recover
the details.

3. Methods like [11] have tried to use elevation cues from high-resolution aerial images to aid the
super-resolution process. However, as shown in Figure 1.6, sometimes aerial images can not
provide true elevation cues, typically during the heavy snow-fall and areas with dense vegetation.

4. Terrains visualized from far distance exhibit the self-similarity pattern (Figure 1.4). Self-similarity
patterns are patterns repeating themselves at different scales. Though these self-similarities seem
easier to introduce in artistic terrains, recovering them from low-resolution terrain as close as
to ground truth is difficult. This is because the problem in this case becomes ill posed as many
of the missing details have to be hallucinated unless any additional information cues from other
modalities are given.

5. Terrain structures also exist in the form of arches and caves. DEMs captured from airborne devices
or satellite are not capable of capturing such structures and thus super-resolution of these structures
falls out of scope for this thesis.

3



(a) Highly diverse Terrain (b) Planar terrain with slight variations

(c) Terrain with surface level variations (d) Non-planar terrain with slight surface variations

Figure 1.3: Challenges: Various terrain structures.

(a) USGS[7] (b) Moredo Mountain[2]

Figure 1.4: Challenges: Terrain showing self-similarity property

4



(a) Resolution 15m (b) Resolution 2m

Figure 1.5: Hillshades view defining the features present in low and high-resolution DEMs. As it can be
seen most of the linear structure are vanished out in 15m resolution and recovery of which becomes a
challenging task.

1.3 Approach towards the solution

Some of the earliest methods for terrain amplification employed dictionary of exemplars to synthesize
high-resolution terrains [26, 36] while some other efforts in literature used erosion simulations to mimic
the terrain degradation effects [41, 58]. Owing to recent advancements in deep learning literature for
super-resolution of real world RGB images like in [17, 33, 56, 32, 49, 39], some recent efforts have
adopted these ideas for DEM super-resolution. One of the very few efforts on availing the power of deep-
learning based solution to the super-resolution of DEM task is based on Fully Convolutional Networks
(FCN) proposed in [11] referred as FCN hereafter. FCN [11] by its performance over generation of
realistic terrain demonstrated the essence of deep learning solutions to DEM super-resolution. However,
FCN is based on the use of additional modalities like aerial (RGB) images (Figure 1.7(c)) that are
geo-registered with the underlying low-resolution DEMs. However, getting such pair aerial image tagged
with DEM is an arduous task. Further, it can be shown that such methods can be misleading in cases of
dense vegetation and heavy snowfall as the underlying variations of the terrain are hidden.

Inspired by these challenges, we attempt to solve the super-resolution problem of DEM with simplistic
setup, i.e., without using any additional modalities. Our solution is based on the features found in the
natural terrains. The features available in natural terrains are small scale structures mostly comprising
of small edges and contour structures. Interestingly, the initial layers in Convolutional Neural Network
(CNN) capture these smaller scale (high frequency) details, which need to be enhanced or strengthened
for DEM super-resolution. This motivates us to focus on learning of features captured by the initial

5



(a) Snow covered terrain surface (b) Dense vegetation covering terrain surface

Figure 1.6: Challenges: While some techniques can use information from additional sources like aerial
images, these methods can perform poor as aerial images of the terrains covered with snow or dense
vegetation could not provide accurate elevation cues.

layers of the CNN. In CNN, however, the features are propagated in the forward direction and there is
no explicit control over the features learnt by the initial layers. While the CNN itself inspired by the
functioning of the human brain, CNN with its architectural limitations, lacks to avail additional features
like feedback mechanism. Studies like [31, 23] from cognition theory, reveals the feedback connections
in the visual cortical visual area, capable of transmitting the response signals from areas responsible for
higher order recognition to areas requiring lower-order recognition for the complex recognition task.

Exploiting this idea of feedback, Zamir et al. proposed Feedback Networks[53] to learn complex
tasks iteratively. In a feedback network typically implemented with a Recurrent Neural Network as the
backbone, the output from an iteration is passed on to next one by using a set of hidden states. This setup
comes up with parameter sharing and early prediction as additional beneficial properties. While the trend
was for going deeper and using a complex structure with a large number of parameters, [46] introduce
residual setup for super-resolution task for natural images. Further, to enable the refining of features
learnt by the initial layer, [39] unitized Feedback networks for super-resolution.

Inspired from the idea of feedback network[53] and its success in super-resolution task [39], we design
a super-resolution architecture for DEM, that iteratively refines the features learned by initial layers. We
call our architecture as DSRFB (DEM super-resolution using Feedback Networks). Our experiments
show the effectiveness of DSRFB by its near to the state-of-the-art performance [11]. Further, we also
attempt to mitigate the artefacts in the reconstructed Super-resolved DEM due to structure splits at patch
boundaries.

The proposed network DSRFB performs comparable to the state-of-the-art and in some regions with
dense vegetation or heavy snow, performs better than the state-of-the-art. Nevertheless, empirically
we have found that DSRFB can perform poorly in areas where the information is completely lost in
low-resolution DEM and use of some additional modality can be helpful here. This lets us study the
limitations of FCN[11] (which avails complementary information from RGB images but can mislead
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where terrains in the aerial images are covered with natural entities) and DSRFB which does not rely
on RGB modality (but has limitations if the low-resolution input is severely degraded). We attempt to
utilize these complementary modalities in a more efficiently and effectively using the concept of selective
fusion in feature space. Attention Networks, applied to applications like image captioning [51] allow
such selective fusion in deep learning framework. Therefore, we aim to design an integrated attention
module with our DSRFB, which we now call Attentional Feedback Module (AFM), that enables learning
of selective information fusion from multiple modalities. In this setup, where we have two modalities viz
Aerial image and DEM, we use attention mechanism to selectively pick high-frequency details from one
modality and discard from the other. Our joint attentional module, i.e., AFM generates attention mask,
which serves as a weight factor deciding the contribution of each modality.

We compare the performance of the proposed AFN architecture with state-of-the-art architectures for
DEM super-resolution quantitatively and qualitatively. Experimental results show that AFN achieves
better performance using a reduced number of parameters. More precisely, the proposed AFN shares the
parameters across the feedback loop for incremental fusion in feature space and uses only learnable 7M
parameters whereas other SOTA architectures like [11] use an order of 20M parameters.

1.4 Contributions

In this research, we present two methods for generating high-frequency terrains with more focus on
terrain amplification of LRDEM (Figure 1.7 (a)) with the aim to obtain terrain models with high fidelity
to the ground-truth (Figure 1.7 (b)) by optionally using any additional modality information like aerial
images (Figure 1.7 (c)). To generate a high-resolution DEM from a low-resolution input, we provide
DSRFB. To avail the information from other sources such as aerial images, we propose AFN. The overall
idea of this thesis can be summarized by looking at Figure 1.8, where the modules shown in green define
our key contributions.

We enlist our contributions from this research effort below:

• We propose feedback based super-resolution network architecture, i.e., DSRFB, for DEMs that
performs near to the SOTA[11] even without using any additional modalities.

• We propose the use of prediction by incorporating multiple estimates for the pixels near the
boundary areas while reconstructing high-resolution DEM.

• An Attentional feedback module that selectively extracts information from different modalities to
generate high-resolution DEM.
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(a) Input LRDEM (b) Ground truth HRDEM

(c) Geo-registered aerial image

Figure 1.7: Low and high-resolution DEMs and corresponding aerial image

1.5 Thesis Delineation

The current section has covered the introduction to the research problem, the application areas and
the key challenges in solving it. The remainder of this thesis is organized as follows:

• Chapter 2 provides an understanding of relevant research that has been carried out in this domain.
We focus on work that has been carried our for realistic terrain generation, terrain super-resolution
with fidelity to ground truth and super-resolution methods for images in general. At the end of
this section, we introduce the recently proposed feedback neural networks for super-resolution of
natural images.

• In chapter 3 we introduce our first contribution, i.e., DSRFB, a feedback based neural network for
super-resolution of DEM. We discuss the architectural details and training method. We compare
the relative performance of DSRFB with FCN [11]. Finally, we discuss the limitations of FCN and
DSRFB altogether and possible direction for overcoming those limitations.

• We start chapter 4 by discussing the pros and cons of FCN and DSRFB, and introduce the need
of selective feature extraction. We introduce our second contribution in the form of AFN and
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Figure 1.8: An overview of the contributions of this thesis. The modules shown in the green boxes viz.
DSRFB and AFN are the key contributions of this thesis.

discuss its performance over SOTA methods. Towards the end of this chapter, we highlight some
limitations of AFN and conclude with possible directions of working around.

• We conclude the research contribution in chapter 5. We also enlist a set of directions to explore
with DSRFB and AFN.
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Chapter 2

Background

2.1 Preliminaries

Before tracing back the research works related to DEM super-resolution, we briefly introduce key
terms that will be used often down the line of this thesis, a few variants to elevation interpretation,
currently available elevation datasets, etc.

1. A Geographic Information System (GIS) deals with methods that provide the ability to capture,
store and analyze spatial and geographic data. GISs have enormous applications in fields related to
mapping (cartography), analysis and prediction of landslide hazards, urban planning, agricultural
applications, land use and land cover changes, disaster management and mitigation, flood manage-
ment and the list goes on. Most of these applications can be built using a raster data structure, the
Digital Elevation Model (DEM).

2. A DEM is a raster, which stores the elevation values of the terrain across a spatial region (Figure
2.1 (b)). On an abstract level, a DEM can be considered as a depth image of a large terrain with
depth captured from axis perpendicular to the terrain surface.

3. Arc-meters and arc-seconds: These are the metrics to represent the latitude and longitude based
on distance traversed on the earth’s surface with respect to time. At sea level, one minute of an arc
along the equator or a meridian (indeed, any great circle) equals exactly one geographical mile
along the earth’s equator which approximates to 1,852 metres. An arc second being 1/60th of this
approximates to 30 meters [4].

4. Elevation: The elevation of any point in a DEM represents the height of that point with some
reference elevation, most often, the sea level. The most common terms related to elevation are
spatial resolution and vertical accuracy. A spatial resolution represents the surface area represented
by the point. For instance, a spatial resolution of 30m/pixel (or 1 arc-second) denotes each pixel in
the DEM represents an area of 30x30 square meters of the underlying surface. Vertical accuracy
represents the average squared error in the elevation w.r.to to actual elevation value.
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(a) Aerial view of the Terrain (b) DEM

(c) Hillshade: View 1 (d) Hillshade: View 2

Figure 2.1: Various terrain structures. Figure (a) shows aerial view of the terrain. Figure (b) shows
corresponding DEM. Figures (c) and (d) show the hillshade maps of the same terrain where the light
direction has been chosen to be 450 and 3150 respectively.

5. Ortho Images: Satellite imagery and aerial photographs, in the raw form, generally suffer from
distortions due to natural topographical variations in the surface of the terrain, the angle between
the terrain surface and the satellite sensor. The inherent distortion in the image has a direct impact
over the diversity of the underlying terrain. Before these images can be used for mapping or
analysis in a GIS system, these images must be pre-processed to remove the distortion. This
removal of distortion aka ‘Orthorectification’, rectifies the images so that it can be used for various
mapping and analysis in GIS by accurately by overlaying with layered data structures. Figure 2.1
(a) shows a rectified ortho image.

6. Hillshade: A Hillshade is a gray-scale 3D representation of the surface where Sun’s relative
position taken into account for shading the image. Unlike DEM, the colour shades do not attribute
to elevation; rather they represent the terrain variations visible from a virtual position of Sun.
Figures 2.1 (c) and (d) show the hillshade maps for DEM shown in (b).

11



2.2 Tools and Libraries

The plot and diagrams in this work have been generated using MeshLab and QGIS. MeshLab is a

standard 3D mesh visualization and processing software. QGIS is an open-source, cross-platform desktop

application for visualization and processing of geospatial data in GIS. It supports multiple formats of

raster images and is heavily used for georeferencing images. The hillshade plots in this thesis have been

generated using QGIS.

2.3 Available DEM Datasets

Available DEM Datasets: Currently, we have publicly available DEM datasets, that have elevation

models for the entire globe. We discuss a few major datasets here.

1. Space Shuttle Radar Topography Mission (SRTM):As part of the mission, the SRTM shuttle

orbited earth 16 times in 11 days and covered over 80% of the earth's surface. It has used synthetic

aperture radar and interferometry for capturing elevation. The dataset is available at two resolutions,

viz 30m (1 arc-second) and 90m (3 arc-second). SRTM data can be accessed from the USGS

(United States Geological Survey) Earth Explorer website[7]. SRTM has an average vertical

accuracy of less than 16m.

2. ASTER Global Digital Elevation Model: ASTER, which stands for Advanced Spaceborne

Thermal Emission and Re�ection Radiometer was part of NASA and Japan's combined project.

ASTER in its original version was available with a global spatial resolution of 90m and with a

resolution of 30m for the United States. However, with artefacts found in cloudy areas, a more

accurate version, i.e., ASTER GDEM version 2, was released in October 2011. ASTER dataset

also is available on the USGS Earth Explorer[7].

3. Global ALOS 3D World by JAXA: ALOS 3D World[1] is also an 1 arc-second spatial resolution

dataset provided by Japan Aerospace Exploration Agency (JAXA) with their Advanced Land

Observing Satellite (ALOS) satellite.

4. OpenDEM[5]: Open Digital Elevation Model is the collection of one of the high-resolution

elevation model datasets. It offers DEMs with as high resolution as 1m for some regions in Europe

and various resolutions in between for rest parts of the world.

5. ICCG [2] and SBG[6]: These are some of the high-resolution datasets that cover mountain ranges

from Pyrenees and Tyrol. These are particularly used in this thesis because of their high resolution.

These datasets offer DEM with a resolution of 2m. By downsampling these high-resolution DEMs,

a pair of low and high-resolution DEMs can be created for using in supervised machine learning

tasks.
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6. We also have would like to brie�y mention about an Indian project dataset. This dataset comprises

of patches of DEM from a small region in India. This is a collection of data from three dataset

providers, namely SRTM (30m), CartoSat (10m) and a customized scan of 5m resolution. From

Figure 2.2, we can see that the surface level features present in 5m resolution are barely visible at

10m resolution and are almost absent in 30m resolution. Thus this becomes a challenging case for

super-resolution. Due to smaller size of this dataset, we do not train our network with this data but

will use it for testing generalization of the network.

(a) Resolution: 5m (b) Resolution: 10m (c) Resolution: 30m

Figure 2.2: Indian Project Dataset: The surface level features present in image (a) are barely visible in
image (b) and almost absent in image (c).

As can be seen from the above datasets, the highest resolution of DEM that is available for the entire

world is 30m. However, the aerial or satellite imagery is available at a spatial resolution of as high as

50cm. For practical analysis of terrains and higher accuracies of the systems that use them, there is

a considerable scope to use high-resolution DEM. Due to hardware limitations and the cost and time

involved in capturing of such scans, getting a high-resolution DEM via improving the hardware based

techniques becomes limited. We thus propose to apply super-resolution techniques from computer vision

to generate the high-resolution DEMs from existing low-resolution DEMs.

2.4 Performance Metrics

Similar to natural images, the performance of super-resolution methods for DEM can be done with

standard methods like Root Mean Squared Error (RMSE), PSNR (Peak Signal to Noise Ratio) metrics,

etc. While RMSE helps to understand the cumulative squared error between the prediction and ground

truth, PSNR helps to gain the measure of peak error. In a way, PSNR and RMSE are complementary

measures to compare the performance of SR methods. The computation of RMSE for DEM is similar to

the case of natural images, where we �nd the squared root of the sum of squared errors.

RMSE =

r
1
S

�
X

jGT � SRj2 (2.1)

where GT represents the ground truth elevation map, SR represents the super-resolved prediction from

low-resolution input and S denotes the number of pixels in DEM.
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However, the computation of PSNR becomes slightly trickier. In the case of images, we �nd the

PSNR by,

PSNR = 20 � log10(255:0=RMSE ) (2.2)

where the factor 255.0 indicates the maximum intensity value a pixel can take while the RMSE has

been computed from Eq. 2.1. However, in the case of DEM, where we deal with elevation, this factor is

variable. To set up the standard, authors have been using the maximum value present the ground truth

(denoted as P) DEM while computing PSNR with various DEM degradation or reconstruction methods.

Thus we use the following formula for computing PSNR for DEMs.

PSNR = 20 � log10(P=RMSE ) (2.3)

Further, we also use metrics like SSIM and chamfer distance. SSIM is a perception-based model that

conveys image degradation as perceived change in the structural contents. Treating DEMs as single-

channel images, we can calculate SSIM scores for DEM with reference to a ground truth DEM. Chamfer

distance has been used a comparison metric in ShapeNet's reconstruction challenge 2017 [3]. We have

included chamfer distance in the evaluation metrics as DEM represents 3D terrain surface and can be

easily converted to point clouds.

2.5 Related Work

Generating high-resolution DEM from a low-resolution terrain can be thought of as generating the

high-frequency details like texture patterns, sharp edges, small curves which often are lost or absent

in the low-resolution DEM. Image super-resolution is one of the core problems in computer vision.

It is a complex task as it involves multiple plausible solutions. This is due to many high-resolution

images, which after degradation by various methods, individually could result in the same low-resolution

image. Considering super-resolution in this setup is highly dependent on our prior information about the

degradation pattern.

Another way of seeing the super-resolution problem could be as an image translation task where

source (input) image is a low-resolution image whereas the target (output) image is the high-resolution

one.

With the recent success of deep learning based solution to super-resolution, super-resolution of natural

RGB images have reached new heights. However, there are very few works [11, 13, 15, 40, 52] that

have tried these techniques on DEMs. This could be attributed to the fact that the information present

in the natural images are far different than what a DEM represents. The size of features, objects, the

diversity of texture are profoundly different in these two modalities. Also, the datasets available for

training such systems like DIV2K[8] have been standardized for super-resolution of natural images.

However, such datasets are not available for DEMs. To understand how these challenges were tackled in

this cross-domain task, we would like to highlight some of the signi�cant works in respective domains.
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This section presents a focused overview of terrain modelling, super-resolution methods for images in

general and �nally the feedback neural networks for image super-resolution.

2.5.1 Super-resolution of DEM aka Terrain Ampli�cation

Increasing the details of terrain or Terrain Ampli�cation has been an exciting direction of research.

The community has followed two paradigms to enhance the terrain with high-frequency details. The �rst

direction deals with improving the texture of the terrain to give a realistic appearance to the terrain. A

low-resolution terrain can be processed by playing with its texture, to introduce the erosion effects, to

introduce biological effects such as vegetation. As you might have guessed, these work have applications

in gaming industries, animation industries, AR-VR platforms, smart city planning etc. The second

paradigm focuses on increasing the details of a real terrain by making it as close as possible to actual

ground truth terrain. This is, in other words, super-resolution of terrain and is the main focus of this

thesis.

Primarily, terrain ampli�cation methods can be categorized into three 3 categories: Procedural

Modelling, Use of Simulation, and Examples based learning.

One of the early works on terrain modelling by using Procedural modelling involves the use of fractal

noises. Fractal patterns are self-repeating patterns. Natural terrains have this beautiful property of

existing in self-repeating patterns at different scales. Perlin et.al. [42] proposed the use of generating

such fractal patterns and adding it to the low-resolution terrains to convert them into realistic terrains. By

using combinations of octaves of such fractal noises and thereby creating various scales of noise and

smoothness, [41] added new variations in the fractal dimensions.

Analogous to mountains, rivers can also be modelled with procedural modelling and incorporated

into the landscape. Starting from designing a river network and using a classi�cation of water bodies

like springs, junctions and deltas etc., Genevaux et.al.[21] used a modelling tree approach to produce

broader terrains. Working directly with these methods will not let the user to interfere with the results,

and hence results are often unrealistic sometimes. One of such works to enable the user to interact with

and change the parameters was presented by [43]. They use painting and brushing on gray-scale images

as the fractal's basis functions for editing. Availing the power rendering powers of GPUs, their editor

gives real-time visual feedback, thereby enabling the user to enjoy the terrain generation interactively.

Gain et al. [20] used primitive features in the form of silhouette and shadows whereas Hnaidi et al.

[29] used parameterized curves to de�ne the land-form features such as ridgelines, riverbeds, cliffs etc.

[22] presented an hierarchical combination of the primitives like riverbed, cliffs, hills etc., with fusing

operations like blending by creating a tree of these object and operations. Terrains generated procedural

techniques [20, 29, 22], still lack the effect of natural phenomenon like erosion in their appearances.

Most often, a terrain generated by procedural methods are combined with simulation operations.

Phenomenon like erosion of terrain are most often caused by physical factors like:
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� Temperature when terrains where frequent contractions and expansion of terrains results in breaking

of the terrain

� Hydrological factors like rivers passing through the materials resulting in smoothed valleys

� Gradual abrasion as a result of overexposure to winds

Musgave et al. [41] presented hydraulic and thermal erosion in their work. In general, these simulations

can be seen as moving the rocks and sediments from one location to another as an effect of one or more

physical activities that dynamically results into a terrain. Such effects can be combined with ecosystems

such as vegetation modelling. However, representation of arches and caves need more than mere height

�eld because it can represent only topmost surface in a terrain. [12] introduced layered representation for

such structures. These structural representations have also enabled stacking multiple layers for effects of

various physical and biological phenomenon. One such integration has been represented by [14] where

they fused the interaction between the growing vegetation and terrain erosion by representing them into

different layers.

The third way to generate new terrains is to avail the terrain information from existing terrain datasets.

Zhou et al. [58] combined an example terrain and a user sketch de�ned user desired terrain features to

turn the sample terrain into terrain with sketch de�ned features. Work by [36] and [26] use patch-based

terrain synthesis by using a dictionary of exemplars. Kwatra et al. [36] use graph cuts to match and

fuse the potential patches. Authors of [26] make use of use of multi-resolution dictionaries to include

various levels of details. With recently successful deep learning based Generative Adversarial Networks

(GANs), [27] used conditional GANs to translate a sample terrain with interactive user sketch. Using

fully convolutional networks as a backbone, Argudo et al. [11] proposed the use of elevation cues from

high-resolution aerial images. Their architecture, referred as FCN for simplicity, is shown in Figure

2.3. Seeing terrains ampli�cation as a style transfer in images, [57] designed the generative network to

transfer textures from sample terrain to input low-resolution terrain.

2.5.2 Super-resolution of Images

Super-resolution of natural images has been a well-attempted problem. When it comes to �nding the

missing details, interpolation based on the neighbourhood information becomes the default choice. Meth-

ods such as linear, bilinear, bicubic or �ltering methods like Lanczos, comprises of simple mathematical

solutions and often reduce down the super-resolution problem to solving an equation. Also, since these

methods try to average out the details based on neighbourhood, these methods end up smoothing out the

surfaces. Such methods often fail on recovering the missing edges. A simple modi�cation to this, as in

Edge Directed interpolation [9] particularly focuses on edges and gives the images some sharp structures.

Using a patch based learning of mapping between LR and HR patches, where a large scene or an image is

generated by patch-wise replacement of corresponding high resolution patches from the learned mapping

has been proposed by [19, 18]. By allowing small variations to the patches from the dictionaries, Huang
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et al. [30] have included more �exible generation and even reduced the patch redundancies across various

scales.

Observing that the overlapped patch-based reconstruction approaches ignore a critical aspect of patch

consistency, [25] proposed to use a convolution based processing of image in order to tackle the patch

inconsistency. Initially, an LR image is decomposed into a sparse feature map and an HR image into

corresponding high-resolution feature maps. Followed by, a mapping is learned from sparse coded LR

features to HR ones. Finally, a set of �lters are learned that operate on LR image as convolutional

operators to generate a new HR image. By working directly on the whole image, [25] removes the task

of dividing the image into overlapped patches. This work also motivates to use convolution operations

working on spatially varying data.

Another important direction in preserving edges while avoiding the edge artefacts was explored by

[48]. They have extended the Directed Super-resolution by combining it with Gradient Pro�le Prior[45].

Just a variant of learning the mapping from LR images to HR images by using LR-HR pairs, Kernel

Ridge Regressions (KRR) was used by [34]. However, on observing blurring and ringing artifacts (which

are often found due to insuf�cient sampling rates for major edges as sharp changes) while using simple

KRR, they include a prior model of a generic image class that considers the discontinuity property of

images. These works that we have seen till now are based on using handcrafted features or algorithms

based on semantic rules. However, with the boost in utilising deep learning techniques in computer

vision, super-resolution using deep learning have raised the benchmark considerably higher. One of

the very �rst work in this approach was by Dong et al. [16]. They applied a bicubic interpolation on

LR images to make it equal in dimension to HR and applied a three layered fully convolutional neural

network to push the image the interpolated image towards the ground truth higher-resolution image.

Using learned iterative shrinkage and thresholding algorithm (LISTA) [24], Wang et al. [50] designed

a neural network such that each layer strictly corresponds to a step in sparse coding based super-resolution.

In the alternate direction where the network itself was allowed to learn the upsampling �lters in order to

increase the accuracy and times was experimented by [17].

After the introduction of ResNet[28] where the use of a residual block to overcome the long-range

pixel dependencies inside very deep neural networks, Kim et al. proposed DRCN[33]. SRResNet[37]

uses 16 residual blocks in its architecture. With their residual blocks similar to the ResNet[28] architecture

except the activation function used as PReLU instead of ReLU. However, the major proposal from authors

of [37] was to use SRResNet in a generative adversarial set up (termed as SRGAN) where, it can generate

photo-realistic images. In SRGAN, authors have used perceptual losses proposed by [32]. They have

also proposed the use of patch discriminator. Following this generative setup, ESRGAN [49] have

shown improved performance by using Residual of Residual (RoR)[55] networks in their generator

architecture. This Residual of Residual networks is a neural network architecture with multiple levels of

skip connections. They modify the basic ResNet[28] architecture by introducing various skip connections

across the residual blocks to form `block of residual blocks' and this hierarchy can be increased to any

level.
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Figure 2.4: SRFBN's recursive setup. Image source: [39]

More speci�c to the super-resolution task, Zhang et al. proposed the use of global and local skip

connections in their architecture named Residual Dense Network (RDN) [56]. They have proposed

Residual Dense Block (RDB) and use dense skip connections to extract abundant local features that

are captured by earlier layers. RDB allows direct skip connections from all the preceding RDB to all

the layers of the current RDB, forming a contiguous memory mechanism. This setup makes low-level

features available towards the deeper layers as well (and not limited only for immediately following layer,

as it is in case of simple ResNet). At the end of obtaining the dense local features from the last RDB,

features bypassing all the RDBs via a global skip connection, are fused with the output features of last

RDB to learn the global hierarchical features as well.

Though RDN was able to utilize the low level features effectively, the �ow of information was only

from initial layers to deeper layers. These low-level features are reused again and again limiting the

reconstruction ability of lower features in the super-resolution task of the network.

SRFBN (Super-Resolution Feedback Network)[39] was proposed to tackle this problem. SRFBN

used a feedback mechanism adapting from Feedback Networks[53] in their architecture. SRFBN has

also been implemented in a recursive setup, where the output features from the current step are stored

and used for the successive steps. As shown in Figure 2.4, the output feature maps from deeper layers are

again introduced to the initial layers and thus enabling the relearning of the initial layers with assistance

from the output of previous layers. Authors for SRFBN[39] have also shown a distinction between the

features learnt from feedforward and feedback layers (refer Figure 2.5)

Using a recurrent structure and thereby reusing the parameters has been one of the major techniques in

while working with sequential data in deep learning. Recurrent structures also help to design a feedback
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Figure 2.5: Features learnt with feedforward and feedback neural networks. Image source: [39] In the
feedforward setup, the network forms a hierarchy of information through the layers where the earlier
layers extracting edges and deeper layers suppressing the smoothed structures. On the other hand, with
more negative values at the early iteration itself, feedback network tries to suppress the smoothed features
at earlier iterations itself and later allows to generate more accurate features.

mechanism easily as recurrent structure can save states of a layer which helps in implementing the

feedback component. FCN[11] extracts complementary information from aerial images. However, in

their feed-forward setup, there is no control over features learned by initial layers of the network. We thus

propose a feedback based super-resolution architecture named DSRFB for generating high-frequency

features in DEM. Further, �nding the limitations of DSRFB in cases of utterly degraded terrains, where

the features are entirely absent low-resolution DEM, we seek to utilize information cues from other

modalities. Though FCN[11] makes use of such additional cues from aerial images, there is little control

on the extraction of features from aerial images. This motivates us to explore solutions that enable

selective extraction of features from aerial images while focusing more on learning of initial layers of the

network. For image captioning task, [51] successfully demonstrated the application of attention from one

modality to others. Generalizing such attention mechanism, we propose Attentional Feedback Network

for adaptive utilization of features selected respectively from aerial images and DEM. Integrating the

attention mechanism with feedback network enables the proposed network to learn more re�ned lower

level features.
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Chapter 3

Feedback Neural Network based Super-resolution of DEM

3.1 Introduction

Existing methods for generating HRDEMs, also known as terrain ampli�cation, have primarily

followed two paradigms: one aimed at reconstructing DEMs with higher �delity to the actual terrain

(e.g., dictionary-based reconstruction [26]), and others focused on adding plausible details and enhancing

visual appearance, apathetic to deviation from real terrains, e.g., [27, 57].

While generating the terrain with �delity to ground truth while trying to generate realistic terrain, [11]

proposed an architecture based on fully convolutional networks (FCN) architecture that uses LRDEM

along with registered ortho-photo (RGB) to generate an HRDEM. However, generating registered ortho-

photo and LRDEM pairs is an arduous task. Additionally, aerial image modality could be misleading due

to dense vegetation, heavy snow and timely changes in the landscape appearance. Similarly, by using

timely changes in the terrain, authors of deepSUM[40] proposed a multi-input to single-output (MISO)

system to generate high-resolution terrains. In the relevant �eld of natural image super-resolution, deep

learning solutions have shown exceptional improvement in performance.

We leverage the power of deep neural networks and propose a novel supervised approach to super-

resolve the DEMs from LRDEMs. In DEMs, majority of the higher frequency details are available as

small discontinuous edges (fractal structures with no global structures), unlike natural images which

often contain larger structures with some global context. This motivates us to focus on learning features

at smaller scales. Interestingly, the initial layers in Convolutional Neural Networks (CNNs) capture

these smaller scale (high frequency) features which need to be enhanced or strengthened for DEM

super-resolution. Recently, [39] proposed a feedback module in their super-resolution architecture (called

SRFBN) for RGB images to re�ne the features learned by initial layers.

3.2 Contributions

Our main objective is to enhance the lower level DEM features (features captured by initial layers in a

typical CNN) DEM features, we propose to use a feedback module, similar to [39], in our architecture. As
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Figure 3.1: Outline of the proposed DSRFB network that transform input low resolution DEM to high
resolution DEM. The hashed red path denotes the �ow of feedback information. Blue circles depict the
recovered high �delity features.

shown in Figure 3.1, the features extracted from LRDEM, i.e.,Fin are processed along with successive

outputs of Feedback block, i.e.,F t � 1
out to generate �ner features asF t

out . Hereinafter, we call the proposed

network as DSRFB (DEM Super-Resolution using Feedback Network). The results from DSRFB using

only LRDEM as input shows improved results in comparison to the state-of-the-art approach [11] using

LRDEMs combined with aerial imagery.

We have also observed that while reconstructing the high-resolution DEM by splitting large tile in

small patches to get the prediction, the system introduces structural discontinuities at the patch boundaries.

We propose to use a patch-based overlapping while getting inference from the network and then using

an aggregated response for the overlapped patch areas. We refer DSRFB with overlapped inference as

DSRFO. Overall, our contributions from this work can be summarized as follows:

� A new Super-resolution network for DEMs that iteratively re�nes lower level features in DEM for

better �delity. Our experiments demonstrate the use of the backward �ow of higher-level features

helps to re�ne the lower-level features in the DEM.

� The proposed method overcomes the feature split across tile boundaries by incorporating multiple

estimates in HRDEM reconstruction. This technique can be coupled with any patch-based inference

method.

While the two branch architecture by FCN [11] gives state-of-the-art performance, it is limited by

the availability of pair of georegistered DEM and aerial image. Similar is the case with DeepSUM[40],

where capturing timely varying terrain maps are required. DSRFB, however, gives the state-of-the-art

performance by consuming only LRDEM.

3.3 Method

We treat super-resolution as an Image Translation problem. As in [16], we upsample LRDEM with

bicubic interpolation as a preprocessing step and denote it as ILR and then add higher frequency details
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Figure 3.2: Network unrolled in time steps. Each data sample goes throughT iterations. The output of
feedback module at current iterationF t

out will be passed as feedback for the next iteration. At the end of
T iterations, system generatesT super-resolved versions of input DEM

by using the proposed network. Our network was inspired by SRFBN[39] where we wish to learn more

accurate low-level features by receiving feedback from higher-level features learnt by deeper layers.

Our main task is to propagate higher level feature information to lower levels. Our proposed network

achieves this using a recurrent neural network (RNN). An RNN is a neural network with cyclic con-

nections that make them capable of handling sequential data. An RNN withT hidden states can store

network activation up toT states. We model our feedback network such that with each time step, the

unrolled network reconstructs a new Super-resolved (SR) image and also store the layer activations in the

hidden state which are used for the next time step. Figure 3.2 shows the network unfolded in time steps.

Each sub-network consists of three parts: Feature Extraction(FE) block to capture low-level details from

ILR image, followed by a Feedback module(FB) where we re�ne the low-level features using high-level

features and lastly a Reconstruction block(RB) to fuse the high-frequency details with low-resolution

DEM features to generate Super-resolved DEM (SRDEM).

The Feature Extraction(FE) module consists of two convolution layersConv(m; 3) andConv(4 * m; 1),

wheremis the base number of �lters. DEMs up-sampled with bicubic interpolation(ILR) are used as input

for feature extraction. FE module encodes ILR, denoted asF t
in which is then forwarded to Feedback(FB)

module once for each time stept 2 f 1; Tg.

Our Feedback(FB) module consists of a stack of residual units. Each residual unit consists of a

Conv(m; 1) followed by aConv(m; 3) layer. The purpose ofConv(m; 1) layers is to adaptively fuse

the number of input channels to base number of �lters. We denote the residual units asB i wherei

2 f 1; Gg. We useG = 16 in our case. At a particular time stept, the output of residual unitB i is denoted

asL t
i . At time stept, the state of our feedback module is shown in Figure 3.3. Inspired from DRRN[47],

we use multi-path skip connections. However, instead of using the residual connections from a current

residual unit to all its subsequent units, we use them in subsequent alternate units. Thus the information

L t
1 would be passed tof B 2; B 4; :::; B 16g, L t

2 to f B 3; B 5; :::; B 15g, L t
3 to f B 4; B 6; :::; B 16g and so
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Figure 3.3: Layers and skip connections in Feedback Module.

on. Eventually, we get two groups of residual paths, as shown by red and green arrows in Figure 3.3.

The feedback module receives a concatenation ofF t � 1
out andF t

in as input, denoted as [F t � 1
out ; F t

in ], where

F t � 1
out is the hidden state output features from previous time step(t � 1) andF t

in is the input feature

vector at time stept. We useConv(m; 1) to compress [F t � 1
out ; F t

in ] along the channels and denote the

compression output asL t
0. We also use residual connections forL t

0 to all the alternate layers except the

last layer. Lastly, the outputs off B 2; B 4; :::; B 16g are compressed by aConv(m; 1) into F t
out , which

gets forwarded to reconstruction block for SRDEM generation and also used as feedback information for

the next iteration which we concatenate withF t+1
in . As there will be no feedback available at iteration

t = 1 , we useF 1
in asF 0

out .

So, at the start of each iteration, generalized input will be [F t
in ; F t � 1

out ] which will be compressed by

theConv(m; 1).

Inside Reconstruction block(RB) the output of feedback moduleF t
out at iterationt is operated with

Conv(1; 3) layer to generate a residual DEM imageI t
res . We pass the interpolated LRDEM (ILR) to

reconstruction block via a global skip connection. The SRDEM at iterationt is then reconstructed as,

I t
SR = I t

res + ILR (3.1)

Finally, for T number of hidden states, the model will generate a collection ofT SR images

(I 1
SR ; I 2

SR ; :::; I T
SR). For each of the time step, we evaluateL1 loss (mean absolute error) between

generated SRDEM and ground truth HRDEM.

loss =
TX

t=1

jI t
SR � HRDEMj (3.2)

As shown in Eq.(3.2), we accumulate losses over allT steps and at the end ofT steps, we back-propagate

the loss to optimize the parameters of the network.
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3.4 Experiments and Results

3.4.1 Datasets

We use the same dataset used by [11] which is part of publicly available high-resolution DEMs of

mountain ranges named Pyrenees [2] and Tyrol [6], respectively. The dataset comprises of DEM of large

tiles of mountain ranges. It has the highest resolution of 2m. The dataset has been downsampled to 15m

to create the low-resolution counterpart. We explicitly mention that, with a LR-HR pair of resolutions

15m and 2m, the effective scale of super-resolution in our experiments will be 7.5x rather than 8x. This

dataset also has satellite images (alternately referred by aerial images within the scope of this thesis) with

a spatial resolution of 1m which are geo-registered with the DEM. However, in our setup we do not need

these aerial images. For a fair comparison, we use the same distribution as used by [11] as combining

tiles from both Pyrenees and Tyrol. These tiles have been sliced into patches of 200x200. Further, 22000

patches have been selected for training and 11000 patches for validation. Four regions named Bassiero,

Forcanada, D̈urrenstein and Monte Magro with their unique nature have been set aside for testing.

3.4.2 Implementation Details

In our experiments, we set the kernel size for all convolution layers is 3x3 except for the compression

layers where we use 1x1 kernels. We use PReLU as activation layer after each of the convolutional layer,

except in the reconstruction block. We choose SR factor as 8X, the base number of �lters, i.e.,m as 64.

The number of steps in feedback module, i.e.,T as 4 and the depth of the feedback module,G as 16. We

use the SR image att = 4 as the �nal SR image. We have also experimented with an ensemble of SR

images for all iterations fromt = 1 to t = 4 . However, in case of DEM, it has marginal improvement

over the reconstruction. We explore two ways to reconstruct the HRDEM patches from the network.

With the simplest setting in DSRFB, we reconstruct each patch independently and place them in the

larger tile. However, to effectively recover the features split across the boundary regions, we propose

DSRFO to process patches with an overlap. We use an overlap of 25% on each side of the patch and use

the aggregated response for the pixels in the overlapped region.

In our proposed network, we have used the entire patch of200x200for training. We experimented

with smaller patch sizes as well and found that because structural continuities, the larger the patch size

the better is the prediction. We use a batch size of 4,adamoptimizer with a learning rate of0:0001, and

weights initialized withkaiminginitialization. We use multi-step learning degradation with gamma set to

0:5. We have implemented our algorithm using PyTorch framework. The network was trained for 100

epochs on NVIDIA 1080Ti GPUs.

3.4.3 Comparison with state-of-the-art method

We use standard root mean squared error(RMSE) and peak signal-to-noise ratio (PSNR) measures to

compare the performance of our proposed method with existing SOTA methods, i.e., FCN[11]. We also
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compare the performance with a variant of FCN, i.e., FCND which uses only LRDEM for reconstructing

HRDEM and hence a fair comparison can be made in between DSRFB and FCND. Quantitative results

are shown in Table 3.1 and 3.2. Even without using RGB channel, DSRFB is able to generate high-

resolution DEM with similar accuracy. Our method performs better in regions of Dürrenstein and Monte

Magro, where the aerial images respectively show them as snow-covered and with dense vegetation,

indicating that FCN method may mislead in varying terrain landscapes. However, DSRFB network

performs consistently and is more stable across all regions. Further, our variant DSRFO with multiple

estimations on tile boundaries performs even better and has the best performance for Dürrenstein and

Monte Magro regions.

For qualitative performance check, we pick a large patch from Bassiero region. As shown in Figure

3.4, we can see that DSFB is able to recover the missing details as close as to FCN. From the areas

highlighted by vertical ellipse, we can see the the artefact introduced by simple patch based reconstruction

methods (e.g., FCN, DSRFB) can be reduced by using DSRFO. Figures 3.5 and 3.6 show additional

results on patches from D̈urrenstein and Bassiero regions. Figure 3.7 shows prediction errors for FCN

and DSRFO on a patch extracted from Dürrenstein region. We can see that DSRFB has lesser prediction

error.

Region
PSNR (in dB (" )) RMSE (in meters (#))

Bicubic FCND
Ours

Bicubic FCND
Ours

DSRFB DSRFO DSRFB DSRFO
Bassiero 60.5 62.261 62.687 62.752 1.406 1.146 1.091 1.083

Forcanada 58.6 60.383 60.761 60.837 1.632 1.326 1.270 1.259
Dürrenstein 59.5 63.076 63.766 63.924 1.445 0.957 0.884 0.868

Monte Magro 67.2 70.461 71.081 71.196 0.917 0.632 0.589 0.581

Table 3.1: PSNR and RMSE for the test regions. While comparing with the methods that use only
LRDEM, our networks (DSRFB and DSRFO) outperforms FCND (the variant of FCN with only LRDEM
as input)

Region
PSNR (in dB (" )) RMSE (in meters (#))

FCN (with RGB)
Ours (without RGB)

FCN (with RGB)
Ours (without RGB)

DSRFB DSRFO DSRFB DSRFO
Bassiero 63.4 62.687 62.752 1.005 1.091 1.083

Forcanada 62.0 60.761 60.837 1.097 1.2702 1.259
Dürrenstein 63.6 63.766 63.924 0.901 0.884 0.868

Monte Magro 71.1 71.081 71.196 0.587 0.589 0.581

Table 3.2: PSNR and RMSE comparisons between FCN (which uses aerial images) and our proposed
DSRFB and DSRFO (which use only LRDEM)
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Bicubic FCND FCN

DSRFB (Ours) DSRFO (Ours) Ground Truth

Figure 3.4: Qualitative results (best visualized in colour and zoomed-in). Blue circles show areas with
interesting details. Ellipse in black shows the undesired articulation at the boundary areas for other
methods but is well reconstructed in proposed DSRFO.

3.4.4 Study of Parameter Choices

In these experiments, we verify effects of various choices ofT (the number of iterations inside the

feedback module of DSRFB) andG (the depth of feedback module in terms of layers or alternately, the

number of residual units in feedback module) over the performance of DSRFB. Results are summarized

in Tables 3.3 and 3.4. We see the performance is proportional with the number of iterationsT as well as

the number of residual unitsG. Across iterations in both the tables, we see the predictions get re�ned for

each iteration by observing an increase in PSNR and decrease in RMSE. The shift in performance from

Table 3.3 to 3.4 indicates the performance gain due to the depthG of the feedback module.

3.5 Discussion

We have found a few cases where DSRFB is not able to recover the missing structure correctly. These

cases, however, are found to be terrains with highly diverse surfaces. Figure 3.8 shows such a case.

We also test our model on real terrain around the Indian project data we mentioned in section 2.3.

These DEMs form a highly challenging case as the features present in the high resolution (5m) are almost

lost in the lower resolution counterpart, as shown in Figure 3.9. The false elevation predicated by DSRFB
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(a) Aerial Image
(b) LRDEM (Input) (c) FCND

(d) FCN (using aerial image) (e) DSRFO (Ours) (f) HRDEM (Ground Truth)

Figure 3.5: Qualitative Results: Reconstruction of a patch form Durrenstein region

(a) Aerial Image
(b) LRDEM (Input) (c) FCND

(d) FCN (using aerial image) (e) DSRFO (Ours) (f) HRDEM (Ground Truth)

Figure 3.6: Qualitative Results: Reconstruction of a patch form Bassiero region
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Figure 3.7: Prediction errors displayed at patches. Red and blue intensities denote prediction below (-ve
error) and above (+ve error) the actual terrain, respectively.

Iteration No
PSNR ( in dB (" )) RMSE (in meters (#))

Bassiero Forcanada Durrenstein Monte Magro Bassiero Forcanada Durrenstein Monte Magro
1 62.172 60.274 62.849 70.282 1.158 1.343 0.982 0.645
2 62.425 60.538 63.335 70.703 1.125 1.303 0.929 0.615
3 62.510 60.624 63.524 70.844 1.114 1.290 0.909 0.605
4 62.541 60.645 63.572 70.894 1.110 1.287 0.904 0.601

Table 3.3: Improvement in performance of DSRFB across iterationsT with G set to 12. For each
iteration, each column shows PSNR/RMSE for the selected test regions. As the iterations increase, the
performance becomes better as can be seen from the number increasing, down the line for each column
under PSNR and decreasing for each column under RSME.

can be attributed to minor variations found in the LRDEM over which the network tries to extract features.

This behaviour can be excused knowing the standard Super-resolution formulation, which is still ill

posed with the fact that many high-resolution images can result in single low-resolution image by various

degradation parameters. The predicted SRDEM can be seen as one of such hypothetical high-resolution

DEM other than ground truth degraded to same low-resolution with other degradation parameters.

The poor performance of the network is justi�ed as the dataset itself represents a challenging case for

humans as well, to predict the high-frequency features from the available low resolution tile. This also

motivates us to feed some additional elevation cues to help the network in generating reliable features.

These additional hints, as used in case of FCN were the aerial images. In our next work, we propose to

selectively use such elevation cues in such highly challenging cases.
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Iteration No
PSNR (in dB (" )) RMSE (in meters (#))

Bassiero Forcanada Durrenstein Monte Magro Bassiero Forcanada Durrenstein Monte Magro
1 62.464 60.559 63.384 70.731 1.120 1.300 0.924 0.613
2 62.640 60.730 63.680 70.996 1.097 1.274 0.893 0.594
3 62.682 60.760 63.746 71.062 1.093 1.270 0.886 0.590
4 62.687 60.761 63.766 71.081 1.092 1.270 0.884 0.589

Table 3.4: Improvement in performance of DSRFB across iterations T with G set to 16. Compared to
Table 3.3, the improvement in the performance of respective iteration shows the effect of increase in the
number of residual units

(a) HRDEM (b) LRDEM (c) SRDEM (Prediction)

Figure 3.8: Limitations: By focusing on the areas encircled in red, we can see that the features are present
in HRDEM are entirely lost in LRDEM. DSRFB �nds it dif�cult to recover such features which do not
have any elevation cues in LRDEM.

3.6 Conclusion

In this work, a super-resolution based on feedback neural network is presented, which effectively

helped to enhance lower resolution terrain (LRDEM) to a higher resolution (HRDEM) without any

additional input. While our method performs similar to the state-of-the-art, the minimal input that it uses

should enable better uses of DEMs. It can be used as a quick DEM pre-processor in terrain analysis

applications. Further efforts may be needed to improve the learning from not just LRDEMs but also

additional cues like in sketches or break lines and spot heights for more enriched and feature aware

terrains. Combing DSRFB with additional modalities like RGB images, temporal images can be an

interesting direction of research. Using feedback in the generative and attentional setup can also form a

new research dimension.
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Figure 4.3: Unrolled Model Structure. The hashed red lines denote the flow of feedback information
across time. The green arrows denote the flow of RGB features whereas the blue arrows denote the flow
of DEM features.

4.3.1 Proposed Attentional Feedback Network Architecture

As shown in Figure 4.3, unfolded network across time comprises of three components: A Feature
Extraction Module, Attentional Feedback Module(AFM) and Reconstruction Block. We also introduce
the following notations used throughout this chapter.

• m denotes the base number of filters

• Conv(m, k) denotes a convolutional layer with output number of channels m and kernel size k

• T denotes the number of steps in feedback loop

Input to the Feature Extraction(FE) module is a pair of geo-registered LRDEM and aerial image. As
shown in Figure 4.4, the FE module consists of two branches of layers. Input to the first branch (shown
in blue) is LRDEM. It comprises of two convolutional layers as Conv(4 ∗m, 3) and Conv(m, 3). The
output of this branch is denoted by FDEM . The second branch (shown in green) operates on the aerial
image. We use the first two layers from the pre-trained VGG-16 network [44] using Imagenet dataset
to extract aerial image features. To reduce the domain shift from the aerial images to the images from
Imagenet data, we fine-tune these VGG layers during training. The choice of layers has been made
empirically by comparing the feature responses of the layers. First two layers are sufficient to extract
most of the high frequency details. We denote the output of VGG layers is FRGB .

We feed the FDEM and FRGB to Attentional Feedback Module(AFM) which is the heart of our
algorithm. As shown in Figure 4.5, AFM consists of two sub-modules: A stack of residual units and an
attention module.

35



Figure 4.4: Feature Extraction Module. We use only two convolution layers for extracting DEM features
and first two layers from VGG-16 network pre-trained on Imagenet dataset

Each residual unit consists of a Conv(m, 1) followed by a Conv(m, 3). The Conv(m, 1) allows
the residual unit to fuse the information from previous residual units adaptively and Conv(m, 3) layer
produces new m channel features to be passed towards following residual units. The residual units
are denoted with Bi, where i ∈ {1, N}, N being an even number. As implemented in DSRFB, we
use two sets of skip connections to combine the features from residual blocks. The skip connections
from B1 bypass the information to {B2, B4, B6, B8, . . . , BN}, from B2 to {B3, B5, B7, . . . , BN−1},
from B3 to {B4, B6, B8, . . . , BN} and so on. Being inside the iterative feedback module, at each time
step t, residual module receives a concatenated feature map of FDEM and F t−1

fused. This timely varying
part F t−1

fused, constitutes the feedback component of our network that we save at time t − 1 and reuse
it at time t shown as red dashed line in Figure 4.5(a). A Conv(m, 1) layer has been used to compress
FDEM and F t−1

fused before passing them to B1 at time step t. At current iteration, t, the outputs from
units {B2, B4, ..., BN} are compressed by another Conv(m, 1) layer to generate the output of residual
module viz F t

RU .

At each time step, t, the resultant output of the residual module, denoted as F t
RU , along with the

features from the RGB branch, i.e., FRGB are fed to the attention module.

Inspired by [38], attention masks generated from the attention module can be thought of as spatial
probability maps. These spatial probability maps can be learnt using fully convolutional networks. Hence,
the attention module comprises of a small fully convolutional network of 4 layers.

As shown in Figure 4.5(c), the attention module consists ofConv(4∗m, 3), Conv(4∗m, 3), Conv(8∗
m, 3) and Conv(2m∗, 3). The final output with 2 ∗m channels has been split into two units: AttntDEM

and AttntRGB of m channels each of which in turn acts as an attention mask for the input features F t
RU

and FRGB , respectively. Unlike [38], we use multi-channel attention maps. We then use element-wise
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Figure 4.5: Attentional Feedback Module and its components. In Figure (a), the components inside the
light red box are part of feedback loop and the hashed red-line denotes the flow of feedback information.

channel multiplication to get a weighted set of features. A channel-wise summation then fuses the two
sets of features together into, F t

fused, the final output of AFM as shown in Eq. (4.1).

F t
fused = F t

RU ∗AttntDEM + γ ∗ FRGB ∗AttntRGB (4.1)

where a learnable parameter γ is used for stable learning. γ has been initialized with 0 so as to focus
on FRU first and adaptively move the attention to FRGB . To implement iterative feedback, we store
F t
fused over the current step and then concatenate it with FDEM to be processed in next step as part of

feedback. For the first step, i.e., at t = 0, as there will not be any Ffused, we use FDEM itself as feedback
information for step t = 0. We forward F t

fused as input to the reconstruction block. Residing inside the
feedback module, we let the attention maps to refine themselves as the iterations proceed. This timely
varying attention units for same input also makes our attention module unique and different from [38].

We run the AFM module for a T number of steps. For each step t, we get one set of features F t
fused,

which is the improved version of itself as the iteration goes on.

We implement Reconstruction Block with two units of convolutional layers Conv(m, 3) and
Conv(1, 3). For each step of the feedback unit, the reconstruction block takes in F t

fused and pro-
duces a residual map denoted by Itres. The Itres are the higher frequency details we are interested in. We
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add this residual, Itres to DEMILR which we forward from input directly via a global skip connection as
shown in Figure 4.3. The resultant sum is our predicted super-resolved DEM at time step t.

SRt = Itres +DEMILR ∀t ∈ {1, T} (4.2)

With a recursion of depth T , for each step of t for single data instance, we get one SR, forming an array
of predicted SR DEMs with increasing levels of details.

We use L1 loss over HRDEM and ItSR for t ∈ {1, T} as given by Eq. (4.3).

L =
T∑
t=1

|HR− SRt| (4.3)

The final loss L will be used for backpropagation and training the parameters.

4.4 Experimental Setup

4.4.1 Datasets

Our goal in this study is to selectively utilize the information from other modalities like aerial images.
For fair comparison with existing methods such as [11] and our DSRFB [35], we use the same dataset
used by these methods. We suggest the reader to refer to section 3.4.1. However, in this section, we also
use the aerial images while training AFN.

4.4.2 Implementation Details

In this section, we explain the hyper-parameters and details about our experimental setup. We have
used convolutional layers with the kernel size of 3× 3, unless explicitly stated. The parameters in these
layers were initialized with kaiming initialization protocol. All the convolutional layers are followed by
PReLU activation. For the RGB branch in FE module, we have used the first two convolution layers from
VGG-16 network (pre-trained on ImageNet dataset). Later, we allow to fine-tune their weights so as to
adapt the weights according to DEM modality. We set m (the number of base channels) to 64 and T
(number of steps in the feedback loop) to 4. We use N , i.e., the number of residual units, as 16. Since we
have used LRDEM with a resolution of 15 meters (as stated in [35], the effective super-resolution factor
in our case is 7.5X). We have used a batch size of 4; the max supported with our 4 NVIDIA-1080Ti GPUs.
We used learning rate of η = 0.0001 with multi-step degradation by parameter 0.5 with epoch intervals
at [45,60,70]. Parameters were updated with Adam optimizer. We have implemented our network in
PyTorch framework. After convergence of the network, the value learned by γ is 0.358. The trained
models and code are available in this repository.

During testing, similar to [35], we have adopted the technique of overlapped prediction with overlap
of 25% on all sides of the patch.
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4.5 Results and Discussions

We use standard RMSE and PSNR metrics for our comparison of the proposed method AFN with
the method that uses complementary information in the form of an aerial image like FCN [11] and
with methods use only DEM to generate high-resolution DEM like FCND (the variant of FCN) and our
previous method, i.e., DSRFB [35]. From Table 4.1, we can infer that our network AFN outperforms both
FCN and DSRFB. Using the overlapped prediction, similar to DSRFO, we introduce a variant of AFN,
called AFNO. Using multiple estimates on patch boundaries, AFNO further improves the performance.
FCN has preformed well for Bassiero and Forcanada; however, its performance degrades on Durrenstein
and Monte Magro. On the other hand, DSRFB performs better on Durrrenstein and Monte Magro.
However, AFN turns out to be a robust solution with stable performance across all four regions. A similar
observation can be made from Table 4.2, where AFN has the best PSNR even in its vanilla form.

Input Using only LRDEM Using LRDEM and RGB
Region Bicubic DSRFB DSRFO FCND FCN AFN(Ours) AFNO(Ours)

Bassiero 1.406 1.146 1.091 1.083 1.005 0.943 0.926
Forcanada 1.632 1.326 1.2702 1.259 1.097 1.058 1.030

Durrenstein 1.445 0.957 0.884 0.868 0.901 0.877 0.854
Monte Magro 0.917 0.632 0.589 0.581 0.587 0.580 0.566

Table 4.1: Comparison: RMSE values4(in meters (↓)).

Input Using only LRDEM Using LRDEM and RGB
Region Bicubic DSRFB DSRFO FCND FCN AFN (Ours) AFNO (Ours)

Bassiero 60.5 62.261 62.687 62.752 63.4 63.958 64.113
Forcanada 58.6 60.383 60.761 60.837 62.0 62.351 62.574

Durrenstein 59.5 63.076 63.766 63.924 63.6 63.841 64.061
Monte Magro 67.2 70.461 71.081 71.196 71.1 71.211 71.417

Table 4.2: Comparison: PSNR values (in dB (↑)).

To try analyzing the performance on visually perceived quality, we tried SSIM and chamfer distance
metrics as well. Treating DEMs as single-channel images, we have found SSIM scores for the various
methods. The comparative performance is shown in Table 4.3. However, metrics like SSIM are designed
for general (RGB) images. Thus, there is a limitation of SSIM when used for comparing DEMs and the
same has been reflected in results shown in Table 4.3, where we can see that for all the super-resolution
techniques, the SSIM scores are highly similar. To compute the chamfer distance, we converted DEMs
into point clouds and calculated chamfer distance on these points clouds. As it can be seen from the
Table 4.4, AFN performs better than the other methods as it has the least chamfer distance w.r.t. ground
truth terrain.

From the test regions, we pick one patch each based on certain geographical property, typically
containing one major terrain feature. Figure 4.6 shows the results for a highly varying terrain patch
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Region Bicubic DSRFB FCND FCN AFN (Ours)
Bassiero 0.9908 0.9932 0.9927 0.9944 0.9949

Forcanada 0.9885 0.9914 0.9909 0.9939 0.9943
Durrenstein 0.9941 0.9968 0.9964 0.9969 0.9970

Monte Magro 0.9968 0.9981 0.9979 0.9982 0.9982

Table 4.3: Mean SSIM scores (↑) for each region computed between ground truth and prediction by
various methods

Region Bicubic DSRFB FCND FCN AFN (Ours)
Bassiero 1.109 0.778 0.8385 0.7016 0.6528

Forcanada 1.309 0.9599 1.017 0.801 0.772
Durrenstein 1.115 0.732 0.801 0.746 0.709

Monte Magro 0.719 0.459 0.503 0.450 0.440

Table 4.4: Mean Chamfer Distance (in meters (↓)) for each region computed between ground truth and
prediction by various methods

from Bassiero region. From Forcanada, we choose a patch with bare surface, Figure 4.7 show the
corresponding results. Patches picked up from Durrenstein and Monte Margo have terrains covered with
dense vegetation and snow respectively (please refer Figure 4.8 and Figure 4.9). From comparison of
results, we can see that, for Bassiero, our method can recover most of the terrain variations in the terrain
which are smoothed out in low-resolution input. Next, in case of Forcanada region, in the low-resolution
input, almost all terrain details have been lost, yet our method can recover most of the lost structure.
From the Forcanada tile, we can also confirm, AFN had overcome the limitations of DSRFB. In cases
of covered terrains in Durrenstein and Monte Magro, where the aerial image is covered with snow, our
method has introduced the least error in terms of false elevation prediction.

We can also experience that by just looking at the qualitative results, the sometimes it becomes
difficult to identify the differences between ground truth and super-resolved DEMs by various methods.
To compare the reconstructed DEMs in such cases, we plot the pixel-wise prediction error in ground truth
and prediction by FCN and AFN. From Figure 4.10, we can verify that prediction in elevation by FCN
has a larger deviation from ground truth while prediction by AFN is close to ground truth.

4.5.1 Ablation Studies

To justify the effectiveness of the Attention module, we thoroughly test our network by creating its
variants around Attentional Feedback Module. We discuss two major studies in this section.

Without Attention Module: In this experiment, we remove the attention module from the network
entirely. For fusing the features from two modalities, i.e., FDEM and FRGB , we use channel concate-
nation followed by Conv(m, 1) layer. We keep the rest of the setup same as in AFN. The reduction in
performance of the network can be seen in Table 4.5, which supports the role of attention module in
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(a) Error with FCN (b) Error with AFN (Ours)

Figure 4.10: Error Plot: The red and the blue colors denote the elevation values predicted by the respective
networks below ground truth elevation (hence +ve numerical error value) and above the ground truth (-ve
numerical error value) respectively.

selective feature extraction.

Region
Without AFM AFN0 AFN64 AFN

PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE
Bassiero 62.406 1.128 63.108 1.04 63.724 0.969 63.958 0.943

Forcanada 60.537 1.303 61.355 1.186 62.141 1.084 62.351 1.058
Durrenstein 62.994 0.967 63.769 0.884 64.116 0.85 63.841 0.877

Monte Magro 70.365 0.64 70.934 0.599 71.154 0.584 71.211 0.580

Table 4.5: Ablation Studies

Static Attention Masks: In AFN, the attention masks for both FRU and FRGB get updated with
iterations. In this study, we move the attention module outside to the feedback network and use feedback
module only for refining the FRU features. So in this case, we denote the attention state as static and call
this variant as AFN0. Comparison from Table 4.5 confirms that iterative attention can help the network
learn more refined feature than fixed attention mask.

Additional Experiments: To understand the contribution of AFM in performance gain, we changed
hyper-parameters. We reduced the number of channels to 64 throughout the attention module. We denote
AFN in this setup as AFN64. The proportional reduction in performance reflects the role of AFM in
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capturing the higher-frequency details.

Performance without using Aerial Imagery: To test the flexibility and limitations of AFN, we study
its performance in the absence of aerial imagery. Getting aligned pair of aerial image and DEM could
sometimes be challenging, and hence we analyze the performance of AFN in the absence of such image.
In this exercise, we replace the input aerial image with a uniform prior image of same dimensions. We
call this variant as AFND. We compare AFND with FCND (which is a variant of FCN[11] without aerial
images) and DSRFB. Since DSRFB is used for super-resolution using only LRDEM, we estimate the
performance of AFND and FCND relative to DSRFB. Table 4.6 enlist the percentage drop in PSNR for
AFND and FCND with performance of DSRFB as reference. Similarly, Table 4.7 shows the percentage
increase in RMSE. From these tables, we can infer that AFND performs consistently better than FCND
and almost comparable to DSRFB. This also means that AFND finds more information cues from
LRDEM and hence the decrease in performance is marginal. Of course, DSRFB was designed to work
without RGB. This marginal decrease in performance of AFND can be attributed partially to the uniform
prior acting as noise and causing the attention module to generate a biased attention response.

Region
PSNR ( in dB (↑)) % drop in PSNR (↓)

DSRFB FCND AFND FCND AFND
Bassiero 62.687 62.261 62.404 0.679 0.451

Forcanada 60.761 60.383 60.504 0.622 0.422
Durrenstein 63.766 63.076 63.394 1.082 0.583

Monte Magro 71.081 70.461 70.768 0.872 0.440

Table 4.6: Percentage drops in PSNR for AFND and FCND with respect to the performance of DSRFB.
The drop in PSNR for AFND is < 0.5%.

70.768

with respect to the performance of DSRFB.
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