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Abstract

Glaucoma is an eye disease characterized by weakening of nerve cells often resulting in a permanent
loss of vision. Glaucoma progression can occur without any physical indication to patients. Hence, early
diagnosis of Glaucoma is recommended for preventing the permanent damage to vision. Early Glau-
coma is often characterized by thinning of the Retinal Nerve Fiber Layer which is commonly called
as RNFL defect (RNFLD). Computer-aided diagnosis (CAD) of eye diseases is popular and is based
on automated analysis of fundus images. CAD solutions for diabetic retinopathy have reached more
maturity than for glaucoma as the latter is more difficult to detect from fundus images. This is due to

the fact that nerve damage appears in the form of subtle change in the background around optic disc.

SD-OCT (Spectral Domain - Optical Coherence Tomography), a recently introduced modality, helps
to capture 3D information of retina. Hence, it is more reliable for detecting nerve damage in retina
compared with fundus imaging. However, a wide usage of OCT is limited due to cost per scan, time
and ease of acquisition. This thesis focuses on integrating information from multiple modalities (OCT
and fundus) for improving retinal nerve fibre layer defect or detection of RNFLD from fundus images.
We examine two key problems in the context of CAD development: i) spatial alignment or registration
of two modalities of imaging, namely, 2D fundus and 3D OCT volume images. This can pave way to
integrate information across the modalities. Multimodal registration is challenging because of the varied
Field of View and noise levels across the modalities. We propose a computationally efficient registra-
tion algorithm which is capable of handling complementary nature of modalities. Extensive qualitative
and quantitative evaluations are performed to show the robustness of proposed method. ii) Detection
of RNFLD from fundus images with good accuracy. We propose a novel CAD solution which utilises
information from the 2 modalities for learning a model and uses it to predict the presence of RNFLD
from fundus images. The problem is posed as learning from 2 modalities (fundus, OCT images) and
predicting from only one (fundus images) with the other (OCT) as missing data. Our solution consists

of a deep neural network architecture which learn modality independent representations.

In the final part of the thesis we explore the scope of a new imaging modality angiography-Optical
Coherence Tomography (A-OCT) in diagnosing Glaucoma. Two case studies are reported which help

in understanding the progression of Retinal Nerve Fiber Layer thickness, Capillary Density in normal
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and glaucoma effected patients. The experiments on new modality has shown potential for considering

it as a reliable biomarker along with existing modalities.
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Chapter 1

INTRODUCTION

Glaucoma is the second leading cause of blindness all over the world. It causes damage to the optic
nerve of the eye due to increase in Intraocular pressure. This damage results in permanent blindness due
to poor transmission of signals between the brain and the eye. The number of people with glaucoma
around the world was estimated to be 64.3 million in 2013 and is expected to increase to 76 million
by 2020 [4][19]. Glaucoma is termed as silent blinding disease because it neither gives warnings nor
obvious symptoms to the patient. If left untreated, most types of glaucoma progress towards permanent
damage of the eye. There are two main kinds of Glaucoma: Open-angle glaucoma and Angle-closure
glaucoma. Open-angle glaucoma is the most common form of glaucoma. It is caused by the clogging
of drain canals, leading to an increased pressure in the retina. It has a wide angle between between the
iris and the cornea. The later (Angle-closure glaucoma) is caused by blocked drainage canals leading
to a sudden increase in intraocular pressure. It has a narrow angle between the iris and the cornea. (See
figure:1.1) Most of the above diseases worsen without displaying any kind of observable symptoms.
Thus, screening for glaucoma is important for their early detection and dispersion of effective treatment

to prevent permanent blindness.

Drainage angle

Figure 1.1: Location of Cornea, Iris in eye

For identifying Glaucoma, two kinds of clinical assessments[20] are performed: i) Intra-papillary
and ii)Peri-papillary. Intra-papillary is related to geometric changes of Optic Disk (OD). Particularly
the presence of glaucoma leads to increase in cup/disk ratio. Whereas later one is related to loss of
retinal nerve fiber layer (RNFL defect) occurring in the periphery of the OD region (see figure:1.2
(right)). Parapapillary assessment is mostly done to detect diseases at during early stages of retina.



1.1 IDENTIFICATION OF GLAUCOMA

To understand the progression of Glaucoma, many imaging modalities exist. These imaging modali-
ties unveil the structural and functional information of the retina. Evaluation of multiple modalities fur-
ther enhances the accurate diagnosis of the patient. In most of the imaging modalities light plays a ma-
jor role in capturing information. Some of these modalities include Fundus-(Optical imaging), Optical
Coherence Tomography-(cross sectional imaging), and Angiography Optical Coherence Tomography-

(Flow imaging).

1.1.1 Fundus imaging

It is a non invasive modality and consists of low power microscope with an attached camera. The
color fundus camera helps to capture the 3D retina as a 2D image as shown in figure:1.2 (left). This
projection captures the presence of disorders and aids to monitor their change over time. Most of the
screening systems existing today use fundus imaging as it is very cost effective compared to other
techniques. There are several modes of examination using fundus imaging, namely color fundus pho-
tography, red free fundus photography, and angiography. In color fundus imaging natural light is used
for imaging the retina, where as in red free fundus imaging a specified wavelength of light is used.
Angiography is an invasive procedure and less frequent in usage. In this protocol, fluorescent dye is

injected and its movement is observed in the vasculature structure.

Figure 1.2: Fundus capture of retina (a),Sector division(b,l), Parapapillary region (b,r)

For glaucoma, fundus imaging is the most common modality used for screening systems. In fun-
dus, the presence of glaucoma is indicated by the presence of a bright striped radiation pattern from
Optic Disc, enlargement of cup, as shown in figure:1.3a, 1.3b. The radiation pattern changes its visual
appearance according to variations in the Retinal Nerve Fiber thickness. The thickness variations can
be caused by glaucoma process, or even in the healthy retina, the RNFL thickness varies anatomically
depending on angular position around the ONH. In general RNFL measurement is performed in sectors

as shown in figure:1.2 (b,r), where S:Superior, T: Temporal, N: Nasal, I: Inferior.



is §
4 L

(a) Typical RNFL pattern observed (Region inside white ROI)

(b) Increased cup size

Figure 1.3: Identification of Glaucoma from fundus photography.

1.1.2 Optical Coherence Tomography imaging

It is a non-invasive imaging modality. Optical coherence tomography is a technique for obtaining
depth images (cross-section) of retina at a resolution equal to a low-power microscope. It is effectively
an optical ultrasound imaging. As it is cross-sectional imaging, we can see each of the distinctive layers
of the retina. This allows to map and measure their thickness as each layer is associated with its own
significance. For example: Capillary vessels are observed in rpe layer while abnormalities, like drusen,
are found between the isos-rpe layer. Glaucoma is caused by thinning of RNFL layer. The qualitative
measurements of these layers help with diagnosis. Figure:1.4 (right) shows layers in an OCT volume.

A low coherent light is split optically into two beams. One is sent to a mirror at a specific distance to
reflect and the other is made to reflect from the retinal tissue as shown in figure:1.4 (left). The energy of
the interference between the two reflected beams is encoded as intensity in the OCT image.There are two
types of imaging 1) Time domain OCT, 2) Spectral domain OCT. Time domain OCT is an old imaging
method in which the reference mirror is moved mechanically to different positions. This results in poor
image resolution, subject to inconvenience, and takes time, whereas Spectral domain OCT includes a
spectrometer in the receiver. This spectrometer, according to the Fourier principle, assesses the spectrum
of reflected light on the retina and transforms it into information about the depth of these structures. The
need for mechanically moving the reference mirror is eliminated in this approach. This consequently
increases the speed and resolution of scanning.



Retinal Layers

SSYCT volume

OCT slice

Figure 1.4: Acquisition of OCT (left), OCT layer information (Right)

The use of SD-OCT for glaucoma diagnosis has become a common clinical practice. Numerous
studies have demonstrated that RNFL and macular thickness parameters are reproducible, with high
sensitivity and specificity in discriminating between healthy and glaucomatous eyes. Figure:1.5 shows

the RNFL thickness report of Glaucoma patient.

ONH o Left/ OS

[ | our == Sptevie

Figure 1.5: Sample OCT report of Glaucoma patient

1.1.3 Angiography - Optical Coherence Tomography imaging

Optical coherence tomography angiography (A-OCT) is a recent non-invasive modality for imaging
microvasculature of the retina. This modality uses laser light as a source and maps reflectance from
retina vessels into different layers. Unlike fundus angiography, this modality does not require injection
of a dye. The A-OCT scan of patients consists of multiple B-Scans to provide cross-sectional struc-
tural information. The same tissue is repeatedly captured and the differences between successive scans
are analyzed. These differences are detected as flow and no flow regions. For differentiating succes-
sive scans, two types of motion detection methods are employed: amplitude decorrelation and phase
variance. The former detects differences in amplitude between two different OCT B-scans, where as
phase variance calculates the variation in phases of moving objects. To improve visualization and re-
duce background noise from normal flickering of the eye, two averaging methods were developed, viz.

split spectrum amplitude decorrelation technique and volume averaging - .[14] OCT-A is also gaining



Bl Bscan C1 En face

Structure imaging

Figure 1.6: Difference between OCT, OCT-A

increasing popularity for optic nerve disorders assessment, such as glaucoma. It has been reported as a
useful tool for evaluating optic disc perfusion in glaucomatous eyes, since attenuated peripapillary and
macular vessel density is detectable in pre-perimetric glaucoma patients as shown in figure:1.7.

Figure 1.7: OCT-A (left) and en face structural imaging (right) of a glaucoma patient, revealing inferior
temporal loss of retinal fiber layer and the anatomical correspondence with decreased vessel density in
the OCT-A image.

1.2 SCREENING SYSTEMS - MOTIVATION OF THE THESIS

Screening systems are prevalent in many countries. The patient is classified as Glaucomatous based
on measurements such as Visual fields, intraocular pressure, Optic Disc/Cup diameters etc. In almost
all screening systems color fundus imaging is used as standard for screening because of its low cost,
non-invasiveness and ease of use. Recently several studies revealed that diagnosis of patients are not

correlated with usage of fundus and OCT images. In diagnosis of Glaucoma optic cup to disk ratio



is also clearly detected from OCT than fundus image. These studies concluded fundus imaging alone
may not be sufficient for screening. This calls for the requirement of multiple modalities for improving

diagnosis of patient.

1.3 SCOPE OF THE THESIS

The extent of visibility of diseases in retina depends on the type of imaging modality. The use of
other reliable modalities for screening systems such as OCT has its own limitations in terms of cost and
ease of acquisition. The work in this thesis focuses on improving disease detection rate on fundus by
combining information from OCT and fundus modality(figure:1.8). Prior to integration of modalities,
multimodal registration is performed to ensure proper learning. We have also investigated the scope of
angiography OCT new imaging flow modality in understanding the progression of disease Glaucoma.

Clinical studies prove that this new modality will serve as a reliable biomarker in detection of diseases.

Training stage Testing stage
Learning Testing modality
» modality (fundus) —> (fundus) —

a)

Assisting modality
(OCT)
Improved testing
g — | modality (fundus) —»
Learning modality 2
. (Fundus)

b)

Figure 1.8: a) Existing screening system, b) Proposed idea of improved screening systems

1.4 KEY CONTRIBUTIONS

The major contributions in developing detection algorithms for identifying and understanding Glau-

coma from various modalities described in this thesis are:
1. A robust, computationally efficient multimodal registration algorithm for registering fundus and
OCT image pairs.

2. A multimodal deep neural network framework for improving the detection of Glaucoma from

fundus images.



3. Understanding the progression of Glaucoma through clinical case studies and discovering the

scope of new imaging modality angiography OCT for detection of Glaucoma.

1.5 ORGANIZATION OF THE THESIS

The organization of this thesis is as follows. In chapter 2, a robust and computation efficient mul-
timodal registration algorithm is proposed. The algorithm tries to find landmarks and register images
in an iterative manner in low Field of View (FOV) images. In chapter 3, a multimodal deep learning
framework is proposed in order improve the Glaucoma detection rate on fundus from the model learnt
from OCT and Fundus. The training and loss function proposed aims to combine the adversarial loss
in learning joint information between fundus and OCT samples and retain the distinctiveness of the
two modalities. The description of the proposed architecture is explained in detail in chapter 3. Chap-
ter 4 discusses clinical case studies about new modality in understanding the progression of Glaucoma
and further investigates the scope of new modality in detection. Finally, in the last chapter a general

discussion, conclusion and the possible future work is described.



Chapter 2

MULTIMODAL REGISTRATION OF RETINAL IMAGES

Registration of multimodal retinal images such as fundus and Optical Coherence Tomography (OCT)
images is important as the two structural imaging modalities provide complementary views of the retina.
This enables a more accurate assessment of the health of the retina. However, registration is a challeng-
ing task because fundus image (2D) is obtained via optical projection whereas the OCT image (3D)
is derived via optical coherence and is very noisy. Furthermore, the field of view of imaging possible
in the two modalities is very different resulting in low overlap (5-20%) between the obtained images.
Existing methods for this task rely on either key-point (junction/corner) detection or accurate segmen-
tation of vessels which is difficult due to noise. We propose a registration algorithm for finding efficient
landmarks under noisy conditions. The method requires neither accurate structure segmentation nor
key-point detection. The Modality Independent Neighborhood Descriptor (MIND) features are used
to represent landmarks to achieve insensitivity to noise, contrast. Similarity transformation is used to
register images. Evaluation of the proposed method on 142 fundus-OCT pairs results in an RMSE of
2.61 pixels. The proposed method outperforms the existing algorithm in terms of robustness, accuracy,

and computational efficiency.

2.1 INTRODUCTION

Fundus photography is based on projective imaging and has been widely used for several years
to detect retinal abnormalities occurring in various diseases such as Diabetic Retinopathy (DR), Age
related Macular Degeneration (AMD)), etc. Optical Coherence Tomography (OCT) on the other hand is
a newer modality which enables cross sectional imaging and is used to detect and localize pathologic
changes within the retinal layers. A recent study[35] has shown that using fundus images to diagnose
diabetic macular edema (DME), a serious condition requiring intervention, led to both false positive
and negative results whereas OCT images provided the true condition. The study concluded that fundus
images alone may not be a sufficient for retinal screening. OCT also provides unambiguous evidence
for AMD which is marked by the appearance of Drusen in between the RPE and ISOS layers of OCT
whereas they may or may not be visible in fundus image. Diagnosis of Glaucoma using the optic cup



to disk ratio is also clearly detected from OCT than fundus image. In the proliferative stages of DR and
Retinopathy of Prematurity (ROP) where vessels are affected, fundus images provide clearer evidences
as against the OCT. Thus, integrating information by registration of OCT-3D and fundus is of interest.

Multimodal retinal image registration is a challenging task[1][7] due to the many factors. 2D (color)
Fundus images can be acquired with a wide field of view (FOV) with good clarity for vessels. 3D
(greyscale) OCT in contrast can capture a much smaller FOV, is quite noisy due to the coherence phe-
nomenon that underlies image capture and has poor clarity for vessels. Thus, extraction of reliable
landmarks for registration from both modalities is difficult. Yet, existing methods rely on establishing
correspondence between corners or junctions in the 2 images.

We propose an iterative solution for registering fundus images to an OCT volume. The key contri-

butions of the proposed solution are:

e No requirement for accurate structure (vessel/OD/macula) segmentation or landmark such as cor-

ner detection.

e An adaptive and efficient landmark detection method which is capable of handling low FOV

images.

e Feature-based registration which overcomes the noisy nature of OCT data and aids handling cross

modal data.

2.2 RELATED WORK

Two approaches are popular in registration literature: area based and feature based. Area based
methods operate directly on image intensity values of a specific region or entire image without deriving
structural information. This approach follows a typical pipeline of choosing a similarity measure and
maximizing it with an optimization method to obtain the desired transformation model. Feature based
methods rely on few salient points/features which are prominent in both the images and solving the
correspondence between them.

Registration methods have been proposed for both OCT-fundus image pairs and Fluroscene fundus
angiography-fundus (FFA) image pairs. FFA provide high contrast view of blood vessels due to the
fluroscent dye used in imaging. Both blood vessel ridges [23] and vasculature network [12] [28] have
been used as features for registration of OCT-fundus image pairs. Similarity metrics based on pixel
distance [23] or similarity between vessels [12] and local similarity [28] have been proposed. A coarse
registration by brute force search [23][12] is followed by refinement using ICP algorithm[23] or higher
order transform modelling [12][28].

Reported methods [11][7][1] for FFA and fundus registration are mostly feature based. Popular
landmarks are Harris corners [11] [7] or junctions [1]. Features include SIFT [11], orientation infor-

mation [7] and a series of step patterns [1] around each obtained landmark. The extracted features are



matched using bilateral matching [11][7] or nearest neighbour technique [1] and the final transformation
is estimated using an affine model [11][7][1].

The limitation of methods in [23][12][28] comes from their dependence on vessel structure as a key
feature. While this is relatively easy to extract in fundus images, it is not so in OCT due to the noisy
nature of OCT. While Harris[11] [7] and junction [1] detectors perform well on FFA and fundus images,
they are unsuitable for the task at hand given the noisy OCT images. Our framework tries to solve these
problems by finding landmarks without the need of accurate structure localization. MIND features are
chosen so as to nullify the problem of noisy nature of OCT and complementary information provided
by both modalities.

(a) Image taken from LD dataset

(b) Image taken from PD1 dataset

Figure 2.1: Sample images of both macula and OD centric.

2.3 METHODOLOGY

The proposed method consists of the following modules: pre-processing and registration module.
Pre-processing includes generating 2D OCT en-face images from 3D OCT volumes and illumination
correction for OCT and fundus images. The registration module finds landmarks and registers images in
an iterative manner. The MIND descriptor is extracted around each landmark and features are matched
using Nearest neighbour technique. The obtained matches are finaly used to derive the transformation

parameters.

10



2.3.1 Preprocessing of images

2.3.1.1 OCT-enface creation:

The 3D OCT volume is converted to a 2D OCT enface (see fig:2.2). The variance of the voxel values
along columns (Y-axis) of all slices is computed for this purpose. The variance measure is chosen for
better visualization of vessels given that there is increased variability of vessels and background across
the Y'-axis. The final obtained 2D OCT enface is used for registration.

2D OCT enface

3D OCT Volume

Figure 2.2: 2D OCT en-face creation

2.3.1.2 Illumination correction:

Images suffer from non-uniform illumination and hence this is corrected using the luminosity and

contrast normalization method proposed in [18]. Here, the image is modeled as:
I(.I,y) :T(:c,y)*L(x,y)—i—C(x,y) (2.1)
where T'(z,y) is the true image, I(x,y) is the observed image, L(z,y) and C(x,y) are multiplicative

and additive components. The recovery of the true image is based on estimation of the L(x,y) and

C(z,y) components. Hence, the correction of observed image I(z,y) can be obtained by:

~

I(.’E,y) — (xa y)
Clx,y)

T(x,y) = (2.2)

2.3.2 Registration Algorithm

The schematic of proposed registration method is shown in the fig:2.3. This is an iterative approach
wherein the registration error is minimized with each iteration. Initial registration is performed with
roughly initialized landmarks which are updated in each iteration. Unlike existing methods, the land-

marks do not require any accurate structure localization/segmentation. The details of method is pre-

11
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Figure 2.3: Flow diagram for proposed registration framework

sented next. In our work, the enface OCT is used as floating image and registered to the reference

fundus image.

2.3.2.1 Landmark Initialization:

Rough initializations of both OD and macula are shown in fig:2.4. A circular Region of interest
(cROI-red) is detected and a circle slightly larger than this cROI-green is initialized. The points of
intersection of this circle with vessels are considered as initial landmarks for registration. cROI can be
the optic disc (OD) or macula depending on the imaging protocol. In order to find cROI from a fundus
image, the OD (macula) boundary is detected by finding points of local maxima (minima) of intensity
values whereas for an OCT en-face image, OD (macula) boundary is detected by finding points of local
minima (minima) of the intensity values. These points are clustered and a best-fit circle is found for the
boundary of largest central object. Let C'y (C,) of radius Ry ([2,) be the circle of fundus(oct). A rough
vessel map I, ¢(Iy,), is obtained by thresholding the ROI images and thinning it to 1 pixel. The points
of intersection of the I, ¢(1,,) with the circle C'r(C,) are identified as rough landmarks Py (F,).

Figure 2.4: Rough landmark initializations (marked in blue)
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2.3.2.2 Feature based Affine registration

Feature extraction:

The MIND descriptor[16] is chosen to represent landmarks. MIND is based on the idea of image
self-similarity. The assumption is that a local image can be approximated by considering the similarity
between all small patches in the image. This approximation aims to extract the distinctive structure in a
local neighborhood, which is preserved across modalities. MIND is computed as follows:

1 D, (I
M(I,z,r)= —ea:p(——p( 3,2 +7)

n V(z,r) ) 2.3)

where D), is the distance measure between two voxels x and x +r, r defines the spatial search region,
V' is variance estimate and n is normalization constant.

A patch of size W x W is extracted around each landmark from the enhanced image /;(/,). Ro-
tational invariance is achieved by rotating the patch to dominant direction found from Histogram of
Orientation Gradients(HoG) prior to the the descriptor computation. In our experiments, 12 bins were
chosen for HoG computation and for the descriptor was computed over a patch of size W = 12. The

resultant descriptor was vectorized (144 dimensional) to form a feature vector M f(Mo).

Feature matching and Outliers rejection:

Figure 2.5: Point correspondence after outliers rejection

Given two sets of features My, M, derived from the fundus and OCT images K-nearest neighbor
search using normalized Euclidean distance metric was used to match them. Here K is chosen to be
3. So for each feature in set My, we obtain K = 3 neighbors in set M,. The normalized Euclidean

distance metric between i feature in set M rand j th feature in set M, is given as

dist(Mig, Mjo) = || My — Mjol[3 (2.4)

The first set of outliers are rejected from the obtained neighbors by matching with dominant orien-
tation of the landmark patch. Random sample consensus (RANSAC) [8] with similarity transformation

is applied to all remaining matched pairs (see fig:2.5).
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Transformation estimation

The number of matched point pairs obtained from RANSAC is constrained by the number of de-
tectable vessels and FOV of the floating image which is smaller than that of the fundus image. Given
the anatomy of the retina, on average, 8-10 matches are obtained for each image. In our problem the
retina is a curved surface that can be approximated with higher order model and OCT is a flat projection
with very less FOV. Thus, the transformation between two modalities can be assumed to be locally rigid
with possible deformations as scaling, translation, rotation. Hence, a similarity model is used for the

Transformation function.

2.3.2.3 Landmarks updation

If the registration error from the initialized landmarks is greater than threshold(¢h) then landmarks
are to be updated. This is done in two steps. One is at global level and other is at local level.
Global level update:
At the global level, landmarks are updated by appropriate scaling of Ry and 7, Let their ratio be Q r.

Qr = R¢/R, (2.5)

Since the OCT image is taken to be the floating image, the aim is to update R, such that landmarks
extracted from the circle with the updated radius R, results in a registration error less than th. The
registration error is taken to be the sum of absolute distance between points (SADP). SADP is calculated
from two thinned vessel sets 1,7 (Iy,) by finding matched point pairs in I, for every point in I,y using
Nearest Neighbor search algorithm.

Figure 2.6: Local refinement after updating radii

Local level update:
For every global refinement step, the intersection points P, are locally refined in the angular direction.
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This local refinement is important because skeletonization of vesse]ls can lead to perturbation of land-
marks (see fig:2.6). The landmark points are updated by making use of the principle that given two
circles Cy and C, for a fixed angle, the ratio of their radii () g) to the corresponding arc lengths (Q) 4)
are equal where the arcs are defined to be between every pair of successive points in Py, P, subtend-
ing angles 6;, 7 = 0,1,2..J. The updation rules for global and local refinement are shown below in

fig:2.7. After updating 6;, the intersection points are also updated with appropriate angular shifts. This

Global updating Local updating
[1] for: B, + Rato 2R, for: 0 — 0,100,
[2] Compute @ + Ry/R, / re— Ry+e
[31 Local refinement of landmarks ro+— R, +e
[4] Affine Registration Compute Q
[5] Error « SAD if: Q> Q then: 0+ 0+1
[6] R, +— R, + 1 and go to step 1 else: 0 — H'— 1
[7] if: Erroris increasing then: R, « B, —1 | Untill Q-Q) equals 0
(8] end for end for

Figure 2.7: Global and Local updation rules

is done until the criterion of Qr — Q4 = 0 is satisfied. The ¢; updated subject to it being in the range
that landmark update is bounded.

min( Omaz) Where 6,4, is the upper bound for radial shift of landmarks. This is done to ensure

2.4 DATASETS

Three datasets were considered for evaluation of proposed registration algorithm.

1) PD1[12]: a public dataset, consisting of 22 pairs (Fundus-OCT) of which 17 pairs are of macular
region and 5 pairs are of OD region with a variety of retinal diseases. Each OCT volume is of size 650
x 512 x 128 voxels and the fundus image is of size 1200 x 1143 pixels.

2) PD2[25]: a public dataset, consisting of 100 pairs (Fundus-OCT) of macular region, with no abnor-
malities. Each OCT volume is of size 650 x 512 x 128 voxels and the fundus image is of size 1200 x
1143 pixels.

3)LD: a locally sourced dataset, consisting of 42 pairs (Fundus and OCT) of OD region obtained. 20
pairs are of glaucoma cases and remaining are normal. Each OCT volume is of size 650 x 304 x 304

and the fundus image is of size 4288 x 2848 pixels.

2.5 EXPERIMENTS AND RESULTS

The MIND descriptor was computed with the following parameters {o = 2, N = 6} where o is the
variance estimate which controls the response of feature and V is the neighborhood of spatial search.

For evaluating registration in every iteration the threshold th was chosen to be 5 pixels. The number of
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iterations depends on the error (SADP). If the SADP converges (less than 5 pixels) the least registration
error (SADP) among next 5 iterations is considered.

Code was written in MATLAB 2016a and executed on a 2.5GHz Intel Core i5 desktop with 8GB
memory. The average execution time for an image pair was 10.12 seconds, of which 5.8 seconds was

for en-face creation and the remaining time was for registration.

Figure 2.8: Sample registration results

Accuracy of registration is evaluated by Root mean square error (RMSE), Mean median error (MME[7]),
Mean maximum error (MAE[7]) and Sum of Absolute Distance between points (SADP[12]). Ground
truth control points were manually marked mostly at reliable positions such as junctions of thin and
thick vessels for measuring RMSE, MME, MAE. SADP was calculated from two sets of thinned vessel
maps I, ¢(1,,) by finding the matched point pairs using Nearest Neighbour search Algorithm.

SADP = " |d(zi, )| /N (2.6)
=1

where x and y denote vessel pixels extracted from fundus image and OCT enface images, respectively;
d is the distance between ith observation of = and y; which is the corresponding closest point in y and
N is the length of vector z. Table 2.1 shows the average SAD, RMSE, MME, MAE over all datasets.
It is to be noted that for a total image set of 142 pairs 90.22% pairs are successfully registered with
a average RMSE error of 2.61 pixels. The performance metrics of other methods are given below
table:2.2. Method[1] implementation is done and results are reported on LD dataset and method [12]
results are mentioned in paper. SDP metric is only mentioned in the paper. In comparison with the our
results it is observed that proposed algorithm performs exceptionally well considering the amount of
data that is tested.

Next we report results of test of robustness of the proposed method for rotation invariance and scale
sensitivity. This was tested by applying rotation and scaling to the floating images.
Scale change Test:
Floating images were up-sampled by a factor ranging from 1-10 and the results were registered to the

fixed image. A registration error of <5 pixels is considered as perfect registration (or 100%). The
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Successful registration

4
Scale factor

Figure 2.9: performance with scale change

success rate is proportionately reduced by 10% for an increase in error by 5 pixels. The plot in fig:2.9

indicates that the proposed registration is robust to a scale change of up to 1.6.

Rotation invariance Test:
Floating images were rotated by 0°-180° degrees in steps of 30°. The registration was found to be robust
for all angles in the tested range. This is to be expected as the patches used for feature computation are

pre-rotated to dominant orientation. This makes the features invariant to rotation.

Table 2.1: Registration performance on datasets

Datasets Successrate % SDP RMSE MME MAE
PD1 86.66 392 3.12 3.83 6.17
PD2 96 421 3.70 3.93 5.39
LD 90 1.51 1.01 2.22 2.46
Average 90.22 321 261 3.32 4.67

Table 2.2: Registration performance of existing methods

Method Dataset SDP RMSE MEE MAE
[12] PD1 6.014+1.82 (stage-1) - - -
[1] LD 4.8 3.19 432 7.33

2.6 CONCLUSION

Multimodal registration is a challenging task as the images are varied by FOV, noise, contrast etc.
These differences affect the registration in terms of finding landmarks and extracting features. These
problems are overcome in our proposed registration method by minimizing the registration error by
simultaneously refining the landmark positions in an iterative framework. Unlike earlier methods, the

proposed method does not require precise ROI/vessel segmentation which is usually challenging. The
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choice of MIND descriptor ensures robustness as the extracted features are insensitive to modality, noise
and contrast across modalities. The proposed algorithm was found to achieve high registration accuracy

and outperform existing algorithms when evaluated over three datasets i.e. 142 image pairs.
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Chapter 3

MULTIMODAL LEARNING OF RETINAL IMAGES

Images of fundus are widely used in screening for eye diseases due to their fast acquisition and
cost-effective nature, compared to Optical Coherence Tomography (OCT). However, OCT imaging has
been found to be more reliable in disease identification as compared to fundus images[35]. The com-
plementary nature of the two modalities, cross sectional imaging (OCT) and optical projection imaging
(fundus), provide nearly orthogonal sources of information. Harnessing features from both these modal-
ities can thus help in designing more reliable screening systems for medical diagnosis. However the high
setup cost associated with OCT is a deterrent for its inclusion in CAD-based screening systems. Hence,
an alternative is to consider OCT data along with fundus images for training but assume only fundus
images to be available during screening (i.e. testing/evaluation). The design of a system trained on the
multiple modalities but with missing modalities during evaluation time is an active area of research. This
problem is often framed as a missing data problem and several deep generative architectures have been
proposed as a possible solution. These assume availability of tuples of data which are difficult in medi-
cal imaging. Hence the application of such generative models is limited. To resolve this we propose an
approach to OCT assisted fundus detection systems. The proposed method improves the performance
of Retinal Nerve Fiber Layer Defect (RNFLD) detection rate on fundus with the help of OCT. The main
contribution in this work is a novel loss function which combines the adversarial loss in learning joint

information between fundus and OCT samples and the distinctiveness of the two modalities.

3.1 INTRODUCTION

Fundus imaging has been widely used to detect retinal abnormalities in diseases such as Diabetic
Retinopathy (DR), Diabetic Macular Edema (DME), etc. OCT on the other hand detect and localize
pathological changes within the retinal layers as there is depth information associated with every point
on retina. Recent studies[35][30] have reported high sensitivities for OCT imaging compared to fundus
in diagnosing DME, Glaucoma and retinal layer irregularities. These studies suggested that fundus
imaging alone may not be a sufficient for retinal screening studies. On the contrary, in the proliferative

stages of DR and Retinopathy of Prematurity (ROP) where vessels are affected, fundus images provide
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clearer evidences as against the OCT. This calls for the requirement of multiple modalities for improving
medical diagnosis of patient. Thus, integrating information of OCT and fundus is of interest. In this
chapter we propose an approach to OCT assisted fundus detection system. In our proposed method we
aim to improve the detection of RNFLD in a given fundus image which is one of the key and early

symptoms of Glaucoma. The presence of Glaucoma leads to structural changes of optic disc (OD)

Figure 3.1: Fundus OCT association

and damage to Retinal Nerve Fiber Layer (RNFL). In a fundus image this loss appears wedge shaped
gradient radiating from OD. RNFLD is a challenging task because the difference between background
and foreground intensities is very subtle. In an OCT, RNFLD is usually observed as a thinning of RNFL
(first layer among 7 layers) in a given OCT slice. Thus the thinning of RNFL layer in OCT corresponds
to contrast difference in fundus image (see fig:3.1).

3.2 RELATED WORK

Various methods are proposed for RNFLD detection from fundus images. A typical pipeline for RN-
FLD detection on fundus image consists of rough Optic Disc (OD) boundary detection followed by fea-
ture extraction around OD and classification. In [22] rough OD boundary is obtained by morphological
processing and features such as intensity[22][20], Local Binary Patterns (LBP)[20][31], Entropy[31],
and Directional Differential Energy (DDE)[31] are extracted at different radii around OD. The features
that are computed are used either for classification[20][22] or for obtaining finer boundary around OD
by passing features to a Recurrent Neural Network (RNN)[31]. The obtained boundary is further an-
alyzed for classification of the region into Normal/RNFLD patch. The limitation of above mentioned
methods are their dependence on OD detection and their inability to capture the radial/angular degrada-
tion of RNFL within a given patch. The performance reported by above mentioned methods are on very
limited dataset which limits the scalability of the algorithms to screening systems.

Recently OCT has shown its potential in accurate detection of abnormalities. [13] showed an at-
tempt for glaucoma assessment in screening systems considering RNFL thickness measurement from
OCT. The obtained results are promising compared with fundus. However using fundus for screening
systems is prefered over OCT as fundus is cost effective. In [29] fused information obtained from fun-
dus image and RNFL thickness map from OCT is used for predicting RNFL thickness from fundus
image patch. This is done by estimating the correlation coefficient using regression models. With the
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Figure 3.2: Block diagram for the proposed method

trained regression model there is no requirement of OCT for generating RNFL thickness map. We con-
sider the case of detection of RNFLD as a classification problem. We assume the availability of paired
OCT and fundus images during modeling (training) while the absence of OCT during validation stage.
This is considered challenging because missing of one modality at validation stage has been shown to
significant drop in performance [15].

There are several methods proposed to learn joint information for the missing modalities problem.
Missing modality is well defined problem is deep learning based systems. [33] used Deep Boltzmann
Machine for learning a generative model to generate missing modalities whereas in [15] missing modal-
ities are handled by mean and variance filling to avoid sudden drop in performance of system. The
main drawbacks of above methods is requirement of enormous amount of paired data for generating the
missing modalities and the certain drop of performance [15] claims that there will always be a drop of
performance which cant be avoided though missing modalities are replaced with mean/variance filling.

Recently few Domain Adaptation (DA) based methods have been proposed. A DA based domain
independent representation in [34] which uses adversarial loss for adapting source to target samples.
[10] [32] proposed an architecture to simultaneously learn a domain-invariant representation and a task-
related network in a single Deep Learning (DL) architecture. With this as motivation we propose a deep
multimodal architecture for learning joint representation from fundus image and OCT. In the proposed
method we learn representation from fundus image and OCT by reducing the variance between the input

modalities using adversarial loss function along with retaining modality specific input embeddings.

3.3 METHODOLOGY

The proposed method consists of following stages: (See fig:3.2). Preprocessing of OCT, registration
and patch extraction followed by classification using a Deep Convolutional Neural Network (DCNN).
Pre-processing includes generating 2D projection of OCT (enface) and extracting RNFL thickness map
from 3D OCT volume. 2D projection of OCT (enface) is registered to fundus for image-image learning.
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The patches are extracted from the registered images and given as input to deep CNN for classification
into Normal / RNFL Defect (RNFLD) patch.

3.3.1 Preprocessing OCT volume

OCT-enface creation

Processing 3D volumes in computationally intensive. Hence volume is converted into 2D enface
representation. This is done by computing variance of all voxel values along columns(Y-axis) in all
slices. It is observed that within a slice across Y -axis there is maximum variability of vessels and
background. Earlier approaches computed sum or mean for enface generation. We chose variance to
provide high vessel definition. The definition of vessels is important for accurate registration of fundus
image and 2D OCT enface.

2D OCT enface

3D OCT Volume

Figure 3.3: 2D OCT enface creation

RNFL thickness map creation:

RNFLD is caused by thinning of the RNFL layer and this layer is of interest for RNFLD hence
a 2D RNFL thickness map is generated from 3D OCT volume. This is computed from slices of 3D
OCT volume by analyzing the intensity profiles along each column of the OCT slice. The width of the
RNFL layer in every column is projected on 2D image as thickness value which is considered as RNFL
thickness map. The complete description of the method is described in [13].

Registration and patch extraction

Registration

Our previously developed multimodal retinal registration algorithm [17] was used for registration
of fundus and OCT enface images. The registration step is to enable the DCNN model to learn the
correspondence between modalities during training. Registration is done by choosing fundus as the
floating image and OCT en-face as the fixed image. The estimated transformation parameters are applied

to floating image (fundus) and a Region of Interest (ROI) bounding the fixed image(OCT) is extracted.
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patch extraction

Patch type | Label (/1,/2)
Abnormal | 00
Abnormal | 01
Normal 11
Normal 10

Figure 3.4: Left: shows ROI in the given
fundus image along with the ISNT sec-
tors and labels derived from patch [y, lo
are overlaid. Right: Result of rotation ap-
plied to the image on the left.

Table 3.1: Ground truth labels (per patch)

Our method works at a patch level. Patches of fixed size 152x 152 are extracted from registered pairs
of OCT thickness map and fundus images. Clinically RNFLD is reported by dividing the region around
OD into sectors S-Superior, I-Inferior, N-Nasal, T-Temporal (see fig:3.4,left). RNFLD typically [27]
occurs in either Superior(S)/Inferior(I) or both regions. A square patch is extracted using vertices P1-P4
as in (see fig:3.4,right). This is subdivided into 4 patches according to I,S,N,T sectors. Ground truth
markings for each patch are assigned under supervision of expert considering the spatial information

i.e. by observing RNFL trend within the patch.

Typical RNFL patterns observed in a given patch:

o RNFLD appears only in S,I regions. In remaining sectors it is absent[27]
e In RNFLD, the loss typically starts from OD and progresses towards the periphery

o In normal cases, RNFL thickness decreases with distance starting from OD[26]

For assigning labels we hypothetically divide the patches into two circular regions as shown in
fig:3.6a,right. Let /; be label at limited ROI (inner circle) and [o be label at extended ROI (outer cir-
cle) in a given patch.In normal cases RNFL layer thickness decreases with distance hence we label the
patch (1,X) where X€0,1 where as for RNFLD patch since loss starts from OD to outwards the label
assignment for patch is (0,X) where X€0,1.

3.3.2 Overview of Deep Architecture

Our architecture (see fig:3.5) has three deep networks running parallely 1) Deep convolutional network-
fundus (D) 2) Deep convolutional network- OCT (D,)) 3) Deep convolutional network-modality (D).
In the proposed architecture, there are separate identical architectures training on OCT (D,) and fun-

dus samples(D ). These architectures aim to classify patches into normal/RNFLD. During training we
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Figure 3.5: Proposed Deep Multimodal Architecture

freeze some part of network parameters and some are shared (joint learning) between two modalities.
Joint learning is introduced by adding D,,, objective function in the classification objective functions of
Dy and D, networks. D, architecture aim is to discriminate the input patches of OCT and fundus. Our
overall training objective is to learn a model which is robust to missing modalities. The details of each

network and how robustness is achieved are explained in later sections.

Deep convolutional network- fundus (OCT) D, (D,)

The architecture of Dy (D,) is deep convolutional neural network (CNN) for classification of fundus
(OCT) into Normal/RNFLD patch. In our implementation a variation of VGG architecture model is
used for 2D CNN. It has 8 convolutional layers, 2 fully connected layers and 1 sigmoid layer. For
training D, fundus patches are used along with labels. Similarly for training D, OCT patches are used

along with labels.

Deep Convolutional network- modality (D,,,)

The D,, network discriminates the input modality of the sample i.e. fundus/OCT. We train two
models Dy and D, on paired set of samples along with their corresponding labels. Labels in this case
are of fundus or OCT. The output activations of convolutional layers of D; and D, networks capture
inherent representation of modalities. These activations of the convolutional layers (upsampled a4,a6,a8

obtained from output of Cy4,(Cs,Cg) are given as input to D,,network. Our D,,, architecture(shown as
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box 3.5) has 4 convolutional layers, 1 fully connected layer and 1 sigmoid layer. The complete system

is obtained by adding D,,, D, networks to D as shown in 3.5.

3.4 TRAINING DEEP ARCHITECTURE

Offline training

Before Online(actual) training, we pre-train Dy and D, networks using fundus and OCT samples
separately along with ground truth labels. The main idea behind this is to ensure models are well fitted
to their respective modalities. This is needed as we are not only trying to improve performance on
fundus image but also preserve the modality specific learnings. Let Loc(f) ( and Loc,(f) be training
losses corresponding to Dy and D, which are to be minimised during offline training. The best fit

parameters are obtained by minimising loss functions using Stochastic Gradient Descent (SGD).

Online training

From the obtained pre-trained models we freeze first few convolutional layers of Dy and D, net-
works and perform online training over remaining layers with the addition of D,, network as in (see
fig:3.5). For training D,,, we provide resampled outputs from Cj i.e. a;, 1€4,6,8 activations as input. We
incorporate modality classification loss Lp;(#) (from D, network) into RNFLD classification training
objective L¢f(0), LCo(#) (from Dy and D, networks). The overall training objective to be minimized
is given in equation below.

Leti (©) = Lei (©) — L (©) 3.1

During training our aim is to minimize the loss function in eqn: 3.1. These functions aim to minimize
RNFLD classification loss L¢f(L¢,) and increase modality classification loss Ly, during process of
training. The increase in modality classification loss corresponds to making inputs least discriminative.
Since we have freezed initial layers during training process the initial modality specific learnings are
preserved. Coming to the training strategy the loss functions L¢y¢/Lcy, are optimized by alternative
training. In alternate training the multiple loss functions are minimized by separate optimisers for
each. In our method we performed joint learning by alternately calling each optimiser, which means
we are transferring information between modalities by means of discovering the commonality across
the modalities.
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3.5 DATASETS and IMPLEMENTATION DETAILS

Dataset details

The dataset details are mentioned in table:3.2.
Local dataset (LD):
The OCT-fundus paired dataset is obtained from a Local hospital (Anand eye hospital, Hyderabad). The
dataset contains 45 image pairs out of which 25 are Glaucoma with most of them are early, moderate
and advanced with focal wedge shaped RNFL loss and the remaining 20 are normal cases. Each image
set contains fundus and 3D OCT volume where Fundus image is of size 3000 x 2000 and OCT volume
is of size 304 x640x304.

Private dataset (PD): The dataset is obtained from authors of [20] consists of 25 fundus images (for
RNFL defect detection). It is mentioned that sector-wise decision on the presence of RNFL defect was

collected from a glaucoma expert.

Table 3.2: Datasets used in evaluating proposed method

Dataset | Type | Normal | Glaucoma | Total
LD Paired 20 25 45
PD Fundus 0 25 25

Parameter selection and Implementation details of the proposed method

Training-validation-test data is generated from 45 paired samples from LD dataset. Data augmenta-
tion is done by applying transformations to patches extracted from training images(30). This includes
rotation at angles - (0°-180° in steps of 30"), vertical and horizontal flips, Gaussian noise addition, log
transform (Y correction), scaling 2-4. Training-validation-test sets are created with 960-300-312 sam-
ples by randomly sampling in 1:1 ratio of normal and abnormal. In our proposed architecture D /D,
architecture consists of 8 Conv layers of filter size (5,5) and 2 Fully Connected (FC) layers. The obtained
probabilities are converted to class labels by applying sigmoid activation function. The D,,, architecture
takes input from Conv-4,6,8 layer outputs and it has architecture similar to D ¢/D,, succeeding the Conv-
4 output. The training losses (Lcy;(#)) are chosen to be binary cross entropy and is minimized using
SGD with learning rate chosen 0.0001 for finding network parameters. Before training the network,
the patches are normalized between 0 and 1. We used Lasagne library with Theano backend for our

implementation and system is trained using an Nvidia TitanX GPU.
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3.6 RESULTS

The effectiveness of proposed method is analyzed using the following evaluation metrics: Sensitivity,

Specificity, Receiver Operating characteristics (ROC), Area Under Curve (AUC).

Patch level predictions

A test set of 312 patches from LD dataset are used for validation. ROC is plotted (see fig:3.6a)
by varying the threshold on class probabilities obtained before applying sigmoid activation. From the
obtained ROC we can infer a high sensitivity of 91.99% is achieved at a specificity of 90.83% with
AUC 0.92. We compare our method by performing validation on the dataset obtained from [20]. The
specificity is reported for the sensitivity mentioned in [20]. The results are tabulated in table:3.3. The
results in [20] are reported only on 10 images as they have used remaining images (15) for training their

architecture.

Table 3.3: Patch level performance of proposed method on datasets

Method Dataset | Data size(Np/Ni) | SN | SP Acc
Proposed method LD 312% 0.80 | 0.96 | 0.924
Proposed method PD 375/25 0.80 | 0.97 | 0.89

Joshi et al[20] PD 150/10 0.80 | 0.93 | 0.78

*number of patches; Np denotes the number of patches, N; denotes number of images.
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Figure 3.6: ROC curve for predictions at the (a) patch level and (b) image level

Image level predictions

Image-level RNFLD is analyzed by varying thresholds on the number of abnormal patches detected
in a given image (see fig:3.6b). We reported our results and ROC curve on PD(25 images) obtained from
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[20]. The results are tabulated in table:3.4. However for comparing image level performance mentioned

in [20] we computed Precision and Recall for 25 images as per paper. The precision is 0.92 and recall

0.93. In the paper the reported precision and recall values are found to be 0.91.

Table 3.4: Image level predictions on datasets

Dataset | No of images SN SP Acc
LD 10 0.9398 | 0.9289 | 0.9362
PD 25 0.8795 | 0.8928 | 0.8868

Average NA 0.9096 | 0.9108 | 0.9115

3.7 EXPERIMENTS

Various experiments are performed to understand the effectiveness of the proposed method. The

experiments are described in detail in later sections.

Performance improvement on fundus samples
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Figure 3.7: Performance improvement on fundus samples with proposed method (Loss vs epochs)

To understand the performance improvement over fundus samples, we plotted validation loss versus
epochs (fig:3.7) for three cases viz. 1) (Train & Test) with fundus samples using D network 2) (Train
& Test) with OCT samples using D, network 3) Proposed method (as described in section 3.3.2) - test
with fundus samples. From fig:3.7 it can be seen the loss is less(blue) in proposed method compared
to training on fundus samples alone (green). When compared these curves with the validation curve of

OCT(red) the proposed method is observed to perform well.
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Multimodal training & testing

Traditional Multimodal learning:

In traditional multimodal learning method [24] two separate modality specific models are learned and
the features obtained at FC layers are concatenated. We perform this test on our modalities and results
are reported (see table: 3.5). The results are shown to work well if both modalities are present at the test

time. When tested only with fundus/OCT the performance is deteriorated.

Proposed method):
We trained the classifier using samples of fundus and OCT for our proposed network. Our method learns

model by transferring information across the modalities in a away without losing the modality specific
identities. This improves accuracy of fundus samples to 8-10% compared to performance reported on
system trained on fundus samples alone (monomodal training). (Mono-modal training of sub-network
D with fundus samples achieved accuracy is 83.2 % and training of sub-network D, using OCT sam-

ples achieved accuracy is 95.2%.)

Table 3.5: Patch based results (Accuracy) of Multimodal modal training & testing

Training set/Test set Test with OCT | Test with fundus | Test with OCT and fundus
Traditional multimodal architecture 0.5671 0.66018 0.9557
Proposed method 0.8941 0.924 NA

Choice of input patch sizes
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Figure 3.8: patch size vs performance (accuracy) on fundus

Choice of size of input patches plays an important role in capturing information. If the patch is
chosen very limited around OD the network fails to capture RNFL pattern. To derive the optimal patch
size we trained on different patch sizes i.e. at various radii around OD. Fig:3.8 indicate the performance
of our system at various patch sizes. It is observed that there is decrease in classification performance

when trained on samples extracted at limited ROIL. In these patches context information about RNFL
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trend is absent, whereas if we observe in extended ROI’s the spatial information is captured well which

resulted in high accuracy.

Effect of choice of activations
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Figure 3.9: Performance (Accuracy) vs epochs (a) D,,, performance and (b) D performance.

The choice of activations that are input to D,, play a key role in improving the performance of the
system. Each activation obtained from the output of convolutional block serves as distinct feature of
particular modality. We now investigate how the choice of adapted layers affects the performance of our
system. For this we perform our method by changing the inputs to the D,,.

fig:3.9a shows how activations input to D, effects the overall performance of the system. As we
observe from D,, curves, the sudden drop in performance indicates the starting point from where in-
put modality samples are becoming least discriminative. This corresponds to increase in classification
performance in D (see fig:3.9b).

It is observed that activations sampled from earlier layers (C2) are more discriminative, whereas acti-
vations sampled from later layers are less discriminative. This has conversely impacted on classification

performance (see fig:3.9b)

3.8 CONCLUSION

Detection of RNFLD from fundus images is a challenging task as pattern is very complex and subtle
in nature when compared with background. To address this problem we presented multimodal learning
algorithm which allows one modality to be unavailable during validation stage. The proposed approach
improved RNFLD classification over fundus than traditional monomodal training. The main novelty of
the method lies in learning model between fundus images and OCT without losing the original identity
of the fundus images. The adversarial loss introduced in training objective ensure that model is robust

to input modality given at validation stage without worrying about missing modality. The proposed

30



method performs well across datasets on patch and image level which depicts the robustness of obtained
model. It is clear from experiments that the proposed method detected RNFLD more accurately than the
existing methods considering the size of test set etc. The results have demonstrated that the proposed
system can be used in automated detection and grading of RNFLD.
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Chapter 4

ANGIO-OCT FOR ASSESSMENT of GIAUCOMA

4.1 INTRODUCTION

The study of progression of disease with respect to particular modality is critical in order to develop
efficient detection algorithms. As mentioned in section:1.1.3 A-OCT is a non-invasive flow imaging
technique for capturing micro vasculature of retina. It uses Split Spectrum Amplitude De-correlation
Algorithm to compute and map the flow across the OCT volume. The typical features that are visualized
through A-OCT scan are Capillary Density, Nerve Fiber Layer (NFL) thickness. Several clinical studies
[2] [21] reported that loss of capillary vessels, NFL loss during early stages of Glaucoma. In this section
the trends of CD (See figure:4.1), NFL thickness in Normal and Glaucoma are explored by studying the
following:

1. The possibility of presence of Glaucoma correlating with Capillary density, along with sectors
that are affected.

2. Extent to which loss of capillaries are correlated with thinning of RNFL, as Glaucoma is caused
by thinning of RNFL.

3. Modelling CD and NFL in normal retina from OD towards periphery and how the model is af-
fected by the presence of Glaucoma.

4.2 CASE STUDIES

4.2.1 Capillary density of abnormal and normal patients

Glaucoma is characterized by loss of NFL as well as capillary density. Evaluation of CD is limited in
the past modalities because of difficulty in imaging capillaries, whereas with A-OCT it is made feasible.
The purpose of this study is to compare vessel density or Capillary density in normal and Glaucoma

subjects using A-OCT scans.
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Figure 4.1: Normal capillary network flow (left), Loss of network in infero-temporal sector (right)

Materials and methods

52 healthy patients and 24 early Glaucoma are participated in this study. RNFLT measurements are
obtained using scan protocol. Eight RNFL sectors were measured at 3.45mm diameter circle around the
optic disc, and defined in clockwise order for the right eye and counterclockwise order for the left eye
and designated as shown in figure:4.2 as superior nasal (SN), superior temporal (ST), temporal upper
(TU), temporal lower (TL), nasal upper (NU), nasal lower (NL), inferior nasal (IN), and inferior tempo-
ral (IT).

Figure 4.2: Sectors for evaluation of Capillary density (left eye)

Image processing and Analysis
The proposed methodology comprises of 3 stages: (1) extraction of the region of interest (ROI) around

ONH, (2) detection and suppression of thick vessels, and (3) estimation of CD.

Stage-1: Extraction of the ROI around ONH:

The angioflow image (A-OCT scan) has the entire vessel network, where only the capillaries are of
interest to us. Eight sectors with a sector angle of 45 degrees were selected for quantitative analysis and
designated as superior nasal (SN), superior temporal (ST), temporal upper (TU), temporal lower (TL),
nasal upper (NU), nasal lower (NL), inferior nasal (IN), and inferior temporal (IT). The annulus-shaped
ROI is extracted, with the inner edge marked manually by a single operator as a set of user defined

points at the ONH edge and the best-fit circle to these points is found. The outer edge of the annulus
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was chosen to be at a fixed value of 3.4-mm circle diameter around the ONH.

Stage 2: Detection and Suppression of Thick Vessels:

Vessels are detected from the Angio flow enface RPC image using the Bar-Selective Combination of
Shifted Filter Responses method [3]. The method uses a difference of Gaussians (DoG) filter for vessel
detection, and the choice of parameters of the Gaussian determines the thickness of extracted vessels.
The DoG response image was thresholded at pixel value of 30 to obtain a binary mask where all thick
vessels are set to O while others are set to 1. Multiplying this mask with the RPCs Angio flow image
yields the desired image (/¢) figure:4.3 with only the capillary network.

Figure 4.3: Suppression of thick vessels (I¢) (right)

Stage 3: Estimation of CD:
The CD is the ideal measure of capillaries per unit area. I is a binary image, where white pixels
represent capillaries and black pixels represent nonvessel and thick vessel pixels (as they have been

suppressed). The CD was calculated using the following formula:C'D (i) = A;’l“’(g); where i= 1,2,y,8, is

the sector index, IV,,(7) the number of white pixels, and A(i) the area of the i, sector of I. As both
the numerator and the denominator are pixel counts, the CD being reported is a dimensionless value,
which lies between 0 and 1. Observations The mean CD in Glaucoma patients is lower than that in
the normal eyes. There was no significant correlation between CD and corresponding RNFL sector
analysis between normal and Glaucoma eyes except for the ST and IT sectors.The ST and IT sectors
correlated significantly with RNFL thinning. OCT-A demonstrated reproducible results in patients with
early Glaucoma when compared with normal patients. The results of the study suggest that the CD

measurements may have a value in the diagnosis and monitoring of glaucoma.

4.2.2 Understanding topography effect by correlating RNFL and CD

The purpose of this study was to analyse the extent of the vessel (capillary) network using wide-field
montage images of OCT-A in the normal human eyes. In addition, we measured and correlated capillary
density and RNFLT at various distances from the ONH margin in the montage images. Materials
In the current study 50 healthy subjects underwent imaging with OCT-A. For montaging scans of Angio

34



disc (OD centric) and Angio retina (Macula centric) were combined to create a wide-field montage im-
age of the capillary network. Capillary density and RNFLT was calculated at different circle diameters
around the ONH, and their correlation was measured. Image processing and Analysis

Stage-1: Montage creation:

The enface montage image is obtained using online tool Feature-based retinal image registration by Li

Chen[6] which uses vessel bifurcation and crossovers as landmarks, and the transformation type is cho-

sen as rigid. The montage image along with sector markings is shown in figure:4.4.

(7))

==

Figure 4.4: Montage image along with sector markings

Stage-2: Measurement of Capillary density:

To measure CD, The peripapillary region was divided into eight equal sectors, designated as superior
nasal (SN), superior temporal (ST), temporal upper (TU), temporal lower (TL), nasal upper (NU), nasal
lower (NL), inferior nasal (IN) and inferior temporal (IT). RNFLT and RPC density were measured at
various distances (1.5 to 8.5 mm) from the ONH margin. An annulus-shaped region of interest was
marked by manually selected points at the edge of ONH as the inner circle, and the outer edge of the
annulus was taken at 1.5 to 8.5 mm from ONH at different distances. Vessels were detected in the
montage image, using Frangi filter method [9] which computes vessels, based on eigenvalues of the
Hessian. Vesselness maps were computed at 5 scales with varying sigma (r),r = 3, 5, 7 for extracting
the thick vessel and r = 1, 2, 3, 4, 5 for extracting small and thick vessels. The vessel maps obtained
was thresholded at 0.001 to get the final capillary map which was used to estimate the capillary density
(CD). Capillary image (I¢y,,) is a binary image where white pixels represent capillaries and black pixels
represent non-capillaries. The CD at a distance r was calculated by considering a small sector region
between radius r and (r + 1) mm. Here r varies from 1.5 to 8.5 mm from ONH margin (Fig. 2b). The CD
was calculated as: CDr(i)= N,,(i)/A(7) where i = 1, 2,,8 is the sector index, NN, () denotes the number
of white pixels, and A (i) denotes the area of the ith sector region of I. CD was normalized by the
sector area, which lies between 0 and 1. Colour coding (figure:4.6) was done for every sector region,
ranging from dark red to dark blue, indicating maximum and minimum density, respectively, based on

the scale bar.
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Figure 4.6: Color coded representation of CD variation with distance in normal subjects

Stage-3:Measurement of RNFL thickness:

In the intensity profile, along the columns of OCTA slice, the RNFL boundary was marked by the first
abrupt change (from dark to bright intensity) in the ILM layer followed by a large dip in intensity and
RNFLT was determined by computing the distance between these two points for the entire volume (see
figure:4.7). The RNFL at distance r is calculated by considering sector region between radius r and (r+
1) mm, where r varies from 1.5 to 8.5 mm from ONH margin. The RNFLT is calculated as: RNFLr(i) =

mean(Th(i)) where i = 1,2,,8 is the sector index.

. Starting point (Si)

Thi refers to thickness of RNFL and i
refers to column number.

Thi=Si-Ei

Ending point (Ei)

Figure 4.7: Evaluating RNFL from OCT volume
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Conclusion

The mean capillary density and RNFLT are highest at 1.5 mm from ONH margin, and there was a trend
in its decline, in a distance-dependent manner, with the least density at 8.5 mm . Overall mean CD
density correlated significantly with the overall mean RNFLT. The Wide-field montage OCT-A can vi-
sualize expansion of the capillary network, which is useful in obtaining information about various retinal
disorders. The results obtained support the hypothesis that the vessel network could be responsible for
RNFL nourishment.

4.3 EXPERIMENTS

4.3.1 Classification of Glaucoma using CD, NFL as features

The CD and RNFL values that are reported from montage image are considered for classification.
Features (CD/RNFL) are reported individually for 8 sectors. For each of the sector distance (d=1.5 to
8.5) varied CD is also noted. This forms 8*8 feature matrix. Two types of evaluations are performed
and classificiation results are evaluated by computing Accuracy, Sensitivity(SN), Specificity (SP). The
formulae are as mentioned below where TP: True positive, FN: False negative, TN: True negative, FP:

False positive.

TP
itivity = —————— 4.1
Sensitivity TP+ FN 4.1

e TN
Speci ficity = TN+ FP 4.2)

TP+ TN

A = 4.3
Y = EN Y FP+ TP+ TN (4.3)

Classification considering all sectors:

We performed classification by considering all the eight sectors CD/RNFL values as feature vectors.
The 8*8 feature matrix is vectorized to form 64 dimensional vector. The results are reported as shown
in table:4.1. We have reported individual performance of RNFL and CD alone.

Table 4.1: Feature selection based performance

Features  Accuracy SN SP

CD alone 0.9121 0.8911 0.9356
RNFL alone  0.8269  0.8750 0.8243
CD+RNFL 0.9213  0.9087 0.9322

Classification considering specific sectors:
Through case studies it is shown that Glaucoma is affected only in ST,IT regions. As montage is directed
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towards Temporal(Upper/Lower) region we excluded the regions (TL,TU) in performing classification
with RNFL and CD as features. The results are reported in Table:4.2.

Table 4.2: Sector wise performance

Region Accuracy SN SP
All sectors 0.9391 09195 0.9432
TU+TL 0.9032 09199 0.8733

All sector-{TU,TL} 0.9506  0.9471 0.9610

Observations

It is observed that RNFL and CD both contribute in accurate diagnosis of Glaucoma. Coming to sector
wise feature selection, as Glaucoma is not affected in TL,TU regions, excluding them in feature selection
will result in better results.

Experimental details:

Experimental dataset consists of 50 Normal and 20 Glaucoma patients. K- fold validation with K=4

with 15 abnormal, 15 Normal for training and remaining for testing. Classification is performed by
linear SVM classifier[5].

Normal vs Moderate vs Advanced: X axis: distance from OD
Y axis: Average CD
normalized across 7
patients (Normal,

TU TL Moderate, Severe each)
LE]
: Normal temal Narmal
Blue: Moderate oyt oo
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Figure 4.8: Trends of CD in Normal, Early and Advanced Glaucoma

Trends of CD/RNFL in Normal, Early and Advanced Glaucoma

The following are the observations that are inferred by analyzing the CD with distance.
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1. Normal and Abnormal (Moderate and Glaucoma) are differentiated in all sectors. We observe a
CD drop of 30% for moderate and 60% for advanced.

2. If we consider Moderate vs Advanced, CD of moderate is greater than advanced within 1.5-3mm
distance from ONH (with a avg drop of 20,30% in TL and TU sectors and 25-30% drop in ST
region and j10% drop in IT region). Then after 3mm CD (of abnormal and moderate) started to
crossover in between 3-3.5mm distance in TU,TL and ST regions. and after 3.5mm Advanced

CD is greater than moderate in all sectors.

44 CONCLUSION

We have established two case studies which give better understanding of disease Glaucoma. These
findings are evaluated by clinical experts community and further these findings can be employed in
developing algorithms. With this as motivation we developed detection algorithms considering Capillary
density, nerve fiber layer thickness as features. The results are promising and with reduced setup cost

this modality can be considered as reliable biomarker in developing screening systems.
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Chapter 5

CONCLUSIONS

This thesis focuses on detection of Glaucoma from multiple modalities. The treatment of Glaucoma
is only possible if it is diagnosed in early stages. To ensure timely treatment, screening systems are
required for frequent examination of retina. Most of the existing literature for screening systems focus
on developing detection algorithms on fundus images. Several studies have shown that the usage of fun-
dus images have resulted in higher false positives as compared with other modalities. Thus combining
multiple modalities is required. The use of multiple modalities in a CAD setting improves detection
due to availability of multiple sources of information across modalities. However, collecting scans of
multiple modalities during the screening stage is an expensive process and normalizing across multiple

sources of data is crucial for learning a robust model.

In this thesis, we tried to resolve the above limitations by proposing an alternative for existing fundus
based screening solutions. We focused on detection of Retinal Nerve Fiber Layer Defect Detection (RN-
FLD) which is one of the key and early symptoms of Glaucoma. In the proposed approach we tried to
learn from OCT and fundus modalities during training stage. Our method is capable of (chapter-3) han-
dling absence of OCT modality during the screening stage. Using the proposed approach we observed
an 8-10% improvement of RNFLD detection when compared with traditional mono-modal training. For
normalizing data across modalities and incorporate image-image learning we proposed the multimodal
registration algorithm (chapter-2), especially for low FOV images and noisy images. This method is
supported by extensive quantitative and qualitative results. In addition to that, we investigated the scope
of new imaging modality (Angiography-Optical Coherence Tomography) A-OCT for detecting Glau-
coma. Many research studies are being conducted to reduce the setup cost of A-OCT scanners. With
reduced setup cost A-OCT modality has potential for usage in screening systems. The main findings for

each problem are chapter specific and were summarized within their respective chapters.

Although this thesis offers promising results and analysis, there are certain areas open to further
research. Exploring the following areas will improve the diagnosis of the patient on a screening level

stage.
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e In chapter-2 A robust multimodal registration for low FOV images is proposed. An extensive
experimentation is performed. However, improving accuracy to subpixel is still an open-ended

problem which needed a closure.

e In chapter-3 An approach to OCT assisted fundus detection system is proposed. By exploring dif-
ferent architectures and training strategies the detection of RNFLD can further improved. Further,
this can be extended to multiple modalities/diseases. Scalability of the proposed method needs to

be evaluated by validating on relatively large datasets.

e Chapter-4 An extensive understanding of RNFLD in A-OCT via case studies has gated new po-

tential solutions for diagnosis. The same understanding can be extended to other diseases.

Finally, this thesis concludes by positing that learning from multiple modalities strongly helps in im-
proving diagnosis of the patient. The system is able to capture the strengths of all modalities during the

learning process.
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