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Abstract

Medical imaging has been aiding diagnosis and treatment of diseases by creating visual representa-
tions of the interior of the human body. Experts hand-mark these images for abnormalities and diagno-
sis. Supplementing experts with these rich visualization has enabled detailed clinical analysis and rapid
medical intervention. However, deep learning-based methods rely on abundantly large volumes of data
for training. Procuring data for medical imaging applications is especially difficult because abnormal
cases by definition are rare and the data, in general, requires experts for labelling.

With Deep learning algorithms, data with high class imbalance or of insufficient variability leads to
poor classification performance. Thus, alternate approaches like using generative modelling to artifi-
cially generate more data have been of interest. Most of these methods are GAN [11] based approaches.
While they can be helpful with data imbalance they still require a lot of data to be able to generate
realistic images. Additionally, a lot of these methods have been shown to work on natural images where
the images are relatively noise-free and smaller artifacts aren’t as damaging. Thus, this thesis aims at
providing synthesis methods which overcome the limitations of smaller datasets and noisy profile.

We do this for two different modalities, Fundus imaging and Optical Coherence Tomography (OCT).
Firstly, we present a fundus image synthesis method aimed at providing paired Optic Cup and Image data
for Optic Cup (OC) Segmentation. The synthesis method works well on small datasets by minimising
the information to be learnt by leveraging domain-specific knowledge and by providing most of the
structural information to the network. We demonstrate this method’s advantages over a more direct
synthesis method. We show how leveraging domain-specific knowledge can provide higher quality
images and annotations. Inclusion of these generated images and their annotations in training of an OC
segmentation model showed a significant improvement in performance, thus showing their reliability.

Secondly, we present a novel unpaired image to image translation method which can introduce abnor-
mality (Drusen) to OCT images while avoiding artifacts and preserving the noise profile. Comparison
with other state-of-the-art images to image translation methods shows that our method is significantly
better at preserving the noise profile and is better at generating morphologically accurate structures.
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Chapter 1

Introduction

1.1 Generative Modeling

In recent years Artificial intelligence (AI) specifically Machine Learning (ML) has become a thriving
field with a great number of applications and valuable research topics. All of these machine learning
algorithms aim to learn the representation of the given data. In the past, all of these representations were
highly specific to the task and the method could not be transferred over to new tasks even in the same
domain. Hence Deep Learning was introduced to process raw sensory data and learn abstract, high-level
representations.

As per the availability of data, Machine Learning algorithms can be divided into two categories -
supervised and unsupervised learning. Supervised learning requires each example in the dataset to be
labeled. Supervised learning can be further split into classification and regression depending on whether
the labels are discrete or not. Whereas in unsupervised learning data labels are absent and the final aim is
to explore the underlying structure of the data. These techniques include denoising, density estimation,
clustering, and synthesis. Availability of large datasets [7] [24], has made it possible to train supervised
learning models that are able to beat even human performance [42] [23] [40].

Figure 1.1 Discriminative models vs Generative models (image from [12])

While more data is being made available, it is hard to annotate the ever-increasing number of sam-
ples. This is especially true for medical imaging where finding trained medical professionals for an-
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notating large scale data is a challenge and multiple experts are required to annotate the same example
to make the annotations as reliable as possible. Hence, researchers are more interested in unsupervised
learning. In unsupervised learning, generative modelling is one of the most promising avenues. While
discriminative models aim at predicting labels given the image/sample, generative models aim at pre-
dicting the image/sample given labels/image description (Figure.1.1). Typical generative models were
usually based on Markov chains, Maximum Likelihood, and approximate inference. However, these
early models [38] [14] are very limited in how well they generalize. In 2014, Goodfellow et al. [11]
proposed a novel generative model, named Generative Adversarial Networks (GANs). Based on the
game theory, there are two networks in GANs. Due to their flexibility, GANs and its variants have been
heavily adopted in Computer Vision.

The main applications of generative models in Computer Vision (CV) can be divided into two cate-
gories, Image synthesis and Image to Image translation. Image synthesis focuses on learning the under-
lying distribution of real images by mapping them to a fixed known distribution (usually a unit Gaussian)
or by using Auto Regressive models that predict an image as a sequence of pixels thus making it possible
to generate new examples from scratch that were otherwise absent in existing dataset. Image-to-image
translation is the task of taking images from one domain and transforming them so they have the style
or characteristics of images from another domain.

1.2 Image Synthesis

Figure 1.2 Variational AutoEncoders (image from [33])

As mentioned, Image synthesis is the task of generating an image from scratch and thus focuses on
learning the underlying distribution. In Computer Vision the three most popular image synthesis meth-
ods are Autoregressive models [31], Variational Autoencoders (VAE) [21] and Generative Adversarial
Networks (GAN) [11].
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Auto Regressive models predict the image sequentially with recurrent layers and residual connections
that predict pixels across the vertical and horizontal axes. The architecture models the joint distribution
of pixels as a product of conditional distributions of horizontal and diagonal pixels. These models
usually require some context based on which the image is generated. This context can be an incomplete
image or a damaged image. While the model gives sharp realistic images, they aren’t mapped to any
latent space thus the model can’t capture the underlying data distribution.

A Variational Autoencoders (VAE) (Figure. 1.2) provide a probabilistic manner for describing an
observation in regularised latent space. Thus, rather than building an encoder which outputs a single
value to describe each latent attribute, VAE formulates an encoder to describe a probability distribution
for each latent attribute. A decoder is trained to reconstruct the original image back. This gives the
latent space the property of samples being interpolative thus allowing us to generate new samples using
the decoder. VAEs are popular as they require much less data than comparable models to train but their
generated images lack sharpness.

Figure 1.3 Three Major variants of GANs (a) GAN, (b) conditional GAN (CGAN) and (c) auxiliary
classifier GAN (ACGAN) architectures. Here x denotes the real image, c is the class label, z is a
random noise vector, G is the Generator and D is the Discriminator.

Generative Adversarial Networks (GANs) have gained a lot of attention in the Computer Vision
community due to their capability of data generation without explicitly modelling the probability density
function. GAN takes a supervised learning approach to do unsupervised learning. The architecture has
2 networks a Generator(G) and a Discriminator (D). The Discriminator(D) is a binary classifier that is
trained to tell the real and generated images apart. The Generator (G) samples a random sample from
a unit Gaussian and tries to generate a realistic image such that the Discriminator fails in classifying
it as a generated image. Since the Generator does not directly observe any of the training samples
from the dataset GANs are less prone to over-fitting. The adversarial loss brought by the Discriminator
also provides a clever way of incorporating unlabeled samples into training and imposing higher order
consistency.
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1.2.1 Conditional Image Synthesis

Conditional image generation is the task of generating new images from a dataset conditional on
their class labels, attributes or description. Another reason GANs are widely used is that they can also
incorporate the class labels as input to the Generator (G) and Discriminator (D). Discriminator is now
trained to label images real or synthetic not just based on the realism of the image but also based on the
generated image’s class. This variant of GAN is referred as conditional GAN (cGAN) [29]. Another
variant of GAN, Auxiliary classifier GAN (AC-GAN) [30] incorporates the class label in the Generator
(G) and the Discriminator acts as an auxiliary classifier to classify the generated sample along with
differentiating the generated and real samples apart.

Figure 1.4 Conditional vs Unconditional Image Synthesis (images from [18])

This gives control over the class of the generated image as well as a stronger classifier than otherwise
possible with normal training. This flexibility of GANs has proven to be useful in many tasks, such as
domain adaptation, data augmentation and also in improving classification classification models. Later
proposed variants of AC-GAN can also be used to control exact attributes of the generated images. Ar-
chitectures like cGAN have also inspired many architectures in Image-to-image translation as explained
in the Sub-section 1.3.

1.3 Image to Image Translation

Image-to-image translation is the task of taking images from one domain (source) and transforming
them so they have the style or characteristics of images from another domain (target). Numerous varied
tasks in Computer Vision can be modelled as Image-to-image translation. Some of these include:
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Style transfer: the task of making a photo look like paintings by a particular artist.
Super-resolution: the task of obtaining a High-Resolution image from a Low-Resolution image.
Image denoising: the task of removing noise from an image.

Figure 1.5 Different categories of Image-to-image translation tasks

Most of the Image-to-image translation tasks can be broadly classified into one of the two categories
paired Image-to-image synthesis or unpaired Image-to-image synthesis based on the availability of
paired or unpaired data. Tasks like Super-resolution, or image synthesis from available semantic seg-
mentation masks can be modelled as a paired Image-to-image translation. While tasks such as image
denoising, style transfer don’t have paired data readily available. One of the most popular Image-to-
image translation method currently being used is pix2pix [15]. It is inspired from cGAN, the Generator
takes in an image from the source domain and the Discriminator takes in the output of the Generator
(generated target domain image) as well as the input source image. Image-to-image translation meth-
ods can also be categorised into uni-modal and multi-modal based on if the source and target domain
belong to the same modality. A few common examples of unimodal Image-to-image translation are
image super-resolution and denoising. And a few examples for multi-modal Image-to-image transla-
tion are image to painting style transfer. Figure. 1.6 shows the different kinds of paired/unpaired and
unimodal/multimodal image to image translation applications.

5



1.4 Image Synthesis for Augmentation / Image Synthesis in Medical Imag-

ing

Figure 1.6 Different applications of generative modeling in medical imaging

Medical imaging is the process of creating visual representations of the interior of a body for clinical
analysis and medical intervention, as well as a visual representation of the function of some organs or
tissues. Medical imaging has been a crucial part of diagnosis and treating diseases. These images are
examined by experts for abnormalities and diagnosis. However, since the rapid rise of deep learning
many of these tasks are being automated and it is widely known that sufficient data volume is necessary
for training successful machine learning algorithms. Thus generative models have been of huge interest.
Data with high class imbalance or of insufficient variability leads to poor classification performance.
While this is true for every field, three main factors cause this to be a much bigger problem in medical
imaging than other domains,

1. In medical imaging abnormal findings are by definition uncommon,

2. The cost of acquiring and annotating these images is much higher as the annotations require
multiple experts for a single sample,

3. While most of the natural images are captured using CMOS sensor, different imaging modalities
have vastly different acquisition methods, thus making transfer learning more difficult.
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Moreover, in the case of image segmentation tasks, the time required to manually annotate data only
widens this disparity. Manually segmenting an abnormality can require upwards of five minutes per
study making it impractical in a busy radiology practice. The result is a scarcity of annotated data and
considerable challenges when attempting to train an accurate model. While traditional data augmenta-
tion techniques (e.g., cropping, translation, rotation) can mitigate some of these issues, they fundamen-
tally produce highly correlated image training data.

While data augmentation has been one of the main uses of generative models, they also have been
used for many different applications like image reconstruction (low dose CT to high dose CT) [44],
cross-modality synthesis (MR to CT), anomaly detection. GANs have also been used for improving
classification by using the discriminator of an acGAN as the main classifier [9]. Another way generative
models can help in medical imaging is data anonymization.

While there have been some studies aimed at synthesising abnormal cases to better handle class
imbalance/data scarcity, most of the current methodologies focus on cross-modality synthesis. Intro-
ducing abnormality while keeping an anatomical structure intact is still a challenging task. Moreover,
the understanding of the particulars of human anatomy can be leveraged to use more domain-specific
knowledge, which hasn’t been explored much.

1.4.1 Thesis focus

In this thesis, we focus on retinal image synthesis in two imaging modalities, OCT and fundus
imaging. The main aim is to develop learning-based image synthesis method for synthesis of abnormal
cases from a normal case and vice-versa. These images can be used for better data augmentation and to
reduce the present class imbalance. While traditional augmentation methods can be helpful they create
highly correlated data. The generated images should not have any artifacts and should not be blurry.
This is especially important in case of medical imaging where the present data is very limited and
adding outliers to the distribution might heavily impact the learning methods. Moreover, the generated
images should preserve the already present anatomical details and the new abnormalities added should
be anatomically correct and representative of an actual case, as more of the learning methods in medical
imaging are expected to be as explainable as possible.

For fundus images, we aim to synthesise the optic nerve head region of the retina along with Optic
cup mask. Fundus imaging in the Optic nerve head region captures a 3D region projected onto in a 2D
plane, thus the effects caused by the transition should be captured in the generated images. For example,
the Optic Cup is a depressed region in the retina and thus causes the vessels to bend. Information like
this is critical to Glaucoma detection and needs to be captured in the generated images. Capturing
the vessels in the generated images is also a challenging task, as they are translucent. Since they are
tubular structures they are the most transparent at the center and become more opaque towards the
edges. Fundus synthesis is done using a very limited dataset and we employ a method that leverages
domain-specific knowledge and compare it to an approach that aims at generating the OC annotation as
well.
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Optical Coherence Tomography images are corrupted by speckle noise thus their synthesis becomes
more challenging. The network has to learn to replicate the noise characteristics as well as avoid creating
artifacts. Specifically, we aim at introducing Drusen to normal OCT scans. Drusen are lipid deposits that
look like folds in the OPL layer of the retina. The generated images need to be morphologically correct
as to not have two overlapping layers. This requires a network with enough complexity to change the
structure of the required layers while still affecting and not modifying other parts of the image.

1.4.2 Thesis Contribution

The major contributions of the thesis are:

1. Introducing a novel method to synthesise Optic nerve head region of retina along with its cup
masks that works for small datasets.

2. An improved unpaired image-to-image translation method to synthesise Drusen in OCT.

1.4.3 Thesis Organisation

The aim of this thesis is to explore synthesis methods for retinal imaging, specifically for fundus
and OCT. Chapter 2 Describes a novel fundus image synthesis method of optic nerve head region that
leverages domain-specific knowledge to achieve anatomical correctness. Chapter 3 describes compares
a different approach fundus image synthesis that generates the annotations required to the approach
described in Chapter 2 and verifies the assumptions made in Chapter 2. Chapter 4 introduces a novel
image to image translation method to synthesise Drusen in OCT images.
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Chapter 2

Synthesis of Optical nerve head region of fundus image

A Domain specific vessel bend based Approach

The Optic Disc (OD) and Optic Cup (OC) boundaries play a critical role in the detection of glau-
coma. However, very few annotated datasets are available for both OD and OC that are required for
segmentation. Recently, Convolutional Neural Networks have shown significant improvements in seg-
mentation performance. However, the full potential of CNNs is hindered by the lack of a large amount
of annotated training images.

To address this issue, we explore a method to generate synthetic images which can be used to aug-
ment the training data. Given the segmentation masks of OD, OC and vessels from arbitrarily different
Fundus images, the proposed method employs a combination of B-spline registration and GAN to gen-
erate high quality images that ensure that the vessels bend at the edge of the OC in a realistic manner.
In contrast, the existing GAN based methods for Fundus image synthesis fail to capture the local de-
tails and vasculature in the Optic Nerve Head (ONH) region (Figure. 2.1). The utility of the proposed
method in training deep networks for the challenging problem of OC segmentation is explored and an
improvement in the dice score from 0.85 to 0.9153 is seen with the inclusion of the synthetic images in
the training set.

2.1 Introduction

Realizing the full potential of deep learning requires training over large annotated datasets. This
becomes problematic when dealing with medical images where practical issues such as patient privacy,
medical regulations, annotator expertise and the cost, make creating and annotating large datasets a
challenging task. One such task which suffers from the lack of annotated public datasets is Optic Cup
(OC) segmentation, which plays an important role in Glaucoma detection. A lot of times this problem is
tackled by using traditional image augmentation techniques like rotation crop and vertical & horizontal
flipping. While these methods are somewhat helpful they create highly correlated data.
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Another possible solution is to augment synthetically generated images with annotations to the train-
ing dataset. GANs [11] have shown that they are highly capable of generating completely new and
diverse high resolution images. Conditional GANs have been used to synthesise images for a particular
label. This method has seen a lot of success in classification tasks as shown in [10]. This can also be
further extended to segmentation tasks as shown by [32]. Instead of generating from scratch, making
use of annotations like vessel masks to generate images has also shown to be an effective method [6, 47].

Although the methods in [6, 47] have been successful in retaining most of the global features, they
fail to capture the local details of the ONH region (Fig.2.1) like the OD border and the vessel bends.
Moreover they still require a considerable amount of data compared to what is available for Optic Cup
segmentation. But these methods don’t leverage knowledge specific to the domain. This can be lever-
aged for better performing methods methods.

In case of Optic Cup segmentation this extra domain specific knowledge is that the Optic cup is a
bulge in the retina. And thus since Fundus images are 2D projections of these 3D objects the vessels
passing through OC boundary have a characteristic bend. Since OC is characterised by 3D depth map,
the vessel bends become crucial for indicating the depth change observed at the OC boundary [17]. So
instead of generating annotations the proposed method uses different OC, OD and vessel masks from
arbitrarily different images as inputs to generate new realistic images. Since the masks are obtained
from different images, the vessel bends and the OC edge may not coincide. To ensure that the vessels
bend at the edge of the new OC, the vessels are pre-processed(explained in sub-section2.2.3). Since
the provided annotations are from real images, they are more reliable and have an anatomically correct
structure and thus reduce the information network has to learn in order to synthesise realistic images.

We later show the effect of generator architecture on the image quality and also the usability of those
images for optic cup segmentation. In the next chapter we compare this method to a more straight
froward image synthesis method where the annotations are generated along with the images.

Figure 2.1 Comparison of synthetic image generation using different approaches. Left to right: Results
of [6],[47] and the proposed method.
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Figure 2.2 The GAN architecture used to generate images of the ONH region

2.2 Method

Given a set of OD, OC and vessel masks as input, the proposed method employs a GAN to generate
realistic Fundus image of the ONH region. The network is trained on real images and their correspond-
ing OC, OD and vessel masks. In order to get new examples, various permutations of vessel, OC and
OD masks are sampled from different images and preprocessed to ensure that the sampled masks are
compatible. The details of the proposed method are explained below.

2.2.1 Training GAN

The GAN architecture used to generate the synthetic images is depicted in Figure.2.2. The gen-
erator takes an OC mask, an OD mask and a vessel mask and outputs a 3-channel RGB image. We
experimented with four different generators, their details are explained further in sub-section 2.2.2

For all four generator architectures we use the same discriminator. The discriminator, D, is a five
layered fully convolutional network (FCN) with each convolution layer using 3x3 kernels and Leaky
RelU activation function. The first layer has 32 filters and the number of filters are doubled in each
successive layer. The final layer has only 1 filter and a sigmoid activation with output size of 16x16.

The two networks are trained alternately where the discriminator attempts to tell a real image from
a synthetic one and the generator tries to generate images that can fool the discriminator. After one
iteration (mini batch) of training the discriminator, to train the generator the discriminator layers are
frozen and the network optimizes three loss functions : adversarial loss (Ladv) , structural loss (LSSIM )
and absolute difference (Labs).
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Here G denotes the generator and D denotes the discriminator. v , c and d are the vessel mask, OC
mask and OD mask and r is their corresponding real image.

Ladv(G,D) = E(v,c,d),r∼pdata((v,c,d),r)[log(D((v, c, d), r)]+

E(v,c,d)∼pdata(v,c,d)[1− log(D((v, c, d), G(v, c, d))]

E(v,c,d),r∼pdata represents the expectation of the log-likelihood of the sample ((v, c, d), r) being sam-
pled from the probability distribution of real images pdata.

Structural similarity index (SSIM)[41] is used to compare the perceived structural similarity between
generated (G(v, c, d)) and real (r) images.

SSIM(p) =
2µrpµG(v,c,d)p + c1

µrp
2 + µG(v,c,d)p

2 + c1
∗

2σrp,G(v,c,d)p + c2

σrp
2 + σG(v,c,d)p

2 + c2

where, rp and G(v, c, d)p are patches of size 4x4 around the pixel position p; µ represents mean
intensity of the patches, σ represents the standard deviation of the intensity of the patches and c1, c2 are
constants. LSSIM loss is defined by reducing the average SSIM between all the patches in synthesized
and real images.

LSSIM = 1− 1

N

∑
p∈(G(v,c,d),r)

SSIM(p)

Labs reduces the absolute difference between the images and captures the finer details.

Labs = E(v,c,d),r∼pdata((v,c,d),r)[|G(v, c, d)− r|]

The overall loss function is the weighted sum of above three loss functions[3].

Loss = Labs + w1 ∗ LSSIM + w2 ∗ Ladv,

where w1, w2 determine the contribution of LSSIM and Ladv to the total loss function. For our
experiments, parameters w1 and w2 were set to 5 and 1 as we observed that higher w1 led to faster
convergence.

2.2.2 Generator architectures

The quality of image being generated heavily depends on the choice of generator. In other pix2pix
applications a plain U-Net or a Plain Resnet have been used. We arrange these networks in two different
arrangements as shown in Figure. 2.3, where each of the block represents either a Unet or a Resnet.
Thus, we have four generator architectures: i)G1-Unet, ii) G1-Resnet, iii) G2-Unet and iv) G2-Resnet.
The models in G1 configuration had 4 times as many filters to their G2 counterparts thus had approx-
imately the same number of parameters. The G1 arrangement is a plain Unet/Resnet in which the 3
inputs(OC, OD and vessel) are stacked together along the channel axis and given to the network which
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Figure 2.3 Two different arrangements for the generators each of the block is a U-net or ResNet.

outputs an RGB image. Whereas, the G2 arrangement has three parallel networks, Gc, Gd, Gv each
of which takes in an OC mask, an OD mask and a vessel mask respectively. The output of these three
networks is then provided as input to another network, Gm which merges them outputs a 3-channel
RGB image. For each of the U-Nets each step of the encoder has a convolution layer with 3x3 kernel
size and 1x1 stride followed by another convolution layer with 2x2 strides for down-sampling. At each
downsampling step the number of filters is doubled. At each step of the decoder we have concatenation
of the corresponding feature map from the encoder. This is followed by a convolution layer with 3x3
kernel size and 1x1 stride and a transposed convolution layer with 2x2 kernel size and 2x2 stride, up-
sampling the feature maps. At each upsampling step the number of filters is halved. Each layer in both
encoder and decoder has Leaky RelU activation and is followed by batch normalization. For G2The first
step of the encoder has 64 filters which are doubled at each step. While, for the decoder the filters are
halved at each step. The U-nets finally have a final convolution layer with 3 filters, 1x1 stride and a
tanh activation. The Unet in G1 arrangement follows the same architecture but has four times as many
filters at each layer. In the Resnet versions the ResNet has 9 ResNet blocks. Each ResNet block has 2
convolutional filters each of which have 64 filters and are followed by a batch normalization layer. The
input the of the renset block is then added to the output of the second convolutional layer on which a
Leaky RelU activation is applied.

2.2.3 Generating new examples

To generate new images we randomly pick vessel mask VA, optic cup maskOCB and optic disk mask
ODC from three random images A,B and C respectively. It is ensured that the following anatomical
constraints are satisfied:

1. OCB is contained within the boundaries of ODC
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2. The vessels VA bend at the edge of OCB .

The first constraint is easily verified by checking intersection of the binary masks. If the sample does not
satisfy the first constraint then it is discarded. For the second constraint a transformation T is applied
on the vessel mask VA. Since the vessels in VA bend at the edges of OCA, T is obtained by registering
OCA to OCB using a B-spline registration based on [35]. Then T is applied to VA to obtain V ′A to
ensure that the vessel bends in V ′A are now moved to the OCA boundary.

The new transformed vessel V ′A along with OCB and ODC are given to the trained network to
generate new synthetic images.

Figure 2.4 (a)B-spline registration of OCA onto OCB to get the transformation T , (b) Applying the
transform T onto VA to get V ′A
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Figure 2.5 3 sample images generated using each of the four different generators compared

2.3 Experiments and Results

To train the network we used images from Drishti-GS [37] dataset. The dataset contains 101 Fundus
images with annotated OC and OD masks. The images were cropped around the region of interest i.e.
the ONH region with a resolution of 512x512. To get the vessel masks a vessel segmentation U-Net
[34] was trained on the DRIVE dataset [39]. Once the vessels were obtained, the dataset was split into
a train set containing 66 images and a test set containing 35 images. The GAN was then trained on the
train set of 66 images/mask pairs for 2000 epochs. Different sets of OD, OC and vessel masks were
sampled from the train set (66) and were pre-processed as explained in the sub-section 2.2.3 and finally
given to the trained network to generate new examples.

The GANs were trained on a NVIDIA GTX 1080ti GPU with 11 GB of GPU memory. We show the
visual and objective evaluation of the quality of generated images as well as their impact on boosting
OC segmentation in the subsequent subsections.

2.3.1 Visual Quality

Figure. 2.5 shows visual comparison between images generated from these four methods and the
real image corresponding to the input OC, OD and vessel masks. Both of the G1 models have heavy
artifacts and don’t look as realistic even though they have approximately the same number of param-
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Figure 2.6 Comparison of vessel detail in the images Generated by G2 Resnet (left) and G2 Unet (right)

eters compared to their G2 counterparts. This is because deeper networks have the capacity to learn
more complex structures as opposed to shallower with more parameters. G2-Unet and G2-ResNet have
minimal artifacts and look much closer to the real images however G2-Unet images tend to have more
contrast. This comes at the cost of having less texture detail compared to G2-ResNet. As seen in Figure.
2.6 the images generated by G2-Unet have very uniform vessels and the thinner vessels are completely
missing. Moreover, the thicker vessels in the image generated by G2-ResNet are more transparent in the
middle. The image also captures the thinner vessels very well. The periphery of the OD has greenish
texture similar to real images which is missing in images generated by G2 Unet.

Figure. 2.7 shows synthetic images generated (last column) using the vessels from real images
(first column) and OC mask sampled from a different image (middle column). The vessel bends are
highlighted using green circles. The bends can be seen to have moved from the edge of the original OC
to the edge of the new OC in the synthetic images.

To evaluate the objective quality of the vessels in the generated images, we use Qv as proposed in
[22]. The metric is a no reference retinal image quality metric that measures the quality of generated
images based on the clarity on vessels. It has shown to have high correlation to PSNR and SSIM which
are reference based image quality metrics. Table 2.1 shows the comparison between mean Qv scores of
images generated by different generators. Higher Qv corresponds to higher quality vessels.

2.3.2 Boosting Optic Cup segmentation

For our baseline, we trained a U-Net [34] for OC segmentation for 200 epochs on the training set
(66 real images). Choosing random triplets form the train set, as mentioned in the previous section, we
generate N synthetic images. We then trained multiple OC segmentation U-NETs [34] with 66 real +
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Figure 2.7 Generation of synthetic images using R2-Resnet (last column) with vessel mask of real
images (first column) and OC masks derived from different images (middle). The green circles indicate
vessel bends at the edge of the OC.

N synthetic images for various values of N . These models were tested on the test set consisting of 35
images and were quantitatively evaluated on basis of the average DICE score.

DICE(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

=
2TP

2TP + FP + FN
,

here X is the predicted OC by the model and Y is the ground truth.
The plot (Figure. 2.8) shows the average DICE scores on test images (35) against the number of

synthetic images (N ) used to augment the original training set (66). The images generated by G2-
ResNet to the training set provides the highest performance consistently and adding more images does
not have a negative impact on the performance boost. While images generated by other generators
show an increase in performance at first but a decrease when including more synthetic images. This
indicates that the images do not consistently match the quality of real images and when majority of
the training images are synthetic the segmentation network fails to learn proper OC boundaries. This
is much more noticeable in G1-unet and G1-ResNet as including too many synthetic to the training
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Generator Qv

G1-unet 0.033
G1-ResNet 0.0462
G2-unet 0.049
G2-ResNet 0.0537

Table 2.1 Mean Qv values of the images generated by different generators

Figure 2.8 DICE scores versus the number of synthetic images used for training

set makes the segmentation performance worse than not including any. The plot shows a substantial
increase in average DICE score from 0.85 to 0.9153 when using 300 synthetic images generated by G2

ResNet to supplement the training set which is significantly higher than other state-of-the-art methods
reported on this dataset(Table 2.2). The average score begins to saturate beyond 300 images.

2.4 Conclusion

We have proposed a novel method for generating the ONH region of Fundus images. We hypoth-
esized that capturing clear vessel bends at the edges of OC was a crucial detail required to aid OC
segmentation models. Thus, our method makes use of existing vessel, OC and OD masks from different
images and transforms the vessels such that they have bends at the edge of the OC boundary. The method
can theoretically generate hundreds of thousands of images from just 100 images. The generated images
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METHOD DICE

Zilly et al. [49] 0.871
S Sedai et al. [36] 0.85
U-Net 0.85
U-Net with synthetic images
(G2 Resnet)

0.9153

Table 2.2 Cup segmentation Performance comparison on Drishti-GS

are realistic and have a very similarQv score to the real images. These synthetic images can be valuable
as they provide a significant boost in OC segmentation when used for data augmentation during training.
Our experiments indicate an improvement in a DICE score from 0.85 to 0.9153 using 300 synthetically
generated images during training. This points to a direction for developing segmentation solutions even
with fewer annotated images.
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Chapter 3

Synthesis of Optical nerve head region of fundus image

A Direct Synthesis Approach

3.1 Introduction

In the previous chapter, we explored retinal image synthesis where we trained a network which
generates images given a set of OC, OD and vessel mask. We then obtained new examples by mixing
annotations from different images and modifying them using B-spline registration. This method of
getting new OC mask/image pair leveraged the domain-specific property of vessels bending at the edge
of OC. We get the benefit of having anatomical accuracy at the cost of the method’s flexibility. In this
chapter, we implement an architecture similar to Chapter 2’s G2-Resnet to synthesise Fundus image as
well as a binary Optic cup mask. Thus this method takes in just Optic disk(OD) mask and vessel mask
to synthesise Fundus image as well as an OC mask. We compare the images generated as well as the
reliability of the OC generated to the method described in Chapter 2. We also verify if the generated OC
mask depends more on the input vessel or on the input OD. Our assumptions states that the generated
OC should have a more significant dependence on the input vessel compared to the input OD.

3.2 Method

Our proposed method generates an RGB Fundus image along with its OC segmentation mask given
a set of vessel mask and OD mask. The network is a GAN based architecture and the generator follows
the G2-Resnet architecture from the previous chapter very closely but instead of 3 input ResNets of
G2-Resnet this method has two input ResNets for each of the two inputs (OC mask and vessel mask).

3.2.1 Training GAN

Our proposed GAN architecture can be seen in Figure. 3.1. The network takes in OD and vessels
masks to synthesize RGB Fundus image and an OC mask along with it. The Generator used has two
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Figure 3.1 The GAN architecture used to generate Fundus images and OC masks

ResNets at the input. The output of these ResNets are then concatenated and given to a third ResNet
which outputs a four channel image where first 3 channels represent the RGB Fundus image and the
fourth channel gives a grayscale OC segmentation mask. We opted to have a four channel outputs
instead of having 2 different outputs with different activations as we aim to provide a grayscale OC
mask which can be later thresholded to get a binary image. This was done in accordance with our main
dataset, Dhrishti-GS[37] which provides intersection of marking of 4 different experts with 4 different
gray levels which can be then thresholded above 50% to get a binary mask. The Resnet used in each of
the sub-blocks is eleven layers deep. The discriminator, D, is a five layered fully convolutional network
(FCN) with each convolution layer using 3x3 kernels and Leaky RelU activation function. The first
layer has 32 filters and the number of filters is doubled in each successive layer. The final layer has only
1 filter and a sigmoid activation with output size of 16x16.

The two networks are trained alternately where the discriminator attempts to tell a real image from
a synthetic one and the generator tries to generate images that can fool the discriminator. After one
iteration (mini-batch) of training the discriminator, the generator is optimized with the discrimina-
tor layers frozen. The network optimizes the same three loss functions described in chapter 2 along
with an additional dice based loss. The losses optimized are: Adversarial loss (Ladv) , Structural loss
(LSSIM ),Absolute difference (Labs) and Dice loss Ldice.

Here Gim denotes the generator function for the image, Goc denotes generator function for the Optic
Cup (OC) and D denotes the discriminator. v , c and d are the vessel mask, OC mask and OD mask and
r is their corresponding real image.

Ladv(G,D) = E(v,d),r,c∼pdata((v,d),r,c)[log(D((v, d), r, c)]+

E(v,d)∼pdata(v,d)[1− log(D((v, d), Gim(v, d), Goc(v, d)]
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E(v,d),r,c∼pdata represents the expectation of the log-likelihood of the sample ((v, d), r, c) being sam-
pled from the probability distribution of real images pdata.

LDice(G) = 1−
2
∑N

i Goc(v, d)i ·OCi∑N
i Goc(v, d)

2
i +

∑N
i OC

2
i

The other two losses, namely, LSSIM ) and (Labs) were exactly the same as Chapter 2 and hence
aren’t explained here. The overall loss function is the weighted sum of all 4 loss functions.

Loss = Labs + w1 ∗ LSSIM + w2 ∗ Ladv + w3 ∗ Ldice

The parameters w1, w2 and w3 were set to 1, 1 and 3 respectively.
To get new examples, while testing, vessel masks and OD masks can be sampled from two different

images and given to the network.

3.3 Experiments and Result

Our main aim is to evaluate the quality of images and OC mask generated compared to the previous
chapter’s G2-ResNet approach. We also aim to determine if the generated OC depends more on the input
Vessel or on the input OD.

3.3.1 Visual Quality of Generated images

As visible in Figure. 2.3, the generated images have very sharp and vessels the Optic Disk has a clear
boundary and the background texture of the retina. The mean calculated Qv for the generated images is
0.49 which is similar to G2-Unet from chapter 2.

As seen in Figure. 3.2, the images generated by the proposed method have flat vessels which aren’t
translucent at the centre. Moreover, since the method does not take in Optic Cup as input, the generated
images don’t have visible Optic Cup boundary. The images also have very flat lighting in the optic
cup whereas images generated by G2-ResNet have brighter Optic Cups. While there are some small
differences in the image quality, most of the details are well preserved and thus the image’s usability for
data augmentation heavily depends on the quality of generated OC mask.

3.3.2 Quality of synthesised Optic Cup mask

For testing the quality of Optic Cup segmentation mask we trained our model on training set of 66
images (same distribution as is Chapter 2) and synthesised images using OC and vessel mask corre-
sponding to the same image from the test set. We compared the OC mask generated by the network
to ground truth masks (Figure .3.4). The OC masks generated by the network are marked by blue and
the ground truth boundaries are marked by green. While most of the generated masks roughly fit the
ground truth masks there are a lot of cases where the OC generated are much bigger or smaller than the

22



Figure 3.2 A sample set of generated images

ground truth. Although cases like these are few and far between, these extreme cases can cause a wrong
diagnosis in glaucoma detection.

The average DICE score for the generated OC masks was 0.8453. Testing if this deviation from
the ground truth is enough to negatively affect using the generated pair to augment OC segmentation is
explored in the sub section 3.3.4.

3.3.3 Contribution of OD and Vessels in OC synthesis

The OC depends on various factors and has a significant correlation with the size or shape of the OD
and the vessel. Here we see if the generated OC has more correlation with the input vessel or the input
OD. While the vessel bends are important to OC shape and size, the OC should also be constrained by
the OD size and it shouldn’t spill out of the OD. To check the correlation, we randomly select an OD
Mask ODA from image A and vessel mask VB from image B and generate an image (G)/OC (OCG)
pair . We then compare the Dice similarity between generated OCG and the OC corresponding to the
input OD (OCA) to measure it’s contribution to synthesis of OCG. We do the same process with OC
corresponding to input vessel mask(OCB) to get its contribution. We do this over 1000 images and
measure mean and standard deviation of the dice similarities. As we can see in Table 4.1, vessels are
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Figure 3.3 Images Generated by Proposed architecture(left) and G2-Resnet from Chapter 2 (right)

a much bigger deciding factor in the generation of OC than the OD. Thus the network learns that the
vessel bends are the biggest indication of the OC boundary. We can see the visual comparison in Figure.
3.6 as well. The OC generated is almost exactly same as the one corresponding to input vessel however
as we can see in the Figure. 3.2(E) if the network misses one of the vessel bends or if there isn’t a clear
noticeable vessel bend the network isn’t able to give a proper circular shape to the cup. This results in a
lower 0.84 DICE score with respect to the ground truth.

3.3.4 Boosting Cup segmentation

We use these generated images and their corresponding generated OC masks to augment OC seg-
mentation U-Net. The experiment follows the same data distribution as the previous chapter i.e. 66
images for training and 44 for testing. While the generated images are comparable to the images gen-
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Figure 3.4 OC masks generated by the network marked onto generated images by blue and Ground
truth masks marked by green

Contribution of Mean DICE
OC corresponding to input Vessel 0.84±0.12
OC corresponding to input OD 0.74±0.18

Table 3.1 DICE score between generated OC with OC corresponding to input vessel and with OC
corresponding to input OD

25



Figure 3.5 OC masks generated by the network marked onto generated images by blue and Ground
truth masks marked by green

erated by the method described in Chapter.3 (G2 Resnet), the images still lack a visible OC boundary.
Moreover, the OC generated isn’t perfect and can cause a further drop in performance.

The best dice score provided by adding generated images and cup masks to cup segmentation net-
work is 0.88 which is much less than the dice score provided by G2-Resnet (0.9153).

3.4 Conclusion

We tested a method for generating ONH region Fundus images along with its OC mask. The method
generates high quality images. However, minute details like less visible OC edge are not visible. The
generated OC masks are a bit unreliable having 0.84 DICE score with respect to the ground truth. Thus
the performance improvement from using these images for augmentation is minimal, with only a 0.03
dice score increase when including these images for training OC segmentation.

We also tested the dependence of generated OC on the input vessel and input OD and found a higher
dependence on vessel. This confirms our assumptions made in the Chapter. 2, that OC boundary heavily
depends on the vessel bends. While this method is more flexible and might give a better performance
with a larger dataset, it is clear that for smaller datasets and constrained problems, integrating prior
knowledge can be a more reliable solution.
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Figure 3.6 OC masks generated by the network marked onto generated images by blue and Ground
truth masks marked by green
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Chapter 4

Drusen Synthesis in Optical coherence tomography

Image-to-image translation has been used for a variety of synthesis tasks in medical imaging. The
current state of the art methods lack in preserving the edge detail. Hence, application to noisy modalities
like Optical Coherence Tomography (OCT) is challenging. We propose a method to synthesise lesions
(Drusen) in OCT slices from available Normal slices. We incorporate Self-attention in a CycleGAN and
utilise an ESSIM [4] based loss function to synthesise Drusen in a morphologically realistic manner. The
FID score based assessment of the synthesised results show the proposed method to be outperforming
current state of the art methods.

4.1 Introduction

Drusen are yellow deposits under the retina. Drusen are made up of lipids, a fatty protein. Drusen
likely do not cause age-related macular degeneration (AMD). But having Drusen increases a person’s
risk of developing AMD. Optical coherence tomography (OCT) is a useful tool for the visualization
retinal layers. This is especially helpful to of Drusen, a retinal abnormality seen in patients with age-
related macular degeneration (AMD). The Drusen can be observed as folds in retinal pigment epithelium
(RPE) layer of the OCT.

Since OCT is a 3D modality synthesis of full OCT volume is a very challenging task so we kept our
focus on 2D B-scans of the OCT. We introduce Drusen to a normal OCT B-scan. We show that existing
methods are not able to capture fine details like Drusen not just affecting the RPE layer but also the
Photorecptor layer and ONL and OPL layer above it(Fig.4.1). We show that an edge based loss function
and an attention based generation helps resolve this issues and compare our model to other attention
based image to image translation methods.

4.2 Related work

Currently, no work has been done on OCT synthesis. This is due to OCT being a 3D modality and
having high speckle noise. But since our problem is limited to 2D scans of OCT and modifies the input
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Figure 4.1 (a) Retinal layers visible in OCT, (b) Drusen observed as folds in RPE layer (marked with
green arrows) and OPL layer adjusting due to the Drusen (marked with red arrows)

image to introduce Drusen lesion, it can be modelled as image-to-image translation. Image-to-image
translation refers to a constrained synthesis process which maps an input image to an output image.
[15] proposed a general image-to-image translation framework pix2pix using cGANs. Their network
architecture closely follows DCGAN with a U-net for the generator. The discriminator uses PatchGAN,
which runs faster and penalizes unreal structure at the patch scale. The goal is not only to produce
realistic images which fool the discriminator, but also generate image to that are similar to ground truth;
hence, besides the adversarial loss, they additionally include a content loss in the objective function. The
content loss measures the L1 distance between the output image and the ground truth image. Pix2pix
was demonstrated to be effective for a variety of image-to-image translation tasks, including labels to
cityscape, labels to facade, edges to photo, day to night, etc. However, pix2pix requires paired images
(an image before translation and the corresponding image) which is not always available. CycleGAN
[48] was introduced to solve this problem. The network introduces two generators and two discrimiators.
One generator transforms images from domainG : A→ B and another generator finds inverse mapping
from domain GinvB → A to regenerate the original image. The generators and discriminators are
trained similarly to pix2pix and follow the same architecture except for the constraint that an image
translates back to itself after going through cycle transition. This is enforced by the cycle consistency
L1 loss which minimizes L1 distance between x,Ginv(G(x)) and y,G(Ginv(y)). ResCycleGAN [1]
introduced Residual connections to the Generator and SSIM to Cycle consistency loss. The Residual
connection was used to aid the generator learn easier as the task was improving the quality while keeping
the structure same which is also true for most of the parts of our image. Since our image is modified only
at the RPE layer and does not follow the same pattern across the layer in the image we used attention
based generator, this stops the generator to apply the same pattern everywhere across the layer.
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Attention learning has benefited from advances in deep learning. Initial approaches use convolution-
deconvolution networks trained on ground-truth masks [27], and combine these architectures with re-
current attention models [25] to adaptively select a sequence of local regions in the input image for local
saliency estimation which are combined into a global estimate. But these methods rely on supervision.
Unsupervised attention learning includes Mnih et al.’s recurrent model of visual attention [15], which
uses only a few learned square regions of the image trained from classification labels. This approach
is not differentiable and requires training with reinforcement learning, which is not straightforward to
apply. But recently, attention has been enforced on activation functions to select only task-relevant fea-
tures [16] by calculating each spacial feature’s importance. However, we show in experiments that our
approach of enforcing attention on the input image provides better results for image-to-image transla-
tion. Learning attention also encourages the generation of more realistic images compared to classic
vanilla GANs. Yang et al.’s recursive approach [43] generates images by decoupling the generation
of the foreground and background in a sequential manner. However, its extension to image-to-image
translation is not straightforward. Finally, Chen et al.’s work [5] and Mejjati et al.’s work [28] learns
an attention map for image translation by dividing the image into background and foreground and ap-
plying the transform to the foreground. These methods however don’t use Attention for learning global
dependencies as introduced by Zhang et al.’s self-attention GANs [46]. Here, the generator gradually
considers non-local relationships in the feature space by using unsupervised attention, which produces
globally realistic images. This method is however computationally very expensive and can’t be used for
every layer. We introduce the self-attention layer for Image to image translation and show its advantages
over local feature based attention.

4.3 Method

Our task can be modeled as unpaired image to image translation. Since the data available to us is
unpaired images we chose a CycleGAN architecture as it has proven to be a very general approach
which can be modified for many specific tasks. Given a Normal OCT B-scan our method employs a
CycleGAN based unsupervised method introduces Drusen to it. Drusen being a very small part of the
whole image does not require modifying the whole image so instead of vanilla CycleGAN we used
ResCycleGAN proposed by [1]. The architecture introduces a skip connection across the generator to
preserve detail and reduce the load on the generator. Drusen is a very local feature in context of the RPE
layer but affects the upper layers. So, we introduce self attention modules to the skip connections of the
UNET Generator to help the network learn Drusen in a specific region in context of the whole image.
Our approach is different from [28] as it we learn spacial attention rather than attention over feature. We
also have a extra decoder that helps us preserve our encoded features which is explained later.
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Figure 4.2 Self-Attention layer (figure from [46])

4.3.1 Self-Attention

Self attention mechanism has been shown to be very helpful for modeling long range (global) de-
pendencies in images along with short range dependencies modeled by convolutional layers.

In the attention module each output spacial feature is learned as weighted sum of each input spacial
feature. Suppose the input features from previous layer are x ∈ RC,N , where C represents the number
of channels and N represents the number of feature locations are transformed into two feature spaces f
and g. Then the attention weights are calculated as:

βj,i =
exp(sij)∑N
i=1 exp(sij)

, where sij = f(xi)
T g(xj), (4.1)

f(x) = Wfx, g(x) = Wgx and βj,i represents the weight of the ith location contributes to the jth

region. The output o = (o1, o2, o3, ...., oN ) ∈ RC,N

oj = v

(
N∑
i=1

βj,ih(xi)

)
, h(xi) =Whxi, v(xi) =Wvxi, (4.2)

where Wg ∈ RC̄,C , Wf ∈ RC̄,C , Wh ∈ RC̄,C and Wv ∈ RC,C̄ are learnt matrices which work as fully
connected layers for each spacial location. These matrices are implemented as 1X1 convolutional filters.

Once the output is computed it is added to the input with weight γ. Therefore final output is given
by,

yi = γoi + xi, (4.3)

where γ is a learnable parameter initialized by 0. This makes the network initially rely on local
neighbourhood and the gradually increase the dependence on global details as the training progresses.
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4.3.2 ESSIM

ESSIM[4] was proposed as an improvement over SSIM. Edge-based structural similarity (ESSIM)
compares the edge information between the distorted image block and the original one. It is very similar
to SSIM given by:

SSIM(x, y) = [(lx, y)]α · [c(x, y)]β · [s(x, y)]γ , where

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
, c(x, y) =

2σxσy + c2

σ2
x + σ2

y + c2
, s(x, y) =

σxy + c3

σxσy + c3
,

(4.4)

where µx is mean value of patch x, µy is mean value of patch y, σx is the standard deviation of patch x,

Figure 4.3 Convolutional filters used to calculate histogram

σy is the standard deviation of patch y and σxy is the covariance of x and y. In ESSIM for each patch a
gradient histogram of 8 directions is calculated. Sobel filters are used are used to calculate the gradients.
But in our case we just used 4 directions using 4 different filter of which 3 are rotated versions of sobel
filter. This was done so that our loss function could be differentiable and be implemented in pyTorch.

The filters shown in Fig. 4.3 were used as fixed convolutional layers and then applied to the patch.
Sum within each channel was calculated which gave us the histogram vector for 4 directions. Then
mean and variance of each term was calculated to calculate the term:

e(h(x), h(y)) =
σh(x)h(y) + C3

σh(x)σh(y) + C3
(4.5)

where h(x) and h(y) represent the gradient histograms of patches x and y respectively. Replacing the
term s(x, y) from SSIM with e(h(x), h(y)) gives us ESSIM:

ESSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [e(h(x), h(y))]γ (4.6)
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Figure 4.4 Network Architecture
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4.3.3 Network architecture

We chose a cycleGAN architecture as it has shown to be successful in verity of unpaired image to
image translation tasks. Although our main task is of learning the mapping from Normal OCT slices to
OCT slices with Drusen,F : N → D the cycleGAN architecture learns an inverse mapping G : D → N

in order to reconstruct the initial input image making unpaired learning possible, hereD is set of Drusen
images and N is set of normal images. Our generators also incorporates a second decoding block which
regenerates the input image, this is done to preserve the input structure in encodings, the importance of
this block is explained later in the subsection 4.3.3.1. Thus our generators learn reconstruction functions
as well i.e. Frec : N → Nrec and Grec : D → Drec, here F and Frec share the same encoder similarly
G and Grec share the same encoder. Complementing those, the network has two discriminators DD and
DN , where DD tries to distinguish between generated Drusen images and real Drusen images and DN
aims to distinguish between generated normal slices and real normal slices. The networks learns from
four losses:

Ladv(F ,DD, N,D) = Ed∼pdata(d)[log(DD(d)] + En∼pdata(n)[1− log(DD(F(n))], (4.7)

where F tries to generate a realistic Drusen slice given a normal slice, while DD aims to distinguish
between generated slices and real slices. Similarly we learn the mapping G : D → N by optimizing the
loss function Ladv(G,DN , D,N). The second loss function Lid makes sure that if generator G is fed a
normal image or if generator F is given a Drusen image it learns an identity mapping for those cases.
So in case the input image is sampled from the target domain the network does not modify the image.
This is added as a regularization term.

Lid = En∼pdata(n)[SSIM(G(n), n)] + Ed∼pdata(d)[SSIM(F(d), d)], (4.8)

we chose SSIM over L1 because it is more robust to varying noise and blur and preserves the majority
of the structure thus the output is not restricted to a single noise pattern and does not overfit. The third
loss function Lcyc tries to reduce the difference between the real image and the inverse of transform.
This makes sure that the inverse mapping learnt maps back to the correct image. It is given by:

Lcyc = Ed∼pdata(d)[ESSIM(F(G(d)), d)] + En∼pdata(n)[ESSIM(G(F(n)), n)], (4.9)

here we chose eSSIM because like L1 it heavily punishes any difference in the edges and is similar to
SSIM in being invariant to varying noise. Which allows the inverse mapping to learn right details which
are needed to be reconstructed making unpaired learning possible.

Our fourth loss term is the reconstruction loss. As stated above our generators learn to reconstruct
the input image using a separate decoder. We minimize the L1 distance between the input and the output
reconstruction images. This loss helps preserve the input structure in the encoding and only affects the
encoding stage of our target function (F and G). Its importance is discussed in the section 3.3.3.1. The
loss function is:
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Lrec = ||Frec(n)− n||+ ||Grec(d)− d|| (4.10)

Our final loss function is:

L = Ladv(F,Dd, N,D) + Ladv(G,Df , D,N) + λ1Lcyc + λ2Lid + λ3Lrec (4.11)

For our experiments λ1 was 1, λ2 was 0.002 and λ3 was 1.
For our discriminator we choose a ResNet18 pretrained on imagenet with the dense layers replaced.

We chose a pre-trained discriminator as optimizing the losses Lid and Lcyc is very simple in our case
by learning identity mapping and the generated gets too good for the discriminator to be able to learn
anything. Using pre-trained weights lets us overcome this issue. Our Generator is described in the next
subsection.

4.3.3.1 Generator

Figure 4.5 Generator used by our architecture

The generator follows a U-net architecture with modified skip connections and an extra decoder.
Since Drusen is present in a very small part of the whole image a simple Convolutional network was
not able to localize the changes made to a particular region. Convolution being a local operation was
affecting the whole RPE layer irrespective of other parts of the image, whereas it is much more localized
in the real images. To remedy this we use self attention layers in the skip connection of the U-net.
Encoder features are passed through self-attention modules with output one output channel. As shown
in experiments and results section this helps the network learn the distribution of Drusen throughout
RPE layer much better.

With the above changes the the network was learning the Drusen structure in the encoder i.e they
were being generated using local convolution operations on which the self attention operation was being
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applied rather than using the self attention features. To get our desired result we introduce an extra
decoder that decodes the encoded features to reconstruct the original input image this makes sure that
the encoder features are preserving the input shape and thus the generation of Drusen is happening in the
decoder stage. Adding this constraint the decoder learns to generate the Drusen structure using global
self attention features. The decoder is not used during testing and is just there to regulate the encoding
features.

At level 1 the encoder features are down-scaled by a factor of 4 before going into the self-attention
module and the output of the attention module is up-scaled back by a factor of 4 before being concate-
nated with its respective decoder features. Similarly at level 2 the endocer features were downscaled by
a factor of 2 for the attention block and it output was scaled back up by a factor of 2. This was done
due to memory constraint since for a self attention block with input and output resolution 256x256 a
martix of size 2562x2562 which would take 16 GB for just one layer. By downscaling by a factor of 4
the memory required is reduced by a factor of 256.

Finally the output of the final convolutional layer is multiplied to the input, this is done because out
input and output images have most of the regions same so its easier for the network to modify just the
Drusen area.

4.4 Results and Experiments

The proposed network was implemented in PyTorch and was trained on 4 GTX 2080ti’s. The net-
work has total 30,313,828 parameters. The training was done for 20 epochs and took 36 hrs. The
average test time for each image is 0.03 seconds.

The proposed model was compared with the base model (a vanilla ResCycleGAN) to assess the
effect of each of the changes made. Comparative analysis is also made against leading methods such
as the Unsupervised Attention guided GAN(uagGAN)[28], UNIT[26], DualGAN[45] , DiscoGAN[20]
and a CycleGAN trained based on the gradient-based loss function proposed in [13]. Official codes
made available by the authors were used to generate results for DiscoGAN, DualGAN and UNIT. For
uagGAN the most starred GitHub code was used while the CycleGAN trained using gradient correlation
[13] was implemented from scratch.

4.4.1 Dataset

The dataset made available by Kermany et al. [19] was used for our experiments. The dataset has
total 84,495 OCT slices divided into 4 categories : Normal, Drusen, CNV and DME. Of these 4 sets we
used the Normal and Drusen images. There are 51,073 normal imges and 8,577 Drusen slices of those
we kept 50,073 normal and 7,577 Drusen images for training. The remaining 1000 in each set were
reserved for testing.
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The images were cropped around the center and resized to a 256x256 resolution. These were then
denoised using a pretrained oct denoising model made available by [2]. Then the Retinal curvature of
the images was flattened.

To flatten the retinal curvature, the RPE layer was segmented using Graph cut and 8 control points
were placed on it. Then a spline fitting was done on those control points. The shift in each column
required was then calculated at a sub-pixel level and the image was interpolated accordingly. This
removed the high variability in the orientation of the layers and Drusen present.

Figure 4.6 Images during the Preprocessing steps (a) is the cropped noisy image (b) is the denoised
image and (c) is after retinal flattening

4.4.2 Qualitative analysis

Fig.4.7 shows 2 sample images and the results generated by the base model[1], UNIT[26], SA Rescy-
cleGAN, uagGAN[28] and our proposed method. The results of DiscoGAN[20], DualGAN [45] &
CycleGAN trained on gradient correlation loss[13] are not shown as they fail to generate Drusen and
have many artifacts. Since the base model (column 2) and UNIT (column 3) do not use any sort of edge
based loss function, the images generated from them have very blurry Drusen and have RPE and Photo-
receptor layers which merge. The images also show that a high number of Drusen are introduced. This
is due to the local nature of the convolutional operation, which misses out on the global context of the
image. The first image generated from Self-Attention(SA) ResCycleGAN (column 4, row 1) has better
separation between the RPE and the Photo-receptor layer due to the ESSIM loss function and has more
localized Drusen due to SA layers, but as seen from the second image (column 4, row 2) the quality of
generated Drusen is not very consistent. This can be traced back to the network generating Drusen in the
encoder where the SA features are not used. Images from uagGAN(column 5) have very inconsistent
Drusen while rest of the image is preserved very well. Finally the results in column 6 of Fig.4.7 and
in Fig. 4.8 (highligted by red ellipses) indicate that the proposed network is able to synthesise Drusen
more realistically.
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Figure 4.7 Comparision between different methods to generate Drusen

In Fig.4.8 our results show both of the lower layers are lifted according to the added folds add folds
to it. The method is also able to affect immediate upper layers in the OCT.

Figure 4.8 OPL layer being lifted up in generated images to accommodate for the introduced Drusen.

Since our method is a spacial Attention based method we can determine which pixels contributed
to which output pixel by visualizing the attention maps. Thus we can know what parts of the complete
image are important to consider while generating Drusen.

As we can see from the Fig.4.9 the attention maps at level 4 i.e. at the lowest resolution focus on
the region just above the marked Drusen. The attention maps at level 3 focuses mostly on the on the
boundary of the top most layer. Level 2 focuses on the layer boundary where the Drusen is being placed
and finally level 1 looks at the whole image. This pattern is opposite to what one would expect in a
convolutions layer. In a convolutional layer where as you go down to lower resolution the network sees
more of the image an focuses on very local features in the higher resolution.
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Figure 4.9 Attention maps corresponding to the regions marked by the circle in red

4.4.3 Quantitative Evaluation

We used the Frechet Inception distance(FID) score as our choice of metric for quantitative evalu-
ation. FID is widely used to compare and assess realism on generated images. It has been shown to
be consistent with human evaluation in assessing the realism and variation of the generated samples
(Heusel et al., 2017). It calculates the Wasserstein-2 distance between the generated images and the real
images in the feature space of a pre-trained Inception-v3 network. Lower FID implies closer distance
between the synthetic and the real images. The FID between the generated Drusen (Dg) images and i)
real Drusen (Dr) as well as ii) real Normal (Nr) images were computed. Ideally the FID score between
Nr and Dg should be similar to the distance between Nr and Dr which is 20.93. This is because except
for the RPE layer and regions around Drusen the images are still very similar and we want those regions
to be realistic as well. However, the distance between Dg and Dr images should be much closer to zero.
Table 4.1 lists the FID scores computed over 1000 images for the base model and its variants. From
these results, it is apparent that the proposed network outperforms the variants. The addition of SA is
seen to contribute significantly to the performance.

As we can see from the table the most significant difference in performance was due to adding Self
attention skip connections even though the skip connection has only one output channel compared to
64+ in vanilla models. In the case of Vanilla RescycleGAN the distance of generated Drusen images is
closer to that of normal images. This might be due to the fact that the residual connection and SSIM
loss in the generator is making the model lean towards learning identity mapping thus it just outputs
a normal image. The improvement gained from adding a reconstruction decoder is significant because
the decoder is generating Drusen based on global features learnt by the SA layer rather than applying
attention on generated Drusen from the encoder.
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Method FID: Generated Drusen &
Real Drusen

FID: Generated Drusen &
Real noramal

Vanilla ResCycleGAN 37 34
ResCyclegan with essim 30 32
Self-Attention based Rescycle-
GAN

9 30

Self-Attention RescycleGAN
+ recon Decoder

4.98 18

Unsupervised Attention
guided GAN

17.36 27.83

Table 4.1 Effect of each addition to ResCycleGAN to the image quality

Method FID: Generated Drusen &
Real Drusen

FID: Generated Drusen &
Real normal

DiscoGAN[20] 87.16 115.78
DualGAN[45] 144.10 166.42
UNIT[26] 29.07 44.54
Hiasa et al.[13] 68.65 40.50
uagGAN[28] 17.36 27.83

Ours 4.98 18

Table 4.2 Comparison with other methods image to image translation methods

40



Augmentation data Area Under ROC Curve

No augmentation 0.909
uagGAN[28] images 0.914
Images generated by Our
network

0.936

Table 4.3 Comparison of classification performance using different methods for augmentation

Our method was also compared quantitatively with other state of the art methods. The FID scores can
be seen in Table 4.2. Since FID score is perceptually correlated, it heavily punishes any artifacts which
result in the DualGAN[45] and DiscoGAN[20] having a very low score. The images generated by the
CycleGAN trained on gradient correlation loss are much closer to Nr than Dr because the loss function
preserves the edges in the synthesised images rather than in the reconstructed image from the inverse
mapping network. The UNIT [26] performs comparably to the base model since it does very similar
operations except for assuming a common latent space for the images. uagGAN [28] performs better
than other methods since it learns attention maps to divide the image into background and foreground
and applies the transform only to the foreground, thus preserving the detail in the background. Our
method is seen to outperform all other methods by a considerable margin in the table as it benefits from
the employment of SA.

4.4.4 Using Generated Images for Augmentation

We tested the usability of our generated images by using them as augmentation sets for Drusen
classification. The train set consisted of 7,577 OCT slices containing Drusen and 50,073 OCT slices
without Drusen. The test set had 1,000 images with Drusen and 1,000 without Drusen.We used a resnet-
18 network pre-trained on imagenet [8]. We replaced the final dense layer with a 1 unit layer with
sigmoid activation and fine-tune it to classify Drusen. We used standard augmentation practices like
rotation and horizontal flipping. The threshold for classification was varied from 0.0002 to 0.9998 with
a difference of 0.0002 to get the Receiver operating characteristic (ROC) curve and Area Under the
Curve (AUC) was calculated.

For augmentation we used our trained model to generate 50,073 images with Drusen from available
normal images. Thus, including the generated images to our train set the total number of Drusen images
become 57,650.

And for comparison, we did the same process using uagGAN [28] as it had the best quality images
among other methods. Thus, we have 3 classification models 1st Trained on available training data, 2nd

is augmented with Drusen images generated by uagGAN [28] and the 3rd is augmented with Drusen
images generated by our generator. The AUC obtained by the models can be seen in the Table 4.3.
Images generated by our methods provide a significant increase in AUC.
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4.5 Conclusion

A novel method for Image-to-image translation method was proposed for a noisy modality like OCT.
This is the first attempt at image synthesis for a noisy case. Our design was based on the hypothesis that
incorporating SA and an edge based loss function (which is robust to noise) would achieve the desired
quality. The method was demonstrated by synthesising Drusen in OCT slices given Normal slices. The
images generated by our method are much more realistic and have FID scores much lower than other
state of the art methods. The method also manages to generate images that have upper layers lifted up
in order to incorporate for the introduced Drusen, which other methods fail to achieve. We also show
that our generated images provide a significant boost to classification performance when included in the
training set.
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Chapter 5

Conclusion

This thesis explored the practicality of synthesis in medical imaging using very small datasets in two
widely used modalities, Fundus and OCT. First, we tackled the challenge of training a Fundus image
synthesis network on a small dataset (110 images) which aimed at providing paired data for Optic Cup
segmentation. We compared two approaches, one which uses the domain-specific knowledge of aligning
vessel bends to OC boundary and another which synthesised OC masks along with the images to provide
paired data. The second approach is more flexible but doesn’t leverage any domain-specific knowledge.
Apart from this, we approached the problem of Drusen synthesis in OCT images by modelling it as an
image to image translation task.

ONH region Fundus images for improving OC segmentation exploring two different approaches.
Method 1 relies on the domain-specific knowledge of the structure of ONH region i.e. the vessels bend
at the OC boundary due to 3D bulging. Method 2 is aimed to synthesise OC masks along with the
image given a set of vessel and OD masks. We observed that the first approach yields more reliable
OC masks while the image quality remains comparable. The pairs generated using the Method 1 when
used for data augmentation in an OC segmentation task, gave a higher performance boost; Method 1
increased the OC segmentation model’s performance to 0.9153 DICE score compared to 2nd method’s
images which increase the DICE score to just 0.88. For method 2, we also tested the dependence of
generated OC on the input vessel and input OD. We did this by comparing the OC generated to the
OC corresponding to the input vessel and then to the OC corresponding to input OD. The DICE score
between the generated OC and the OC corresponding to input vessel was significantly higher than the
score between the generated OC and OC corresponding to input OD. Thus reaffirming our belief that
the OC has a higher correlation with the vessel structure than with the OD.

We also tested the impact of arranging sub-blocks in the generator and the additional impact of
choosing sub-blocks. We chose 2 different sub-block architectures, U-Net and ResNet and two different
arrangements of those sub-blocks. We found that arranging the blocks in a hierarchical manner gives
higher quality images for the same number of trainable parameters. In our experiments, ResNet gave
much more cleaner and detailed images whereas the U-net gave sharper and more colour accurate images
but was riddled with numerous artifacts.
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With both of these methods, we demonstrated that generative methods can be trained on very small
datasets with high quality data which can be used for other applications.

In Chapter 4, we modelled Drusen synthesis as an Image-to-image translation task. Synthesis in
OCT hasn’t been attempted and the pre-existing Image-to-image translation methods fail to synthesise
realistic OCT slices. Synthesis in OCT required a network that could preserve the noise pattern of OCT
while also introducing new structural changes to the image. While the added Drusen took a very small
portion of the whole image, it depended on and affected the layers around the introduced Drusen. We
hypothesised that any vanilla CNN based image to image translation method, due to its small receptive
field, won’t be able to capture the context required to generate Drusen, so we introduced Self-Attention
layers to resolve this issue. Another challenge was to retain the edge detail regardless of noise. ESSIM
was used as it was more robust to noise. The FID score based analysis showed that both SA and ESSIM
provided a big improvement in generated image quality. Moreover, none of the state of the art Image-
to-image translation methods could provide images of the desired quality.

5.1 Future Scope

Although the thesis provides promising results for both Fundus and OCT synthesis, with generated
images almost indistinguishable from real ones, this is still a preliminary work and there is scope for
improvement in many areas

• The ONH synthesis method was tested on a very small dataset of only 110 images of which
only 66 images were used to train the synthesis method. While the vessel bend based approach’s
novelty comes from the fact it can be used on a small dataset, more data can be used to check if
the approach of synthesising cup along with images performs better than the vessel bend based
approach.

• The generated images and their corresponding OC mask’s quality was tested by using them for
augmentation in OC segmentation network. The OC segmentation network could have been in-
corporated into our network by attaching it to the generator and the gradients of OC segmentation
loss could have been used to optimize the generated images for good OC segmentation.

• OCT is a 3D modality, our proposed method works on a slice level. While processing the whole
volume can be impractical, including only the slices which contain Drusen can provide a practical
way to obtain 3D Drusen synthesis.

• The proposed OCT synthesis method has only been tested for Drusen synthesis. This method can
further be extended to synthesise other different lesions like cysts.
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[22] T. Köhler, A. Budai, M. F. Kraus, J. Odstrčilik, G. Michelson, and J. Hornegger. Automatic no-reference

quality assessment for retinal fundus images using vessel segmentation. In Computer-Based Medical Sys-

tems (CBMS), 2013 IEEE 26th International Symposium on, pages 95–100. IEEE, 2013.

[23] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby. Big transfer (bit):

General visual representation learning. arXiv preprint arXiv:1912.11370, 2019.

[24] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for advanced research).

[25] J. Kuen, Z. Wang, and G. Wang. Recurrent attentional networks for saliency detection. In Proceedings of

the IEEE Conference on computer Vision and Pattern Recognition, pages 3668–3677, 2016.

[26] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation networks. In Advances in

neural information processing systems, pages 700–708, 2017.

[27] S. Ma, J. Fu, C. Wen Chen, and T. Mei. Da-gan: Instance-level image translation by deep attention gen-

erative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5657–5666, 2018.

[28] Y. A. Mejjati, C. Richardt, J. Tompkin, D. Cosker, and K. I. Kim. Unsupervised attention-guided image-to-

image translation. In Advances in Neural Information Processing Systems, pages 3693–3703, 2018.

[29] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

47



[30] A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary classifier gans. In Interna-

tional conference on machine learning, pages 2642–2651, 2017.

[31] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks. arXiv preprint

arXiv:1601.06759, 2016.

[32] S. Pandey, P. R. Singh, and J. Tian. An image augmentation approach using two-stage generative adversarial

network for nuclei image segmentation. Biomedical Signal Processing and Control, 57:101782, 2020.

[33] J. Rocca. Understanding vae. https://medium.com/@joseph.rocca, 2019.

[34] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation.

In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, editors, Medical Image Computing and Computer-

Assisted Intervention – MICCAI 2015, pages 234–241, Cham, 2015. Springer International Publishing.

[35] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid registration

using free-form deformations: application to breast mr images. IEEE transactions on medical imaging,

18(8):712–721, 1999.

[36] S. Sedai, P. K. Roy, D. Mahapatra, and R. Garnavi. Segmentation of optic disc and optic cup in retinal

fundus images using shape regression. In Engineering in Medicine and Biology Society (EMBC), 2016

IEEE 38th Annual International Conference of the, pages 3260–3264. IEEE, 2016.

[37] J. Sivaswamy, S. Krishnadas, G. D. Joshi, M. Jain, and A. U. S. Tabish. Drishti-gs: Retinal image dataset for

optic nerve head (onh) segmentation. In 2014 IEEE 11th International Symposium on Biomedical Imaging

(ISBI), pages 53–56. IEEE, 2014.

[38] P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. Technical

report, Colorado Univ at Boulder Dept of Computer Science, 1986.

[39] J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken. Ridge based vessel segmentation

in color images of the retina. IEEE Transactions on Medical Imaging, 23(4):501–509, 2004.

[40] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou. Fixing the train-test resolution discrepancy: Fixefficient-

net. arXiv preprint arXiv:2003.08237, 2020.

[41] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility

to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.

[42] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le. Self-training with noisy student improves imagenet classifi-

cation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

10687–10698, 2020.

[43] J. Yang, A. Kannan, D. Batra, and D. Parikh. Lr-gan: Layered recursive generative adversarial networks for

image generation. arXiv preprint arXiv:1703.01560, 2017.

[44] X. Yi and P. Babyn. Sharpness-aware low-dose ct denoising using conditional generative adversarial net-

work. Journal of digital imaging, 31(5):655–669, 2018.

[45] Z. Yi, H. Zhang, P. Tan, and M. Gong. Dualgan: Unsupervised dual learning for image-to-image translation.

In Proceedings of the IEEE international conference on computer vision, pages 2849–2857, 2017.

48



[46] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-attention generative adversarial networks. arXiv

preprint arXiv:1805.08318, 2018.

[47] H. Zhao, H. Li, S. Maurer-Stroh, and L. Cheng. Synthesizing retinal and neuronal images with generative

adversarial nets. Medical image analysis, 49:14–26, 2018.

[48] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent

adversarial networks. In Proceedings of the IEEE international conference on computer vision, pages 2223–

2232, 2017.

[49] J. Zilly, J. M. Buhmann, and D. Mahapatra. Glaucoma detection using entropy sampling and ensemble

learning for automatic optic cup and disc segmentation. Computerized Medical Imaging and Graphics,

55:28–41, 2017.

49


