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Abstract

Relief carving is very popular sculpting technique that is being used for decoration and depicting
stories and scenes from ancient times till today. With time, many of the ancient cultural heritage artifacts
are getting damaged and one of the important methods that aids preservation and study is to capture them
digitally.

Reliefs carvings have certain specific attributes that makes them different from regular sculptures,
which can be exploited in different computer vision tasks. Repetitive patterns are one such frequently
occurring phenomenon in reliefs. Algorithms for detection of repeating patterns in images often assume
that the repetition is regular and highly similar across the instances. Approximate repetitions are also
of interest in many domains such as hand carved sculptures, wall decorations, groups of natural objects,
etc. Detection of such repetitive structures can help in applications such as image retrieval, image
inpainting and 3D reconstruction. In this work, we look at a specific class of approximate repetitions:
those in images of hand carved relief structures. We present a robust hierarchical method for detecting
such repetitions. Given a single relief panel image, our algorithm finds dense matches of local features
across the image at various scales. The matching features are then grouped based on their geometric
configuration to find repeating elements. We also propose a method to group the repeating elements to
segment the repetitive patterns in an image. In relief images, foreground and background have nearly
the same texture, and matching of a single feature would not provide reliable evidence of repetition.
Our grouping algorithm integrates evidences of repetition to reliably find repeating patterns. Input
image is processed on a multi-resolution pyramid to effectively detect all possible repetitions at different
scales. Our method has been tested on images with large varieties of complex repetitive patterns and the
qualitative results show the robustness of our approach.

Reconstructing geometric models of relief carvings are also of great importance in preserving her-
itage artifacts, digitally. In case of reliefs, using laser scanners and structured lighting techniques is not
always feasible or are very expensive given the uncontrolled environment. Single image shape from
shading is an under-constrained problem that tries to solve for the surface normals given the intensity
image. Various constraints are used to make the problem tractable. To avoid the uncontrolled lighting,
we use a pair of images with and without the flash and compute an image under a known illumination.
This image is used as an input to the shape reconstruction algorithms. We present techniques that try to
reconstruct the shape from relief images using the prior information learned from examples. We learn
the variations in geometric shape corresponding to image appearances under different lighting condi-
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tions using sparse representations. Given a new image, we estimate the most appropriate shape that
will result in the given appearance under the specified lighting conditions. We integrate the prior with
the normals computed from reflectance equation in a MAP framework. We test our approach on relief
images and compare them with the state-of-the-art shape from shading algorithms.
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Chapter 1

Introduction

1.1 What are Reliefs ?

The term relief is derived from the Latin word relevo, to raise. Relief is a very fascinating sculpting
technique that is used for enhancing the aesthetic beauty of architectural buildings all over the world.
The intent behind creating a sculpture in relief is to give an impression that the sculpted material has
been raised above the background plane. Reliefs are chiselled out of a flat surface of stone or wood
thereby lowering the background field and the unsculpted parts seemingly raised. The chiselling away
of the background requires considerable amount of time and also good artistic creativity. This technique
of creating a relief saves forming the rear of a subject, and are also less fragile. It can be more securely
fixed than other round sculpture, especially a standing sculpture where the bottom parts like ankle are
potential weak points.

Reliefs are common throughout the world on the walls of the places of worship, palaces, public
buildings and parks. Along with enhancing the ambiance of the place, a sequence of several sections of
reliefs may represent extended narratives. Unlike the free-standing sculpture, reliefs are more suitable
for depicting complicated subjects with multiple figures and much more active poses, such as battles,
dance forms, etc. Most of the reliefs can be roughly classified into the following three broad categories.

• Bas-relief or low-relief is a projecting shape with a shallow overall depth. In low-reliefs, when
seen from the front the small variations in depth gives an impression of three dimensional shape,
and if seen from the sides it makes little sense.

• In High-relief, considerable depth variations are present across the sculpture. Prominent elements
of the composition, especially heads and limbs, often projects out of the background plain with
sufficient depths and sometimes even cut off from the background plain.

• A lesser prominent relief type is sunk or sunken relief largely restricted to the art of ancient Egypt.
In these types of reliefs, the image is made by cutting the reliefs in a flat surface. So, the relief is a
low-relief, but set with a sunken area shaped round the figures, so that the relief never rise beyond
the original flat surface.
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(a) Relief of Herodotus
in Louvre palace, Paris

(b) Relief from the temple of Hatshepsut in Egypt showing Egyp-
tian soldiers

(c) Sri Senpaga Vinaya-
gar temple, Singapore

(d) Relief of King Akhen-
aton

(e) Relief of a chariot with Hindu Gods and God-
dess in Hampi, India

(f) A bas relief sculpture at Naqsh-e Rostam,
Iran, depicting the triumph of Shapur I over the
Roman Emperor Valerian.

Figure 1.1 Figure shows an example of reliefs from around the world and were created in different
time scales. (a), (c) and (e) are examples of high-reliefs, as the structures are raised high above the
background planes. (b) and (f) shows examples of bas-reliefs. (d) is an example of sunken-relief.

1.2 Motivation

Reliefs are used as a form of decoration and a medium to depict stories and incidents from ancient
times. With time many of these structures get weathered down and parts of the reliefs may get broken
or damaged. Hence, it is of great importance to preserve these heritage symbols digitally. Several
events [1, 2] are organized that focuses on restoration, preservation, protection, documentation and
presentation, and massive digitization of the cultural heritage contents by promoting interdisciplinary
research on cutting edge technologies. Numerous projects have been funded all over the world to capture
the glory of the world’s heritages to both showcase and preserve for future generations. The work in
this thesis provides generic solutions that are developed to tackle specific challenges faced due to relief
images. Better solutions to the below problems can assist in digitally preserving these cultural heritage
sites.
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1.2.1 Repetitive Patterns in Reliefs

In man-made environments, structures with repetitive patterns are often employed as they are aes-
thetically pleasing. The problem of repetition detection is to find similar instances in repetitive patterns
from images. In reliefs, structures appear in different repetitive patterns. Repetitions, in themselves,
have redundancy as all the structures have some common properties like shape, style, texture, etc. The
information extracted by detecting repetitions can be used as prior in segmentation and reconstruction
of elements of the structures. It can also provide valuable information in case of partial occlusions.
Repetitive patterns can also assist in single view reconstruction of the scene [76]. Robust representation
of repetitive patterns can be used as an invariant descriptor to identify semantically relevant objects to
match across images [16].

(a) An image of a building facade where
translational symmetry patterns are de-
tected with the method proposed by Zhao
et al. [81]. (Image credits: [81])

(b) Relief image of a wall from heritage site in
India. (Image credits: Flickr)

Figure 1.2 A comparison between the repetitive patterns in building facades and reliefs. In (a), the
repeating elements are well-defined and are regularly repeating in the image space. Also, the repeating
elements can be easily distinguished from the background plane. In contrast, (b) does not have well-
defined repeating instances. The repetitions are not exactly similar and are repeating irregularly in the
image space. The foreground and background of the relief have very similar surface properties. Hence,
most of the algorithms outputs highly unsatisfactory results in case of relief images.

Repetitive patterns are also very common in building facades and urban scenes. Many algorithms
have been developed for detecting repetitions and translational symmetry [39, 41, 42, 44, 49], but a fully
automatic method for detecting approximate repetitions in complex real images like reliefs is still a very
challenging task. A repetitive pattern can have both uniformly spaced repetitions or irregularly spaced
repetitions. We consider a generic notion of repetitive pattern as repetition of a structure or an object.
In urban facades, the structural elements like windows and doors usually have regularity in repetition,
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for instance in Figure 1.2(a). The regularity can always be used as a reliable cue for detecting such
repetitive patterns. Different algorithms [36, 49, 53, 81] have been developed that exploits the regularity
of such repetitions. Unlike facades, reliefs have irregular repetitions with changes in the appearances.
Perspective view of facade images can be rectified using vanishing points to get the fronto-parallel
view [49]. It is often difficult to extract robust vanishing points in reliefs due to absence of linear
structures (see Fig. 1.2(b)).

1.2.2 Shape Reconstruction from Images

With the advents in computer vision and computer graphics, one can browse different places and
structures in three dimensional views by capturing multiple images. The reconstructed 3D model can
be viewed as a point cloud or as textured mesh model with complete freedom to play with the camera
parameters. Many multi-view stereo algorithms [66, 23, 56] have been developed over the past few
years that takes a sufficient number of 2D images of the structure and outputs a 3D dimensional point
cloud representation with camera parameters. The 3D point cloud can then be used to create a mesh
model that can be used for the purpose of displaying in the interactive 3D browsers or applications.

Large scale 3D reconstruction has been the back-bone of many projects that aim at digitally preserv-
ing and protecting the cultural heritages of the world. Along with that, virtual walk-through projects
have been sponsored for showcasing the important cultural heritages to the future generations. In multi-
view stereo reconstruction techniques, each real world point must be visible in at least three images to
allow the complete coverage of the structure. Techniques used for 3D reconstruction have their own lim-
itations, especially for large scale usage. Highly accurate systems such as laser scanners are extremely
expensive for use by common man, whereas multi-view stereo methods require large number of images.
Other methods also make similar tradeoffs between cost, ease of use and accuracy.

Shape reconstruction from a single image is an ill-posed problems that has been solved by using
various monocular cues, constraints and assumptions. The particular way of construction of reliefs can
provide us useful cues that can be exploited to reconstruct the shape from a single image, which is the
primary focus of our work. As the relief is made up of a single stone, the color and surface reflectance is
almost uniform across the relief. It is often the case with ancient reliefs which are weathered down with
time. In reliefs, the sculpted portion that forms the background of the structure is usually a plain surface.
It is due to this sculpted background plain, the beautiful carvings gives a perception of 3D dimensional
shape, especially in the low-reliefs. This can be a useful cue in reconstructing shape from a single relief
image. Also, other than high-reliefs, the shape variation across a relief is mostly small and continuous.

In ancient times, reliefs were constantly deployed while constructing huge palaces, temples, cathe-
drals, and even kingdoms. Logically, the reliefs present at these huge sites should share very similar
properties amongst them. This can be due to the same type of stones, similar carving styles or many
different factors. This can be a very advantageous cue for reconstructing shape from relief images.
The surface properties like surface reflectance, texture, color are almost similar for all the reliefs at that
place. So, if we can capture the properties of some exemplar reliefs then, they can be used as a prior
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(a) An exemplar collection of the bas-reliefs of
Rouen Cathedral, Rouen, France.

(b) A set of images captured from different temples of Hampi, a cultural
heritage site in India.

Figure 1.3 Figure shows example of relief images collected from different places or walls a larger
cultural heritage site. A complete site may have been presumably built with similar stones and the story
narrated by these reliefs often relates the style of them to each other.

knowledge for other reliefs from the same place. Figure 1.3 shows such an example from important
world heritage sites. We can see the surface texture, color and reflectance are very similar among var-
ious images captured for the same site. Apart from the surface properties, the carvings on the reliefs
are also similar from an artistic point of view. They usually have pretty similar shape variations and it
generally should depend on the proximity of the two structures. If they are closer to each other then it
is more likely for them to share similar properties and shape variations.

1.3 Contribution of the Thesis

Reliefs forms a major part of the world’s important cultural heritage and the work in this thesis
helps in preserving them by developing methods that work well, especially in case of reliefs. The
thesis presents our previously published works on Detection and Segmentation of approximate repetitive
patterns in relief images [5] and Shape reconstruction from a single relief image (See Sec. 5). The main
contributions of the thesis are :

• Repetitive patterns are very prevalent in reliefs. Detecting repetitive patterns have been a long
standing problem in the field of computer vision. In this work, we detect and segment repeti-
tive patterns in a relief image automatically. Repetitive patterns in reliefs are very different from
those in building facades and other grid-like repetitions. It is highly unlikely to find exactly same
instances repeating in a relief. So there is a trade-off between accuracy and robustness. The pro-
posed method is flexible enough to be tuned between robustness and accuracy by tweaking very
few parameters as per the requirements. Repetitive patterns with irregularity are captured unlike
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the other methods that require a grid-like regular repetitions. Also, the approach is independent
of the number of repeating instances. It can also detect repetitive patterns with only two repeating
instances. The hierarchical approach does not presume anything about the repeating instances. In
reliefs, it is very difficult to identify the repeating element automatically. Also, surface proper-
ties like color and texture are mostly similar for both the foreground and the background. Along
with the detected patterns, the method also outputs a rep field with correspondence amongst the
matching instances, that can further be exploited in other applications. The proposed method ap-
propriately detects multiple repetitive patterns with different frequencies at different positions in
the image. The detected patterns are also assigned a score that describes the matching confidence
of the repeating instances. The repeating patterns are segmented into individual elements that can
be used in applications like image retrieval, shape reconstruction, etc.

• Single-view reconstruction is an ill-posed and a challenging problem. Digitally preserving the cul-
tural heritage is of great importance to the human society. 3D shape representation is an important
step in showcasing the cultural heritage in digital form. Many of the present 3D reconstruction
techniques either require expensive instruments or a careful and controlled experimental setup
with time consuming processing in presence of an expert in the field. Our goal is to develop a
least expensive and easy to use method that improves the accuracy of shape reconstruction from
images. The proposed method requires only a single input image of relief and it outputs the cor-
responding depth map. The data-driven approach learns a relief specific shape priors using an
exemplar set of relief images and corresponding depth maps.

1.4 Outline of the Thesis

The thesis is organized as follows. The next chapter looks at the previous works in patch matching
techniques, detecting repetitive patterns and 3D shape reconstruction from 2D images. In chapter 3,
we describe the proposed approach to detect and segment approximate repetitive patterns in reliefs.
We show our performance on facades and regular texture images. In chapter 4, we discuss our shape
reconstruction algorithm from a single 2D relief image. We conclude the thesis with our contributions
and existing problems with the methods and the possible future works in these directions.

1.5 Summary

With time many of our ancient heritage artifacts are getting damaged and are vanishing due to factors
such as harsh weather, neglect and act of nature. Hence, it is of great importance to digitally protect
and preserve these artifacts, so that our future generations can virtually explore them when the sites are
physically vanished. Reliefs have a very important role in enhancing the aesthetics of any architectural
artifact and they are constantly deployed to narrate stories and scenes from ancient times. Structures

6



in reliefs are often seen to form repetitive patterns across the relief. However, in most cases, repetitive
instances are only approximately or partially similar to each other. Hence, detection of approximately
repeating patterns in reliefs becomes a more challenging task than in building facades and near regular
textures where the repetitive instances are predefined and the repetitions are often exactly similar to
each other. Virtual 3D models of reliefs also aids in digitally preserving these ancient cultural heritages.
Recovering 3D shape using a single image is a long standing problem. Reliefs are constructed in a
particular way by carving out a single stone to give an impression that the sculpted part is raised above
the surface. This particular way of construction provides us with many useful cues that be exploited in
reconstructing the shape from a single relief image. Reliefs cover a large part of the cultural heritage
sites and we can significantly contribute in digitally preserving these important heritage sites, if we are
able to solve these challenging problems.
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Chapter 2

Literature Review

In this chapter, we build the background for detecting approximate repetitive patterns in reliefs.
We review the literature for symmetry detection and repetition detection in facades. We also discuss
the various techniques used for reconstructing shapes of scenes and objects from single and multiple
images. Patch-matching is at the heart of many computer vision tasks. To make our patch-matching
algorithm in Sec 3.3 more clear, we give an overview of various types of patch-matching approach used
to solve computer vision tasks, especially, detection of symmetric and repetitive patterns.

2.1 Patch Matching Techniques

Repetition detection has the most important role of feature matching as when we want to identify
similar instances of an object, an accurate and robust technique is required to solve the problem reliably.
Feature matching in multiple images is well studied in the computer vision society. Problems like image
mosaicing, multi-view stereo reconstruction, image registration etc, involve matching of similar features
in multiple images. Generally, these are overlapping images of a scene or an object, so when a robust
and discriminative feature is used on these images, we get highly reliable feature matches. However for
repetition detection, we have to find similar instances in a single image.

Several nearest-neighbor(NN) algorithms have been developed for finding similar patches between
images. Different applications have different requirements from the patch-matching algorithms. There
is always a trade-off between speed, accuracy and robustness. As an evidence, there are a lot of param-
eters which can be tuned to get the best results for an application. Speed and accuracy are generally the
desired properties of patch-matching algorithm. Using general-purpose NN algorithms [67, 77] is not
the most efficient solution as they would not take advantage of the structures and properties specific to
images. So, patch-matching is generally posed as a search problem in a high-dimensional data space.
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2.1.1 Tree-based Methods

Tree-based methods organize data in a hierarchical structures. kd-trees [28, 35] generally perform
splitting along a data dimension, usually one with the maximum variance. Node divisions in kd-trees
are always axis-aligned, regardless of the data-distribution. A memory efficient and faster method was
an extension to kd-trees, Gaussian-kd-tree structure proposed by Adams et al. [3]. It combines effects
of storing more than one element per node and making local rearrangements during insertions. PCA
trees [38, 67] try to relax the axis-aligned assumption of kd-trees by performing a Principal Component
Analysis (PCA) [30] to reduce dimensionality of data. Other methods such as Ball Trees [50] and
Vantage Point Trees (vp-trees) [77] partition the data points based on some metric defined on pairs of
points. Kumar et al. [37] perform several optimizations on tree based methods and claim that the vp-
tree structure, which is not well-known in the vision community, gives the best overall performance for
finding similar image patches.

2.1.2 PatchMatch

PatchMatch [8] is a dense and global ANN(Approximate Nearest Neighbor) method which performs
a randomized, cooperative hill climbing search and calculates dense nearest neighbor matches quickly.
It relies on the coherence be- tween patches of an image for speedup. That is, if we find a pair of
similar patches, in two images, then their neighbors in the image plane are also likely to be similar. The
algorithm has three main components, illustrated in Figure 2.1.

Figure 2.1 Three stages of the PatchMatch Algorithm [8]. (a) All the patches are initialized randomly.
(b) A patch searches the matches of its neighbors and propagates good matches. For example, the blue
patch in (b) checks above/green and left/red neighbors. (c) The patch searches randomly for improve-
ments in concentric neighborhoods. (Image credit: [8])

1. Initialization: The nearest-neighbor field (NNF) is initially filled with either random offsets or
some prior information. Some applications use the guesses upscaled from coarser pyramid levels
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to achieve a good initial guess and escape from local minima. After the initialization, the next
two steps are performed iteratively.

2. Propagation: In each iteration, matches of a patch at (x, y) are improved using known matches
of (x − 1, y) and (x, y − 1), translated by one pixel to get the corresponding match. In even
iterations, the scan-line processing is reversed and matches of (x + 1, y) and (x, y + 1) are
checked for improving the match of the patch at (x, y).

3. Random Search: In each iteration, the matches of a patch at (x, y) are further improved by testing
a sequence of candidate offsets picked uniformly at random with an exponentially decreasing
distance from the current match.

PatchMatch was generalized to include K nearest matches and searching for various rotations and
scales [9]. PatchMatch is an order of magnitude faster than previous approaches and enables several
interactive applications [8]. However, it is not very accurate as one would hope. It requires more
iterations for achieving higher accuracy.

Unlike PatchMatch, our Pairwise Matching finds feature matches in a single image itself. As dis-
cussed earlier, for a patch in image A, PatchMatch search for a matching patch in image B, whereas in
our problem we have to find multiple occurrences of shapes and structures present in a single image.
To improve the correspondences, they use the offset values of the neighboring pixels. In contrast, we
start with confident pairwise matches, found independently and then impose the neighboring constraint
while doing the hierarchical grouping. Also, our pairwise matching is different from the image retrieval
in the sense that we are not using a Bag-of-words representation of features [65]. We require strong
matches between features and in a bag-of-words representation, many features will be denoted by a
representative visual word which will increase the number of false matches among the features.

2.2 Repetition Detection

Repetition detection in images is a long standing problem and till date researchers in computer vision
have made significant progress towards detection of symmetries and repetitions not only in images but
also in 3D data. The problem of repetition detection is of detecting similar instances of an object, shape
or an artifact occurring at multiple places in 2D images. Researchers have looked at this problem from
various point of views and solved them using certain assumptions about the object under consideration,
the repetitive pattern, or even about the 2D image.

Leung and Malik [39] proposed a simple window matching scheme followed by grouping of patterns
for finding repeating scene elements. Their approach consisted of detecting interesting elements in the
image, matching these candidate interesting elements to their neighbors and finding the affine transfor-
mation between them. The size of the interesting elements were chosen randomly, so they grow the
elements to form more distinctive units and finally, grouping the elements.
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Schaffalitzky and Zisserman [61] proposed a RANSAC-based grouping method for imaged scenes,
which repeat on a plane in the scene. They compute interesting elements and find associations among
them by fitting a homography. RANSAC is then used to find the best hypothesis for the repetitive pattern.
Their approach is focused on regular grid-like patterns. Loy and Eklundh [44] presented an efficient
method for grouping feature points based on their underlying symmetry and also characterizing the
symmetries present in the image. They extract rotationally invariant features like SIFT [43], and then
finds matches for features that are bilaterally and rotationally symmetric to this feature. They group
these symmetric features to find symmetric constellations and thereby computing symmetries in the
image plane.

2.2.1 Detection in Regular repetitive patterns

Repetitive patterns have been very popular in architectural styles of the urban areas. Most of the
buildings in these days consists of repeating patterns where windows, doors, arches, etc forms the
repeating elements. Along with their primary purpose, they contribute to the aesthetics of the buildings.
Most of these patterns are constructed in a grid-like manner which makes them interesting to study
the structural modeling. Significant amount of research has been done on detecting the repetitions in
patterns which repeat at regularly spaced intervals.

Lin et al. [41] proposed a method to extract periodicity of a regular texture based on simple autocorre-
lation functions. Detecting repetitive patterns and symmetry in facades have been of keen interest in the
research community. Facades are typically characterized by perpendicular regularities in horizontal and
vertical directions. Repetition detection in facades can contribute in structural modeling, exploiting the
regularities and also enable us to infer compact descriptions of the repeated structures. Wenzel et al. [73]
have proposed a method for detecting repeated structures in facade images. They begin by detecting the
dominant symmetries and then use clustering of feature pairs to detect the repeating structures in the
image. Using the strong assumptions of structured construction in facades, Korah and Rasmussen [36]
developed a probabilistic framework using Markov Random Field modeling and Markov Chain Monte
Carlo (MCMC) optimization to explicitly recognize and group rectangular structures that appear in a
grid-like pattern.

Unlike relief images, facades images have sufficient number of sets of parallel lines both in hori-
zontal and vertical directions. So, facades can be accurately rectified to fronto-parallel views. It helps
in simplifying the problem by removing the complexity of projective distortions while working on a
solution. Most of the methods used for repetition detection in facades either assume the input as a
fronto-parallel facade or apply a pre-processing to rectify the image before initiating the process.

Müller et al. [49] proposed an image-based method for automatically deriving 3D models of high
visual quality from single facade images of arbitrary resolutions. They subdivide the facades texture in a
top-down manner into elements such as floors, tiles, windows, and doors. They combine the procedural
modeling pipeline of shape grammars with image analysis to derive a meaningful hierarchical facade
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subdivision. Park et al. [53] developed an algorithm using an efficient Mean-shift belief propagation for
2D lattice detection on near-regular textures.

Recently, significant amount of work has been done on detecting repetitive patterns in facades. Wu
et al. [75] developed an approach to detect large repetitive structures with salient boundaries in facades.
They assume reflective symmetry in the architectural structures and use this to localize vertical bound-
aries between repeating elements. Their algorithm depends on accurate vanishing point detection for
rectifying the image to a fronto-parallel view. Zhao and Quan [81] describe a robust and efficient method
for detecting translational symmetries in fronto-parallel view of facade images using joint spatial and
transformation space detection. Recently, Zhao et al. [82] developed a robust and dense per-pixel trans-
lational symmetry detection and segmentation in facade images. Their algorithm considers most of the
limitations of earlier approaches. They create translational maps in horizontal and vertical directions.
For segmentation of a repeating element, they have used a learning based approach to classify each pixel
as either a wall pixel or a non-wall pixel. Cai and Basui [15] proposed a region growing image segmen-
tation algorithm for detecting and grouping higher level repetitive patterns. Their algorithm begins with
manual marking of a region of repetition and then they iterate between growing and refinement steps.

As we discussed, many algorithms have been developed for detecting repetitions and translational
symmetry, but a fully automatic method for detecting approximate repetitions in complex real images
like reliefs is still a very challenging task. Our robust hierarchical method proceeds from lower to higher
level features, thus effectively detects structures with partial repetitions. We consider a generic notion of
repetitive pattern as repetition of a structure or an object. A repetitive pattern can have both uniformly
spaced repetitions or irregularly spaced repetitions. Our approach is also completely independent of the
positioning of the repeating instances.

2.3 Shape Reconstruction

Recovering the 3D world from 2D images has long been an active research area in computer vision
and graphics. In computer graphics, the aim is to acquire accurate geometry information of the scene
with detailed appearance information (bi-directional reflectance distributive functions, texture maps,
etc) suitable for high-quality rendering in a traditional graphics pipeline. In contrast, computer vision
prominently deals with recovery of the 3D shape from 2D images of the scene. The techniques and
methods used for reconstructing 3D shape largely depends on the specific problem to be solved. We
discuss the popular scenarios and approaches used to solve the problem shape reconstruction.

2.3.1 Multi-View Stereo Reconstruction

The goal of multi-view stereo reconstruction algorithms is to reconstruct a complete 3D geometric
model of an object by using multiple images preferably from different viewpoints such that the object
is completely covered by the images. According to the recent survey provided by Seitz et al. [62],
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state-of-the-art MVS algorithms have shown accurate reconstruction performance even for a set of low
resolution images. Reconstruction performances of various kinds of techniques may vary depending
upon the object or scene under observation.

According to [23], these techniques can be roughly classified into four groups in terms of the un-
derlying object models: Bounding box based approaches [56, 71, 72, 64] require the object or scene
to be contained within a known bounding box. They are also referred to as Voxel-based approach and
their accuracy is limited by the resolution of the voxel grid. Algorithms based on deformable polygonal
meshes [27, 78, 22] demand a good starting point to initialize the corresponding optimization process,
which limits their applicability. Approaches based on multiple depth maps [24, 68, 13] are more flex-
ible, but require fusing individual depth maps into a single 3D model. Patch-based methods [40, 25]
represent scene surfaces by collections of small patches (or surfels). They are simple and effective,
and can also be used for the visualization purposes. It requires the point cloud to be converted into
a mesh model that is more suitable for image-based modeling applications. Along with their survey,
Seitz et al. provided high quality datasets that can be used for evaluating the performance of multi-view
stereo reconstruction algorithms. They also provided the ground truth for each dataset acquired via laser
scanning process to be used as a baseline for the evaluation.

2.3.2 Structured-lighting Techniques

An accurate method to recover the 3D shape of an object is to use a 3D Scanners. They are devices
that analyzes a real-world object or scene to collect data on its shape and appearance that can be used
to construct three dimensional models. These devices are build using many different techniques each
associated with its own limitations, advantages and costs. Structured-lighting is one of those many tech-
niques that is actively used to reconstruct the 3D models because of its speed and accuracy. In general,
Structured-light 3D scanners project a pattern of light on the subject and analyze the deformation of the
pattern on the subject. The experimental setup usually consists of a projector that projects light patterns
on the object and a camera, offset slightly from the projector, captures the shape of the pattern on the
object. We give a very brief overview of the different methods used for structured-lighting 3D scanning.

Most of the structured-lighting setup includes a calibrated pair of projector and a camera. The meth-
ods differ in the structured-lighting pattern being projected onto the object surface. Various techniques
use either discrete coding where the pattern presents a digital profile or a continuous coding where the
pattern has a continuous variation in intensity. Spatial multiplexing of De Bruijn-based striped pattern
are popular in the literature [12, 59, 48]. In spatial multiplexing, the codeword for a specific location is
identified by the surrounding points. Methods using non-formal codings [20, 19, 70] are non-orthodox
codification where specific patterns are created to fulfill some particular requirements. Time multi-
plexing methods [33, 69, 60, 79] are based on the codeword created by the successive projection of the
patterns onto the object surface. Recent survey by Salvi et al. [58] provide a much detailed classification
of the state-of-the-art structured-lighting 3D reconstruction techniques being used in the literature.
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2.3.3 Shape Reconstruction from Single Image

Humans have an innate capability of judging depth from single monocular images. This is done
using a combination of various monocular cues such as texture variations, texture gradients, occlusion,
known object sizes, haze, defocus, etc [47, 74, 14]. For instance, if there is an occlusion between two
objects, we can know which object is closer to us. Shading is another cue that enables us to perceive the
smooth depth variations. Shape from shading (also referred as SfS) is a long standing problem and is
still a very active area of research. Thorough and complete surveys of early work can be found in [80].
Durou et al. [17] surveyed recent works on numerical methods for SfS. Most of the works have popular
assumptions such as Lambertian reflectance, single distant point light source, orthographic projection,
and constant uniform albedo. These assumptions limits the use of SfS to very controlled and ideal
experimental setups. Recent works have relaxed a few of these assumptions. Oxholm and Nishino [51]
present a framework to jointly estimate the shape and reflectance of an object from single image under a
known natural illumination. Similar works on shape recovery under natural illumination are Huang and
Smith [31] and Jhonson and Adelson [34].

Apart from SfS approaches, researchers have examined the relationship between the shading or ap-
pearance and the shape variations in local neighborhoods [57]. Freeman et al. [21] presented a graphical
model framework incorporating patch-based priors. In [26], database consisting of objects of highly
similar class like faces, body poses etc., were used to recover the shape for a new query image of the
same class. Apart from matching image appearances, they have given higher probability to patches
lying in similar regions of the example images, which is possible due to the class specific database.
Huang et al. [32] presented a generalized patch-based approach where they learn the prior probabilities
for a given image patch using a database of spherical geometric primitives and their appearances. These
priors are then incorporated in a variational shape from shading formulation. Panagopoulos et al. [52]
proposed a data-driven approach that learns a dictionary of geometric primitives and their appearances.
The dictionary is used to learn a small set of hypotheses about the local 3D structure for the given image
to get an initial guess that is then regularized by an MRF optimization layer.

2.4 Summary

In this chapter, we reviewed the previous works done in the field of repetition detection and shape
reconstruction. In computer vision, patch matching is the epicenter for a large variety of problems. We
looked at the evolution of techniques used for patch matching. It started with general Nearest-Neighbor
algorithms where there is always a trade-off between speed, accuracy and robustness. Later, tree-based
methods were used where the data is organized in hierarchical structure that reduces search space. We
also discussed in brief about the recent Patch-Match technique [9]. It is a randomized and cooperative
hill climbing search approach that efficiently finds approximate nearest neighbor patches between two
images. We looked at the background of repetition detection and various techniques used to solve the
problem. Most of the methods have strong assumptions that make them unsuitable for use in reliefs.
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Shape reconstruction is vast field in computer vision and is approached in a variety of ways. We briefly
discussed different techniques used for shape reconstruction from multiple and single images. In the
next two chapters, we discuss in detail, our approach for repetition detection and shape reconstruction
from a single relief image.
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Chapter 3

Detection and Segmentation of Approximate Repetitive Patterns in Relief

Images

In this chapter, we describe our method for detecting approximately repeating patterns in relief im-
ages. The method outputs color-coded segmented regions corresponding to different repetition groups.
As discussed in previous chapters, repetitive patterns in reliefs are very different from those in building
facades and other regular repetitions. Our approach is both robust and accurate in detecting the repeti-
tive patterns in reliefs. To test our method, we collected relief images with different repetitive patterns
from various freely available web sources and also from a cultural heritage site Hampi, in India. We
also test our algorithm on building facade images and near-regular texture images. The quantitative and
qualitative results depicts the robustness and accuracy of our approach.

3.1 Introduction

Repetitive patterns are present in various structures and shapes of the world at many different scales
and forms. We propose a robust method to detect the approximately repeating structures in reliefs.
The hierarchical method proceeds from lower to higher level features, thus robustly detects structures
with partial similarity. Humans inherently recognize symmetries and repetitive patterns in objects and
images. Detection of repetitions for humans happen at multiple levels of detail. At a coarse level, we
may use the overall texture of a scene or part of it to find possible repetitions. We then analyze the
parts of objects within it and their arrangement to find objects that repeat. If those pieces or objects are
found in a similar configuration elsewhere, we identify this object as a repetition. The motivation for
the design of our algorithm is very similar to this. We begin by finding reliable matches for individual
components in an image. These individual matches are then verified and grouped together to get regions
with possible repetitions. These grouped matches are then used to detect different repetitive patterns and
elements. The detected repetitive patterns are appropriately segmented and each individual instance in
the pattern is represented by a color-coded convex hulls. Now, we discuss our approach in more detail
along with the observations about the repetitive patterns in reliefs.
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(a) Sanchi, India (b) Hampi, India

(c) Shri Senpaga Vinayagar Temple, Singapore

Figure 3.1 Example reliefs with approximate repetitive patterns.

3.2 Observations and Assumptions

Repetitive patterns in reliefs have certain interesting characteristics that are different from the typical
patterns found in the urban facades. This section lists some of the observations and assumptions that
lead to the design of our repetition detection algorithm.

1. In general, repetitions in reliefs do not occur in a regular grid or at regular interval. Repetitive
patterns often appear non-uniformly in an image (see Fig. 3.1(b) & 3.1(a)). Our algorithm is inde-
pendent of factors including the number of repetitions, repetition interval and repetition direction.

2. Occasionally, in reliefs it is difficult to define repetitive patterns where each object is a single
unit. Repeating elements generally have some variance in appearance from other repetitions (see
Fig. 3.1(c)). Elements can have partial repetitions and we achieve robust detections for such
reliefs with our algorithm.

3. It is often difficult to apply traditional rectification techniques on reliefs as detecting the vanishing
line is not robust enough in images such as Fig. 3.1(a). Our algorithm is not constrained to any
requirement of input image to be fronto-parallel or rectified. Detection is robust to significant
image skews.
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(a) Dense Feature Extraction (b) Pairwise Feature Matching (c) Pairwise Patch Matching

(d) Connectivity graph at different scales

 

 

(e) Score images for corresponding connectivity graphs (blue with lower scores and red with higher scores).

(f) Segmented image regions. (g) Detected repetitive patterns.

Figure 3.2 (a) Dense sift features after removal of false matches (b) Pairwise sift matching, blue features
are pairwise matches of yellow (c) Pairwise patch matching, green patches are correct match of yellow
patch and red patches are false matches (d) Connectivity graph at various scales in the multi-resolution
pyramid (e) Score Image for the corresponding connectivity graph in (d). (f) Segmented image regions
after merging all score images with distinct labels for each region. (g) These labels are merged and
grouped to produce the final output of our algorithm with color-coded convex hulls of repetitive patterns.
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3.3 Pairwise Matching

As a brief overview, our algorithm initiates by building a multi-resolution pyramid of the given input
image. Fig. 3.2 shows the complete pipeline of our algorithm. We process each scale independently.
At each scale, we extract feature descriptors and a list of matching features are found for each fea-
ture. We then consider the features in image patches and search for similar patches using our similarity
score function. These pairwise patch-matches give us a confidence score for matching image patches.
Confidence scores are then used to identify the regions that are repeating using watershed segmenta-
tion of the confidence score image. We begin by presenting our framework for finding pairwise patch
correspondences, then describe the detection and segmentation of repetitive patterns.

3.3.1 Pairwise Feature Matching

In order to cover the entire image, we have extracted SIFT descriptors using sift interest points and
dense SIFT descriptors with a fixed step size (10 pixels, in our experiments). We convert the SIFT
descriptors to ROOT SIFT. This has been shown to work well on many computer vision tasks [7].
We denote the set of SIFT descriptors Sn for the image at current level n. For each si ∈ Sn, k nearest
neighbors are found using efficient implementation of kd-tree data structure. We consider sj as a reliable
match for si if their scales and orientations are very similar. For a pair of sift descriptors, we define a
similarity score as:

SS(si, sj) = 1− sd(si, sj) + od(si, sj) + dd(si, sj)

3
, (3.1)

where sd(si,sj) is absolute difference between the scales, od(si,sj) is absolute difference between the
orientations and dd(si,sj) is the L1 norm of difference vector of their descriptors, each of them normal-
ized between 0 and 1. We consider the sift pair as a strong match if SS(si,sj) is more than a threshold
sim thresh (= 0.7 in our experiments). We discard the pair if any of sd, od, dd exceeds the individual
threshold (nearly sim thresh/3).

Remove false matches: Trivial repetitions in images like the background plane or repetitions with
very small interval are considered insignificant. To remove false matches for sift feature, we find its
num neighbor nearest neighbors in sift descriptor space. We use the following false match removal
algorithm to filter the set of SIFT descriptors. We remove a feature si from Sn if:

• No nearest neighbor has similarity score greater than sim thresh, else check the following condi-
tions.

• At least two nearest neighbor has spatial euclidean distance less than the minimum repetition
interval allowed or,

• At least one nearest neighbor are spatially very close to si.

The minimum repetition interval is chosen as the patch size of the current scale. This step removes a
large number of insignificant features, which increases the efficiency of the algorithm. All the remaining
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features in Sn have strong and reliable matches along with their corresponding similarity scores. We
denote the jth strong match of si as sift matchij and score with sift scoreij .

Images with reliefs are noisy due to their textures. Although strict thresholds are used for similarity
scores, we further want to increase the reliability of matches. We use a higher level matching after
sift feature matching to further remove the remaining false matches. In next step of our algorithm,
we introduce a higher level feature matching technique that boosts the robustness and reliability of the
feature matches found in this step.

3.3.2 Pairwise Patch Matching

Matching a set of features has proved to be more reliable then matching a single feature. Next
higher level of SIFT matching is matching a set of SIFT features spatially close to each other in the
image space. We consider a set of overlapping image patches P = {pc}, where each patch pc is of
size τn × τn(τ1 ∼ 15) is centered at a regular interval in the image. Let sc = {si} be the set of SIFT
descriptors lying within the image patch pc. We present our patch-match algorithm for finding matches
for each patch in P.

For each image patch pc ∈ P, find all the patches that can possibly match pc. To find the possible
patches we use sift matchij for all si ∈ sc. Each possible patch is centered such that the spatial position
of si and sj are same in their corresponding patches. We define matching score(pi, pj) using the
spatial configuration of matching sift features in pi and pj . To provide flexibility, we divide each patch
in 2× 2 cells and use soft-binning for each matching sift feature. We find the distance of each matching
sift feature in the patch to the centers of the 4 cells and then give a weight wi = 1

1+di
, where di is spatial

euclidean distance from the center of ith cell. After considering all the matching sift features, we will get
a pair of vectors vi and vj of size 4× 1. For a pair of patches, the matching distance is defined as the
L1 norm of the difference vector of vi and vj . So thematching score = 1−matching distance. Two
patches have a strong match if their matching score is greater than a threshold (0.7 in our experiments).

After this step, patch match(pc) stores position of all the matching patches of pc along with their
matching scores. The patch-match algorithm proposed above will further remove features that are not
matched in groups. We remove from P all the patches that do not have any strongly matching patch.
The correctness of retained features are increased after the patch-match algorithm.

3.4 Grouping Patches

The pairwise patch matches found in the previous section must be grouped together to accomplish
our goal of identifying repetitive patterns. Before grouping patches, we want to remove overlapping
patches that have strong matches to the same patch. Repetitions in reliefs are not identical and hence
there could be multiple places at which the same matching patch is centered. To find a single patch
out of multiple overlapping patches, we follow a variant of the non-maximum suppression technique.
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Algorithm 1 Patch-Match Algorithm

1: patch match← φ
2: for all pc ∈ P do
3: patch match(pc)← φ
4: pos match(pc)← φ
5: for all si ∈ sc do
6: p← patch corresponding to sift matchij
7: pos match(pc)← pos match(pc) + p
8: end for
9: for all pos match(pi) ∈ pos match(pc) do

10: score(pc)← matching score(pc, pos match(pi))
11: if score(pc) ≥ threshold then
12: patch match(pc)← patch match(pc)+

pos match(pi)
13: end if
14: end for
15: patch match← patch match+ patch match(pc)
16: end for

For each patch match we have a matching score that is the confidence of the match between the two
patches. We say that two patches are overlapping if the Euclidean distance between their centers is less
than the patch width τn, where n is the current level in the multi-resolution pyramid. For all overlapping
matching patches we only retain the patch with maximum matching score and discard the rest of the
overlapping patches. We have also experimented by taking the average position of all the overlapping
patches but the resulting patch often gets misplaced as the average patch does not correspond to a valid
patch. Hence we have used the former approach.

We consider grouping of patches as the next higher level of patch matching. In this section, we
propose a grouping algorithm that tries to group neighboring patches based on the configuration and
confidence of their individual matching patches. If a region is repetitive at two places then its sub-
regions should also repeat in the same spatial configuration in both the places. Following the above
intuition we design the grouping algorithm as follows:

We consider two patches to be neighboring patches if the euclidean distance between their centers
is less than α × τn (α = 1.2, in all experiments). It is similar to 8-neighborhood in pixel space. For
grouping patches, we find neighboring patches neighbor(pc) for each patch pc ∈ P. From the patch-
match algorithm (Algorithm 1) we know that both pc and the neighboring patch pi ∈ neighbor(pc) have
some matching patches with strong matching scores. If a pair of matching patches of pc and pi have the
similar neighborhood property as pc and pi then the confidence of the matches are further increased. As
the spatial distance between pc and pi is small there is a high possibility of both the patches belonging to
a single repetitive unit. We have exploited this fact to design the patch grouping algorithm (Algorithm
2).
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Algorithm 2 Patch Grouping Algorithm
// All considered patches ∈ P

1: for all pc ∈ P do
2: neighbor(pc)← neighboring patches of pc
3: for all pi ∈ neighbor(pc) do
4: for all pair ∈

(patch match(pc), patch match(pi)) do
5: if config matches({pc, pi}, {pair}) then
6: join centers of pc and pi
7: join centers of patches in pair
8: end if
9: end for

10: end for
11: if pc is not joined to any patch then
12: patch match← patch match− pc
13: end if
14: end for

In reliefs, the individual repetitive unit can have small variations in the shape and structure. So
the neighborhood property is defined to have the trade-off between robustness and accuracy. Consider
two pairs of patches (pa, pb) and (pam,pbm) where pa and pb are neighboring patches, pam and pbm
are their matching patches respectively. We consider two criteria for the pairs of patches to have a
matching configuration. First, spatial distance between the neighboring patches and second, relative
spatial arrangement of the neighboring patches in the image space. We have kept a relaxed threshold for
both the criteria providing robustness to the grouping, where as the correctness is already been verified
at each level before this step. If the absolute difference of the dist(pa, pb) and dist(pam, pbm) (dist(·,·)
is euclidean distance) is less than a threshold(∼ 5 pixels) then it satisfy the first criterion. For spatial
orientation, we find the angle made by the line joining the centers of each patch with the horizontal
axes. If the absolute difference in the angles is less then a threshold (∼ 35◦ to 45◦), then it satisfy the
second criterion. We say that config matches({pa, pb}, {pam, pbm}) is true if both the criteria are
satisfied. After joining the center of the grouped patches, we get a connectivity graph (Fig. 3.2(d)) in
the image space where nodes are the patch centers and the edges denotes that patches have high chance
of belonging to a single repetitive unit.

Merging Results of all Scales: A region of the graph with high connectivity among the neighboring
patches corresponds to a strongly repeating region but we cannot guarantee that a region with low or
no connectivity is not a repeating unit. All the computation is done at each scale of multi-resolution
pyramid. Each scale could possibly detect different patches. To ensure completeness, we need to merge
the output of all the scales. We have outputs in the form of matching patches and the connectivity graphs
at each scale.

To merge the results from different scales, we create a score image from the connectivity graph at
each scale. Score image has a score (between 0 and 1) at each pixel and the score denotes the confidence
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(a) Original (b) Ground Truth (c) Our Output

Figure 3.3 Example of an approximately repeating structure.

of that pixel belonging to a repetitive pattern. While joining the patches in Algorithm 2, we removed
all the patches that are not joined to any neighboring patch. So all the patches in patch match(pc) is
joined with valid neighboring patch. We create a score patch(pc) of size τn× τn with each value as the
maximum score among all the matches patch match(pc) of a patch pc. A Gaussian mask with σn = τn

3

is applied to give more weight to the center of the patch. The score patch(pc) for pc is added in the
score image at the corresponding place. We add the score patches for all pc ∈ P to the score image at the
current level. After repeating this for all scales, we will have a score image at all the scales. Then, each
image is mapped to the image at the highest scale of the pyramid. For each pixel, we take the maximum
score among all the score images. We also merge patch match(pc) for all patches at all scales to the
patch match(pc) of the highest scale. After merging the results at all scales, we create a repetition field
rep field in the image space where rep field(x, y) stores the patch match(pc) information along
with the matching scores for patch pc which is centered at (x, y).

3.5 Detection and Segmentation of Repetitive Patterns

After grouping patches in the above section, we have the following information available for the
given input image. Score image in which each pixel gives the confidence of belonging to a repetitive
pattern. For each pixel in the image space, rep field stores all the matching pixel positions and scores.
To detect the repetitive patterns we segment the score image using watershed segmentation technique
[46]. We have no prior knowledge about the number of repetitive elements in the image, hence we have
to use an unsupervised approach. Watershed segmentation is an automatic segmentation that considers
a topographic representation of the image intensity. Intuitively, an infinite source of water is kept at the
lowest basin and then watersheds or dams are formed to prevent water flow from one catchment basin
to another.

In our score image, the matches with high matching score will have high intensity values and an ab-
sence of a match with zero intensity value. If we invert the score image then region with high matching
score corresponds to catchment basins and hence watershed algorithm can be effectively used. Water-
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shed algorithm often gives an over-segmented output. Inverted score image will form large number of
catchment basins as an evident of max operation while merging all the scales. Pre-processing of the
image with smoothing filters were also over-segmenting the image. So we first converted the gray-scale
score image into a binary image by keeping a low threshold ( between 0.01 to 0.15 ) and then convert
it back to a gray scale image using euclidean distance transform of the inverted image. This reduces
the over-segmentation to large extent and outputs larger segments with unique labels corresponding to
possible repetitive regions. We develop a label merging algorithm to get the correct repetitive regions.
Each watershed pixel separates two regions with labels l1 and l2. Given the repetition field rep field,
we can say that if no pixel in l1 has a repeating pixel in l2, then both l1 and l2 must constitute the same
label. If more than β ( β = 10, in our experiments) watershed pixels satisfy the constraint then we merge
l1 and l2 into one label.

After appropriate merging of the regions, we get possible repetitive regions associated with unique
labels. To detect the repetitive pattern, we need to find correspondences between the repeating element.
For each pixel in a label, we find the labels corresponding to its matching pixels using rep field. Large
number of correspondences between two labels implies that both the label belongs to same repetitive
pattern. After finding the pairwise correspondences, we group the regions to get the correct repetitive
patterns with the repetitive elements.

3.6 Dataset Collection and Annotation

As per our knowledge, there is no such dataset available in the research community that can be used
to evaluate the performance of repetition detection algorithms in relief images. In order to test the ro-
bustness and accuracy of approach we collected reliefs images from various sources on web like flickr,
Google Images, etc. Along with them, we also collected reliefs from the ruins Vijayanagara Empire lo-
cated in Hampi, a village in northern Karnataka state, India. Repetitive patterns in reliefs are present in
abundance in the ruins. Most of the repetitive patterns we found have repetitive instances with approx-
imate similarity and this provided us challenging test images that is used to evaluate our performance.
The approximate repetitive patterns were present in different scales and at various positions on the walls.

To capture the images, we used a simple consumer digital camera. We did not use any other special
device. The images were captured in various environmental conditions like strong sunlight, shadow
and cloudy weather. We wanted to reduce the projective skews in the images but there was no strong
constraint on that. In next section, we have discussed the performance of our approach under projec-
tively skewed images. For collecting relief images with repetitive patterns from web, we searched using
various keywords on image sharing website like Flickr.com, Google.com. The web sources provided us
reliefs with various repetitive patterns from around the world. By including all the images, we built a
varied and challenging collection of relief images with both exact and approximate repetitive patterns
that is then used to evaluate the performance of our approach. Other than reliefs, we used images from
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Figure 3.4 Example annotations of repetitive patterns in different types of relief images. In each pair
of image, left to right, original and the annotated image. The two top left annotations show an example
of approximate repetitions. In first example, head of a horse is bent down and hence excluded from the
repetition. Similarly, trunk of elephants are not in repetition. Each image was closely analyzed to find
all the approximate repetitive patterns.

two freely available datasets. We have used some of the facade images from ZuBuD database [63]. The
regular texture images are taken from PSU Normal-near regular texture images.

Annotation: As the repetitive patterns have approximately similar instances, annotating the col-
lection of images is a very difficult task. Each relief image needs to be annotated manually using a
simple image editor tool. After collecting the above set of reliefs with repetitive patterns, we visually
analyzed each image. For a single relief image, we start grouping visually similar objects into a single
repetitive pattern. To mark a single instance of a repetitive pattern we draw a closed boundary around
the object. All the occurrences of an instance in a repetitive pattern are marked using the same color.
While annotating, we denote an object to be a region with the largest area repeating in a single repetitive
pattern (see Fig. 3.4). We carefully mark the boundaries of the object and search the complete image
for each repetitive pattern. We repeat the above process for all the repetitive pattern in an image. We
only annotate a repetitive pattern if there are more than a single occurrence of the repetitive instances.
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All repetitive patterns are marked by color coded closed boundaries. These closed regions can also be
used for segmenting the repetitive instances out from the relief image. For automatic evaluations, these
closed regions can be assigned labels. All the repeating instances that belong to a single repetitive pat-
tern can be grouped and assigned to a single label. Fig. 3.4 shows a sample of the relief images from
our collection with their corresponding annotations.

3.7 Results and Discussions

We have tested our method on a PC with 2 GHz CPU and 4GB RAM. The Matlab implementation
of our method has 3.8min average run time for a typical 500x500 image with 12 to 15 levels in the
pyramid. We tested our algorithm on a collection of various images as discussed in Sec. 3.6. We have
shown results on representative images from the collection of reliefs, facades and NRT images.

Our algorithm gives correct detection results for reliefs with highly similar repetitions in almost
all the images. When the repetition is approximate (see Fig. 3.3), the algorithm robustly detects the
repetitive pattern. In reliefs, only particular parts of the object may repeat. In those cases, algorithm
properly segments parts that belong to the repetitive pattern such as in Figures 3.5(a) and 3.5(e), where
the heads are approximately repeating. Figures 3.5(b) and 3.5(c) show the robustness of our approach
for irregular repetitions. In Fig. 3.5(b), the partial elephant is grouped with the horse pattern due to the
matching back, which has same appearance to horse’s back. Fig. 3.5(d) shows detection of multiple
irregular patterns. The red patterns are a result of matches between sky patches. In Fig. 3.5(f), our
algorithm detected parts of the repetitive element as different pattern because of the absence of matching
patches in those regions.

We prepared the ground truth results for all the images by drawing an approximate border around
each repetitive elements. We evaluate our detection and segmentation algorithm using accuracy and
recall measures. The segmentation performance is explained mainly by accuracy and the detection
performance is explained by recall measure. We call any detected region a true positive (TP) if it belongs
to the correct repetitive pattern. If a non-repeating region is assigned to a repetitive pattern, then we call
it a false positive (FP), similarly a segmented region is false negative (FN) if it does not belong to
correct repetitive pattern. Similar evaluation criteria is used by Basui and Cai [15]. Table 3.1 shows the
detection and segmentation performance of our algorithm on the collection of images. Figure 3.8 shows
result of our algorithm on facade and NRT images.

Limitations - Our algorithm has some limitations for robust repetition detections. Our algorithm
is not robust to occlusions and large projective skews because of insufficient pairwise matches. In
Fig. 3.7(c), the top-left window is partially detected due to occlusion by a tree. In Fig. 3.6(a), robust
repetitions are detected, but for relatively large projective skew like in Fig. 3.7(a), our algorithm fails
to find all the reliable matches. In images where the repetitive patterns are very close to each other
for example Fig. 3.7(b) and 3.7(d), our segmentation algorithm incorrectly merge multiple elements
or segments one element into two parts but still we can get satisfactory segmentations by tuning the
threshold values.
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(a)

(b)

(c)

(d)

(e)

(f)
(I) Original Images (II) Ground Truth Segmentations (III) Our Results

Figure 3.5 Each row shows the result of detection and segmentation on varieties of reliefs images. (a)
shows detection in case of approximate repetitions. (b) Elephant’s back is wrongly detected as a horse’s
repetition. (c) is an accurate detection. (d) Red pattern is a false positive due to repeating sky. (e)
Detected multiple repetitions with irregular intervals. (f) As parts of the statue is repeating, they are
identified as different repeating elements.
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Table 3.1 Repetition detection and segmentation performance of our algorithm

Image Type #Images Avg. Accuracy Avg. Recall
Reliefs 53 89.66% 79.77%
facades 22 85.3% 80.1%
normal-NRT 13 88.1% 58.3%

Figure 3.6 Example of robustness of our detection and segmentation algorithm in presence of multiple

repetitive patterns and significant projective skews. Original image(top), Annotated image(middle), Our

Result(bottom).
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Figure 3.7 Example failure cases. (a) Large projective skews, (b),(d) close repetitive patterns, and (c)

partial detection due to occlusions.

3.8 Conclusion

We proposed a robust and efficient method for detecting approximate repetitions in relief images.
Our algorithm outputs labeled segmentation of the repetitive patterns by computing a convex hull of
the repeating elements. We have evaluated our algorithm on images with various types of repetitions.
The robustness of the algorithm is also tested on facade and near-regular-texture images. Our algorithm
outputs good results for repetitions with large texture variations. We allows small changes in scale and
shapes to be matched for the same repetitive pattern. Our algorithm works well for irregular and low
count repetitions.
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Figure 3.8 Example of our detection performance on Facades and NRT images.
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3.9 Summary

In this chapter, we proposed a robust hierarchical approach for detection of approximate repetitive
patterns in relief images. We process the image at multiple scales of a image multi-resolution pyramid.
At each scale, we find dense features in a hierarchical order, starting from the lowest level features to
higher level features. We then merge the results from all the scales. The merged results are then pro-
cessed to detect and segment the multiple repetitive patterns in the image. We also compute a dense
pixel-wise rep field that stores the corresponding positions of the other instances in the repetitive pat-
tern. The existing works on repetition detection does not outputs good results on relief images due to
the factors such as - approximate repetitive patterns, irregular repetitions, similar background and fore-
ground, unknown repetitive instances, projective skews. Quantitative and qualitative results show that
our approach is robust and accurate in detecting the approximate repetitive patterns in reliefs. We also
show results on building facades images and near-regular texture images.
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Chapter 4

Shape Reconstruction from a Single Relief Image

We describe our method to reconstruct depth map from a single relief image. Our approach is a
data-driven approach that takes in a single relief image and computes the appropriate depth map for
the image. Single view reconstruction is being done using various cues and assumptions about the
illumination, surface reflectance of the object and image projection models. Using a single view shape
from shading method directly on relief images do not produce satisfactory results. We use an exemplar
dataset of relief images and their corresponding depth maps to learn relief specific shape priors. These
shape priors are then integrated to the shape from shading results using a MAP framework to produce
results of better quality. Our shape priors for reliefs are reliable and can be used as an initial estimate in
other shape reconstruction algorithms. We evaluate our approach on various kinds of reliefs collected
from different sources. Along with reliefs, we present experiments on Human Body Poses dataset [26].
We also show the comparison of our method to the state-of-the-art methods.

4.1 Introduction

Shape reconstruction from a single image is an ill-posed problem. Various simplifying assumptions
and regularization constraints are used to solve for surface normals from a single image. Still it needs
strong prior knowledge about the scene or the object under consideration. An effective prior arises from
the fact that surface normals at occluding contours lie in the image plane [51], [10]. However, it is very
difficult to correctly detect the occluding contours in a relief, making it ineffective. In this work, we
aim to learn a relief specific prior from a set of sample images and their corresponding depth maps.
We note that humans perceive shape from a single image by not only estimating the properties of the
environment but also by a higher level recognition. In other words, prior knowledge from previously
seen instances improves the reconstruction for us. In our approach, we encode the prior knowledge in a
non-parametric way using a training database of reliefs. Shape reconstruction using exemplar database
has been shown to work well in many highly similar class specific objects or shapes [11], [26] and in
photometric stereo [29].
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(a)

(b) (c) (d) (e)

Figure 4.1 Shape Reconstruction from single relief image (Depth maps are shown with psuedo-color

visualization, red is near and blue is far). (a) Complete exemplar dataset consists of only 7 relief images,

(b) Original Relief Image, (c) Depth Map obtained by SfS of Tsai et al. [55], (d) Depth Map obtained

by Barron and Malik [10], (e) Depth Map obtained by our approach. The depth map obtained from (c)

is noisy. We learn shape priors for reliefs to improve the shape reconstruction. Note that we recover

overall geometry as well as details of face, legs and the left part of relief that is not recovered in (d).

Results of [10] were poor for color images, so we used gray scale image to obtain (d).

As mentioned above a variety of techniques are available for reconstruction of 3D structures includ-
ing relief carvings. However, each of them has its own limitations, especially for large scale usage.
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Highly accurate systems such as laser scanners are extremely expensive for use by common man. At
the other end of the spectrum, multi-view stereo methods can work with images from a consumer digital
camera, but require large number of images. Other methods also make similar trade-offs between cost,
ease of use and accuracy. Our goal is to come up with an easy to use and least expensive method that
improves the accuracy of reconstruction of relief carvings.

The most effective approach to recover shape from a single image of an object with very limited depth
variation is to use the classical shape from shading (or SfS) with appropriate constraints to recover the
normals. A depth map is then inferred from the computed normal map. However, the approach assumes
that we know the lighting direction or, in some cases, that it has a single frontal light source at infinity
(parallel light rays). These assumptions hold good for objects images under controlled conditions in a
laboratory. However, images of reliefs acquired in real world are illuminated by a complex illumination
from the environment and is rarely frontal. As described later, we overcome this challenge using a
simple modification to the imaging process using consumer cameras without the need of any additional
hardware. We assume Lambertian surface reflectance model and orthographic image projection. These
assumptions are valid for reliefs as the surface of reliefs are very rough and also the shape variation is
very small as compared to the distance between the camera position and reliefs. The albedo, however,
is not constant across the images, but is considerably uniform as the relief is made up of a single stone.
We test our approach on both synthetic and real datasets. Our approach shows improvements over the
shape from shading methods and is able to capture both overall shape and finer details.

Even with mostly uniform albedo of the carved reliefs, the SfS results in highly noisy depth map(see
Fig. 4.1). As mentioned before we use a relief specific prior that significantly improves the results and
we learn them from sparse coding of sample relief images. Sparse representations of image patches
are widely used for many computer vision applications like color image denoising [18], demosaicing
and image inpainting [45]. We solve the single image shape reconstruction problem by incorporating
prior knowledge of relief surfaces. These priors are obtained by representing the query image signals
as a sparse linear combination of basis signals learned from an exemplar set of images. Reliefs provide
two important priors: i) the height variation across a relief is small and continuous especially in low
reliefs and, ii) the overall shape of the relief is a flat plane with surface variation above the plane (see
Fig. 4.1). Learning the relationship between the image appearance and the corresponding shape patches
inherently reduces ambiguities caused by looking at an individual pixel. By using sparse representations
of image patches, we are able to capture the correlation between the image appearance and local shape
variations. We now describe our method in detail along with experiments on both real dataset of reliefs
and synthetic dataset of human body poses.

4.2 The Proposed Approach

The core of the proposed approach involves two independent processes for estimating the shape
from a relief image. The first one is based on recovery of normals using the lambertian reflection laws.
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(a) (b) (c)

Figure 4.2 Sample of dictionary elements learned from exemplar images and their surface gradients.
(a) elements from image appearance. (b) and (c) elements from surface gradients in x and y-direction
respectively.

Independently, we use the prior distribution of image patches from other relief images to estimate local
geometric shapes. This is computed using a sparse coded representation over a relief dictionary, and
serves as our relief prior for the normals. We convert surface normals to surface gradients. A MAP
framework is introduced to integrate the results of the two estimates.

We also present results on a synthetic dataset of body poses, in addition to a real dataset of relief
images collected from ancient heritage sites. As we see from the results, our algorithm is able to capture
the overall shape and local geometric shapes, and the approach can be extended to work with objects
other than reliefs.

4.3 Shape from Shading

Most shape from shading algorithm assumes lambertian reflectance, distant point light source, or-
thographic projection and a constant known albedo. Tsai and Shah [55] proposed a SfS algorithm
with linear approximations that was one of the better performing algorithms in the survey by Zhang et
al. [80]. It is a local approach where they apply discrete approximation of the gradients first, and then
linearize the reflectance function in terms of the depth directly, instead of the gradients. Their approach
performed well for real images, but is sensitive to noise in the intensity image. We combine their ap-
proach on the relief images along with a modified imaging process, and then improve the results by
using the relief priors learned from sparse representation of query image patches.

4.4 Image under known Illumination

As mentioned above, the illumination of real-world relief carvings is often complex due to the en-
vironment and cannot be assumed to be a single distant light source. This can be simplified if we can
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capture two images of the same relief from approximately the same point of view, one with and the
other without a flash. Flash photography is popularly used for various vision tasks such as ambient im-
age denoising, detail transfer from flash to ambient, white balancing, red-eye correction, etc. [54]. We
use it to get an image of the reliefs under a known illuminant, the camera flash in this case. We acquire
two images of the object using a tripod to ensure the pixel alignment. It avoids the problem of image
registration which is not the focus of our work.

Let A be the ambient light image and F the image using flash. We apply gamma correction on A and
F to bring both the images in the same linear space. We keep the focus, aperture and ISO settings same
for both images. If4tA and4tF are the exposure times for the ambient and flash images respectively,
then we compute the pure flash image PF as shown below

PF = F− A
4tF
4tA

(4.1)

Fig. 4.3 shows an example of computing pure flash image. If the distance between the camera position
and the reliefs is large enough, we do not consider the angular and radial illumination falloff of the flash.
However, these quantities can be easily learned and integrated from a single image of a white plane using
the camera and the flash. Given a pair of flash and non-flash images, complex natural illumination can
be simplified in the above manner to improve the accuracy and robustness of the SfS process.

In spite of the illumination correction, the SfS results are often noisy due to violations of the pure
lambertian reflectance and uniform albedo assumptions of the object. Another common problem is a
smooth but significant deviation from planarity of the relief base, often caused by minor illumination
fall-offs. We now look into the process of computing the shape prior for the image to overcome some
of these problems.

4.5 Learning the priors for relief image

Our approach is similar in principle to the recent work from Panagopoulos et al. [52]. They proposed
a data-driven approach that learns a dictionary of geometric primitives and their appearances. The
dictionary is used to learn a small set of hypotheses about the local 3D structure for the given image to
get an initial guess that is then regularized by an MRF optimization layer. In our approach, we learn
the relief priors using an overcomplete dictionary with a composite signal of image appearance, surface
gradients, and light source direction. To reconstruct the geometry of a given image, we sample the
image densely at each pixel and for a patch around this pixel, we reconstruct a signal from the learned
dictionary using a sparse linear combination of the basis signals. We use the sparse representations in
learning the correlation between the image appearances and the corresponding shape variation.
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(a) (b) (c)

Figure 4.3 Example of Pure Flash image computation. (a) Flash+Ambient Image F (b) Ambient Image
A (c) Pure Flash Image PF

4.5.1 Dictionary Learning

For each instance in the exemplar set, we know the gray scale image appearance Ik, surface gradients
Pk and Qk in x and y directions respectively, and the light source direction Sk. A signal w ∈ Rd in the
dictionary encodes the correlation between the appearance, surface gradients and light source direction.
We represent the intensity in image appearance by a square patch p densely sampled at each pixel of Ik
and surface gradients at that pixel by zx and zy. Each signal w is then constructed by concatenating p,
Sk, zx and zy. Given the densely sampled signals in each instance, we learn the overcomplete dictionary
as follows:

{D,αi} = argmin
D,αi

||wi −Dαi||2 s.t ||αi||0 < L (4.2)

whereD is the dictionary, wi are the signals, αi are the sparse representation of signals, and the constant
L (L = 3, in our experiments) defines the required sparsity level.

For basis learning, we use the K-SVD algorithm presented in [6]. We learn the basis dictionary
D ∈ Rd×n where n is number of basis signals, such that each signal is represented by a few basis
element. Fig. 4.2(a) shows some of the learned dictionary patches for the relief images dataset.

4.5.2 Sparse Coding

Once the basis is learnt, any query signal q ∈ Rd can be decomposed sparsely over the basis and can
be reconstructed .i.e,

q ≈ Dα s.t. ‖α‖0 � L, (4.3)

where α is the sparse representation of the signal and ‖.‖0 is l0 pseudo-norm, which gives a measure of
number of non-zero entries in a vector.

For any given image, the surface gradients are unknown. We form query signals q ∈ Rd sampled
densely at each pixel, with their gradient values set to zero. To represent this incomplete signal from
the learned overcomplete basis, we mask the dictionary D such that the surface gradients signals are set
to zero. We use the Orthogonal Matching Pursuit(OMP) technique to learn the α such that the query
signal q is sparsely reconstructed from the basis signals. The learned α is then used to recover the
corresponding surface gradient values for each pixel in the image.
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4.5.3 Shape Recovery using relief priors

Given an image of a relief carving, we have now computed a shape prior and a noisy normal field
from SfS. We pose the integration as a maximum-a-posteriori (MAP) estimation problem from these
quantities. To achieve this, we convert normals to surface gradients and compute the most likely surface
gradients Ĝ at each pixel of the image, given the observationGs, the gradients computed from SfS. This
may be written as:

Ĝ = argmax
G

p(G|Gs) = argmax
G

p(Gs|G)p(G|Gp)

where Gp is the learned surface gradient priors. Note that the denominator in the Bayes formulation is
not relevant for computation of argmax. The two densities, p(Gs|G), and p(G|Gp) models the error
probabilities in the SfS and prior computations respectively. The two are estimated from ground truths
of the training samples. Assuming normal distributions, the minimization has a closed form solution of
the form: Ĝ = αGp + (1 − α)Gs. α is given by σ2s/(σ

2
s + σ2p), where σ2s and σ2p are the variances of

the SfS and prior depth error distributions. The surface gradients thus obtained are integrated by affine
transformation of gradients using diffusion tensors [4].

4.6 Datasets

To test the accuracy and robustness of our approach, we collected relief images from various sources.
We searched on image sharing websites for relief images and choose appropriate images that satisfy our
assumptions about the input image and are also challenging in terms of fine shape variation and unknown
uncontrolled environment conditions. To create a varied and challenging dataset we collected images
ranging from low-reliefs to medium and high reliefs. For images that are collected from the web source,
we do not have the corresponding ground truth depth maps. Hence, these images can only be used for
qualitative evaluations.

Apart from the web sources, we also collected images from the cultural heritage site Hampi, in India
(refer Sec. 3.6). The ruins of the Vijayanagara empire has large number of reliefs at various places in
Hampi. Some are partially damaged and distorted where as some are still intact. The ground truth depth
map for a relief image should consist of a depth value for each pixel of the image. To create the ground
truth dataset for relief images, Shape from structured lighting (refer Sec. 2.3.2) was not feasible given
the uncontrolled environmental conditions like sunlight that would not allow the structured-lighting
pattern to be captured by the camera. Structured-lighting techniques are more feasible in a laboratory
like controlled environment. Looking at the recent improvements in the robustness and accuracy of
Multi-view Stereo techniques (refer Sec. 2.3.1), we decided to use them in creating the ground truth
dataset for the relief images we collected from Hampi. For each relief image, we collected sufficient
number of images such that each point on the relief is covered by atleast three images. Then we used
bundler [66] followed by dense reconstruction using PMVS [23]. The dense point cloud obtained by
PMVS is then back projected on the image and a gaussian interpolation is used to achieve pixel wise
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(a) (b) (c)

Figure 4.4 Comparison between two variants of signal construction discussed in Sec. 4.7. (a) Original
Image, (b) Depth map using Pixel-wise Signal Construction, (c) Depth map using Patch-wise Signal
Construction. Note that, (b) captures finer details where as (c) is more smoothened shape.

depth correspondence. The exemplar set of relief images consists of 7 images with different lighting
directions (see Fig. 4.1). The albedo is mostly uniform across the images with minor variations.

We also test our approach on synthetic dataset of Human body poses [26]. Human body poses
dataset consists of 12 images with corresponding depth maps. We use a subset of these images to form
the exemplar dataset. In the next section, we discuss the experiments and analyze our performance on
these datasets.

4.7 Experiments and Results

We test our approach on a real dataset on relief images and a synthetic dataset of Human body poses.
Along with the signal representation discussed in Sec. 4.5, we also test our approach with a modified
signal representation. We learn the relation between a local image appearance patch and the surface
gradient patches. So, each query signal at a pixel estimates the surface gradients for a patch centered at
that pixel. We refer this as patch-wise approach, and the former as pixel-wise approach in accordance
with the type of surface gradient learning. Fig. 4.2(b) and 4.2(c) shows the learned dictionary patches
for surface gradients in x and y directions respectively. The patch-wise signal will have the following
effects on prior learning. (i) Query signals is more incomplete in patch-wise, so the sparse representation
may be less accurate. (ii) As each pixel will find surface gradients for a patch, the overall shape will
become more smoothened and it may remove the finer geometric details. Fig. 4.4 shows the comparison
between the two methods of signal construction.

4.7.1 Quantitative Evaluation

We use the exemplar dataset to evaluate our algorithm quantitatively. We learn the overcomplete
dictionary using all the images except the test image. We compare our approach to other shape from
shading approaches. Choosing a good error metric is important for quantitative evaluation. Comparing
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Reliefs Human Body Poses
Tsai et al. [55] 0.03422 0.02817
Barron and Malik [10] 0.01868 0.01811
Our approach (Patch wise) 0.02278 0.01337
Our approach (Pixel wise) 0.02212 0.01412

Table 4.1 Quantitative Results as Average Mean Squared Error for Reliefs and Human body poses
dataset.

absolute depth values is not an appropriate way of comparing the approaches. We choose our shape
evaluation metric as :

N −MSE(N̂ ,N∗) =
1

n

∑
x,y

arccos(N̂x,y·N∗
x,y)

2 (4.4)

This is the mean squared error between the angle the normal field N̂ of our estimated shape and the
normal field N∗ of the ground-truth shape. This error metric is invariant to shifts in depth Z. Table 4.1
shows the quantitative results as average N-MSE for both the datasets. Our approach significantly im-
proves upon the SfS results of Tsai et al. [55]. All the results were computed using a very small exemplar
set consisting and we believe that performance of our approach should improve by using a larger repre-
sentative exemplar dataset.

4.7.2 Qualitative Evaluation

In Fig. 4.5, we show results on a variety of relief images using our pixel-wise and patch-wise ap-
proaches. These images were chosen such that they satisfy the approximate uniform albedo and single
distant point light source assumptions. Still, the reliefs have some ambient illumination and small albedo
variations. Our pixel-wise approach performs better in 4.5(a), 4.5(b) and 4.5(f). We are able to recover
the overall shape of the relief and also local shape variations 4.5(c), 4.5(d) and 4.5(e). Note that, our
technique performs well in case of different lighting directions and the results can further be improved
with the availability of images with and without flash as discussed in Sec. 4.4. Fig. 4.6 shows our result
on body poses dataset. We correctly recovers the difference in hand positions in 4.6(d) and legs positions
in 4.6(a), 4.6(b).

Failure Cases: Although our approach works under various lighting directions, certain conditions
significantly hampers our performance. Our approach fails in case of cast shadows and harsh lighting
conditions. We can incorporate the illumination problem with a pair of flash and non-flash images, as
discussed in Sec. 4.4. Also our approach does not output correct shape in presence of large albedo
variations. Fig. 4.7 shows examples for these cases.
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(a) (b)

(c)

(d) (e)

(f)

Figure 4.5 Qualitative results of our approach on relief images collected from various sources. In each
instance, three images are the original image, our pixel-wise and patch-wise results, respectively. All
these results are computed using the same dictionary learned on the exemplar relief images. The results
shows robustness of our approach in presence of ambient illumination along with point light sources.
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(a) (b)

(c) (d)

Figure 4.6 Depth Maps obtained from our approach on Human body poses dataset [26]. Each instance
is shown as original image, results of pixel-wise and patch-wise approaches as depth map respectively.
The dictionary was learned using a set of 12 exemplar images. The depth variation of both the legs are
correctly estimated in (a) and (b), and the depths of head in (c) and (d). Note that pixel-wise method is
able to recover the depth variation of feet.

(a) (b)

(c)

Figure 4.7 Example of failure cases. (a) Significant errors in shape reconstruction due to strong sunlight

and cast shadows. (b) Incorrect shape reconstruction because of the violation of lambertian reflectance

assumption. (c) Non-uniform albedo results an error in overall shape recovery.
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4.8 Conclusion

We solve the shape recovery problem using a single view of relief surfaces. Reconstructing shape
from relief images is a challenging task because of the uncontrolled illumination environment, so, using
laser scanners or structured lighting is not always feasible. We solve the problem in two independent
steps. We estimate the surface gradients using the SfS technique. The obtained gradients are noisy given
the strong assumptions of SfS. We use a set of exemplar images with their corresponding shapes to learn
relief specific priors. The correlation between the local image appearance and the geometric shape is
learned using sparse representation technique. We remove the unnecessary complex illumination using
a pair images with and without the flash. It gives us the relief image under a known illumination. After
learning the relief priors, we recover the most appropriate shape by integrating the relief priors using a
MAP framework. Our approach is tested on both synthetic and real datasets and result shows that our
approach is able to recover both overall geometric model and local shape variations.

4.9 Summary

In this chapter, we discussed our method for reconstructing shape from a single relief image. We used
sparse representation techniques to learn relief specific shape priors. The particular way of construction
of reliefs provide us with useful cues that can be exploited for reconstructing shape from a single image.
We learned the correlation between the image appearances patches and shape variation patches using an
exemplar set of images with the corresponding shape variation. Shape priors learned by our approach
can also be used as an initial depth estimate or as a depth prior for the given image. Most of the previous
approaches for solving single view shape reconstruction problem does not work properly in case of
reliefs because of the noisy surface texture. Qualitative and quantitative results show that our approach
is able to recover the shape variation both at a coarse level and a finer level.
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Chapter 5

Conclusions and Future Work

In the first part of the thesis, we presented a robust approach for detection and segmentation of
approximate repetitive patterns in relief images. Given the nature of the reliefs, this problem is more
challenging problem than detection of repetitive pattern in building facades or near regular textures. We
approached the problem by a simple intuition of how a human detect repetitive patterns in daily life.
Our hierarchical approach begins at the lowest level feature matching where we prune large number
of features resulting in a smaller search space for the next level of feature matching. After matching
the feature at the highest level, we group the features to find the repetitive patterns. To capture various
repetitions, we process the input relief image on a multi resolution pyramid. To test our approach,
we collected challenging relief images from various sources. Qualitative and quantitative results these
images show the robustness and accuracy performance of our approach. Other approaches for detection
repetitive patterns have strong assumptions about the given image and hence, performs poorly on the
challenging relief images. Our approach is robust in detecting and segmenting approximate repetitive
patterns as shown in the Sec. 3.7. Our approach is also able to detect repetitive patterns in facades and
near regular texture images.

In the second part of the thesis, we presented an efficient and robust approach for shape reconstruc-
tion from a single relief image. To judge the 3D shape of an object, we humans also use a higher level
recognition along with estimating various parameters like surface reflectance, illumination, etc. We fol-
lowed this intuition to come up with a data driven approach for reconstructing depth map from a single
relief image. Estimating the surface normals for a single pixel does not provide reliable observations
given the real images of reliefs. We learn shape priors using a generic exemplar set of relief images and
their corresponding depth maps. Our data driven approach learns a dictionary to correlate the image ap-
pearance patch with the corresponding shape variation. For a given relief image, we find an appropriate
shape for each patch in the image using this learned dictionary. The relief priors learned by this are then
integrated to noisy shape estimated using SfS technique. To test our approach, we collected various
relief images captured in different conditions from various sources. The quantitative and qualitative
results discussed in Sec. 4.7 shows the robustness and accuracy performance of our approach. The relief
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priors learned from our approach can also be used as initial estimate or depth prior by other approaches.
We are able to capture both coarse and fine shape variations in the relief images.

The work in this thesis solves interesting and challenging problems for relief images. Reliefs are
different from other objects in many ways as we discussed in the previous chapters. We proposed a
novel and robust method for detecting approximate repetitive patterns in reliefs. Significant amount of
work has been done in detecting similar repetitive patterns in facades and near regular texture images,
but very little efforts are made to solve the problem of detecting approximate repetitive patterns. Our
work opens up ample opportunities in future that can be explored in this field. We see a possibility of
a multi-core algorithm for detection of approximate repetitive patterns. As in our approach, we process
each scale independently and then later merge the results from each scale. The results of pairwise
correspondences detected by our algorithm can be exploited in various computer vision applications.
The repetitions can also help in reconstructing partially damaged structures using region growing and
graphical model techniques. The detected objects can possibly be used to describe and retrieve similar
objects from a large database of images.

Shape reconstruction a single image is a very classical problem and we approached the problem
in a data-driven manner. We used sparse representation technique to find the correlation between the
image appearance patch and the corresponding shape variation patch. Repetition detection can also be
exploited in shape reconstruction from a single image. If we know that there are two approximately
similar instances are present in a repetitive pattern, and if we know the shape variation of one of the
instances, then the pixel wise correspondences provided by our repetition detection algorithm can be
used to infer the shape variation in the other repeating instance. This problem can be explored by
modeling for relief surfaces with non-lambertian reflectance. Further, we believe that along with the
shape variation, we can also learn the illumination model for the given image in an iterative way where
we can keep one of the parameters as known and then find the most likely values for the other parameter.
One could also extend the applicability of our approach for generic objects that roughly satisfy the
assumptions.

45



Related Publications

• Harshit Agrawal and Anoop M. Namboodiri, “Detection and Segmentation of Approximate Repet-
itive Patterns in Relief Images”, in Proceedings of the Eighth Indian Conference on Computer
Vision, Graphics and Image Processing (ICVGIP), 2012, Article No. 46.

• Harshit Agrawal and Anoop M. Namboodiri, “Shape Reconstruction from Single Relief Image”,
in Proceedings of Second IAPR Asian Conference on Pattern Recognition (ACPR), 2013.

46



Bibliography

[1] Digital Heritage, International Congress, 2013. http://www.digitalheritage2013.org/.

[2] International conference on cultural heritage, 2014. http://www.culturalheritage2014.eu/.

[3] A. Adams, N. Gelfand, J. Dolson, and M. Levoy. Gaussian kd-trees for fast high-dimensional filtering. ACM

Transactions on Graphics (TOG), 28(3):21, 2009.

[4] A. Agrawal, R. Raskar, and R. Chellappa. What is the range of surface reconstructions from a gradient

field? In Computer Vision–ECCV 2006, pages 578–591. Springer, 2006.

[5] H. Agrawal and A. M. Namboodiri. Detection and segmentation of approximate repetitive patterns in

relief images. In Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image

Processing, ICVGIP ’12, pages 46:1–46:8, New York, NY, USA, 2012. ACM.

[6] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for

sparse representation. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 54(11):4311, 2006.

[7] R. Arandjelovic and A. Zisserman. Three things everyone should know to improve object retrieval. In

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2911–2918. IEEE,

2012.

[8] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman. Patchmatch: a randomized correspondence

algorithm for structural image editing. ACM Transactions on Graphics-TOG, 28(3):24, 2009.

[9] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkelstein. The generalized patchmatch correspondence

algorithm. In Computer Vision–ECCV 2010, pages 29–43. Springer, 2010.

[10] J. T. Barron and J. Malik. Color constancy, intrinsic images, and shape estimation. In Computer Vision–

ECCV 2012, pages 57–70. Springer, 2012.

[11] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces. In Proceedings of the 26th annual

conference on Computer graphics and interactive techniques, SIGGRAPH ’99, pages 187–194, New York,

NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[12] K. L. Boyer and A. C. Kak. Color-encoded structured light for rapid active ranging. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, (1):14–28, 1987.

[13] D. Bradley, T. Boubekeur, and W. Heidrich. Accurate multi-view reconstruction using robust binocular

stereo and surface meshing. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Confer-

ence on, pages 1–8. IEEE, 2008.

47



[14] I. Bülthoff, H. Bülthoff, and P. Sinha. Top-down influences on stereoscopic depth-perception. Nature

neuroscience, 1(3):254–257, 1998.

[15] Y. Cai and G. Baciu. Higher level segmentation: Detecting and grouping of invariant repetitive patterns.

pages 694–701, 2012.

[16] P. Doubek, J. Matas, M. Perdoch, and O. Chum. Image matching and retrieval by repetitive patterns. In

Pattern Recognition (ICPR), 2010 20th International Conference on, pages 3195–3198. IEEE, 2010.

[17] J.-D. Durou, M. Falcone, and M. Sagona. Numerical methods for shape-from-shading: A new survey with

benchmarks. Computer Vision and Image Understanding, 109(1):22–43, 2008.

[18] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries.

Image Processing, IEEE Transactions on, 15(12):3736–3745, 2006.

[19] P. Fechteler and P. Eisert. Adaptive colour classification for structured light systems. Computer Vision, IET,

3(2):49–59, 2009.

[20] F. Forster. A high-resolution and high accuracy real-time 3d sensor based on structured light. In 3D Data

Processing, Visualization, and Transmission, Third International Symposium on, pages 208–215. IEEE,

2006.

[21] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-level vision. International journal of

computer vision, 40(1):25–47, 2000.

[22] Y. Furukawa and J. Ponce. Carved visual hulls for image-based modeling. In Computer Vision–ECCV 2006,

pages 564–577. Springer, 2006.

[23] Y. Furukawa and J. Ponce. Accurate, dense, and robust multiview stereopsis. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 32(8):1362–1376, 2010.

[24] M. Goesele, B. Curless, and S. M. Seitz. Multi-view stereo revisited. In Computer Vision and Pattern

Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 2402–2409. IEEE, 2006.

[25] M. Habbecke and L. Kobbelt. Iterative multi-view plane fitting. In Proc. Vision, Modeling, and Visualization

Conference, pages 73–80, 2006.

[26] T. Hassner and R. Basri. Example based 3d reconstruction from single 2d images. In Computer Vision and

Pattern Recognition Workshop, 2006. CVPRW’06. Conference on, pages 15–15. IEEE, 2006.

[27] C. Hernández Esteban and F. Schmitt. Silhouette and stereo fusion for 3d object modeling. Computer Vision

and Image Understanding, 96(3):367–392, 2004.

[28] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin. Image analogies. In Proceedings of

the 28th annual conference on Computer graphics and interactive techniques, pages 327–340. ACM, 2001.

[29] A. Hertzmann and S. M. Seitz. Example-based photometric stereo: Shape reconstruction with general,

varying brdfs. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(8):1254–1264, 2005.

[30] H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of educa-

tional psychology, 24(6):417, 1933.

48



[31] R. Huang and W. A. Smith. Shape-from-shading under complex natural illumination. In Image Processing

(ICIP), 2011 18th IEEE International Conference on, pages 13–16. IEEE, 2011.

[32] X. Huang, J. Gao, L. Wang, and R. Yang. Examplar-based shape from shading. In 3-D Digital Imaging and

Modeling, 2007. 3DIM’07. Sixth International Conference on, pages 349–356. IEEE, 2007.

[33] I. Ishii, K. Yamamoto, T. Tsuji, et al. High-speed 3d image acquisition using coded structured light projec-

tion. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages

925–930. IEEE, 2007.

[34] M. K. Johnson and E. H. Adelson. Shape estimation in natural illumination. In Computer Vision and Pattern

Recognition (CVPR), 2011 IEEE Conference on, pages 2553–2560. IEEE, 2011.

[35] J. Kopf, C.-W. Fu, D. Cohen-Or, O. Deussen, D. Lischinski, and T.-T. Wong. Solid texture synthesis from

2d exemplars. ACM Transactions on Graphics (TOG), 26(3):2, 2007.

[36] T. Korah and C. Rasmussen. 2d lattice extraction from structured environments. In Image Processing, 2007.

ICIP 2007. IEEE International Conference on, volume 2, pages II–61. IEEE, 2007.

[37] N. Kumar, L. Zhang, and S. Nayar. What is a good nearest neighbors algorithm for finding similar patches

in images? In Computer Vision–ECCV 2008, pages 364–378. Springer, 2008.

[38] S. Lefebvre and H. Hoppe. Parallel controllable texture synthesis. In ACM Transactions on Graphics (TOG),

volume 24, pages 777–786. ACM, 2005.

[39] T. Leung and J. Malik. Detecting, localizing and grouping repeated scene elements from an image. In

Computer VisionECCV’96, pages 546–555. Springer, 1996.

[40] M. Lhuillier and L. Quan. A quasi-dense approach to surface reconstruction from uncalibrated images.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(3):418–433, 2005.

[41] H.-C. Lin, L.-L. Wang, and S.-N. Yang. Extracting periodicity of a regular texture based on autocorrelation

functions. Pattern Recognition Letters, 18(5):433–443, 1997.

[42] Y. Liu, R. T. Collins, and Y. Tsin. A computational model for periodic pattern perception based on frieze

and wallpaper groups. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(3):354–371,

2004.

[43] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer

vision, 60(2):91–110, 2004.

[44] G. Loy and J.-O. Eklundh. Detecting symmetry and symmetric constellations of features. In Computer

Vision–ECCV 2006, pages 508–521. Springer, 2006.

[45] J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. Image Processing,

IEEE Transactions on, 17(1):53–69, 2008.

[46] F. Meyer. Topographic distance and watershed lines. Signal processing, 38(1):113–125, 1994.

[47] J. Michels, A. Saxena, and A. Y. Ng. High speed obstacle avoidance using monocular vision and reinforce-

ment learning. In Proceedings of the 22nd international conference on Machine learning, pages 593–600.

ACM, 2005.

49



[48] T. Monks, J. Carter, and C. Shadle. Colour-encoded structured light for digitisation of real-time 3d data. In

Image Processing and its Applications, 1992., International Conference on, pages 327–330. IET, 1992.

[49] P. Müller, G. Zeng, P. Wonka, and L. Van Gool. Image-based procedural modeling of facades. ACM Trans.

Graph., 26(3):85, 2007.

[50] S. M. Omohundro. Five balltree construction algorithms. 1989.

[51] G. Oxholm and K. Nishino. Shape and reflectance from natural illumination. In Computer Vision–ECCV

2012, pages 528–541. Springer, 2012.

[52] A. Panagopoulos, S. Hadap, and D. Samaras. Reconstructing shape from dictionaries of shading primitives.

In Computer Vision–ACCV 2012, pages 80–94. Springer, 2013.

[53] M. Park, K. Brocklehurst, R. T. Collins, and Y. Liu. Translation-symmetry-based perceptual grouping with

applications to urban scenes. In Computer Vision–ACCV 2010, pages 329–342. Springer, 2011.

[54] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama. Digital photography with

flash and no-flash image pairs. In ACM transactions on graphics (TOG), volume 23, pages 664–672. ACM,

2004.

[55] T. Ping-Sing and M. Shah. Shape from shading using linear approximation. Image and Vision Computing,

12(8):487–498, 1994.

[56] J.-P. Pons, R. Keriven, and O. Faugeras. Multi-view stereo reconstruction and scene flow estimation with a

global image-based matching score. International Journal of Computer Vision, 72(2):179–193, 2007.

[57] B. Potetz and T. S. Lee. Statistical correlations between two-dimensional images and three-dimensional

structures in natural scenes. JOSA A, 20(7):1292–1303, 2003.

[58] J. Salvi, S. Fernandez, T. Pribanic, and X. Llado. A state of the art in structured light patterns for surface

profilometry. Pattern recognition, 43(8):2666–2680, 2010.

[59] J. Salvi, J. Pages, and J. Batlle. Pattern codification strategies in structured light systems. Pattern Recogni-

tion, 37(4):827–849, 2004.

[60] G. Sansoni, M. Carocci, and R. Rodella. Calibration and performance evaluation of a 3-d imaging sensor

based on the projection of structured light. Instrumentation and Measurement, IEEE Transactions on,

49(3):628–636, 2000.

[61] F. Schaffalitzky and A. Zisserman. Geometric grouping of repeated elements within images. In D. A.

Forsyth, J. L. Mundy, V. Di Gesu, and R. Cipolla, editors, Shape, Contour and Grouping in Computer

Vision, LNCS 1681, pages 165–181. Springer-Verlag, 1999.

[62] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A comparison and evaluation of multi-

view stereo reconstruction algorithms. In Computer vision and pattern recognition, 2006 IEEE Computer

Society Conference on, volume 1, pages 519–528. IEEE, 2006.

[63] T. S. H. Shao and L. V. Gool. Zubud-zurich buildings database for image based recognition. Technical

report, Swiss Federal Institute of Technology, 2004.

50



[64] S. N. Sinha, P. Mordohai, and M. Pollefeys. Multi-view stereo via graph cuts on the dual of an adaptive

tetrahedral mesh. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages

1–8. IEEE, 2007.

[65] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In

Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 1470–1477. IEEE,

2003.

[66] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring photo collections in 3d. In ACM

transactions on graphics (TOG), volume 25, pages 835–846. ACM, 2006.

[67] R. F. Sproull. Refinements to nearest-neighbor searching ink-dimensional trees. Algorithmica, 6(1-6):579–

589, 1991.

[68] C. Strecha, R. Fransens, and L. Van Gool. Combined depth and outlier estimation in multi-view stereo. In

Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages

2394–2401. IEEE, 2006.

[69] J. Sun, G. Zhang, Z. Wei, and F. Zhou. Large 3d free surface measurement using a mobile coded light-based

stereo vision system. Sensors and Actuators A: Physical, 132(2):460–471, 2006.

[70] M. A. Tehrani, A. Saghaeian, and O. R. Mohajerani. A new approach to 3d modeling using structured

light pattern. In Information and Communication Technologies: From Theory to Applications, 2008. ICTTA

2008. 3rd International Conference on, pages 1–5. IEEE, 2008.

[71] S. Tran and L. Davis. 3d surface reconstruction using graph cuts with surface constraints. In Computer

Vision–ECCV 2006, pages 219–231. Springer, 2006.

[72] G. Vogiatzis, P. H. Torr, and R. Cipolla. Multi-view stereo via volumetric graph-cuts. In Computer Vision

and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 391–

398. IEEE, 2005.

[73] S. Wenzel, M. Drauschke, and W. Förstner. Detection and description of repeated structures in rectified

facade images. Photogrammetrie, Fernerkundung, Geoinformation (PFG), 2007.

[74] B. Wu, T. L. Ooi, and Z. J. He. Perceiving distance accurately by a directional process of integrating ground

information. Nature, 428(6978):73–77, 2004.

[75] C. Wu, J.-M. Frahm, and M. Pollefeys. Detecting large repetitive structures with salient boundaries. In

Computer Vision–ECCV 2010, pages 142–155. Springer, 2010.

[76] C. Wu, J.-M. Frahm, and M. Pollefeys. Repetition-based dense single-view reconstruction. In Computer

Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 3113–3120. IEEE, 2011.

[77] P. N. Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces. In

Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, pages 311–321. Society

for Industrial and Applied Mathematics, 1993.

[78] A. Zaharescu, E. Boyer, and R. Horaud. Transformesh: a topology-adaptive mesh-based approach to surface

evolution. In Computer Vision–ACCV 2007, pages 166–175. Springer, 2007.

51



[79] L. Zhang, B. Curless, and S. M. Seitz. Rapid shape acquisition using color structured light and multi-pass

dynamic programming. In 3D Data Processing Visualization and Transmission, 2002. Proceedings. First

International Symposium on, pages 24–36. IEEE, 2002.

[80] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah. Shape-from-shading: a survey. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 21(8):690–706, 1999.

[81] P. Zhao and L. Quan. Translation symmetry detection in a fronto-parallel view. In Computer Vision and

Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1009–1016. IEEE, 2011.

[82] P. Zhao, L. Yang, H. Zhang, and L. Quan. Per-pixel translational symmetry detection, optimization, and

segmentation. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages

526–533. IEEE, 2012.

52


