Script and Language Identification for
Document Images and Scene Texts

Thesis submitted in partial fulfillment
of the requirements for the degree of

MS by Research
in

Computer Science and Engineering

by

Ajeet Kumar Singh
201407655

ajeetkumar.s@research.iiit.ac.in

s

Center for Visual Information Technology
International Institute of Information Technology
Hyderabad - 500 032, INDIA
Dec 2015

Copyright © Ajeet Kumar Singh, 2015
All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled *“ Script and Language Identification for Docu-
ment Images and Scene Texts ” by Ajeet Kumar Singh, has been carried out under my supervision and
is not submitted elsewhere for a degree.

Date Adviser: Prof. C.V. Jawahar

To My Parents

Acknowledgments

First and foremost, I would like to show my deepest gratitude towards my Prof. C.V. Jawahar. I have
been extremely fortunate to have him as my adviser during my course work. His constant guidance,
support and motivating words have helped me become a better researcher and a better person.

I would also like to thank all the faculty members at CVIT, my adviser Prof. C.V. Jawahar as well
as Prof. P.J. Narayanan, Prof. Jayanthi Sivaswamy, Dr. Anooop Namboodiri, Dr. Avinash Sharma and
Dr. Vineet Gandhi for creating a wonderful research environment in CVIT to research and grow. I
would also like to thank the CVIT administration staff, Sathya Sir, Phani Sir, Rajan Garu, Nandini and
Prathima ma’am for helping me on numerous occasions.

A special thanks to two of my favorite PhD scholars, Anand Mishra and Praveen Krishnan, who have
always took out time from their busy schedule to help, support and guide me. My life at III'T would not
be complete without the mention of my dear friends Devendra, Viresh, Mohak, Aniket, Suriya, Sanchit
and Udit. I am thankful to you guys for giving me a ton of happy memories during my stay at IIIT. I
would also like to thank Yashaswi, Saurabh D, Varun, Minesh, Jobin, Vinitha, Pritish, Saurabh S, Rajvi,
Arunava, Koustav G, Koustav M, Aditya, Nataraj, Arpit, Sumit, Vignesh, Vijay for contributing to my
work directly or indirectly. A special mention to Dr. Gaurav Harit at Indian Institute of Technology,
Jodhpur who encouraged me to go for higher studies.

To my parents, my sister and Devanshu, thanks for being there and supporting me in all my ventures,

successful or failures.

Abstract

In recent times, there have been an increase in Optical Character Recognition (OCR) solutions for
recognizing the text from scanned document images and scene-texts taken with the mobile devices.
Many of these solutions works very good for individual script or language. But in multilingual environ-
ment such as in India, where a document image or scene-images may contain more than one language,
these individual OCRs fail significantly. Hence, in order to recognize texts in the multilingual document
image or scene-image, we need to, manually, specify the script or language for each text blocks. Then,
the corresponding script/language OCR is applied to recognize the inherent tasks. This is a step which
is preventing us to move forward in the direction of fully-automated multi-lingual OCRs.

This thesis presents, two effective solutions to identify the scripts and language of document images
and scene-texts, automatically. Even though, recognition problems for scene texts has been highly re-
searched, the script identification problem in this area is relatively new. Hence, we present an approach
which represents the scene-text images using mid-level strokes based features which are pooled from
the densely computed local features. These features are then classified into languages by using an off-
the-shelf classifier. This approach is efficient and require very less labeled data for script identification.
The approach has been evaluated on recently introduced video script dataset (CVSI). We also intro-
duce and benchmark a more challenging Indian Language Scene Text (ILST) dataset for evaluating the
performance of our method.

For script and language identification in document we investigate the utility of Recurrent Neural
Network (RNN). These problems have been attempted in the past with representations computed from
the distribution of connected components or characters (e.g. texture, n-gram) from a larger segment
(a paragraph or a page). We argue that, one can predict the script or language with minimal evidence
(e.g. given only a word or a line) very accurately with the help of a pre-trained RNN. We propose a
simple and generic solution for the task of script and language identification without any special tuning.
This approach has been verified on a large corpus of more that 15.03M words across 55K documents
comprising 15 scripts and languages.

The thesis aims to provide a better recognition solutions in document and scene-texts space by pro-
viding two simple, but effective solutions for script and language identification. The proposed algo-
rithms can be used in multilingual settings, where the identification module will first identify the in-
herent script or language of incoming document or scene-texts before sending them to corresponding

script/language recognition module.

vi

Contents

Chapter
1 Introduction e e
1.1 Prior Art o e e
1.2 Goalsofthesis. e
1.3 Major Contributions e e e e e
1.4 ThesisOutline e
2 Background
2.1 Bag-of-Words(BoW and SVM)
2.1.1 Image Descriptors i i i e e e
2.1.1.1 Local Binary Patterns LBP
2.1.1.2 SIFT . . . o e
2.1.1.3 Gradient Based Features [21]
2.1.2 k-Means Clustering o i i e e
2.1.3 Support Vector Machines (SVM)
2.1.4 Bagof Words Method
2.1.4.1 Extracting Local Image Descriptors
2.1.4.2 GeneratingaCodebook
2.1.4.3 Histograms Creation
2.1.44 Model Learning
2.2 Deep Learning and Recurrent Neural Networks
2.2.1 Recurrent Neural Networks
3 Script Identificationinthe Wild L L oo
3.1 Introduction L e e e e e
32 Datasetso e e e e e e e e
32.1 ThellLSTdataset i ittt e
322 CVSI2015[42] o o o e e
3.3 Methodology e
3.3.1 Motivation and OVEIVIEW o L oo e e e e
3.3.2 Bag-of-strokes based representation
3.3.2.1 Feature computation
3.3.2.2 Finding the best strokes forthetask
3.3.3 Script identification: Full pipeline
34 EXperiments i e e e e e e e e e e
3.4.1 Implementation details and design choice

vii

Page

AN Lt

viii CONTENTS

3.4.2 BEvaluation Protocols 24

343 BaselineMethods 26

344 Resultsonthe ILSTdataset 26
34.4.1 End-to-end script identification 26

3442 Cropped word Script Identification 27

34.5 Resultson CVSIdataset 27

3.4.6 Qualitative evaluation 28

3.5 Summary e e e e 28
4 Script and Language Identification using Recurrent Neural Networks 29
4.1 Introduction e 29
4.2 RNN for Script and Language Identification 32
4.2.1 Representation of Wordsand Lines 33

4.2.2 Implementation and Evaluation, ... 33

43 Resultsand Discussions L e 34
4.3.1 Scriptidentification Lo 34

4.3.2 Language Identification, 37

4.4 Multilanguage OCRs and Script Identifications 39
45 Summary e e e e e e e e e e e e 41

5 Conclusion and Future Works 42

Figure

1.1

1.2

2.1

2.2
23
2.4

25
2.6

2.7

3.1

3.2

List of Figures

A sample document image containing three languages: Sanskrit, Hindi and English.
When an individual English/Hindi OCR will be run on this document, the recognition
output will not be accurate. But, when a multilingual OCR containing a script identifi-
cation module will be able to recognize the inherent text with high accuracy.
In order to move towards a “paperless office”, there are million of documents in several
scripts and languages to be digitized. But due to the limitation of existing OCR systems,
the inherent script and language of the documents should be known beforehand. Hence,
a script identification module is added in OCR system which will identify the scripts and
language at word or line level before passing it to corresponding scripts/language OCR.

The basic LBP operator. The figures shows the circular (8, 1), (16, 2) and (8, 2) neigh-
borhoods. The pixels are bilinearly interpolated whenever the sampling point is not at
the center of a pixel. Figure source [36].
Histogram of Gradients computation by recording the gradient orientation at edges. Fig-
ure courtesy [21]. L
k-Means Clustering. Example data points, and the clusters computed by k-means clus-
tering. Figure courtesy [6].
A recurrent neural network, unrolled. [4]
The repeating module in a standard RNN contains a single layer [4]
Preservation of gradient information by LSTM. The state of the input, forget, and
output gate states are displayed below, to the left and above the hidden layer node, which
corresponds to a single memory cell. For simplicity, the gates are either entirely open
(‘O’) or closed (‘-’). The memory cell ‘remembers’ the first input as long as the forget
gate is open and the input gate is closed, and the sensitivity of the output layer can be
switched on and off by the output gate without affecting the cell. [3]
The repeating module in a standard RNN contains four interacting layers. [4]

A typical example of a street scene image captured in a multilingual country, e.g. In-
dia. Our goal in this chapter is to localize the text and answer “what script is this?” to
facilitate the reading in scene images.o oo
Few example images from thee ILST datset we introduce. we provide ground truth text
bounding box, script and text for the images. (b) Few cropped word images of our
dataset. The dataset can be used for variety of problems including recognition, text
localization €tc.

ix

Page

10
13
14

15
15

17

33

34

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

LIST OF FIGURES

Strokes are atomic units of scripts. We show some representative strokes of following
scripts (top to bottom): Hindi, Kannada, Malayalam, Tamil and Telugu. Our method
yields the strokes which are representative and discriminative enough for a cropped

Method Overview: The figure depicts the feature computation process where, first we
find the local features from the images, we cluster these feature to get the local histogram
of visual words. Then we cluster the histogram of visual words to get the representation
of words in form of strokes. o

Confusion matrix on ILST cropped words. Our method achieve a 88.67% accuracy of
script identification on the introduced dataset.

Success and Failure Cases. Despite high variations in the dataset, our method correctly
identifies the script of scene text images. The “Success” columns depicts the correctly
classified word images, and wrongly classified words are shown in “Failure” column
along with recognized scriptinred boxes.

An example result of End-to-end script identification of our method. We localize the
text boxes in images using method using [33] and [1]. Then we apply our method to
find the inherent scriptin the textboxes. L.

Figure depicts the script and language identified at word level in document snippets
written in Roman-script (first row) based languages and Indic scripts (second row), re-
spectively. In the first row, red, green and blue rectangles denote German, French and
Spanish languages, respectively. In the second row, violet, orange and brown rectangles
denote Hindi, Telugu and Malayalam scripts, respectively. Unlike the approaches in the
past we propose a method to identify the script and language at word and line level by
employing popular Recurrent Neural Network (RNNs).

The architecture for RNN based script and language identification. From left to right, the
segmented line and word from the document images are horizontally divided into two
parts. Then, sequence features are calculated from sliding windows, w. Here, m is the
number of sliding windows and n is the number of features , f, computed from a single
window. These features are then given as input to the LSTM cell of RNN to identify the
script and language of current line/word image.

The sequence features are calculated from sliding windows, w. Here, m is the number
of sliding windows and n is the number of features , f, computed from a single window.
These features are then given as input to the LSTM cell of RNN to identify the script and
language of current line/word image.,

Script identification Results: Some failure cases in script identification at word level.
First row, first column shows Kannada words identified as Telugu and the second column
in same row shows Telugu words identified as Kannada words. In second row, first
column shows the Gurumukhi words as Hindi and in second column of the same row,
Hindi words identified as Gurumukhi. Similarly in the third row of the figure, first
column shows Bangla words identified as Assamese and vice versa in second column. .

Confusion Matrix for the script identification at word level. The blank spaces in the
graph denotes predictions that are less than 0.40%.

21

22

25

26

28

30

33

34

37

LIST OF FIGURES

4.6

Language Identification Results: Some failure cases for language identification at word
level for both the Indian and Roman-script based dataset. In the first row, the first column
shows the French words identified as Spanish and the second column shows Spanish
words identified as French. In the second row, the first column shows the German words
identified as French and the second ones shows French words identified as German. For
the third row, the first column shows the Marathi words identified as Hindi, and vice
versa in second column. In the fourth row, the first column shows the Assamese words
identified as Manipuri and vice versa in the second column.

X1

Table

3.1
3.2

33
34

3.5

4.1

4.2

4.3

4.4
4.5

List of Tables

Some example images from 12 Indic Scripts and 3 Roman script based languages. . . .
The ILST dataset: we introduce a ILST dataset which contains 578 scene images and
4036 cropped images from 5 major Indian languages.
Results on ILST (cropped words script identification)
Results on ILST (End-to-End pipeline). We use [33] and tesseract [1] for text localiza-
tion and evaluate our proposed method of script identification based on measure pre-
sented in Section 3.4.2
Task specific evaluation on CVSI [42]. Here A: Arabic, B: Bengali. E: English, H:
Hindi,G: Gujrati, K: Kannada, O: Oriya, P: Punjabi, Ta: Tamil, Te: Telugu. Hence AEH
means where script identification of three class namely, Arabic, English and Hindi, is
performed and so on. Further, Task-1, Task-2, Task-3 and Task-4 indicates tri-script,
north Indian script, south Indian script, all script identification, respectively.

Some example images from 12 Indic Scripts and 3 Roman script based languages. . . .
Table depicts the details of dataset (D1) [27] used for script and language identification.
It depicts the performance of our method on the D1 at word and line level. It also shows
the comparison of our method against Gabor features with SVM classifier on D2 [37].
Since, D2 [37] didn’t show any results on Marathi, Assamese and Manipuri scripts, we
are not comparing on these languages. o 000
Table depicts the Roman script-based dataset used for language identification. It shows
the confusion matrix for language identification for Roman-script dataset. It also depicts
the performance of our method on the reported dataset at word and line level.
Script Separation Results on North and South Indian Scripts
Multilingual OCRs: comparison of bilingual (bf) and trilingual (¢f) OCRs with hierar-
chical (ho) OCR. here, B1,B2,B3,B4 are eng-+hin, eng+ban, eng+kan, eng-+tel bilingual
datasets, respectively. and T1,T2 are ENG + HIN + KAN and ENG + KAN + TEL trilingual
datasets, respectively. Also, bf OCR, #fOCR and ZOCR are bf, tf and ho, respectively. . .

Xii

Page

19

27

31

35

41

Chapter 1

Introduction

We live in a world which is increasingly becoming multilingual and at the same time, increasingly
automated. The amount of multimedia and captured data are rapidly increasing and stored in digital
format. These data also includes multilingual document images, scene images and videos containing
text which can play a crucial role in understanding the document images as well as scene/video images.
For example, there are many museums which store images of all old and fragile documents which are
of importance to historians and other researchers for analysis and archival purposes. While touring in
foreign countries, we may not what all the sign boards say.

Several Optical Character Recognition (OCR) tools and systems are used to convert different types
of documents, such as scanned document images, PDF files or images captured by a digital camera into
editable and retrievable data. Given a document image or scene images, a general OCR will do following
tasks:

e Preprocessor: It typically includes binarization and noise cleaning followed by skew detection
and correction. This step is required by the subsequent steps which works best with binary images.
Popular binarization techniques include Otsu method for document images and [7] for texts in

scene or video images.

e Segmentation: Once the documents are processed, a layout engine is used to extract the structure
of the documents. Several document exists which can be used to find the text area, graphics area,
table area and other document elements in the document. Words and lines are then segmented
from the text area using connected component analysis. The resulting symbols are then recognized

by the recognition tool.

e Feature Extraction: Local and global features are then extracted from the symbols extracted
above. Some commonly used features include HOG, SIFT, profile based features, appearance

based features etc.

o Classification: Features extracted above is then given as input to off-the-self classifiers to classify

the input features to one of the possible output labels. For linearly separable features, linear

Support Vector Machines (SVM) is used else, classifiers like Neural Networks. HMMs, Random
Forests, etc.

e Post-processor: Output obtained from the classifier is then corrected by dictionary based lan-
guage models.

=] @ W FUHIad g
feeaa & agA asEEsanH T 9T 97)

g oo | =gfe & su g fasqor =9 &Y
IH:-FA: THIT FH A< e H Agr Avewd gigr 2 Ay

Farearcgfma gt @1 € 11 we 1l
Shiloka 77
O My King, whenever | remember that most

beautiful and divine vision of the Glorious Lord
himself, | am struck with great amazement and
wonder. My heart leaps with more joy and is
filled with adoration for the Lord. English

Figure 1.1 A sample document image containing three languages: Sanskrit, Hindi and English. When
an individual English/Hindi OCR will be run on this document, the recognition output will not be accu-
rate. But, when a multilingual OCR containing a script identification module will be able to recognize
the inherent text with high accuracy.

It can be seen from the above OCR process, all the existing OCR systems makes an assumption
that the language of the text document and scene/video images is known beforehand. Individual OCR
tools have been developed to deal best with only one specific language. A Hindi OCR package will
deal very well with Hindi, and may be able to cope possibly with some other Devanagari alphabet
languages such as Marathi or Gujarati. It will not, however, be very helpful if given a Telugu or Tamil
document to process. As shown in Figure. 1.1, the document, which contains text from three different
scripts, will not be correctly recognized with an individual OCR without a manual intervention. In an
automated environment such document processing systems would clearly need human intervention to
select the appropriate OCR package, which is obviously not desirable. A pre-OCR language or script
identification system would enable the correct OCR system to be selected in order to achieve the best
character interpretation of the document. This area has widely researched to date with its growing
importance to the document image processing community and the progression towards the “paperless
office”.

Script identification in printed and handwritten document images is a highly researched problem.
Contrary to the scanned and handwritten images, script identification in scene images poses several

problems. Also, processing a scene-image is pretty difficult task than that of document images due to
following:

Marathi a’m

Text from
Document
Telugu Image

Marathi

Script and
Word Segmentation Language

Document Image Identification

Module

English

]~ [l

Hetero
O Tl
Text from

— ER)

[MEDICAL|[SHOP Telugu OCR Engine Scene Image
s e)

Scene Image Word Localization
and Segmentation

Figure 1.2 In order to move towards a “paperless office”, there are million of documents in several
scripts and languages to be digitized. But due to the limitation of existing OCR systems, the inherent
script and language of the documents should be known beforehand. Hence, a script identification module
is added in OCR system which will identify the scripts and language at word or line level before passing
it to corresponding scripts/language OCR.

e Lack of context. Scene text often appears as a single word or a group of words, and applying

larger sentence or paragraph level context is hard.

o Complex background. Scene text come with highly complex natural scene background, on the

other hand document images often contain predominantly text.

e Quality of image. The quality of the image will directly affect the identification accuracy. As
scene texts are often captured under uncontrolled environments, the difficulties in identification

may be caused by several factors such as low resolutions, noises and illumination changes.

e Similarity in scripts. Some scripts/languages have relatively minor differences e.g. Hindi, Gu-
jarati and Bangla. These languages share a subset of characters that have exactly the same shapes.
Distinguishing them relies on special characters or character components, and is fine-grained

classification problem.

e Variations. Text images have arbitrary aspect ratios, since text strings have arbitrarily lengths,
ruling out some image classification methods that only operate font-sized inputs. Scene text
images often contains stylish fonts to attract the viewers and do not easily generalize to the training
data.

1.1 Prior Art

Script and language identification is highly researched area in document image analysis community.
There have been several methods and approaches which deals with the script and language identification
at page, line or word level. Although there are many research related to script identification at all the
levels. But there is a dearth in research on language identification beyond document level. We describe
the several approaches in following paragraphs which has been used in the past for the script and lan-
guage identification at aforementioned levels.

Text Symbol based Approach: Hochberg et al. present a method for automatically identifying the
script of a binarized document using cluster-based text symbol templates. Text symbols are rescaled
to 30 x 30 pixels. Symbols are grouped into clusters based on Hamming distances. The centroid of
the clusters will act as template which will be used to calculate the distance score with test image. The
script template with which distance score is low is then allotted to the test image. Note that, a distance
score of the test image is calculated with all the script templates. This method is, however, prone to

misclassification due to variations in fonts and is not suitable for low resolution images.

Upward Concavities: Spitz proposes a method for distinguishing between Asian and European lan-
guages by examining the upward concavities of connected components. The upward concavities is
shown to be markedly different between the languages aforementioned. Gross or document level script
identification is performed by analyzing the variance of the distribution. For Asian languages such as
Chinese, Japanese and Korean, an optical density function is computed whereby the total number of
black pixels in each character is tabulated in reading across the text. Study of the distributions of these
optical density shows distinct differences amongst the Asian languages. Character shape codes relate
to the dimensions of characters rather than the actual characters themselves. Language identification
of several Roman alphabet languages is performed by statistical analysis of frequent combinations of

character shape codes in the languages investigated.

Texture Based approach: Global approaches generally refer to the texture of the documents, line or
word. These textures are complex visual pattern composed of sub-patterns. These textures can be used
to measure the periodicity of the image. These textures produces variations in character density and
stroke orientation. Gabor filters act as good model for texture classification [44]. A multichannel gabor
filter has been employed which requires an N x N pixel as input, orientation and frequencies. Then a

rotational invariant texture features were computed.

Neural Networks: Lee and Kim use a self-organizing neural network in order to determine not the
script of whole document but the individual characters within the document []. After an initial character
shape normalization. Zero, first, second order features are calculated using a Mesh feature system, over-

lapping contour direction codes []. There are then two classification stages, a coarse classifier, followed

by a fine classifier which classifies the characters in the mixed groups and presumably performs actual
character identification. In recent there have been an efforts to use the discriminative features learned
using Convolutional Neural Networks (CNN) for multi-script recognition [39]. These features are au-

tomatically extracted and learned at connected component level of the document image.

The approaches mentioned above mainly deal at script level identification. But, when the inherent
script of document images are same, visual features are hard to separate between different languages,
especially when the identification is required at word level. This problem is described as language iden-
tification in document images. There are many attempts in the past in textual domain to separate the
languages using statistics(e.g. n-gram probabilities of characters. In image domain, language identifica-
tion is attempted at page level or paragraph level in the past. There have some methods proposed which
categorizes the characters based on a number of character shape features such as character ascenders
and descenders. For example, [47] group the character images into a small set of categories first. Then,
based on the classification results, each word image is converted into a word shape token. Latin-based
languages are finally determined according to the frequency of a single word [47], word pair and word
trigram. Shijian and Tan [44] combined the script and language identification using a document vector-
ization framework. They convert document into vertical cut vector based on the number and positions

of vertical cut to capture the shape of the word directly.

1.2 Goals of thesis

This thesis addresses the problem of script and language identification in scanned document images
as well as in the camera captured wild images. The major goals of thesis are, i) Developing a simple
and effective solution for script identification in the wild and ii) Script and language identification in
document images at word and line level for the multi-lingual documents using deep learning, specifically
Recurrent Neural Networks (RNN). Moreover, the scene text recognition in Indian languages is recently
growing, many of the datasets for this problem are either very small or not very challenging for real
scenario, hence as a part of this thesis we also introduce and benchmark Indian Language scene text

datasets.

1.3 Major Contributions

This thesis has follwing major contributions to the area:

1. Script Identification in Wild. We first proposed an approach for automatically identifying the
script of the text localized on the scene images Chapter 3. This approach is inspired by the

advancements in mid-level stroke-based features. The scene-text are then represented with these

14

stroke-based features, and then we use an off-the-self classifier to identify the script of the text

image.

Script and Language Identification using Recurrent Neural Networks. We investigate the
utility of recurrent neural networks for script and language identification (Chapter 4). In this we
argue that one can predict the script and language with minimal evidence (e.g. given only a word
or a line) very accurately with the help of pre-trained RNN. We propose a simple and generic

solution for the task of script and language identification which do not require any special tuning.

Datasets. We also a introduce a Indian Language Scene Text (ILST) dataset which is a com-
prehensive dataset for Indian language scene text containing six scripts commonly used in India,
namely Telugu, Tamil, Malayalam, Kannada, Hindi and English. The dataset contains 500 scene
images with more than 4000 words. It can be used for following tasks: text localization, recog-
nition, script identification. In this work we use this dataset for two tasks- cropped word script

identification and text localization with script identification (i.e., end-to-end pipeline).

Thesis Outline

Chapter-2. In this chapter, we provide the necessary background for this thesis and briefly sum-
marize the aspects of recurrent neural networks, bag-of-strokes directly relevant to the works as

follows.

Chapter-3. This chapter focuses on end-to-end script identification in the wild using mid-level
bag-of-strokes features. The proposed method is compared with recently organized CVSI [41] and
also a new dataset for Indian Languages is introduced and benchmarked.

Chapter-4. This chapter focuses on usage of deep learning methods such as Recurrent Neural
Networks for script and language identification in document image with minimal evidence (only
words and lines). The proposed method have been tested on 55K documents from 15 different

scripts and languages.

Chapter-5. This chapter summarizes our work, comparisons and impacts of the work. Here we

also discuss the final version of thesis.

Chapter 2

Background

Many of the methods proposed in this thesis proposal are inspired by the success of many computer
vision techniques. For example, in Chapter-3, we use bag-of-strokes, inspired by bag-of-words method,
to represent the scene text as strokes. In Chapter-4 we take the motivations from deep learning and
specifically recurrent neural networks to solve the script and language identification problem in docu-
ment images at word and line level. In this chapter, Section 2.1 details about the Bag-of-Words (BOW)
methods and support vector machines (SVM) used for script identification in the wild, Section 2.2 de-
tails about the deep learning and recurrent neural networks used for script and language identification in

document images at word and line level.

2.1 Bag-of-Words(BOW and SVM)

2.1.1 Image Descriptors

In computer vision, image descriptors or visual descriptors are descriptions of the visual features
of the contents in images, videos, or algorithms or applications that produce such descriptions. They
describe elementary characteristics such as the shape, the color, the texture or the motion, among others.

Visual descriptors are divided in two main groups:
e Global descriptors which are computed on whole images.
e Local descriptors which are computed locally on a small regions or point of interests on image.

In this subsection, we will describe about common image descriptors like Local Binary Pattern
(LBP), Scale Invariant Feature Transform (SIFT).

2.1.1.1 Local Binary Patterns LBP

A Local Binary Pattern (LBP) [36] is a local descriptor that captures the appearance of an image in
a small neighborhood around a pixel. An LBP is a string of bits, with one bit for each of the pixels in

Figure 2.1 The basic LBP operator. The figures shows the circular (8, 1), (16,2) and (8, 2) neighbor-
hoods. The pixels are bilinearly interpolated whenever the sampling point is not at the center of a pixel.
Figure source [36].

the neighborhood. Each bit is turned on or off depending on whether the intensity of the corresponding

pixel is greater than the intensity of the central pixel. Figure 2.1 depicts the basic LBP operator.

2.1.1.2 SIFT

Scale-Invariant Feature Transform (SIFT) proposed by Lowe [34] is one of the popular local feature
detector and descriptor. SIFT descriptor is invariant to Affine transformation, Lighting changes, Noise.
The original SIFT implementation includes both an interest point detector and feature descriptors at
the interest points. The descriptor associates to the regions a signature which identifies their appear-
ance compactly and robustly. Figure 2.3 shows an example of SIFT descriptor computation at some
keypoints, and how they can be used to match points in different images.

Computing SIFT descriptor at a point starts with sampling the image gradient magnitudes and orien-
tations in a region around the point. The samples are then accumulated into orientation histograms (bin
size = 8), summarizing the contents over 4 x 4 subregions. These orientation histograms capture the local
shape. The final descriptor is formed from a vector containing the values of 4 x 4 array of orientation
histogram around the point. This leads to a SIFT feature vector with 4 x 4 x 8 = 128 elements. To
obtain illumination invariance, the feature vector is normalized by the square root of the sum of squared

components.

2.1.1.3 Gradient Based Features [21]

Inspired by the success of Histogram of Oriented Gradient (HOG) features [14] in many vision tasks,
we adapted them to the word recognition problem. To compute the adapted HOG features, we begin by
applying the Canny edge operator on the image. Note that we do not expect a clean edge map from this
result. We then compute the orientation of gradient at each edge pixel. The gradient orientations are
accumulated into histograms over vertical (overlapping) strips extracted from the image. The histograms
are weighted by the magnitude of the gradient. An illustration of the feature computation process in
shown in Fig. 2.2. At the end of this step, we have a representation of the image in terms of a set of

histograms.

Overlap Window

Test I Histogram of Gradient
ot Tmage Edge Image Orientations

Figure 2.2 Histogram of Gradients computation by recording the gradient orientation at edges. Figure
courtesy [21].

2.1.2 k-Means Clustering

k-means clustering is an unsupervised clustering algorithm, commonly used for constructing vo-
cabularies for Bag of Words model. Given a set of N data points and number of clusters K, k-means
partitions the data points into K clusters, such that each data point belongs to the cluster with the nearest
mean. Figure 2.3 shows an example with some data points and the clusters formed with 3 clusters.

Let the NV data points be x1, x2, . . ., £y, Where x; € RP, and K be the number of clusters (K <=
N). S = 51,59,...,5Kk be the set of clusters each consisting of some data points, /mu; be the mean
of points in the set .S;.

K
S = argminz Z 2 — il (2.1)
S =1 T €S;
The k-means algorithm uses an iterative refinement technique to solve the optimization problem.
The iterative procedure is also referred to as Lloyds algorithm. The algorithm starts with randomly
initializing the means 1, to, ..., i . The algorithm proceeds by alternating between the following

two EM steps:

e Expectation Step. During the assignment step, each data point is assigned to the cluster whose
mean is closest to that data point.

Si:{xpzfgp_,uiSxp_:ujHV1§j§K} (2.2)

e Maximization Step. During the update step, the mean of each cluster is recomputed after the

new assignments from the previous step.

ijESl‘ x]

= =eeSi 2.3)
|Si

where, |S;| is the number of data-points in the cluster S.

[]
°®
o .-.
RS
. %
K=3
(a) Input data points (b) Clusters

Figure 2.3 k-Means Clustering. Example data points, and the clusters computed by k-means clustering.
Figure courtesy [6].

There is no guarantee that the algorithm will converge to the global optimum, and the result depends
on the initialization of the cluster means. One common practice is to randomly chose K points from
the data points as the initial cluster means, and run it multiple times with different initializations. There
are other variants of initializations in the literature, for example k-means++, which avoids the poor
clusterings found by the standard k-means algorithm.

The only parameter involved in k-means clustering is K, the number of clusters. The value usually

depends on the nature of data, and should be chosen appropriately by experiments.

2.1.3 Support Vector Machines (SVM)

In machine learning, classification task is a very common task. There are two types of classification

tasks in machine learning:

e Supervised Learning. It is a task of inferring a function from supervised training training data.
The training data consists of training examples which are pair of an input vector and a desired

output label.

e Unsupervised Learning. This type of learning is used to draw inferences from the datasets
consisting of input data without label information. For example, cluster analysis which is used to
find the hidden patterns in data.

Support Vector Machines is a popular and powerful classification learning tool. It comes under
supervised learning tasks. i.e. it learns from a given set of labeled training data and predicts the label
for an unseen test datum. We will explain SVMs for two-class case, which is also called as a “binary”
classifier. The basic idea behind a linear classifier is to separate the given D-dimensional data points
with a (D1) dimensional hyperplane. For a given set of points, there may exist multiple hyperplanes
which can separate the data (Figure 2.6(a)). The best classifier of all these hyperplanes is the one which
provides the maximum separation of the data points (Figure 2.6(b)). It essentially means that the best

hyperplane should maximize the distance between the nearest points on both sides of the hyperplane

10

(nearest points to the hyperplane from each class). This distance is defined as the “margin”, and the
SVM selects the hyperplane with the maximum margin. The hyperplane obtained is called maximum-
margin hyperplane and the linear classifier is called maximum-margin classifier.

Given a set of n labelled training samples,

S={{zi;yi}| xieD,ye{l1,1}}, (2.4

where, x; is the D-dimensional data point, y; represents the class to which the z; belongs.

A separating hyperplane with w as the normal vector, can be written as
wlz+b=0 (2.5)

Here, b is called the bias term, ﬁ gives the perpendicular distance from the origin to the hyperplane.
Our goal is to find the w and b, such that the “margin” is maximized. We can select two parallel
hyperplanes which separate the data and are as far as possible (Figure 2.6). These hyperplanes can be

written as follows:

wlz+b=1, wlz+b=-1 (2.6)

Now, the distance between the two parallel hyperplanes is ”3)—” Since the distance needs to be
maximised, it translates to minimizing ||w|| . Since we do not want any data points falling in between

the two parallel hyperplanes, the following constraints are added:

wlz; +b>1 Va; st yi=1 (2.7)
wlz;+b<1 Va; st y=-—1 (2.8)

The two constraints can be combined and rewritten as:

yi(’le'i +b)>1 YV, (2.9)

We can substitute ||w]|| with | w||?, without changing the solution, this makes the optimization

problem easier to solve. The optimization problem can now be written in primal form as:

1
argmin §\|wH2 subject to yi(wlx; +b) > 1V, (2.10)
w,b

)

2.1.4 Bag of Words Method

The bag of words model in computer vision is inspired from the bag of words model in Natural
Language Processing where documents are represented as an unordered collection of words. But in
Bag-of-Visual-Words downplays the role of order of words and classifies based on a histogram of the

frequency of visual words. The typical bag-of-visual words features consist following steps:

11

Extracting local image features (e.g. SIFT, HOG).

Visual Words Vocabulary generation. (e.g. by k-means clustering)

Encoding and Spatial Histogram Generation

Off-the-self classifier learning on the image descriptors (e.g. SVM)

2.1.4.1 Extracting Local Image Descriptors

The first step is to compute the local features, which captures the local characteristics of an image.
In our work, we use SIFT descriptors. These descriptors are extracted at a dense grid of points. At each
point on the dense grid, the SIFT descriptors are computed over multiple circular support patches. The

multiple descriptors are computed at each point to allow for scale variation between images.

2.1.4.2 Generating a Codebook

Once the local image descriptors are computed, the next step is to cluster the local descriptors into a
visual words’ codebook. A codebook is also known as “vocabulary” of visual words, which analogous
to the dictionary in text domain. The idea behind a codebook is that an image can be represented in terms
of these visual words. k-means clustering is a popular method to construct a vocabulary of visual words.
A set of random descriptors from a subset of the Training set images is used to construct the visual
vocabulary. The number of visual words is a parameter that depends on the dataset, and is generally

determined experimentally.

2.1.4.3 Histograms Creation

After learning the vocabulary above, each image is then represented as a bag-of-visual words. Each
local descriptor x; is encoded by the nearest visual word in the Euclidean space. An Euclidean space

can be denoted by:

i = argmin |lz; - 1k]” (2.11)

After getting the encodings for all the local descriptors in an image, it is described by a vector (or
histogram) that stores the distribution of all the visual words. The size of the histogram is equal to the
vocabulary size, where each bin corresponds to a visual word. The final descriptor of an image is a con-
catenation of the encodings of different spatial regions into a single vector. Note that the histograms of
each region are individually normalized before concatenation. The distance between the two vectors re-
flects the extent to which the images contain similar appearance and the extent to which the appearances

correspond in their spatial layout.

12

2.1.4.4 Model Learning

After getting the image descriptors, the aim is to learn models (classifiers) for the different classes.
SVM is a commonly used classifier in BOW steps. For each class, a separate SVM is learned which
can predict whether an unseen image belongs to that particular class or not. For training an SVM for a
particular class, the descriptors of the images belonging to that class act as positive data points for the
SVM, and descriptors of rest of the images act as negative data points. The set of these positive and
negative images is also referred to as the Training Set, while the set of unseen images whose classes are

to be predicted, is referred to as the Test Set.

2.2 Deep Learning and Recurrent Neural Networks

2.2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are inspired from the way a human thinks. Everytime, humans
don’t start thinking from the scratch. They build upon the knowledge which persists across time. Tra-
ditional Neural Networks can’t do this, for example a traditional neural network can’t predict an event
based on its past experiences. RNNs, however address this issue, which have loops in them, which

allow the infgation to persist. ® ® ()
LGP - O
o

Figure 2.4 A recurrent neural network, unrolled. [4]

> —>

v

1§
»

v

As shown in Figure 2.4, RNNs, when unrolled reveal a chain-like nature and are intimately related to
sequences and list. One of the appeals of the RNNs is the idea that they might be able to connect previ-
ous information to the present task, such as using previous video frames might inform the understanding
of the present frame. Sometimes, we only need to look at recent information to perform the present task.
For example, consider a language model trying to predict the next word based on the previous ones. If
we are trying to predict the last word in “the clouds are in the sky,” we dont need any further context
its pretty obvious the next word is going to be sky. In such cases, where the gap between the relevant
information and the place that its needed is small, RNNs can learn to use the past information. But
there are also cases where we need more context. Consider trying to predict the last word in the text “I
grew up in France I speak fluent French.” Recent information suggests that the next word is probably

the name of a language, but if we want to narrow down which language, we need the context of France,

13

from further back. Its entirely possible for the gap between the relevant information and the point where
it is needed to become very large.
Long Short Term Memory Networks. As we have seen above, RNN are capable of persisting an
information over a small timesteps or gap but it can’t do that over a longer timesteps. Hence, Hochreiter
and Schmidhuber introduced Long Short Term Memory (LSTM) networks. These are special kind of
RNNs which are capable of learning the long-term dependencies.

All recurrent neural networks have the form of a chain of repeating modules of neural network. In
standard RNNs, this repeating module will have a very simple structure, such as a single ranh layer.

® ® 0%9

h

$ ﬂ
|
)

é é
Figure 2.5 The repeating module in a standard RNN contains a single layer [4]

LSTMs also have this chain like structure, but the repeating module has a different structure. Instead
of having a single neural network layer, there are four, interacting in a very special way. Key to the
LSTM is the cell state, the horizontal line running through the top of the diagram. The cell state is like
a conveyor belt. It runs straight down the entire chain, with minor linear interactions, which helps the
information to flow along it unchanged. The LSTM cell have the ability to remove or add information to
the cell state, carefully regulated by structures called gates. Gates are a way to optionally let information
through. They are composed out of sigmoid neutral net layer and a pointwise multiplication operation.
These gates allows LSTM memory cells to store and access information over long period of time,
thereby avoiding the vanishing gradient problem.

For example, as long as the input gate remains closed (i.e. has an activation close to 0), the activation
of the cell will not be overwritten by the new inputs arriving in the network, and can therefore be made
available to the net much later in the sequence, by opening the output gate. The preservation over time
of gradient information by LSTM is illustrated in Figure 2.6.

LSTM in Action As it can be seen in the Figure 2.7, there are four interacting layers in a cell. We will
go through each layer one by one. In Figure 2.7, (i) step, LSTM has to decide upon the information
which needs to be thrown out from the cell state. This decision is made by a sigmoid layer called the
“forget gate layer”. A 1 represents “completely keep this” while 0 represents “completely get rid of
this”. The (ii) step decides what new information we’re going to store in the cell states. This has two
parts, a) a sigmoid layer called the “input gate layer” decides which values we’ll update and b) a tanh

layer creates a vector of new candidate values that could be added to the state. In (iii) step, we will

14

Outputs

- @ Q@@ @@ O

Inputs

Time 1 2 3 4

Figure 2.6 Preservation of gradient information by LSTM. The state of the input, forget, and output

gate states are displayed below, to the left and above the hi

dden layer node, which corresponds to a

single memory cell. For simplicity, the gates are either entirely open (‘O’) or closed (‘-’). The memory
cell ‘remembers’ the first input as long as the forget gate is open and the input gate is closed, and the
sensitivity of the output layer can be switched on and off by the output gate without affecting the cell. [3]

combine these two to create an update to the state. In the (iv)

and final step we decide what we’re going

to output. Then, we run a sigmoid layer which decides what parts of the cell state were going to output.

Then, we put the cell state through ranh (to push the values to be between —1 and 1) and multiply it by

the output of the sigmoid gate, so that we only output the parts we decided to.

® ®

t | t
:] g >
A debeil] A
J o)_»

& ®

&)

Figure 2.7 The repeating module in a standard RNN contains four interacting layers. [4]

LSTM has been applied to various real-world problems, s

uch as protein secondary structure predic-

tion [24], music generation [16], reinforcement learning [8] and speech recognition and handwriting

recognition [23]. As would be expected, its advantages are most pronounced for problems requiring the

use of long range contextual information.

15

Chapter 3

Script Identification in the Wild

We present an approach for automatically identifying the script of the text localized on the scene
images. Our approach is inspired by the advancements in mid-level features. We represent the text
images using mid-level strokes based features which are pooled from densely computed local features.
Once text images are represented using the proposed bag-of-strokes representation, we use an off-the-
shelf classifier to identify the script of the text image. Our approach is efficient and requires very
less labeled data. We evaluate the performance of our method on a recently introduced CVSI dataset,
demonstrating that the proposed approach can correctly identify script of 96.70% of the text images. In
addition, we also introduce and benchmark a more challenging Indian language scene text dataset for

evaluating the performance of our method.

3.1 Introduction

Reading text in scene images can provide useful information about the content of the image. In
multilingual country like India, sign boards often contain text of regional languages along with English
and Hindi. The first step of reading text in such images is to answer “what script is this?”. The goal of
this chapter is to answer this question (see Figure 3.1). To this end we use off-the-shelf text localization
method and propose a novel mid-level feature based representation which we call bag-of-strokes, for
robust script identification. The proposed method achieves an accuracy of 96.70% on a recently intro-
duced Video Script Identification (CVSI) dataset [42]. For comprehensive evaluation of our method we
also introduce and benchmark a more challenging Indian Language Scene Text (ILST) dataset in this
work. The code and data used in this work will be made available on our project website!.

Script identification in printed and handwritten document images is a highly researched problem [20,
45, 12]. Contrary to the scanned and handwritten images, script identification in scene images poses
many additional challenges such as, (i) lack of context. Scene text often appears as a single word or a
group of words, and applying larger sentence or paragraph level context is hard. (ii) stylish fonts. Scene

text images often contains stylish fonts to attract the viewers and do not easily generalize to the training

"http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/

16

Figure 3.1 A typical example of a street scene image captured in a multilingual country, e.g. India. Our
goal in this chapter is to localize the text and answer “what script is this?” to facilitate the reading in
scene images.

data, (iii) complex background. Scene text come with highly complex natural scene background, on the
other hand document images often contain predominantly text. In case of scene images text localization
and dealing with the false detection are few additional challenges. In this work we demonstrate the
cropped word script identification as well as end-to-end script identification on scene images. To our
knowledge end-to-end script identification on scene images have not been attempted in prior works.

There are many methods in the literature for script identification [42, 20, 38, 28, 37, 43] Texture
based features such as Gabor filter [37], LBP [36] have been used for script identification. Joshi et
al. [28] proposed multi-channel log-Gabor filter bank and hierarchical classification scheme for script
identification in Indic language documents. Reader is encouraged to refer [20] for detailed survey of
classical methods in this area. These classical methods, though achieve high performance on printed
documents, are not very successful in our case (see Section 3.4). More recently in ICDAR 2015, com-
petition for script identification on video text has been organized [42]. We compare our method with
the entries for this competition and show that our method is comparable to the top performing methods
in this competition. There have been few contemporary methods based on deep learning [43, 42] and
RNN [45]. These methods achieve noticeable success on some of the selected benchmarks. However,

these methods often require huge training data and computation resources.

In this chapter, we propose a simple and effective solution for script identification in the wild. Our
method is inspired by recent advancements made in mid-level features [17, 30, 9]. First, we densely
compute the local features on the given image and then pool these local features to encode the larger
context about the given image. In our case, these larger context encode the strokes of the scripts. We
represent each training image using bag of these strokes and learn a classifier to identify the script of
a test image. The advantages of our method are two fold, first, it is robust to variations and noise
commonly present in the scene text. And second, the method is easily trainable and computationally

efficient.

17

(a)

Figure 3.2 Few example images from thee ILST datset we introduce. we provide ground truth text
bounding box, script and text for the images. (b) Few cropped word images of our dataset. The dataset
can be used for variety of problems including recognition, text localization etc.

The remainder of the chapter is organized as follows. We discuss about datasets in Section 3.2. Here,
we introduce Indian language scene text dataset for the problem. In Section 3.3, mid-level features and
novel bag-of-strokes based feature representation for text images is introduced. Section 3.4 gives details
of the evaluation protocols, and performance measures used in this work. Experimental settings, results,
discussions, and comparisons with various techniques are also provided in this section, followed by

conclusions.

3.2 Datasets

3.2.1 The ILST dataset

Scene text understanding has gained huge attention in last decade, and several benchmark datasets
were introduced [41, 35]. Most of these datasets are for scene text localization and recognition in
English. There are also few datasets [43, 42] of multiple scripts e.g., east Asian languages or Indian lan-
guage video text. In this work we introduce Indian Language Scene Text (ILST in short) dataset which
is a comprehensive dataset for Indian language scene text containing six scripts commonly used in In-
dia, namely Telugu, Tamil, Malayalam, Kannada, Hindi and English. The dataset contains 500 scene
images with more than 4000 words. It can be used for following tasks: text localization, recognition,
script identification. In this work we use this dataset for two tasks- cropped word script identification

and text localization with script identification (i.e., end-to-end pipeline).
Comparison with other related datasets To our knowledge ILST dataset is the largest scene text dataset

for the Indian languages. Other related datasets such as CVSI [42], SIW [43] are only meant for script
identification on cropped words whereas ours can be used for many other related tasks e.g., recognition

18

Languages Images

Malayalam

Hindi

Kannada

Tamil

Telugu

English

Table 3.1 Some example images from 12 Indic Scripts and 3 Roman script based languages.

and text localization. Also, the dataset is collected in a realistic setting and has wide variations in scale,

font style, background and illumination.

Mode of collection. We have collected the images for this dataset by either capturing pictures in streets
of various cities in India, harvesting images from Google image search or importing and providing anno-
tation for few images from other existing datasets. These images contain signboards, billboards, posters
mainly from urban part of the country. We have collected these images in an unconstrained manner,
i.e., without considering much of the view angle. Further, various digital cameras with diverse camera

settings were used while capturing images. These are intentionally done to create a realistic dataset.

Annotations. For annotations of the scene images, we use a publicly available web based tool [2].
All the annotations are provided in XML for each image separately describing global image features,
bounding boxes of text and its special characteristics. The XML-Schema of LabelMe has been adapted
and extended by tags for additional metadata.

Each text field (word) in the image is annotated with following attributes: (i) word bounding box.

These bounding boxes are rectangular and parallel to the axes. (ii) ground truth text, (iii) the inherent

19

Table 3.2 The ILST dataset: we introduce a ILST dataset which contains 578 scene images and 4036
cropped images from 5 major Indian languages.

Languages ‘ # scene images ‘ # word images Mode of collection ‘
Hindi 76 514 III'T-H, Google Images
Malayalam 121 515 III'T-H, Google Images
Kannada 115 534 Char74K [15]
Tamil 59 563 IIIT-H

Telugu 79 510 IIIT-H

English 128 850 IIIT-H

total 578 4036 -

script of the text, and additional information such as, (iii) illumination, (iv) blur, (v) occlusion, and (vi)
3D Effects.

Train-Test splits. We provide a standard train and test splits for this dataset. We use randomly chosen
30% images of the dataset for the training and the rest for testing. We will make this dataset publicly
available on our project website. The details of dataset is provided in Table 3.2. We also show few
example images of our dataset in Figure 3.2.

3.2.2 CVSI 2015 [42]

To show the genarality of our method, we also evaluate our method on the dataset which has been
introduced in Video Script Identification Competition held at ICDAR 2015. The dataset is composed of
images from news videos of various Indian languages. It contains 6412 training text images and 3207
testing text images from 10 different scripts namely, English, Hindi, Bengali, Oriya, Gujarati, Punjabi,

Kannada, Tamil, Telugu and Arabic, commonly used in India.

3.3 Methodology

In this section we introduce our bag-of-strokes based representation of text images for script iden-
tification task. First, we briefly give motivation and overview of our method, compare it with closely
related works, and then give the details of how we obtain bag-of-strokes representation by pooling local
low level features. We finally summarize the full pipeline of our approach.

3.3.1 Motivation and overview

Mid-level feature representation have gained huge attention in last few years. These features are
potentially more distinctive than the traditional low-level local features constructed in a purely bottom-

up fashion [17]. Mid-level features have achieved noticeable success in image classification and retrieval

20

"

-'HI
e

—

0]~)
2l

- |
[.
 ——pn
e
=
__-J A
P o

|

| |

3

m :
RECBS

Figure 3.3 Strokes are atomic units of scripts. We show some representative strokes of following scripts
(top to bottom): Hindi, Kannada, Malayalam, Tamil and Telugu. Our method yields the strokes which
are representative and discriminative enough for a cropped image.

tasks [30, 9, 17]. Our method is inspired from these methods as we present a novel bag-of-strokes based

features which are robust for the task of our interest, i.e., script identification in the wild.

Script identification in the wild is a challenging problem. The traditional low-level local features are
not competent for this task. This is primarily due to the imaging, variation in scale, ambiguity, shar-
ing of strokes in the scene text images. On the other hand strokes are the atomic units of scripts and
collection of strokes are discriminative enough for the task of identifying the scripts (see figure 3.3).
Our method is build on these intuitions. In this work, given a text image we first densely compute local
visual features, and then pool these local features into frequently occurring larger patterns (or strokes)

and each text image is represented using histogram of these larger patterns (or strokes).

Comparison with other related approaches: The mid-level features have outperformed the naive
bag-of-visual-words based features for image classification [30], because of their robustness and better
discriminating power. Usually these mid-level features capture the larger context in the image as com-
pared to the local or semi-local features. One alternative to use larger context is to simply cluster larger
patches, as done for local feature computation. However such method are not effective in our case due
to the large variability in scene text images. In context of supervision methods, mid-level features can
be grouped into three categories: supervised [30], weakly-supervised [17] and unsupervised [46]. Our

method falls in weakly supervised category where we only need the class information.

21

Training Images

Local Features

TR
DN
*e)
_

/
|
5

Visual Words

= JDH.
Al :L"
*e]e

— .r',..-‘ \“I
o)
| RN L)

Local Histogram of Visual Words

A
Bagof Strokes

Figure 3.4 Method Overview: The figure depicts the feature computation process where, first we find
the local features from the images, we cluster these feature to get the local histogram of visual words.
Then we cluster the histogram of visual words to get the representation of words in form of strokes.

3.3.2 Bag-of-strokes based representation

We compute the bag-of-strokes representation of words from a labeled data. The overview of our
method is illustrated in Figure 3.4. Given training text image /; and its script s; where s; € S (set of

scripts), we follow the following steps.

o First, we densely compute the local features and represent each training image I; as a set of

descriptors (see Section 3.3.2.1 for details of feature computation).

e All the descriptors are then clustered to obtain visual words. Let C' = {c1, ca, ..., ¢, } be the set

of visual words with vocabulary size = m
e We obtain assignment for every feature ¢, i.e., obtain the feature-visual word pair (¢, ¢;)

e In a p x ¢ rectangular neighborhood around feature ¢; we obtain a local histogram of visual
words H}.. These Hys capture a larger context and are more discriminative patterns. Indeed they

are strokes in our case.

e We again cluster local histograms Hj, to obtain larger patterns which encode the strokes. Let

= {11, 2,- -

e Once Hj and v in hand, we assign every local histogram H}, to one of cluster from . In other

, ¥ } be the set of such clusters with stroke vocabulary size = n

words, each image is represented as bag of strokes. We name this representation .

At the end of this process each word image in the training data is represented with bag-of-strokes x.
To only use the best strokes we prune few less informative strokes by using the method described in
Section 3.3.2.2.

3.3.2.1 Feature computation

Given a text image we compute the SIFT descriptors at points on a regular grid with spacing of M

pixels. At each point the descriptors are computed over four circular support patches with different radii,

22

Table 3.3 Results on ILST (cropped words script identification)

Method Accuracy (%)
Baseline Methods
Gabor features [37] 59.25
Gradient features 47.74
Profile Features [19] 49.24
LBP [36] 78.08
Ours 88.67

consequently each point is represented by four SIFT descriptors. We also learn the multiple descriptors
to allow the scale variation between images. At each grid point the descriptors are computed over

circular support patches with radii » = 4, 6, 8 and 10.

3.3.2.2 Finding the best strokes for the task

We wish to use the bag-of-strokes y as a novel set of mid-level features to describe the text image.
But not all strokes are are relevant for the task of script identification, e.g., a stroke commonly occurring
in all the scripts may not carry useful information (not discriminative). Moreover, there are few strokes
which can occur in most of the images in a script and are very good representative of that script. To

measure discriminativity and representativity of a stroke str € x we compute following relevance score:
rel(str) = D(str) x R(str), (3.1)

where D(str) and R(str) are discriminativity and representativity scores respectively. To compute
D(str) and R(str) we follow entropy based formula. We compute the entropy of stroke by considering
(i) scripts as class (script specific entropy) (ii) individual images in scripts as class (image specific
entropy). We use these entropies to define D(str) and R(str) such that lower value for script specific
entropy and higher value for image specific entropy results in higher values of D(str) and R(str).
This ensures that those strokes which are found in certain script and almost all the images of that script
are more relevant. We prune the bottom 20% less relevant strokes before representing images using

bag-of-strokes.

3.3.3 Script identification: Full pipeline

Given a scene image our goal is to localize text and then identify its script. To this end we first
obtain text localization using a method proposed in [33] and an open source OCR [1]. While the text

localization technique we apply is rather standard, we adapt this for the multi-script dataset we use.

23

Table 3.4 Results on ILST (End-to-End pipeline). We use [33] and tesseract [1] for text localization and
evaluate our proposed method of script identification based on measure presented in Section 3.4.2

’ Script ‘ Precision ‘ recall ‘ [f-score ‘
Telugu 0.47 0.54 0.51
Tamil 0.41 0.44 0.42
Malayalam 0.49 0.45 0.47
Kannada 0.39 0.47 0.42
Hindi 0.42 0.48 0.45
English 0.46 0.56 0.50

Once the text is localized we represent it using bag-of-strokes representation which is learned from the
training data (discussed in Section 3.3.2). Each localized text is now fed to a linear SVM classifier

which is trained for the task to obtain the inherent script.

3.4 Experiments

Given a scene image containing text our goal is to localize the text and identify it’s script. We show
results in two settings, (i) end-to-end pipeline, and (ii) cropped word script identification on the datasets
presented in Section 3.2. In this section we provide details of implementation, evaluation protocols and
baseline methods, and evaluate the performance of our method and compare it with previously published

works.

3.4.1 Implementation details and design choice

The proposed method is implemented on a system with 16 GB RAM and Intel® Core™ i3-2105 CPU
@ 3.10GHz system. The proposed system takes approximately 0.4 millisecond to identify the script of a
cropped word. The two important parameters visual word vocabulary size m and stroke vocabulary size
n (refer Section 3.3.2) were empirically chosen as 4K and 3K respectively. The parameter C in SVM
is obtained using grid search on independent validation set. We keep these parameters fixed for all our

experiments.

3.4.2 Evaluation Protocols

End-to-end script identification. We evaluate our method on end-to-end pipeline of script identifica-
tion. For this we first localize the text in scene images. We use a standard available text localization
scheme for localizing the text. Obviously, this step misses some text regions and produces few false

bounding boxes. We fed all the text candidate bounding boxes to script identifier.

24

90.00
Hindi
80.00

Kannada 70.00
60.00
Malayalam
50.00
40.00
30.00

20.00

10.00
English

Hindi Kannada Malayalam Tamil Telugu English

Figure 3.5 Confusion matrix on ILST cropped words. Our method achieve a 88.67% accuracy of script
identification on the introduced dataset.

It should be noted that end-to-end script identification is far more challenging than script identifica-
tion in cropped words or document images. Since the final score of this reflects the error accumulated
due to text localization and incorrect script identification.

To evaluate the end-to-end script identification we use standard measures, precision (prec), recall(rec)
and fscore computed for every script. For every script s we compute following terms: (i) number of
correctly identified words (7' Ps). A detected word is called correctly identified if the intersection by
union overlap with the ground truth bounding box is more than 60% and it has the same script identified
as the ground truth, (ii) total number of identified words (7'I), and (iii) total number of ground truth
words (T'Gy)

Once these in hand we compute precision, recall and f-score for every script and every image. We

then report mean of these score over all the images in the dataset.

TP,
precs = TI: (3.2)
TP,
recs = TGZ (3.3)
fscores =2 prec x ree (3.4)
prec + rec

The ideal script identifier should achieve 1 for these measures for all the scripts.
Cropped word script identification. We also evaluate our method on cropped words. For this we

compute accuracy which defined as follows:

correctly identi fied words

Accuracy = x 100. (3.5)

total number of words

Here a word is called correctly identified if the method identifies script same as the ground truth.

25

Language Success Failure

pr g T] [“‘
Hindi e el | MR

Kannada -
il

sy 050 || A

Malayalam
Tamil
Telugu
English

Figure 3.6 Success and Failure Cases. Despite high variations in the dataset, our method correctly
identifies the script of scene text images. The “Success” columns depicts the correctly classified word
images, and wrongly classified words are shown in “Failure” column along with recognized script in
red boxes.

3.4.3 Baseline Methods

We compare our methods with popular features used for script identifications in document images
namely LBP [36], Gabor features [37]. We also evaluate gradient based features and profile features [19]
for script identification task and compare with our method. For comparison in CVSI dataset we compare

our method with the best performing methods reported in [42].

3.4.4 Results on the ILST dataset

3.4.4.1 End-to-end script identification

We evaluate end-to-end script identification on ILST dataset. To this end we first use public imple-
mentation of [33] for text extraction and then fed it to an open source OCR [1] to obtain text bound-
aries. Once we get bounding boxes we perform script identification using our method and evaluate
performance based on performance measures presented in Section 3.4.2. We summarize results of full
pipeline in Table 3.4. We observe that our method achieves reasonably high fscore for this challenging
task. The robustness of mid-level features we use can be attributed as factor for this success. It should
be noted that text localization is still an open problem and its performance affects the overall score of

end-to-end script identification.

26

Table 3.5 Task specific evaluation on CVSI [42]. Here A: Arabic, B: Bengali. E: English, H: Hindi,G:
Gujrati, K: Kannada, O: Oriya, P: Punjabi, Ta: Tamil, Te: Telugu. Hence AEH means where script
identification of three class namely, Arabic, English and Hindi, is performed and so on. Further, Task-1,
Task-2, Task-3 and Task-4 indicates tri-script, north Indian script, south Indian script, all script identifi-
cation, respectively.

Task Methods

C-DAC | CUK | HUST | CVC-1 | CVC-2 | Google | Ours
Task-1
AEH | 95.46 - 19979 | 97.32 | 96.80 | 100.00 | 100.00
BEH | 91.40 - | 9836 | 94.68 | 9427 | 99.49 | 98.61
GEH | 88.33 -] 99.09 | 9638 | 9598 | 994 | 99.41
KEH | 91.44 -] 9980 | 9551 | 9592 | 9959 | 99.19
OEH | 95.87 - 19950 | 96.88 | 9637 | 99.19 | 99.49
PEH | 84.94 - | 98.68 | 9420 | 9532 | 99.49 | 99.37
TaEH | 92.71 - 19939 | 9595 | 96.66 | 99.70 | 99.61
TeEH | 93.84 - | 9798 | 96.46 | 9596 | 99.19 | 97.06

Task-2	9679	79.50	97.69	95.73	9591	99.19	97.99
Task-3	8695	79.14	97.53	9538	9575	9895	96.11
Task-4	84.66	74.06	96.69	95.88	96.00	9891	96.70

3.4.4.2 Cropped word Script Identification

We also show results on cropped words on ILST dataset. These results are summarized in Table 3.3.
Despite many challenges in this dataset (see figure 3.2) our method achieves script identification accu-
racy of 88.67% which is significantly better than methods used in document image script identification
domain such as [37, 36]. To study script wise confusion we illustrate confusion matrix of our method
for ILST dataset in Figure 3.5.

3.4.5 Results on CVSI dataset

Following the protocols of ICDAR competition on video script identification [42] we evaluate our
method following for four tasks: (i) Task-1: tri script identification (ii) Task-2: north Indian script
identification (iii) Task-3: south Indian script identification, and (iv) Task-4: script identification in all
the ten scripts.

We compare our method with top performing methods in this competition. These results are sum-
marized in Table 3.5. Our method achieves 96.70% for Task-4, i.e., script identification in all the ten
scripts and clearly outperform two methods in the competition namely, C-DAC and CUK. Moreover,
our results are marginally superior to HUST, CVC-1, CVC-2 and comparable to the deep learning
based best performing method by Google.

27

English English
AXIS

Figure 3.7 An example result of End-to-end script identification of our method. We localize the text
boxes in images using method using [33] and [1]. Then we apply our method to find the inherent script
in the text boxes.

3.4.6 Qualitative evaluation

We qualitatively evaluated our method in Figure 3.6 and Figure 3.7. We show results on end-to-end
as well as cropped word script identification. We observe that despite high variations in images such
as complex background, illumination change, low resolution our method is successful. Success and
failure cases on the cropped image for six script are shown In Figure 3.6. In failure section, Kannada
text is wrongly classified as Telugu due to similarity in inherent scripts of both the languages. Similarly,
Malayalam text is wrongly classified as Tamil and vice versa. These scripts are visually very similar and
often challenges script identifier. It is also very interesting that, an English word is classified as Kannada
due to the writing style. Adding location information (i.e., where the image is captured), context (i.e.,
scripts of neighboring text) can help mitigating such errors. We plan to add such features in our method

in future.

3.5 Summary

In this chapter, we have addressed the problem of script identification in the wild. To this end
we made following two important contributions: (i) we introduced a comprehensive dataset for Indian
language scene text. This dataset will be useful for the community for many scene text related tasks
in multilingual environment in the future. (ii) We have established a baseline for the end-to-end script
identification pipeline for scene text and shown that simple mid-level features can achieve reasonably
high performance for this task. As a future work we intend to extend our ILST dataset to 10 popular
scripts used in India and explore the usage of multiple cues as aid to our script identifier, such as location
of the image and neighboring texts.

28

Chapter 4

Script and Language Identification using Recurrent Neural Networks

In this work, we investigate the utility of Recurrent Neural Networks (RNNs) for script and langauge
identification. Both these problems have been attempted in the past with representations computed from
the distribution of connected components or characters (e.g. texture, n-gram). Often these features are
computed from a larger segment (a paragraph or a page). We argue that one can predict the script or
language with minimal evidence (e.g. given only a word or a line) very accurately with the help of a pre-
trained RNN. We propose a simple and generic solution for the task of script and language identification
which do not require any special tuning. Our method represents the word images as a sequence of
feature vectors, and employ the RNNs for the identification. We verify the method on a large corpus of
more than 15.03M words from 55K document images comprising 15 scripts and languages. We report

an accurate script and language identification at word and line level.

4.1 Introduction

Recurrent Neural Networks (RNNs) have gained popularity in recent years for many recognition tasks
such as Optical Character Recognition(OCR) [10, 31], handwriting recognition [23], word retrieval [26],
and word spotting [19]. This architecture has started finding more and more applications in diverse areas
of computer vision [32]. In this work, we investigate the utility of RNNs for script and language identi-
fication at the granularity of words and lines. Naturally, this investigation has its applications in multi-
lingual settings, where one needs to decide the script or language before recognition or post-processing
of an incoming document image. In addition, this work also throws light on how semantically richer
tasks can be attempted without any explicit recognition by looking at the distribution of certain features.
For example, can we find the topic model or classify the document into an appropriate category without
an explicit textual representation? Such high-level tasks are often attempted based on the statistics and
distribution of words or characters. In this work, we limit our attention to the identification of script
and language at the word and line level as shown in Fig. 4.1. By designing an RNN that can learn the
distribution of feature vectors, we reliably identify the scripts and language from the image itself. We

empirically demonstrate the utility of RNNs for script and language identification with experiments on a

29

Igemeines| ()| iiber| | Généralités| vy [sur][le
[das][Weben| tissage
[TR|[t=REE| (|Zsoae6]|) [ag=] |

[eemaz] [peanaeosmndicd| [apmms|

Figure 4.1 Figure depicts the script and language identified at word level in document snippets written
in Roman-script (first row) based languages and Indic scripts (second row), respectively. In the first row,
red, green and blue rectangles denote German, French and Spanish languages, respectively. In the sec-
ond row, violet, orange and brown rectangles denote Hindi, Telugu and Malayalam scripts, respectively.
Unlike the approaches in the past we propose a method to identify the script and language at word and
line level by employing popular Recurrent Neural Network (RNNs).

corpus of nearly 15.03M words from 55K document images comprising 15 scripts and languages. We
argue that RNNs can be considered as a strong contender for accurate script and language identification

which can lead us to the integrated solutions for the recognition tasks in multilingual settings.

Many approaches proposed in the past for script and language identification often deal at page, line
or word level. At page level, script is identified by looking at the texture and orientation of the image
segments. Sptiz [47] analylzed the individual components for script identification in document images
using attributes such as upward concavities, optical densities, character height densities and top and
bottom profiles. The use of texture has also been extensively used in script identification. Tan [48]
proposed to solve this problem using a multi-channel Gabor filter. Many later attempts used different
variations of texture features computed from Gray-level Co-occurrence Matrix, Gabor Energy, Wavelet
Energy, Local Binary Pattern [11, 18, 37, 13] for the identification purpose. In recent years, there
has been an effort to use discriminative features learned using Convolutional Neural Networks(CNN)
for multi-script recognition [39]. These features are automatically extracted and learned at connected

component level of the document image.

When the inherent script of document images are same, visual features are hard to separate between
different languages, especially when the identification is required at word level. There are many attempts
in the textual domain to separate the languages. Often they use the statistics (e.g. n-gram probabilities
of characters). In the image domain, language identification is attempted at page level or paragraph level
in the past. A class of methods have been proposed which categorizes the characters based on a number
of character shape features such as character ascenders and descenders. For example, [47] group the
character images into a small set of categories first. Then, based on the classification results, each word
image is converted into a word shape token. Latin-based languages are finally determined according to
the frequency of a single word [47], word pair and word trigram. Shijian and Tan [44] combined the

script and language identification using a document vectorization framework. They convert document

30

image into a vertical cut vector based on the number and positions of vertical cut to capture the shape

of the word directly.

Our method is simple, efficient and accurate, without any special tuning for the scripts or languages
of interest. We convert the word or line images into a sequence of feature vectors and train the RNNs
to reliably separate the script or language. We report comparable, if not better results than the state-of-
the-art [37]. Our method also leaves lots of scope for further improvement in performance with better
features and special adjustments (e.g. hierarchical classification, special features for harder pairs). We
believe this makes our method very generic and applicable in a wide range of settings. We perform
the experiments on 12 Indic scripts: Hindi, Malayalam, Gurumukhi, Kannada, Tamil, Telugu, Bangla,
Marathi, Gujarati, Assamese, Manipuri and Odiya, and 3 Roman script based languages: French, Ger-
man and Spanish (Figure. 4.1). We discuss the method in Section 4.2 and the experimental results in
Section 4.3.

Languages Images

Hindi SATeRiaT | foeaer | wra= | I3THT
Malayalam | ch1D@1@3 | anepowlon) | SPee® | cneilgje.
Gurumukhi | 8T | oy | =413 | —=

Kannada 2257 | 0B ree | “To2ode | wEudied

Tamil au@eni | wflomiyt, | & &sTiE | Ssp@er,
Telugu B Hsoxs | Hoirdes | dbhotnmb. | ‘Doss&ASEH
Bangla AHEAY | —=16 | = | WReaEs
Marathi Frfesax | UEde, | Atwhiaear | AIHRT

Gujarati S | UAMYLL | USIAA | x===¢7

Assamese | T@fEcelt | STTC=A | SOIFE | sifacsry
Manipuri | ST | AT | <t=m=gi= | SHJIRET

Oriya e2Iadem, | AASK! | Qiagyq | LR
French V'autocratisme | l'individualisme; | d’humilité | phénomenes
German AUFLAGE | gesamten | Beschreibungen | Lebensvorginge
Spanish ENCICLOPEDIA | procedente | significativamente | significacién

Table 4.1 Some example images from 12 Indic Scripts and 3 Roman script based languages.

31

4.2 RNN for Script and Language Identification

In traditional feed-forward neural networks (FFNN), connections between the nodes do not form any
cycles. If we relax this condition, and allow the cyclical connections among the nodes, we obtain the
recurrent neural networks (RNNs). RNNs in the past have been used to handle sequential data. RNN is
a powerful classification tool, as it allows a “memory” regarding previous inputs to persist in network’s
internal state, which can be later used to influence the network output. RNNs are not widely popular, as
they often require a longer training process, because the error path integral decays exponentially along
the sequence [25]. Our preference for RNNs is motivated by the fact that it has superior characteristics
in several aspects. Unlike HMM which uses the current state of input to generate any observations, RNN
uses the long-short term memory (LSTM [23]) structure to store the contextual information of previous
states. Also it does not require any explicit labeling of all the vectors in the input feature sequences.

For the script and language identification, we use a RNN based Bidirectional Long Short Term Mem-
ory(BLSTM) network. These networks have been used in the past for printed text [31] and handwritten
text recognition [23]. This network consists of two LSTM networks in which one network takes the input
from beginning to end while other network takes the input from end to beginning. The individual output
of both the LSTM networks is used to predict the final output. Hence, these networks have been known
for remembering the long range of context over several timesteps. The Connectionist Temporal Classifi-
cation (CTC) [22] is used at the output layer of RNN network to label the unsegmented data which uses a
forward-backward algorithm. The CTC [22] layer directly outputs the probability distribution of desired
label. The output layer of RNN network contains one node for each class label plus a special node, (¢),
which indicates “No Label”, i.e. no decision can be made about the incoming word/line at that position.
Hence, there are XC + 1 nodes in the output layer, where /K is the number of class labels. In our system,
a training sample can be viewed as a pair of input sequential features and target script/language label
(x, z). The objective function of RNN is then defined by:

O=- Z Inp(z|x), 4.1)
(z,2)€S
where S denotes the training set and p(z|x) denotes the conditional probability of label z given a
sequence of feature x. The main objective is to minimize O, which is equivalent to maximization
of conditional probability p(z|z). For script and language identification, our method only uses the
script/language level annotation.
We also analyzed the network performance on various parameter settings for our identification task.
A RNN is characterized by the number of nodes in hidden layer it uses, number of hidden layers and the
stopping criteria used for training. We generally stop the RNN training once the training error rate ceased
to reduce below a certain threshold. We have observed, experimentally, that increasing the number of
hidden layers until 3 gave better results. The best results are obtained with the LSTM size of 50 with 3
hidden layers.

32

Wiy w21 Wini

7] [A (/|
Upper Part f2 2| wus f2
m i i ﬁ Recurrent Script/Language
f * Neural » oy
Prediction
CESERVARD] | oo M
Lower Part AR f
oWer Far
- - ff ff nes fZ — Sequence to Label
Sliding window on £l 15 £y Classification
Horizontal Split Wi Wy Wiz

Sequential Features

Figure 4.2 The architecture for RNN based script and language identification. From left to right, the
segmented line and word from the document images are horizontally divided into two parts. Then,
sequence features are calculated from sliding windows, w. Here, m is the number of sliding windows
and n is the number of features , f, computed from a single window. These features are then given as
input to the LSTM cell of RNN to identify the script and language of current line/word image.

4.2.1 Representation of Words and Lines

In order to use the RNN, the input word and line images are needed to be converted into sequential
features. For this, we use the popular profile features [31, 40], which can be used to represent the lines
and words as a feature sequence. In this work, we calculate six profile features from every word and
image. These features are calculated using the sliding windows of size 20 pixels with an overlap of
75%. For each window, scanning is done from top to bottom and following four features are computed:
(F1) vertical profile(i.e. the number of ink pixels in each column), (F2) location of uppermost ink pixel,
(F3) location of lowermost ink pixel and (F4) number of ink to background transitions. The profile
features are calculated on binarized word/line images obtained using the Otsu thresholding algorithm.
We also use the gray level information of the image to extract two features: (F5) mean value and (F6)
standard deviation of gray pixel values. All features are normalized with respect to the image height
to [0,1]. These features are made more robust by horizontally dividing the image into two regions
and then computing the aforementioned features for each region. Hence, we extract a total of twelve
features. The splitting of the image into two parts may seem insignificant, but it helps in differentiating
similar symbols which appear in different areas. Fig. 4.3 shows the full pipeline for script and language
identification, depicting the various stages of identification framework from feature representation to

identification using RNN.

4.2.2 Implementation and Evaluation

The script and language of a line or word image is identified by presenting the corresponding sequen-
tial features to the RNN. For this, we train integrated neural networks for both scripts and languages for

identification at word and line level. For training the RNN, the initial parameters, number of hidden

33

uuuuuuuuu

3.

fs
NN [WU WU
f1

[}
U CLUUID ;;w fs
Grey Image B
F
Binarized Image wBlack Piels N Lower Profile

directiand | N
ULLLL LIV c E

Figure 4.3 The sequence features are calculated from sliding windows, w. Here, m is the number of
sliding windows and n is the number of features , f, computed from a single window. These features
are then given as input to the LSTM cell of RNN to identify the script and language of current line/word
image.

nodes, number of hidden layers are obtained by cross-validation. Number of input nodes in network
is equal to the number of features presented to it (12 in our case) and number of output nodes is same
as the number of target labels (in our case 12 nodes for script and 3 nodes for language). For all the
experiments, we have used a LSTM size of 50 and number of hidden layers is set at 3. All these exper-
iments were conducted on a mid-level desktop PC having 16GB RAM and a 2.3GHZz processor. On
an average, training was conducted for 50 epochs for all the experiments mentioned below. The imple-
mentation details specific to script and language identification are explained in detail in sections 4.3.1

and 4.3.2, respectively.

4.3 Results and Discussions

In this section, we validate our method on a spectrum of scripts and languages. We present the
experimental results of our proposed script and language identification method at both word and line

levels.

4.3.1 Script identification

We have tested the proposed method on 12 different scripts of Indian multilingual dataset. For this
evaluation we have taken around as many as 5000 pages and as few as 2800 pages from each script,
amounting to 50K pages and a total of 12.84M words. This dataset has emerged as a challenging
benchmark data (D1) [27] within Indian OCR research community. Almost all of these scripts and
languages have their own unique way of representing the character symbols. For example, the scripts of

the languages such as Hindi, Bangla and Gurumukhi uses shirorekha (headline) over its words while the

34

D1[27] Accuracy (in %)
Scripts/Languages D1-[27] D2-[37]
Books Pages Lines Words

Line Word | Ours Pati[37]
Hindi 34 5K 133K 1.66M | 96.6 85.8 | 923 96.2
Malayalam 31 5K 93K 096M [99.2 99.0 |96.2 933
Gurumukhi 33 5K 125K 1.62M | 979 93.2 |92.8 93.6
Kannada 27 38K 90K 0.72M |98.0 93.8 | 93 93.8
Tamil 23 48K 88K 0.64M|98.5 98.1 959 952
Telugu 28 5K 102K 0.83M 984 96.0 |91.5 923
Bangla 14 28K 50K 095M|98.6 985|943 96.2
Marathi 20 5K 127K 1.44M|97.6 958 | - -
Gujarati 26 52K 124K 1.25M |98.6 98.4 | 945 955
Assamese 19 35K 73K 0.59M |953 933 - -
Manipuri 25 36K 69K 0.72M 982 714 | - -
Odiya 17 5K 109K 1.44M|99.5 97.2 | 96.4 94

Table 4.2 Table depicts the details of dataset (D1) [27] used for script and language identification. It
depicts the performance of our method on the D1 at word and line level. It also shows the comparison
of our method against Gabor features with SVM classifier on D2 [37]. Since, D2 [37] didn’t show any
results on Marathi, Assamese and Manipuri scripts, we are not comparing on these languages.

languages such as Malayalam, Tamil, Telugu and Kannada are more curved in nature. Table 4.2 shows
the details of the printed dataset which we have used for our experiments.

To train the RNN for word level script identification we use 960K words and 240K words for vali-
dation from all the scripts. Training the network for word level script identification took an average of
3.75 hours per epoch. The trained network is then tested on 11.64M words. It took 0.1 ms to identify the
script of a word. At line level too, a separate network (with same architecture) is trained with 120K lines
followed by validation with 60K lines from all the scripts . Training time in this task took an average
of 4.11 hours per epoch. The trained network is then tested on 1.003M lines. Script identification of a
single unseen line took 0.5 ms. Note that as the average length of input sequence increases, training the

network becomes costly with respect to time

We have performed the experiments at line and word level on reported dataset (D1). Table 4.2

shows the accuracy of our script identification method at line and word level for all the scripts. At

35

word level script identification, our method achieves an average accuracy of 93.96% and at line level,
we report an average accuracy of 97.90%. At word level, we report a maximum accuracy of 99% for
Malayalam script. And for Manipuri, report a minimum accuracy of 71.4% due to presence of visually
similar characters in the script from Assamese script. Similarly, at line level we are getting a maximum

accuracy of 99.5% for Odiya and a minimum accuracy of 95.3% for Assamese.

In order to validate the generality of the work, we compare it with the method proposed in [37] on the
reported dataset (D2). Their word image dataset (D2) contains about 220K words from eleven different
Indian scripts. The method in [37] uses Gabor features with SVM as classifier to identify the scripts of
the incoming word images. We train the RNN with 7K words and test it with remaining 13K words from
each script. In Table 4.2 we report the accuracy of both these methods on this dataset (D2). Both the
method yield comparable results (i.e., 94.59% of our method against 94.8% of [37]). As can be seen,
our method which uses naive features yield results that are comparable to those that are evolved over
years of research. (Note that wide variety of texture features based on gabor and wavelets are tried in
the past [37, 11, 29] and this was one of the top performing descriptors in this class.) In addition, our
method uses a simple multiclass classifier and not a hierarchical handcrafted classifier architecture as
in [37]. It can also be seen from the Table 4.2, our method on D2 gives an accuracy 94.10% whereas [37]
reported an accuracy of 94.44%. One may also note that D2 does not contain scripts (such as Manipuri,
Assamese and Marathi) which can get confused with others present in the dataset. On this subset of
scripts, we report an average performance of 95.55%, which is better than 94.44% as reported by [37].
Using multilayer perceptrons (MLP) for script identification at word level, yields an average baseline

accuracy of 74.67% against our method’s 93.96%.

Scripts in Indic languages share some minor or major similarities with each other. For example,
Hindi, Bangla and Gurumukhi have shirorekha at top of their wordset. Therefore there is a probability
that a Hindi word can be confused with a Gurumukhi or a Bangla word, which also holds true for
Gurumukhi and Bangla words. Also, there are some characters in these scripts which are visually
similar. Fig. 4.5 shows the confusion matrix at word level for all the 12 Indian multilingual scripts. It
is evident that aforementioned observation holds true as Hindi is confused with Bangla and Gurumukhi
1.46% and 0.91% of words, respectively. Similarly, Gurumukhi words are identified as Hindi as much
as 2% of times and Bangla 1.7%. In confusion matrix table it can also be seen that 2% of Kannada words
are being confused with Telugu words and 1.81% of Telugu words are confused as Kannada words. This
is due to the fact that Kannada and Telugu alphabets are essentially the regional calligraphic variants
of a single script. Assamese, Oriya and Bangla also look similar as they all originated from an ancient
Siddhong script. Typographical differences between these scripts are used to identify the alphabets and
their script. Hence, it can be seen in the confusion matrix that Assamese words are identified as Bangla
0.51% of the times, and as Oriya 0.54% times. Similarly, Oriya words are identified as Assamese 0.95%
times. Some failure cases in script identification at word level has been discussed in Fig. 4.4, where we

show the effect of observations made above, on identification at word level.

36

Zorseg|[tuas. | [pgoes:[socom
HIgdIf3 || ¥WI3H | |wra3T || FF 99

—o17

GFTATIe

Rl Gl

Figure 4.4 Script identification Results: Some failure cases in script identification at word level. First
row, first column shows Kannada words identified as Telugu and the second column in same row shows
Telugu words identified as Kannada words. In second row, first column shows the Gurumukhi words
as Hindi and in second column of the same row, Hindi words identified as Gurumukhi. Similarly in
the third row of the figure, first column shows Bangla words identified as Assamese and vice versa in
second column.

For line level script identification, we report better results than the identification at word level. We
observed through our experiments that longer sequential features, even at word level, gives a good
accuracy. Hence, it is natural that the accuracy at line level will be better than the word level accuracy
as RNN becomes more confident with longer sequences. Also, we find that the assumptions which we
made above, at word level hold true for the line level too. Although, the accuracies of Hindi, Bangla
and Gurumukhi has increased at line level, it is observed that there are still some confusions, albeit low,
among these due to their textual properties. For Kannada and Telugu too, there are some confusion due

to similarity of the scripts they are written in.

4.3.2 Language Identification

Encouraged by the performance of the method on script identification, we also did experiments to
identify the inherent language of a document image at line as well as word level. For this we use three
Roman script based languages: French, German and Spanish; two Devanagari script based languages:
Hindi and Marathi; two Bangla script based languages: Assamese and Manipuri which also happens
to share some vocabulary. Table 4.3 shows the printed dataset details for Roman-based languages. We
have used around 2000 pages for each language, amounting to 2.19M words and 154K lines.

For language identification at word level, we train the RNN (with the same architecture as mentioned
in section 4.3.1) with 600K words followed by validation with 150K words from all Roman-script based
languages. Training took approximately 2 hours per epoch. For testing, around 1M words were used.
To identify the language of a word, it took an average of 0./ ms. For language identification at line level,
we train and validate a different network with same architecture with 30K lines 15K lines, respectively,
from all the languages. Training took an average of 0.8 hours per epoch. Trained network is then tested
with 100K lines.

37

T T
Hindi 1.46 0.41 0.92 10.64 b

Malayalam 3
Gurumukhi 1.94 177 9
Kannada 143 244 0.51 9
Tamil |- 0.44 EEERK 0.45
Telugu 1.81
Bangla |- 0.47
Marathi |- 2.63
Guijarati [
Assamese [
Manipuri |-
Oriya |- d .
L L L L L L L L L
% B % 5, % % % B % % %, %
Ja% 4@[/_ , % % % B N %% 2,

Figure 4.5 Confusion Matrix for the script identification at word level. The blank spaces in the graph
denotes predictions that are less than 0.40%.

For language identification, we are showing the accuracy of all the Roman-script based languages
in Table 4.3. We achieve an average accuracy of 93.39% at word level on our dataset. In Table 4.3 we
also show the confusion matrix for language identification for the languages at word level. For language
identification at line level, the average line level accuracy is shown in also shown in Table 4.3. Using

RNN, we achieve an average accuracy of 95.25% for language identification at line level.

We also perform language identification at word and line level on some Indian languages that share
script and vocabulary. We achieve a fairly good accuracy for all these languages. As it can be seen
in Table 4.2, Hindi and Marathi, which share Devanagiri script, obtain an accuracy of 85% and 95.8%
respectively. Assamese and Manipuri, which share both script and vocabulary, obtain an accuracy of
93.27% and 71.4% respectively. At the line level too, the Indian languages perform better than that at
word level due to longer sequential features. Table 4.2 shows the accuracy at line level for the Indian

languages sharing the script as well as some vocabulary.

Lexical similarity is a measure of the degree to which the word sets of two given languages are
similar. A lexical similarity of 1 means the complete overlap between vocabularies whereas 0 means
no overlap. Lexical similarity of French and German is 0.29, hence, there are 29% common words
in French and German language, similarly French and Spanish has 75% of vocabulary overlapping
(more information can be found at [5]). Therefore, it is evident in Table 4.3 that 3.63% of Spanish
words are confused with French and 3.21% of French words as Spanish. Similarly, 3.47% of French
words are confused as German and 5.44% of German words as French. In Indian languages, Hindi

and Marathi share a common script of Devanagiri. Hence, it can be seen in the confusion matrix in

38

Dataset Confusion Matrix (%) |Accuracy (%)
Language

Books Pages Lines Words | French German Spanish | Line Word

French 6 19K 51K 0.71M| 9332 3.47 321 [94.51 93.32
German 4 21K 55K 0.74M| 544 92.19 237 |94.77 92.19
Spanish 5 19K 48K 0.63M| 3.63 1.70 94.67 |96.47 94.67

Table 4.3 Table depicts the Roman script-based dataset used for language identification. It shows the
confusion matrix for language identification for Roman-script dataset. It also depicts the performance
of our method on the reported dataset at word and line level.

nationalisme || appartenu | | constituye || ““interés
formelle || SdVOIIS | | Slavophiles | n'implique
GBI || soTR| | = || 9HHE
=6 =1 || pdimeoml| | 5T || (R

Figure 4.6 Language Identification Results: Some failure cases for language identification at word
level for both the Indian and Roman-script based dataset. In the first row, the first column shows the
French words identified as Spanish and the second column shows Spanish words identified as French.
In the second row, the first column shows the German words identified as French and the second ones
shows French words identified as German. For the third row, the first column shows the Marathi words
identified as Hindi, and vice versa in second column. In the fourth row, the first column shows the
Assamese words identified as Manipuri and vice versa in the second column.

Fig. 4.5 that 2.64% of Marathi language words are confused with Hindi words. And 10% of Hindi
words are confused as Marathi. In Fig. 4.5, it can also be seen that 26% of Manipuri words are confused
as Assamese words, and 5.7% of Assamese words are confused as Manipuri words. The failure cases in
language identification at word level for both Indian languages and Roman-script based languages are

shown in Fig. 4.6.

4.4 Multilanguage OCRs and Script Identifications

There are two different ways to build M-OCRs. 1) train a single OCR for all the languages, or ii)
train multiple OCRs for corresponding languages. Both these methods have their own advantages and

disadvantages. In first case, RNN would require a very large corpus of data and the output space will

39

become larger, as cardinality of the output space increase. With larger output space, the RNN learning
becomes time consuming as well as computationally expensive. However, in latter case, the data re-
quired for RNN training would be lesser and the output space would be smaller. In this case the network
would converge to an optimum in lesser time. This approach defeats the purpose of the M-OCR where
we want a “single” OCR to recognize multiple languages. Due to the demerits mentioned above for a
lone M-OCR, we introduce a process of script separation in the M-OCR pipeline which would identify
the script of the incoming word beforehand and then send the word to the corresponding script’s OCR
engine.

We now establish the case for script separation module in M-OCR, by empirically comparing the two
approaches discussed above. In our first experiment, script separation is tried out on two groups of 4
scripts - South Indian and North Indian scripts. We represent the word images as sequential features
as described in 4.2.1. Both the groups were mixed with English language. A RNN is trained for each
group separately. For both the groups, 100K words are used for training and the resultant network is
validated on 25K words.

Acc(%) Acc (%)
Scripts (word) Scripts (word)
North Scripts South Scripts
English 99.99 English 99.98
Hindi 98.40 Kannada 98.78
Bangla 99.16 Malayalam 99.57
Gurumukhi 98.63 Tamil 99.13
Gujarati 99.29 Telugu 99.15

Table 4.4 Script Separation Results on North and South Indian Scripts

Results of the script separation experiment is shown in Table 4.4. As it is evident from the table, we
report an accurate script separation in both of the aforementioned groups. From the evidence, we can
safely infer that RNN is able to identify between English and other Indic scripts accurately. Also, sepa-
ration among Indic scripts is very high. From North group, we are getting a higher accuracy of 99.29%
for Gujarati and lower accuracy of 98.40% for Hindi. From South group, we report a high accuracy of
99.57% tor Malayalam and lower accuracy of 98.78% for Kannada. The lesser accuracies for Hindi and
Kannada could be attributed to the scripts’ similarity with Gurumukhi and Telugu respectively.

In order to establish the need for script separation in M-OCR, we perform experiments with and with-
out script separation in two multilingual settings - bilingual and trilingual. The bilingual OCRs (b)fOCR)
are, 1) English(Eng) and Hindi(Hin), ii) English and Bangla(Ban), iii) English and Kannada(Kan) and
iv) English and Telugu(Tel). And, the trilingual OCRs (¢fOCR) are, i)English, Hindi and Bangla and ii)
English, Kannada and Telugu. In contrast to this a hierarchical system is implemented(ZOCR), which
constitutes the script separation module as well as the language specific OCRs. Now we compare the
bilingual and trilingual flat OCRs with our system, #/OCR. This comparison will enable us to comment

on the requirement for script separation module in M-OCRs.

40

y \ L1+L2 | L1+L2+L3 |

(Bi/Tri)-lingual B1 | B2 | B3 | B4 [T1 | T2 |
|OCR | bf [ho [bf [ho | bf [ho | bf [ho || if [ho | if | ho |
Average Char.

3.88|2.87|2.16/1.65(2.31|2.13|1.11|0.61}|3.85|3.31|2.65|2.02

Error Rate

Table 4.5 Multilingual OCRs: comparison of bilingual (bf) and trilingual (¢f) OCRs with hierarchical
(ho) OCR. here, B1,B2,B3,B4 are eng+hin, eng+ban, eng+kan, eng-+tel bilingual datasets, respectively.
and T1,T2 are ENG + HIN + KAN and ENG + KAN + TEL trilingual datasets, respectively. Also, bf OCR,
tfOCR and hOCR are bf, tf and ho, respectively.

Table 4.5 shows the comparison of our hierarchical #0CR with bilingual and trilingual flat M-OCRs
respectively. In both settings, the hierarchical OCR comprising of a script separation module and in-
dividual OCRs outperforms, flat bilingual or trilingual OCR. It is evident from these results that the

hierarchical OCR outperform flat, lone OCRs, in a multilingual setting, involving a variety of scripts.

4.5 Summary

Script and language identification in multilingual setting is very important in optical character recog-
nition tasks. In this work, we present a simple, efficient and accurate method to predict the inherent
script or language at word and line level with minimal evidence, using a pre-trained RNN. This work
comprises of two important components. First component computes the sequential feature from an un-
segmented word image. The second component, LSTM is used to classify the incoming word image into
its corresponding scripts and languages. Also, experiments on a public dataset show that even with naive
features, RNNs achieves good if not better results than the state-of-the-art method. We also observe that,
RNNs are able to characterize the statistical distribution of features computed over vertical segments.
We hope that this can help in other forms of recognition free tasks in document image understanding.

41

Chapter 5

Conclusion and Future Works

This thesis deals with the problem of script and language identification in document images and
scene images. As the world is becoming more and more multilingual, the documents and the scene-
images has started to contain the text from different languages. Hence, an individual OCR specific for
any language would not be able to correctly recognize the text from other languages, be it document

image texts or scene-image texts.

We propose two methods for script and language identification, which can be used in multilingual
settings. First, we have addressed the problem of script identification in the wild. To this end, we
have established a baseline for the end-to-end script identification pipeline for scene text and shown
that simple mid-level features can achieve reasonably high performance for this task. We have also
introduced a robust Indian Language Scene Text (ILST) dataset, which can be used in future for research
in multilingual environment. To show the generality of our method, we also compare our method on
the dataset, containing 10 scripts, which has been introduced in Video Script Identification Competition
held at ICDAR 2015. The dataset is composed of images from news videos of various Indian languages.
Our method achieves 96.70% for script identification in all the ten scripts and clearly outperform two
methods in the competition namely, C-DAC and CUK. Moreover, our results are marginally superior to

HUST, CVC-1, cVC-2 and comparable to the deep learning based best performing method by Google.

Second, we present a recurrent neural network based script and language identification for document
images at words and line levels. This work comprises of two components. First component computes
the sequential feature from an unsegmented word image. The second component, LSTM is used to
classify the incoming word image into its corresponding scripts and languages. Also, experiments on
a public dataset show that even with naive features, RNNs achieves good if not better results than the
state-of-the-art method. We also observe that, RNNs are able to characterize the statistical distribution of
features computed over vertical segments. To show the generality of our method, we also compare our
method with the method proposed in [37] on the reported dataset. Our method that uses a naive features
yield results comparable to those that are evolved over years of research. In addition, our method uses a

multi-class classifier as compared to hierarchical classifier used in [37].

42

Script identification in scene-texts being a fairly new area has not been explored highly. One can
explore different features, hand-crafted or otherwise, and different classifiers other than SvM, like re-
current neural networks, convolutional neural networks etc. As a future work, we plan to extend the
ILST dataset to 10 popular scripts used in India and explore the usage of multiple cues as aid to our
script identifier, such as location of the image and neighboring texts.

Using recurrent neural networks for document and script identification in document images is one
step towards a fully automated multilingual OCRs. Presently, separate OCRs are needed to be developed
for different script and languages using recurrent neural networks [31]. Instead of developing several
OCRs, one can explore the idea of developing a single multilingual OCR with an script and language
identification module integrated. This multilingual OCR should be able to recognize the document
images from all the possible languages or scripts. We can also explore the generality of proposed
method in Chapter 4 by performing the script and language identification on handwritten document
images. Through the experiments done above, we also observe that, RNNs are capable of characterizing
the statistical distribution of features computed over vertical segments. We hope that this can help in

other forms of recognition free tasks in document image understanding.

43

Related Publications

1. Ajeet Kumar Singh, Anand Mishra, Pranav Dabral and C. V. Jawahar, A Simple and Effective
Solution for Script Identification in the Wild, DAS 2016 .

2. Ajeet Kumar Singh and C. V. Jawahar, Can RNNs Reliably Separate Script and Language at
Word and Line Levels?, ICDAR 2015.

Other publications during MS which are not part of this thesis are as follows:

3. Minesh Mathew, Ajeet Kumar Singh and C. V. Jawahar, Multilingual OCR for Indic Scripts,
DAS 2016

4. Praveen Krishnan, Naveen Sankaran, Ajeet Kumar Singh and C.V. Jawahar, Towards a Robust
OCR for Indic Scripts., DAS 2014.

44

(1]
(2]
(3]
(4]

(5]
(6]
(7]
(8]
(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

Bibliography

Tesseract OCR, http://code.google.com/p/tesseract-oct/.

LabelMe - The Open Annotation Tool. http://labelme.csail.mit.edu/.

Alex Graves - Thesis. http://www.cs.toronto.edu/~graves/phd.pdf.

Christopher Olah - Understanding LSTMs. http://colah.github.io/posts/

2015-08-Understanding—-LSTMs/.

Ethnologue - webpage. https://www.ethnologue.com/.

Mayank Juneja - Thesis. http://cvit.iiit.ac.in/thesis/mayankjunejaMS2013/.
Authors. Frobnication tutorial. 2006. Supplied as additional material tr . pdf.

B. Bakker. Reinforcement learning with long short-term memory. In /n NIPS, 2002.

Y. Boureau, F. R. Bach, Y. LeCun, and J. Ponce. Learning Mid-Level Features for Recognition. In CVPR,

2010.
T. Breuel, A. Ul-Hasan, M. Al-Azawi, and F. Shafait. High-performance ocr for printed english and fraktur

using Istm networks. In ICDAR, 2013.
A. Busch, W. Boles, and S. Sridharan. Texture for script identification. PAMI, 2005.
S. Chanda, S. Pal, K. Franke, and U. Pal. Two-Stage Approach for Word-wise Script Identification. In

ICDAR, 2009.
S. Chanda, S. Pal, K. Franke, and U. Pal. Two-stage approach for word-wise script identification. In /ICDAR,

20009.
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In In CVPR, pages 886—893,

2005.
T. E. de Campos, B. R. Babu, and M. Varma. Character recognition in natural images. In VISAPP, 2009.
D. Eck and J. Schmidhuber. Finding temporal structure in music: blues improvisation with Istm recurrent

networks. In Neural Networks for Signal Processing, 2002. Proceedings of the 2002 12th IEEE Workshop

on, 2002.
B. Fernando, E. Fromont, and T. Tuytelaars. Mining Mid-level Features for Image Classification. IJCV,

2014.
M. Ferrer, A. Morales, and U. Pal. Lbp based line-wise script identification. In ICDAR, 2013.
V. Frinken, A. Fischer, R. Manmatha, and H. Bunke. A novel word spotting method based on recurrent

neural networks. PAMI, 2012.
D. Ghosh, T. Dube, and A. P. Shivaprasad. Script Recognition - A Review. IEEE Trans. Pattern Anal. Mach.

Intell., 2010.
V. Goel, A. Mishra, K. Alahari, and C. Jawahar. Whole is greater than sum of parts: Recognizing scene text

words. In ICDAR, Aug 2013.

45

[22]

[23]

[24]

[25]
[26]

[27]

(28]
[29]
(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]
[40]
[41]

[42]

[43]

[44]

A. Graves, S. Fernidndez, F. J. Gomez, and J. Schmidhuber. Connectionist Temporal Classification: La-

belling Unsegmented Sequence Data with Recurrent Neural Networks. In ICML, 2006.
A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber. A novel connectionist

system for unconstrained handwriting recognition. PAMI, 2009.
S. Hochreiter, M. Heusel, and K. Obermayer. Fast model-based protein homology detection without align-

ment. Bioinformatics, 2007.
S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computing, 1997.
R. Jain, V. Frinken, C. V. Jawahar, and R. Manmatha. Blstm neural network based word retrieval for hindi

documents. In ICDAR, 2011.
C. V. Jawahar and A. Kumar. Content-level Annotation of Large Collection of Printed Document Images.

In ICDAR, 2007.

G. D. Joshi, S. Garg, and J. Sivaswamy. A Generalised Framework for Script Identification. IJDAR, 2007.
G. D. Joshi, S. Garg, and J. Sivaswamy. A generalised framework for script identification. I/JDAR, 2007.
M. Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman. Blocks That Shout: Distinctive Parts for Scene

Classification. In CVPR, 2013.
P. Krishnan, N. Sankaran, A. K. Singh, and C. V. Jawahar. Towards a robust ocr system for indic scripts. In

DAS, 2014.
A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural

networks. In NIPS. 2012.
D. K. Lluis Gomez. A Fast Hierarchical Method for Multi-script and Arbitrary Oriented Scene Text Extrac-

tion. In arXiv:1407.7504,2014.
D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer

Vision, 60:91-110, 2004.
A. Mishra, K. Alahari, and C. V. Jawahar. Scene Text Recognition using Higher Order Language Priors. In

BMVC, 2012.
T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution Gray-Scale and Rotation Invariant Texture Clas-

sification with Local Binary Patterns. TPAMI, 2002.
P. B. Pati and A. G. Ramakrishnan. Word level multi-script identification. PR Letters, 2008.
T. Q. Phan, P. Shivakumara, Z. Ding, S. Lu, and C. L. Tan. Video Script Identification Based on Text Lines.

In ICDAR, 2011.

S. Rashid, F. Shafait, and T. Breuel. Discriminative learning for script recognition. In I/CIP, Sept 2010.

T. M. Rath and R. Manmatha. Features for word spotting in historical manuscripts. In ICDAR, 2003.

A. Shahab, F. Shafait, and A. Dengel. ICDAR 2011 Robust Reading Competition Challenge 2: Reading

Text in Scene Images. In ICDAR, 2011.
N. Sharma, R. Mandal, R. Sharma, U. Pal, and M. Blumenstein. ICDAR2015 Competition on Video Script

Identification(CVSI 2015). In ICDAR, 2015.
B. Shi, C. Yao, C. Zhang, X. Guo, F. Huang, and X. Bai. Automatic Script Identification in the Wild. In

ICDAR, 2015.
L. Shijian and C. Tan. Script and language identification in noisy and degraded document images. PAMI,

2008.

46

[45] A. K. Singh and C. V. Jawahar. Can RNNs Reliably Separate Script and Language at Word and Line Level?

In ICDAR, 2015.
[46] S. Singh, A. Gupta, and A. A. Efros. Unsupervised Discovery of Mid-Level Discriminative Patches. In

ECCV, 2012.
[47] A. Spitz. Determination of the script and language content of document images. PAMI, 1997.
[48] T. Tan. Rotation invariant texture features and their use in automatic script identification. PAMI, 1998.

47

