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PREFACE

When I was born, tears of joy were rolling down the cheeks of my mother and my father, seeing their
brave first child making an entry into this world. To make my journey and understanding about life
extraordinary, they made me a spiritual boy. They taught me music, football, art and gifted me a mindset
like none other, while always preaching that I stay down to earth. I recieved education in the best school
of the city, developed strong and heartwarming friendships, learned sportmanship at its finest and as a
result, I decided at the age of sixteen that I wanted to inspire and educate. My life has since been a life
driven by the dream of becoming a professor.

Joining an IIT-JEE coaching class in XI grade marked the inception of my journey of seeking in-
tellectual excellence required to achieve my dream. They told me there is no substitute to hard work,
but I did not understand that they meant “consistent” hard work. Clearly, I encountered a hiccup in my
journey, but who does not? I did not do very well on my IIT-JEE and the chance of going to an IIT had
gone up in flames. But I was not done yet. I did really well on AIEEE and got the next best thing –
IIIT Hyderabad, CSE. Then, I repeated the mistake of putting in hard work but forgetting the adjective
“consistent” which really counts; for the first year. What happened next felt like a miracle: I became
sincere. I became a “consistent” hard worker. I fell in love. I went crazy in love. Most importantly, I
stayed a footballer and made sure it kept me grounded. However, after four years of Bachelors, I felt
that I did not make the most of the intellectual & emotional roller coaster that college life is and I wanted
to learn more. Also, research was necessary for achieving my dream of becoming a professor. To top it
all, I loved freedom of deciding my own tasks and goals, unlike the dynamics of a corporate culture. I
made a lot of mistakes too, and I saw research as a way of redeeming myself, of being on an intellectual
journey that really mattered: understanding yourself and the world around you.

In accord to the revelations mentioned above, I converted to a Dual Degree program at IIIT Hyder-
abad, in my last semester. And hence began the journey towards bringing this magnificent manuscript
into existence, which is a testament to my quest for knowledge and redemption. And just like I said
before, I am a spiritual boy – the journey matters more to me than the final outcome. This manuscript
is a documentation of my amazing journey, which entails vision and learning that goes deep. The most
exciting part is that this journey has not yet ended and probably never will. And, I was never alone. My
journey has been affected by numerous personalities. And I would like to take a moment to thank them.

My mother, Nimisha, has been the warrior who made me who I am today. She worked tirelessly
round the clock for me: dropping and picking me up from school, football practices, music classes and
art classes. She is my hero. My father, Chetan, has been a role model who always kept me grounded
and did what was necessary. He pushed me to do good and taught me to not get comfortable being
mediocre, striving for a better tomorrow everday. He is my rock. My younger brother, Kathan, taught
me that nothing is impossible if you have the heart to keep going. He has achieved things that surprise
me till date and inspire me. He is my inspiration.



My girlfriend, Somya, taught me the wonders of empathy, honesty and introspection. She was by my
side during the tumultous college days and kept me going. She is my Wonder Woman. My grandmother,
Ramila, always called me once in a while to check up on how I was doing and did not ask for much
from my side. Always loved me. My grandfather, Girdharlal, showed me the wonders of selflessness
and perseverance. He walked everyday for 10 kms even at the age of 70. Thank you, my family.

I would like to whole heartedly thank my adviser Professor P J Narayanan. He took me under him
as a fledgling, asked me the right questions and let me find my answers, making me capable of creating
my own path. Also, thanks to Ishit, a fellow Dual Degree student under Prof PJN, who has been a great
friend and reviewer. His laugh is really contagious as well as ridiculous. PhD students, Parikshit and
Saurabh, also helped me a lot with discussions and I cannot thank them enough. Parikshit was one of
the strongest driving forces in a number of decisions I made during my Masters tenure.

My fellow brothers in the “bikerchokras” brotherhood, Nihit and Mohit, thanks for making my birth-
days worth remembering as I never got any other chances to celebrate it in college. Thanks for the
evergreen travel enthusiasm. “Jati rehje” is going to uncannily stay with me for the rest of my life. My
college group of friends: Mohit, Princu, Jigar, Devansh, Ankit and Anubhav, thank you guys for making
my college life memorable and mischievous. Nobody uses my stuff now except me, forget about per-
mission. When I was out in the gym working out, my friends Jaspreet and Akash always had my back.
Thank you guys. Also, a big thanks to Shikher and Aniruddh for the wonderful soccer memories.

This journey of research has come to a wonderful state of affairs, where I am setting a milestone as
well as moving on and embarking on further endeavours for achieving my dream. Everyone who was
a part of this journey has affected me in one way or another, and it is all significant. Each and every
miniscule decision was significant. I am having a sense of overwhelming gratitude towards all, even if
they shared a small moment with me, because it mattered. In the large scheme of things, it all mattered.

Lastly, thanks from the bottom of my heart to my spiritual mentors during my childhood: Jignesh and
Rajan. The spiritually involving discussions with you made me rethink my understandings and brought
about great revelations. Words are not enough to thank you for making me start playing football, Rajan
uncle. That was the best thing that ever happened to me. Thanks to this beautiful game: it taught me
lessons of life like no other experience has ever. The feeling of sportsmanship spirit running through
you when you play, it made me humble and determined. The feeling of transcendence while playing the
game, it kept me down to earth and induced empathy. This game changed the way I looked at my life,
myself as well as others.

Thank you very much.
Por vida.

– Kalpit Thakkar



“Live as if you were to die tomorrow. Learn as if you were to live forever.”

– Mahatma Gandhi



Abstract

Videos engulf the media archive in every capacity, generating a rich and vast source of information
from which machines can learn how to understand such data and predict useful attributes that can help
technologies make human lives better. One of the most significant and instrumental part of a computer
vision system is the comprehension of human actions from visual sequences – a paragon of machine
intelligence that can be achieved through computer vision. The problem of human action recognition
has high importance as it facilitates several applications built around recognition of human actions.
Understanding actions from monocular sequences has been studied immensely, while comprehending
human actions from a skeleton video has developed in recent times. We propose action recognition
frameworks that use the skeletal data (viz. 3D locations of some joints) of human body to learn spatio-
temporal representations necessary for recognizing actions.

Information about human actions is composed of two integral dimensions, space and time, along
which the variations occur. Spatial representation of a human action aims at encapsulating the config-
uration of human body essential to the action, while the temporal representation aims at capturing the
evolution of such configurations across time. To this end, we propose to use geometric relations between
human skeleton joints to discern the body pose relative to the action and physically inspired kinematic
quantities in order to understand the temporal evolution of body pose. Spatio-temporal understanding
of human actions is thus conceived as a comprehension of geometric and kinematic information with
the help of machine learning frameworks. Using a representation inculcating an amalgamation of geo-
metric and kinematic features, we recognize human actions from skeleton videos (S-videos) using such
frameworks.

We first present a non-parametric approach for temporal sub-segmentation of trimmed action videos
using angular momentum trajectory of the skeletal pose sequence. Meaningful summarization of the
pose sequence is a product of the sub-segmentation achieved through systematic sampling of the seg-
ments. Descriptors capturing geometric and kinematic statistics encoded as histograms and spread
across a periodic range of orientations are computed to represent the summarized pose sequences, which
are fed to a kernelized classifier for recognizing actions. This framework for understanding human ac-
tions instils the effects of using geometric and kinematic properties of human pose sequences, important
to spatio-temporal modeling of the actions. However, a downside of this framework is the inability to
scale with availability of large amount of visual data.



To mitigate the impending drawback, we next present geometric deep learning frameworks and
specifically, graph convolutional networks, for the same task. Representation of human skeleton as
a sparse spatial graph is intuitive and a structured form which lies on graph manifolds. A human ac-
tion video hence results in the formation of a spatio-temporal graph and graph convolutions facilitate the
learning of a spatio-temporal descriptor for the action. Inspired by the success of Deformable Part-based
Models (DPMs) for the task of object understanding from images, we propose a part-based graph con-
volutional network (PB-GCN) that operates on a human skeletal graph divided into parts. Incorporating
the culmination of understandings from the success of geometric and kinematic features, we propose
to use relative coordinates and temporal displacements of the 3D joints coordinates as features at the
vertices in the skeletal graph. Owing to these signals, the prowess of graph convolutional networks is
further boosted to attain state-of-the-art performance among several action recognition systems using
skeleton videos. In this thesis, we meticulously examine the growth of the idea about using geometry
and kinematics, transition to geometric deep learning frameworks and design a PB-GCN with geometric
+ kinematic signals at the vertices, for the task of human action recognition using skeleton videos.
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Chapter 1

Introduction

1.1 Action Recognition: The Beginning

Since the inception of the pursuit of knowledge about humans through research methodologies, var-
ious disciplines including psychology, biology and computer science have invested faculties in the un-
derstanding of motions and actions. Analyzing motions and actions has a long history which can be
traced back to 500 BC with the dichotomy paradox of the famous Greek philosopher Zeno [15]. A lot
of fascination about human motion analysis has developed since. One of the earliest investigations into
the nature of human motion was conducted by the contemporary photographers E. J. Marey [16] and E.
Muybridge [17] in the 1850s who photographed moving subjects and revealed several interesting and
artistic aspects involved in human and animal locomotion [18, 19]. One such pieces of art is shown in
Figure 1.1, that shows an exquisite sequence of movements that a man performs while pole vaulting.

It all started with trying to capture pictures of galloping horses to see if all the four hooves come
off the ground at any point of time and as it turned out, it does [20] (illustrated in Figure 1.2). After
thorough analysis, Muybridge developed a multiple-camera system that could capture human motion
and he published the most exquisite sequences of human bodies moving – doing ordinary things: rising,
sitting, walking, sweeping [21]. He was the catalyst who brought the inventions of Marey to life and
those endeavours inspired the modern motion pictures. On the other hand, in the budding field of
neuroscience, the classic moving light display (MLD) experiment of Johansson [22] provided a great
impetus to the study and analysis of human motion perception. MLDs consist of bright spots attached to
an actor dressed in black, and moving in front of a dark background. The collection of spots carry only
2D and no structural information, since they are not connected. A set of static spots are meaningless to
an observer, but the point to be made was that their relative movement created a vivid impression of a
person walking, running, dancing, etc. Several people used his MLDs to study and understand how the
visual cortex in humans perceives motion cues and recognizes what type of motion (or action) is being
performed [23, 24, 25]. These initial efforts paved the way for mathematical modeling of human action
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Figure 1.1: Motion sequence captured by Marey that shows the motion of a man performing a pole vault.1

1 Source URL

and automatic recognition, which naturally fall into the realm of computer vision as well as pattern
recognition.

1.2 Action Recognition: The Essence

Understanding human behaviour has been an important area of research since the dawn of artificial
intelligence [26, 27]. It is a daunting task as it involves learning human emotions and their subtle mean-
ings depending on the context, understanding human actions while they interact with different agents in
the environment and learning human motives based on the circumstance, emotion and actions. In order
to create a successful machine that can identify and explain human behaviour, all the sub-problems have
to be addressed. Each sub-problem has its own challenges and several sub-sub-problems branching out
from it. Among several research areas in artificial intelligence and computer vision focusing on humans,
viz. detecting humans, tracking humans in videos, pose estimation, human 3D reconstruction, action
recognition (or motion recognition), understanding human actions for motion recognition is very im-
portant due to its potential far reaching applications such as video surveillance [28, 29], assisted living
[27], human computer interaction [30], human-robot interaction [31], self-driving cars [32, 33], etc.
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Figure 1.2: The sequence of pictures showing a galloping horse, captured by Muybridge. As one can see, all the

four hooves come off the ground in one of the pictures.2

2 Source URL

In order to understand the problem of action recognition, let us first understand what does “action”
mean: Movements performed by a human range from the single limb movement to joint movements of a
group of limbs and body. For instance, kicking a ball is a simple leg movement but jumping to head the
ball involves multiple body parts that take part in the movement. Definitions of action based on some
previous literature include:

• Moeslund and Granum [34], Poppe [35] define action primitives as “an atomic movement that
can be described at the limb level”. Accordingly, the term action defines a diverse range of
movements, from “simple and primitive ones” to “cyclic body movements”. The term activity is
used to define “a number of subsequent actions”, representing a complex movement. For instance,
left leg forward is an action primitive of running. Jumping hurdles is an activity performed with
the actions starting, running and jumping,

• Turaga et al. [36] define action as “simple motion patterns usually executed by a single person and
typically lasting for a very short duration (approximately tens of seconds).” Their activity refers
to “a complex sequence of actions performed by several humans who could be interacting with
each other in a constrained manner.” For example, actions are walking or swimming, activities
are two persons shaking hands or a football team scoring a goal,
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• Chaaraoui et al. [27] suggests a that in the context of human behavior analysis, human actions
can be broken down into hierarchical elements. The breakdown is based on the level of semantics
and the temporal granularity, and considers the “action” in a level between the “motion” and the
“activity”. Actions are defined as primitive movements (e.g., sitting, walking) that can last up to
several minutes and,

• Wang et al. [37] suggest that the true meaning of an action lies in “the change or transformation
an action brings to the environment”, e.g., kicking a ball.

According to the philosophy of action from Wikipedia:

“It is defined as an intentional, purposive, conscious and subjectively meaningful activity.”

However, there are certain involuntary human responses caused without their intent as well, which are
considered as actions in literature for action recognition research. For example, coughing, sneezing,
etc. In the Oxford Dictionary, action is defined as “the fact or process of doing something, typically to
achieve an aim” and activity is “a thing that a person or group does or has done” [38]. For the purposes
of explaining the work in this thesis, our definition of action is similar to the one described in [34, 35],
which considers actions as a “combination of the articulated motion of several body parts”.

Putting all these definitions of action together, we can perform a high level categorization of human
motions. The complexity and duration of motion involved can be used as basis for broad categorization
into four kinds namely gesture, action, interaction and group activity. The class of motions having
shortest duration and consist of the basic movement of hand, arm, body or head that emphasizes an idea,
emotion, etc. is called a gesture. “Hand signs” and “nodding” are some typical examples of gestures.
Figure 1.3 shows the gestures made by using hands in order to communicate. An action involves the
motion of multiple body parts, unlike gestures which involve the motion of few body parts or limbs.
When multiple actions are performed one after another, the motion sequence is called an activity. When
there are two actors involved in the action, the other can be either a human or an object. Such a motion
sequence is called an interaction. Hence, interactions cover two types of actions, one involving human-
human interaction and the other involving human-object interaction. “Kicking the other person” and
“throwing the ball” are examples of these two types of interactions, respectively. Different activities are
shown in Figure 1.4 where each activity involves several sub-actions. Group activity is a combination
of the various types of motions described above, consisting of more than two human actors and multiple
object interactions. “Courtroom trial” and “football practice” are examples of group activities.

1.3 Action Recognition: The Problem

We now define the problem of action recognition. To state the problem in simple terms, given a
sequence of images with one or more persons performing an activity, can a system be designed that
can automatically recognize what activity is being or was performed? To explain the problem in a
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Figure 1.3: Hand sign gestures. Gestures are the basic movements where only a single body part moves.3

3 Source URL

technical manner: Given some predefined set of actions that are known to the system, can the system be
classify an unseen sequence of images containing human motion into one of the actions in the set? On
a different line of thought, efforts have been made to explain how motion recognition occurs, based on
the seminal work by Johansson on MLDs [22] which perform analysis of human motions using lights
as body markers, with two theories [24]: “In the first theory, the visual system performs shape-from-
motion reconstruction of the object and then use that to recognize the action. In the second theory, the
visual system utilizes motion information directly without performing reconstruction.” Hence, the aim
of an action recognition system is to identify new, unseen actions based on the set of actions known to
it by either reconstruction of human using the motion cues or using the motion cues directly to perform
recognition.

The task of understanding human actions has been carried out using various types of input informa-
tion. Human actions have been recognized from RGB videos [38], which are videos we see in our day
to day lives, say, on YouTube. Human actions are also recognized from RGBD videos which contain
a depth video in addition to the RGB video. It is typically captured using a sensor-based system like
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Figure 1.4: Different types of activities involving interactions with different objects and sub-actions. The name

of the sub-actions are marked with the action image still.4

4 Source URL

Kinect, which is different from a RGB camera. There has been research work done in recognizing ac-
tions from skeletal data [39], where the 3D locations of human skeleton joints are provided for each
frame in the video and architectures are designed to recognize actions using only these skeleton videos.
There are several challenges that we need to consider when designing an action recognition system:

• As a human action typically takes place over a period of time and involves multiple body parts,
it is important to understand the spatial as well as temporal properties of the action. The spatial
properties of an action can be the features of the body represented by a single time instant, while
the temporal properties can be understood by tracking the changes in these spatial features across
time. Hence, there is a challenge of extracting useful spatio-temporal features which can represent
the action information accurately and perform precise action recognition,

6

http://ai.stanford.edu/~syyeung/resources/multithumos.png


• The actions can vary in their time resolutions, meaning that some actions can last for a longer
period of time compared to other actions. Some humans might perform the same action slower
compared to others and hence the motion information would vary. To handle this, we need to
design a system that is invariant to the time resolution changes in same action classes,

• Combining spatial and temporal information about the action sequence is not very straightfor-
ward. The spatial features representing the appearance or static human body pose should be
effectively combined with the temporal features representing the motion or changes in human
body pose. Hence, there is a challenge that a good combination should be learned by the system,

• The action representations learned by the system should be interpretable so that the workings of
the system can be well understood. A major challenge in deep learning methods is the inter-
pretability of the ways a system works, without which understanding grows weaker regardless of
accuracies of recognition getting stronger.

An action recognition system should address all these challenges and strive to perform well in all the
areas. Our first framework deals with all these challenges well but falls back due to the shortcoming
of scalability with large training data. Our second framework mitigates this drawback and fulfills the
requirements laid out by the challenges mentioned above, in the best manner possible, achieving state-
of-the-art performance for action recognition.

In this work, we consider the problem of recognizing actions from skeleton video sequences (S-
videos) which provide the 3D locations of n (n varies depending on the device used) joints in the
human body tracked using sensors like Kinect or motion capture devices. The information provided by
3D joints locations is very different from RGB and Depth, which is why traditional computer vision or
deep learning methods using images as input do not work on them as is. Inputs from RGB and S-videos
are illustrated in Figure 1.5, which shows the same action captured from multiple views and four con-
secutive frames of the same action. Pioneering works in the early action recognition research literature
demonstrated the importance of geometric and kinematic features, while using simple classifiers to clas-
sify the descriptors representing the action sequences. With the development of deep learning methods
including Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), the action
recognition community started utilizing the potential of these architectures to improve the contempo-
rary state-of-the-art action recognition systems. However, the importance of geometric and kinematic
features kept coming back to make a point that these representations are useful as well.

1.4 Action Recognition: Our Framework

Our framework for recognizing actions from S-videos is built around the idea of utilizing geometric
and kinematic information of the skeleton motion as a rock-hard foundation of the computation of action
representations. In addition, it relies on the fact that the representation of human body which enables
our model to learn powerful representations is based on a graph-structured design of human skeleton.
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Figure 1.5: Top: Frames from an action video taken from three different view for both RGB and Skeletal channels.

Bottom: Four consecutive frames from an action video from both RGB and Skeletal channels.5

5 Taken from [40]

The final descriptor is learned using a graph convolutional network, which facilitates convolutions over
irregular domains structured as arbitrary graphs, in addition to regular structures such as grid graphs
formed from image pixels. It benefits the model through enabling it to scale with availability of more
training data. We establish the gains in representation power through geometric and kinematic features
and consolidate them. Upon this foundation, we build a better action recognition system by adding a
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well-thought body model and convolution formulations to achieve the culmination of several fragments
of persevered thought experiments. Below, we explain the details of our framework.

We first design a system that computes the angular momentum of pose change using the human
skeleton videos, analyzes its trajectory and sub-segments the action sequence into parts having smooth
changes in the momentum. By sampling from these segments, we aim to summarize the video which is
then used to compute a histogram-based descriptor to perform action classification. The results achieved
by this system demonstrate the importance of using geometric and kinematic features in understanding
human motion using skeleton videos. Through this work, we build a foundation of geometric-kinematic
(GK) features.

Recently, manifold-based methods which exploit high-order geometric properties of the data lying
on well-studied manifolds like Riemannian and Lie groups have pushed forward the research frontiers
in action recognition [41, 42]. Along similar lines, graph convolutions have been proposed by draw-
ing similarities with traditional image-based CNNs [8] as well as by operating in spectral domain and
coming back [43, 44]. A human skeleton can be represented as a spatial graph where the joints are the
vertices and the natural connections are the edges in the graph. Convolutions can be performed on such
a graph to extract meaningful features and perform action classification. Moreover, instead of using 3D
joint locations as the features (or signals) at the vertices, GK features can be used to boost recognition
performance. Hence, we design a graph convolutional network which uses GK features at the vertices as
input, to perform action recognition from S-videos. Inspired by Deformable Part-based Models and the
fact that actions can be broken down into movements of individual body parts, we design a part-based
human skeleton graph to perform action recognition. We propose a part-based graph convolutional
network (PB-GCN) to learn the classification function over the part-based human skeletal graph. We
achieve state-of-the-art performance on the benchmark dataset NTURGB+D [13] with a huge margin
of improvement and outperform previous methods by a good margin on a small and challenging dataset
HDM05 [45]. This demonstrates the effectiveness and scalability of our method, which is attributed
to the structure of part-based graph convolutional network (PB-GCN) and using geometric + kinematic
signals instead of 3D joint coordinates at the vertices of the skeletal graph.

1.5 Contributions

The contributions of this work are:

• We design a framework for temporal segmentation of trimmed action videos using angular mo-
mentum of pose change as a kinematic prior. The temporal segmentation results in meaningful
summarization of the skeletal sequence.

• We propose two new histogram-based descriptors: Histogram of Relative Joint Displacements
(HORJD) and Histogram of Angular Momentum (HAM) for generating a compact representation
of the summarized action video.
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• We achieve competitive performance for action recognition on MSRAction3D [11] and UT-Kinect
[12] datasets using our segmentation and representation pipeline.

• A detailed discussion on the background about graph convolutional networks, starting with intro-
duction to geometric deep learning and laying the mathematical foundations of the graph convo-
lutions.

• We propose a part-based graph convolutional network for action recognition from skeleton videos,
a framework inspired from success of Deformable Part-based Models that can be applied to any
graph with known properties.

• We propose to use relative coordinates and temporal displacements instead of 3D joint coordi-
nates, which are the geometric and kinematic signals computed from absolute 3D joint coordi-
nates, at the vertices for learning parameters of GCN. We get great improvements in performance
due to them and we explain their reasons.

• We achieve state-of-the-art results for action recognition on two challenging benchmark datasets
NTURGB+D [13] and HDM05 [45], outperforming previous methods with a large margin.

1.6 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 begins with a layout of growth in concepts used for recognizing actions and goes on to explain
several important methods for human action recognition. We also mention the future course of research
that is probable to take place.

Chapter 3 consolidates the foundations necessary for understanding the work in this thesis by laying out
the background of important concepts related to graph convolutions used in further chapters. We explain
the mathematical and theoretical development of graph convolutions, which are necessary to understand
the framework using graph convolutional network.

Chapter 4 explains the importance of geometric-kinematic features through the angular momentum
based recognition system. This approach is built on a system that does not use deep learning architec-
tures, as the aim was to design a simple framework that is interpretable and works well.

Chapter 5 explains the usefulness of graph convolutions networks along with the idea of using best of
both worlds: deep learning and simple features based on geometry and kinematics. The final model that
achieves state-of-the-art performance is explained here.

Chapter 6 concludes the thesis with closing remarks and avenues for future work.
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Chapter 2

Related Work

Being an important problem in computer vision, human motion analysis for recognition and com-
prehension of human actions has seen a lot of wisdom being passed on from generation to generation
of researchers. Consuming each bit of wisdom passed our way is next to impossible, so we start from
ground zero and build an empire of concepts strong enough to hold our heavily complex mechanisms
of modern research life, and by extension, our framework for human action recognition from skeleton
videos.

2.1 The Wise Old Days

As we explained in Chapter 1, the pioneering work that gave an impetus to formulation of mathemat-
ical models for vision-based human action recognition was done by Johansson [22] using the Moving
Light Displays (MLD) setup. The genius of that experiment was the observation pointing out the fact
that relative motion of several 2D points (lights) attached to a human body vividly show human motion
characteristics leading to recognition of simple actions. The mere motion of these lights also enabled
the recognition of gait and gender of a person [46]. A depiction of the configurations of light displays
for two different action poses is shown in Figure 2.1(a) and 2.1(b). In order to emphasize the impression
of motion that humans can perceive through the relative motion of the light displays, Figure 2.2 shows
a subset of stills from the sequence of action “walking”. Indeed, motion information alone is sufficient
for perception: a sequence of binary images representing points from a moving object can produce a
strong and true-to-life three-dimensional perception.

Johansson et al. attempted to explain the interpretation of MLDs in terms of a low-level ”spatio-
temporal differentiation and integration” [47]. According to their theory, the peripheral layers of human
visual system develop a notion of a hierarchy of coordinate systems that assist in understanding of
motion patterns based on simple vector analysis. Johansson suggests that the choice of the coordinate
system of a point in motion is dependent on the two-dimensional velocity of that point, which is
an important cue for interpretation of motion [47]. They, however, face difficulties in defining the
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(a) (b)

Figure 2.1: Demonstration of how the configurations of the moving light displays look like.1

1 (a) Taken from [22] and (b) Source URL

Figure 2.2: A sequence of frames taken from “walking” action. The progression of stills show how the relative

motion of the light displays induce sensory information about human motion.2

2 Source URL
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suitable coordinate system hierarchy through rule-based modeling. Despite this fact, Johansson et al.
presented a large body of evidence for the hypothesis about human visual system performing a kind of
vector decomposition in the analysis of MLDs. We use the 3D displacement of the joints per unit time,
or the temporal displacements, which is a kinematic prior that has a good impact on understanding of
human motion as explained by Johansson.

Human skeletal data in actions videos have similarities with MLD data in that the location of several
joints are provided. Skeletal data is easier to interpret from the point of view of actions as the connec-
tions between joints are also well-defined. From the two theories of interpretation of MLD data [24],
using motion information directly for recognition is used in modern action recognition systems using
human skeletal data extract from RGBD videos. Motion-based recognition systems consist of recogni-
tion of objects or motions directly from motion information extracted from the sequence of images. The
two main steps in this approach consist of [24]:

• Finding suitable representations of motions based on the motion cues and organizing them into
useful compact representations, from which models are created as necessary.

• Matching some unknown input with the model and perform pattern classification using classifi-
cation techniques.

This is the wisdom that has been conserved over a long time of research in motion interpretation of
humans and is the higher level description of the framework that we use in our action recognition
approaches.

2.2 The Progression Until Today

We briefly discuss the methods in the literature of action recognition over the past 20 years to build
a timeline of how the field has progressed and what is to be learned for the realization of the works
presented in this manuscript. Previous works in recognition of human actions can be broadly classified
into the type of input information used: (1) RGB videos, (2) RGBD videos and (3) Skeletal videos. We
journey through the related works for action recognition using RGB and skeletal videos, and establish a
foundation of ideas.

2.2.1 Action Recognition from RGB Videos

One of the earliest works in action recognition using still images was done by Bobick and Davis [1].
They introduce the notion of Motion Energy Image (MEI) and Motion History Image (MHI), whose
underlying idea is to encode the motion-related information present in a single image. The MHI and
MEI for an action sequence is shown in Figure 2.3. The idea of MEI was extended in Blank et al. [2],
where they represent an action using a 3D shape induced from the actor’s silhouette in space and time.
Such a 3D shape induced from silhouette is shown in Figure 2.4.

13



Figure 2.3: Top: Image stills from an action sequence of jumping and waving. Middle: Motion Energy Images

for the action sequence [1]. Bottom: Motion History Images for the action sequence [1].3

3 Taken from [38]

Figure 2.4: Left: The spatio-temporal volumes used by Blank et al. [2] to describe the evolution of an action.

The 3D representation is converted to a 2D map by computing the average time taken by a point to reach the

boundary. Right: The spatio-temporal surfaces of Yilmaz and Shah [3] for a tennis serve and a walking sequence.

The surface geometry (e.g., peaks, valleys) is used to characterize the action.
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Changes in direction, speed and shape of an Space-Time Volume (STV) inherently characterize the
underlying action. Action sketch is a set of properties extracted from the surface of a STV (e.g., Gaussian
curvature) and is shown to be robust to view point changes. This is an important concept as we use the
notion of geometric and kinematic signals in our approaches based on similar ideas about the changes
in direction and speed of the human skeletons.

The representations explained above are very rigid in their structure and fail to capture the complexity
of action dynamics which are attributed to point away from the sillhouttes [48]. Hence, local and
deep representations became popular. The seminal work on local representations based on Space-Time
Interest Points (STIPs) by Laptev [49] inspired further research in this area. In order to extract motion
information from the videos, optical flow is computed which provides pixel level motion in X and Y
directions. Laptev et al. [50] propose to use a Histogram of Optical Flow (HoF), which was extended by
Dalal et al. [51] to Motion Boundary Histogram (MBH), which encodes the spatial derivative of optical
flow fields. An illustration of X and Y motion from optical flow, with the MB image in shown in Figure
2.5. It is significant to note that spatial and temporal derivatives for pixel level motion are helpful in
providing the action recognition performance, as similar concepts when applied to skeletal videos also
show good performance statistics.

Initial efforts in pushing the frontiers of action recognition performance coming at the end of local
representations era was based on dense trajectories. Wang et al. [52] propose that sparse interest points
do not handle motions effectively and hence they propose to use dense trajectories to compute statistical
descriptors for action recognition. The pipeline for dense trajectory computation is shown in Figure
2.6. Transitioning into era of Convolutional Neural Networks (CNNs), the area of action recognition
saw a huge boost in the performance due to use of deep learning frameworks involving CNNs due
to their powerful feature extraction capabilities. Two-stream spatio-temporal networks [53], spatio-
temporal residual networks [54] and temporal segment networks [55] took charge of reaching human
level recognition accuracies and have been successful to a large extent. The most important idea to
take away from these approaches is the use of trajectories and optical flow, which are derivatives of the
information at pixel level.

2.2.2 Action Recognition from Skeletal Videos

Skeletal data consists of locations of human skeleton joints, which are extracted either using MO-
CAP or sensor-based devices such as Kinect. Skeletons estimated from MOCAP systems are robust to
illumination and viewpoint variations, but skeletal data from depth and RGB images are often noisy and
error prone due to occlusions and viewpoint variations.

Early methods for recognition of actions from skeletal videos used differential physics-based quan-
tities for the spatio-temporal representation of actions. Zanfir et al. [56] propose a descriptor called
Moving Pose, which encodes the speed and acceleration of a pose centered in a window of a fixed length
that is moved over the entire video to calculate the quantities. Several works that followed used higher
level quantities such as change in acceleration or used kinetic energy to segment the S-videos and cal-
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Figure 2.5: Illustration of the optical flow and Motion Boundary images. (b) horizontal component of the optical

flow, (c) vertical component of optical flow, (d) Motion boundaries. Spatial gradients disrgard motion information

but the Motion Boundaries capture the boundaries at which motion is taking place and hence encode motion better.

Motion Boundary Histogram is the gradient of the optical flow fields.4

4 Taken from [38]

culate a descriptor for action recognition [57]. These methods are closely related to our approach for
action segmentation and representation using angular momentum.

However, it is intuitive to consider the videos as a sequence of features with each feature extracted
from the individual frames in the videos. Based on this, LSTM-based methods are the most obvious
choice for learning from such data. Du et al. [4] propose a five part-based representation of the hu-
man skeleton, which is fed to a hierarchical bi-directional RNN having a separate branch for each of
the parts. This is illustrated in Figure 2.7. Shahroudy et al. [13] propose a part-aware LSTM archi-
tecture wherein memory is split across part-based cells. It is argued that keeping the context of each
body part independent and representing the output of the P-LSTM unit as a combination of independent
body part context information is more efficient. These methods aim to model the temporal evolution of
the skeletal data for recognizing actions but the spatial information is also important in discriminating
between action classes. To exploit this dependency, Liu et al. [6] proposed a spatio-temporal LSTM
(ST-LSTM) network which extends learning to both temporal and spatial domains. ST-LSTM explicitly
models the dependencies between the joints and applies recurrent analysis over spatial and temporal do-
mains concurrently. This was extended by Liu et al. [5] where they proposed a Global Context-Aware
Attention LSTM (GCA-LSTM) (illustrated in Figure 2.8) to selectively focus on the informative joints
in the action sequence with the assistance of global context information. Song et al. [58] proposed an
end-to-end spatio-temporal attention model with LSTM to automatically learn the discriminative joints
in each frame and the importance of joints along the temporal axis. Differently from previous works
that adopted the coordinates of joints as input, Zhang et al. [59] investigated a set of simple geometric
features of skeleton using 3-layer LSTM framework, which shows the usefulness of geometric informa-
tion fed as input compared to absolute joint coordinates. We use ideas from part-based frameworks and
application of geometric signals present in previous works as they have shown to benefit performance
without increasing the model complexity.
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Figure 2.6: Left: Feature points are sampled densely for multiple spatial scales. Middle: Tracking is performed

in the corresponding spatial scale over L frames. Right: Trajectory descriptors are based on its shape represented

by relative point coordinates as well as appearance and motion information over a local neighborhood of N ×N

pixels along the trajectory. In order to capture the structure information, the trajectory neighborhood is divided

into a spatio-temporal grid of size nσ × nσ × nτ .5

5 Taken from [52]

Due to the capability of CNNs to learn powerful features from images, action recognition from
skeletal videos has seen frameworks that convert skeletal data to images to encode spatio-temporal in-
formation that can be extracted by CNNs. Ke et al. [60] convert the skeletons into three gray clips,
corresponding to X, Y and Z dimensions, each having four images which are encoded with relative co-
ordinates computed with respect to two shoulders and two hips, respectively. The achieve good recog-
nition accuracies by feeding these clips to a pretrained VGG-19 and classifying the extracted features.
Such methods lose interpretability as they encode skeletons into images and hence interpreting the fil-
ters learned is very difficult. On the other hand, Kim and Rieter [61] propose a temporal convolutional
network having a Resnet backbone, to retain interpretability and learn a deep action recognition model.
We aim at achieving both the qualities in our approaches and therefore, strive to keep our framework
simple, interpretable as well as deep.

2.3 The Future Beckons

Recently, there has been a huge explosion in the field of geometric deep learning due to the capability
to design convolution-like functions on non-euclidean domains and in particular, the arbitrary graph-
based structures. These methods have shown potential in various core problems of computer vision
such as 3D shape correspondence and analysis [62], document analysis [63] and and skeleton-based
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Figure 2.7: Architecture of the hierarchical RNN of Du et al. [4].

Figure 2.8: Architecture of the GCA-LSTM of Liu et al. [5], which uses ST-LSTM of Liu et al. [6] as the

component LSTMs.

action recognition [9, 64]. It has also shown promise in learning molecular fingerprints [65]. In general,
graph convolutional networks (GCNs) have become an extremely popular framework for learning from
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arbitrary structured graph domains and have shown good capabilities. However, the performance of
GCNs is nowhere near the performance of CNNs on implicitly regular-structured image domains (grid-
like structure).

It is a matter of time until GCNs catch up and show great potential in their learning prowess. Geomet-
ric deep learning is coming and it is the future. We use graph convolutional networks for our framework
based on part-based formation of human skeleton graph and perform action recognition using it. We
achieve state-of-the-art performance compared to all previous methods for skeletal action recognition
on the largest benchmark dataset [13].
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Chapter 3

Background: Deep Learning on Graphs

In this chapter, we introduce concepts related to action recognition and geometric models, including
graph convolutional networks. Geometric models majorly aim at incorporating structural information
to the problem domain for better learning performance of the models. We explain the theory related to
them in detail below.

3.1 Introduction: Geometric Deep Learning

Geometric deep learning entails a wide range of techniques aimed at generalizing deep neural models
operating on structured domains having euclidean data such as grids, to non-structured (or non-uniform)
domains such as graphs and manifolds. Many scientific fields study data with an underlying structure
belonging to a non-Euclidean space. Examples of such fields of study include social networks in com-
putational social sciences, communications-based sensor networks, networks to understand functional
brain connectivity, regulatory networks in genetics and surfaces involving meshes in computer graph-
ics. Such geometric data have large sizes for most applications (in the case of social networks, on the
scale of billions) and exhibit complex properties, which make them a natural target for machine learning
techniques. As deep neural networks have demonstrated a great potential recently for a broad range of
problems from computer vision, natural language processing, and audio analysis, we would like to use
learning techniques similar to them. However, tools from deep learning have been most successful on
data with an underlying Euclidean or grid-like structure, and networks that model the input data are
designed by incorporating the invariances of these structures.

The success of deep neural networks is attributed to their capability to estimate the local statistics and
in turn grasp upon the statistical properties of the data at a stationary location as well as the composition
of such properties over several locations, and such statistical properties are exhibited by natural images,
video and speech [66, 67]. Physics-based understanding of such statistical properties has been studied
[68] and certain class of convolutional neural networks are formalized based on their contributions
[69, 70]. As explained in Lecun et al. [71], “In image analysis applications, one can consider images
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as functions on the Euclidean space (plane), sampled on a grid. In this setting, stationarity is owed to
shift-invariance, locality is due to the local connectivity, and compositionality stems from the multi-
resolution structure of the grid.” Such properties make the use of CNNs very suitable due to the ability
to learn local statistics and propagate them hierarchically across the layers, which reduces the number
of parameters greatly as well as the inherent presence of certain priors about the data which are fitting,
especially for natural images [72, 73].

Due to the attractive properties of CNNs in case of learning problems involving image, speech or
video, there has been a growing interest in recent times to apply concepts from CNN-based models
to non-Euclidean geometric data. For instance, in social networks, the characteristics of users can
be modeled as signals on the vertices of the social graph [74]. Sensor networks are graph models
of distributed interconnected sensors, whose readings are modelled as time-dependent signals on the
vertices. In genetics, gene expression data are modeled as signals defined on the regulatory network
[75]. In neuroscience, graph models are used to represent anatomical and functional structures of the
brain. In computer graphics and vision, 3D objects are modeled as Riemannian manifolds (surfaces)
endowed with properties such as color texture.

The properties such as global parameterization, well-defined coordinate system and vector space,
etc. present in euclidean domain are not applicable to data lying in non-Euclidean domain. As a re-
sult, convolutions are not well-defined in the non-Euclidean domain. We explain how key ingredients
from CNNs are translated to model non-euclidean data such as skeletal videos for human actions, by
introducing the concepts of graph-structured manifolds and convolutions on them.

Geometric learning: Skeletal action recognition Broadly speaking, we can distinguish between two
classes of geometric learning problems. In the first class of problems, the goal is to characterize the
structure of the data. The second class of problems deals with analyzing functions defined on a given
non-Euclidean domain. We can further break down the problems belonging to second class into two
subclasses: problems where the domain is fixed and those where multiple domains are given. For
example, the problem of action recognition from skeletal videos (S-videos) falls under the second class,
where we need to learn a function defined on the skeletal graph which is our non-Euclidean domain
and is fixed, in order to perform classification of a given S-video into a predefined set of action classes.
Hence, we consider skeletal action recognition as a geometric learning problem where the domain is
non-euclidean and we learn a function over this domain for supervised classification of actions.

3.2 Where are we: Manifold learning

Roughly, a manifold is a space that is locally Euclidean. For example, consider a 3D sphere such as
the shape of the Earth. At every point on the surface of the sphere, one can define a local coordinate
system which assigns Euclidean coordinates to the points lying in that system. Representations of
skeletal data are used that lie on a certain manifold and learning techniques are applied to identify
the actions through the analysis of the action representations lying on the manifolds. Vemulapalli et
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al. [41] explicitly model the geometric relationships between different body parts using rotations and
translations in 3D space. The resulting representation for the skeletal action sequences lie in the Lie
group SE(3) × . . . × SE(3), which is a curved manifold. Huang et al. [76] use this representation
of skeletal sequences and attempt to develop a deep learning framework that incorporates Lie group
structure into a deep network architecture to learn more appropriate Lie group features for 3D action
recognition. They design rotation mapping layers to transform the input Lie group features into desirable
ones, which are aligned better in the temporal domain. To reduce the high feature dimensionality,
the architecture is equipped with rotation pooling layers for the elements on the Lie group. On the
other hand, Devanne et al. [42] develop a method to perform shape analysis of the 3D joint location
trajectories lying on a Riemannian manifold. Huang et al. [14] also develop a method to perform
Symmetric Positive Definite (SPD) matrix learning on matrices containing visual data, which lie on the
Riemannian manifold, and perform classification using the learning technique, which is applied to the
task of skeletal action recognition.

These methods have been proven successful in achieving robustness to several noisy inputs and
invariance to translation, rotation and scale. Such properties are desirable when performing tasks that
involve arbitrary structured data that can contain noisy inputs and benefit greatly from translation and
rotation invariance, such as action recognition from skeletal videos. Manifold learning techniques have
made a huge impact on how we perceive and represent data, which has given impetus to the development
of graph convolutional networks. We explain the necessary background required for understanding
formalization of graph convolutions below.

3.3 Where do we go from here: Deep Learning on graphs

Traditional machine learning applications cope with graph structured data by using a preprocessing
phase which maps the graph structured information to a simpler representation, e.g.vectors of reals.
In other words, the preprocessing step first “squashes” the graph structured data into a vector of reals
and then deal with the preprocessed data using a list based data processing technique. However, im-
portant information, e.g., the topological dependency of information on node n may be lost during the
preprocessing stage and the final result may depend, in an unpredictable manner, on the details of the
preprocessing algorithm. RNNs and Markov chains are the two techniques that are commonly applied
to graph and node focused problems, which perform such a preprocessing. Scarscelli et al. [7] were
the first ones to develop a formal theory for graph neural networks (GNNs) by extending the concepts
of Recursive Neural Networks (RNNs). However, we are interested in the theory behind formulation of
graph convolutions rather than a graph neural network which is similar to RNNs.

Niepert et al. [8] formulate convolutions on graphs drawing similarities from convolutions on images
that operate on locally connected regions of the input. The main aim of convolutions on graphs is to
“learn a function on graph-structured data (non-Euclidean domain) which can be used for classification
and regression problems on unseen graphs”. In the case of skeletal action recognition, the graph con-
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Figure 3.1: Different problems where the data can be represented as graphs [7]. (A) A biological molecule

(adrenaline), (B) An image and (C) A subset of documents on the web.

volutions are expected to learn a function that can classify unseen skeletal videos to one of the action
classes it has seen in the training set of videos. Figure 3.2 shows the application of a convolution on
an image. The image can be represented as a grid with the nodes corresponding to the pixels of the
image. The red node in the receptive field of size 3 × 3 is the root pixel where the convolution is cen-
tered. Each of the 3 × 3 receptive fields create a neighborhood graph for the red root pixels (sequence
1-4 in Figure 3.2). As the pixels in an image have an implicit spatial ordering, the sequence of nodes
(root nodes) for which the neighborhood graphs are formed, is uniquely determined. However, in case
of arbitrary graphs where there is no spatial, temporal or other sort of ordering among the nodes, two
problems need to be solved: (i) Determining the node sequences for which neighborhood graphs are
created and (ii) computing a normalization of neighborhood graphs, that is, a unique mapping from a
graph representation into a vector space representation.

The pipeline for solving the two problems mentioned above proposed in Niepert et al. [8], which we
use in our work, is shown in Figure 3.3 and 3.4. Given a collection of graphs, the framework proposed
(PATCHY-SAN) does the following: (1) Select a sequence of a fixed number of nodes from the graph
vertices, (2) Assemble a fixed-size neighborhood for each node in the selected sequence, (3) Normalize
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Figure 3.2: Illustration of CNN on images: (a) A CNN with a receptive field of size 3 × 3. The field is moved

over an image from left to right and top to bottom using a particular stride (here: 1) and zero-padding (here:

none). (b) The values read by the receptive fields are transformed into a linear layer and fed to a convolutional

architecture. The node sequence for which the receptive fields are created and the shapes of the receptive fields,

are fully determined by the hyper-parameters [8].

the neighborhood graph assembled for each node and (4) Learn the neighborhood representations using
CNNs from the resulting normalized patches.

3.3.1 Notations reference

A graph G = (V,E) has the set of vertices V = {v1, . . . , vn} and the set of edges E ⊆ V × V . Let
|V | = n and |E| = m. Each graph can be represented by an adjacency matrix A of size n × n, where
Ai,j = 1 if (vi, vj) ∈ E and Ai,j = 0 otherwise. In this case, we say vi and vj are adjacent if Ai,j = 1

and vertex vi has position i in A. Node and edge attributes are features that attain one value for each
node and edge of a graph. A walk is a sequence of nodes in a graph, in which consecutive nodes are
connected by an edge. A path is a walk with distinct nodes. We write d(u, v) to denote the distance
between u and v, viz. the length of the shortest path between u and v. N1(v) is the 1-neighborhood of
a node, which contains all nodes that are adjacent to v.

Labeling and Node Partitions: In order to impose an order on nodes, PATCHY-SAN utilizes graph
labelings. A graph labeling l is a function l : V → S from the set of vertices V to an ordered set S such
as the real numbers and integers. A ranking (or coloring) is a function r : V → {1, . . . , |V |} and every
labeling induces a ranking r with r(u) < r(v) if and only if l(u) > l(v). If the labeling l of graph G
is injective, it determines a total order of G’s vertices and a unique adjacency matrix Al(G) of G where
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Figure 3.3: An illustration of the Niepert’s architecture [8]. A node sequence is selected from a graph via a graph

labeling procedure. For some nodes in the sequence, a local neighborhood graph is assembled and normalized.

The normalized neighborhoods are used as receptive fields and combined with existing CNN components.

vertex v has position r(v) in Al(G). Moreover, every graph labeling induces a partition {V1, . . . , Vn}
on the set of vertices V with u, v ∈ Vi if and only if l(u) = l(v).

3.3.2 Convolutions on Graphs

To show the connection between CNNs and PATCHY-SAN, as shown in Figure 3.2(a), the CNNs on
images are seen as choosing a sequence of nodes in the square grid graph representing the image and
building a normalized neighborhood graph (illustrated in Figure 3.2(b)), which is the receptive field for
the chosen node. We now explain the constituent steps in the framework for formalizing convolutions
for any arbitrary graph.

SAN→ SELECTION OF NODE SEQUENCE: This step determines the nodes in the graph for which we
create the neighborhood graphs (similar to choosing an receptive field for convolution) and then define
the node ordering in the neighborhood using graph labeling function (in images the receptive fields have
an implicit ordering among pixels). Algorithm 1 defines one possible procedure for selection of the
sequence of nodes: (1) The nodes are sorted using the graph labeling function. The sorted sequence
is traversed with a stride s and each node encountered is chosen and included in the sequence until
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Figure 3.4: The normalization is performed for each of the graphs induced on the neighborhood of a root node

v (the red node; node colors indicate distance to the root node). A graph labeling is used to rank the nodes and

to create the normalized receptive fields, one of size k (here: k = 9) for node attributes and one of size k × k

for edge attributes. Normalization also includes cropping of excess nodes and padding with dummy nodes. Each

vertex (edge) attribute corresponds to an input channel with the respective receptive field.1

1 Taken from [8]

the number of required nodes is met or the list of nodes is exhausted, (2) For each of the nodes in the
sequence, receptive fields are created to enable performing convolutions on them.

In the case of skeletal action recognition, this step involves selecting all the joints as the sequence of
nodes, because the skeletal joints have a well-defined spatial ordering according to the numbering of the
joints produced by the motion capture device used. Also, all the joints are important from the point of
view of learning the spatial and temporal relationships necessary for characterizing the action sequence
and hence all neighborhoods are considered.

Algorithm 1: SAN→ Select Node Sequence
Input: graph labeling procedure l, graph G = (V,E), stride s, width w, receptive field size k

Vsort = top w elements of V according to l;

i = 1, j = 1;

while j < w do

if i ≤ |Vsort| then
f = RECEPTIVEFIELD(Vsort[i]);

else
f = ZERORECEPTIVEFIELD();

end

apply f to each input channel;

i = i+ s, j = j + 1;
end

SAN → ASSEMBLY OF NEIGHBORHOODS: For each node in the selected sequence, a receptive field
is created by selecting a neighborhood around the nodes. Algorithm 2 is called by Algorithm 3 to first
choose the set of nodes to be included in the root node’s neighborhood for creating the receptive field.
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Algorithm 2: SAN→ Assemble the Neighborhood
Input: vertex v, receptive field size k

Output: set of neighborhood nodes N for v

N = [v];

L = [v];

while |N | < k and |L| > 0 do
L = ∪v∈L N1(v);

N = N ∪ L;
end

return the set of vertices N

The neighborhood assembly steps involve: (1) Taking the root node v and the receptive field size k as
input, perform a breadth-first traversal around v and include the discovered nodes in the neighborhood
set N , (2) Increase the distance from v and repeat step 1, (3) If the size of neighborhood set is smaller
than k, add the 1-neighborhood of the vertices most recently added to N and continue until |N | ≥ k,
(4) End if there are no more neighbors to add.

Note that, number of neighbors for each node in the sequence may be different, unlike the case in
image convolutions (padding can be done to make the number same). For our task of skeletal action
recognition, we choose to use 1-neighborhood for each node in the selected sequence of nodes. This
is due to the fact that the development of graph convolutions has not matured enough to include higher
neighborhoods [77] and is left for future works.

Algorithm 3: RECEPTIVEFIELD→ Create the receptive field
Input: vertex v, graph labeling procedure l, receptive field size k

N = SAN(v, k);

Gnorm = SAN(N, v, l, k);

return Gnorm

SAN→ NORMALIZATION OF GRAPH: The receptive field for a node is constructed by normalizing the
neighborhood assembled in the previous step. Illustrated in Figure 3.4, the normalization imposes an
order on the nodes of the neighborhood graph so as to map from the unordered graph space to a vector
space with a linear order. The basic idea is to leverage graph labeling procedures that assigns nodes of
two different graphs to a similar relative position in the respective adjacency matrices if and only if their
structural roles within the graphs are similar. This is the problem of optimal graph normalization and
is considered to be NP-hard [8]. Hence, we perform graph normalization that may assign same label to
multiple nodes in the assembled neighborhood and relaxing the restriction for optimal normalization. In
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our work for skeletal action recognition using graph convolutional networks, we define and explain our
labeling functions, which is left to the later chapters.

Algorithm 4: SAN→ Graph Normalization
Input: subset of vertices U from original graph G, vertex v, graph labeling procedure l, receptive

field size k

Output: receptive field for v

compute ranking r of U using l, subject to ∀ u, v ∈ U : d(u, v) < d(w, v)⇒ r(u) < r(w);

if |U | > k then
N =top k vertices in U according to r;

compute ranking r of N using l, subject to ∀ u, v ∈ N : d(u, v) < d(w, v)⇒ r(u) < r(w);

else

if |V | < k then
N = U and k − |U | dummy nodes

else
N = U

end

end

construct subgraph G[N ] for the vertices N canonicalize G[N ], respecting the prior coloring r

return G[N ]

APPROXIMATION OF CONVOLUTIONS → PROPAGATION RULE: Kipf and Welling [77] propose a
propagation rule for multi-layered Graph Convolutional Networks (GCNs) that we use in our works. The
propagation rule is derived as a first-order approximation of the convolutions with support k defined by
Defferrard et al. [44], who propose spectral graph convolutions that convert the input domain to fourier
domain, perform the convolutions and come back to the input domain. The propagation rule is defined
as:

H(l+1) = σ(D−1/2AD−1/2H(l)W (l)) (3.1)

where, H(k) is the hidden layer at level k,D is the diagonal degree matrix computed from the adjacency
matrix A and W is the matrix representing the filter weights.

We use this propagation rule for the convolutions defined in our GCN for skeletal action recognition.
This sums up our discussion on the background for graph convolutions, with an attempt to lay out a
clear foundation of the concepts required to understand the frameworks discussed later.
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Chapter 4

Segmentation and Representation of Skeletal

Videos using Angular Momentum

Segment 1 Segment 2 Segment 3

Figure 4.1: Segmentation for trimmed skeletal video of action clapHands. The pose sequence of the entire video

is shown on top and the segment boundaries are shown below. Poses occurring at the segment boundary capture

the extreme poses for the action: “hands at the time of clap” and “hands farthest away”.

In this work, we pursue a hypothesis regarding use of angular momentum as a physical prior to
perform temporal segmentation of trimmed action videos. Pose changes in the skeletal action video
are characterized using the changes in angular momentum across time. We identify the segments in
action video where pose angles change smoothly by analyzing the time series of angular momentum
magnitudes. A summarized pose sequence is extracted from the segmented action video by uniformly
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sampling the temporal segments. We propose a descriptor for generating a compact representation
from the summarized pose sequence that captures angular and linear motion across the sequence. The
descriptor consists of a concatenation of two fixed-length representations called Histogram of Relative
Joint Displacements (HORJD) and Histogram of Angular Momentum (HAM). We use the resultant
compact representation for the task of action recognition on small RGBD datasets and show meaningful
summarization of the original pose sequences. The performance obtained is competitive to state-of-the-
art and our representation is capable of facilitating more applications such as video retrieval, automatic
segmentation, etc.

4.1 Introduction

Due to easy accessibility of depth sensors like Kinect, it has been possible to capture scenes with
depth information in realtime. With the help of RGBD data captured from such depth sensors, the
skeletal configurations of humans in the video can be obtained for each frame. This information is
called skeletal video or S-video for RGBD videos involving humans. Several tasks such as human
action recognition and human 3D modeling can be performed better using the human 3D pose. There
has been a rise in datasets for action recognition which contain S-videos recently [11, 12, 13, 78]. 3D
pose estimation algorithms enable use of pose information obtained from RGB videos for several tasks
such as key frame extraction [79, 80], video segmentation [81] and summarization [82, 83]. We explore
the task of segmenting and recognizing actions from trimmed S-videos consisting of human actions.

Human actions can be interpreted on the basis of physics. Each human body part performs angular
motion when an action, such as arm wave, tennis serve, read a book, check your watch, walk, etc. is
performed. Each action involves multiple segments of limb movements and segmenting an action video
into segments with smooth angular movements can help in its analysis. Shot segmentation of RGB
videos [84] can serve as a model to segment skeletal videos, with pose changes playing a key role. We
propose a method for action segmentation by identifying the extrema in angular momentum time series
of the skeletal videos. Physical quantities like angular momentum are interpretable and useful for this
task, as they aim to capture the force applied during angular changes taking place due to motion of
limbs.

A segmented video can be used to summarize the action as well as to recognize it. Various represen-
tations have been used for information in a skeletal video. Bag of Words (BoW) and statistical encoding
techniques are very popular for representing skeletal videos. BoW representations [56, 85, 86, 87] gen-
erate a codebook using clustering or sparse coding which is used to find a single code word for each
feature vector. Statistical encoding techniques [88, 89, 90] use simple statistics to generate a final fea-
ture representation. This approach generates a fixed-length feature representation, irrespective of the
number of poses in the sequence. We use a statistical approach for our encoding. A histogram of rel-
ative displacement and angular momentum, binned by their orientations and calculated over multiple
time segments with a temporal pyramid, is our compact descriptor for an action video.
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(a) (b)

Figure 4.2: (a): The angular motion of the two hands about their respective elbow joints with the old positions

(shown in solid) and new positions (shown in dashed lines), (b): Relative joint vectors calculated for the human

skeleton joints with respect to four joints: left shoulder, right shoulder, left hip and right hip. In our method, we

use seven joints as the reference set. This image is for illustration of how the relative coordinate vectors look like.

Our method for temporal segmentation of skeletal videos is based on a simple observation that most
of the body parts perform circular motion during an action and exhibit change in momentum, which
can be quantified using a physical quantity like angular momentum. Segment boundaries are identified
by finding the extrema of angular momentum across the video. This has an interpretable meaning:
The beginning of an extreme for one action segment and end for the previous can be characterized by
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detecting time instances where maximum angular motion takes place between poses. This is similar
to the concept of scene or shot change used for segmentation in RGB videos. We find the summary of
skeletal video by sampling poses uniformly from each action segment. A compact representation for the
skeletal video is generated using two proposed descriptors, HAM and HORJD. The major contributions
resulting from this work are as follows:

• We propose using angular momentum: an interpretable kinematic prior for temporal segmentation
of skeletal videos.

• We propose two new histogram based descriptors, namely Histogram of Oriented Relative Joint
Displacement (HORJD) and Histogram of Angular Momentum (HAM) for encoding the final
pose sequence.

• Applicability to action recognition is demonstrated using quantitative experiments that show the
effectiveness of our method.

4.2 Compact Representation of Skeletal Videos

In this section, we explain temporal segmentation of the skeletal video using our angular momentum
prior. We will first explain the calculation of angular momentum for a pose change, followed by the
segmentation method to identify temporal segment boundaries.

4.2.1 Angular Momentum Prior

Whenever a human performs an action, force is applied to several parts of the human body. De-
pending on direction of momentum changes, these actions can be of two types: a stationary action or
a dynamic action. In a stationary action, the frame of reference of the human is stationary, i.e. the
frame of reference has zero velocity at all time instants. Such actions include brushing, drinking water,
checking watch, brushing hair, etc. In case of a dynamic action, the frame of reference of the human is
moving with certain velocity which may not be constant. Such actions are more complex due to larger
variations possible in motion of the frame of reference and in temporal extents of the action. Dynamic
actions include jumping, running, walking, etc. For both the classes of actions, circular motions are
inevitable due to motion of limbs about a pivot joint. Hence, we use angular momentum to capture the
complex dynamics for human actions.

The angular momentum of any body rotating about a center is given by the equation:

−→
L = −→r ×−→p (4.1)

where −→r is radius of the body from axis passing through the center and −→p is the linear momentum.
For a skeleton, we consider each joint as a body with unit mass, with radius equal to the limb length
and center being the joint it is rotating about. Hence in our case the angular momentum is defined
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for an endpoint of each limb of the body. The change in position of arms which contribute to the
change in angular momentum are shown in Figure 4.2(a). We explain the process of calculating angular
momentum below.

STEP 1: We first find the instantaneous linear velocity for each joint during a pose change in the skeletal
video. This displacement per unit time (which we refer to as instantaneous velocity) can be calculated
using a simple derivative:

∀j
−→
V

∆t

j =

−→P t+1

j −
−→
P

t

j

∆t

 (4.2)

where, j represents the joint index and t represents the time instance. For calculating the angular
momentum of the joint about it’s pivot joint, we need the normalized limb vector joining those two
joints.

STEP 2: Assume
−→
P
t

1 and
−→
P
t

2 are the 3D joint locations of two adjacent joints (say, the right elbow and
right hand) at time t and

−→
P
t+1

1 and
−→
P
t+1

2 at time t + 1. Here, hand joint is moving and elbow joint
is the pivot. Using the calculated instantaneous velocity of the hand joint using equation (2) and the
normalized limb vector, which is represented by r̂ = −→r /‖−→r ‖, the angular momentum equation can be
written as follows (the body is considered to have unit mass):

∀j
−→
L

∆t

j = r̂×
−→
V

∆t

j (4.3)

STEP 3: The magnitude of angular momentum vectors calculated in the previous step is added to get
the total angular momentum of the pose change using the following equation:

L∆t =
∑

j

‖
−→
L

∆t

j ‖ (4.4)

We get a time series of length t − 1 that represents the change in angular momentum of the poses with
time. For example, the angular momentum time series for actions carry and sit down is shown in Figure
x and y respectively. The plot for carry contains a lot of peaks due to noise, which we filter out using
mean thresholding and non maximum suppression that we explain in the next section.

4.2.2 Motion Segmentation

After calculating the angular momentum time series, we need to find the motion boundaries which
exhibit a large change in pose based on angular motion. Before seeking such a boundary in the trajectory,
we perform non-maximum suppression [91] to remove unnecessary noise due to noisy joint locations.
Non-maximum suppression is commonly used to filter out noisy edge detections in images. We perform
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Figure 4.3: Plots for angular momentum trajectory for the action carry. X-axis represents the time instants and

Y-axis represents the angular momentum magnitudes. Top: Shows values without thresholding with mean of the

distribution. Bottom: Plot obtained after thresholding. Nature of the top plot is due to the fact that action contains

a lot of noise in the measurements. This is handled using the thresholded plot and performing non-maximum

suppression to find segment boundaries.

a simple 3-neighborhood non-maximum suppression on the time series as follows:

slope(t) = ‖
−→
L

t
‖ − ‖

−→
L

t−1
‖ (4.5)

slope(t + 1) = ‖
−→
L

t+1
‖ − ‖

−→
L

t
‖ (4.6)

boundary(t) =



1 for sign(slope(t)) 6=
sign(slope(t + 1))

and

sign(slope(t)) > 0

0 for othercases

(4.7)

The length of temporal segments may vary across the video. A longer segment implies a gradual change
in pose between the motion boundaries whereas a shorter segment implies a swift change in pose. To
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Figure 4.4: Plots for angular momentum trajectory for the action sit down. X-axis represents the time instants and

Y-axis represents the angular momentum magnitudes. Top: Shows values without thresholding with mean of the

distribution. Bottom: Plot obtained after thresholding. Here, the noise is significantly lower than carry.

summarize the action, spacing between poses in longer segments should be more than that in smaller
segments. Hence, after finding the temporal motion boundaries for the skeletal sequence, we sample a
fixed percentage of equally spaced poses from each of the segments. We fixed the percentage of poses
to be 20% as it gave a reasonable sampling frequency and did not suffer from over-sampling or under-
sampling in our experiments. For segments having length less than eight frames and greater than two,
we choose a fixed number of samples from that segment. For example, this gives us a summary of the
actions as shown in Figure 4.7. Such a summary can be used to generate a GIF after finding the RGB
frames corresponding to the poses.

4.2.3 Representation Encoding

For converting our final pose sequence into a fixed length compact representation, we propose two
histogram based descriptors called Histogram of Oriented Relative Joint Displacements (HORJD) and
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Histogram of Angular Momentum (HAM). We use a temporal pyramid shown in Figure 4.5 to encode
action evolution in time. Specifically, we divide the pose sequence into four parts for which the descrip-
tors are computed. Temporally adjacent encodings are added to get two, which are in turn added to get
one global descriptor as shown in Figure 4.5. Descriptors at all levels are concatenated to get the 3-level
temporal pyramid descriptor for the pose sequence.

4.2.4 HORJD: Histogram of Oriented Relative Joint Displacements

Relative joint locations are more discriminative as compared to absolute joint locations [92]. Mo-
tivated by this observation, we propose to use a histogram based statistical encoding for relative joint
displacements which represents linear motion in the final pose sequence.

Extremities Sets: For calculating the descriptor we have chosen two sets of joints with respect to which
the relative joint locations are found. The first set includes four joints: two shoulder and two hip joints.
They are considered to remain stable for most of the actions [93] and hence can model the relative
motion of other joints effectively. The second set includes seven joints: two elbow, two hand, the head
joint and two foot joints. The second set is chosen based on the fact that end point joints in human body
tend to be most discriminative for actions that humans perform [94]. Using these two sets, we calculate
the relative joint coordinates for four joints in set one with respect to each joint in set two. This gives us
4× 7 = 28 relative joint locations for each pose.

The computation of descriptors involve several steps. We briefly explain the steps as the method
is similar to the one proposed in [89]. However, we compute our descriptors on the summarized pose
sequence and do not use the entire skeletal video.

STEP 1: For each time step ∆t, the displacement for each of the 28 relative joint vectors is calculated.
Assume that a relative joint vector belonging to a pose at time t is given by (xt, yt, zt). The displace-
ment vector for the relative joint between two adjacent poses in the summary can be represented as
(∆x,∆y,∆z) where ∆x = (xt+1 − xt). Figure 4.2(b) shows the relative joint coordinates vectors for
two joints with respect to four reference joints. This step encodes motion information about the action
through displacement.

STEP 2: This displacement vector is projected on to xy, yz, xz planes and the orientation of each 2D
vector is calculated. For example, the orientation in xy plane is given by θ = arctan( ∆y

∆x). Orientation
is used to decide the bin number for the displacement vector in the histogram.

STEP 3: After calculating the displacement vectors and projecting them, their magnitude is added to
a bin in the histogram based on the orientation of vector in 2D. The number of bins in histogram is
predefined. This is performed for each of the 28 relative joint locations using the three projected vectors
giving a histogram of size 28×3×n(bins). This is the size of descriptor for each pose adjacent change
in the summarized video.
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Figure 4.5: Three level temporal pyramid representation for histograms used in our descriptors. Three levels equal

a total of seven histograms and a concatenation of these seven descriptors gives the final descriptor.

4.2.5 HAM: Histogram of Angular Momentum

Using our intuition about significance of angular motion in human actions which can be characterized
by angular momentum, we propose this descriptor.

Limb Representation: Consider the skeleton representation shown in Figure 4.2(a). Each of the vectors
is a limb of the human body which has the potential of performing angular motion about a pivot joint.
For calculating our HAM descriptor, we first calculate the 3D vectors joining two adjacent joints from
the absolute joint locations while ignoring the torso, as it is unlikely that any angular motion will happen
there.

STEP 1: The first step is to calculate the angular momentum for a joint (considering it as a body with
unit mass) generated due to it’s angular motion. We use the equations mentioned in section 3.1 to
calculate momentum for each joint and get the final vector

−→
L

∆t

j calculated for that ∆t (here, ∆t = 1).
However, this is done only for the summarized pose sequence in contrast to doing it for entire sequence
as shown in section 3.1.

STEP 2: After calculating angular momentum vectors, the procedure is exactly same as HORJD de-
scriptor. Projection of vectors followed by binning based on orientation in 2D is used to compute the
histogram.
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4.3 Experiments and Results

We show the applicability of our method using experiments demonstrating summarization of poses
and action classification.

4.3.1 Datasets

Datasets used to show applicability to action classification are listed below:
MSRAction3D [11] This dataset was captured using a depth sensor similar to the Kinect device. The
dataset contains 20 action classes and 10 subjects performing the actions. Each subject performs each
action 2 or 3 times. There are 567 depth maps in total out of which 10 are either all zeros or too
erroneous. This dataset is challenging due to it’s high intra-class variation.
UT-Kinect [12] This dataset was recorded using a stationary Kinect. It is very challenging due to the
noise in the captured skeleton sequences and variations in viewpoints. It contains 10 action classes and
10 subjects perform each action twice. Total of 199 action sequences are present in the dataset. The
skeletons contain 3D locations of 20 joints.

4.3.2 Experimental Setup

We perform the task of action recognition using the summarized pose sequence in order to evaluate
the effectiveness of our method quantitatively. We extract HORJD and HAM from the poses and perform
action recognition using a linear SVM with C = 10.0 and γ = 0.05. The results are shown in Table 4.1
and 4.2. For each of the listed experiments, we use 3-level temporal pyramid and show the results.
The number of bins for histograms are set to 10 and 12 for HORJD and HAM respectively, which were
decided empirically through experimentation. We perform tests with several different ways of extracting
the final descriptors (SBS = Segment Boundary Sequence and SS = Summarized Sequence).

We follow two evaluation protocols widely followed for MSRAction3D. In the first protocol, the
actions are divided into three action sets [11] and cross subject tests are performed using subjects 1, 3,
5, 7, 9 for training. Average accuracy over the three action segments is reported. In the second protocol,
the entire dataset is used to perform the cross subject tests using subjects 1, 3, 5, 7, 9 for training. We
report the performance for both as it is not clear in some previous works which approach has been used.
For UT-Kinect we follow the cross subject protocol where subjects 2, 4, 6, 8, 10 are used for training
and the remaining are used for testing.

4.4 Discussion

What do segment boundary poses signify? The summarized pose sequences for horizontal arm wave,
wave hands and tennis serve are shown in Figure 4.7. The segment boundary poses signify the angular
motion extremes observed in the actions. For example, in action wave hands, the poses in bold have

38



captured the extreme where the hands cross each other as well as the extreme where hands are at the
widest and farthest from each other. Similar observation can be made for the action of horizontal arm
wave where poses in bold have captured hands at the two extremes of the horizontal wave gestures. For
the action of tennis serve as well, similar observations can be made. The segment boundary poses have
captured the extremes of hand motion using which the serve is being done.

This significance of the segment boundary poses is important as this makes the segmentation of
actions more intuitive and interpretable. With good action segments, final pose summaries become
more natural and informative.
Why uniform sampling? Sampling a fixed percentage of frames from each segment which are equally
spaced ensures that the final summaries are temporally normalized across different instances of the same
action. For example, if an action is performed slower in one instance compared to another instance, our
method will ensure that the evolution of action does not look different when the summary is observed.
This is clearly not a very good choice from recognition point of view, but it provides good summarization
as shown in Figure 4.7. The pose sequences we extract should allow a human to identify the action as if
he were looking at the original pose sequence.

(a)

(b)
(c)

(d)

Figure 4.6: (Following the arrows): Effect of choosing different percentage of poses to be extracted from each

segment for summarization. This transition goes through 20%, 10%, 5% sampling (parts (a), (b) and (c)) and then

finally the segment boundaries itself (part (d)). This implies the required amount of smoothness can be achieved

by the sampling frequency.

Performance of HAM + HORJD Based on observations from the recognition rates of different base-
lines, HAM descriptor is not very effective for MSRAction3D dataset but provides a small boost in
performance when combined with HORJD. However, HAM works extremely well for UT-Kinect, even
outperforming HORJD while using both SBS and SS. HAM and HORJD together outperform several
previous works as they complement each other.

Intuitively, HAM should handle complex angular motions very well and HORJD should be able to
distinguish between different relative joint motions. The accuracies for HAM with SS for the three
action segments (AS1, AS2, AS3) [11] were 81.72%, 74.11% and 93.39%, which shows that HAM per-
forms much better for classifying complex actions as the ones inAS3 action set. Similar observation can
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be made in case of it’s performance in baselines as HAM performs well on UT-Kinect which contains
complex actions with view point variations. This is consistent to our intuition for HAM descriptor.

As for HORJD, it performs well in differentiating between similar actions and is robust to intra-class
variations. This can be seen from it’s superior performance on MSRAction3D compared to HAM, which
is because MSRAction3D contains noisy skeletons and introduces large intra-class variations in the
actions performed. The accuracies for HORJD with SS for the three action segments (AS1, AS2, AS3)

[11] were 91.39%, 90.18% and 92.45%, which shows that HORJD performs well in separating intra-
class variations in similar actions. HORJD performs marginally better than HOD and COV3DJ (baseline
SS+HORJD+SVM) even when using a smaller set of joints and only summarized pose sequence as
opposed to the entire skeletal video. This shows the potential of HORJD descriptor.

Our method outperforms all the methods except Meshry et al. [85] on MSRAction3D dataset. We
pursue our hypothesis of using geometric and kinematic priors (relative coordinates and angular momen-
tum, in our case). However, their method uses a BoW representation and dictionary learning for action
recognition while we propose a physically interpretable prior for segmenting a skeletal video which
is more intuitive. Through segmentation, we enable several applications like video summarization and
action recognition.

For UT-Kinect dataset, we outperform all methods except Vemulapalli et al. [98]. Their method in
based on modeling human actions on a curved manifold called Lie group, to capture view and scale
invariant action evolution. This suffers from lack of physical interpretability inherent in human actions
as analysis of such manifolds is not easy. Using our simple and general method, we achieve 95% using
only the summarized pose sequences while they use the entire skeletal video to model the curve in Lie
Group. Our method also points out an interesting property of action videos: all frames are not necessary
for understanding the actions.

Summarization capability Summaries generated for action “bend” from MSRAction3D are shown in
Figure 4.6. It is clear from the results that action summaries are meaningful as they have captured the
important poses in the sequence. We use 41% of the frames in skeletal video for MSRAction3D and
40% for UT-Kinect on average for summarization, when performing a sampling of 20% from each seg-
ment. This can be varied by changing the sampling frequency as shown in Figure 4.6. For sampling
frequency of 10% and 5%, we use only 18% and 14.88% of the frames in skeletal video for MSRAc-
tion3D whereas sampling below 15% for UT-Kinect gives empty segments (due to very small segments).
Most compact summary for the sequences can be obtained using the segment boundaries itself as the
video summary. Identifying the action using only the segment boundaries is not that easy but they are
reasonably representative of the actions. Using only segment boundary poses as the action summary, we
use only 14.6% of the frames in skeletal video for MSRAction3D and 15.2% for UT-Kinect on average.

This shows that our method can be used to summarize videos according to required amount of
smoothness based on sampling frequency and can enable playing a video at different speeds on the
basis of summaries.
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Figure 4.7: (top to bottom): The summarized pose sequences for horizontal arm wave and tennis serve action

from MSRAction3D dataset and waveHands action from the UT-Kinect dataset. The sequences show segment

boundaries in bold which characterize the extreme poses of the actions and the sampling of poses show a smooth

transition between these segment boundaries.

4.5 Conclusion

We propose a simple and effective method for temporal segmentation of skeletal videos where we
seek to find motion boundaries which represent extremes in any human action. Using angular mo-
mentum, we find segments where the pose angles changes smoothly and meaningful summarization
is achieved using our segmentation technique. We compute a compact representation for the video
using two histogram based features for the summarized poses called Histogram of Relative Joint Dis-
placement (HORJD) and Histogram of Angular Momentum (HAM), computed on the extracted pose
summary. Results for action recognition on two challenging datasets demonstrate the effectiveness of
our method. Several other applications are possible using our approach, such as video retrieval, gesture
recognition, etc.

Our method is dependent on SVMs for classification purposes and computes a spatio-temporal repre-
sentation of the action based on a non-parametric method. As a result, our framework is unable to scale
the performance of recognition with the availability of large amount of training data. Hence, in our
next work, we focus on deep learning methods to overcome this limitation on the present framework.
However, the present framework has proven the usefulness of geometric + kinematic priors for skeletal
action recognition, which is an important contribution of this work. We take this learning further and
combine it with the capabilities of deep learning framework based on graph convolutional networks
(GCNs). We explain this framework in the next chapter, which achieves state-of-the-art performance
for action recognition using skeletal data.
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MSRAction3D

Method Accuracy

Actionlet Ensemble∗ [95] 88.20

COV3DJ∗ [90] 90.53

HOD∗ [89] 91.26

Grassmannian Motion Depth∗ [96] 86.21

Grassmannian Manifold∗ [97] 91.21

Moving Pose∗ [56] 91.70

Lie Group∗ [98] 89.48

HON4D∗ [99] 85.85

HON4D + D∗disc [99] 88.89

Bag of 3D points [11] 74.70

HOJ3D [12] 78.98

Joint distances + Key poses [100] 65.71

Bag of Gesturelets [85] 96.05

SBS + HORJD + SVM 79.53 / 74.71

SBS + HAM + SVM 80.57 / 73.56

SBS + HORJD + HAM + SVM 81.13 / 80.08

SS + HORJD + SVM 91.34 / 90.42

SS + HAM + SVM 83.07 / 80.08

SS + HORJD + HAM + SVM 92.55 / 91.18

Table 4.1: Results on MSRAction3D [11] using cross subject setting in action sets / cross subject setting for entire

dataset.
∗ Use entire videos for action recognition whereas we only use the summarized pose sequences.
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UT-Kinect

Method Accuracy

Grassmannian Manifold∗ [97] 88.5

HOJ3D [12] 90.92

Informative joints [101] 91.90

Coupled hidden CRFs∗ [102] 92.00

Lie Group∗ [98] 97.08

Riemannian Manifold∗ [103] 91.5

Key-pose Motifs [104] 93.5

SBS + HORJD + SVM 82.65

SBS + HAM + SVM 85.71

SBS + HORJD + HAM + SVM 86.73

SS + HORJD + SVM 89.80

SS + HAM + SVM 91.84

SS + HORJD + HAM + SVM 94.90

Table 4.2: Results on UT-Kinect [12] for different baselines and comparison to several previous works.
∗ Use entire videos for action recognition whereas we only use the summarized pose sequences.
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Chapter 5

Part-based Graph Convolutional Network for

Action Recognition

Human actions comprise of joint motion of articulated body parts or “gestures”. Human skeleton
is intuitively represented as a sparse graph with joints as nodes and natural connections between them
as edges. Graph convolutional networks have been used to recognize actions from skeletal videos. We
introduce a part-based graph convolutional network (PB-GCN) for this task, inspired by Deformable
Part-based Models (DPMs). We divide the skeleton graph into four subgraphs with joints shared across
them and learn a recognition model using a part-based graph convolutional network. We show that
such a model improves performance of recognition, compared to a model using entire skeleton graph.
Instead of using 3D joint coordinates as node features, we show that using relative coordinates and
temporal displacements boosts performance. Our model achieves state-of-the-art performance on two
challenging benchmark datasets NTURGB+D and HDM05, for skeletal action recognition.

5.1 Introduction

Recognizing human actions in videos is necessary for understanding them. Video modalities such as
RGB, depth and skeleton provide different types of information for understanding human actions. The
S-video (or Skeletal modality) provides 3D joint locations, which is a relatively high level information
compared to RGB or depth. With the release of several multi-modal datasets [13, 105, 106], action
recognition from S-video has gained significant traction recently [5, 6, 58, 59, 60].

Graph convolutions [8, 44, 77] have been used to learn high level features from arbitrary graph
structure. State-of-the-art action recognition from S-videos [9, 64] use graph convolutions, wherein
the whole skeleton is treated as a single graph. It is, however, natural to think of human skeleton as a
combination of multiple body parts. A body-part based representation can learn the importance of each
part and their relations across space and time. We present a model using part-based graph convolutional
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Relative coordinates Temporal displacements Axial (Green) & Appendicular (Red) skeletons

(a) Geometric & Kinematic Features (b) Two parts
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Appendicular Axial Appendicular
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(c) Four parts (d) Six parts

Figure 5.1: (a) Geometric and Kinematic features, (b) Appendicular and axial body parts: two parts, (c) Dividing

the appendicular and axial skeletons into upper and lower parts: four parts, (d) Dividing appendicular upper and

lower skeletons into left and right: six parts.

network for recognizing actions from S-videos, using a novel part-based graph convolution scheme. The
model attains better performance for recognition than a model entire skeleton as a single graph. Current
models for skeletal action recognition [9, 64] use 3D coordinates as features at each vertex. Geometric
features such as relative joint coordinates and motion features such as temporal displacements can be
more informative for action recognition. Optical flow helps in action recognition from RGB videos [55]
and Manhattan line map helps in generating 3D layout from single image [107]. Geometric feature [59]
and kinematic features [108] have been used for skeletal action recognition before. Inspired by these
observations, we use a geometric feature that encodes relative joint coordinates and motion feature that
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encodes temporal displacements at each vertex in our part-based graph convolution model to significant
impact.

The major contributions of this work are: (i) Formulation of a general part-based graph convolutional
network (PB-GCN) which can be learned for any graph with well-known properties and its application
to recognize actions from S-videos, (ii) Use of geometric and motion features in place of 3D joint
locations at each vertex to boost recognition performance, and (iii) Exceeding the state-of-the-art on
challenging benchmark datasets NTURGB+D and HDM05. The overview of our representation and
signals is shown in Figure 5.1.

5.2 Previous Methods

5.2.1 Non graph-based methods

Skeletal action recognition has been approached using techniques such as handcrafted feature en-
codings, complex LSTM networks, image encodings with pretrained-CNNs and manifold-based non-
euclidean methods. Non-deep learning methods worked well initially and proved usefulness of several
extracted information from S-videos such as joint angles [109], distances [12] and kinematic features
[108]. These methods learn from hand designed features using shallow models which do not model
spatio-temporal properties of actions very well and constrain learning capacity.

On the other hand, LSTM-based methods were used because S-videos can be thought of as time
sequences of features. Spatio-temporal LSTMs [5, 6], attention-based LSTM [58] and simple LSTM
networks with part-based skeleton representation [110, 111] have been used. These methods either use
complex LSTM models which have to be trained very carefully or use part-based representation with a
simple LSTM model. We propose a part-based graph convolutional network that has good learning ca-
pacity and uses a part-based representation, inheriting the good qualities of both types of aforementioned
approaches. Image encodings of skeletons were proposed to facilitate usage of Imagenet pretrained
CNNs to extract spatio-temporal features. Ke et al. [60] generate images using relative coordinates
while Du et al. [112] and Li et al. [113] proposed a body part-based image encoding. Due to inherent
differences in information in such image encodings and RGB images, it is almost impossible to interpret
the learned filters. In contrast, our method is intuitive as it uses a graph-based representation for human
skeleton.

Manifold learning techniques have been used for skeletal action recognition, where actions are repre-
sented as curves on Lie groups [41] and Riemannian manifold [114]. Deep learning on these manifolds
is difficult [76] while deep learning on graphs (also a manifold) has developed recently [44, 77]. Our
method uses a human skeleton graph and learns a model using part-based graph convolutional network,
exploiting the benefits of deep learning on graphs.
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(a) Graph feature (b) Convolution for receptive field of
(c) Final convolution equation

and adjacency matrices a chosen root vertex f1

Figure 5.2: Equation-based formulation and illustration of a graph convolution

5.2.2 Graph-based methods

Representing S-videos as skeleton graph sequences for recognizing actions had not been explored
until recently. Li and Leung [115] construct graphs using a statistical variance measure dependent on
joint distances and match them for recognition. Recently, Yan et al. [9] and Li et al. [64] proposed a
spatio-temporal graph convolutional network for action recognition from S-videos. Both the methods
construct graphs where the human skeleton is treated as a single graph. Our formulation explores a
partitioned skeleton graph with a part-based graph convolutional network and we show that it improves
recognition performance. Also, we use relative coordinates and temporal displacements as features
at each vertex instead of 3D joint coordinates (see Figure 5.1(a)) which improves action recognition
performance.

5.3 Background

A graph is defined as G = (V, E) where V is the set of vertices and E ⊆ (V ×V) is the set of edges.
A is the graph adjacency matrix having A(i, j) = w, w ∈ R \ {0} if (vi, vj) ∈ E and A(i, j) = 0

otherwise. Nk : v → V defines the set of vertices V in k-neighborhood of v which includes neighbors
having shortest path length atmost k from vertex v. A labeling function L : V → {0, 1, . . . ,L − 1}
assigns a label to each vertex in a vertex set V , where L is the number of unique labels. The adjacency
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matrix is normalized using a degree matrix as:

D(i, i) =
∑
j

A(i, j) (5.1)

Anorm = D−1/2AD−1/2 (5.2)

Graph convolutions can be formulated using spectral graph theory [44] or spatial convolution [8] on
graphs. We focus on spatial convolutions in this paper as they resemble convolutions on regular grid
graphs like RGB images [8]. A graph CNN can then be formed by stacking multiple graph convolution
units. Graph convolution (shown in Figure 5.2) can be defined as [8]:

Y(vi) =
∑

vj∈Nk(vi)

W(L(vj))X(vj) (5.3)

where, vi is the root vertex at which the convolution is centered (like center pixel in an image convo-
lution), W(·) is a filter weight vector of size of L indexed by the label assigned to neighbor vj in the
k-neighborhood Nk(vi), X(vj) is the input feature at vj and Y(vi) is the convolved output feature at
root vertex vi. Equation 5.3 can be written in terms of adjacency matrix as:

Y(vi) =
∑
j

Anorm(i, j) W(L(vj)) X(vj) (5.4)

Anorm(i, j) basically defines the neighbors at distance 1 and hence, Equation 5.3 captures a more
general form of convolution by using k-order neighborhood Nk(vi).

5.3.1 Part-based Graph

Graphs representing real world manifolds can often be thought of as being made up of several parts.
For instance, a graph representing a complex molecule consists of several simple structures, such as
structure of a protein biomolecule, which can be divided into several polypeptide chains that make up
the complex. Similarly, human body can be visualized as connected rigid parts, much like a deformable
part-based model [116]. The graph of the skeleton of human body can be divided into parts, where each
subgraph represents a part of the human body.

In general, a part-based graph can be constructed as a combination of subgraphs where each subgraph
has certain properties that define it. Let us consider that a graph G has been divided into n partitions.
Formally:

G =
⋃

p∈{1,...,n}

Pp | Pp = (Vp, Ep) (5.5)

Pp is the partition (or subgraph) p of the graph G. We consider scenarios in which the partitions can share
vertices or have edges connecting them. We proceed to explain how the part-based graph convolution is
defined for the part-based graph.
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5.3.2 Part-based Graph Convolutions

In essence, graph convolutions over parts are aimed at capturing high-level properties of parts and
learn the relations between them. In a Deformable Part-based Model, different parts are identified and
relations between them are learned through the deformation of the connections between them. Simi-
larly, graph convolutions over a part identifies the properties of that subgraph and an aggregation across
subgraphs learns the relations between them. For a part-based graph, convolutions for each part are per-
formed separately and the results are combined using an aggregation function Fagg. Using Fagg over
edges across partitions:

Yp(vi) =
∑

vj∈Nkp(vi)

Wp(Lp(vj))Xp(vj), p ∈ {1, . . . , n} (5.6)

Y(vi) = Fagg(Yp1(vi),Yp2(vj)) | (vi, vj) ∈ E(p1,p2), (p1, p2) ∈ {1, . . . , n} × {1, . . . , n} (5.7)

Using Fagg for common vertices across partitions:

Y(vi) = Fagg(Yp1(vi),Yp2(vi)) | (p1, p2) ∈ {1, . . . , n} × {1, . . . , n} (5.8)

The convolution parameters Wp can be shared across parts or kept separate, while the neighbors of
vi only in that part (Nkp(vi)) are considered. In order to combine the information across parts, the
function Fagg combines information at shared vertices (equation 5.8) or shares information through
edges crossing parts (equation 5.7, E(p1,p2) contains all edges connecting parts p1 and p2), according to
the partition configuration. A sophisticated Fagg can be employed to make the model powerful. Using
graph convolutions, part-based graph models can learn rich representations and we demonstrate the
strength of this model through application to action recognition from S-videos.

5.4 Spatio-temporal Part-based Graph Convolutions

The S-videos are represented as spatio-temporal graphs. In order to include the temporal dimension,
corresponding joints in each part are connected temporally. Figure 5.3(b) shows the spatio-temporal
graph for torso over five frames. Adapting select-assemble-normalize (PATCHY-SAN) proposed by
Niepert et al. [8] we present an overview of convolution formulation for our spatio-temporal graph
by extending ideas from section 5.3.2. For in-depth understanding, we refer the reader to [8]. We per-
form a spatial convolution on each partition following equation 5.6, combine the convolved partitions
using Fagg and perform temporal convolution on the graph obtained by aggregating the partitions. In
effect, we spatially convolve each partition independently for each frame, aggregate them at each frame
and perform temporal convolution on the temporal dimension of the aggregated graph. For a possible
partitioning of human skeleton, this phenomenon is shown in Figure 5.3(c) for spatial convolution for a
vertex common to torso and head, 5.3(d) for spatial convolutions in different frames, 5.3(e) for applying
Fagg on head + torso and 5.3(f) for convolution on temporal dimension of the combined graph.
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Spatial neighbours Temporal neighbours
Spatio-temporal neighbours

Single spatial convolution
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Multiple spatial convolutions

across time

Combination of Head and

Torso parts: Fagg

Temporal convolution after

Fagg is applied

(d) (e) (f)

Figure 5.3: Spatio-temporal neighborhood for root node (in green) and depiction of convolutions in space and

time dimensions. Effect of application of Fagg is shown, where the common vertices are in darker shade.

We first define the spatial and temporal neighborhood of a vertex in spatio-temporal graph and assign
labels to the vertices in the neighborhoods, which is required to perform convolutions. For each vertex,
we use 1-neighborhood (k = 1) for spatial dimension (N1) as the skeleton graph is not very large and a
τ -neighborhood (k = τ) for the temporal dimension (Nτ ). Figure 5.3(a) (dashed polygons) shows the
spatial & temporal neighborhood for a root vertex. The different neighborhood sets for our model are
defined as (d(vi, vj) = length of shortest path between vi and vj):

N1p(vi) = {vj | d(vi, vj) ≤ 1, vi, vj ∈ Vp} (5.9)

Nτ (vita) = {vitb | d(vita , vitb) ≤
⌊τ

2

⌋
} (5.10)

where, ta & tb represent two time instants and p ∈ {1, . . . , n} is the partition index. The set of vertices
Vp differs for each part, with some vertices shared between parts (Figure 5.1(c)). As temporal convolu-
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tion is performed on the aggregated spatio-temporal graph, Nτ is not part-specific. Figure 5.3(a) shows
the spatial and temporal neighborhoods for a root vertex in torso. For ordering vertices in the receptive
fields (or neighborhoods), we use a single label spatially (LS : V → {0}) to weigh vertices in N1p of
each vertex equally and τ labels temporally (LT : V → {0, . . . , τ − 1}) to weigh vertices across frames
in Nτ differently. The labeling functions are defined as:

LS(vjt) = {0 | vjt ∈ N1p(vit)} (5.11)

LT (vitb) = {((tb − ta) +
⌊τ

2

⌋
) | vitb ∈ Nτ (vita)} (5.12)

Using the labeled spatial and temporal receptive fields, we define the spatial and temporal convolutions
as (adapted from [77]):

Yp(vit) =
∑

vjt∈N1p(vit)

Ap(i, j)Zp(vjt) | p ∈ {1, . . . , 4} (5.13)

Zp(vjt) = Wp(LS(vjt)) Xp(vjt) (5.14)

YS(vit) = Fagg({Y1(vit), . . . ,Yn(vit)}) (5.15)

YT (vita) =
∑

vjtb∈Nτ (vita )

WT (LT (vitb))YS(vitb) (5.16)

where, Ap is a normalized adjacency matrix as explained in section 5.3 for part p. LS for each part is
same butN1p is part-specific. Wp ∈ RC′×C×1×1 is a part-specific channel transform kernel (pointwise
operation) and WT ∈ RC′×C′×τ×1 is the temporal convolution kernel. Zp is the output from applying
Wp on input features Xp at each vertex. YS is the output obtained after aggregating all partition graphs
at one frame and YT is the output after applying temporal convolution on YS output of τ frames. We
use a weighted sum fusion as our Fagg:

Fagg({Y1, . . . ,Yn}) =
∑
i

Wagg(i)Yi (5.17)

Human skeleton can be divided into two major components: (1) Axial skeleton and (2) Appendicular
skeleton. The body parts included in these two components are shown in Figure 5.1(b). Human skeleton
can be divided into parts based on these components. Different division schemes are shown in Figure
5.1(b), 5.1(c) and 5.1(d) and we use these schemes for experiments to test our PB-GCN.

For the final representation, we divide the human skeleton into four parts: head, hands, torso and
legs, which corresponds to a division scheme where each of the axial and appendicular skeleton are
divided into upper and lower components, as illustrated in Figure 5.1(c). We consider left and right
parts of hands and legs together in order to be agnostic to laterality [117] (handedness / footedness) of
the human when performing an action. To show how being agnostic to laterality is helpful, we divide
the upper and lower components of appendicular skeleton into left and right (shown in Figure 5.1(d)),
resulting in six parts and show results on it. To cover all natural connections between joints in skeleton
graph, we include an overlap of atleast one joint between two adjacent parts. For example, in Figure
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(a) Performance with number of parts
(b) Performance with various signals for

best & worst number of parts

#Parts
Accuracy

CS CV

One 79.4 87.9

Two 80.2 88.4

Four 82.8 90.3

Six 81.4 89.1

Signals

Accuracy

#Parts=1 #Parts=4

CS CV CS CV

Jloc 79.4 87.9 82.8 90.3

DR 83.6 87.7 84.6 88.4

DT 84.3 91.6 85.4 92.6

DR||DT 85.6 91.8 87.5 93.2

Table 5.1: Performance comparison for different number of parts in the skeleton graph and signals at vertices using

our PB-GCN, on NTURGB+D [13] (CS: Cross Subject, CV: Cross View). The symbols for signals, Jloc: Absolute

3D joint locations, DR: Relative coordinates, DT : Temporal displacements and DR||DT : Concatenation of DR

and DT .

5.1(c), shoulder joints are common between the head and hands. For the lower appendicular skeleton
(viz. legs), we also include the joint at the base of spine to get a good overlap with lower axial skeleton.

Architecture and Implementation We represent each subgraph by its adjacency matrix, normalized
by corresponding degree matrix D. Our model takes as input a tensor having features for each vertex in
the spatio-temporal graph of S-video and outputs a vector of class scores for the video. The architecture
of the graph convolutional network is similar to Yan et al. [9] and consists of 9 spatio-temporal graph
convolution units (each unit with the four Wp kernels, one WT kernel and a residual) with an initial
spatio-temporal head unit, based on a Resnet-like model [118]. First three layers have 64 output chan-
nels, next three have 128 and last three have 256. We also use a learnable edge weight mask for learning
edge weights in each subgraph [9]. We use the Pytorch framework [119] for our implementation. The
code and models are made publicly available: https://github.com/dracarys983/pb-gcn.

5.5 Geometric & Kinematic Signals

Yan et al. [9] use the 3D coordinates of each joint directly as the signal at each graph node. Relative
coordinates [59, 60] and temporal displacements [108] of joints have been used earlier for action recog-
nition. Derived information like optical flow and Manhattan line map has been found useful on RGB
images also [55, 107]. Even a CNN framework can be more effective and efficient if relevant derived
information is supplied as input to the network.
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We use a signal at each node that combines temporal displacements across time and relative coordi-
nates, with respect to shoulders and hips [60]. This representation provides translation invariance to the
representation [62] and improves skeletal action recognition performance significantly. Figure 5.1(a)
illustrates the computation of the two signals for a single skeleton video frame. We show the effect of
relative joint coordinates (geometric signal) and temporal displacements (kinematic signal) individually
and the performance improvement obtained by using a combination of these signals for a baseline one-
part model as well as our four part-based model in the Table 5.1(b). The improvement in performance
obtained using the geometric and kinematic signals is noteworthy.

To calculate the relative coordinates, we use four reference joints: left shoulder, right shoulder, left
hip and right hip. It has been shown that these joints are relatively stable and can therefore be used as
reference joints for computing the relative coordinates. Consider the 3D location of these four joints
as Pls, Prs, Plh and Prh, respectively. For a joint j with position Pj , the geometric feature vector is
calculated as:

Rls = Pj − Pls
Rrs = Pj − Prs
Rlh = Pj − Plh
Rrh = Pj − Prh
Rj = concat(Rls, Rrs, Rlh, Rrh) (5.18)

whereRj is the final geometric feature vector that has the relative coordinates of the joint with respect to
the four reference joints. We use relative coordinates in our work to instil an understanding of usefulness
of geometric features. There are many different geometric quantities that have been used before. For
instance, joint-line distances are used by Zhang et al. [59], which work better than relative coordinates
according to their LSTM-based method. Hence, different variations may be tried and performance can
be boosted even further.

To calculate the temporal displacements, the corresponding joints belonging to adjacent frames are
subtracted. Consider the position of joint j at time instant t to be Pjt and the position at time instant
t + 1 to be Pj(t+1). Note that, the increment in one time instant is considered as moving to the next
frame in the skeletal video here. The kinematic feature vector for the joint is calculated as:

djt = Pj(t+1) − Pjt (5.19)

The size of geometric feature vector for a joint is four times the size of absolute 3D location feature,
while the size of kinematic feature vector is the same as that.

In principle, the convolutional filters should learn weights such that this information is captured
automatically. However, our experiments for action recognition using graph convolutional networks
prove otherwise. We believe that a better design of convolutional architectures would overcome such a
limitation, but in it’s present incarnation, convolutional networks benefit from differential information
and their performance is improved.
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5.6 Experimental Setup and Results

We use SGD as the optimizer and run the training for 80 epochs (NTURGB+D) / 120 epochs
(HDM05). We set the initial learning rate to 0.1 and all the experiments are run on a cluster with 4

Nvidia GTX 1080Ti GPUs. The batch size is set to 64. Learning rate decay schedule (set to decay
by 0.1 at epochs 20, 50 and 70 for NTURGB+D, and at epoch 80 for HDM05) is finalized using a
validation set. No augmentation is performed for any of the experiments, consistent with graph-based
method [9]. We perform ablation studies on the large-scale NTURGB+D dataset (shown in Table 5.1)
and then compare with state-of-the-art on both HDM05 and NTURGB+D using the best configuration
of our model (shown in Table 5.2).

5.6.1 Datasets

NTURGB+D [13] This is currently the largest RGBD dataset for action recognition to the best of our
knowledge. It has 56,880 video sequences shot with three Microsoft Kinect v2 cameras from different
viewing angles. There are 60 classes among the action sequences and 3D coordinates of 25 joints are
provided for each human skeleton tracked. There is a large variation in viewpoint, intra-class subjects
and sequence lengths, which makes this dataset challenging. We remove 302 of the captured samples
having missing or incomplete skeleton data. The protocol mentioned in Shahroudy et al. [13] is followed
for comparisons with previous methods.

HDM05 [45] This dataset was captured by using an optical marker-based Vicon system. It contains 2337
action sequences ranging across 130 motion classes performed by five actors. This dataset currently has
the largest number of motion classes. The actors are named “bd”, “bk”, “dg”, “mm” and “tr”, and 31
joints are annotated for each skeleton. This dataset is challenging due to intra-class variations induced
by multiple realizations of same action and large number of motion classes. We follow the protocol
given in [14] which is used by recent deep learning methods.

5.6.2 Discussion

PART-BASED GRAPH MODEL: Our motivation to use a part-based graph model is derived primarily
from the fact that human actions are made up of “gestures” which represent motion of a body part. The
seminal success of DPMs [116] in detecting humans in images reinforces the motivation further. We
discuss the effect of proposed spatio-temporal part-based graph model below.

(a) How many parts to have? We start with a coarse-grained scheme where entire skeleton is a single
part and progress towards finer representations. The different partitions are, two parts: dividing skeleton
into axial and appendicular skeleton, four parts: as explained in section 5.4 and six parts: Assigning left
and right in hands and legs. The feature at each vertex in the input is 3D coordinate of the corresponding
joint. From Table 5.1(a), we can see that using two parts improves over one and four improves over two.
This shows that partitioning the skeleton graph into subgraphs with useful properties helps. However,
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(a) NTURGB+D (b) HDM05

Methods
Accuracy

CS CV

ST Attention [58] 73.4 81.2

GCA-LSTM [5] 74.4 82.8

TCN [61] 74.3 83.1

VA-LSTM [120] 79.4 87.6

CNN + MTLN [60] 79.6 84.8

Deep STGC [64] 74.9 86.3

STGCN [9] 81.5 88.3

PB-GCN 87.5 93.2

Methods Accuracy

SPDNet [14] 61.45 ± 1.12

Lie Group [41] 70.26 ± 2.89

LieNet [76] 75.78 ± 2.26

P-LSTM [13] 73.42 ± 2.05

Deep STGC [64] 85.29 ± 1.33

STGCN [9] 82.13 ± 2.39

PB-GCN 88.17 ± 0.99

Table 5.2: Performance comparison with previous methods on two benchmark datasets. The top group of results

correspond to non-graph based methods and the middle corresponds to GCN based methods. PB-GCN is our

part-based graph convolutional network. Evaluation protocols used: CS (Cross Subject) and CV (Cross View) for

NTURGB+D [13]; 10-fold cross sample validation for HDM05 [14].

dividing upper and lower skeletons into left and right in four part scheme does not improve performance,
as per our intuition about laterality mentioned in section 5.4. This experiment suggests that part-based
model improves performance over single part and being agnostic to laterality is helpful. Our final model
uses the four part division of the human skeleton.

(b) Comparison to graph-based models From Table 5.2(a) and Table 5.1(b), it can be seen that our
part-based model performs better than graph based model of Yan et al. [9] even when using Jloc as
the feature at each vertex. The graph construction in [9] uses a spatial partitioning scheme for their
final model which divides the skeleton graph egde set into several partitions, while the vertex set has no
partitions and contains all the joints. The difference in our model is that we divide the entire skeleton
into smaller parts similar to human body parts and hence we use different edge set and vertex set for
each part. Compared to graph based model of Li et al. [64], our model performs significantly better on
NTURGB+D as well as HDM05. However, it is possible that this is because the number of layers in
the network in [64] is much smaller (2 vs 9) compared to our model. Our model outperforms both the
previous graph based models proposed for skeleton action recognition on the two datasets.

GEOMETRIC + KINEMATIC SIGNALS: Providing an explicit cue to a convolutional network, such as
optical flow when performing action recognition from RGB videos [53], which is significant for the task
at hand helps learn a richer representation by focusing on the cue. This motivates the use of geometric
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and kinematic features for skeletal action recognition. For the final configuration of our model, we
concatenate the geometric and kinematic signals.

(a) Kinematic: temporal displacements Temporal displacements provide information about the amount
of motion happening between two frames. This information is synonymous to 3D scene flow of a very
sparse set of points. We hypothesize that these displacements provide explicit motion information (like
optical flow) which makes the model consider displacements as strong features and learn from them.
Improvement in performance using this signal can be seen from Table 5.1(b), for both four-part as well
as one-part model across both splits of NTURGB+D.

(b) Geometric: relative coordinates These provide translation invariant features as explained in [62]
and they have been used effectively to encode skeletons by Ke et al. [60] into images. Also, Zhang
et al. [59] used relative coordinates as a geometric feature which performs much better than 3D joint
locations using a simple stacked LSTM network. We can see improvements in performance provided
by relative coordinates in Table 5.1(b) for both global (one part) and four part-based models, which are
the worst and best performing models according to Table 5.1(a).

5.6.3 Comparison to state of the art

NTURGB+D: For this dataset, we outperform all previous state-of-the-art methods by a large margin.
Even without using the signals introduced in section 5.5, we outperform the previous methods which can
be seen in Table 5.1(b) (Jloc results). We outperform the previous state-of-the-art graph based method
of Yan et al. [9] (STGCN) which is also the state-of-the-art for skeleton based action recognition to the
best of our knowledge, by a margin of ˜6% and ˜5% for the two protocols.

HDM05: This is a ˜20x smaller dataset compared to NTURGB+D but contains more than twice the
number of classes in NTURGB+D. The length of sequences in this dataset is longer and some of the
action classes have only one sequence [121]. Using the protocol of [14] is therefore very challenging,
on which we obtain state-of-the-art results using our model. We outperform the previous state-of-
the-art Deep STGC [64], which is a network based on spectral graph convolutions for skeleton action
recognition by ˜3% at the mean accuracy.

5.7 Analysis of different models

In this document, we present findings from further quantitative analysis on the action recognition
results. Specifically, we compute the confusion matrices of the performance of different models and
explain the useful model properties based on our observations. We find that graph-based models can
understand actions which involve more motion better than those where skeleton motion is very less and
contains object interactions. We also show the importance of using geometric and kinematic features
instead of 3D joint locations by performing an experiment on graph-based model of Yan et al. [9].
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Model
Accuracy

CS CV

Yan [9] (model-2) 81.5 88.3

Model-2 + DR||DT 86.3 92.1

Table 5.3: Results on NTURGB+D for model-2 [9], with and without the combined signal DR||DT (relative

coordinates and temporal displacements).

5.7.1 Quantitative Analysis

We compute the confusion matrices for performance of our part-based graph model, graph model
using only one part and Yan’s graph model [9]. We did not include Li’s graph model [64] as no code
has been provided by the authors to reproduce the results. The performance for cross subject (CS)
evaluation protocol is considered as it is more challenging than the cross view (CV) evaluation protocol.
The confusion matrices for different models are shown in Figure 5.4 (model-1), 5.5 (model-2) and 5.6
(model-3). The recognition accuracy for each of these models for cross subject (CS) evaluations is 85.6,
87.5 and 81.5 respectively. The model corresponding to Figure 5.4 is a one-part graph model which
does not divide the skeleton graph into parts and it takes a combination of relative joint coordinates DR

and temporal displacements DT as input. The model corresponding to 5.5 is our four-part graph model
with DR and DT as input. Finally, Figure 5.6 corresponds to graph-based model introduced in Yan
et al. [9] for skeleton action recognition. We proceed to identifying the action classes for which the
recognition performance is bad, explain what the reasons are for such performance, propose a possible
solution and then compare performance across different classes for models with respect to model-2.

5.7.2 Commonly confused classes

The confusion matrices have boxes marked around certain values. These boxes represent the con-
fused classes which are consistent across all models. For example, one of the boxes is around action
classes 11 & 12, which correspond to “reading” and “writing” actions. These actions are mostly con-
fused amongst each other and also with actions such as “playing with the phone / tablet” or “typing on
a keyboard” (actions 29 & 30 present in the other marked box) which is clear from the confusion ma-
trices. In all these actions, there is almost no skeleton motion and the differences are manifested in the
form of interaction with different objects. Due to these properties, models using skeleton information
for recognizing actions give lower performance for these action classes as they do not have access to
object information. A possible approach to overcome this limitation on recognition potential is to use
RGB information along with skeleton information in order to get information about objects as well.
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5.7.3 Model-1 vs Model-2

Model-2 improves over Model-1 by using a part-based graph representation instead of considering
the entire graph as one part. Model-2 achieves better recognition performance by improving over action
classes such as “brushing teeth” (class 3), “cheer up” (class 22), “make a phone call/answer phone”
(class 28), etc. These actions have a strong correlation with movement of both hands and legs. Due to
this correlation, our part-based graph model is able to achieve better performance as it learns from these
parts specifically and uses an intuitive way to divide the human body into parts. Being agnostic to parts
in human skeleton helps in learning a global representation but learning importance of parts using such
a model is difficult, compared to a part-based model.

5.7.4 Model-3 vs Model-2

Spatio-temporal model of Yan et al. [9] confuses the action of “clapping” as well along with the
actions mentioned in section 5.7.2. The model proposed by Yan [9] partitions the edge set and uses
the same vertex set for each partition of edge set. We believe that their model learns the importance of
different edges in the skeleton graph and does not learn the importance of parts like our part-based graph
model. In order to understand the influence of geometric and kinematic signals as input to a graph-based
model, we use the signals on top of model-3 and we find that we get a boost in recognition performance
for model-3. The recognition accuracy on NTURGB+D is shown in Table 5.3. This experiment shows
that the signals help in improving recognition performance for different graph-models for skeleton action
recognition.

5.7.5 Observations from analysis

Using a part-based model works better than using a model that does not partition the skeleton graph.
However, using only skeletal data for action recognition is not enough as different actions might have
similar dynamics of parts in the skeleton but different object interactions. In such cases, RGB infor-
mation can be used to disambiguate interactions with objects. Providing the network with a cue that
is suited to work well for the task at hand, viz. relative coordinates and temporal displacements for
skeletal action recognition, can improve recognition performance by a large amount as we show in our
experiment on previous state-of-the-art model for NTURGB+D [9].

5.8 Conclusion

In this work, we define a partition of skeleton graph on which spatio-temporal convolutions are for-
malized through a part-based GCN for the task of action recognition. Such a part-based GCN learns the
relations between parts and understands the importance of each part in human actions more effectively
than a model that considers entire body as a single graph. We also demonstrate the benefit of giving
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Figure 5.4: Confusion matrix for model with one part and combined geometric + kinematic features as input.

explicit cues to the convolutional model which are significant from the point of view of the task at hand,
such as relative coordinates and temporal displacements for skeletal action recognition. As a result, our
model achieves state-of-the-art performance on two challenging action recognition datasets. As a future
work, we would like to explore the use of part-based graph model for tasks other than action recognition,
such as object detection, measuring image similarity, etc.

5.9 Applications of Graph Convolution Network: Head Pose Estimation

Monocular head pose estimation requires learning a model that computes the intrinsic Euler angles
for pose (yaw, pitch, roll) from an input image of human face. Annotating ground truth head pose
angles for images in the wild is difficult and requires ad-hoc fitting procedures (which provides only
coarse and approximate annotations). This highlights the need for approaches which can train on data
captured in controlled environment and generalize on the images in the wild (with varying appearance
and illumination of the face). Most present day deep learning approaches which learn a regression
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function directly on the input images fail to do so. To this end, we propose to use a higher level
representation to regress the head pose while using deep learning architectures. We extract the 2D
locations of five facial keypoints, namely left ear, right ear, left eye, right eye and nose, and estimate the
head-pose using a Graph Convolutional Network (GCN). The input to the GCN are the exact locations
of the localized facial keypoints.

We show the graph structure of the facial keypoints and some results supporting our claim about
generalizing to images in the wild in Figure 5.7 and Figure 5.8. This shows the ability of geometric
deep learning frameworks in learning powerful spatial relationships from data lying in non-Euclidean
space through graph convolutional networks.

Figure 5.5: Confusion matrix for model with four parts and combined geometric + kinematic features as input.
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Figure 5.6: Confusion matrix for Yan’s graph-based model [9] having 3D joint locations as input signals.
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(a) (b)

Figure 5.7: (a) The facial keypoints selected to regress the head pose using our approach, (b) The graph structure

formed from the chosen set of facial keypoints for graph convolutional network. (LEye = left eye, REye = right

eye. Same follows for ears).

Figure 5.8: Estimation of head pose using three different models (all trained on BIWI), on unseen images taken

from the web. Top row: Results for CNN-based model [10] which takes RGB images as input, Bottom row:

Results for GCN-based framework which takes locations of keypoints as input. It can be seen that our GCN-

based model generalizes much better than a CNN-based model directly trained on face images.
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Chapter 6

Conclusion and Future Work

In this thesis, we explain the development of a framework for spatio-temporal representation of
actions from skeletal videos of humans providing information about human pose in 3D through locations
of a fixed number of skeleton joints. The foundations of our framework lie on the physical realities of
human actions, which are initially captured using angular momentum of pose changes taking place
during performance of actions and further computing a compact representation based on relative joints
and angular momentum. As such an approach for the realization of the framework based on geometric
and kinematic signals is incapable of scaling with availability of more data, we explore the use of a deep
learning method: graph convolutional networks (GCNs).

This geometric deep learning approach capitalizes on the structural information contained in the
human skeleton represented as a sparse spatial graph through spatio-temporal graph convolutions. We
propose a novel part-based graph convolutional network (PB-GCN) which divides the human skeletal
graph into meaningful parts and learns action representations using a GCN. In addition to that, the
former conclusions regarding geometric and kinematic features inspire the use of relative coordinates
and temporal displacements (angular momentum is a higher level temporal information) instead of using
3D joint locations as features at the vertices in the skeletal graph. Use of such signals prove to be
beneficial to the performance of recognition and boost the resultant accuracies for action recognition.

Our work points out an important property of deep learning methods: they are not as smart as we
think they are. Providing explicit cues to deep learning frameworks that are helpful for the task at hand
boost the performance of the framework. In the case of action recognition using human skeletal pose,
geometric signals such as relative coordinates, that encode higher level spatial relationships and kine-
matic signals such as temporal displacements (higher order information like velocity and acceleration
can also be used), that encode temporal evolution of spatial pose information, are helpful and boost
performance of action recognition. The approaches proposed in this work also highlight one more as-
pect about recognizing actions: objects present in the scene are important as there are action involving
interactions of subject with the objects. This cannot be captured using skeletal videos but using RGB
information along with skeletal information can improve recognition accuracies by a good margin. Ap-
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proaches for action recognition from skeletal videos capture spatial and temporal relationships from 3D
skeletal data very effectively and combining them with cues from RGB data would assist in capturing
human-object interactions. Hence, a joint model has the capability to perform better action recognition
and is left to future works.

We also show results obtained through a GCN-based framework for head pose estimation, which
provides better generalization properties than methods trained directly on RGB images for regressing
the head pose. The input provided to our framework is an abstraction over the image (location of five
facial keypoints) and it provides illumination as well as appearance invariance to estimation of head
pose.
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