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Abstract

In this thesis, we delve into the analysis of movie narratives, with a specific focus on understanding

the emotions and mental states of characters within a scene. Our approach involves predicting a diverse

range of emotions for individual movie scenes and each character within those scenes. To achieve this,

we introduce EmoTx, a novel multimodal Transformer-based architecture that integrates video data,

multiple characters, and dialogues for making comprehensive predictions.

Leveraging annotations from the MovieGraphs dataset, our model is tailored to predict both clas-

sic emotions (e.g., happiness, anger) and nuanced mental states (e.g., honesty, helpfulness). Our ex-

periments concentrate on evaluating performance across the ten most common and twenty-five most

common emotional labels, along with a mapping that clusters 181 labels into 26 categories. Through

systematic ablation studies and a comparative analysis against established emotion recognition methods,

we demonstrate the effectiveness of EmoTx in capturing the intricacies of emotional and mental states

in movie contexts.

Additionally, our investigation into EmoTx’s attention mechanisms provides valuable insights. We

observe that when characters express strong emotions, EmoTx focuses on character-related elements,

while for other mental states, it relies more on video and dialogue cues. This nuanced understanding

enhances the interpretability and contextual relevance of EmoTx in the domain of movie story analysis.

The findings presented in this thesis contribute to advancing our comprehension of character emotions

and mental states in cinematic narratives.
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Chapter 1

Introduction

Movies are a powerful medium for storytelling, engaging audiences through a rich collection of

characters and emotions. Understanding the intricacies of characters’ emotions and mental states within

movie narratives is essential for unraveling the layers of storytelling and enhancing our grasp of cine-

matic experiences. This thesis embarks on a journey into the realm of movie story analysis, specifically

focusing on the nuanced task of character emotion and mental state prediction.

The ability to decipher the emotional nuances of characters in movies extends beyond mere entertain-

ment; it opens avenues for exploring the psychological depths of storytelling, character development,

and audience engagement. This research takes a significant step forward by formulating emotion un-

derstanding as a predictive task, not only at the level of entire movie scenes but also at the individual

character level. Our primary focus is on predicting a diverse and multi-label set of emotions, ranging

from classic emotions like happiness and anger to more intricate mental states such as honesty and

helpfulness.

To address this challenge, we introduce EmoTx [2], a novel multimodal Transformer-based archi-

tecture that harnesses the combined power of video data, multiple characters, and dialogues. This ar-

chitecture facilitates joint predictions for scene and character emotions and mental states, allowing for

a holistic understanding of the emotional landscape within movie scenes. Leveraging annotations from

the MovieGraphs dataset [3], our model is trained to capture the spectrum of emotions and mental states,

providing a comprehensive and granular analysis.
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- And he's very bitter. 
- And he's just gonna walk out the
door and never know why she's
just lying there on the couch... 

- That's a chick's movie.
- I would say so.
- What kind of a person would write
to someone they heard on the radio?

- Stop it.
- Richard Jaeckel had on this shiny
helmet 'cause he was the M.P.
- No more. Oh, God, I love that movie. 

C

B

A

??? ??? ???

Figure 1.1: Multimodal models and multi-label emotions are necessary for understanding the story. A:

What character emotions can we sense in this scene? Is a single label enough? B: Without the dialog, can

we try to guess the emotions of the Sergeant and the Soldier. C: Is it possible to infer the emotions from

the characters’ facial expressions (without subtitles and visual background) only? Check the footnote

below for the ground-truth emotion labels for these scenes.

1.1 Motivation

Emotions are a deeply-studied topic. From ancient Rome and Cicero’s 4-way classification [4], to

modern brain research [5], emotions have fascinated humanity. Psychologists use of Plutchik’s wheel [6]

or the proposal of universality in facial expressions by Ekman [7], structure has been provided to this

field through various theories. Affective emotions are also grouped into mental (affective, behavioral,

and cognitive) or bodily states [8].

A recent work on recognizing emotions with visual context, Emotic [9] identifies 26 label clusters

and proposes a multi-label setup wherein an image may exhibit multiple emotions (e.g. peace, engage-

ment). An alternative to the categorical space, valence, arousal, and dominance are also used as three

continuous dimensions [9].

Predicting a rich set of emotions requires analyzing multiple contextual modalities [9, 10, 11]. Pop-

ular directions in multimodal emotion recognition are Emotion Recognition in Conversations (ERC)

Ground-truth emotions and mental states portrayed in Fig. 1.1: A: excited, curious, confused, annoyed, alarmed; B:
shocked, confident (sergeant praises the soldier with agressive tone); C: happy, excited, amused, shocked, confident, nervous.

2



that classifies the emotion for every dialog utterance [12, 13, 14]; or predicting a single valence-activity

score for short ∼10s movie clips [15, 16].

Classification in a rich label space of emotions requires looking at multimodal context as evident

from masking context in Fig. 1.1. To this end, we propose EmoTx that jointly models video frames,

dialog utterances, and character appearance.

EmoTx operates at the level of a movie scene: a set of shots telling a sub-story, typically at one

location, among a defined cast, and in a short time span of 30-60s. Thus, scenes are considerably

longer than single dialogs [12] or movie clips in [15]. EmoTx predict emotions and mental states for all

characters in the scene and also by accumulating labels at the scene level. Estimation on a larger time

window naturally lends itself to multi-label classification as characters may portray multiple emotions

simultaneously (e.g. curious and confused) or have transitions due to interactions with other characters

(e.g. worried to calm).

1.2 Movie understanding

In recent years, the field of movie understanding has undergone significant transformations, pro-

gressing beyond conventional tasks like clustering individuals and identifying characters [17, 18, 19,

20, 21, 22] to delve into the intricate analysis of storytelling. Many exciting areas have emerged, each

contributing to a more comprehensive understanding of the cinematic experience.

The scope of movie understanding encompasses various dimensions, ranging from scene detec-

tion [23, 24, 25, 26, 27] and question-answering to tasks [28, 29, 30] like movie captioning [31, 32]

with named entities [33], modeling interactions and/or relationships [34, 35, 36], aligning text and

video storylines [37, 38, 39], and even tackling the complexities of long-form video understanding [40].

These diverse areas collectively strive to unravel the richness embedded within cinematic narratives.

The advancements in this field owe much to the availability of robust datasets that have fueled

research and innovation. Datasets like Condensed Movies [41], MovieNet [42], VALUE benchmark

(which extends beyond traditional movies) [43], and MovieGraphs [3] have played pivotal roles in pro-

pelling research forward. These datasets provide researchers with the necessary tools to explore and

push the boundaries of what can be achieved in the realm of movie understanding.

Building on the foundations laid by MovieGraphs [3], we focus on another pillar of story understand-

ing complementary to the above directions: identifying the emotions and mental states of each character

and the overall scene in a movie.

3



1.3 Visual emotion recognition

The domain of visual emotion recognition has evolved significantly, initially rooted in the identifi-

cation of Ekman’s classic six emotions [7] predominantly through facial expressions. This foundation

gained traction with influential datasets like MMI [44], CK, and CK+ [45, 46], marking a paradigm shift

in our understanding of emotional cues in images.

Around a decade ago, benchmark challenges like EmotiW [47], FER [48], and AFEW [49] emerged

as crucial benchmarks for in-the-wild emotion recognition. Simultaneously, deep learning approaches [50,

51] were introduced to emotion recognition, showcasing notable performance improvements. These

benchmarks still focused on classic emotion label sets. Breaking away from this trend, the Emotic

dataset [9] introduced the use of 26 labels for emotion understanding in images while highlighting the

importance of context for emotion understanding in images.

Moving beyond isolated facial features, the field explored novel directions, including the com-

bination of face features and contextual information. Two-stream Convolutional Neural Networks

(CNNs) [10] and methods incorporating person detections with depth maps [11] gained attention for

their potential in capturing nuanced emotional states. Recognizing the importance of context, particu-

larly in dynamic scenarios, became a pivotal focus in enhancing the robustness of emotion recognition

systems.

Recent trends in emotion recognition have expanded the scope beyond discrete labels to include

estimating continuous variables such as valence and arousal. Approaches have emerged to predict emo-

tional states from faces with limited contextual information, and researchers have explored learning

representations through webly supervised data to overcome biases [52] inherent in existing datasets or

improving them further through a joint text-vision embedding space [53].

In contrast to the prevailing trends in visual emotion recognition, our work EmoTx [2] takes a dis-

tinctive approach by concentrating on multi-label emotions and mental states recognition in movies.

Exploiting the rich multimodal context available in cinematic scenes and character interactions, our

focus extends beyond single facial expressions to capture the complexity and diversity of emotional

experiences in a cinematic context.
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1.4 Multimodal datasets for emotion recognition

In the landscape of multimodal emotion datasets, several initiatives have aimed to capture the intri-

cacies of human emotions across different contexts. In this section, we delve into key datasets relevant

to our research focus, highlighting their distinctive features.

Acted Facial Expressions in the Wild (AFEW) [49]: AFEW is designed to predict emotions solely

from facial expressions, emphasizing the spontaneous nature of emotional reactions. However, it lacks

contextual information, providing a limited scope for understanding emotions within the broader context

of a narrative.

Stanford Emotional Narratives Dataset [54]: This dataset captures participant-shared narratives of

positive and negative events in their lives. While multimodal in nature, incorporating both textual and

visual elements, the narratives differ substantially from the edited and scripted content of movies and

stories, which constitutes the primary focus of our research.

Multimodal EmotionLines Dataset (MELD) [12]: MELD is an example of Emotion Recognition

in Conversations (ERC), concentrating on estimating emotions for individual dialog utterances in TV

episodes from the show Friends. Differing from MELD, our research operates at the time-scale of

cohesive story units, specifically movie scenes, allowing for a more comprehensive understanding of

emotions within a narrative context.

Annotated Creative Commons Emotional DatabasE (LIRIS-ACCEDE) [15]: LIRIS-ACCEDE

provides emotion annotations for short movie clips, making it closely aligned with our focus on cine-

matic content. However, the clips in LIRIS-ACCEDE are relatively small (8-12 seconds), and annota-

tions are obtained in the continuous valence-arousal space, offering a different perspective compared to

our multi-label approach that includes both classic emotions and mental states.

MovieGraphs dataset [3] MovieGraphs dataset features 51 movies and 7637 movie scenes with de-

tailed graph annotations. Like other annotations in the MovieGraphs dataset, emotions are also obtained

as free-text leading to a huge variability and a long-tail of labels (over 500). It also includes annotations

such as the situation label, or character interactions and relationships [36].

In essence, the exploration of these multimodal emotion datasets illuminates the varied approaches

undertaken in understanding emotional expressions.
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1.5 Multimodal emotion recognition methods

The realm of multimodal emotion recognition has witnessed the application of various methodolo-

gies, each attempting to harness the synergies between audio, visual, and textual data for a holistic

understanding of emotional expressions. In this section, we provide an overview of prevalent methods,

drawing inspiration from early techniques to recent advancements.

Recurrent Neural Networks (RNNs) and Graph Networks: RNNs have played a pivotal role in

Emotion Recognition in Conversations (ERC) [55, 13, 56, 57], particularly when coupled with graph

networks [58, 59]. This combination has proven effective in amalgamating information from audio, vi-

sual, and textual modalities. The sequential nature of RNNs facilitates capturing temporal dependencies

in emotional expressions, allowing for nuanced understanding.

Transformational Leap with Transformers: Inspired by the remarkable success of Transformer ar-

chitectures in various natural language processing tasks, they have found adoption in the domain of

ERC [60, 61]. Transformers offer advantages in modeling long-range dependencies and capturing con-

textual information effectively. Recent approaches leverage these architectures to enhance the perfor-

mance of multimodal emotion recognition systems.

External Knowledge Graphs and Topic Modeling: To imbue systems with commonsense knowledge,

some methods incorporate external knowledge graphs [62]. Additionally, the integration of topic mod-

eling with Transformers has shown promise in improving the accuracy of emotion recognition mod-

els [14]. These techniques go beyond raw data and tap into external knowledge sources for a more

nuanced understanding of emotional expressions.

Challenges in Multi-Label Prediction: Efforts have been made to extend multimodal emotion recog-

nition to the realm of multi-label prediction by considering a sequence-to-set approach [63]. However,

this approach, often employed for multi-label scenarios, may face scalability challenges with an increas-

ing number of labels. This scalability concern underscores the need for innovative approaches to handle

a diverse and expansive set of emotional and mental state labels.

Our method- EmoTx [2]: In our research, we adopt a Transformer-based architecture for joint mod-

eling, aligning with the latest trends in multimodal emotion recognition. However, our focus diverges

from traditional ERC, as we aim to predict emotions and mental states specifically within the context

of movie scenes and characters. We adapt and compare our approach against some of the methods

mentioned above in our experiments, evaluating their efficacy in the unique context of movie emotion

6



and mental state prediction. By leveraging insights from established techniques, we aim to contribute

to the evolving landscape of multimodal emotion recognition, with a particular emphasis on cinematic

storytelling.

Related Approaches in Movie Understanding: Close to our work, the MovieGraphs dataset [3] has

been utilized for emotion annotations, focusing on tracking changing emotions across entire movies and

proposing methods for Temporal Emotion Localization. However, it’s noteworthy that the former typi-

cally tracks a single emotion in each scene, while the latter introduces a distinct direction by exploring

the temporal dynamics of emotions in movies.

1.6 Multi-label Emotion and Mental State Recognition

We assume that movies have been segmented automatically [23] or with a human-in-the-loop pro-

cess [27, 3] into coherent scenes that are self-contained and describe a short part of the story.

Consider such a movie scene S that consists of a set of video frames V , characters C, and dialog

utterances U . Let us denote the set of video frames as V = {ft}Tt=1, where T is the number of frames

after sub-sampling. Multiple characters often appear in any movie scene. We model N characters in

the scene as C = {P i}Ni=1, where each character P i = {(ft, bit)} may appear in some frame ft of the

video at the spatial bounding box bit. We assume that bit is empty if the character P i does not appear at

time t. Finally, U = {uj}Mj=1 captures the dialog utterances in the scene. For this work, we use dialogs

directly from subtitles and thus assume that they are unnamed. While dialogs may be named through

subtitle-transcript alignment [17], scripts are not always available or reliable for movies.

Task formulation. Given a movie scene S with its video, character, and dialog utterance, we wish to

predict the emotions and mental states (referred as labels, or simply emotions) at both the scene, yV ,

and per-character, yPi
, level. We formulate this as a multi-label classification problem with K labels,

i.e. y = {yk}Kk=1. Each yk ∈ {0, 1} indicates the absence or presence of the kth label in the scene yVk or

portrayed by some character yP
i

k . For datasets with character-level annotations, scene-level labels are

obtained through a simple logical OR operation, i.e. yV =
⊕N

i=1 y
Pi

.

7



Chapter 2

Extending face tracks in MovieGraphs dataset

The MovieGraphs dataset [3] stands as a valuable dataset for understanding character emotions in

movies, due to its rich annotations. However, upon close examination, it became apparent that the face

tracks within the dataset faced challenges due to the limitations of face detection quality. Many instances

revealed a frequent occurrence of missed character detections, leading to fragmented face tracks within

a clip. Moreover, multiple track IDs were often assigned to the same character within a single shot,

introducing complexities in tracking consistency. Furthermore, some shots lacked any face detections

altogether, yet held untapped potential in offering a broader perspective on character emotions within a

given scene.

Motivated by these observations and recognizing the need for enhanced character tracking precision,

this chapter embarks on the task of extending face tracks within the MovieGraphs dataset [3]. Our ap-

proach involves addressing the gaps in the ground-truth tracks within a shot, mitigating issues related to

missed detections and multiple track IDs. Additionally, we aim to augment the dataset by incorporating

shots with initially zero detections, unlocking valuable insights into character emotions in scenes that

might have been overlooked.

The extension process unfolds in two key phases: first, we systematically recompute face detections

and tracks for the movie scenes, aiming to improve the accuracy and continuity of character representa-

tion. Subsequently, a subset of the newly generated face tracks is assigned names based on their overlap

with the original tracks present in the MovieGraphs dataset [3]. To further enrich our understanding,

we employ hierarchical clustering techniques to group all detections within a clip, allowing us to assign

names to previously unnamed tracks based on the clustering results.

In essence, this chapter seeks to remedy the limitations of the existing face tracks in the MovieGraphs

dataset [3], laying the groundwork for a more robust and comprehensive analysis of character emotions
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Original face tracks 

Forrest Gump 

Forrest Gump 

Jen

Extended face tracks 
Figure 2.1: Example face detections. The original face tracks do not work for dark scenes or profile

faces, while our new detections and tracks are able to find them. Scene-036 from Forrest Gump, 1994.

in cinematic narratives. By extending and refining face tracks, we aim to bridge gaps in character

tracking consistency, providing a more accurate representation of the emotional journeys characters

undertake throughout the unfolding scenes. Through these efforts, we strive to contribute to the nuanced

exploration of emotions within the cinematic medium and offer an improved foundation for subsequent

analyses in character-centric emotion recognition.

Fig. 2.1 shows an example where original tracks did not have a single detection (due to the dark

scene) for a scene in the “Forrest Gump, 1994” movie, whereas our track-extension pipeline was able to

correctly associate names to the unlabelled characters.

2.1 Face and person detection and tracking

In the pursuit of refining character representation within the MovieGraphs dataset [3], we initiate a

comprehensive process of face and person detection across every movie scene. Leveraging advanced

deep learning methodologies, we employ the Multi-Task Cascaded Convolutional Neural Networks

(MTCNN) [1] for face detection and Cascade-RCNN pretrained on cast annotations from MovieNet [42]

for person detection.

Figure 2.2 shows the false positive bounding boxes predicted by MTCNN [1] detector when given the

entire frame. MTCNN [1] is sensitive to threshold and using using higher threshold does not guarantee

perfect face detection.
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Figure 2.2: False positive face detections by MTCNN [1] given the entire frame at once with threshold

set to 0.95. The detector still predicts incorrect face bounding boxes.

Figure 2.3: Confined face detections within the person bounding boxes. This allows us to have a cor-

respondence between the person and face detections and ensemble of both the models considerably

reduces the false positives.

To mitigate this issue, we undertake a two-step process to seamlessly integrate person detections.

First, we utilize the Cascade-RCNN to compute person bounding boxes within each movie scene. Sub-

sequently, we extract face detections confined within these person bounding boxes, establishing a crucial

mapping between face and person detections. Figure 2.3 shows the face detections confined within the

person bounding boxes. This considerably resolves the issue of incorrect face detections. In the event of

multiple faces coexisting within a single person bounding box, our methodology prioritizes accuracy by

selecting the face with the highest detection probability. This ensures that the ensuing face detections

maintain fidelity to the most salient facial representation within the confined space.

The resulting face and person bounding boxes are subjected to tracking mechanisms for continuous

identity mapping across frames. To achieve this, we implement the Kalman-filter based Simple Online

and Realtime Tracking (SORT) algorithm [64], enabling real-time tracking of these bounding boxes.

Importantly, our approach establishes a direct mapping between face and person tracks, sharing the

same track ID for seamless coordination between the two modalities. Figure 2.4 shows the consistent

track id for multiple characters in different frames within the same shot of a movie scene. The tracking

ids however gets updated at the shot boundaries. We move on to the next step to establish the character

mapping across shots within the movie scene.

10



Figure 2.4: Character detections with consistent track IDs across frames for both the actors. Our detec-

tion and tracking pipeline results in a consistent and reliable character tracks within a shot of a movie

scene.

2.2 Assigning character names to the new character tracks

In the process of assigning names to new character tracks, we begin with the existing tracks in the

MovieGraphs dataset, which exclusively pertain to faces. These original tracks provide a foundation

for understanding the characters emotions and mental states in the scenes. Now, when we identify new

face tracks, we want to connect them to the existing dataset to leverage the character names already

associated with those faces.

To achieve this, we compare each new face detection with the original tracks by assessing the degree

of overlap between them. This overlap is quantified using a metric called Intersection over Union (IoU),

a measure that helps us determine how much the new detection aligns with the original track. We’ve

set a threshold of 0.7 for IoU, meaning that we consider a match only when the overlap is substantial,

ensuring a reliable connection.

Once we identify these matches, the next step involves associating the names from the original track

with the corresponding new track. This association is based on the idea that if a face in the new detection

aligns significantly with a face in the original track, they likely represent the same character.

Now, given that there might be multiple names associated with faces in the original track, we employ

a democratic approach—a majority vote. This means that if a new track is linked to several names from

the original track, we choose the name that the majority of these associations agree upon. In simpler

terms, it’s like asking a group of people for their opinion and going with the name that most people

think fits the best.

In summary, this method allows us to seamlessly transfer character names from the original MovieGraphs

dataset to the new character tracks we’ve identified, enhancing the richness of our character analysis in

the broader context of the movie scenes.
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2.3 Face clustering and naming other tracks.

In our effort to extract dense face tracks from MovieGraphs dataset [3], we encountered a challenge:

not all characters could be given names using the tricks discussed till now because some detections were

missed in the dataset itself. To fix this, we introduced a clustering method to find names for the new

characters we discovered.

Identity Features Extraction: Our process commences with the extraction of robust identity features

using the individual face detections. To achieve this, we leverage an InceptionResNetV1 model [65]

pretrained on the VGGFace2 [66] dataset. These features serve as distinctive representations for each

face, capturing nuanced characteristics crucial for identity clustering.

Clustering with C1C [21] Algorithm: For clustering, we employ the C1C [21] algorithm, which incor-

porates track information to establish must and cannot links between the extracted face features. This

integration of track information ensures that the clustering process is sensitive to the temporal continuity

of faces, enhancing the accuracy of identity assignments.

Silhouette Score and Representative Partition: The C1C [21] algorithm generates multiple partitions,

each containing varying numbers of clusters. To determine the most representative partition, we calcu-

late the Silhouette score for each partition. The partition with the highest Silhouette score is selected,

signifying optimal cluster cohesion and separation.

Probability Assignment to Clusters: Now, based on the character names assigned through the earlier

method, each cluster is endowed with a probability distribution corresponding to the distinct names

found within the cluster. In cases where a cluster lacks any named detection, an equal probability is

distributed across all names present in the scene.

Name Probability Thresholding: The cluster name-probabilities corresponding to the detections of

unnamed tracks are then extracted. To consolidate these probabilities, we calculate the average of these

soft scores, reflecting the likelihood of each name for the newly discovered tracks. This process yields

name probabilities for the extended tracks.

In the final step, a threshold of 0.7 is applied to these name probabilities to select the definitive

name for the new tracks. This ensures that only names with a high confidence level are assigned to the

extended character tracks.

With this method, we’re making sure that even the characters we missed at first get names, helping

us better understand and analyze emotions in the extended MovieGraphs [3] face tracks.
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Chapter 3

EmoTx: Our Approach

In this chapter, we introduce EmoTx, a sophisticated method designed to jointly predict multi-label

emotions and mental states for both movie scenes and individual characters within the scene. EmoTx

utilizes a Transformer-based architecture to achieve accurate and comprehensive emotion recognition.

The process begins with video pre-processing and feature extraction pipeline. This initial phase is

crucial for distilling relevant representations from the complex visual and auditory information embed-

ded in movie scenes. By carefully extracting key features, EmoTx sets the stage for a more nuanced

understanding of the emotional dynamics at play.

The core of EmoTx lies in its Transformer encoder, that facilitates the seamless integration of infor-

mation across various modalities. This encoder enables the model to capture intricate relationships and

dependencies within the feature representations essential to capture the emotions. The Transformer ar-

chitecture is particularly adept at handling sequential and contextual information, making it well-suited

for the complex nature of emotional expression in movie scenes.

Building on these integrated representations, EmoTx incorporates a classification module, drawing

inspiration from prior advancements in multi-label classification with Transformers [67]. This module

serves as the final computational layer, responsible for making predictions about emotions associated

with each scene and character. By leveraging the Transformer’s capacity for contextual understand-

ing, EmoTx excels in discerning the intricate nuances of emotions, providing a robust framework for

comprehensive emotion recognition in the realm of cinematic storytelling.

An overview of the approach is presented in Fig. 3.1.
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MViT (Kinetics 400) ResNet50 (FER 2013) Ft. RoBERTa

Frozen Network

Char-1 Predictions

Figure 3.1: An overview of EmoTx. A: Video features (in blue region), character face features (in purple

region), and utterance features (in orange region) are obtained using frozen backbones and projected

with linear layers into a joint embedding space. B: Here appropriate embeddings are added to the tokens

to distinguish between modalities, character count, and to provide a sense of time. We also create per-

emotion classifier tokens associated with the scene or a specific character. C: Two Transformer encoder

layers perform self-attention across the sequence of input tokens. D: Finally, we tap the classifier tokens

to produce output probability scores for each emotion through a linear classifier shared across the scene

and characters.

3.1 Preparing multimodal representations

Recognizing complex emotions and mental states (e.g. nervous, determined) requires going beyond

facial expressions to understand the larger context of the story. To facilitate this, we encode multimodal

information through multiple lenses:

(i) the video is encoded to capture where and what event is happening.

(ii) the character faces are encoded to represent their expressions; and

(iii) we encode the dialog utterances as information complementary to the visual domain.

A pretrained encoder ϕV extracts relevant visual information from a single or multiple frames as

ft = ϕV({ft}). Similarly, a pretrained language model ϕU extracts dialog utterance representations as

uj = ϕU (uj). Characters are more involved as we need to first localize them in the appropriate frames.
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Given a valid bounding box bit for person P i, we extract character features using a backbone pretrained

for emotion recognition as cit = ϕC(ft, b
i
t).

Linear projection. Since the extracted features have different embeddings dimensions, we first bring

all modalities to the same dimension with linear layers. Specifically, we project visual representation

ft ∈ RDV using WV ∈ RD×DV , utterance representation uj ∈ RDU using WU ∈ RD×DU , and

character representation cit ∈ RDC using WC ∈ RD×DC .

3.2 Additional embeddings

Token representations in a Transformer often combine the core information (e.g. visual representa-

tion) with meta information such as the timestamp through position embeddings (e.g. [68]). This section

lists all the embeddings that are used in EmoTx.

Modality Embeddings: We learn three embedding vectors EM ∈ RD×3 to capture the three modalities

corresponding to (1) video, (2) characters, and (3) dialog utterances. We also assist the model in identi-

fying tokens coming from characters by including a special character count embedding, EC ∈ RD×N .

Note that the modality and character embeddings do not encode any specific meaning or imposed order

(e.g. higher to lower appearance time, names in alphabetical order) - we expect the model to use this

only to distinguish one modality/character from the other.

Time embeddings: The number of tokens depend on the chosen frame-rate. To inform the model about

relative temporal order across modalities, we adopt a discrete time binning strategy that translates real

time (in seconds) to an index. Thus, video frame/segment and character box representations fed to the

Transformer are associated with their relevant time bins. For an utterance uj , binning is done based

on its middle timestamp tj . We denote the time embeddings as ET ∈ RD×⌈T ∗/τ⌉, where T ∗ is the

maximum scene duration and τ is the bin step. For convenience, ET
t selects the embedding using a

discretized index ⌈t/τ⌉.

Classifier tokens: Similar to the classic CLS tokens in Transformer models [69, 70] we use learn-

able classifier tokens to predict the emotions. Furthermore, inspired by Query2Label [67], we use K

classifier tokens rather than tapping a single token to generate all outputs (see Fig. 3.1D). This allows

capturing label co-occurrence within the Transformer layers improving performance. It also enables

analysis of per-emotion attention scores providing insights into the model’s workings. In particular, we
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use K classifier tokens for scene-level predictions (denoted zSk ) and N ×K tokens for character-level

predictions (denoted zik for character P i, one for each character-emotion pair).

Token representations: Combining the features with relevant embeddings provides rich information to

EmoTx. The token representations for each input group are as follows:

scene cls. tokens: z̃Sk = zSk +EM
1 , (3.1)

char. cls. tokens: z̃ik = zik +EM
2 +EC

i , (3.2)

video: f̃t = WV ft +EM
1 +ET

t , (3.3)

character box: c̃it = WCc
i
t +EM

2 +EC
i +ET

t , (3.4)

and utterance: ũj = WUuj +EM
3 +ET

tj . (3.5)

Fig. 3.1B illustrates this addition of embedding vectors. We also perform LayerNorm [71] before feed-

ing the tokens to the Transformer encoder layers, not shown for brevity.

3.3 Transformer Self-attention.

In the core architecture of EmoTx, the Transformer self-attention mechanism allows the fusion of

information across visual, facial and language modalities for nuanced emotion recognition.

The process unfolds through the concatenation of all relevant embeddings to the feature vectors, rep-

resenting different aspects of the input data, as they traverse through H=2 layers of the Transformer

encoder [72]. These layers are instrumental in facilitating self-attention, a mechanism that allows the

model to weigh and prioritize different parts of the input sequence based on their contextual relevance.

The self-attention mechanism is particularly powerful in capturing intricate relationships and dependen-

cies across various modalities, enabling a holistic understanding of the complex information present in

movie scenes.

Within the context of emotion prediction, our focus narrows down to specific outputs generated by

the Transformer encoder. These outputs correspond exclusively to the classification tokens, which are

strategically chosen to encapsulate the most salient information for the task at hand. By selectively

tapping into these outputs, EmoTx hones in on the essential elements relevant to predicting emotions,

optimizing the model’s efficiency and effectiveness in this specific domain.

[ẑSk , ẑ
i
k] = TransformerEncoder

(
z̃Sk , f̃t, z̃

i
k, c̃

i
t, ũj

)
. (3.6)
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We jointly encode all tokens spanning {k}K1 , {i}N1 , {t}T1 , and {j}M1 .

Emotion labeling. The contextualized representations for the scene ẑSk and characters ẑik are sent to a

shared linear layer WE ∈ RK×D for classification. Finally, the probability estimates through a sigmoid

activation σ(·) are:

ŷSk = σ(WE
k ẑ

S
k ) and ŷik = σ(WE

k ẑ
i
k), ∀k, i . (3.7)

3.4 Training and Inference

Training. EmoTx undergoes end-to-end training with the BinaryCrossEntropy (BCE) loss. This com-

prehensive approach considers the entire model architecture for optimization. The primary objective is

to equip EmoTx with the capability to seamlessly understand and predict emotions within the diverse

context of movie scenes.

The BCE loss function serves as the guiding force during EmoTx’s training. This loss function is

well-suited for binary classification tasks, aligning with our goal of predicting emotions in a binary fash-

ion. It quantifies the difference between predicted and ground truth labels, steering the model towards

more accurate emotion predictions.

EmoTx encounters the challenge of class imbalance, where certain emotional labels may be overrep-

resented or underrepresented in the training data. To counteract this imbalance, we introduce weights

(ωk) for positive labels. These weights are determined based on the inverse of proportions, strategically

assigning higher weights to underrepresented emotional classes. This thoughtful adjustment ensures

that EmoTx pays due attention to all emotional categories, preventing bias towards frequently occurring

labels and enhancing its sensitivity to the diversity of emotions present in movie scenes.

The scene and character prediction losses are combined as

L =
K∑
k=1

BCE(ωk, y
V
k , ŷ

S
k ) +

N∑
i=1

K∑
k=1

BCE(ωk, y
Pi

k , ŷik) . (3.8)

Inference. At test time, we follow the procedure outlined in Sec. 3.1, 3.2, 3.3 and generate emotion

label estimates for the entire scene and each character as indicated in Eq. 3.7.

Variations. As we will see empirically, our model is very versatile and well suited for adding/removing

modalities or additional representations by adjusting the width of the Transformer (number of tokens).

It can be easily modified to act as a unimodal architecture that applies only to video or dialog utterances

by disregarding other modalities.
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Chapter 4

Experiments and Discussion

We present our experimental setup in Sec. 4.1 before diving into the implementation details in

Sec. 4.2. A series of ablation studies motivate the design choices of our model (Sec. 4.3) while we

compare against the adapted versions of various SoTA models for emotion recognition in Sec. 4.3.4. Fi-

nally, we present some qualitative analysis and discuss how our model switches from facial expressions

to video or dialog context depending on the label in Sec. 4.4.

4.1 Dataset and Setup

We use the MovieGraphs dataset [3] that features 51 movies and 7637 movie scenes with detailed

graph annotations. We focus on the list of characters and their emotions and mental states, which natu-

rally affords a multi-label setup. Other annotations such as the situation label, or character interactions

and relationships [36] are ignored as they cannot be assumed to be available for a new movie.

Label sets. Like other annotations in the MovieGraphs dataset, emotions are also obtained as free-

text leading to a huge variability and a long-tail of labels (over 500). We focus our experiments on

three types of label sets: (i) Top-10 considers the most frequently occurring 10 emotions; (ii) Top-25

considers frequently occurring 25 labels; and (iii) Emotic, a mapping from 181 MovieGraphs emotions

to 26 Emotic labels provided by [16]. In Fig. 4.2 we show the number of movie scenes that contain

top-10 and 25 emotions.

Statistics. We first present row max-normalized co-occurrence matrices for the scene and characters

(Fig. 4.1). It is interesting to note how a movie scene has high co-occurrence scores for emotions such

as worried and calm (perhaps owing to multiple characters), while worried is most associated with

confused for a single character. Another high scoring example for a single character is curious and
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Figure 4.1: Row normalized label co-occurrence matrices for the top-25 emotions in a movie scene (left)

or for a character (right).

surprise, while a movie scene has curious with calm and surprise with happy. In Fig. 4.3, we show the

number of movie scenes that contain a specified number of emotions. Most scenes have 4 emotions.

Evaluation metric. We use the original splits from MovieGraphs. As we have K binary classification

problems, we adopt mean Average Precision (mAP) to measure model performance (similar to Atomic

Visual Actions [73]). Note that AP also depends on the label frequency.

4.2 Implementation Details

Feature representations play a major role on the performance of any model. We describe different

backbones used to extract features for video frames, characters, and dialog.

Video features ft: The visual context is important for understanding emotions [9, 10, 11]. We

extract spatial features using ResNet152 [74] trained on ImageNet [75], ResNet50 [74] trained on

Place365 [76], and spatio-temporal features, MViT [77] trained on Kinetics400 [78].

Dialog features uj : Each utterance is passed through a RoBERTa-Base encoder [69] to obtain an

utterance-level embedding. We also extract features from a RoBERTa model fine-tuned for the task of

multi-label emotion classification (based on dialog only).

Character features cit: are represented based on face or person detections. We perform face detection

with MTCNN [1] and person detection with Cascade RCNN [79] trained on MovieNet [42]. Tracks are
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Figure 4.2: Number of movie scenes containing top-10 and 25 emotions. Note, the top-25 label set

includes the top-10 emotions.
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Figure 4.3: Bar chart showing the number of movie scenes associated with a specific count of annotated

emotions.

obtained using SORT [64], a simple Kalman filter based algorithm, and clusters using C1C [21]. Details

of the character processing pipeline are presented in Chapter 2. ResNet50 [80] trained on SFEW [81]

and pretrained on FER13 [48] and VGGFace [82], VGGm [80] trained on FER13 and pretrained on

VGGFace, and InceptionResnetV1 [65] trained on VGGFace2 [66] are used to extract face representa-

tions.

Frame sampling strategy: We sample up to T=300 tokens at 3 fps (100s) for the video modality. This

covers ∼99% of all movie scenes. Our time embedding bins are also at 3 per second, i.e. τ=1/3s.

During inference, a fixed set of frames are chosen, while during training, frames are randomly sampled

from 3 fps intervals which acts as data augmentation. Character tokens are treated in a similar fashion,

however are subject to the character appearing in the video.
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Architecture details: We experiment with the number of encoder layers, H ∈ {1, 2, 4, 8}, but find H=2

to work best (perhaps due to the limited size of the dataset). Both the layers have same configuration - 8

attention heads with hidden dimension of 512. The maximum number of characters is N=4 as it covers

up to 91% of the scenes. Tokens are padded to create batches and to accommodate shorter video clips.

Appropriate masking prevents self-attention on padded tokens. Put together, EmoTx encoder looks at

K scene classification tokens, T video tokens, N · (K + T ) character tokens, and T utterance tokens.

For K=25, N=4 (Top-25 label set), this is up to 1925 padded tokens.

Training details: EmoTx is implemented in PyTorch [83], a versatile deep learning framework. TheThe

training process is conducted on a single NVIDIA GeForce RTX-2080 Ti GPU, optimizing computa-

tional efficiency. We set a maximum training duration of 50 epochs, each comprising a batch size

of 8 samples. The hyperparameters are thoughtfully tuned to attain optimal performance on the val-

idation set. For optimization, we employ the Adam optimizer [84], a robust choice for fine-tuning

model parameters. The initial learning rate is set at 5 × 10−5, establishing an effective starting point

for the training process. To dynamically adjust the learning rate during training, we incorporate the

ReduceLROnPlateau learning rate scheduler, a mechanism that reduces the learning rate by a factor

of 10 when the model’s performance plateaus. Throughout the training process, the model continu-

ally refines its understanding of emotional dynamics in movie scenes and character interactions. The

effectiveness of the training is evaluated based on the geometric mean of scene and character mean Av-

erage Precision (mAP). The best checkpoint, representing the model’s peak performance, is determined

by maximizing this geometric mean. This approach ensures that EmoTx not only excels in capturing

emotional nuances within individual scenes but also adeptly handles the complexities of character-level

emotion prediction, contributing to its overall effectiveness in understanding emotions in movie scenes.

4.3 Ablation Studies

We perform ablations across three main dimensions: architectures, modalities, and feature back-

bones. When not mentioned, we adopt the defaults: (i) MViT trained on Kinetics400 dataset to repre-

sent video; (ii) ResNet50 trained on SFEW, FER, and VGGFace for character representations; (iii) fine-

tuned RoBERTa for dialog utterance representations; and (iv) EmoTx with appropriate masking to pick

modalities or change the number of classifier tokens.
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most classes. AP of the best model is indicated above the bar. Interestingly, the order in which emotions

are presented is not the same as the frequency of occurrence (see 4.2).

4.3.1 Architecture ablations

We compare our architecture against simpler variants in Table 4.1. The first row sets the expectation

by providing scores for a random baseline that samples label probabilities from a uniform random

distribution between [0, 1] with 100 trials. Next, we evaluate MLP (2 Lin), a simple MLP with two

linear layers with inputs as max pooled scene or character features. An alternative to max pooling is

self-attention. The Single Tx encoder performs self-attention over features (as tokens) and a classifier

token to which a multi-label classifier is attached. Both these approaches are significantly better than

random, especially for individual character level predictions which are naturally more challenging than

scene-level predictions. Finally, we compare multimodal EmoTx that uses 1 classifier token to predict

all labels (EmoTx: 1 CLS) against K classifier tokens (last row). Both models achieve significant

improvements, e.g. in absolute points, +8.5% for Top-10 scene labels and +2.3% for the much harder

Top-25 character level labels. We believe the improvements reflect EmoTx’s ability to encode multiple

modalities in a meaningful way. Additionally, the variant with K classifier tokens (last row) shows

small but consistent +0.5% improvements over 1 classifier token on Top-25 emotions.

Fig. 4.4 shows the scene-level AP scores for the Top-25 labels. Our model outperforms the MLP

and Single Tx encoder on 24 of 25 labels and outperforms the single classifier token variant on 15 of

25 labels. EmoTx is good at recognizing expressive emotions such as excited, serious, happy and even

mental states such as friendly, polite, worried. However, other mental states such as determined or

helpful are challenging.
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Method
Top-10 Top-25

Scene Char Scene Char

Random 16.87±0.23 12.49±0.15 9.73±0.101 5.84±0.05

MLP (2 Lin) 23.94±0.03 20.39±0.01 15.26±0.02 10.57±0.02

Single Tx encoder 25.66±0.02 20.95±0.09 16.14±0.03 11.08±0.18

EmoTx: 1 CLS 34.11±0.34 23.81±0.24 23.34±0.11 12.86±0.11

EmoTx (Ours) 34.22±0.18 24.35±0.23 23.86±0.10 13.36±0.11

Table 4.1: Architecture ablation. Emotions are predicted at both movie scene and individual character

(Char) levels. We see that our multimodal model significantly outperforms simpler baselines. Best

numbers in bold, close second in italics.

4.3.2 Modality ablations

We evaluate the impact of each modality (video, characters, and utterances) on scene- and character-

level emotion prediction in Table 4.2. We observe that the character modality (row 4, R4) outperforms

any of the video or dialog modalities (R1-R3). Similarly, dialog features (R3) are better than video

features (R1, R2), common in movie understanding tasks [3, 28].

Interistingly, we also observe that having additional modality does not always help and the choice

of feature backbone is important to get the desired results. Scene features Vr, extracted from ResNet50

pretrained on Places365 dataset, which are more representative of the environment where the movie

scenes may be happening, are consistently worse than action features Vm, which are extracted from

a MViT v1 model pretrained on Kinetics400 dataset and is expected to be more representative of the

actions happening within the movie scenes. Comparing R1, R2 or R5, R6 or R8, R9 reflect that Vm

assists model and works well with character and scene modalities for emotion recognition whereas Vr

makes it difficult for model to desipher emotions.

Finally, our observations reveal that the utilization of all modalities (R9) yields superior performance

compared to other combinations. This outcome strongly suggests that the task of emotion recognition

is inherently multimodal.

23



Vr Vm D C
Top 10 (mAP) Top 25 (mAP)

Scene Char Scene Char

1 ✓ - - - 22.81±0.02 15.90±0.19 14.85±0.02 7.98±0.05

2 - ✓ - - 25.73±0.02 17.88±0.12 16.11±0.05 8.96±0.12

3 - - ✓ - 27.28±0.01 20.25±0.14 20.20±0.08 11.09±0.12

4 - - - ✓ 31.38±0.40 21.22±0.50 20.32±0.05 11.23±0.14

5 ✓ - ✓ - 27.19±0.07 19.45±0.10 19.72±0.03 10.67±0.08

6 - ✓ ✓ - 28.93±0.02 21.41±0.15 21.29±0.05 12.03±0.23

7 - - ✓ ✓ 33.59±0.10 23.54±0.16 23.40±0.09 13.01±0.08

8 ✓ - ✓ ✓ 33.60±0.02 22.89±0.02 22.76±0.02 12.21±0.02

9 - ✓ ✓ ✓ 34.22 ±0.18 24.35±0.23 23.86±0.10 13.36±0.11

Table 4.2: Modality ablation. Vr: ResNet50 (Places365), Vm: MViT (Kinetics400), D: Dialog, and C:

Character.

4.3.3 Backbone ablations

We compare several backbones for the task of emotion recognition.

(i) MViT V1 model [77] pre-trained on Kinetics400 [78] dataset, ResNet50 [74] pre-trained on Places365

dataset [76] and ResNet152 [74] pre-trained on ImageNet dataset [75] for video features.

(ii) ResNet50 [80] pre-trained on FER [48], SFEW [81] and VGGFace [82] datasets, VGG-m [80] pre-

trained on FER13 [48] dataset and InceptionResNetV1 [65] pre-trained on VGGFace2 [66] dataset for

character features; and

(iii) A pre-trained and finetuned version on RoBERTa for dialogue features.

The effectiveness of the fine-tuned RoBERTa model is evident by comparing pairs of rows R6, R12

and R5, R15 and R3, R13 of Table 4.3, where we see a consistent improvement of 1-3%. Character

representations with ResNet50-FER show improvement over VGGm-FER as seen from R11, R18 or

R15, R17. Finally, comparing R17, R18 shows the benefits provided by action features as compared to

places.

In conclusion, ResNet50 trained on FER appears to be a good representation for characters, and the

MViT trained on Kinetics400 provides better results for both the label sets, while ResNet50 trained on

Places365 is a close second.
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Video Character Dialog Metrics (mAP)

MViT R50 R152 R50 VGG-M IRv1 RB RB Top-10 Top-25

K400 P365 INet FER FER VGG-F FT PT Scene Char Scene Char

1 - ✓ - - - ✓ - ✓ 25.07±0.12 15.48±0.15 16.41±0.24 8.31±0.17

2 - - ✓ - - ✓ - ✓ 25.85±0.24 15.63±0.21 16.45±0.09 8.31±0.09

3 - - ✓ - ✓ - - ✓ 29.20±0.22 19.88±0.27 18.93±0.38 10.16±0.17

4 ✓ - - - - ✓ - ✓ 29.27±0.08 18.07±0.22 18.35±0.09 0.09±0.08

5 - ✓ - - ✓ - - ✓ 29.30±0.21 19.73±0.17 19.05±0.19 10.31±0.00

6 ✓ - - - ✓ - - ✓ 29.34±0.08 20.50±0.04 19.07±0.19 10.34±0.17

7 - ✓ - - - ✓ ✓ - 29.34±0.17 19.49±0.03 20.73±0.08 10.75±0.02

8 - - ✓ - - ✓ ✓ - 29.47±0.14 19.29±0.10 20.74±0.11 10.79±0.07

9 - ✓ - ✓ - - - ✓ 29.69±0.38 20.25±0.14 20.16±0.29 11.06±0.12

10 - - ✓ ✓ - - - ✓ 30.19±0.38 20.27±0.26 19.83±0.07 11.06±0.16

11 ✓ - - ✓ - - - ✓ 31.39±0.34 21.18±0.18 20.88±0.28 11.46±0.08

12 ✓ - - - ✓ - ✓ - 31.50±0.36 21.60±0.09 21.49±0.30 11.64±0.20

13 - - ✓ - ✓ - ✓ - 31.96±0.20 21.81±0.37 21.28±0.25 11.58±0.26

14 ✓ - - - - ✓ ✓ - 32.23±0.07 21.45±0.07 22.10±0.11 11.63±0.06

15 - ✓ - - ✓ - ✓ - 32.42±0.26 22.32±0.27 21.45±0.17 11.62±0.05

16 - - ✓ ✓ - - ✓ - 33.44±0.33 22.89±0.24 22.75±0.18 12.52±0.12

17 - ✓ - ✓ - - ✓ - 33.46±0.21 22.98±0.16 22.69±0.22 12.48±0.20

18 ✓ - - ✓ - - ✓ - 34.22±0.18 24.35±0.23 23.86±0.10 13.36±0.11

Table 4.3: Extended feature ablations. The different feature backbones are (MViT, K400): MViT pre-

trained on Kinetics400, (R50, P365): ResNet50 on Places365, (R152, INet): ResNet152 on ImageNet,

(R50, FER): ResNet50 on Facial Expression Recognition (FER), (VGG-M, FER): VGG-M on FER,

(IRv1, VGG-F): InceptionResNet-v1 trained on VGG-Face dataset, (RB, FT): pretrained RoBERTa

finetuned for emotion recognition and (RB, PT): pretrained RoBERTa. Best numbers are in bold.
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Method
Top 10 Top 25 Emotic

Val Test Val Test Val Test

Random 16.87±0.23 13.84±0.20 9.73±0.10 7.57±0.08 11.47±0.11 11.36±0.09

CAER [10] 18.35±0.10 15.38±0.13 11.84±0.07 9.49±0.08 13.91±0.06 12.68±0.02

ENet [53] 19.14±0.10 16.14±0.05 11.22±0.06 9.08±0.08 13.55±0.06 12.64±0.03

AANet [85] 21.55±0.18 17.55±0.16 12.55±0.15 10.20±0.13 14.71±0.19 13.37±0.20

M2Fnet [60] 24.55±0.39 19.10±0.06 16.02±0.14 13.05±0.31 18.27±0.16 16.76±0.20

EmoTx 34.22±0.18 29.35±0.18 23.86±0.10 19.47±0.10 23.67±0.03 21.40±0.03

Table 4.4: Comparison against SoTA for scene-level predictions. AANet denotes AttendAffectNet, while

ENet refers to EmotionNet.

Method
Top 10 Top 25 Emotic

Val Test Val Test Val Test

Random 12.49±0.15 11.37±0.14 5.84±0.05 5.36±0.05 6.40±0.05 6.32±0.05

AANet [85] 17.43±0.28 16.04±0.19 8.64±0.19 7.20±0.15 8.53±0.17 7.75±0.11

M2Fnet [60] 20.82±0.28 19.01±0.45 10.67±0.38 9.71±0.34 11.30±0.35 9.92±0.02

EmoTx (Ours) 24.35±0.23 22.31±0.11 13.36±0.11 11.71±0.05 12.29±0.08 11.76±0.10

Table 4.5: Comparison against SoTA for character-level predictions. AANet denotes AttendAffectNet.

4.3.4 SoTA Comparison

We compare our model against published works EmotionNet [53], CAER [10], AttendAffectNet [85],

and M2Fnet [60] by adapting them for our tasks.

EmotionNet [53] employs a joint embedding training approach that aligns learned text embeddings, ob-

tained through the word2vec model [86], with image embeddings extracted from a ResNet50 backbone.

For our adaptation, we utilize the same backbones. Since we use video as input, the frame features are

max-pooled to generate a consolidated representation. The embedding loss is applied, with emotion

labels serving as keywords for joint embedding training. The ResNet50 is then fine-tuned for multilabel

emotion recognition, where individual frame features undergo max-pooling before reaching the logits

layer.
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CAER (Context Aware Emotion Recognition) [10] is a deep Convolutional Network which consists

of two stream encoding networks to separately extract the facial and context features which are fused

using an adaptive fusion network. Detections from our extended face tracks are used as inputs for the

face encoding stream and the full video frame with masked faces was used as input to context encoding

stream. Since CAER is designed to extract emotions from images we adapt it to videos by applying

max-pooling over the fused features from both the streams to generate a single representation for a

video. This adapted model is trained to predict multiple scene-level emotions.

M2FNet [60] is a transformer based model originally developed for Emotion Recognition in Conversa-

tions (ERC) and features a fusion-attention mechanism to modulate the attention given to each utterance

considering the audio and visual features. As this model is designed for utterance emotion recognition

we apply a max-pooling operation over the final outputs of fusion attention module to generate a feature

representation for all the utterances in a video. Since this model provides two strategies to consider

visual features: one with the video frame and another that combines multiple faces in a frame, we use

them to predict either scene- or character-level emotions separately.

AttendAffectNet [85] proposes two multi-modal self-attention based approaches for predicting emo-

tions from movie clips. We adapted the proposed Feature AttendAffectNet model in our work. It

leverages the transformer encoder block where every input token represents a different modality. These

modality feature vectors are generated by average pooling over respective features. Following the pro-

posed mechanism, a classification head was attached at the end of the model for predicting multi-label

emotions. We adopt the same backbone representations, MViT [77] pre-trained on Kinetics400 [78] and

ResNet50 pretrained on FER13 [48], for their work to extract scene and face features respectively.

Table 4.4 shows scene-level performance while the character-level performance is presented in Ta-

ble 4.5. First, we note that the test set seems to be harder than val as also indicated by the random

baseline, leading to a performance drop from val to test across all approaches. EmoTx outperforms all

previous baselines by a healthy margin. For scene level, we see +4.6% improvement on Emotic labels,

+7.8% on Top-25, and +9.7% on Top-10. Character-level predictions are more challenging, but we see

consistent improvements of +1.5-3% across all label sets. Matching expectation, we see that simpler

models such as EmotionNet or CAER perform worse than Transformer-based approaches of M2Fnet

and AttendAffectNet. Note that EmotionNet and CAER are challenging to adapt for character-level

predictions and are not presented, but we expect M2Fnet or AttendAffectNet to outperform them.
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Figure 4.5: A scene from the movie Forrest Gump showing the multimodal self-attention scores for the

two predictions: Mrs. Gump is worried and Forrest is happy. We observe that the worried classifier

token attends to Mrs. Gump’s character tokens when she appears at the start of the scene, while Forrest’s

happy classifier token attends to Forrest towards the end of the scene. The video frames have relatively

similar attention scores while dialog helps with emotional utterances such as told you not to bother or it

sounded good.

4.4 Analyzing Self-attention Scores

EmoTx provides an intuitive way to understand which modalities are used to make predictions. We

refer to the self-attention scores matrix as α, and analyze specific rows and columns. Separating the K

classifier tokens allows us to find attention-score based evidence for each predicted emotion by looking

at a row αzSk
in the matrix.

Fig. 4.5 shows an example movie scene where EmoTx predicts that Forrest is happy and Mrs. Gump

is worried. We see that the model pays attention to the appropriate moments and modalities to make the

right predictions.

Expressive emotions vs. Mental states. We hypothesize that the self-attention module may focus on

character tokens for expressive emotions, while looking at the overall video frames and dialog for the

more abstract mental states. We propose an expressiveness score as

ek =

∑N
i=1

∑T
t=1 αzSk ,c

i
t∑T

t=1 αzSk ,ft
+
∑M

j=1 αzSk ,uj

, (4.1)

where αzSk ,c
i
t

is the self-attention score between the scene classifier token for emotion k (zSk ) and charac-

ter P i’s appearance in the video frame as bit; αzSk ,ft
is for the video ft and αzSk ,uj

is for dialog utterance

uj . Higher scores indicate expressive emotions as the model focuses on the character features, while
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Figure 4.6: Sorted expressiveness scores for Top-25 emotions. Expressive emotions have higher scores

indicating that the model attends to character representations, while mental states have lower scores

suggesting more attention to video and dialog context.

lower scores identify mental states that analyze the video and dialog context. Fig. 4.6 shows the aver-

aged expressiveness score for the Top-25 emotions when the emotion is present in the scene (i.e. yk=1).

We observe that mental states such as honest, helpful, friendly, confident appear towards the latter half

of this plot while most expressive emotions such as cheerful, excited, serious, surprise appear in the

first half. Note that the expressiveness scores in our work are for faces and applicable to our particular

dataset.
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Chapter 5

Conclusion

In this thesis, we presented a novel task for multi-label emotion and mental state recognition at the

level of a movie scene and for each character.

Our work, EmoTx [2], a Transformer encoder based model, introduces a unique dimension by aiming

to predict character-level mental states in addition to emotions and obtained significant improvements

over previous works adapted for this task.

Operating within the temporal framework of movie scenes, we demonstrate the influence of video

and dialog context in enhancing the accuracy of predictions for these nuanced labels. This aspect dif-

ferentiates our research from previous works and aligns with our goal of capturing the rich interplay of

emotions and mental states within the context of cinematic storytelling.

Our learned model was shown to have interpretable attention scores across modalities – they focused

on the video or dialog context for mental states while looking at characters for expressive emotions. In

the future, EmoTx may benefit from audio features or by considering the larger context of the movies

instead of treating every scene independently.

The evolution of movie understanding has brought forth a diverse array of tasks and challenges,

with each facet contributing to a more holistic comprehension of the cinematic medium. Our explo-

ration, anchored in emotional and mental state identification, represents a valuable contribution to the

multifaceted journey of understanding movies in all their narrative richness.
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