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Abstract

We introduce a novel approach for multimodal story summarization, aimed at leveraging TV episode

recaps to create concise summaries of complex storylines. These recaps, which consist of short video

sequences combining key visual moments and dialogues from previous episodes, serve as a valuable

source of weak supervision for labeling the summarization task.

To facilitate this approach, we introduce the PlotSnap dataset, which focuses on two crime thriller TV

shows. Each episode in this dataset is over 40 minutes long and is accompanied by rich recaps. These

recaps are mapped to corresponding sub-stories, providing labels for the story summarization task.

Our proposed model, TaleSumm, operates hierarchically.

(i) First, it processes entire episodes by generating compact representations of shots and dialogues.

(ii) Then, it predicts the importance scores for each video shot and dialog utterance, taking into account

interactions between local story groups.

Unlike traditional summarization tasks, our method extracts multiple plot points from long-form videos.

We conducted a comprehensive evaluation of our approach, including assessing its performance in cross-

series generalization. TaleSumm demonstrates promising results, not only on the video summarization

benchmarks but also in effectively summarizing the intricate storylines of the TV shows in the PlotSnap

dataset. Our project implementation as well as dataset features and demo can be found at https:

//github.com/katha-ai/RecapStorySumm-CVPR2024.
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Chapter 1

Introduction

Imagine settling in for your favorite TV series, eager to catch up on the latest episode. You hit play,

and there it is, the familiar “Previously on...” —the recap. It’s that quick cinematic journey that swiftly

brings you up to speed, reminding you of key moments from past episodes. But have you ever noticed

the spellbinding charm of these recaps, how elegantly they interweave snippets of the story with just the

right bits of dialogue to spark your memory and set the stage for what’s next?

In today’s streaming era of binge-watching marathons, recaps continue to be our faithful guide,

ensuring we’re always aware of the labyrinth of intricate storylines. What if we could harness the

power of recaps not just to jog your memory but to fuel the creation of compelling story summaries?

That’s precisely what we’re here to explore. For the following seven pages, we’ll embark on a quest

where TV storytelling meets modern technology to uncover the untapped potential of recaps for story

summarization.

A TV show recap is a concise, under-two-minute sequence of crucial plot points from previous

episodes. To satisfy the time constraint, the recap is constructed by editing previous episode shots with

sharp and rapid cuts, sometimes adding shots from previously unseen footage, and selecting/modifying

dialog utterances to ensure relevance to the sub-story. A good recap sets the stage for the main part of

the episode by weaving visual and dialog cues to spark the viewers’ memory. Thus, a recap is a great

way to identify sub-stories important to the overall story arc.

Extending this idea, we use recaps to create story summaries by identifying and expanding the sub-

stories from the episode aiming for a more detailed video understanding, (Fig. 1.1). For identification,

we introduce an innovative shot-matching algorithm (Section 2.1) that associates tampered shots from

recap to their corresponding shots in the episode.
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- That's Jack Bauer!
- [Jack] Get up or I will kill you right here.

- Who is it you're looking for?
- I need you to break the story...

- Novakovich was just murdered.
- ... Bauer has no idea...Novakovich
was operating under my orders?

- It's about the people...murdered
your father.
- ... working under Russian agents.

- Bauer contacted Meredith Reed.
- You're suggesting muzzling the
press?

   - ... Meredith Reed. Call her publisher and demand not to run the story.
   - ... muzzling press. The freedom of press is constitutionally protected?
   - You are the President. Tell them this story will create a war.
   - ... I don't need to tell what damage your criminal prosecution will do.
   - You're poison. ... never should have let you do this. 

        - Where's Novakovich? What did he say to Bauer?
        - Nothing ... was bleeding ... wounded by one of the guards.
        - ... murdered. Bauer learned that Novakovich killed Omar and Renee.
        - Lunatic was gonna kill me, Yuri. Think of it as sacrificing a rook for a king.
        - ... orders? There's nothing more dangerous than a wounded animal.

Figure 1.1: We illustrate how TV show recaps can be used to generate labels for multimodal story

summarization. The top half identifies key moments (shots and dialogs) from S08E22 of 24 that feature

in the recap at the beginning of the next episode (S08E23). As recaps help viewers recall essential story

events, we extend these segments to create summarization labels (visualized in the bottom half where

shots and dialogs inherited from recap are marked in deep red). For example, in the sub-story (left), the

recap hints at Jack Bauer relaying classified information to the press, while the summary presents the

complete sub-story, including Logan informing President Taylor about their failure to catch Jack and

their disagreement over muzzling the press.

Different from a recap, a story summary consists of entire scenes or sub-stories that are essential to

the narrative. They serve as the anchors that keep us grounded in the narrative. They distill the essence

of an episode, capturing its pivotal moments and essential elements. Most importantly, it guides viewers

seeking a quick yet comprehensive understanding of a drama. Thus, a first-time viewer may watch story

summaries of each episode serially and understand the main narrative, while watching recaps serially

does not help as they only trigger memories assuming that the viewer has seen the episode before.

Continuing with the same spirit, we bring you two popular crime thrillers, TV shows: 24and Prison

Break, marking the introduction of a new dataset, PlotSnap, that features several episodes from these

shows. Both series fill the moment with suspense and intrigue. On one side, the clock is ticking in the

heart-pounding world of 24, where Jack Bauer relentlessly tackles every seemingly impossible mission.

On the other, Michael Scofield in Prison Breakteases daring escapes and high-stakes adventures. With

excellent recaps in both of these shows that serves as free annotation for us, we can extract important

narrative sub-plots from the recap to create story summaries (see Chapter 2). Despite lasting only 1-

2 minutes, we present an innovative strategy for extracting valuable story summary labels from them

(see Chapter 2).

2



We propose a novel task of creating multimodal story summaries for TV episodes. Unlike previous

multimodal summarization methods [6, 7, 8] that can only generate either a video or a text summary

even after leveraging additional modalities, our task of story summarization is an instance of multi-

modal long-video understanding where an entire episode (typically 40 minutes) needs to be processed.

We formulate story summarization as an extractive multimodal summarization with multimodal output

(video-text-2-video-text, VT2VT) which further expands our horizon on harnessing the complementary

benefits in the additional modality. Specifically, with video shots and dialog utterances (story elements)

in the episode as input, we intend to build models that predict scores indicating the importance of each

shot and utterance. Note, selecting multiple important and connected sub-stories is different and chal-

lenging from most works that promote diversity [9].

1.1 Motivation & Contribution

Notably, existing video summarization techniques, in general, aim at extracting “point” summaries,

e.g., pinpointing specific actions in instructional videos [7] or prioritizing diversity [9]. In contrast, story

summarization emphasizes narrative-centric content, allowing it to retrieve multiple story segments har-

moniously aligned with the overarching story arc.

Recently, several studies [10, 11, 6] have explored multimodal summarization with multimodal out-

put (MSMO), which aims to generate video and text summaries using a joint model. However, their

limitation (except A2Summm [12]) in establishing temporal correspondence across complementing

modalities needs to be exploited. E.g., No existing method utilizes the mutual temporal alignment

between a video and its transcripts, which are automatically synchronized. Instead, the two modalities

are treated separately. We address this by proposing a hierarchical attention-based model, TaleSumm

(Chapter 3), that employs a two-tiered strategy for feature capture. As mentioned, A2Summ [12] too,

generates both outputs; but we differ significantly in video type (stories vs. creative videos), the duration

of the input video, and the model architecture. The first level of our model encodes shot and utterance

representations. At the second level, we foster interaction between shots and utterances within local

story groups based on a temporal neighborhood, reducing the impact of distant and potentially noisy

elements. To maintain the narrative’s temporal flow, a dedicated group token enables message-passing

across story groups. Our model leverages pre-extracted features from established backbones, allowing it

to capture interactions across all video shots and dialog utterances within a 40-minute episode. Notably,

3



it maintains efficiency, making it suitable for training on a modest GPU with 12GB of memory. Plus,

we tried summarizing an entire TV episode (42 minutes long on average), which presents a formidable

challenge for models accustomed to processing shorter clips lasting just a few seconds to a few minutes.

In summary, our contributions are:

1. We propose story summarization that requires identifying and extracting multiple plot points from

narrative content. This is a challenging multimodal long-video understanding task benefitting from

joint analysis of 40+ minute episodes.

2. We pioneer the use of TV show recaps for video understanding and show their application in story

summarization. We introduce PlotSnap, a new dataset featuring 2 crime thriller TV series with rich

recaps.

3. We propose a novel hierarchical model that features shot and dialog level encoders that feed into an

episode-level Transformer. The model operates on the full episode while being lightweight enough

to train on consumer GPUs.

4. We present an extensive evaluation: ablation studies validate our design choices, TaleSumm obtains

SoTA on PlotSnap and performs well on video summarization benchmarks.

We show generalization across seasons and even across TV shows, and evaluate consistency of labels

obtained from multiple diverse sources.

1.2 Summarization Odyssey

Video summarization predates Deep Learning (DL). Past methods focused on generating keyframes [13,

14, 15, 16], skims [17, 18], video storyboards [19], time-lapses [20], montages [21], or video syn-

opses [22]. However, given the effectiveness of DL methods (e.g. [23, 24, 25, 26]) over traditional

optimization-based approaches, we will primarily discuss learning-based approaches in the following.

Summarization modalities. We classify approaches based on input and output modalities. (i) Video

to frames/video (V2V) approaches model temporal relations [27, 28, 29], preserve diversity [30, 9],

or generate images/videos [31, 32, 33, 34]. On the other, (ii) text to text (T2T) methods are either

extractive [35, 36, 37] picking important sentences from a document, or abstractive [38, 39, 40] sum-

marizing the overall meaning by generating new text [41]. Relevant to our work, story screenplay

summaries [42, 43] or turning point identification [44] can be seen as T2T summarization.
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Multimodal approaches typically benefit from additional modalities to enhance model performance.

(iii) Video-text to text (VT2T) is popular for screenplays [6, 45], particularly in generating video

captions [46, 7, 34]. (iv) Video-text to video (VT2V) covers the field of query-guided summariza-

tion [8, 47, 48]. Finally, the last option is (v) video-text to video-text (VT2VT) summarization. Our

work lies here and is different from A2Summ [12] as we operate on long videos edited to convey com-

plex stories. Different from trailer generation [49] that avoids spoilers, we wish to identify all key story

events.

1.3 Existing Datasets

Summarization datasets. We compare popular summarization datasets based on above modalities in

Table 1.1. Video-only datasets, TVSum [2] and SumME [1], consist of short duration videos unlike ours.

Other video datasets work with first-person videos [53], are used for title generation [54], and even fea-

ture e-sports audience reactions [55]. For a nice overview of text-only (T2T) and text-primary (VT2T)

datasets, we recommend reading [6]. Briefly, text datasets include news articles (CNN-DailyMail [51],

XSum [52], human dialog (Samsum [56]), and TV/movie screenplays (SummScreen [43]). While simi-

lar in spirit to screenplays used for storytelling, PlotSnap is different as it features TV episodes with long

videos and dialogs (without speaker labels or scene descriptions), a significant challenge in long-form

video understanding.

1.4 Chronicles of Story Summarization: The Untold Saga

Story summarization retrieves multiple sub-stories contained within the story-arc of an episode. To

our best knowledge, we do not know of any work that approaches video-text story-summary generation.

However, there are approaches to understand stories in movies/TV shows through various subtasks:

person identification [57, 58, 59, 60], question-answering [61, 62, 63], captioning [64, 65, 66, 67], situ-

ation understanding [68, 69, 70, 71], text alignment [72, 73, 74, 75], or scene detection [76, 77, 78, 79].

Recently, SummScreen3D [6] extends SummScreen [43] with visual inputs, but the output summary is

still textual. On the other hand our goal is multimodal story-summary generation by predicting both -

important video shots and dialogs.
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Chapter 2

PlotSnap: The Plot of a Multimodal Dataset

We introduce the PlotSnap dataset consisting of long-form multimodal TV episodes with a well-

structured underlying plot spanning the multiple seasons and episodes. We consider two American

crime thriller TV shows with rich storylines: 24 [80] and Prison Break (PB) [81]. Unlike sitcoms (used

commonly for person id), crime thrillers are recognized for their methodically crafted captivating plot

lines. Notably, both 24 and Prison Break have good recaps, and are famous for using the catchphrase

Previously on... before presenting a summary of the previous episode(s).

We present some statistics of PlotSnap in Table 2.1. With a total of 205 episodes, the large number

of shots and dialogs present in each episode pose interesting challenges for summarization. The first

section of the table presents overall size and duration, second shows statistics for shots and dialog

utterances, and the third for recaps. We note that recap shots are much shorter (1.9s vs. 3.2s for 24)

allowing the editors to pack more story content in the same duration.

Our key idea is to use professionally edited recaps, shown at the beginning of a new episode, as labels

for story summarization. Let En be the nth episode in a TV series. Rn+1 is the recap shown just before

the episode En+1 begins and may contain content from all past episodes {En, . . . , E1}. We classify the

visual content appearing in the recap into three types: (i) shots that are picked (and usually trimmed)

from En, (ii) shots that are picked from En−1 or earlier, and (iii) new shots that did not appear in

any previous episode. On average, recap shots from 24 belong to the above three categories with the

following proportions: 88%, 5%, and 7%. We remove the last episode of each season due to the absence

of a recap.
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TV Series 24 Prison Break

# of Seasons 8 2

# of Episodes 172 33

Dataset duration (hours) 125.9 24.0

Avg episode duration (s) 2635 ± 72 2615 ± 39

Avg # of shots per episode 825 ± 101 999 ± 117

Avg duration of shots (s) 3.2 ± 2.5 2.6 ± 2.3

Avg # of utterances per episode 564 ± 54 529 ± 59

Avg # of words/tokens in utterance 7.9 ± 5.4 7.4 ± 5.8

Avg recap duration (s) 104 ± 28 62 ± 20

Avg # of shots in recap 55 ± 12 43 ± 9

Avg # of utterances in recap 33 ± 6 22 ± 5

Table 2.1: Mean (± stddev) featuring properties of video shots, dialog utterances, and the recap in our

dataset PlotSnap.

2.1 Shot Matching

We propose a novel shot-matching algorithm whose working principle involves frame-level similar-

ities to obtain matches. First, we compute frame-level embeddings using DenseNet169 [82], which was

found to work better than models such as ResNet pre-trained on ImageNet [83, 84] based on a qualitative

analysis. An example is shown in Fig. 2.1.

Query Top-5 retrieved results

D
en

se
N

et
R

es
N

et

Figure 2.1: Retrieval results for Recap from Episode Frames with DenseNet (Top) v/s ResNet (bottom).

We observe qualitatively that DenseNet is able to match to the correct frames from the episode more

often.
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Second, we discuss how these embeddings are used to obtain matches is detailed below.

Matching. For a given recap shot s in Rn+1 we compare it against multiple frames in the episode En,

and compute a matrix dot-product with appropriate normalization (cosine similarity) between respective

frame representations of the recap and episode as illustrated in the toy-example of Fig. 2.2. We remove

very dark or very bright frames, typical in poor lighting conditions or glares, to avoid spurious matches

and noisy labels.

Next, we choose a high threshold to identify matching frames (0.85 in our case after analysis) and

fetch all the top matching frames along with their shot indices (the shot where the frame is sourced

from). We compute a set union over all matched shots obtained by scoring similarities between the

recap frame of shot s and denote this set as Ss. In the example, we match 3 frames of a recap shot and

identify several episode shots shown in the blue box with Ss.

Weeding out spurious shot matches. The set Ss may contain shots beyond a typical shot thread pattern

due to spurious matches. These need to be removed to prevent wrong importance scores from being

obtained from the recap. To do this, we first find the best matching shot in the episode. We observe

that taking top three matched frames for every recap frame results in strong matches. Subsequently, we

pick the maximum similarity score for each unique shot matched to a recap frame. This allows us to

accumulate the score for an episode shot if multiple frames of the episode shot match with frames of the

recap shot. The shot that scores the highest (after summing up the scores) is considered the best-matched

episode shot for recap shot s.

Next, we choose a window size of 21 (10 on either side) and include all shots in Ss that fall within

this window to a new matched set, Ns. This is motivated by the typical duration of a scene in a movie

or TV episode (40-60 seconds) and an average shot duration of 2-3 seconds. We repeat this process

until no more shots are added to the set Ns and discard the rest in Ss. Thus, for a given shot from the

recap, we obtain all matching shots in the episode that are localized to a certain region of high-scoring

similarity (see Fig. 2.2). We repeat this process for all frames and shots from the recap.

2.2 Label Smoothing

The intuition behind extending the recap matched shots obtained in the previous section is to include

chunks of the sub-story that are important to the storyline. While a short recap (intended to bring back

memories) only selects a few shots, a story summary should present the larger sub-story. Selecting only
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Figure 2.2: Flowchart for identifying shots from the episode that appear in a recap and can be used as

weak labels for story summarization. The process involves identifying the list of high-scoring matching

frames, indexing the shots, and then preventing spurious matches by looking for high-scoring matches

within a bounded duration. The flowchart presents an example of the process used to identify the set of

shots Ns from the episode that match to the recap shot.
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Figure 2.3: Triangle smoothing process. Here x-axis denotes binary labels derived from the shot match-

ing process, while y-axis shows soft importance scores used to train our model. Top: The triangular

filter is applied at each shot selected from the matching process. Scores of shots falling within the win-

dow are updated. Bottom: In the second step, we add shot importance derived potentially from multiple

overlapping triangle filters. This typically happens when episode shots in close proximity are matched

to the recap.

one shot in a thread [85] also adversely affects model training due to conflicting signals, as multiple

shots with similar appearance can have opposite labels. Label smoothing solves both these issues.

Triangle Smoother. We hypothesize that the importance of shots neighboring a matched shot are usu-

ally quite high and use a simple triangle smoother to re-label the importance of shots. In particular,

we slide a window of size w centering at positive labels and set the importance of neighboring shots

according to height of the triangle. The above process is illustrated in Fig. 2.3 as the first step. In the

second step, we add and clip the soft labels of strongly overlapping regions to prevent any score from

going higher than 1. For the sake of simplicity, we used triangle smoothing, however, one could also

use other filters. We choose w = 17 by analyzing the spread of the shots and their importance scores

and comparing them against a few episodes for which we manually annotated the story summaries.

Dialog labels. The above smoothing procedure generates soft labels for video shots. For dialog utter-

ances, we simply import the score of the shot that encompasses the mid-timestamp of the dialog. The

key assumption here is that the dialog utterance associated with the matched shot is also important.
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2.3 Recap inspired labels.

We present how recap shots and dialogs can be used to create labels for story summarization. First,

we manually extract the recap (Rn+1) from En+1 instead of employing automatic detection meth-

ods [79] to avoid introducing spurious content. Second, to localize trimmed recap shots in past episodes

(E1, . . . , En), we propose the shot-matching algorithm (see Section 2.1) that conducts pairwise compar-

isons of frame-level embeddings, making selections based on a threshold determined by similarity score

and frequency. Due to shot thread patterns [85], one recap shot may match multiple shots in the episode.

This is desirable as we want to highlight larger sub-stories as part of the summary. In fact, selecting

only one shot in a thread adversely affects the model due to conflicting signals as shots with similar

appearance have different labels.

We think of recap matched shots as temporal point annotations [86]. We identify the set of matching

shots in the episode, create a binary label vector, and smooth this vector using a triangular filter. We will

refer to these smoothed labels as ground-truth (GT) for story summarization. Extending the supervision

helps the model identify meaningful, contiguous sub-stories rather than focusing solely on specific shots

highlighted in the recap. For example, it is unlikely that shot si is important to the story while si±1 is

entirely irrelevant (except at scene boundaries). Thus, smoothing is essential to clarify the distinction

between positive (essential) and negative (unimportant) shots.

A similar approach can be adopted for dialog utterances. We are able to match 88% of recap utter-

ances to dialog within the smoothed video labels. The rest do not appear in episode En or are picked

from extra recorded footage. For simplicity, we inherit labels for the dialogs based on the smoothed

label for the temporally co-occurring shot.
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Chapter 3

TaleSumm: The Story Crafter

In this chapter, we introduce TaleSumm, a sophisticated two-level hierarchical method that feeds upon

the whole sequence of video shots and dialog utterances (story elements) in an episode and identifies

the important shot and utterance. The resulting multi-modal video thus obtained Upon stitching ar-

ticulate the overall story arc. TaleSumm core architecture is Transformer-based thus allowing flexible

hierarchical interaction between video and dialog tokens within local story groups based on a temporal

neighborhood (first level) as well as across such temporal groups (second level) for effective message

passing.

In the upcoming sections, we will nicely formalize our Problem Statement (Section 3.1), elaborate on

Level 1 (Section 3.2) and Level 2 (Section 3.3) of our hierarchical modeling, and conclude it with how-to

train and inference (Section 3.4)

Fig. 3.1 shows an overview of the approach we are using in this task.

3.1 Problem Statement

Our aim is to extract a multimodal story summary (video and text) from a given episode, typically lasting

around 40 minutes, and encompassing multiple key events.

Notation. An episode E = (S,U) consists of a set of N video shots S = {si}Ni=1 and a set of dialog

utterances U = {ul}Ml=1. A shot serves as a basic unit of video processing and comprises temporally

contiguous frames taken from the same camera, while a dialog utterance typically refers to a sentence

uttered by an individual as part of a larger conversation. We denote each shot as si = {fij}Ti
j=1, where

fij are sub-sampled frames, and each utterance as ul = {wlp}Tl
p=1 with multiple word tokens wlp.
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Figure 3.1: (A) TaleSumm ingests all video shots and dialogs of the episode and encodes them using

(B) and (C). Based on temporal order, we combine tokens into local story groups (illustration shows

small groups of 2 shots and 0-2 utterances). To each group, we append a group token and add multiple

embeddings, before feeding them to the the episode-level Transformer (ET). For each shot or dialog to-

ken, a linear classifier predicts its importance. (B) Video shot encoder. For each frame, representations

from multiple backbones are fused using attention (⊞). We feed these to a shot Transformer encoder

ST, and tap a shot-level representation from the CLS token. (C) Utterance encoder uses a fine-tuned

language model and avg-pooling across all words of the utterance. (D) Self-attention mask illustrates

the block-diagonal self-attention structure across the episode. Group tokens across the episode (purple

squares) communicate with each other. (E) Multiple embeddings are added to the tokens to capture

modality type, time, and membership to a local story group.

Summarization as importance scoring. While humans may naturally select start and end temporal

boundaries to indicate important sub-stories, for ease of computation, we discretize time and associate

an importance score with each video shot or dialog utterance. Thus, given an episode E = (S,U),

we formulate story summarization as a binary classification task applied to each element (shot or di-

alog). The ground-truth labels can be denoted as yS = {ySi }Ni=1 and yU = {yUl }Ml=1, where each

ySi , y
U
l ∈ [0, 1], signaling their importance to the story summary. While the ground-truth annotations

may be indicated through a temporal start-end range, we convert them into discrete labels at a shot-level

and dialog utterance-level granularity to convert raw continuous time-space into discrete ground-truth

labels.
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3.2 Level 1: Shot and Dialog Representations

In narrative video production, shots play an important role in advancing the storyline and contextual-

izing neighboring content. We obtain shot-level representations from granular frame-level features to

determine how well the shot can contribute to understanding the storyline.

Feature extraction. To capture various aspects of the shot, we use three pretrained backbones that

capture visual diversity through people, their actions, objects, places, and scenes: ϕk
S(·), k = {1, 2, 3}.

We extract relevant visual information from frame(s) of a given shot, si as follows:

fkij = ϕk
S ({fij}) , fkij ∈ RDk

S . (3.1)

Note that the backbone may encode a single frame fij or a short sequence around fij .

For dialog utterances, we adopt a fine-tuned language model ϕFT
U , to compute contextual word-level

features:

wlp = ϕFT
U ({wlp}) , wlp ∈ RDU . (3.2)

Shot CLS pooling. To compute an aggregated shot representation, we combine frame-level signals into

a compact representation. An attention-based aggregation (⊞) (inspired by [87]), effectively weighs the

most pertinent information (e.g. action in a motion-heavy shot or scenery in an establishing shot). First,

the frame features from different backbones are projected to the same space (using Wk
S∈ RD×Dk

S ) and

then concatenated to form f̂1:3ij ∈ R3D (Eq. 3.3). A linear layer WP ∈ R3×3D followed by tanh and

softmax computes scalar importance scores that are used for weighted fusion:

f̂1:3ij = [W 1
Sf

1
ij ,W

2
Sf

2
ij ,W

3
Sf

3
ij ] , (3.3)

α1:3
ij = softmax(tanh(WP f̂

1:3
ij )) , (3.4)

Fij = α1
ij f̂

1
ij + α2

ij f̂
2
ij + α3

ij f̂
3
ij . (3.5)

We omit bias for brevity. We add relative frame position to Fij through a time-embedding vector, ES
j ,

similar to Fourier position encoding [88].

A shot transformer [88] ST is used to encode the frame-level feature sequence {Fij}Ti
j=1. We tap the

output from the CLS token appended at the beginning of the sequence (e.g. similar to BERT [89]) as the

final shot representation:

si = ST({Fij +ES
j }

Ti
j=1) , si ∈ RD . (3.6)
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Dialog utterance representation. First, we project the tokens wlp to RD using a linear layer WU ∈

RD×DU . As the tokens are already contextualized by ϕFT
U , a simple mean-pool across the p tokens is

found to work well:

ul = meanp({WUwlp}Tl
p=1) , ul ∈ RD . (3.7)

3.3 Level 2: Episode-level Interactions

We propose an episode-level Transformer encoder, ET, that models interactions across shots and

dialog of the entire episode. Predicting the importance of an element (shot or dialog) requires context

in a neighborhood; e.g. shot in a scene, dialog utterance in a conversation.

Additional embeddings. We arrange shot and dialog tokens based on their order in the episode (see

Fig. 3.1(A)). Learnable type embeddings help the model distinguish between shot and dialog modalities

(EM ∈ R2×D).

We encode the real time (in seconds) of appearance of each element (shot or dialog) using a binning

strategy. Given an episode of T seconds, we initialize Fourier position encodings ET ∈ R⌈T/τ⌉×D

where τ is the bin-size (hyperparameter). Based on the mid-timestamp of each element t, we add ET
t

to the representation, the ⌊t/τ⌋th row in the position encoding matrix. Such time embeddings allow

our model to: (i) implicitly encode shot duration; and (ii) relate co-occurring dialogs with video shots

without the need for complex attention maps.

Local story groups. The total number of video shots and dialog make up the sequence length, S=N+M ,

can be around 1500 tokens for ET. Self-attention over so many tokens is not only computationally

demanding, but can also be difficult to train due to noisy and unrelated distant tokens. We adopt a

block-diagonal attention mask to constrain the tokens to attend to local story regions:

AS×S = diag(1n1×n1 , . . . ,1ng×ng , . . . ,1nG×nG) , (3.8)

where 1ng×ng denotes an all one matrix, ng is the # of tokens in the gth local block,
∑G

g=1 ng = S, and

diag(. . .) constructs a block diagonal matrix. Further, we add new learnable group index embeddings

EG ∈ RG×D to our tokens to inform our model about their group membership.

Group tokens. While capturing interactions across all tokens may lead to poor performance, self-

attention only within the local story groups prohibits the model from capturing long-range story de-

pendencies. To enable story group interactions, we propose to add a set of group tokens to the input,
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extending the sequence length to Ŝ=S+G. The group tokens qg represent an additional layer of hierar-

chy within the episode model as they summarize the story content inside a group and also communicate

across groups, providing a way to understand the continuity of the story. Fig. 3.1(E) shows how group

tokens are inserted at the end of each local story group’s shot and dialog tokens.

To facilitate cross-group communication, we make two modifications to the self-attention mask: (i) The

size of each local group ng is extended by 1 to incorporate the group token qg within the block matrix.

We assume A is updated to reflect this and is of size Ŝ× Ŝ. (ii) We compute a binary index o ∈ {0, 1}Ŝ

to represent the locations at which a group token appears in the sequence. The new self-attention mask

Â = A+ooT allows group-tokens to communicate. Fig. 3.1(D) illustrates the attention mask; light blue

squares correspond to attention within a group, and sparse purple squares visualize the group tokens.

Importance prediction. We present how shot or dialog scores can be estimated. First, the input tokens

to ET are:

ŝi = si +EM
0 +ET

ti +EG
gi , (3.9)

ûl = ul +EM
1 +ET

tl
+EG

gi , (3.10)

qg = q+EG
g . (3.11)

where ti, tl and gi, gl correspond to the mid-timestamp and group membership of shot si and dialog ul

respectively. q denotes the learnable shared group type embedding.

We feed the updated shot, dialog, and group token representations to ET post LayerNorm [90], a HE

layer Transformer encoder with a curated self-attention mask Â:

[. . . , s̃i, ũl, q̃g, . . .] = ET([. . . , ŝi, ûl,qg, . . .]; Â) , (3.12)

with all tokens, i.e. {i}N1 , {l}M1 , and {g}G1 .

After ET, we compute shot and dialog importance scores using a linear classifier WC ∈ R1×D followed

by sigmoid function σ(·):

ŷSi = σ(WC s̃i) and ŷUl = σ(WC ũl)∀i, l . (3.13)
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3.4 Training and Inference

Training. TaleSumm is trained in an end-to-end fashion with BinaryCrossEntropy (BCE) loss. We

provide positive weights, w (ratio of negatives to positives) to account for class imbalance. Modality

specific losses are added:

L = BCE
(
ŷS ,yS ;wS)+ BCE

(
ŷU ,yU ;wU) . (3.14)

Inference. At test time, we follow the procedure outlined in Section 3.3 and generate importance scores

for each video shot and dialog utterance (Eq. 3.13).

Variations. As we will see empirically, our model is versatile and well-suited for adding/removing

modalities or additional representations by adjusting the sequence length of the Transformer (number

of tokens). It can also be modified to act as an unimodal model that applies only to video or dialog

utterances by disregarding other modalities.
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Chapter 4

Experiments and Discussion

In this section, we will start with our experimental setup in Section 4.1 that elucidates which dataset

splits and evaluation metric we used, followed by implementation details in Section 4.2. Subsequently,

we conduct a series of ablation studies which motivated and finalized the design choices for our model

while we compare against various adapted SoTA models in unimodal and multimodal setting 4.3. Ulti-

mately, we conclude this chapter with some qualitative analysis and discussion in Section 4.4. Here we

shed some light on our model performance on benchmark datasets, its generalization ability to other TV

Shows, and the quality of our recap-inspired labels.

4.1 Setup

Data splits. We present 4 split-settings as elaborated below for evaluating its generalizability and ro-

bustness.

1. IntraCVT: On 24, most experiments follow an intra-season 5-fold cross-validation-test strategy. It

represents 5 different non-overlapping splits from 7 seasons of 24 (Season 2 to 8). Intra-season

means episodes from each season are present in the train/val/test splits. For example, split-1 uses 5

episodes from the end of each season for val and test (2, 3 respectively). Likewise, Split-5 (the fifth

fold) uses episodes from the beginning of the season in val/test. We observe that Split-5 is harder.

2. X-Season: On 24, we assess cross-season generalization through a 7-fold cross-validation-test. in-

volves 7 non-overlapping splits with one season entirely kept for testing (from Season 2 to 8), while

the train and val use 18 and 5 episodes respectively from each season. This strategy is used to test

for the generalization of our model on different seasons of the same series, 24.
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3. X-Series: We show transfer results from 24 to Prison Break to assess the generalizability of the

model in different settings where plotlines from disparate seasons or even separate series may diverge

significantly due to distinct directors and producers, with diverse casting roles and unique methods

of recap construction. It includes 8 seasons (seasons 2 to 9) from 24 in train/val (19/4) and 2 seasons

(seasons 2 and 3) from PB for the test. This split is designed to check the effectiveness of our model

across TV series.

4. default-split: consists of a single non-overlapping train/val/test split with 126/18/17 episodes from

24, respectively. This split is used for comparison against labels from Fandom or Human annotations.

Evaluation metric. We adopt Average Precision (AP, area under precision-recall (PR) curve) as the

metric to compare predicted importance scores of shots or dialogs against ground-truth.

4.2 Implementation details

Feature representations serve as the key ingredient for providing the desired signals to our model so

as to comprehend the intricate blend of multi-modal signals and effectively decipher the genuine plot-

line through extraction and analysis. In the following, we describe different backbones used to extract

features for video shots and dialog utterances.

Visual features. Prior to the extraction of frame(s)-level features, we first segment the episode into

shots using DFD [91] (Displaced Frame Difference) algorithm. We adopt 3 specialized backbones, that

combinedly perform best (as shown in feature combination ablations in Table 4.2): (i) DenseNet169 [82]

pre-trained on ImageNet [83], SVHN [92], and CIFAR [93] for object semantics; (ii) MViT [94] pre-

trained on Kinetics-400 [95] for action information; and (iii) OpenAI CLIP [96], pre-trained on 4M

image-text pairs, for semantic information.

Utterance features. We adapt RoBERTa-large [97] for extractive summarization using parameter-

efficient fine-tuning [5, 6] on the text from our dataset. Given dialogs from the episode, our fine-tuning

objective is to predict the important dialogs. We extract word/token-level representations (w) from

finetuned (but frozen) RoBERTa-large (ϕFT
U ) for the task of dialog story summarization. Notably, the

absence of speaker annotations in our use of raw dialog texts poses a challenge in determining the

speaker of each utterance and discerning how the storyline is evolving.
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Feature Extraction Here we present additional details of the backbones used for feature extraction for

video as well as dialog modalities. Prior to feature extraction, setting an appropriate fps for every video

is important to trade off between capturing all aspects of the video while keeping computational load

low. We find 8 fps to be a good balance between the two.

Visual Feature Backbones. We present the details for three backbones capturing different aspects of a

video.

DenseNet169 f1. Feature extraction of salient objects/person in each frame is of utmost priority and

is achieved through DenseNet169 [82] pretrained on ImageNet [83], SVHN [92], and CIFAR [93].

We consider the frozen backbone without the linear classification head to obtain flattened features,

f1 ∈ R1664. Before feeding the images, we apply a few preprocessing steps to sub-sample raw images.

1. Frames are resized to 256×256 resolution along with center cropping.

2. RGB pixel values are scaled to [0, 1] followed by mean and standard deviation normalization.

We use the architecture as well as parameters from PyTorch Hub1, version pytorch/vision:v0.10.0.

MVIT f2. Beyond objects/person, their actions too affect the importance of a shot, and hence having

them serves the purpose of representing a shot from a different perspective. For this, we use MViT [94]

pretrained on Kinetics-400 [95]. We feed the original video with some pre-processing as explained

above to obtain feature embeddings, f2 ∈ R768. With a window-size=32 and stride=16, we extracted

per-window encodings while padding zeros at the end (black-frames) to account for selecting window-

size amount of frames.

1. Frame resizing to 256×256 followed by center-cropping to 224×224 resolution.

2. Pixel scaling from 8-bit format to float format ([0, 1]). Following this, mean and standard deviation

normalization is performed.

3. We chose MViT-Base 32×3 that ingests a chunk of video (32 frames) at once and produces an

embedding vector.

We import the architecture and pretrained parameters from PytorchVideo2.

CLIP f3. This is a multi-modal backbone that can produce representations corresponding to matching

textual descriptions. We borrow the CLIP [96] pre-trained model from the huggingface [98] library

and use their inbuilt image processor as well as feature extractor to obtain subsampled frame-level

encodings, f3 ∈ R512.

1https://pytorch.org/hub/
2https://pytorchvideo.org/
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Figure 4.1: Architecture of the adapter module [5] and its integration with language model’s encoder

layer. Left: The adapter module has fewer parameters compared to the attention and feedforward layers

in a Transformer layer and consists of a bottleneck and skip-connection. Right: We add the adapter

module twice to each encoder layer. Once after the multi-head attention and the other is placed after the

two feed-forward layers typical of a Transformer architecture. For the Transformer decoder, in the case

of PEGASUSLARGE, we add one extra adapter after cross-attention as well. Adaptation: When adapting

the model, the purple and green layers illustrated on the right module are trained on the downstream data

and task, while the other blocks are frozen.

1. Short-side is resized to 224 pixels followed by center-cropping (to 224×224).

2. Re-scaling 8-bit image to [0, 1] interval.

3. Mean and standard deviation normalization.

Dialog Features We test three different dialog features and present the details as follows.

Fine-tuning Language Models. We fine-tune language models such as PEGASUSLARGE [40], RoBERTa-

Large [97], and MPNet-base-v2 [99] for our task of extractive dialog summarization. To account for

the small dataset sizes, for all fine-tuning, we use the Adapter modules [5] that add only a few trainable

parameters in the form of down- and up-projection layers as illustrated in Fig. 4.1.
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RoBERTa-Large [97] and MPNet-base-v2 [99] are fine-tuned for utterance-level binary classification to

decide whether the dialog utterance is important or not.

PEGASUSLARGE is trained originally to generate abstractive summaries. Instead, we adapt it to gener-

ate summary dialogs. As the number of tokens accepted by the PEGASUSLARGE model does not allow

feeding all the dialog from the episode, we break it into 6 chunks.

Word-level embeddings. We use last hidden-state of the encoder to obtain contextualized word-level

embeddings, w ∈ R1024 (768 for MPNet-base-v2). PEGASUSLARGE, being a generative model (con-

sisting of both encoder and decoder), we keep only the encoder portion for word-level feature extraction.

Frame sampling strategy. We randomly sample up to 25 frames per shot during training as a form of

data augmentation. This confers an advantage in terms of augmentation that enrich our shot encodings.

Relative indices of these frames in the given shot serve as positional embeddings to the respective frame

features. During inference, we use uniform sampling. Fourier position embeddings ES
j use the video

frame index.

Architecture details. We experiment with the number of layers for ST, HS∈[1 : 3] and ET, HE∈[1 : 9],

and find HS=1 and HE=6 to work best. Except the number of layers, ST and ET have the same con-

figuration: 8 attention heads and D=128. Appropriate padding and masking is used to create batches.

We compare multiple local story group sizes ng ∈ {5 : 30 : 5} and find ng=20 to work best.

Training details. Our model is implemented in PyTorch [100] and trained on 4 RTX-2080 Ti GPUs

for a maximum of 65 epochs with a batch size of 4 (i.e. 4 entire episodes). We adopt the AdamW

optimizer [4] with parameters: learning rate=10−4, weight decay=10−3. We use OneCycleLR [101]

as learning rate scheduler with max lr=10−3, and multiple dropouts [102]: 0.1 for projection to 128

dim inside video and utterance encoder; 0.2 for attention layers; and 0.2 for the classification head. The

hyperparameters are tuned for best performance on validation set.

4.3 Experiments on 24

4.3.1 Architecture ablations.

Results in Table 4.1 are across two dimensions: (i) columns span the shot or utterance level and

(ii) rows span the episode level. All model variants outperform a baseline that predicts a random score

between [0, 1] – 34.2 (video) and 30.4 (dialog), averaged over 1000 trials.
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Video-only Dialog-only

Avg Max Cat Tok ⊞ Max Avg wCLS

MLP 42.3 42.3 42.3 42.4 42.5 35.7 35.7 35.8

woG + FA 51.8 51.9 51.1 51.6 52.0 44.5 44.5 44.6

wG + SA 52.4 52.5 53.3 53.3 53.4 46.5 46.5 47.2

Table 4.1: Rows demonstrate methods for capturing episode-level interactions. In an MLP, tokens are

independent. woG+FA is a Transformer encoder that captures full-attention over the entire episode with-

out grouping; and wG+SA uses the proposed architecture with local story groups and sparse-attention.

Columns describe the aggregation method used to combine frame (or token) level features into shot

(or utterance) representation. C1 and C7 use average pooling. C2 and C6 use max pooling. C3-C5 are

variants of ST: C3 concatenates backbone features of each frame, C4 uses backbone features as separate

tokens, and C5 uses proposed ⊞ attention fusion. C8 uses the CLS token for dialog. Chosen: ⊞ for

shot, and average pooling for utterance representation.

Across rows, we observe that the MLP performs worse than the other two variants by almost 10%

AP score because assuming independence between story tokens is bad. Our proposed approach with

local story groups and sparse-attention (wG+SA) outperforms a vanilla encoder without groups and

full-attention (woG+FA) by 1-2% on the video model and 2-3% for the dialog model.

Across columns, performance changes are minor. However, when using wG+SA at the episode-level,

gated attention fusion with a shot transformer (⊞) improves results over Avg and Max pooling by 1%.

For dialog-only, though wCLS outperforms Avg and Max by 0.7%, we adopt Avg pooling for its effec-

tive performance in a multimodal setup.

Extended Feature and Architecture Ablations. Here we provide extensive ablation studies with re-

gard to feature combinations and model hyperparameters. All experiments are run on IntraCVT split,

and we report mean and standard deviation.

Visual features for Story summarization. Table 4.2 shows the results for all combinations of the

three chosen visual feature backbones in a multimodal setup. We draw two main conclusions: (i) The

Shot Transformer encoder (ST) shows improvements when compared to simple average or max pooling.

(ii) DMC (DenseNet + MViT + CLIP), the feature combination that uses all backbones, performs well,
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Pooling Avg Max Cat Tok Stack ⊞

Concatenate ✓ ✓ ✓ NC ✓ ✓

DMC
Video AP 54.1 ± 4.5 54.1 ± 4.6 54.2 ± 4.1 54.1 ± 4.0 53.9 ± 4.7 54.2 ± 3.3

Dialog AP 48.7 ± 4.1 48.8 ± 4.4 48.9 ± 4.7 49.0 ± 4.8 49.1 ± 4.8 49.0 ± 4.9

DM
Video AP 54.0 ± 3.8 54.1 ± 3.3 54.0 ± 4.1 53.9 ± 3.2 53.6 ± 4.3 53.7 ± 3.0

Dialog AP 48.6 ± 4.4 48.8 ± 4.4 48.9 ± 4.4 48.6 ± 3.6 48.4 ± 4.8 48.6 ± 4.3

MC
Video AP 53.8 ± 3.6 53.9 ± 4.0 53.8 ± 4.5 54.0 ± 4.9 53.8 ± 4.2 54.2 ± 4.3

Dialog AP 48.5 ± 4.6 48.8 ± 4.1 48.7 ± 4.5 49.0 ± 4.1 48.5 ± 4.7 49.1 ± 4.2

DC
Video AP 54.0 ± 4.5 54.1 ± 4.3 54.1 ± 4.0 54.0 ± 4.0 54.1 ± 3.9 54.1 ± 4.2

Dialog AP 48.2 ± 4.9 48.7 ± 4.5 48.9 ± 4.7 49.0 ± 4.6 49.0 ± 4.8 49.0 ± 4.9

D
Video AP 53.5 ± 4.2 53.4 ± 4.2 54.0 ± 3.8 - - -

Dialog AP 48.1 ± 4.2 48.6 ± 4.3 48.9 ± 4.4 - - -

M
Video AP 52.9 ± 3.2 53.6 ± 3.6 53.5 ± 3.4 - - -

Dialog AP 48.2 ± 4.0 48.4 ± 3.9 48.7 ± 4.6 - - -

C
Video AP 53.9 ± 3.7 53.9 ± 3.9 54.1 ± 3.7 - - -

Dialog AP 48.6 ± 4.2 48.7 ± 4.2 48.7 ± 4.0 - - -

Table 4.2: TaleSumm ablations for different feature combination strategies, using both video and dia-

log modalities. Feature ablations are performed over the visual modality. Columns describe the Pooling

approaches used to form shot-level from frame-level representations; Concatenate corresponds to how

backbone feature are combined (concatenate ✓ or as separate tokens (NC)). Stack pooling is an alter-

native approach to ⊞, where instead of condensing the aggregated (concatenated) visual features via a

linear layer WP ∈ R3×3D, we obtain individual feature importance score (with WP ∈ R1×D followed

by tanh and softmax). D: DenseNet169, M: MViT, and C: CLIP. All results are for TaleSumm that

captures Episode level interactions.

while MC shows on-par performance. Importantly, the feature combination is better than using any

feature alone.

Language backbones for Story summarization. Different from the previous experiment, Table 4.3

shows results for different dialog features with different word-to-utterance pooling approaches in a

multimodal setting. RoBERTa-Large outperforms all other language models. Nevertheless, the other

models are not too far behind.
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Pooling Max Avg wCLS

PEGASUSLARGE [40]
Video AP 52.7 ± 4.3 53.1 ± 4.2 53.1 ± 4.7

Dialog AP 47.9 ± 3.6 48.0 ± 5.1 47.9 ± 4.9

MPNet-Base [99]
Video AP 53.2 ± 3.9 53.1 ± 3.7 53.5 ± 3.4

Dialog AP 48.0 ± 4.4 47.2 ± 3.2 48.6 ± 5.0

RoBERTa-Large [97]
Video AP 54.1 ± 3.8 54.2 ± 3.3 54.1 ± 4.2

Dialog AP 49.0 ± 4.6 49.0 ± 4.9 49.0 ± 4.3

Table 4.3: TaleSumm ablations for various dialog utterance feature backbones. Visual features are fixed

to DMC.
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Figure 4.2: Performance of TaleSumm for varying local story group size (also referred to as window

size) and number of layers in the episode-level Transformer ET. y-axis denotes the AP score for the

Left: Video and Right: Dialog. We observe that a 6 layer model HE = 6 works well together with a

local story group size of ng = 20.

Number of ET layers and local story group size. Two important hyperparameters for our model are

the number of layers HE in the ET and the local story group size ng. Fig. 4.2 shows the performance on

video AP (left) and dialog AP (right) with a clear indication that 6 layers and a story group size of 20

shots are appropriate.
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Model AttnMask GToken Video AP Dialog AP

1 Video-only SA ✓ 53.4 ± 3.9 -

2 Dialog-only SA ✓ - 47.2 ± 3.9

3

TaleSumm

FA - 51.8 ± 3.6 43.8 ± 4.7

4 FA ✓ 51.9 ± 3.7 44.0 ± 4.6

5 SA - 53.9 ± 3.4 48.8 ± 4.6

6 SA ✓ 54.2 ± 3.3 49.0 ± 4.9

Table 4.4: TaleSumm ablations. The AttnMask column indicates if the self-attention mask is applied

over the full episode (FA) or uses sparse block diagonal structure of story groups (SA). The GToken in-

dicates whether the group token is absent (-) or present (✓). R6 is our final chosen model for subsequent

experiments.

4.3.2 TaleSumm ablations

The results are presented in Table 4.4. Rows 1 and 2 highlight the best video-only and dialog-only

models (from Table 4.1). We report mean ± std dev on the val set. Standard deviation is found to be

high due to variation across multiple folds; but low across random seeds. Results for joint prediction of

video shot and utterance importance are shown in rows 3-6. Our proposed approach in row 6 performs

best for both modalities, outperforming rows 3-5.

4.3.3 SoTA comparison.

We compare against SoTA methods: video-only (PGLSUM [103], MSVA [104]), dialog-only (Pre-

Summ [35]), and multimodal (A2Summ [12]) in Table 4.5. While none of the above methods are built

for processing 40 minutes of video, we make small modifications to them to make them comparable to

our work (details in Section 4.3.4). On both the validation and the test set, TaleSumm outperforms all

other baselines in both modalities.

PreSumm [35] extends BERT by considering multiple sentences and [CLS] tokens at once, allowing

contextualization across them and tapping out those [CLS]s for predicting importance score. Although

there are architectural similarities with ET, the need for complementary modality poses a challenge. The

performance drop observed in A2Summ [12] is attributed to using a dual-contrastive loss and long se-

quence samples, which inherently add noise. Aligning episodic visual and text content while contrasting
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Model
Val Test

Video AP Dialog AP Video AP Dialog AP

PGLSUM [103] 48.8 ± 3.3 - 47.1 ± 2.4 -

MSVA [104] 47.3 ± 3.8 - 45.5 ± 1.2 -

Video-Only 53.4 ± 3.9 - 50.6 ± 3.6 -

PreSumm [35] - 43.1 ± 3.3 - 41.6 ± 2.0

Dialog-Only - 47.2 ± 3.9 - 43.4 ± 2.8

A2Summ [12] 35.1 ± 1.8 33.2 ± 2.8 33.8 ± 1.7 31.6 ± 2.2

TaleSumm (Ours) 54.2 ± 3.3 49.0 ± 4.9 50.1 ± 2.8 46.0 ± 2.1

Table 4.5: Comparison against SoTA video-only, text-only, and multimodal summarization models. Our

approach outperforms previous work by a significant margin.

it with other episodes mess up the representations. Nevertheless, TaleSumm enables multimodal story

summarization, allowing the generation of video-text labels (VT2VT), unlike previous approaches.

4.3.4 Adapting SoTA Approaches for PlotSnap

In this section, we discuss how we adapt different video- and dialog-only state-of-the-art baselines

such as MSVA [104], PGL-SUM [103], PreSumm [35], and A2Summ [12] for comparison with Tale-

Summ.

MSVA [104] considers frame-level features from multiple sources and applies aperture-guided attention

across all such feature streams independently, followed by intermediate fusion and a linear classification

head that selects frames based on predicted importance scores. Since we are modeling at the level of the

entire episode, we feed condensed shot features (after Avg or Max pooling or ST) of each backbone:

DenseNet169 (Xo), MViT (Xr), and CLIP (Xf ) through three different input streams and output shot-

level importance scores.

Our model is different from MSVA as MSVA treats each feature separately, while we perform early

fusion and concatenate representations from multiple backbones even before obtaining a compact video

shot representation. TaleSumm is also developed for encoding and making predictions on multiple

modalities, while MSVA is not.
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PGL-SUM [103] splits the video in small equal-sized group of frames. Similar to our work, contex-

tualization is performed within local multi-headed self-attention on small groups, while another is at

global level using global multi-headed attention for the entire video. Later, both are merged via addition

along the feature axis and subsequently passed through an MLP classification head to obtain frame-level

scores. To adapt PGL-SUM to our work, we again think of shots as the basic unit and concatenate visual

features from all streams (f1, f2, and f3), followed by pooling (ST or Max or Avg pooling) and then

PGL-SUM to generate shot-level importance scores.

PGL-SUM has some similarities to our approach as both involve local groups. Interestingly, PGL-

SUM creates groups of frames to perform summarization for short videos of a few minutes, while

TaleSumm creates groups of shots and dialog utterances to generate summaries for 40 minute long

episodes. Among technical contributions, we also explore different attention mechanisms such as across

the full-episode (FE) or within a local story group (SG). Different from PGL-SUM, we introduce a story

group token that allows to capture the essence of a local story group.

PreSumm [35] is used for text-only extractive summarization which takes word-level inputs and pro-

duces sentence-level probability scores. To represent each episode, the utterances are concatenated,

lower-cased, and separated by CLS and SEP tokens into a single line input. The PreSumm model lever-

ages word embeddings from pre-trained BERT-base [89] language model. Considering the long inputs

in our case, we extend the existing positional embeddings of BERT from 512 to 10000 by keeping the

original embeddings and replicating the last embeddings for the remainder. At the sentence level, the

corresponding CLS token is fed into two transformer encoder layers for contextualization, followed by

a small MLP and sigmoid operation to generate per-sentence scores. The model is trained using the

Adam [105] optimizer with Binary Cross-Entropy loss.

PreSumm is very different from our work as it operates directly on tokens, while our model develops

a hierarchical approach going from words to dialogs to local story groups.

A2Summ [12] is a contemporary multimodal summarization (MSMO) baseline, primarily designed to

align temporal correspondence between video and text signals through a dual-contrastive loss approach.

They also introduce a dataset, BLiSS [12], comprising 13,303 pairs of livestream videos and transcripts,

each with an average duration of 5 minutes, along with multimodal (VT2VT) summaries. A2Summ

exploits cross-modality correlations within and between videos through dual contrastive losses. These

include: (a) inter-sample contrastive loss (operates across different sample pairs within a batch, leverag-

ing the intrinsic correlations between video-text pairs), and (b) an intra-sample contrastive loss (works
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Model
SumMe TVSum

F1 SP KT F1 SP KT

MSVA [104] 52.4 12.3 9.2 63.9 32.1 22.0

PGLSUM [103] 56.2 17.3 12.7 63.9 40.5 28.2

A2Summ [12] 54.0 3.5 2.8 62.9 25.2 17.1

TaleSumm (Ours) 57.5 23.8 17.6 64.0 26.7 18.2

Table 4.6: Comparison with SoTA methods on the SumMe [1] and TVSum [2] benchmark datasets.

Metrics are suggested by Otani et al. [3]: F1, Kendall’s τ (KT), and Spearman’s ρ (SP).

within each sample pair, emphasizing the similarities between ground-truth video and text summaries

while contrasting positive features with hard-negative features).

We adapt A2Summ for PlotSnap, where we work at the episodic level, by using max-pooling with

an MLP for video features and average-pooling for dialog (text) features to derive shot- and utterance-

level representations. We create explicit intra-sample attention masks encouraging temporal alignment,

allowing video shots to attend to their corresponding utterances and permitting video and utterance

tokens to fully attend to their respective counterparts. Considering memory constraints, we maintain

a batch size of 4 (four entire episodes - inter-sample contrasting) on a single NVIDIA GeForce RTX-

2080 Ti GPU. We adopt CyclicLR [106] with a maximum learning rate of 10−4 and the ‘triangular2’

mode. A2Summ model comprises 6 encoder layers and incorporates multiple dropout layers [102]:

(a) dropout video =0.1, (b) dropout text =0.2, (c) dropout attn =0.3, and (d) dropout fc =0.5,

while keeping rest the of the hyperparameters the same. Training extends to a maximum of 50 epochs,

with the AdamW [4] optimizer utilized, featuring a learning rate of 10−5 and a weight decay [107]

=0.01.

In PlotSnap, where episodes show related content, the application of inter-episode contrastive learn-

ing negatively impacts the model’s performance. This is due to the variability in the importance of

related story segments across episodes, which depends on the specific context.
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4.4 Analysis and Discussion

4.4.1 Video summarization benchmarks

We evaluate TaleSumm on SumMe [1] and TVSum [2]. However, both datasets are small (25 and 50

videos) and have short duration videos (few minutes). As splits and metrics are not comparable across

previous works, we re-ran the baselines.

While MSVA uses three feature sets: i3d-rgb, i3d-flow [108] and GoogleNet [109] with intermediate

fusion, PGLSUM uses GoogleNet and captures local and global features. In contrast, A2Summ [12]

aligns cross-modal information using dual-contrastive loss between video (GoogleNet features) and text

(captions generated using GPT-2 [110], embedded by RoBERTa [97] at frame level).

Similar to MSVA, we fuse all 3 features. Even though TaleSumm is built for long videos (group blocks,

sparse attention), Table 4.6 shows that we achieve SoTA on SumMe. The drop in performance on

TVSum may be due to diverse genres (documentaries, how-to videos, etc.).

4.4.2 Adaptation of TaleSumm for SumMe and TVSum

In this section, we will discuss how we adapted our model for SumMe [1] and TVSum [2], along

with the comprehensive hyperparameter details and the corresponding evaluation metrics.

Adaptation. We used our video-based model on both datasets, inheriting features from MSVA3 [104].

To capture shot-level details, we stacked 15 contiguous frame-embeddings (as previous methods uti-

lized ground-truth labels indexed at every 15th frame), and for group-level, we used n frame per seg

attribute of the dataset. We used continuous-index-based time embeddings for shot-frames. Essentially,

we assume that a shot consists of 15 frames as SumMe and TVSum require predictions at every 15

frames.

Hyperparameter configuration. We determine the configuration based on the best validation score

obtained over five random splits (5-RCV). This time our model is trained on a single NVIDIA GeForce

RTX-2080 Ti GPU for a maximum of 300 epochs for SumMe and 100 epochs for TVSum, with a batch

size of 1. Additional dataset-specific hyperparameters are detailed in Table 4.7. In common, we have

AdamW optimizer [4] with parameters: learning rate =5×10−5, weight decay [107] =10−3. We use

3https://github.com/TIBHannover/MSVA/tree/master
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amsgrad d model drop fc/trm/proj dec l enc l wd act clf/mlp/trm ffs

SumMe [1] True 512 0.5/0.2/0.2 3 1 0.0001 r/g/g Stack

TVSum [2] False 768 0.7/0.4/0.2 6 1 0.01 r/g/g ⊞

Table 4.7: Hyperparameter configuration for SumMe and TVSum. d model specify the dimension

for the transformer module’s internal representation, while dec l and enc l denote # of decoder and

encoder layers, respectively. Other hyperparameters include drop fc/trm/proj for dropout at clas-

sification head, attention module, and projection module, wd stands for weight decay parameter (used

inside AdamW [4]), act clf/mlp/trm for activation function used in classification head, projection,

and attention module, with r for ReLU and g for GELU. Lastly, ffs stands for feature fusion style, with

Stack and ⊞ depicting the pooling strategy showed in Table 4.2.

X-Season (24) X-Series (PB)
Model

Video AP Dialog AP Video AP Dialog AP

1 MSVA [104] 46.7 ± 2.7 - 32.7 -

2 PGLSUM [103] 47.1 ± 2.4 - 34.5 -

3 PreSumm [35] - 41.3 ± 3.2 - 38.3

4 A2Summ [12] 33.5 ± 3.2 31.7 ± 2.9 20.2 19.0

5 TaleSumm (Ours) 51.0 ± 4.6 46.0 ± 5.5 36.7 35.7

Table 4.8: We evaluate our model’s generalization across seasons within 24 and across TV shows (24 →

Prison Break). R5 showcases superiority of our methods compared to SoTA. In X-Series, the random

baseline achieves 21.3 and 19.1 for video and dialog.

CyclicLR [106] for learning rate scheduling with max lr =5×10−4 and triangular2 mode. ReLU is

used for classification head and GELU for projection and attention modules.

Generalization to a new season/TV series. Table 4.8 shows results in two different setups. In X-

Season, we see the impact of evaluating on unseen seasons (in a 7-fold cross-val-test). While Tale-

Summ outperforms baselines, it is interesting that most methods show comparable performance across

IntraCVT and X-Season setups (see Tables 4.5 and 4.8).

In the X-Series setting, we train our model on 24and evaluate on Prison Break. While both series are
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Dataset
Cronbach α Pairwise F1 Fleiss’ κ

Video Dialog Video Dialog Video Dialog

SumMe 0.88 - 0.31 - 0.21 -

TVSum 0.98 - 0.36 - 0.15 -

PlotSnap (Ours) 0.91 0.93 0.59 0.60 0.38 0.39

Table 4.9: Label consistency across datasets.

Methods
Fandom (F) Human (H)

Video AP Dialog AP Video AP Dialog AP

GT 64.1 63.8 44.8 42.2

PGLSUM 43.0 - 47.6 -

MSVA 34.3 - 42.2 -

PreSumm - 43.6 - 46.7

A2Summ 28.7 29.7 41.0 41.1

TaleSumm 44.5 45.5 48.7 50.9

Table 4.10: Results on labels from 24 fan site (F) and human-annotated story summaries (H) averaged

over 17 episodes of 24.

crime thrillers, there are significant visual and editing differences between the two shows. Our approach

obtains good scores on video summarization, and is a close second on dialog.

4.4.3 Label consistency.

As suggested by [1, 2], label consistency is crucial for evaluating summarization methods. We assess

the consistency of labels in PlotSnap using Cronbach’s α, pairwise F1-measure, and a new agreement

score: Fleiss’ κ. We utilize three labelers for 17 episodes of 24. (i) GT: obtained from matching recaps;

(ii) F: maps plot events as text descriptions to videos from a 24 fan site4; (iii) H: human response for a

summary. Our labels have superior consistency compared to SumMe [1] and TVSum [2] (see Table 4.9),

4https://24.fandom.com/wiki/Day 6: 4:00am-5:00am talks about the key story events in S06E22 in a Previously on
24 section (see Fig. 4.3).
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indicating that identifying key story events in a TV episode is less subjective than scoring importance for

generic Youtube videos. Table 4.10 shows results for baselines and TaleSumm on the two other labels F

and H. Our model predictions align better with both other labels. Despite fair agreement between human

and ground-truth labels, our model’s predictions strongly align with human preferences, highlighting the

quality of the generated summary.

Further, Table 4.11 expands on the individual scores obtained for each of the 17 episodes. We observe

that Cronbach’s α is consistently high, while Fleiss’s κ varies typically between 0.2–0.5 indicating fair

to moderate agreement.

season episode
Video Dialog

Cα PF1 Fκ Cα PF1 Fκ

S02 E21 0.978 0.51 0.337 0.964 0.51 0.335

S02 E23 0.937 0.407 0.135 0.966 0.472 0.182

S03 E20 0.959 0.684 0.595 0.939 0.715 0.629

S03 E22 0.907 0.568 0.422 0.861 0.553 0.409

S04 E20 0.954 0.671 0.47 0.949 0.716 0.568

S04 E21 0.981 0.618 0.405 0.983 0.504 0.286

S05 E21 0.886 0.521 0.27 0.872 0.497 0.249

S05 E22 0.994 0.573 0.282 0.991 0.611 0.334

S06 E20 0.986 0.639 0.432 0.975 0.689 0.534

S06 E21 0.979 0.645 0.437 0.96 0.618 0.439

S06 E22 0.965 0.557 0.297 0.929 0.632 0.406

S06 E23 0.981 0.496 0.263 0.986 0.475 0.206

S07 E20 0.942 0.684 0.451 0.968 0.67 0.382

S07 E22 0.849 0.531 0.349 0.892 0.54 0.334

S07 E23 0.993 0.525 0.215 0.988 0.541 0.235

S08 E21 0.233 0.68 0.527 0.715 0.667 0.518

S08 E22 0.968 0.685 0.507 0.948 0.728 0.538

Average 0.911 0.588 0.376 0.934 0.596 0.387

Table 4.11: Detailed overview of reliability scores for 17 episodes from 24 (test set of default-split) with

the last row showing the average across all episodes. Si and Ej stands for Season i Episode j, Cα for

Cronbach’s α, PF1 for Pairwise F1, and Fκ for Fleiss’ κ.
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Get on your feet. You're lying...Cheng
attacked us.

Cover me now. Milo was a
braveman.

Info sent to
Russians...

Lisa was injured... Orders, Jack.
Go to CTU...

Phillip Bauer
is on line...

Time (in minutes)0 10 20 30 40
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Figure 4.3: TaleSumm predictions on S06E22 of 24 (test set). “Ours” filled-plot illustrates the impor-

tance score profile over time, where orange patches indicate story segments selected for summarization.

Annotations are shown below: ground-truth (GT), fandom (F), and human annotated (H).

CTU is finding
Cheng...

These two are
sleeping together...

- If you don't find this component...will
initiate an appropriate response.
- You're saying there's a spy?

We're all set...
Anything you know

about Cheng...?
- What'd you say?
 -Bloomfield

- You betrayed me and your country...
- Bring the component back...

Stay away from her...
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Figure 4.4: TaleSumm predictions on S06E20 of 24 (test set). “Ours” filled-plot illustrates the impor-

tance score profile over time, where orange patches indicate story segments selected for summarization.

Annotations are shown below: ground-truth (GT), fandom (F), and human annotated (H).

4.4.4 Qualitative Analysis

In this section, we analyze 4 episodes and compare the model’s prediction against all three labels

(GT, F, and H). The labels denoted F (Fandom) are based on summarized plot synopses from the 24

fan site5 that includes the key events in the story (as a text description). Plot synopses are short textual

descriptions of the key story events of an episode. We ask annotators to use the plot synopses and tag

the start-end duration for story sequences corresponding to the description. We refer to these labels as

Fandom (F) and use them for qualitative evaluation. While the H-labels are annotations from a human,

based on what they feel is relevant summary as per the narrative.

Qualitative evaluation. We present importance scores for four episodes in Fig. 4.3, Fig. 4.4, Fig. 4.5,

and Fig. 4.6, respectively:

1. S06E224: We number the grouped frames representing the predicted contiguous orange chunks as

shot groups (SG-n), e.g. this episode has 7 SGs.

5https://24.fandom.com/wiki/Wiki 24
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The story: Amid the high-stakes sequence depicted in the selected groups SG-1,2,3, Zhou Yong’s

team captures Josh Bauer, leading to a firefight with Jack Bauer, who seeks Josh’s location. Negoti-

ations with Phillip Bauer over Josh’s return for a vital circuit board escalate global tensions between

Russia and the USA. Simultaneously, Mike Doyle defies Jack’s wishes and departs with Josh by

helicopter (SG-7). Parallely, Lisa, backed by Tom Lennox, confronts a Russian agent, leading to her

injury (SG-4,6). Morris attempts to console Nadia for Milo’s loss at CTU in SG-5. Escalating global

tensions and the imminent showdown mark the episode.

2. S06E206: Here again we number the grouped frames into contiguous orange chunks as shot groups

(SG-n), e.g. this episode has 8 SGs. The story: The White House directs CTU to locate Cheng,

as depicted in SG-1, who possesses a Russian sub-circuit board that threatens national security. In

SG-2, President Suvarov warns of military consequences if the Chinese agent with the circuit board

isn’t intercepted. SG-3,4,7 shows how Lennox suspects a spy within the administration and uncovers

Lisa’s treason. President Noah Daniels instructs Lisa to bring the component back by misleading

her partner, Mark Bishop. In SG-5,6, Jack questions Audrey about Cheng, leading to a standoff with

Doyle. Audrey mentions “Bloomfield,” prompting research by Chloe. In his holding room, Heller

warns Jack to stay away from Audrey due to the deadly consequences associated with him (SG-8).

Intricate relationships and the imminent threat of international conflict mark the overall content of

this episode.

3. S07E227: Here n = 8, e.g. this episode has 8 SGs. The story: In a tense sequence, as shown in

SG-1, Jack resorts to torture to extract information from Harbinson about the impending attack but

is left empty-handed. In SG-2, following the murder of Jonas Hodges, Olivia Taylor faces scrutiny

from the Justice Department. Meeting with Martin Collier, she denies transferring funds, revealing

a sinister plot. Meanwhile, SG-3 shows Kim Bauer’s plans are disrupted by a flight delay, leading

to a strained father-daughter relationship. SG-4,5 displays how Jack, aided by Chloe O’Brian and

Renee Walker, captures Tony Almeida and interrogates him about a dangerous canister, followed by

Renee uncovering Jibraan’s location, and a high-stakes exchange ensues at the Washington Center

station. Jack detonates the canister, succumbing to its effects. As a consequence (SG-6), Cara

Bowden reports Tony’s failure to Alan Wilson, adding tension to the unfolding crisis. Olivia returns

6https://24.fandom.com/wiki/Day 6: 2:00am-3:00am talks about the key story events in S06E20 in a Previously on
24 section (see Fig. 4.4).

7https://24.fandom.com/wiki/Day 7: 6:00am-7:00am talks about the key story events in S07E22 in a Previously on
24 section (see Fig. 4.5).
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to the White House, explaining her absence to Aaron Pierce (SG-7), which beautifully connects back

to the SG-2. The narrative takes a dire turn as Cara blackmails Jack for the safety of Kim (SG-

8), introducing a new layer of suspense and complexity to the unfolding events. The presence of

SG-1,6,7 (absent in GT) clearly highlights our model’s ability to complete the overall story arc.

4. S05E218: Here we have n = 5, e.g. this episode has 5 SGs. This episode stands out due to its rapid

and significant story advancements, where each sub-story holds apparent importance. Also, human

annotations are a bit off in comparison to the ground-truth (can be verified from reliability scores

shown in Table 4.11). Importantly, our model considers opinions from all the sources. The story:

In the SG-1,2, President Logan, pretending surprised, learns from Admiral Kirkland that Flight 520,

now under Jack’s control, is a potential threat. Despite Mike’s doubts about Jack’s intentions, Kirk-

land urges immediate action, advocating for shooting down the plane. Logan, pretending shock,

reluctantly authorizes the attack. Karen alerts Jack to the order, leading to a tense situation. As the

plane assumes a landing profile, Kirkland suggests calling off the strike, but Pres. Logan insists on

taking it down. Further, in SG-3, Graem criticizes Logan’s decision, emphasizing the importance

of capturing Jack, but Logan assures Graem of recapturing him. Meanwhile, in SG-4, Jack, having

secured incriminating evidence, vows to make Logan pay for President Palmer’s assassination. In

a surprising turn, as shown in SG-5, President Logan contemplates suicide, but an unexpected call

from Miles Papazian presents an alternative – the destruction of the recording. Encouraging Miles

to act, Logan faces a critical juncture in the unfolding crisis. Overall the entire episode sets the stage

for a series of dramatic events, stressing the depth of deceit and the potential consequences for key

characters.

We observe that the model predictions are quite good and not only match the ground-truth labels (on

which the model is trained) but also the fandom and human annotations. Please refer to the figure

captions for additional comments on episode-specific remarks.

4.5 Limitations and Future Work

Our approach considers coarse-grained visual information, which we demonstrate is beneficial for

story-summarization. Considering more fine-grained visual info, such as person and face tracks across

8https://24.fandom.com/wiki/Day 5: 4:00am-5:00am talks about the key story events in S05E21 in a Previously on
24 section (see Fig. 4.6).
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What's the target?
Washington Center's

the target...
- Justice Dept. looking...Jonas car bombing...
- Justice Dept. is asking my whereabouts...?

See this as a sign to
stay with your father.

Give me the
Canister...

...Canister is gone? I just needed to go
out of here...

- Jibraan your brother is here.
- Break Almeida out...or your daughter dies.
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Figure 4.5: TaleSumm predictions on S07E22 of 24 (test set). “Ours” filled-plot illustrates the impor-

tance score profile over time, where orange patches indicate story segments selected for summarization.

Annotations are shown below: ground-truth (GT), fandom (F) and human annotated (H).

Time (in minutes)0 10 20 30 40

- The aircraft must be shot down...
- ATC recieved a VCI distress signal...

Bauer has nowhere
to run... 

- Aircraft is in landing profile... Abort!
- Order your man to fire now...

- Pres. Logan...pay for Palmer's murder.
- I'm sorry Charles, you don't deserve this...

- ...How sorry I am for everything...
- If recording of yours leak,...compromise national security.
- We'll be ready?
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Figure 4.6: TaleSumm predictions on S05E21 of 24 (test set). “Ours” filled-plot illustrates the impor-

tance score profile over time, where orange patches indicate story segments selected for summarization.

Annotations are shown below: ground-truth (GT), fandom (F), and human annotated (H).

frames, and their emotions, would be useful. Further, having speaker information in dialog utterances

with mapping to character faces would probably improve performance on the summarization task.

The local story groups are a proxy to scene segments of an episode. Replacing them with actual

scene segments may improve our model’s performance for summarization.

Besides all these, ingesting ∼40 minute long videos is a challenging problem. Aligning different

modalities may require a larger GPU memory.

Finally, further analysis and experiments are required to determine the quality of these methods [111],

particularly because evaluating long video summarization using human judgment is very time-consuming.

However, we believe that this work provides a window into this challenging problem and can help

facilitate further research in this area.
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Chapter 5

Conclusion

Our work is the first to use summaries of TV episodes to help understand their stories better. We pro-

posed a dataset named, PlotSnap containing high-quality recaps for 2 TV shows, 24and Prison Break.

We used these recaps to label the key points of the storyline of an TV Show episode for summariza-

tion. We also developed a hierarchical summarization method, TaleSumm, that, at first level, captures

and compresses both visual and textual information from each shot or conversation, respectively, in the

episode. In the second, it allows cross-modal interactions across different signals to figure out which

parts are essential to form story-summary. We performed thorough experiments via ablations to see

what works best. Our method exhibits SoTA performance in comparison to other method before. Addi-

tionally, we analyzed it transferability across seasons/series, and ensured that our labels for summarizing

the story were consistent across different episodes. For code, dataset (including key images, features,

and labels), and implementation instruction, follow our repository1. As well as to see more demo and

examples, kindly check out our paper and project web-page (mentioned in GitHub repository itself).

1https://github.com/katha-ai/RecapStorySumm-CVPR2024
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