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Abstract

Understanding the semantics of the scene to automate the decision process for self-driving cars com-
pletely is becoming a crucial task to solve in computer vision. Due to the recent progress in the state of
autonomous driving, added with a lot of semantic segmentation datasets for road scene understanding
being proposed, semantic segmentation of road scenes has recently evolved to be an important problem
to tackle. But training semantic segmentation models becomes a resource-intensive task since it requires
multi-GPU training and therefore becomes the bottleneck to reproducing results for better understanding
quickly. This thesis introduces challenges and provides solutions to reduce the training time of segmenta-
tion models by introducing two small-scale datasets. Additionally, the thesis explores the potential of
employing neural architecture search and automatic pruning techniques to create efficient segmentation
modules in resource-constrained settings. Chapter2 of the thesis introduces the problem of semantic
segmentation and discusses some deep learning approaches to solve supervised semantic segmentation.
We briefly discuss the different metrics used and also touch upon the statistics of various datasets that are
available in the literature to train semantic segmentation models.

Chapter 3 of the thesis explains the need of having a dataset based on the Indian road scenario. Most
of the datasets in the literature are captured in Western settings having well-defined traffic participants,
delineated boundaries, etc, which seldom mold in the Indian setting. We describe the annotation pipeline,
along with the quality check framework used to annotate the dataset. Now, though the IDD dataset [121]
caters to the Indian setting, this dataset is still quite resource intensive in terms of GPU computation.
Hence, there is a need to have a small resolution, less label-sized dataset for rapid prototyping. We
introduce our proposed datasets and provide a detailed set of experiments, and statistical comparisons
with the existing datasets to substantiate our claim regarding the usefulness of the proposed solution. We
also show through experiments that the models trained using our datasets can be deployed on low-resource
hardware such as Raspberry Pi. At the end of this chapter, we also look into the significance of the
proposed datasets in facilitating challenges at two prominent conferences: the International Conference
on Computer Vision (ICCV) and the National Conference on Pattern Recognition, Image Processing,
and Graphics (NCVPRIPG) in 2019. These challenges aimed to address semantic segmentation in
resource-constrained settings, inviting innovative architectures capable of achieving decent accuracy on
these proposed datasets. We also discuss the potential application of these datasets in teaching semantic
segmentation through a course of notebooks introducing traditional as well as deep learning-based
methods to perform segmentation. These notebooks are plug and play, where the first three notebooks
can run on laptop CPU, while the fourth notebook requires GPU access.
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Chapter 4 of the thesis is about the application of neural architecture search and hyper-parameter tuning
in the context of semantic segmentation. Neural Architecture Search (NAS) is defined as automating
the process of finding novel architecture without a human in the loop. Initially, we discuss the different
approaches to performing neural architecture search followed by the description of hyper-parameter
tuning. We discuss some cases of architecture search specific to segmentation and classification. With the
help of experiments, we then show that the accuracy of different models obtained through training on our
proposed datasets correlates well with the accuracy on large-scale datasets, especially in cross-domain
settings. This correlation allows for achieving faster results and also paves the way to perform an
architectural search for semantic segmentation algorithms.

In the Chapter 5 of this thesis, we delve into the topic of automatic pruning and its application in
optimizing segmentation models. Automatic pruning is a technique that aims to improve the efficiency
of deep learning models by removing unnecessary connections or parameters without significantly
compromising their performance using predefined optimization algorithms. This process is driven by
optimization algorithms that analyze the model’s structure and weights to determine which connections
can be pruned to achieve a more efficient network without any human intervention.

Finally, we conclude the thesis with a summary of the work and also propose future directions.
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Chapter 1

Introduction

Since the onset of deep learning in 2012, the boundaries of various machine learning tasks have been
pushed, and their performances have seen a huge jump. Along with the algorithmic advancements, the
rise of high-end computing devices like GPUs and TPUs, added to the ease of availability of datasets, has
helped revolutionize the development of computer vision systems.

The first success in deep learning can be attributed to the task of image recognition, where the model was
able to perform classifications at a lower error rate when compared to all the previous techniques. Since
then, researchers have tried to incorporate the knowledge behind the success of image-based recognition
systems into other machine-learning tasks such as machine translation, object detection, etc. A similar
trend has been seen for the task of semantic segmentation, in which the idea is to assign a class value
to each pixel in the image. The performance of this task with the help of deep learning in the last few
years has achieved quite a lot of improvement. Apart from this, there has been a surge in the datasets for
training semantic segmentation models consisting of high-resolution images along with other modality
data such as GPS information, LIDAR data, etc. The only disadvantage of models trained using these
datasets is that the size and scale of such datasets prohibit widespread adoption because of which many
university students still don’t get the opportunity to train such systems, especially in developing countries
such as India. Apart from this, coming up with efficient semantic segmentation models has become a
new research area, and therefore, there is a need for navigating the search space of these architectures in
order to obtain time and memory-efficient networks that can be deployed on low-end hardware.

The work in this thesis focuses on providing solutions to enable the ubiquitous adoption of semantic
segmentation datasets which can help quickly prototype results. The experiments proposed in this thesis
substantiate in validating the claim. The initial work presented in the thesis proposes two small-scale
datasets which are easy to plug and play and train simple segmentation models for teaching purposes and
deploy on edge devices. In the next set of work, we address the need to search for efficient segmentation
architecture with the help of the proposed small-scale datasets that can help reduce the computational
burden and also help in transferring the results to large-scale datasets. We also discuss the application of
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automatic pruning in removing the redundant connections of semantic segmentation networks through
the implementation of a unique network design, known as HyperNetworks along with a customized
optimization algorithm.

1.1 Motivation

The presence of large-scale annotated datasets has helped deep networks in achieving human-comparable
performance in many tasks. Be it image-related tasks such as classification or recognition or speech/language-
related works such as translation, machine learning models have gained accuracy due to readily available
large-scale datasets. Though these large-scale datasets have helped in pushing the numbers, the scale and
size of the datasets, especially for the task of semantic segmentation, have restricted their widespread
adoption. A few of the practical challenges are listed below:

• Firstly, compared to classification datasets that vary from a few megabytes (for e.g. MNIST [63],
CIFAR10 [60]) or to few gigabytes (e.g. Imagenet [61]) require a single label per image, curation
and annotation of semantic segmentation datasets constitute a large proportion of time in the overall
training/deployment process. For instance, in Cityscapes [25], a widely adopted and bench-marked
dataset for urban semantic segmentation, it took more than 1.5 hours to annotate and quality check
a single image. For IDD [121] dataset, the annotators were first asked to re-annotate the Cityscapes
images until the error difference is below 5% and then annotate images sequentially which takes
around an average of 1.75 to 2 hours, which is time exhaustive process.

• Secondly, since these images are captured at a very high resolution, the dataset size grows
exponentially, limiting the widespread adoption compared to classification datasets. For instance,
Cityscapes [25] requires around 12 GB of hard disk space with an average image resolution of
1024×2048, whereas IDD [121] requires 18 gigabytes of hard disk space with an average image
resolution of 968×1678. Due to the size factor, deep semantic segmentation models require
multi-GPU training and consume a lot of GPU memory indicative of the fact that such heavy
datasets can’t be used either for rapid prototyping of results which in turn can be readily applied
for educational purposes. Moreover, it limits the use of such high-resolution datasets for training
or deploying models onto resource-constrained hardware real-time applications.

• There have been many works in classification settings where efficient models are searched on
small-scale datasets such as CIFAR [60] to show that best performance also applies on bigger
datasets like Imagenet [15, 73, 142]. This is also known as architecture search. In contrast to the
classification paradigm, finding the best model for semantic segmentation is a demanding task due
to the resource needs involved in the same. There have been some works in semantic segmentation
like [19, 72] but due to the resource intensiveness of the task, it may take several GPU days to
search for an efficient model catering to the needs of the user.

2



• Lastly, in order to find efficient architecture in a resource-constrained environment, automatic
pruning can be considered as an alternative with the advent of neural architecture search and
AutoML [18, 144]. Automatic pruning strives to compress the target network using algorithmic
techniques to obtain novel sub-networks. Prior research has explored automatic pruning within
resource-constrained settings in the fields of classification and restoration [67], but the application
to semantic segmentation remains unexplored.

This thesis focuses on a novel endeavor, where two small-scale datasets (characterized by lower resolution
and label size) are introduced, paving the way for a wide range of applications as discussed above.

1.2 Contribution

The work of this thesis can be defined using two major points-

• Setting Up Annotation Pipeline for Semantic Segmentation Dataset for Indian Roads: Al-
though high-resolution datasets exist for training semantic segmentation models, these datasets are
highly sophisticated in terms of scenes and the participants present. These trained models do not
perform well on Indian roads since most of the assumptions of Western geographies aren’t met.
Hence, in order to come up with solutions for road scene understanding in the Indian setting, we
require a dataset containing dynamic, unstructured scenes existing in the road network of India.
Hence, we set up a pipeline for annotating and quality checking the recently proposed Indian
Driving Dataset (IDD) [121].

• IDD-mini & IDD-lite for Resource Constrained Segmentation and Challenge: Although the
annotation pipeline was setup to guide the process for annotating the IDD dataset, it didn’t comply
with the scenario of running the models in a resource-constrained environment. In other words,
the model trained either on an Indian or any Western dataset cannot be implemented in real-time
since it takes a multi-GPU training regime to get decent enough accuracy. Hence, there is a need to
have a low-resolution, label-space dataset meant for running resource-constrained models that can
even be trained on a laptop CPU. The proposed datasets namely IDD-mini and IDD-lite, were used
as a part of the ICCV 2019 and NCVPRIPG 2019 challenges for resource-constrained semantic
segmentation to come up with efficient models that give decent accuracies on these datasets. Our
experiments show that models trained on these datasets with minimal GPU computing can still
give decent enough accuracy when trained for 15-20 minutes and can be deployed on low-resource
hardware for inference.

We then show the applicability of these datasets for teaching, neural architecture search, and automatic
pruning.
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• Teaching: In the third part of the thesis, we demonstrate the usefulness of the proposed datasets as
a part of some course or workshop in teaching the community the associated concepts of semantic
segmentation since these datasets can be run in real-time, giving decent accuracy.

• Architecture Search: Finding the optimum configuration of parameters/layers to get an efficient
architecture in the case of semantic segmentation is a challenging one because of the costs involved
in the training procedure. The second part of the thesis builds on the experiments which show that
the proposed datasets can be very helpful in quick prototyping for hyperparameter search and help
in replicating the results on larger datasets.

• Automatic Pruning: In order to remove redundant connections, pruning is employed with the
objective of reducing the model size while maintaining accuracy. But with the advent of neural
architecture search, techniques involving automatic pruning have become prominent. The fourth
part of the thesis demonstrates that the proposed datasets not only facilitate quick prototyping for
hyperparameter search but also serve as a valuable foundation for implementing automatic pruning
techniques. By leveraging these datasets, we explore how automatic pruning can effectively
optimize segmentation models, leading to enhanced model efficiency without compromising
segmentation accuracy.

1.3 Thesis Outline

The thesis is organized as follows:

• Chapter 2 details an overview of the task of semantic segmentation and explains our motivation for
introducing small-scale datasets despite the presence of large datasets. It also discusses supervised
methods for semantic segmentation and different metrics used to evaluate different segmentation
models. The chapter also gives a brief overview of the existing large-scale datasets used for training
semantic segmentation models. Lastly, the chapter ends with a discussion of practical challenges
related to training semantic segmentation models.

• Chapter 3 discusses details of our approach to solving some of the practical challenges presented
in the previous chapter. We discuss the need for a dataset pertaining to Indian road conditions for
developing technological solutions for Indian-specific road scenarios. We set up the annotation
and quality check pipeline for annotating the IDD dataset [121]. We also address the need
for small-scale datasets in resource-constrained settings for rapid prototyping on low-resource
hardware since large-scale datasets require multi-GPU training. The utility of these datasets with
proper benchmarking, statistical comparison to other datasets, and real-time deployment results is
also explored. The proposed datasets have also been a part of the ICCV and NCVPRIPG 2019
challenges to find segmentation models that give good accuracies on the test set. Finally, we also
showcase that the proposed datasets can be used as a part of a workshop/curriculum for teaching
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semantic segmentation. We discuss our effort in this space by introducing four notebooks that
cover wide aspects of semantic segmentation from traditional to deep learning methods.

• In Chapter 4, this thesis explores the utilization of neural architecture search and hyperparameter
tuning techniques in various vision tasks, including classification and segmentation. The chapter
presents detailed experiments conducted using the proposed datasets, demonstrating compelling
results that support the effectiveness of the proposed approach for identifying efficient architectures
within specific resource constraints.

• In Chapter 5, automatic pruning is carried out as an important aspect of this research on the
proposed datasets. The chapter focuses on applying automatic pruning techniques to optimize
segmentation models, emphasizing the reduction of model complexity and computational demands
while preserving segmentation accuracy. Extensive experiments are conducted to evaluate the
effectiveness of automatic pruning, and the outcomes are thoroughly analyzed, shedding light on
its potential benefits for resource-constrained scenarios and real-world applications.

• In Chapter 6, we summarize our findings, conclude the thesis, and also present some possible
future directions to explore.
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Chapter 2

Background

In this chapter, we will be going through an overview of semantic segmentation which forms the basis for
solving the general problem of scene understanding. It is one of the most challenging and widely studied
problems because the algorithm/model needs to correctly predict the class at each pixel location of the
image. Though there are several multi-scale datasets available to train semantic segmentation models (as
discussed in this chapter), this thesis builds up the understanding of the need for small-scale datasets
ideally for two reasons. Firstly, there is a need of having small scale segmentation datasets (similar to
CIFAR10, and MNIST in classification setting) in terms of size, and resolution for educational/teaching
purposes that can be trained on CPUs and also deployed on low-resource hardware like Raspberry Pi
for real-time projects. Secondly, finding efficient architectures using search-based methods on these
small-scale datasets can result in good performance on bigger datasets such as Cityscapes [25], IDD [121].
We start the chapter by discussing the problem of semantic segmentation, more specifically supervised
semantic segmentation in Section 2.1. In Section 2.2, we explore the various deep-learning approaches
to perform semantic segmentation. Subsequently, we discuss the evaluation strategies/metrics used to
evaluate the segmentation models in 2.3. In Section 2.4, we see various datasets available in the literature
to train deep segmentation models. We conclude this chapter by summarizing all the datasets discussed in
a form of table (see Table 2.1) with number of training, validation and test images, number of labels etc.

2.1 Semantic Segmentation: Overview

The task of semantic segmentation involves assigning a pre-defined class label to each pixel in the image.
Unlike other computer vision tasks such as classification, where the model needs to output the majority
class in the image, the task of semantic segmentation involves solving the dual problem of recognizing
and understanding the contents of the image at the pixel level. Finding the spatial relationship between
the pixels belonging to a particular class and assigning them the same label is what makes this problem
complex. It is also known as dense prediction because it predicts the essence of each pixel in the image.
An example of the task is shown in Figure 2.1. One thing to differentiate here is that there is another
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Figure 2.1 An example of the output of a semantic segmentation algorithm. The classes are encoded in
the form of color such that similar pixels are clubbed together. This image has been taken from PASCAL
VOC [30] dataset that will be discussed in the later section.

class of algorithms that separates the individual instances of a class present in the image and is commonly
known as instance segmentation. The difference between the two algorithms is depicted in Figure 2.2.

Semantic segmentation has a lot of applications, for example, in the medical domain such as detecting
tumors in the brain [89], tracing the path of medicinal instruments during operations [124]. As mentioned
earlier, for the problem of scene understanding, semantic segmentation has been used heavily for ADAS
(Advanced Driver Assistance Systems) or for self-driving applications for automotive scenarios [34,
84]. Nowadays, semantic segmentation has its application for land cover classification using satellite
imagery [52]. In the next section, we are going to ponder over different approaches used to perform
semantic segmentation in the images through supervised training.

2.2 Deep Learning approaches for supervised semantic segmentation

Prior to deep learning, traditional methods in segmentation initially applied thresholding-based techniques
to segment out the required areas. This technique was common in the medical domain since they used
grayscale images [128, 141]. The community also used KMeans, which is an unsupervised algorithm to
perform clustering of similar regions and assign them one label. The number of cluster centers donated
by k should be fixed before hand [40]. Researchers have also tried to solve it by posing the problem
as an energy model derived from a compression-based technique [86]. Edge and region growth based
approaches [71, 93, 94, 97], superpixel based technique [1], random forest [100] have also been explored
for the task of segmentation. The community has also tried energy-based models like Conditional
Random Fields (CRF) and Markov Random Field (MRF) to perform segmentation [45, 62, 110]. MRF
defines random variables which learn the joint distribution of output class and input pixels by modeling
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Figure 2.2 An example indicating the difference between semantic and instance segmentation. In instance
segmentation, we go a step beyond and also label the individual instances in the example. As shown, all
the individual instances of the person class have been given a separate label in the form of color coding.

Figure 2.3 The diagram depicts Fully Convolutional Network [80] for semantic segmentation. This is
the first end-to-end network proposed consisting of convolutional layers replacing the standard FC layer
to allow input of variable size in order to pixel classifications.

an undirected graphical model. CRF, on the other hand, tries to model the conditional distribution of
output label given input features.

2.2.1 Fully Convolutional Networks

From the onset of deep learning in 2012, following the success of Alexnet [61] in the ILSVRC competi-
tion [107], there have been a lot of deep learning models that have been proposed for various computer
vision problems. For instance, networks such as VGGNet [111], GoogleNet [115], InceptionNet [116],
ResNet [44] etc have been proposed for classification task. Similarly, for the problem of object detection
where the task is to output a boundary for a particular class object, networks such as RCNN [38],
FastRCNN [37], FasterRCNN [102] and SSD [75] have been proposed. These networks have not only
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Figure 2.4 The skip connections used in the Fully Convolutional Network [57, 80]. To improve the
prediction information in the up-sampled layers, information from the pool layers is also added. The
up-sampled features are simply concatenated with the preceding pool features to get better predictions.

surpassed the performance of the traditional approaches but in some cases have also outdone human
performance in these tasks.

The first deep semantic segmentation model, also known as Fully Convolutional Network (FCN) [80]
was proposed in 2014. FCN tweaked a naive classification network by replacing all the fully-connected
layers with convolution layers. Upsampling layers are used to scale the output size the same as the input
for dense predictions of each pixel through the use of transposed convolutional layers. These layers form
the basis for decoding the high-dimensional features. In order to achieve obtain finer segmentation maps,
skip connections were added to generate crisp boundary maps for the object of interest. This network can
take arbitrary size input and can be trained in an end-to-end fashion. Figure 2.3 and Figure 2.4 depict the
FCN architecture and the skip connections employed.

FCNs have been a pioneering model in semantic segmentation architectures, showcasing how successful
classification networks can be adapted for other computer vision tasks. By employing only convolutional
layers, FCNs offer advantages over traditional fully connected layers, including reduced parameters and
weights, leading to faster training and inference times for images. Nonetheless, in practical applications
like medical image segmentation and autonomous driving, higher precision in localizing class labels is
often required, in addition to accurate pixel-level predictions. Subsequent advancements in the field have
sought to address FCNs’ limitations, such as longer inference times and limitations in processing global
contextual information, resulting in more refined segmentation maps.

2.2.2 Encoder-Decoder Architectures

FCNs are an example of encoder-decoder architecture. The basic methodology behind encoder-decoder
architectures is to combine two sub-networks, (a) Encoder, which extracts high-level features from the
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input through a series of convolutional layers that successively down-sample the spatial dimensions
while increasing the number of feature channels. The encoder learns to encode hierarchical and abstract
representations of the input image, capturing the global and local features, (b) Decoder takes in the
encoded features and aims to recover the spatial resolution of the input image while refining the feature
representations. The up-sampling of the encoded representations to the original resolution happens either
through learnable layers such as transposed convolutions or through simple interpolation methods. The
decoder also employs skip connections that concatenate or add feature maps from the encoder to the
corresponding layers in the decoder. These skip connections help in preserving fine-grained spatial
information and assist in the segmentation process. Some examples of encoder-decoder architectures are
mentioned below:

UNet [104] uses skip connections connecting the corresponding encoder and decoder layers allowing
them to pass the gradient directly. This structure helps in avoiding vanishing gradient problems. The
decoder uses concatenation in the channel dimension to leverage both the low-level details from the
encoder and the high-level context learned during the encoding process. This architecture was proposed
for the application of medical imaging however it has been used in several other domains such as satellite
imaging [82], automatic crop investigation [76]. Another architecture based on similar techniques was
proposed by Badrinarayan et al. known as SegNet [4]. One of the key innovations in SegNet is the use of
max-pooling indices during the encoder phase. While down-sampling the feature maps, SegNet keeps
track of the indices of the maximum values at each pooling operation. These indices are then used in the
decoder phase for up-sampling. Instead of learning the up-sampling process, SegNet uses these stored
indices to efficiently perform the up-sampling, which significantly reduces the computational burden.
Efficient Residual Factorized ConvNet (ERFNet) [103] uses factorized convolution splitting the standard
3×3 convolution filter into two separate 1×3 and 3×1 convolutions, reducing the computations while
capturing important spatial information. It also uses a non-bottleneck module comprising of series of one-
dimensional convolutional layers to capture both horizontal and vertical contextual information efficiently.
Figure 2.5 pictorially depicts the difference between different kinds of bottleneck and non-bottleneck
modules.

2.2.3 Atrous Convolution, Multi-Resolution, Multi-Scaled Architectures

There is another class of semantic segmentation architectures that employ atrous/dilated convolutions
specifically aiding in widening the filter field of view. This design helps remove the down-sampling
operation needed in the encoder-decoder type of architectures keeping the parameter count but increasing
the training and evaluation times. For instance, Dialated Residual Network (DRNet) [137] uses dilations
using different atrous rates to increase the receptive field size keeping the parameters same and balancing
the removal of down-sampling layers, capturing a broad range of contextual information. Similarly, some
networks employ spatial pyramids using dilated convolution nearly at the end of the network which helps
in getting multi-scale context by performing pooling operations with different kernel sizes and strides on
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Figure 2.5 Comparison of different kinds of residual blocks, (a) Standard residual layer consisting of 3x3
convolutions, (b) Bottleneck module consisting 1x1 convolution and 3x3 convolution, (c) Non-bottleneck
module with a factorized 3x3 convolution used in ERFNet [103].

the intermediate feature maps to obtain one fixed-length representation. One example of such a network is
DeeplabV3 architecture [21] that employs dilated pyramidal pooling for different spatial resolutions [20]
to incorporate larger context. The authors conducted several experiments to conclude that changing
the dilation rate is effective for gaining a wider context and increasing the segmentation accuracy. The
authors of DeepLab introduced DeepLab V3+[22] consisting of an encoder-decoder architecture along
with an atrous spatial pyramidal pooling module to achieve better results.

In the next section, we are going to discuss the evaluation strategies which are used to score a deep
segmentation model.

2.3 Evaluation Strategies

In order to quantify how well a trained semantic segmentation model performs, we need to employ some
evaluation metrics that indicate the goodness of the performance. Some of the common metrics that are
used in semantic segmentation are explained below:

2.3.1 Pixel Accuracy

Pixel Accuracy is defined as the ratio of correctly classified pixels in the image to the total number of
pixels in the image. We can either define it individually for each class or as a whole across all classes.
Let us consider an image of resolution H×W and the total number of pixels as p. Let us assume that
pxy conveys the pixels belonging to class x assigned to class y by the semantic segmentation model.
Therefore, with respect to class x, pixels pxx denote the true positives, pixels pyy denote the true negatives,
pixels pxy denote the false positives and pixels pyx denote the false negatives. Assuming that the total
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Figure 2.6 Visualization of the standard metric Intersection-Over-Union for evaluating the semantic
segmentation models. The Venn diagram shows the pixels correctly classified as TP (True Positive) as
the intersection and the union of both circles is the factor by which TP is divided to get IOU value.

number of trainable classes are 1, 2...M , the pixel accuracy formula is defined as:

PA =

∑M
r=1 prr∑M

r=1

∑M
v=1 prv

(2.1)

In a multi-class setting, the mean pixel accuracy (mPA) is defined as class average accuracy or the ratio
of correctly labeled pixels on a per-class basis averaged across the number of classes.

mPA =
1

M

M∑
r=1

prr∑M
v=1 prv

(2.2)

In scenarios with severe class imbalances, certain classes tend to dominate the image, while other classes
represent only a minor fraction of the overall image. Although pixel accuracy is a straightforward metric,
it can be heavily influenced by classes that occupy a substantial portion of the image.

2.3.2 Intersection-Over-Union

To overcome the limitation offered by pixel accuracy, a more sophisticated and widely accepted evaluation
measure is Intersection-Over-Union (IOU), also known as Jaccard Index. IoU is mathematically defined
as:

IoU =

∑M
r=1 prr∑M

r=1

∑M
v=1 prv +

∑M
r=1

∑M
v=1 pvr −

∑M
r=1 pii

(2.3)

It is the ratio of true positive pixels belonging to class M to that of ground truth pixels in class M as well
pixels predicted to be class M. Figure 2.6 gives a better pictorial understanding of the metric. In the case
of mean IoU, the equation changes to calculate the class-weighted average of the IoU, given by:

mIoU =
1

M

M∑
r=1

prr∑M
v=1 prv +

∑M
v=1 pvr − pii

(2.4)
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Figure 2.7 Example images from the Camvid dataset [13, 14]. The left column shows the ground truth
images, and the right column indicates the color-coded per-pixel annotated images.

mIoU is the widely used metric to evaluate the performance of any semantic segmentation network on a
given dataset. Table 3.3 indicates the best reported mIoU metric on the publicly available datasets.

2.4 Semantic Segmentation Datasets

In order to train semantic segmentation models in a supervised paradigm, we need to have a pixel-wise
annotated dataset. There have been a lot of varied datasets that have been proposed belonging to different
geographies, with traffic participants capturing restrained variation. This section details such proposed
datasets. The mIoU metric discussed above is reported on the validation/test set of these datasets and is
also mentioned in Table 2.1.

2.4.1 CamVid Dataset

CamVid [13, 14] is one the earliest proposed datasets for autonomous driving-based semantic segmenta-
tion. It consists of a total of four videos of around 22 minutes in length capturing varying scenes in and
around Cambridge. The images have been annotated from a group where each pixel belongs to one of
the 32 classes. The classes are broadly clubbed into four categories namely road, moving objects, fixed
objects, and ceiling. The dataset contains a total of 700 images with an average resolution of 360×480.
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Figure 2.8 Example images from the Cityscapes dataset [25]. The left column shows the ground truth
images, right column indicates the color-coded per-pixel annotated images. Cityscapes introduced a wide
variety of novel classes with diverse sets of weather, and traffic conditions.

The training set contains 367 images, while the validation and test set contains 101 and 233 test images
respectively. Figure 2.7 displays sample images and the corresponding annotations from the CamVid
dataset.

2.4.2 KITTI Dataset

KITTI [2, 36] is a large-scale benchmark dataset aimed at providing benchmarks to various computer
vision tasks related to the autonomous driving-based scenario. The semantic segmentation benchmark of
the dataset was introduced later compared to other benchmarks such as odometry, SLAM, detection, etc,
and contains around 200 semantically annotated train as well as 200 test images. The data format is the
same used in Cityscapes [25].

2.4.3 Cityscapes Dataset

Cityscapes [25] is a high-quality annotated dataset for training/benchmarking semantic segmentation
models for street scene understanding due to varied sets of captured scenes and classes. The dataset
contains dense fine annotations of urban street scenes of 25 classes out of which 19 have been chosen for
evaluation, coarse annotations along with the metadata such as video sequence, GPS coordinates, etc.
Each class in fine annotation belongs to one of the seven categories: vehicle, human, construction, sky,
object, nature, and flat. The dataset is split into 2975 training, 500 validation, and 1274 testing images
with a resolution of 2048×1024 pixels. Sample images from the dataset are shown in Figure 2.8.

2.4.4 PASCAL VOC 2012 Dataset

PASCAL VOC 2012 [30] is a popular dataset that is used for training general semantic segmentation
models. It was introduced as a part of a challenge to recognize objects in realistic scenes. The challenge
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Figure 2.9 Example images along with the color-coded per-pixel annotations of the PASCAL VOC
dataset [30]. This dataset has images from varied scenes both indoors and outdoors focusing on segmen-
tation in different scenarios.

also includes data for tasks such as detection, classification, action classification, etc. There are 20
object classes such as a person, dog, bus, chair, etc. belonging to 4 different categories. For the task
of segmentation, the train and validation set includes images and annotations from 2007-2011 versions
as well, accounting for 5717 and 5823 images. The test set contains images from 2008-2011 without
any annotation. The class person is the most dominant category in the dataset followed by chair and car.
Figure 2.9 shows some examples from the dataset.

2.4.5 Mapillary Dataset

Mapillary Vistas is a large-scale diverse dataset [92] which contains street scenes meant for training
segmentation models specific to autonomous navigation-based scenarios. Training and val sets contain
18000 and 2000 images respectively while the test set has 5000 images at an average resolution of 9MB.
There are a total of 100 object categories, 60 of which are specific to instance segmentation. The dataset
has a much richer geographic reach covering North-South America, Europe, Africa, Asia, etc., and
also differs in weather conditions, in capturing times. The images have been captured from different
viewpoints as well for eg. roads, sidewalks, etc. The number of objects per image is more than that of per
image object count of Cityscape [25]. Figure 2.10 depicts a few examples from the dataset.

2.4.6 ADE20K Dataset

ADE20K is a densely annotated dataset that spans diverse annotations of scenes, objects, parts of objects
etc [143]. The dataset consists of 20210 finely annotated images for training, 2000 images for validation,
and around 3000 testing images. There are a total of 3,169 class labels annotated, 2,693 of which are
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Figure 2.10 Sample images and the corresponding color-coded per-pixel annotations depicting the urban
street scenes in Mapillary dataset [92]. The first row corresponds to the dataset image captured in Asia
while the second row corresponds to the dataset image captured in Oceania.

Figure 2.11 Sample images and pixel-wise color annotations depicting a few scenes of ADE20K [143].
The first row corresponds to a scene inside a caravan whereas the second row corresponds to an inside
view of a house. This dataset contains a wide variety of both indoor and outdoor scene segmentation.

object and stuff classes and 476 are object part classes. For benchmarking on their test set, the researchers
use only 150 categories for the task of semantic segmentation. All the images are exhaustively annotated
with objects. Many objects are also annotated with their parts. Apart from the regular annotation,
additional information regarding the occludes, cropping, and other attributes. The distribution of objects
is non-uniform mimicking a more natural scene. An example of this dataset is shown in Figure 2.11.

2.4.7 BDD100K

BDD100K is the largest urban street driving dataset [135] for a multitude of tasks such as semantic
segmentation, object detection, lane marking, multiple object tracking, etc. The dataset has a total of
100K videos possessing varied amounts of geographic conditions and weather diversity collected mostly
from the populous regions of the US. Each video is of length 40 sec and has been recorded in 720p
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Figure 2.12 A few example images and the corresponding pixel-wise color annotations depicting two
scenes of BDD100K [135]. This is by far the largest autonomous driving dataset for a multitude of tasks
such as semantic segmentation, object detection, tracking, etc.

resolution along with GPS recordings to keep track of the driving path taken. The training set contains
70K videos, whereas the validation and testing set contains 10K and 20K videos respectively. For each
video, the frame available at the 10th second is chosen for annotation, while the whole video is used for
tracking purposes. Figure 2.12 shows a few images and their corresponding annotation of this large-scale
dataset.

Dataset Average Image Resolution (W×H) # Train + Val. Images # Test Images mIoU (Best reported) Labels

CamVid [13, 14] 360×480 468 233 83.7 32
KITTI [2, 36] 375×1242 200 200 76.44 19

Cityscapes [25] 2048×1024 3475 1525 85.9 19
PASCAL VOC 2012 [30] 390×468 11540 N.A. 84.3 20

Mapillary [92] 1080×1920 20000 5000 64.9 40
ADE20K [143] 822×1038 22210 3000 63.0 150

BDD [135] 720×1280 8000 2000 58.7 19

Table 2.1 Shows the average image resolution, number of training and validation images, number of test
images, the best mean intersection-over-union (mIoU) metric reported on the test set and the number
of corresponding labels in the respective datasets. KITTI [2, 36] and BDD [135] follow the same label
convention as that of Cityscapes [25]. The number of test images for PASCAL VOC 2012 [30] dataset
for semantic segmentation is not publicly available.

In the chapter, we discussed the task of semantic segmentation, deep learning approaches to semantic
segmentation, evaluation metrics, and some of the existing datasets to train deep segmentation models. In
the next chapter, we will discuss our approach to solving the practical challenges for rapid prototyping of
semantic segmentation models in resource-constrained settings by introducing two small-scale datasets
that are easy to plug and play and the corresponding experiments and results to validate our hypothesis.
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Chapter 3

Datasets for Resource Constrained Semantic Segmentation

In this chapter, we discuss the need of having a dataset for developing solutions catering to Indian
road understanding and also discuss the proposed solution to tackle the practical challenges one faces
when training deep semantic segmentation models described in the previous chapter. Our contribution
is summarized as follows: Several large-scale datasets, coupled with advances in deep neural network
architectures have been greatly successful in pushing the boundaries of performance in semantic seg-
mentation in recent years. However, all the existing datasets contain scenes from Western cities which
are much more organized in terms of structured road conditions with well-defined traffic participants,
low variation between foreground and background objects, etc. The models trained on the Western
datasets might provide an initial level of results but because of the assumptions mentioned above which
seldom get satisfied in the Indian context, these results cannot be further improved beyond a certain point.
Therefore, a dataset for developing autonomous driving solutions catering to the Indian road scenario is
of utmost need/importance. We discuss the statistics of the recently proposed dataset for Indian road
conditions in this chapter. Now, though we have a dataset for Indian roads, the scale and magnitude of
all the datasets prohibit ubiquitous use and widespread adoption of such models, especially in settings
with serious hardware and software resource constraints. Therefore, we propose two simple variants of
the IDD dataset, namely IDD-mini and IDD-lite, for scene understanding in unstructured environments.
This chapter focuses on the benchmarking of these datasets using standard training regimes on GPU
as well as low-constrained hardware such as RPi. Through the experiments, we show qualitatively
and quantitatively that with only 1 hour of training on 4GB GPU memory, we can achieve satisfactory
semantic segmentation performance on the proposed datasets. We also discuss the use of these datasets
for teaching and education usage, since models trained on these datasets for a very limited duration still
gives decent enough accuracy that can be part of some courses/workshop. We also provide qualitative
and quantitative assessments of our dataset over state-of-the-art segmentation architectures.
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3.1 Annotation Toolkit for Semantic Segmentation

This section introduces the formal methodology used to annotate semantic segmentation datasets for
model development.

Pixel-wise annotation for dense labeling tasks such as semantic segmentation and instance segmentation
requires a lot of time to annotate since each pixel needs to be given a class label. In order to fasten the
process of the annotation, a number of methods have been introduced in the literature [17, 106, 122].
Some of the methods used superpixel-based techniques in which they divide the image into superpixels
and annotate the label present in them [35, 130]. Other works use semi-supervised methods in which
they annotate the images using either points [8, 129] or strokes [8, 55]. The inference in the previously
explained method is done using the same procedure. The mentioned techniques help in faster annotation
but quality becomes a question.

((a)) Polygon Annotation Outline ((b)) Class labelling ((c)) Final Annotation

Figure 3.1 An example of annotating a car class object from the IDD [121] dataset using LabelMe [108]
web based annotation tool. On the left, (a) Polygonal annotation outline depicted using blue color for
the car object. The green circle is the starting point of the outline and needs to be clicked on when the
beginning and end points meet. (b) The pop-up box appears once the annotation is complete. It asks for
the class name of the object along with other attributes to fill. (c) The final pixel map of the car object.

Almost all publicly available datasets for semantic segmentation [25, 30, 121] nowadays use a team of
annotators to define layered polygons around the object of interest. The majority of the objects present
in these datasets are connected without the presence of any hole hence polygons help in annotating an
object by using a small number of clicks. The majorly used annotation tools for this setup are described
below:

• LabelMe Annotation Tool: LabelMe [108] is a web-based open-source image annotation tool for
labeling objects using polygon, rectangle, circle, line or point annotation. The annotation is saved
in an XML format with all the polygon corners/clicks saved as coordinates. A pipeline of the tool
is shown in Figure 3.1. Some of the advantages of this tool are, (1) the annotators can annotate the
scene without installing the tool locally, (2) custom functions can be implemented to improve the

19



segmentation or change the label set. The main disadvantage of the tool is that there is no efficient
way of conducting quality check analysis.

• Cityscape Annotation Tool: This is an offline open-source annotation tool for labeling objects
in a layer-wise polygonal format. It is quite similar to the LabelMe tool but with different GUI
functions that can help the annotator fasten the labeling. An example of the tool is depicted in
Figure 3.2. The output of the annotation is saved in a JSON format containing all the coordinates
for all the clicks made.

((a)) Labelling Car Object ((b)) Full depth ordered annotation

Figure 3.2 An example of annotating a car object in the image captured from the city of Hyderabad. On
the left, the car object has been annotated initially with the label shown when zoomed. On the right is the
image depicting annotation using the depth ordering of the layered polygons.

In the next section, we will introduce the recently proposed IDD dataset, a dataset for understanding the
unstructured environment present in the Indian context using the Cityscape annotation tool along with
the annotation and quality check guideline used to annotate the images of the dataset.

3.2 Indian Driving Dataset [121]

All the datasets discussed in Chapter 2 contain scenes captured in the western setting which are more
organized and constrained as the traffic participants follow the guidelines set. Compared to the datasets
captured in the West, Indian Driving Dataset (abbreviated as IDD) [121] is a large-scale, recently proposed
dataset for scene understanding in unconstrained and unstructured environments. By unstructured, the
dataset assumes having images from scenes having not-so-delineated boundaries, not-so-strict adherence
to traffic rules, and multiple traffic participants (both humans and animals). The dataset consists of 10000
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Figure 3.3 Example images and the pixel-wise annotations depicting a few scenes of IDD[121]. As
can be seen, this dataset introduces new classes like auto-rickshaws, billboards, etc not present in other
datasets. The dataset also contains fallback labels in case the object doesn’t fall into the defined set of
categories.

images out of which around 7000 belong to the train set, and 1000 and 2000 belong to validation and
testing sets respectively. The images have been finely annotated with 34 classes collected from 182 drive
sequences of Hyderabad and Bangalore, India with an average resolution of 1678 X 968 pixels. The
labels in the dataset have been divided into four level hierarchies to allow various training schemes on
multiple levels and adapt to increasing complexity. Figure3.3 shows a few annotated examples of the
dataset. We discuss here in the upcoming subsection, the annotation guideline and the quality check
strategy adopted for annotating this dataset.

3.3 IDD: Data Annotation and Quality Check

This section explains in detail the whole process of annotation and quality check guidelines followed for
the IDD dataset.

3.3.1 Annotation Guideline

The drive sequence recording received from the camera was sent to extract and prioritize frames for
the process of annotation manually. After getting the frames, the fine annotations were curated using
polygonal format using Cityscapes [25] offline tool as shown in Figure 3.2. The annotators were first
asked to annotate images from Cityscapes [25] dataset in order to get acquainted with the finer-level
details of the process. Subsequently, they were provided with additional guidelines for annotation. Some
of them include images being ordered by depth ordering, occluded parts are annotated with a coarser,
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Timeline Raw Frames Annotated Images Man Hrs for Annotation Man Hrs for QC
07 Aug - 13 Aug 2019 43 43 35 Hrs 210 Hrs
31 July - 06 Aug 2019 29 9 20 Hrs 273 Hrs
24 July - 30 July 2019 624 589 741 Hrs 174 Hrs
17 July - 23 July 2019 1661 1067 1568 Hrs 26 Hrs

Table 3.1 An example of the statistics from the different modules of the annotation and quality check
pipeline. The man hours for annotation show the total hours needed for a team of 25 annotators combined
together to annotate the data in different time shifts. As expected, the hours for quality check is less than
that of annotation. The difference in the raw frames and annotated images is because those images went
to the repair queue due to a large set of errors identified by the peer annotator. QC=Quality Check

Timeline QC1 Passed QC2 Passed QC3 Passed Remarks
07 Aug - 13 Aug 2019 43 1401 231 -
31 July - 06 Aug 2019 9 1972 - -
24 July - 30 July 2019 589 2137 - -

Table 3.2 Data corresponding to different weeks for different quality check modules of the pipeline. For
the present week, the remaining set of annotations are passed for the subsequent week to be checked. If
the batch as a whole is processed after QC3, then the images can be passed down for training.

conservative boundary (possibly larger than the actual object). Holes in an object through which a
background region can be seen are considered to be part of the object. On average, per image took 1.5-2
hrs for annotation by a single annotator.

3.3.2 Quality Check Guideline

After the first round of annotation, the set of annotations is passed to a peer annotator selected randomly
to do a thorough quality assessment and provide feedback. The peer’s role is to check and verify:

• If the guidelines of annotation are followed.

• If the right labels are assigned to polygons/objects.

• Is every part of the image annotated without leaving any object unannotated?

• Are the object boundaries reasonable?

The aim of the peer review was to encourage annotators to learn from each other’s mistakes. This is
followed by a quality check provided by the supervisor. The supervisor’s role is to check:

• All the guidelines are strictly followed.

• All the objects in the image are given appropriate labels.

• All the objects in the image are labeled without missing any part/object.
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• Lot of effort is invested in identifying easily missed small-scale objects eg. traffic signs, and traffic
lights.

• Are the object boundaries appropriate up to a pixel level threshold - strict check on boundary
errors.

The aim of the supervisor-based QA is to lay more emphasis on ensuring pixel-level quality.

This is followed by quality assurance provided by one of the members of the research team where they
sample 20% of images from the batch. If around say 98% of images in a batch pass quality assessment
based on pixel level, then these batches of images are approved.

The last stage of quality assurance is done by an expert by sampling 10% of images which are thoroughly
scrutinized. Following this, the batch of data is concluded as annotation and passed on for further
processing. The whole process is also depicted in Figure 3.4. Table 3.1 and Table 3.2 indicate some
statistics related to the whole annotation and quality check pipeline.

Although IDD was proposed to tackle challenges related to the Indian setting, it’s still a very resource-
intensive dataset in terms of GPU computation. It also does not take care of the resource-constrained
needs for running semantic segmentation models. Moreover, there is a need to drive the research in the
vision community toward achieving state-of-the-art results for various tasks using only limited labeled
data. Such a research direction would have a huge impact, more so on semantic segmentation tasks
that requires huge annotation of pixel-level semantic labels. Developing such standardized small-scale
datasets, we wish to coalesce the efforts of the research community towards developing algorithms
that need only a few labels to match state-of-the-art performance. As a result of the annotation toolkit
used to annotate the IDD dataset, it lead to the motivation of curating two small datasets for semantic
segmentation for resource-constrained computation namely IDD-mini and IDD-lite. In the next section,
we will discuss more about the related efforts in this space, the dataset curation strategy, and its associated
statistical properties.

3.4 IDD for Resource Constrained Computation

As discussed earlier, semantic segmentation is the task of assigning pixel-level semantic labels to images,
with potential applications in fields such as autonomous driving [25, 121] and scene understanding. Many
approaches have been proposed to tackle this task based on modern deep neural networks [20, 103, 137].
The majority of the proposed approaches use encoder-decoder networks that aggregate spatial information
across various resolutions for pixel-level labeling of images.

For example, [80] proposes an end-to-end trainable network for semantic segmentation by replacing
the fully connected layers of pre-trained AlexNet [61] with fully convolutional layers. Segmentation
architectures based on dilated convolutions [136] for real-time performance have also been proposed
in [103, 137]. However, most of these approaches come with huge overhead in training time and inference
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Figure 3.4 Total annotation and quality checking pipeline.

time since it requires multi-GPU training with very high GPU memory requirements. This poses multiple
challenges for the widespread use of semantic segmentation datasets and architectures, resulting in huge
roadblocks to research and development of such real-time systems, especially in developing regions of
the world with resource constraints.

Apart from the widespread utilization of the datasets, optimizing deep learning models for resource-
constrained devices is picking up pace since the real-time performance of such deep models brings the
issue of scalability and transferability for the end user. For instance [11] proposed a traditional Boltzmann
machine model for deep learning models deployed on FPGA boards in order to achieve better speedup.
Other strategies include model compression to reduce model size for edge devices such as [42, 101],
proposing efficient modules that can run on low-end hardware [51, 139]. More specifically, for semantic
segmentation [83] proposed efficient ESP module which has a comparative IoU compared to heavier
models such as [20], takes around 0.8 MB in size on an NVIDIA Jetson TX2 edge device and has a
very less power consumption. Similarly [70] proposes a model specifically for edge devices that runs
on 38 FPS with a model size of 15 MB on NVIDIA Jetson TX2. Other approaches include architecture
search-based processes which take computational constraints into account during the search process
[26, 126].

Keeping in mind the need for segmentation datasets for constrained settings, we propose IDD-mini and
IDD-lite, as shown in Figure 5.4, which are aimed at improving the state of semantic segmentation for
autonomous driving in developing regions. We believe that having these datasets would help alleviate the
challenges faced in resource-constrained settings. Resource constraints can mean a lack of availability
of high-end GPUs, limited time access to GPU resources, or lack of infrastructure to store large-scale
datasets. The scenes and labels presented in our dataset are very different from those available in semantic
segmentation datasets such as Cityscapes [25], KITTI [36] or CamVid [13, 14]. Therefore, we tend to
address the following points in this chapter:
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Figure 3.5 Sample images with ground truth from IDD-lite, IDD-mini with a second and third column
representing 7 and 16 labels (Best viewed when zoomed).
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Dataset Average
Resolution

#Annotated
Pixels[106]

#Train
Images

#Val
Images

Disk Space
(in GB)

Label
Size

IDD[121] 968×1678 11811 6993 981 18 26
Cityscapes[25] 1024×2048 9430 2975 500 12 20

IDD-mini 512×720 535 1794 253 4 16
IDD-lite 227×320 39.75 673 110 <1.5 7

Table 3.3 Comparison of state-of-the-art datasets against proposed IDD-mini and IDD-lite.

• We provide IDD-mini and IDD-lite, which are sub-sampled versions of IDD [121] with very
similar label statistics and a smaller number of labels (See Section 3.4.3).

• We show that models trained only for an hour on a single 4GB GPU still achieve reasonable
prediction accuracies (See Section 3.5.1).

• We deploy models trained using our datasets on Raspberry Pi and report the accuracy and runtime,
giving a standardized measurement of the performance characteristics on the device (See Section
3.6.1).

3.4.1 IDD-mini

The motivation behind designing IDD-mini is to have a small-scale segmentation dataset that is useful
for training image segmentation models on low-resource hardware. The full IDD dataset1 consists of
7974 high-resolution images in the train-val set with 26 labels at the L3 label hierarchy, taken from
182 different drive sequences. To create IDD-mini, we followed a carefully evaluated sub-sampling
approach to ensure the resultant dataset retains its representativeness and diversity. After conducting a
comprehensive empirical analysis, we determined that sub-sampling the dataset by a factor of 4 yielded
the most desirable outcomes for our specific goals. The empirical evaluation involved examining various
sub-sampling factors, considering factors such as computational efficiency, label distribution preservation.
This approach also ensured that the resulting dataset maintains the same proportion of labels as the
original IDD dataset [121], preserving the semantic information while significantly reducing the dataset
size. To create IDD-mini out of the original dataset, we resize the images such that the largest dimension
is down-sampled to 720 while preserving the aspect ratio, and use the 16 labels from the L2 hierarchy of
the original dataset. The train set contains 1794 training images and 253 validation images.

3.4.2 IDD-lite

The decision to utilize a sub-sampling factor of 10 for creating IDD-lite was a result of rigorous empirical
investigations aimed at optimizing the dataset for very quick prototyping of semantic segmentation

1https://idd.insaan.iiit.ac.in/
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Figure 3.6 Proportion of labels in total dataset for IDD, IDD-mini and IDD-lite (Best viewed when
zoomed).

models, especially in resource-constrained settings. Through extensive empirical analyses, we systemati-
cally explored various sub-sampling factors and evaluated their implications on dataset characteristics,
model performance, and the overall effectiveness of IDD-lite for quick prototyping and educational
purposes. The evaluation encompassed considerations such as computational efficiency, label distribution
preservation, inter-class variance, and the ability to maintain a diverse representation of the original
dataset. The choice of a sub-sampling factor of 10 emerged as a clear and purposeful outcome from this
empirical evaluation. By sub-sampling the dataset by a factor of 10, we effectively reduced the dataset
size while ensuring that IDD-lite retains a meaningful representation of the original dataset’s semantic
information. IDD-lite’s training set now comprises 673 images, and the test set includes 110 images. We
re-scaled the largest dimension of the images to 320 while preserving the aspect ratio, and employed
the L1 hierarchy with 7 coarse labels to maintain the necessary granularity for semantic segmentation
tasks. The outcome of this empirical approach is a purposefully designed IDD-lite dataset, which strikes
an optimal balance between dataset size reduction and retaining critical information for rapid model
prototyping and instructional purposes. Moreover, the reduction in the required disk space from 18GB
for IDD to less than <1.5GB for IDD-lite further enhances the dataset’s accessibility and optimizes the
storage footprint, making IDD-lite an ideal resource for settings with resource limitations.

3.4.3 Label Statistics

Figure 3.6 shows that the mini and lite versions of IDD follow the same distribution as the original dataset,
following the technique we used to sub-sample the dataset. The proportion of pixels corresponding to
categories like Road and Building occupy a large fraction of the total annotated pixels, while there is also
sufficient representation for smaller classes like vehicle and traffic signs. The total absolute number of
annotated pixels (in log scale) is given in Figure 3.7, to show that the number of pixels in IDD-mini, and
IDD-lite are an order less than that of the original dataset.
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Figure 3.7 Absolute value of annotated pixels (in powers of 10) for categories in IDD, IDD-mini, and
IDD-lite (Best viewed when zoomed).

3.4.4 Comparison with other datasets

Comparison to another large-scale and widely used dataset, Cityscapes [25], is also presented in Figure 3.6.
It consists of 2975 training images and 500 validation images at a uniform resolution of 1024×2048, with
images taken from various cities and weather conditions. However, one major advantage that our datasets
offer compared to cityscapes is that IDD-mini and IDD-lite contain scenes from more unstructured
environments, with images captured from complex traffic and driving situations. Furthermore, the
comparison from Figure 3.6 shows that in most categories, the smaller datasets match Cityscapes on the
proportion of the pixels.

3.5 Experiments and Results

3.5.1 Semantic Segmentation Performance Benchmarking

In this section, we benchmark the results of the proposed datasets on two state-of-the-art architectures
used for semantic segmentation, DRNet [137] and ERFNet [103]. We employ these networks since the
same networks were used to benchmark against IDD [121] dataset. For DRNet, we use a ResNet-18
backbone(drn-d-22). We take mIoU (mean intersection over union) as the performance metric for all our
experiments.

The models ERFNet and DRNet-18 were trained using the resolution depicted in Table 3.3 and validated
using the resolution shown in Table 3.4. The models achieve a mIoU of 57.91% and 53.31% on IDD-mini
using ERFNet and DRNet-18 respectively. Similarly, IDD-lite gives mIoU values of 66.14% on ERFNet
and 55.03% on DRNet respectively.
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Dataset #L Val. mIoU mIoU
Res. ERFNet [103] DRN [137]

CS [25] 20 512×1024 71.50 68.00
IDD [121] 26 512×1024 55.40 52.24
IDD-mini 16 480×640 57.91 53.31
IDD-lite 7 128×256 66.14 55.03

Table 3.4 Performance (in mIoU) of the proposed datasets on semantic segmentation architectures
ERFNet and DRN-d-22. Note that val. res. corresponds to the validation resolution for each dataset,
which is obtained by cropping and resizing the original images from Table 3.3, #L is the number of
trainable classes in that dataset.

Figure 3.8 Qualitative examples of ERFNet model run on IDD-mini, IDD-lite dataset. From top to
bottom - image, prediction, and ground truth. The first two columns correspond to results from IDD-mini
and the last two columns are for IDD-lite.

From Figure 3.9, it can be seen that the IDD-lite dataset gives reasonably good mIoU results with just
15-20 minutes of training within 4GB GPU memory (Best visualized when zoomed). We also note
that while models trained on such datasets cannot directly be employed in state-of-the-art semantic
segmentation applications, they will nevertheless be very useful for teaching or workshop purposes in
cases with limited technical support and overall resource availability as discussed in the next chapter.

3.6 Related Effort

Deep learning has taken over the traditional methods as discussed earlier for almost all the vision tasks.
However, the same performance comes at the cost of high computational and memory requirements for
both the training and inference time. Training a deep learning model, for instance, a segmentation model
requires multiple rounds of training, involving millions of parameters that need to be updated with each
round of learning. The same happens happen at the inference time since the dimensionality of the data
is huge and requires multiple operations to get the desired output. For eg, for segmentation, the input
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Figure 3.9 Training time (x-axis) vs. Validation mIoU (y-axis) plot for IDD-lite. Note that with only 15
minutes of training on 1 GPU using only 4GB, the model obtains >50% mIoU

undergoes a series of downsampling and upsampling operations to get the final class map. Therefore, the
community is slowly shifting to designing such models that can run on low-power devices with minimal
requirements. As we will see in the next chapter, neural architecture search is one of the techniques that
can help in modeling such constraints into the networks to fabricate such deep learning models [126, 26].
Mentioned below are some factors which influence the use of edge devices over cloud-based services
which tend to offer a similar solution.

• Latency: Inference time is an essential aspect of real-time performance. The response time should
be as low as possible to have a near-immediate response. For e.g. in order to understand the
semantics of the scene, an autonomous car should have a system that immediately understands the
surroundings in order to avoid any mis-happenings. This is delayed in cloud-based service since
there has to be a handshake between the devices at the two extreme ends.

• Power consumption: In order to deploy deep learning models on edge devices such as RPi, it is
important to check whether any unnecessary processes don’t run in the background which wastes
the clock cycles and increases the power consumption of the device. When compared to cloud
services, several processes need to run in the background in order to run the main program which
ultimately relates to heavy power consumption.

• Scalability: While developing deep learning models for edge devices, scalability comes into play
since these models have to fit a very small device and at the inference, the input has to be processed
through such device. For cloud-based processing, the model sits in the cloud, and data is sent
to be processed which might be an advantage but loading and unloading time then becomes a
question. Hence, the effort in the case of an edge device should be that the model doesn’t become
the bottleneck in such a scenario.
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3.6.1 Models for Raspberry Pi

• Redundancy: One of the factors that affect real-time processing is redundancy. Compared to cloud
computing where the non-availability of a particular node can have serious implications on the
complete analysis pipeline, resource-constrained devices have proved to be reliable in providing a
satisfactory level of redundancy. Non-functioning of one device can be taken over by the other
thus ensuring reliability in turn decreasing the off time.

• Cost Effectiveness: Models deployed on edge devices are more cost-effective when compared with
cloud-related computing services since they are cheap and readily available for deployment.

These are the factors that help edge devices take the lead but there are some constraints for the edge
devices to deploy deep learning models discussed here:

• Efficient CNN Design: The majority of the networks proposed are trained to keep in mind the
accuracy factor rather than deployment. Hence the models become a bottleneck here. Few deep
learning models proposed [51, 53, 139] have tried to address the issue by decreasing the number of
parameters using different convolution/weight sharing strategies. Approaches like [26, 126] have
used architectural search-based approaches keeping latency as a modeling factor and designing
efficient models for deployment.

• Pruning and Quantization: A lot of neurons in the trained models are redundant. Removing them
from the network won’t affect the accuracy but instead, help in reducing the size of the model.
A lot of works have been proposed recently which have a direct application for deployment on
edge devices [24, 120]. More specifically, Learn2Compress [101] achieves reduction by a factor
of 2 while retaining a decent accuracy for classification setting on edge devices. [99] reduced the
network parameters to binary values drastically reducing the size of the model by a factor of 4.

As discussed above, in order to make deep learning models scalable for real-time application in resource-
constrained environments, factors such as real-time performance, feasible cost of the hardware and
low power consumption are essential. Hence, we provide the bench-marking values of runtime for
segmentation models on Raspberry Pi. This device is widely available as a single-board compute
platform which comes at an affordable cost, apart from being customizable and energy efficient.

More specifically, we chose Raspberry Pi 3B as the deployment hardware device for our semantic
segmentation models. The device contains 1 GB RAM and has a 1.2GHz Quad-Core 4XARM Cortex-
A53 CPU. We tested ERFNet and DRNet-18 networks on Raspberry Pi to calculate the inference time on
the validation datasets at various resolutions. Table 3.5(b) shows the inference time of different semantic
segmentation models at various resolutions on our validation datasets.

Figure 3.10 shows the run time information of each layer defined in the ERFNet architecture. Although
the IDD and the IDD-lite datasets have equal trends, IDD-lite time is significantly lesser, in addition
to being uniformly consistent across layers. This further reinforces our proposition that such a dataset
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IDD-lite IDD-mini IDD
ERFNet 1.12 5.99 10.60
DRNet-18 56.61 78.47 95.94

Table 3.5 Inference time (in sec.) of different semantic segmentation models on various versions of IDD
on Raspberry Pi 3B.

Figure 3.10 Runtime statistics per layer for ERFNet model on all three datasets (IDD, IDD-mini and
IDD-lite). The total run time for each dataset is mentioned in the legend (Best viewed when zoomed)

can add more value to quick prototyping and help move toward real-time deployment of segmentation
models.

3.7 Challenges: Semantic Segmentation in Resource-Constrained Regime

To introduce the community to the proposed datasets related to the Indian context and to motivate
them to develop models that achieve better results in unstructured environments, we conducted multiple
challenges at different venues

• International Conference on Computer Vision (ICCV) 2019: We conducted several challenges
at Workshop on Autonomous Navigation in Unconstrained Environments (AutoNUE). These
challenges were (i) Unconstrained Semantic Segmentation on IDD, (ii) Panoptic Segmentation, (iii)
Segmentation on Constrained Devices, and (iv) Localization. The participants in the segmentation
for constrained devices challenge were asked to run models with restricted runtime requirements
and run the inference code of their models, in docker containers with restricted memory, CPUs,
and runtime. The containers provided were using either Pytorch or Tensorflow in a constrained
setting. They were given the instructions needed to generate the label outputs for getting the score.
The output metric used was the standard Intersection-Over-Union (IoU) as discussed in Chapter 2
and the dataset used for the challenge was the proposed IDD-lite. Out of the total participants, a
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team from Mapillary Research won the first prize achieving 61.84% mIoU on the test set, while the
runner-up, DeepBlueAI achieved 60.72% mIoU on the test set. Table 3.6 shows the top-3 mIoU
rankings of the challenge. The winners of the challenge used a Resnet50 [44] backbone modified
to achieve 8× downsampling along with 2048 output features. The segmentation head was the
DeeplabV3 [20] model with modified dilation rates. The batch norm layers along with the ReLU
activation function were replaced by Inplance-ABN [105]. The whole architecture was pre-trained
on Mapillary Vistas dataset [92], discussed in Chapter 2. They also used max pooling and class
uniform sampling to enforce class balance. The model was trained for 90 epochs using polynomial
learning rate decay and L2 weight decay.

• National Conference on Computer Vision, Pattern Recognition, Image Processing, and Graph-
ics (NCVPRIPG) 2019: A challenge on resource-constrained semantic segmentation was also
conducted at NCVPRIPG 2019 using the IDD-lite dataset proposed earlier. The winners of the
competition used an encoder-decoder architecture [5]. The authors experimented with different
versions of EfficientNet [118] and UNet [104] as decoders. EfficientB7 with UNet configuration
gave the authors the best mIoU of 62.76 on the test set.

Venue Team mIoU (7 labels, 128p resolution)

AutoNUE,
ICCV

Mapillary 61.85%
DeepBlueAI 60.72%

AKSM 59.11%

NCVPRIPG
USSB 62.76%

Res-UNet 62.45%
SSS 61.67%

Table 3.6 Shows the top-3 mIoU rankings at ICCV 2019 and NCVPRIPG 2019 resource constrained
semantic segmentation challenge conducted on IDD-lite dataset.

3.8 IDD-mini and IDD-lite for Education

In addition to employing the IDD-lite to explore innovative architectures for the resource-constrained
segmentation challenge, we have also envisioned the utilization of the proposed datasets for educational
purposes. Despite significant growth in this field of vision, over the past few years, many universities
and online platforms do not prioritize semantic segmentation as a fundamental concept for teaching
vision-related topics, unlike the emphasis placed on classification settings. While platforms like Kaggle
do host competitions that involve the application of semantic segmentation, the majority of students in
developing countries, such as India, still encounter significant difficulties in grasping these concepts.
In order to help the students understand the concepts, we have created some semantic segmentation
notebooks which include the following contents.

• Notebook 1: Understanding Segmentation: From an older to a newer approach
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Figure 3.11 Sample screenshot of the first notebook to introduce the community to semantic segmentation.
The notebook discusses traditional methods of performing segmentation, and datasets for deep learning-
based segmentation, and concludes with a small exercise based on segmentation using thresholding. The
link to the first notebook is given here 3.

• Notebook 2: Model Architectures for Semantic Segmentation

• Notebook 3: ERFNet Architecture for IDD Lite

• Notebook 4: Semi-Supervised Semantic Segmentation: A Use Case

The first notebook focuses on the basic understanding of segmentation as a problem, Gestalt principles,
few traditional approaches to tackling the problem. It also gives a brief overview of datasets such as
Cityscapes [25], IDD [121] and touches upon the loss functions used in deep learning mode. Finally,
the notebook concludes with a thresholding-based exercise to segment out a particular object from an
image. The notebook can comfortably run on a laptop CPU. Figure 3.11 provides a small screenshot of
the notebook.

The second notebook explains different types of end-to-end architectures available for semantic segmenta-
tion as discussed in Chapter 2. The notebook for practical demonstration uses PSPNet [140] architecture
(experimented in Pytorch) which is a non-encoder-decoder architecture to demonstrate the working of
atrous spatial pyramidal pooling on a few examples. This notebook can run both on CPU and GPU but

3Source: https://github.com/Ashutosh1995/Semseg-Notebooks/blob/master/SS-1.ipynb
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since the PSPNet model uses ASPP which is heavy in computation, GPU runtime would provide faster
results. Figure 3.12 provides a screenshot of the notebook.

The third notebook dwells into the practical demonstration of ERFNet [103], an encoder-decoder
architecture for real-time semantic segmentation trained and validated on the proposed IDD-lite dataset.
The dataset and the model definition can be directly loaded onto the RAM thus allowing CPU computation
to run effectively. Figure 3.13 provides the screenshot of the third notebook.

Finally, the fourth notebook goes a step beyond to discuss the idea of using semi-supervised semantic
segmentation introduced in [58] to jointly train a model on datasets corresponding to different geographies.
Since it uses multiple heavy high-resolution datasets such as Cityscapes [25], IDD [121] for coming up
with the universal model, it does certainly require good access to GPU resources for training the models.

3.9 Summary

In this chapter, we proposed two small-scale datasets, IDD-mini and IDD-lite, to address the problem of
segmentation in resource-constrained environments. We showed that these carefully designed datasets
give decent qualitative and quantitative results enabling fast prototyping on low-resource hardware and
hugely reducing the training and deployment costs. Our claim is that the proposed solution could be used
for three main applications. This chapter discussed the use of these datasets as a part of teaching/workshop
on semantic segmentation by introducing a couple of notebooks that can help the community in getting
started with the same. In the next chapter, we will discuss the usefulness of the proposed solution in
performing an architecture search by experimentally showing that the performance obtained using a
smaller network on these datasets actually translate to a larger network with high-resolution images.

5Source: https://github.com/Ashutosh1995/Semseg-Notebooks/blob/master/SS-2.ipynb
7Source: https://github.com/Ashutosh1995/Semseg-Notebooks/blob/master/SS-3.ipynb
9Source: https://github.com/Ashutosh1995/Semseg-Notebooks/blob/master/SS-4.ipynb
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Figure 3.12 Sample screenshot of the second notebook to introduce the community with semantic
segmentation. The notebook discusses different types of architectures available for performing semantic
segmentation. The experimentation is based on the PSPNet architecture. The link to the first notebook is
given here 5.
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Figure 3.13 Sample screenshot of the third notebook to introduce the community with semantic seg-
mentation. The notebook discusses in detail the ERFNet network, an encoder-decoder architecture for
real-time semantic segmentation using the proposed IDD-lite dataset. The notebook can be easily run
from a laptop CPU as the dataset size along with the model definition is a few hundred of MB. The link
to the third notebook is present here7.
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Figure 3.14 Sample screenshot of the fourth notebook to introduce the community with semantic
segmentation. This notebook introduces a method of performing semantic segmentation in a semi-
supervised fashion. It introduces [58] to jointly train a model based on datasets belonging to different
geographies to obtain a universal model that can be deployed in any city. The link to the third notebook
is present here9.
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Chapter 4

Neural Architecture Search for Resource Constrained Semantic

Segmentation

In this chapter, we will discuss our effort in developing efficient models for semantic segmentation
using the proposed datasets (introduced in Chapter 3) that also scale the performance to bigger datasets
such as IDD [121] or Cityscapes [25] using Neural Architecture Search, a design methodology that
has been on the rise from the last few years in automating the architecture design of neural networks.
Neural Architecture Search, abbreviated as NAS, is an automated method used to discover optimal neural
network architectures for specific tasks. It is a process where computational algorithms explore a vast
search space of potential architectures to find the best-performing ones. NAS aims to reduce the manual
effort and expertise required to design neural networks and can lead to improved performance compared
to human-designed architectures. To better understand NAS, let’s compare it with some examples of
human-designed architectures:

• Human-Designed Convolutional Neural Networks (CNNs): Classic CNN architectures like LeNet [64],
AlexNet [61], VGG [111], and ResNet [44] were manually designed by human experts. These
architectures were created based on intuition, empirical insights, and domain knowledge. Re-
searchers made decisions about the number of layers, kernel sizes, and overall architecture based
on their understanding of the problem and previous experiences. While these human-designed
networks have been highly successful, they may not be the most efficient or optimal choices for
every task or dataset.

• Handcrafted Recurrent Neural Networks (RNNs): Recurrent Neural Networks (RNNs) [49], LSTM
(Long Short-Term Memory) [50] and GRU (Gated Recurrent Unit) [23] were manually crafted
and designed to handle sequential data. These architectures were designed with specific gating
mechanisms to capture long-range dependencies. The design choices were guided by the nature
of sequential data and challenges in gradient propagation. However, there remains a possibility
of more effective architectures for particular sequential tasks that human experts may not have
considered.
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• Predefined Network Blocks: In transfer learning, researchers often use predefined network blocks
like Inception modules or ResNet blocks to build larger architectures for specific tasks. These
blocks are designed based on heuristics and prior knowledge about efficient feature extraction and
representation learning. While they work well for transfer learning and fine-tuning, they might not
be the most optimal choice when starting from scratch or tackling novel problems.

Comparatively, Neural Architecture Search automates the process of finding architectures and goes
beyond human intuition and heuristics. NAS methods employ techniques such as reinforcement learning,
evolutionary algorithms, and Bayesian optimization to search through a vast space of possible architec-
tures, considering different layer types, connectivity patterns, and hyperparameters. By automating the
design process, NAS can discover novel and efficient architectures that outperform or match human-
designed ones on various tasks. The advantage of NAS lies in its ability to explore a more extensive range
of architectures and optimize them for specific tasks, potentially leading to models with superior perfor-
mance, reduced computational cost, and improved generalization compared to architectures designed
manually by human experts.

4.1 Introduction

In the field of computer vision, the optimization of deep neural networks for semantic segmentation tasks
has become increasingly crucial for achieving state-of-the-art results. To accomplish this task effectively,
deep neural networks with intricate architectures are often employed. However, navigating through the
hyper-parameter space to come up with the most optimum configuration and architecture for semantic
segmentation is a demanding task due to the huge training costs involved with deep neural networks. In
the context of classification, previous works [73] perform an architectural search on CIFAR dataset [60]
to show that the best performance also applies to larger scale datasets like ImageNet [61]. Several works
have tried the application of reinforcement learning [15, 142], evolutionary algorithm [73] in the same
context. However, there have been fewer works [19, 72] to conduct an architectural search on dense
segmentation tasks due to the resource intensiveness of the task. SqueezeNAS [109] tries to search for
efficient semantic segmentation architecture in a hardware-constrained budget but takes 15 GPU days to
converge and obtain the desired objective. Therefore, smaller datasets that enable quick prototyping for
hyperparameter search, and help in replicating the results on larger datasets are essential. This would
bring down the cost of training and would aid in improving overall performance.

Hence the contribution of this chapter can be summarized as follows:

• We introduce and discuss various aspects in detail related to Neural Architecture Search (See
Section 4.2).
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Figure 4.1 The broad sub-divisions of NAS [28]. An architecture A is selected by a search strategy from
a defined search space SS. To evaluate the architecture, i.e. how good/bad it performs on a particular task,
the architecture then goes into the performance estimation procedure, which returns the score/accuracy.

• We dive into the applicability of NAS for computer vision tasks such as image classification, and
semantic segmentation. Additionally, we also discuss the role of optimization algorithms that aid
in architecture search. (See Section 4.3 and Section 4.4)

• We establish that the accuracy of various models trained on our datasets correlates well with
the accuracy on large-scale datasets, especially in cross-domain settings. This allows for fast
prototyping and architectural search for semantic segmentation algorithms (See Section 4.5).

4.2 Neural Architecture Search: An Overview

Deep learning has achieved success in recent years because instead of extracting traditional hand-crafted
features, it provided a way in which the network itself decides the need for down-weighting or up-
weighting activations with the help of weights that subsequently helps in solving the task at hand. Though
from one perspective, the feature engineering in the case of CNN has been very successful since these
features are generic and also help in transferring the knowledge from one task to other [134], there has
been an enormous amount of increase in the area of architectural engineering, leading to more complex
network design patterns. Neural Architecture Search or NAS (in short form), is the process of designing
complex architectures automatically, in the whole process of automating machine learning paradigm.
NAS can be understood as a subset of AutoML intersecting with hyperparameter optimization (which we
are going to discuss in the upcoming section). This section is inspired by the survey on NAS by [28].
The working of NAS can be broadly divided into three categories: search space, search strategy, and
performance estimation strategy. These subcategories of NAS are described below:

• Search Space: Search space is defined as the domain of all possible architectures that can be
outlined. One possible way of defining the architectures in space is to incorporate prior information
about human-designed architectures. This can help us reduce the vast space of all available
architectures and ease the search process. By leveraging the knowledge gained from successful
architectures in the past, we can guide the search toward more promising areas of the space.
However, there are some drawbacks to relying heavily on prior knowledge in the search space. One
significant concern is the potential introduction of human bias into the search process. When we
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Figure 4.2 An example of few search spaces [28]. (a) Simple stacking of different layers (represented by
the color) to form a network, (b) A more complex chain of network design consisting of concatenation,
diverse branches, residual block, etc.

restrict the search to architectures that are similar to human-designed ones, it limits the exploration
of more unconventional or novel architectures that might yield superior performance. This can lead
to a repetitive style of architecture, where the algorithm may converge to a sub-optimal solution that
closely resembles existing well-known architectures. Moreover, relying only on prior knowledge
can hinder the discovery of unique designs that push the boundaries of what is currently known
to work well. NAS is an opportunity to explore the full landscape of possible architectures, and
overly constrained search spaces could prevent us from uncovering hidden gems that lie beyond
the realm of conventional wisdom. To address these issues, striking a balance between prior
knowledge and unconstrained exploration is crucial. Hybrid approaches that combine human-
designed architectures with novel architectural components or operations can allow the algorithm
to leverage the strengths of both approaches. For instance, cell-based search spaces incorporate
predefined cells representing common building blocks, but they also allow the algorithm to learn
how to combine and arrange these cells to create novel architectures. An example of some of the
basic search spaces is depicted in Figure 4.2.

• Search Strategy: Search strategy describes the method used to instantiate architectures by navi-
gating the search space, which is often large or even unbounded. The goal of the search strategy
is to efficiently explore the space to find architectures that are not underperforming while also
identifying high-performing architectures in the minimum time span possible. The choice of search

42



strategy significantly impacts the effectiveness and computational efficiency of Neural Architecture
Search (NAS). Some examples of commonly used search strategies commonly are:

1. Bayesian Optimization-Based Approaches: Bayesian optimization is a probabilistic model-
based optimization technique that balances exploration and exploitation in the search process.
It constructs a surrogate model of the objective function (e.g., validation accuracy) and
employs an acquisition function to select the most promising architectures for evaluation.
Bayesian optimization has been widely used in NAS due to its ability to efficiently explore
the search space and converge to promising architectures. For instance, [9] defines search
optimization using a generative model based on expected movement criteria by searching
parameters through random search technique. [10] stated about the practicality of Bayesian
optimization specifically for image classification tasks when tuning hundreds of parameters
using random search technique. [114] defines a novel kernel technique with conditional
parameter spaces that explicitly includes information about which parameters are relevant in
a given model structure using Bayesian optimization. They show this novel kernel, combined
with the power of Bayesian optimization obtains better results over several simpler baseline
kernels.

2. Reinforcement Learning-Based Approaches: Reinforcement learning (RL) is a popular
approach in NAS, where the search process is modeled as a sequential decision-making
problem. The NAS algorithm acts as an agent that generates and evaluates architectures,
and it receives rewards based on the performance of the resulting networks. By optimizing
its policy through trial and error, the agent learns to generate architectures that lead to
higher rewards. RL-based NAS methods have shown promising results in discovering high-
performing architectures. [6] defines a modeling algorithm named MetaQNN that generates
high-performing CNN architectures for specific learning tasks using Q-learning, ε-greedy
exploration strategy and experience relay. In [144], the authors use a recurrent neural
network in order to obtain a set of unique architecture definitions and train the RNN with
reinforcement learning to maximize the expected accuracy of the generated architectures on
a validation set. Similarly, in [145], the authors learn novel architectures on smaller datasets
using reinforcement learning for image classification tasks and then show the transfer-ability
onto bigger datasets.

3. Neuro-Evolutionary-Based Approaches: Neuro-evolutionary algorithms, inspired by the
principles of natural selection, evolve populations of architectures over multiple generations.
The search process involves genetic operators like mutation and crossover, which drive
the evolution of architectures. Neuro-evolutionary-based NAS methods can handle both
discrete and continuous search spaces and have the advantage of being computationally
efficient. Work like [3] introduces GNARL, an evolutionary program that acquires both
the structure and weights for recurrent networks simultaneously. The algorithm’s empirical
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The Controller (RNN) Trains a child network with 
architecture A to get accuracy R 

Sample architecture A 
with probability p

Compute gradient of p and 
scale it by R to update the 
controller

Figure 4.3 Depiction of the NAS procedure presented in [144] in which the controller emits an architec-
ture definition which is trained and validated to return the accuracy. The parameters of the controller are
then updated on the basis of the accuracy obtained.

acquisition approach enables the emergence of complex behaviors and topologies, which may
not be attainable using conventional network induction methods due to artificial architectural
constraints. [32] gives an overview of the most prominent methods for evolving artificial
neural networks with a special focus on the advances in the synthesis of learning architectures.

4. Hybrid Approaches: Some NAS methods combine multiple search strategies to leverage
their individual strengths. For example, some approaches use gradient-based methods in
conjunction with evolutionary techniques to efficiently explore continuous search spaces
while maintaining strong performance. Examples of hybrid approaches include Efficient
Neural Architecture Search (ENAS) [29] and Genetic CNN [127].

Choosing the appropriate search strategy depends on the characteristics of the search space and the
computational resources available. An effective search strategy allows NAS algorithms to discover
high-performing architectures efficiently, accelerating the advancement of deep learning models
across various tasks and domains.

• Performance Estimation: The search mechanism in NAS can return multiple architectures that
fulfill the criteria of generating novel networks from the search space. However, evaluating these
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architectures is a critical step in the NAS process. Performance estimation involves assessing the
capabilities of the candidate architectures using various methods. One straightforward approach
is to split the data into training, validation, and test sets and evaluate the performance of each
architecture on the validation set. While this method provides reliable estimates, it becomes
computationally heavy when the number of architectures to be explored becomes substantial.
To address the computational burden of performance estimation, recent research has focused on
developing techniques that minimize run-time requirements. Some estimation strategies include
curve extrapolation of various hyper-parameters or loss curves. These methods aim to predict the
performance of architectures based on a subset of evaluations [7, 27]. By intelligently extrapolating
performance trends, they reduce the number of costly evaluations required for the full search
space. Another approach to efficient performance estimation involves weight transfer methods. In
these techniques, knowledge gained from training similar models is transferred to the network in
consideration. Instead of training each architecture from scratch, the weights of previously trained
models with similar characteristics are used as a starting point for the new architecture. This
approach significantly reduces the computational cost of evaluating different architectures [29, 98].

4.3 Neural Architecture Search for Vision tasks

There has been a lot of work in the classification setting for finding novel architectures through the
use of NAS algorithms. Inspired by the same, there have been a few works in the domain of semantic
segmentation as well. Here we are going to discuss a few methods that have gained recognition in the
community.

• Image Classification: The earliest works in Neural Architecture Search (NAS) for image classifi-
cation, [144] employ a recurrent neural network (RNN) as a controller to generate a description
of a neural network architecture in the form of a string. This description includes details such
as the number of input/output channels, kernel sizes, strides, and other architectural parameters.
The controller emits the description, also known as the child network, which is then trained and
evaluated on the validation set. Reinforcement learning is used to update the parameters of the
controller based on the performance of the child model. Although this approach leads to an increase
in classification accuracy, it requires exploring a large space of possible architectures, resulting
in a computationally intensive process. The approach generates around 12,800 architectures and
requires approximately 22,000 GPU days for training. The whole procedure trains on the CIFAR10
dataset [60]. Figure 4.3 illustrates the framework used in this approach. To address the resource-
intensive nature of NAS, subsequent works propose searching for repetitive blocks or cells instead
of exploring entire architectures, as suggested by [145]. These repetitive blocks, such as normal
cells (that maintain the dimensionality) and reduction cells (that reduce spatial dimensions), are
stacked together to form the complete architecture. By searching for these blocks, the search
space significantly reduces, and the best-performing blocks could easily be transferred to other
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Figure 4.4 A normal and a reduction cell search space [28] used in [145]. On the left top is the normal
cell, and on the bottom is the reduction cell. On the right is the architecture formed by stacking these two
types of cells. Different colors correspond to different types of layers involved in the overall processing
of inputs.

datasets by adapting the number of cells used within a model. Figure 4.4 illustrates the normal and
reduction cells and their incorporation into the network architecture. In a similar approach, [73]
defines repetitive cells used within a predefined evolutionary search algorithm that underwent
mutations based on their fitness scores. To expedite the search process, other sets of works focus
on speeding up the search by defining the model as a sub-graph of a single directed acyclic graph.
Before the search process begins, all possible sets of networks are initialized. The algorithm then
decides whether to choose a single path with the help of reinforcement learning [98] or use a
weighted relaxation of the edges [74]. While these approaches accelerate the search process, they
limit the exploration of architectures since the paths are pre-defined at the beginning.

• Semantic Segmentation: Proposed NAS approaches for semantic segmentation have been influ-
enced by the methods discussed earlier. For instance, [19] proposes a method to search for a single
cell on top of a fully convolutional network. By focusing on a cell-based search space, the authors
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aim to discover efficient and effective architectures for semantic segmentation tasks. Similarly, [90]
introduces a NAS approach to search for an efficient decoder within the encoder-decoder frame-
work. This technique attempts to optimize the decoder part of the network to enhance segmentation
performance. However, both of these methods heavily rely on existing image classifiers, which
constrain the description of the search space. The efficiency of the decoder is thus determined by
the classifier network used, limiting the exploration of more diverse and innovative architectures.
To address these limitations, [91] propose a remedy to their previous work [90]. They allow for the
discovery of tiny networks by removing expensive techniques such as knowledge distillation. This
enhancement enabled them to explore more lightweight and efficient architectures for semantic
segmentation. Moreover, their method does not require a full encoder definition, and instead, they
discover the model definition using only 60K pre-trained parameters. This reduction in complexity
makes the NAS process more efficient and accessible for discovering high-performing architectures
for semantic segmentation. Another notable approach by [72] adapts the relaxation of path edges
for semantic segmentation. This method demonstrates good qualitative and quantitative results in
segmentation tasks. However, similar to other approaches mentioned earlier, it also has a limited
set of architectural definitions to explore. Despite achieving promising results, the constrained
search space might hinder the exploration of more diverse and innovative architectures that could
potentially outperform the existing ones.

4.4 Hyper-parameter Optimization Algorithms for Architecture Search

Neural Architecture Search (NAS) can be considered a subset of hyper-parameter tuning, and both
processes aim to optimize the performance of deep neural networks. NAS focuses on discovering efficient
cells or blocks that can be stacked together to create novel architectures, while hyper-parameter tuning
involves finding the optimal set of hyper-parameters that yield better scores or accuracy on the target
task. In NAS, the search space includes architectural choices such as the number of layers, types of
layers, and connectivity patterns. The goal is to explore this space to find architectures that are not only
different from human-designed networks but also perform well on the given task. NAS usually involves
a more exhaustive and computationally intensive search process due to the vast number of possible
architectures. On the other hand, hyper-parameter tuning takes place within the context of a fixed network
architecture. The search space in hyper-parameter tuning includes hyper-parameters like learning rates,
batch sizes, weight decay, and other training-related settings. Unlike NAS, hyper-parameter tuning
generally occurs before the training procedure starts, and it does not involve changing the network’s
structural components. The primary objective of hyper-parameter tuning is to find the hyper-parameter
configuration that maximizes the model’s performance on the validation set or minimizes the training
loss. Furthermore, the idea of optimizing the optimization algorithm itself as a hyper-parameter can be
seen as a meta-optimization approach. In this context, the optimization algorithm’s hyperparameters (e.g.,
learning rate schedules, momentum, etc.) are treated as parameters that can be tuned during the training
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process. Meta-optimization aims to find the best combination of optimization hyper-parameters that lead
to faster convergence or better generalization on the target task. This approach is still an active area of
research and holds promise for further improving the efficiency and effectiveness of training deep neural
networks. In other words, hyperparameter optimization can be described by the following equation.

θ∗ = argmin
θ

f(θ) (4.1)

In this equation, f(θ) is the function of parameters that we wish to either minimize or maximize. θ∗

are the set of hyper- parameters which yields best results on the val set. We are now going to discuss
different hyperparameter tuning algorithms.

4.4.1 Grid Search

The approach described here is a simple and straightforward method for hyper-parameter optimization,
often referred to as grid search. In grid search, each hyper-parameter is discretized, i.e. it is divided
into a set of predefined values or intervals. The search space is then defined as the cartesian product
of all possible combinations of these discretized values, resulting in a grid-like structure. For example,
if there are two hyper-parameters, each with three possible values, the grid search would explore nine
different combinations 3×3 of the hyper-parameters. Once the search space is defined, the network is
trained for each combination of hyper-parameters in the grid. The network’s performance is evaluated
using a validation set or through cross-validation, and the set of hyper-parameters that yields the best
performance metric (e.g., highest accuracy or lowest loss) on the validation data is selected as the final
configuration. Grid search can be parallelized in case of access to multiple computing resources or a
distributed computing environment. This means that instead of training each combination sequentially,
multiple combinations can be trained simultaneously, significantly reducing the overall search time.
Parallelizing grid search is advantageous as it can speed up the optimization process, especially when
exploring large search spaces with numerous hyper-parameters. However, one significant drawback of
grid search is that it can be computationally expensive and time-consuming, particularly when dealing
with a model that has a large number of hyper-parameters or when the range of values for each hyper-
parameter is extensive. The search space grows exponentially with the number of hyper-parameters,
making it impractical for models with hundreds or thousands of hyper-parameters. As a result, grid
search may not be feasible for complex models or tasks with a high-dimensional hyperparameter space.

4.4.2 Random Search

Random search is an alternative hyper-parameter optimization algorithm that differs from grid search
in its sampling approach. Instead of systematically exploring all combinations of hyper-parameters,
random search randomly samples values from the defined search space for each hyper-parameter. The
number of trials, or random samples, is predefined as a parameter of the algorithm. Unlike grid search,
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Figure 4.5 Grid Search versus Random Search [10, 95]. Grid search can explore few distinct values
compared to Random Search.

random search does not impose a specific structure on the search space, which allows it to explore a more
diverse set of hyperparameter configurations. One of the primary advantages of random search is that it
is not constrained by time limits. In grid search, the total number of combinations to be explored can be
substantial, leading to long optimization times. In contrast, random search allows to define the number of
trials based on their available computational resources and time constraints. This flexibility makes the
random search a practical choice for optimization tasks with limited computational budgets or when there
is no clear indication of how long the optimization process should take. Another advantage of random
search is its ability to handle correlated hyper-parameters. In some cases, certain hyper-parameters may
interact with each other or have dependencies, and their values may affect the model’s performance
together. In grid search, these dependencies may not be adequately explored if they do not align with
the predefined combinations. However, random search, by virtue of its randomness, can discover such
correlations more effectively. When random samples are drawn, they might inadvertently cover regions
of the search space where correlated hyper-parameters have an impact on the model’s performance. As
a result, random search can help find the most optimum values for both correlated hyper-parameters.
However, one drawback of random search is that it may require more trials (random samples) compared
to grid search to find the best hyper-parameter configuration, especially if the search space is large or has
complex interactions between hyper-parameters. The random search may also lead to sub-optimal or
redundant samples, which can be inefficient in terms of resource utilization. Random Search is also fast
to run and parallelize but has a similar disadvantage to grid search. If the model is heavy to run, then it
might take a longer time to converge to the best set of hyper-parameters.

4.4.3 Bayesian Optimization

Bayesian optimization methodology basically keeps a record of the past hyper-parameters that are
evaluated on the validation set. It uses a probabilistic approach to map the hyper-parameters to a
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probability value of the score of the objective function. The equation of Bayesian optimization can be
described as follows:

P (score|hyper − parameters) (4.2)

The algorithm works according to the following steps:

• Define a set of hyper-parameters to define the search space.

• Formulate an objective function that takes a set of hyper-parameters as input and returns a perfor-
mance score (e.g., accuracy or loss) based on the model’s performance with those hyper-parameters.
The optimization can aim to minimize or maximize this objective function, depending on the
specific task.

• Construct a probabilistic model (often a Gaussian process), also known as a surrogate of the
objective function. This surrogate model approximates the behavior of the objective function
across the hyper-parameter space, allowing for efficient exploration and uncertainty modeling.

• Employ an acquisition function to select the next set of hyper-parameters for evaluation. The
acquisition function quantifies the potential improvement that can be achieved by evaluating
specific hyper-parameters based on the surrogate model’s uncertainty. It balances exploration
(sampling regions of uncertainty) and exploitation (focusing on promising regions).

• Maintain a mapping of past evaluations of hyper-parameters and their corresponding performance
scores. This mapping is crucial for updating the surrogate model and incorporating new information
during the optimization process.

• Iteratively improve the surrogate model as new hyper-parameter configurations are evaluated. The
optimization continues until a stopping criterion is met, such as reaching a specified number of
iterations or utilizing the available computation budget effectively.

4.4.3.1 Acquisition Function

The acquisition function plays a crucial role in guiding the Bayesian optimization process by selecting
the next set of hyper-parameters to evaluate. One of the most commonly used acquisition functions is the
Expected Improvement (EI). The EI measures the potential improvement in the objective function’s value
compared to the current best-known value (either maximum or minimum, depending on the optimization
goal).

When trying to find the minimum of the objective function, the EI can be computed using the following
equation:

fmin(x) = max(0, ymin − ylowest expected) (4.3)

50



Here, ymin represents the minimum value observed so far in the optimization process, and ylowest expected

is the lowest possible value that could be obtained from the confidence range of each possible x value
(i.e., the uncertainty associated with the surrogate model’s predictions).

On the other hand, if the optimization goal is to find the maximum value, the equation can be modified
accordingly to compute the Expected Improvement for maximization:

fmax(x) = max(0, yhighest expected − ymax) (4.4)

In this case, yhighest expected represents the highest possible value within the confidence range of each
x value, and ymax is the maximum value observed so far. By evaluating the acquisition function
for different hyper-parameter configurations, Bayesian optimization can prioritize the most promising
configurations to explore in the next iteration. The EI guides the optimization toward regions where
improvements are likely to be significant, balancing the exploration of uncertain regions and exploitation
of potentially high-performing configurations. The use of the EI acquisition function contributes to the
effectiveness and efficiency of Bayesian optimization in finding optimal hyper-parameter configurations
in a sample-efficient manner.

4.4.4 Tree Parzen Estimator

Tree-structured Parzen Estimators (TPE) is a popular algorithm used for handling categorical hyper-
parameters in a tree fashion. It differs from the Bayesian approach in the way it models the probabilistic
function or the surrogate. While Bayesian optimization models the posterior probability P (Y |x), where
Y is the score on the surrogate and x is the hyper-parameters, TPE takes a different approach. It applies
Bayes’ rule to model both P (x|Y ) and P (Y ). This allows TPE to explore the hyper-parameter space
differently and can be advantageous for handling categorical or discrete hyper-parameters. The TPE
algorithm requires collecting some data in the initial iterations before it can be effectively applied. A
common approach is to use a random search for these initial iterations, which helps in gathering diverse
observations from the search space. Once the data is collected, it is divided into two sets of groups.
The initial group contains observations that yielded the best scores after evaluation (i.e., y < y), while
the second group contains all the remaining observations (i.e., y >= y). The value of y∗ represents
a threshold, and it is defined as a parameter for the TPE algorithm. The main objective of TPE is to
find hyper-parameters that are more likely to exist in the first group than in the second. To achieve this,
TPE computes the likelihood probability for both groups. Using the likelihood probabilities, a bunch
of candidate values are sampled from the first group. Amongst these sampled candidates, TPE aims to
find the single candidate that is more probable to belong to the first group and less likely in the second
group. The Expected Improvement (EI) formula is utilized to make this determination, as described in
the equation:
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Expected Improvement(x) =
l(x)

g(x)
(4.5)

Here, l(x) is the likelihood probability of the first group (observations with y < y), and g(x) is the
likelihood probability of the second group (observations with y >= y). The next best hyperparameter
point for the algorithm is the one that maximizes l(x)/g(x).

We have discussed neural architecture search and the various components associated in detail, including
search spaces, search strategies, and performance estimation methods. Neural architecture search (NAS)
as discussed before, has emerged as a powerful technique for automating the design of deep learning
models, alleviating the burden of manual architecture engineering. In the next section, we will explore
the application of neural architecture search in a resource-constrained environment, where computational
resources are limited. We will examine how NAS can be adapted to efficiently explore the search space
and discover optimal architectures under resource constraints. Furthermore, we will demonstrate the
effectiveness of NAS on proposed datasets explained in Chapter 3, highlighting its potential in optimizing
model performance and how the performance obtained correlates to bigger datasets.

4.5 Experiments and Results

In this section, we demonstrate how IDD-lite and IDD-mini datasets can be useful for architecture searches
with limited resources. Neural Architecture Search [98] (NAS) on tasks like dense semantic segmentation
need thousands of iterations GPU-days for convergence. Architecture search can be computationally
very intensive as each evaluation typically requires training a neural network. Therefore, it is common to
restrict the search space to reduce complexity and increase the efficiency of architecture search. More
recent papers on architecture search have shifted to searching the repeatable cell structure while keeping
the outer network level structure fixed by hand. This strategy needs fewer GPU hours and can conduct
large experiments in a constrained time. This would be a major advantage in resource-constrained
environments. Currently, this strategy is limited to tasks like image classification, where small-scale
datasets are available, but not for semantic segmentation due to the lack of such small-scale datasets. We
propose that IDD-mini and IDD-lite can be used to do architecture search in a resource-efficient way for
semantic segmentation task.

We consider a scenario where we need to come up with the best architecture with a limited resource
budget. We even explicitly consider a scenario where we can only afford a fixed set of parameters for
the architecture. Now, we need to find the best-performing architecture among them. We conduct two
experiments and show that architecture search results conducted on IDD-lite with a custom ERFNet
model actually translate to a different domain like Cityscapes [25]. Thus, we are also exploring the
generalizability of architectural search through such experiments.
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4.5.1 Identifying Optimal Cell Structure

Our aim is to find the best architecture in a custom-designed architectural space using IDD-lite. Also,
we show that the results correlate to Cityscapes dataset [25]. We use ERFNet [103] outer network level
structure as the basis for our model. Within this structure, we replace the non-bottleneck layer proposed
in the original ERFNet with a custom structure with an architecture skeleton(Conv-module) as proposed
in [72] shown in Figure 4.6. Each of the blocks in this Conv-module(skeleton) is filled from a set of 1
atrous 3×3 layer, 3 separable 5×5 layers, 2 atrous 5×5 layers, 4 separable 3×3 layers, to ensure that
we have same number of parameters overall. This forms the search space for architecture search. We
use architectures given in Table 4.1 to conduct experiments on the Cityscapes dataset [25] and IDD-lite,
respectively.
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Figure 4.6 To the left in 1st row is Conv-module skeleton taken from [72]. From the 1st row right to the
bottom in the scanning order are the ERFNet modified models with Conv-module Cell structures named
as A*, B*, C*, D*.
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Layer Type

1 Downsampler block
2 Downsampler block

3-5 3 x Conv-module
5-7 2 x Conv-module
8 Downsampler block

9-16 8 x Conv-module(dilated )
17 Deconvolution(upsampling)

18-19 2 x Conv-module
20 Deconvolution(upsamling)

21-22 2 x Conv-module
23 Deconvolution(upsampling)

Layer Type

1 Downsampler block
2 Downsampler block
3 1 x Conv-module
4 1 x Conv-module
5 Downsampler block
6 Conv-module(dilated 2)
7 Deconvolution(upsampling)
8 1 x Conv-module
9 Deconvolution(upsamling)
10 1 x Conv-module
11 Deconvolution(upsampling)

Table 4.1 Modified version(left) and Compressed version (right) of ERFNet architecture that is used to
run experiments on Cityscapes dataset and IDD-lite, respectively.

4.5.2 Implementation details

The best cell structure identified using architecture search gave 64.54% IoU (Model A) on Cityscapes
dataset [25]. We also take 3 models (B, C, D) from the pool of possible Conv modules and verify if the
performance on the smaller dataset match with that on Cityscapes. The quantitative and the qualitative
results are presented in Table 4.3 and Figure 4.7. It is to be noted that though the architecture search was
conducted on IDD-lite, we were able to get the best-performing architecture for a different domain like
Cityscapes.

4.5.3 Correlation to Efficient Segmentation Models

There have been lots of interest in efficient CNN module designs that have lower compute needs, while
still achieving good prediction accuracies [51, 139]. [119] reports results with architecture variations of
ERFNet named as D*, D2*, D4*, D8* on Cityscapes [25]. These correspond to the usage of depthwise
separable convolutions instead of the bottleneck modules of ERFNet along with grouping parameters on
the 1x1 convolution. We conduct the same experiments on the IDD-lite dataset with compressed ERFNet
architecture (see Table 4.1 for quantitative and Figure 4.8 for qualitative results) and show that our results
correlate with [119].

4.6 Summary

In this chapter, we introduced the idea of Neural Architecture Search and its varied components that can
provide impetus in finding novel architectures which are different from human-designed models. We also
discussed some of the widely used hyper-parameter tuning algorithms which can be considered as a parent
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Models IoU Params IoU
(CS) (IDD-lite)

ERFNet 70.45 2038448 53.975
D* 68.55 547120 52.01
DG2* 65.35 395568 50.71
DG4* 61.42 319792 48.88
DG8* 59.15 281904 46.40

Table 4.2 Depthwise Separable Convolution, Groups on ERFNet Architecture tested over IDD-lite dataset
using Compressed ERFNet from Table 4.1.

Models IoU(CS) IoU(IDD-lite)
A* 64.54 58.15
B* 59.21 56.93
C* 55.96 55.46
D* 52.35 53.64

Table 4.3 Custom Cell architecture on compressed ERFNet tested over IDD-lite dataset correlate with
the same tests on Cityscapes Dataset with modified ERFNet from Table 4.1.

task of NAS. We also saw that using these techniques mentioned, we were able to get good performing
models on IDD-lite, the results of which correlate with bigger datasets such as Cityscapes [25]. In the
next chapter, we will see how we can employ automatic pruning algorithms in the context of semantic
segmentation with the help of novel schema of HyperNetworks in a resource-constrained setting.
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          Image                               GT                                          A*                                        B*

Figure 4.7 Qualitative examples of predictions on validation set from custom cell configuration obtained
from the NAS operation as indicated in Table 4.3.

  Image             GT              ERFNet            D*               DG2*             DG4*            DG8*

Figure 4.8 Qualitative examples of predictions on validation set generated by models with depth separable
convolutions and different grouping parameter trained on samples from the IDD-lite dataset.
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Chapter 5

Automatic Pruning for Resource Constrained Semantic Segmentation

This chapter delves into the paradigm of automatic pruning in the context of semantic segmentation,
specifically in a resource-constrained environment, using the proposed datasets introduced in Chapter 3.
As discussed in Chapter 2, semantic segmentation plays a crucial role in providing pixel-level understand-
ing of images for various scene-understanding vision tasks. However, semantic segmentation models
often demand substantial computational resources during both training and inference, posing challenges
in resource-constrained scenarios. To address this issue, we present a compression algorithm based on
differentiable meta-pruning through hypernetworks, known as MPHyp. Our proposed method MPHyp
leverages hyper networks that take latent vectors as input and output weight matrices for the segmentation
model. Utilizing L1 sparsification through the proximal gradient optimizer, MPHyp updates the latent
vectors, introducing sparsity, and enabling automatic model pruning. This approach offers the advantage
of achieving controllable compression during training and significantly reducing the training time. We
conduct extensive experiments, comparing our methodology with a popular pruning approach, and
demonstrate its efficacy by effectively reducing the number of parameters and floating-point operations
while maintaining a high mean Intersection over Union (mIoU) metric. We perform experiments on
two widely accepted semantic segmentation architectures: UNet [104] and ERFNet [103]. Furthermore,
our ablation study highlights the effectiveness of our proposed methodology in achieving efficient and
reasonable segmentation results, making it a promising solution for resource-constrained environments
in semantic segmentation tasks.

5.1 Introduction

Semantic segmentation [20, 21, 80, 137] is a dense prediction task of assigning class labels to each pixel
in an image. It has been widely used in autonomous driving, medical imaging, and satellite imaging
applications. However, semantic segmentation models such as DeepLabV1,V2 [20, 21], DRN [137]
generally have a large number of parameters. So deploying such models in environments with limited
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resources, such as mobile phones or embedded systems, can be challenging due to their large memory
requirements during inference.

One potential approach to overcome the computational limitations is to adopt methods that reduce
the model’s complexity, like model compression, for instance, model pruning [33, 48, 81], or neural
architecture search [39, 109, 117, 144]. However, these methods above have their inherent problems. For
instance, the method [109] is based on a neural architecture search to find the best architecture within a
predefined search space. The search space includes various architectural components, such as the number
of layers, layer types (convolutional, recurrent, etc.), skip connections, and other hyper-parameters. But,
it takes 8 Nvidia Turing GPUs with 24GB of VRAM to find such architectures, which is extremely
expensive in terms of training complexity. On the other hand, pruning methods such as the lottery
ticket hypothesis [33], a compression algorithm based on iterative pruning have shown a significant
segmentation accuracy drop.

In order to efficiently prune semantic segmentation architectures, we propose a compression method
based on differentiable meta-pruning using hyper networks MPHyp, that substantially minimizes the
training resources and simultaneously retains satisfactory segmentation performance. Our proposed
technique is inspired from [67]. We call it meta-pruning since the parameters of the hypernetwork
are responsible for generating weights of the segmentation model falling under the umbrella of meta-
learning. The key concept behind the proposed approach is the hyper network that associates latent
vectors for each layer in the segmentation network. This latent vector control the output channel of the
layer in consideration. Given the association of network layers, the latent vector serves as a controlling
factor for the subsequent layer’s input channel as well. During training, the hyper network receives
the latent vectors from the current and preceding layers, which dictate the output and input channels
of the current layer, respectively. The hyper network generates a weight matrix for the specific layer
of the segmentation model. To achieve automatic pruning, we use the l1 regularizer that helps in the
sparsification of the latent vectors. Subsequently, we employ a proximal gradient to update and obtain the
sparsified latent vectors. Together, this strategy leads to differentiability in the pruning mechanism. Once
the compression ratio reaches the pre-determined level, the compression method stops. The sparsification
of the latent vectors results in compressed outputs from the hyper networks since the latent vectors
and layers of the segmentation model are correlated. The proposed method offers the advantage of
streamlining network pruning by focusing solely on the latent vectors, eliminating the need for additional
complexities or human assistance. We find that our proposed method outperforms the baseline pruning
method by a significant margin. We refrain from comparing with neural architecture search methods as
they require huge training resources. To showcase the efficacy of our method, we performed extensive
experimentation on IDD-lite 3: a semantic segmentation dataset targeted for resource-constraint scenarios.
In this context, resource constraint means a lack of availability of better computing power. The images
provided in this dataset are sampled and scaled from IDD [121], which are very different compared
to other sophisticated semantic segmentation datasets like Cityscapes [25], Mapillary [92]. We chose
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UNet [104] and ERFNet [103] as our semantic segmentation models due to the wide acceptability and
application of these networks in various domains [76, 82].

In essence, the contribution of this chapter can be summarized as follows:

• We discuss in detail different types of pruning algorithms commonly employed, including various
manual and automatic pruning methods (See Section 5.2).

• In addition to that, we engage in comprehensive discussions regarding the various compression
techniques employed within the framework of semantic segmentation (See Section 5.3).

• We present the innovative notion of HyperNetworks, which constitutes a family of neural networks
specifically designed to generate weights for larger networks. Moreover, we delve into an extensive
exploration of their versatile applications in diverse sub-fields of vision (See Section 5.4 for more
details).

• Additionally, we conduct a thorough investigation into the pivotal role played by HyperNetworks
in the process of automated pruning of semantic segmentation models (refer to Section 5.5 for
comprehensive insights).

• To substantiate our claims, we conduct a series of experiments and present both qualitative and
quantitative results, effectively demonstrating the significant reduction in model size attained while
adhering to a resource-constrained budget (refer to Section 5.6 for detailed experimental findings).

Finally, we conclude the chapter with a succinct summary of our findings and the potential implications
of utilizing HyperNetworks for efficient model pruning and resource optimization.

5.2 Comparison of Pruning Algorithms: Manual vs. Automatic

Network pruning is a widely used technique to reduce redundancy in deep neural networks. By selectively
removing certain parts of the network, we can optimize its performance and efficiency. Different
components of the network, such as convolutional layers and fully connected layers, have varying impacts
on factors like computational complexity and model size. Thus, we can achieve specific optimization
goals by targeting different parts for pruning.

The pruning process typically involves three main stages:

Training: During training, the model’s parameters are adjusted to learn the specific task at hand from a
large dataset. Once training is completed, pruning is applied to the trained model.

Pruning: In this stage, we focus on identifying and removing redundant parts of the network structure.
These could include filters, blocks, channels, and other components that might not significantly contribute
to the model’s performance. To achieve efficient pruning results, the algorithms used for identifying
unnecessary structures play a critical role in various pruning methods.
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Fine-tuning: Fine-tuning is a crucial step that follows the pruning operation and aims to recover and
enhance the performance of the pruned model. After pruning, the model may experience a decline in
performance due to the removal of certain components. Fine-tuning addresses this issue by retraining the
pruned model on the original task-specific dataset. During fine-tuning, only the remaining parameters
in the pruned model are updated while keeping the previously pruned components fixed. This process
helps the model adapt and regain its predictive capabilities on the task at hand. The fine-tuning process
typically involves using a lower learning rate than the initial training, as the model is already partially
trained and should only undergo modest updates to prevent over-fitting.

Re-pruning: Re-pruning is an iterative process that aims to further optimize the pruned model’s perfor-
mance and efficiency. Once the model undergoes fine-tuning, it becomes a sub-model containing both
pruned and retained components. This sub-model is then subjected to another round of evaluation by
the pruning algorithm. The pruning algorithm reevaluates the importance of the remaining components
based on the updated weights and activations obtained from the fine-tuning process. During re-pruning,
the algorithm identifies additional components that can be safely pruned without significantly affecting
the model’s performance. The re-pruning process iteratively repeats, gradually refining the model’s
architecture to meet specific pruning objectives, such as reducing computational complexity or model
size. The number of iterations for re-pruning can be pre-defined, or it can be determined based on specific
convergence criteria or validation performance. By going through multiple iterations of fine-tuning
and re-pruning, the model’s performance can be further improved while maintaining its efficiency. It is
essential to strike a balance during the re-pruning process, as aggressive pruning may lead to the loss of
critical information, and too conservative pruning might not yield substantial efficiency gains. Therefore,
careful experimentation and analysis are necessary to determine the optimal pruning rate for achieving
the desired trade-off between model size and performance.

The majority of deep neural network pruning techniques are manual pruning algorithms, as illustrated in
Figure 5.1(a), can be categorized into unstructured pruning [42, 43, 133] in which arbitrary parameters
are removed, and structured pruning [77, 123] where sets of weights are eliminated. Structured pruning
further divides into filter pruning, and channel pruning [125]. In filter pruning, entire filters are removed
based on specific metrics, preserving the original convolutional structure and avoiding the need for
dedicated hardware [66]. Some studies use the l1-norm to judge filter importance [66], while others use
feature map rank [68] or geometric median [47] to prune less important filters. Other works consider the
contribution of filters based on output channel importance [81] or employ Taylor expansion as a pruning
criterion [88]. Channel pruning treats the same output channel of different filters as a group. Some
studies propose LASSO regression-based channel selection and least squares reconstruction for channel
pruning [48]. In contrast, another approach leverages the scaling factor in the Batch Normalization (BN)
layer to measure channel importance [77]. Mitsuno et al. [85] conducted an analysis of channel effects
on model performance, providing valuable insights into channel pruning.
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Figure 5.1 Pruning techniques: Manual vs Automatic. a) After the fine-tuned model is obtained, the
model undergoes further pruning operations in order to remove any redundant connections. b) In
automatic pruning, the algorithm, through the use of advanced search/optimization-based methods,
automatically prunes the unproductive parameters without any human intervention and finally fine-tunes
the model to recover the lost performance.

Conventional manual pruning methods, as discussed above, heavily depend on the expertise of human
practitioners to strike a balance between computational complexity, parameter size, and model accuracy.
However, these manual approaches often struggle to identify the optimal pruning rate strategy, leading to
sub-optimal results. To address this constraint, automatic network pruning algorithms, as depicted in
Figure 5.1(b), are designed to automatically eliminate redundant connections within the network, while
adhering to specific constraints, such as a predetermined number of parameters, FLOPs (floating-point
operations), or hardware platform limitations. For instance, Liu et al. [79] proposed leveraging auto-
mated machine learning (AutoML) techniques to determine pruning hyper-parameters through learning,
automating the pruning process for improved efficiency and effectiveness. Determining the adaptive
compression rate for each layer in a deep neural network has also been attempted using reinforcement
learning [46]. Moreover, a platform-aware neural network adaptation technique called NetAdapt [132]
was introduced, aiming to sequentially determine suitable pruning rates through progressive compres-
sion and short-term fine-tuning. Similarly, [138] leverages a layer-by-layer greedy search approach to
automate the compression process for models. Some AutoML-based pruning methods also pay attention
to the compression rate of pruning. For instance, [68] introduces predefined hierarchical pruning rates,
which unfortunately restrict its ability to search for more precise and optimal pruning rates. On the other
hand, [65] proposes a method to find the relative optimal pruning rate but is limited to selecting from a
few pre-defined candidate models. In contrast, [69] supports automatic search of pruned structures but
lacks hierarchical pruning capabilities, resulting in sub-optimal compression rates. One of the major
challenges in previous AutoML-based methods is the absence of sensitivity analysis and subsequent
optimization of pruning schemes, making it difficult to determine the optimal number of filters for each
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convolutional layer accurately. Recent research indicates that the key aspect of pruning is determining the
number of filters, rather than focusing solely on selecting important filters or channels. Addressing this
concern, Cai et al. [16] propose a method that measures the sensitivity of each quantization scheme to
obtain a scheme with reduced loss. Inspired by this work [16, 72], the APRS method [113] considers the
total sensitivity and approaches the problem of automatic pruning as a search for an appropriate number
of filters. This approach leverages Pareto optimization in the model formulation, allowing for precise
reduction of parameter size or computational cost while preserving performance.

In conclusion, automatic pruning techniques have emerged as a critical solution for reducing the compu-
tational burden and memory footprint of deep neural networks at the least expense of compromising their
performance. These methods leverage various strategies, such as sensitivity analysis and optimization, to
efficiently identify and remove non-essential parameters from the network architecture.

In the forthcoming section, we will delve into the compression techniques that have been employed in
the context of semantic segmentation. Subsequently, we will introduce the concept of hypernetworks and
how it can be employed as a potent tool that synergizes with automatic pruning, offering a novel and
effective approach to network compression in the domain of semantic segmentation.

5.3 Semantic Segmentation Compression

In the context of compression for semantic segmentation, neural architecture search (NAS) based
methods have been adopted to reduce computation overload and find lightweight models. By exploring
a predefined search space, NAS-based techniques aim to identify superior model architectures. For
example, in semantic segmentation, an approach proposed by Liu et al. [72] focuses on discovering a
repeatable cell structure and network architecture to enhance performance. However, achieving the target
architecture in NAS often comes at the cost of significant memory overhead. In the realm of compression
methods tailored for semantic segmentation, various techniques have been proposed, specifically targeting
pruning. Architecture pruning, in general, seeks to eliminate redundancies in over-parameterized models
to enable faster inference while preserving essential model parameters. Some approaches, like those
presented in [43, 87], aim to compress models by leveraging specific hardware architecture or library
support, referred to as non-structured pruning. Conversely, other methods perform pruning across the
entire network architecture, as seen in [48, 81]. However, the performance of these pruning methods for
complex tasks like semantic segmentation remains an open question and requires further investigation.

5.4 HyperNetworks

HyperNetworks were first proposed in [41] that used a smaller network to generate weights for a
bigger network. HyperNetworks have been widely used for neural architecture search [12], temporal
forecasting [96], and also model compression [78]. The key idea behind hypernetwork is based on
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evolutionary methods that evolve smaller networks to generate weights of a larger network. A more
efficient method to generate during the weight generation process, the search space is constrained within
a smaller weight space [112]. Alternatively, the structure of the network can be kept fixed while weights
are evolved through discrete cosine transform. This technique is referred to as a compressed weight
search [59]. Similar to the aforementioned approach is Differentiable Pattern Producing Networks
(DPPNs) that evolve the structure of the network while the weight parameters are learned [31]. Apart
from evolutionary-based algorithms, CNN-based approaches such as [54] generate weights to apply a
transformation to the images. [56] uses the concept of dynamic filters that are generated based on input
for the task of spatial transformation and deblurring. As discussed in Chapter 2, segmentation models
are generally large, and compression techniques such as neural architecture search require extensive
computational resources to extract efficient semantic segmentation models. In the following section, we
will demonstrate how hyper networks can serve as a solution to the aforementioned problems within an
automatic pruning framework, ensuring efficient model compression with minimal training resources.

5.5 Automatic Pruning via HyperNetworks for Semantic Segmentation

In this section, we discuss the process of compression of semantic segmentation models using hypernet-
work. Figure 5.2 illustrates the overall design of the proposed method, which is discussed in subsequent
sections in more detail.

5.5.1 Architectural Design

We now describe the process of adapting a hypernetwork into a semantic segmentation network. The
proposed hypernetwork architecture constructed for a single-layer neural network has the following
layers:

• Latent Layer: that takes latent vectors as input and generates latent matrix.

• Embedding Layer: is responsible for projecting latent matrix to embedding matrix.

• Output Layer: transforms the embedding matrix to a final weight matrix of the corresponding
layer.

As described above, we know the process of adapting a single-layer neural network to a hypernetwork,
so we extend the same process for a semantic segmentation model. Suppose, we have a semantic
segmentation model of K-a layered network that requires to be pruned. Initially, we introduce a latent
vector to all the layers that need to be pruned, as latent vectors are responsible for generating pruned
weights. We keep the shape of the latent vector equal to the output channels for all the pruned layers to
keep dimension consistency.
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Figure 5.2 Shows a pictorial representation of the proposed algorithm designed for compressing semantic
segmentation networks using automatic differentiable pruning. For a layer of the segmentation network
is associated with a latent vector. This latent vector is responsible for generating weights of the specific
layer. While training, latent vectors get sparsified leading to the pruning of the weights of the specific
layer. The construction of the algorithm is such that the latent vector is covariant with its corresponding
weight matrix. Weights produced by the hyper network generate the final output through the segmentation
model.

Assume for a given semantic segmentation layer k, the dimensionality of the weight matrix generated by
kth layer is l×m×w×h, where l and m denote the output and input channels of kth semantic segmentation
layer, and w×h denotes its corresponding kernel width and height. Also, consider the latent vector for
the kth layer to be pk. Since, the size of the latent vector is equal to the number of output channels, the
latent vector for kth layer is pk ∈ Rl. Thus, the dimensionality of the latent vector of the k-1th layer is
pk−1 ∈ Rm.

Now, we pass latent vectors pk and pk−1 as input to the hypernetwork corresponding to the kth layer to
generate the latent matrix, given by,

Pk = pk.pk−1T + Vk
0, (5.1)

where,
Pk,Vk

0 ∈ Rn×c

[T] represents the transpose of the matrix and [.] denotes matrix multiplication. V0 is the bias matrix.
Consequently, the latent matrix is further projected to an embedding dimension with the help of the

64



embedding layer that is given by,

Ck
ij = Pkij .w

k
1 + vk1 i = 1..l, j = 1...m, (5.2)

Ck
ij ,wk

1, vk1 ∈Re, where e represents the embedding dimension. The elements of wk
1 and vk1 are considered

to be unique. We exclude the subscript (i,j) for ease of understanding. Now, we multiply wk
1 , vk1 and Pkij

together to form a 3D matrix, given as Wk
1 , Vk

1 and Ck
1 ∈ Rl×m×e as formulated in Equation 5.2. We

generate the final output Gk
ij by passing the embedding matrix, obtained in Equation 5.2 through the

output layer, represented in Equation 5.3.

Gk
ij = Ck

ij .w
k
2 + vk2 i = 1..l, j = 1...m, (5.3)

where,

Gk
ij , v

k
2 ∈ Rwh

and,

wk
2 ∈ Rwh×e

We can observe the vectors wk
2 , vk2 and Gk

ij generate the final weight of the segmentation layer k. The final
dimensionality of variables involved in Equation 5.3 are Wk

2 ∈ Rl×m×wh×e and Vk
2 and Gk ∈ Rl×m×wh.

In functional form, we can represent the output Gk as:

Gk = h(pk,pk−1; Wk,Vk), (5.4)

Here, h(.) indicates the overall transformation applied on the input latent vectors, parameterized by latent
vectors and per layer weight tensors. In case of skip or residual connections present in the segmentation
network, we handle it by concatenating the latent vector of the current layer and the associated skip
connection layer to create the latent matrix using Equations 5.1 and 5.3.

5.5.2 Sparsification of Latent Vectors

The next step of our proposed method is to introduce sparsification in latent vectors that are associated
with layers of the semantic segmentation model. We introduce sparsity in latent vectors because all the
latent vectors are connected to each other, and each latent vector is covariant with the output channels of
the specific layer of the segmentation network. Sparsification of latent vectors leads to a reduction in the
count of output channels leading to compression of the network. We achieve this by constraining latent
vectors under L1-norm formulated as:

R(p) =
K∑
k=1

||pk||1 (5.5)
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where R is the regularization term. Now, we introduce differentiability with the help of the proximal
gradient algorithm. In summary, the task of the proximal gradient algorithm is to sparsify and update the
latent vectors. The proximal update equation is given by,

p[k + 1] = proxλµR(p[k]− λµ∇L(p[k])) (5.6)

5.5.3 Semantic Segmentation Network Pruning
After the sparsification of latent vectors by employing L1-norm followed by proximal operation, the
latent vectors are forced to become sparse without any human assistance leading to automatic pruning.
The latent vector sparsification leads to the generation of pruned weights for the corresponding layer of
the segmentation network. After the compression stage, we obtain sparse latent vectors pk and pk−1 for
kth semantic segmentation layer. After this, we apply masks tk, tk−1 on the pruned vectors that are near
zero with a predefined threshold τ . If the value is greater than the threshold, the returned value is one
else zero. The sparsified latent vector, p̄k is pruned using mask (tk). After the desired compression ratio
is met, we then fine-tune the pruned semantic segmentation network to improve the accuracy. We refer to
fine-tuning as a converging stage. The hypernetwork defined earlier gets scrapped, followed by the onset
of the normal training regime. It is important to note that if the compression ratio increases, then the
number of compression epochs also increases.

5.6 Experiments

5.6.1 Models and Dataset

We employ UNet [104] and ERFNet [103] as the base semantic segmentation architectures on which all
the experiments are performed. We use IDD-lite, introduced in Chapter 3 for our experiments. IDD-lite
is a custom dataset specifically designed for resource-constrained scenarios. This dataset contains 1400
training images and 400 validation images sampled and scaled from the updated IDD dataset [121],
keeping the largest dimension to 320 while preserving the image’s aspect ratio with the hierarchy of 7
coarse labels.

5.6.2 Training Detials

We use a single NVIDIA 1080Ti GPU for simultaneous training and compression through our proposed
method using Pytorch deep learning library. The initial learning rate is set to 0.1, and total epochs are
set to 250. We employ a reduced learning rate on the plateau scheduler. The training batch size is kept
at 32, and the validation batch size is 4. The embedding dimension is fixed to 8 in all the experiments.
The sparsity regularization factor is fixed to be 0.5. Consequently, once the difference between the target
compression factor and the actual compression factor is within a range of 2% of the target compression
factor, the model is fine-tuned, and the compression stage stops.
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5.6.3 Performance Metric

We evaluate the performance of pruned semantic segmentation model through mean Intersection over
Union metric, given as:

IOU =
TP

TP + FP + FN
(5.7)

Here, TP, FP, and FN are the number of true positives, false positives, and false negatives at the pixel
level. For assessing the efficiency of pruning methods, we use the number of (a) floating point operations
(GFlops), (b) parameters, and (c) flop ratio indicating the ratio of remaining flops and original flops.

UNet
Compression Ratio Method mIoU GFlops Params(M) Flop Ratio

0.00 Un-Pruned 65.71 20.84 7.786 -

0.50
L1-Pruning [131] 43.18 10.42 3.897 0.5

MPHyp 55.03 10.73 3.504 0.514

0.75
L1-Pruning [131] 26.71 5.212 1.951 0.25

MPHyp 57.01 5.369 0.702 0.257

0.90
L1-Pruning [131] 19.09 2.098 0.778 0.10

MPHyp 54.61 2.298 1.015 0.1102

0.95
L1-Pruning [131] 18.93 1.042 0.406 0.05

MPHyp 52.9 1.361 0.76 0.065

ERFNet
Compression Ratio Method mIoU GFlops Params(M) Flop Ratio

0.00 Un-Pruned 58.06 3.72 2.063 -

0.50
L1-Pruning [131] 56.52 1.867 0.993 0.5

MPHyp 55.49 1.794 0.959 0.482

0.75
L1-Pruning [131] 53.70 0.931 0.499 0.250

MPHyp 55.14 0.937 0.408 0.251

0.90
L1-Pruning [131] 51.64 0.368 0.21 0.098

MPHyp 52.24 0.403 0.128 0.118

0.95
L1-Pruning [131] 41.42 0.183 0.117 0.049

MPHyp 51.63 0.256 0.109 0.068

Table 5.1 Shows the performance of our proposed method MPHyp on UNet and ERFNet. It can be
observed that our method shows better performance than L1-pruning, with better accuracy and having a
smaller network.

5.7 Results

5.7.1 Quantitative Results

In this section, we discuss the results obtained from our proposed method: Meta-pruning based Hyper-
Network (MPHyp) on UNet and ERFNet.
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Methods Drivable Non-drivable Living Thing Vehicles Roadside-Objects Far-objects Sky mIoU
Compression Ratio:50 %

Un-Pruned 92.51 36.89 49.97 69.79 43.19 72.96 94.67 65.71
L1-Pruning [131] 91.1 4.07 47.03 65.87 0.0 0.0 94.15 43.18

MPHyp 91.2 31.42 43.39 67.46 41.29 71.78 93.69 55.03
Compression Ratio:75 %

Un-Pruned 92.51 36.89 49.97 69.79 43.19 72.96 94.67 65.71
L1-Pruning [131] 90.16 3.34 0.0 0.0 0.0 0.0 93.5 26.71

MPHyp 92.61 33.26 47.06 72.28 44.27 72.72 93.92 57.01
Compression Ratio:90 %

Un-Pruned 92.51 36.89 49.97 69.79 43.19 72.96 94.67 65.71
L1-Pruning [131] 40.12 0.00 0.00 0.00 0.00 0.00 93.51 19.09

MPHyp 91.61 28.87 43.48 67.07 41.93 70.38 93.51 54.61
Compression Ratio:95 %

Un-Pruned 92.51 36.89 49.97 69.79 43.19 72.96 94.67 65.71
L1-Pruning [131] 40.15 0.00 0.00 0.00 0.00 0.00 92.36 18.93

MPHyp 91.06 22.34 41.64 66.00 40.34 68.86 92.97 52.90

Table 5.2 Shows the mIoU performance of MPHyp at various compression ratios for UNet architecture.
We can observe that MPHyp significantly outperforms L1-Pruning with higher mIoU at a higher com-
pression ratio and shows comparable performance with the Un-Pruned network. It is also important to
note that MPHyp shows better performance (in Bold) than the un-pruned method on the Vehicles and
Roadside-Objects class, which could be advantageous in autonomous applications.

Method Embedding Dimension mIoU Flop Ratio

MPHyp 8 55.03 0.5114
MPHyp 16 54.22 0.5196
MPHyp 32 53.82 0.5042

Table 5.3 Shows the MPHyp performance at various embedding dimensions. We can observe as the
embedding dimension increases, the semantic segmentation decreases. However, on the other hand, we
have improved the flop ratio with increasing embedding dimension. We keep the pruning ratio fixed at
0.5.

Table 5.1 shows the performance of MPHyp with L1-based channel pruning. We can observe that
MPHyp preserves the segmentation accuracy at different compression ratios, whereas L1-pruning shows
a significant drop in mIoU. Also, it is evident that for higher compression ratios, our proposed approach
outperforms the L1-pruning technique, further decreasing the flops and parameter count. Simultaneously,
MPHyp achieves a lower flop ratio and GFlops, resulting in faster network inference. We also show
class-wise mIoU results for different pruning methods in Table 5.2 at different compression ratios. It can
be observed MPHyp significantly outperforms L1-Pruning with higher mIoU at a higher compression
ratio and shows comparable performance with an Un-Pruned network. Interestingly, MPHyp shows better
performance than the un-pruned method on the Vehicles and Roadside-Objects class, which are important
classes in autonomous applications. On average, the training time of MPHyp at different compression
ratios was around 1Hr on 1080ti, which is significantly lower than existing neural architecture search
methods and L1-pruning which has an average training time of 3Hrs.
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Method Proximal Regularization mIoU Flop Ratio

MPHyp L1 55.03 0.5114
MPHyp L2 53.81 0.5293

Table 5.4 Shows the MPHyp performance for different sparsity regularization formulations at a pruning
ratio of 0.5.

    Image                      GT              L1-Pruning-0.75         MPHyp-0.75          L1-Pruning-0.90         MPHyp-0.90        L1-Pruning-0.95         MPHyp-0.95

Figure 5.3 Qualitative results at different compression ratios comparing L1-pruning [131] and our
proposed method is based on ERFNet architecture. From the results, it is evident that our proposed
methodology performs better than L1-pruning [131] in identifying small and living objects class. Seg-
mentation results enclosed in green boxes show that MPHyp is able to preserve segmentation results at
various pruning rates for different classes.

5.7.2 Qualitative Results

Figure 5.3 and Figure 5.4 displays the qualitative results obtained from our proposed approach and the
baseline pruning algorithm for ERFNet and UNet architectures respectively. It is evident from Figure 5.3
that our proposed approach that MYHyp predictions are better for both the rider and pedestrian classes
compared to L1-pruning. In Figure 5.4, the first row demonstrates the prediction of classes rider and bike,
and the second row focuses on the model’s prediction for car class. The third and fourth rows illustrate
classes sidewalk and sky respectively. As it can be observed, MYHyp predictions have better fine details
compared to L1-pruning.

5.8 Ablations

We perform two ablations to see the performance of our proposed approach.

Embedding dimension: We increase the embedding dimension from the default value of 8 to 16 and
32 in Table 5.3. We see that there is a trade-off between the mIoU value and the flop ratio. Though the
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    Image                      GT              L1-Pruning-0.75         MPHyp-0.75          L1-Pruning-0.90         MPHyp-0.90        L1-Pruning-0.95         MPHyp-0.95

Figure 5.4 Qualitative results at different compression ratios comparing L1-pruning [131] and our pro-
posed method is based on UNet architecture. From the results, it is evident that our proposed methodology
performs better than L1-pruning [131] in identifying small and living objects class. Segmentation results
enclosed in green boxes show that MPHyp is able to preserve segmentation results at various pruning
rates for different classes.

flop ratio is marginally better for the higher embedding dimension, the mIoU metric follows a downward
trend.

Proximal Gradient Regularizer: We also compare the effect of L2 regularizer and L1 regularizer to
sparsify the latent vector, keeping the same pruning strategy in Table 5.4. We can observe that L1

regularizer shows better mIoU and flop ratio compared to L2 regularizer. It is also important to note that
to have a reasonable convergence speed λ used for L2 regularizer must be significantly larger than that
L1 regularizer.

5.9 Summary

Within this chapter, we have extensively explored various pruning algorithms readily available in the field,
as well as compression algorithms commonly employed for the task of semantic segmentation. Further-
more, we also looked into the HyperNetworks and their potential application in automatic pruning. The
proposed solution offers the unique advantage of differentiability due to the integration of hypernetworks
with semantic segmentation architectures. The use of the proximal gradient algorithm along with L1

sparsification, complemented by the proposed hypernetwork design, facilitates the efficient discovery of a
compact representation for the given architecture. To validate the efficacy of our approach, we conducted
comprehensive experiments utilizing two widely accepted semantic segmentation architectures, thus
providing substantial evidence of its effectiveness. In essence, our method offers a solution and opens
research avenues for efficient pruning techniques for semantic segmentation using HyperNetworks in a
resource-constrained environment.

70



Chapter 6

Conclusion

This chapter summarizes the definitive results of the research done throughout this thesis. The chapter
also includes a concise yet insightful discussion of the potential future directions that can be explored
based on the findings and results achieved in this thesis.

6.1 Summary

The thesis began with Chapter 1, where we focused on the practical challenges encountered during
the widespread adoption of large-scale pixel-perfect annotated semantic segmentation datasets like
Cityscapes [25] and IDD [121]. We addressed the complexities associated with training semantic segmen-
tation models on such massive datasets. To cater to Indian scenarios, we presented the motivation behind
proposing resource-constrained datasets, exploring their applicability in (i) teaching, (ii) architecture
search, and (iii) automatic pruning.

In Chapter 2, we defined and discussed the problem of semantic segmentation, while also exploring
various deep-learning approaches for supervised semantic segmentation. Additionally, we delved into
different evaluation metrics used for segmentation assessment and explored a range of datasets available
for training segmentation models from diverse geographical contexts.

In Chapter 3, we emphasized the necessity of having a dataset specifically tailored to the Indian road
scenario for the development of an autonomous navigation-based system, modified to handle the complex-
ities of the unstructured environment present in India. We provided an in-depth overview of the proposed
IDD dataset [121], along with the toolkit utilized for annotating such large-scale datasets. Furthermore,
we presented the annotation and quality-checking pipeline especially designed for IDD [121]. As we
recognized the lack of publicly available datasets suited for resource-constrained settings, we proposed
two datasets for semantic segmentation within such contexts. The experiments and results confirmed
the effectiveness of our proposed solution. We highlight how these datasets were leveraged in the ICCV
and NCVPRIPG 2019 challenges to discover more suitable models for inferring semantic segmentation
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within a resource-constrained regime. We also explored the applications of these datasets, particularly in
the development of a set of notebooks to discuss semantic segmentation. We introduced four notebooks
that utilize both traditional and deep learning-based methods for semantic segmentation, providing
accompanying screenshots and open-source links.

Proceeding to Chapter 4, we dived into the concept of Neural Architecture Search (NAS) and its
various components. We demonstrated how NAS can help in identifying cells or blocks that can be
stacked together to form novel architectures, with the potential to transfer performance gains to larger
datasets. The chapter focused on the application of NAS strategies in diverse vision tasks, including
image classification and semantic segmentation. Through experimentation, we validated that novel cell
operations obtained using a modified ERFNet [103] architecture on the proposed IDD-lite dataset can
be effectively transferred to larger datasets like Cityscapes [25], yielding correlated results. We also
presented the results achieved using efficient CNN module designs as proposed in [119].

Lastly, Chapter 5 detailed pruning, particularly focusing on automatic pruning with the additional
advantage of HyperNetworks. We illustrated how leveraging the proposed IDD-lite dataset can facilitate
the discovery of efficient semantic segmentation architectures within resource-limited budgets. This
attempt opens up new avenues for exploring practical solutions to address resource constraints effectively.

6.2 Future Directions

One of the possible future directions is to explore other strategies to efficiently perform subset selection
in larger datasets. This aims to match the statistics of curated datasets with bigger existing ones, leading
to improved validation scores using fewer samples, as done in this set of works. For instance, inter-class
variance or label distribution per image could be relevant factors for sub-sampling.

Considering the importance of sample-efficient learning in real-world scenarios, exploring techniques for
few-shot or one-shot learning within resource-constrained settings could be another promising research
direction. These approaches could allow models to generalize well and adapt quickly to new and unseen
data, thus reducing the demand for extensive data collection and annotation.

Finally, considering the broader context of responsible AI, conducting fairness and bias assessments
on resource-constrained models is of utmost importance. Research focusing on developing methods to
ensure fairness, equity, and transparency in model predictions, particularly within constrained settings,
can lead to more ethical and inclusive AI solutions.
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Outcomes

1. Conference Paper:

• Semantic Segmentation Datasets for Resource Constrained Training
Ashutosh Mishra∗, Sudhir Kumar∗, Tarun Kalluri∗,Girish V arma,Anbumani Subramanian,
Manmohan Chandraker, CV Jawahar

Accpeted at National Conference on Computer Vision, Pattern Recognition, Image Processing and
Graphics (NCVPRIPG) 2019
(* = equal contribution) Citations: 10

• Towards Efficient Semantic Segmentation Compression via Meta Pruning
Ashutosh Mishra∗, Shyam Nandan Rai∗, Girish V arma, CV Jawahar

Accepted at 8th International Conference on Computer Vision and Image Processing (CVIP) 2023
(* = equal contribution)

2. Related Publications

• IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments
Girish V arma,Anbumani Subramanian,Anoop Namboodiri,Manmohan Chandraker,
CV Jawahar

Accepted at IEEE Winter Applications on Computer Vision (WACV) 2019

3. Semantic Segmentation Notebooks for Education

• https://github.com/Ashutosh1995/Semseg-Notebooks

4. ICCV Challenge on Semantic Segmentation in Resource Constrained Setting

• http://idd.insaan.iiit.ac.in/evaluation/an19-leader-board/#an2 constrained

5. NCVPRIPG Challenge on Semantic Segmentation in Resource Constrained Setting

• https://cvit.iiit.ac.in/ncvpripg19/idd-challenge/
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