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Abstract

Monocular 3D human reconstruction is a very relevant problem due to numerous applications to the
entertainment industry, e-commerce, health care, mobile-based AR/VR platforms, etc. However, it is
severely ill-posed due to self-occlusions from complex body poses and shapes, clothing obstructions, lack
of surface texture, background clutter, single view, etc. Conventional approaches address these challenges
by using different sensing systems - marker-based, marker-less multi-view cameras, inertial sensors,
and 3D scanners. Although effective, such methods are often expensive and have limited wide-scale
applicability. In an attempt to produce scalable solutions, a few have focused on fitting statistical body
models to monocular images, but are susceptible to the costly optimization process.

Recent efforts focus on using data-driven algorithms such as deep learning to learn priors directly from
data. However, they focus on template model recovery, rigid object reconstruction, or propose paradigms
that don’t directly extend to recovering personalized models. To predict accurate surface geometry, our
first attempt was VolumeNet, which predicted a 3D occupancy grid from a monocular image. This was
the first of its kind model for non-rigid human shapes at that time. To circumvent the ill-posed nature
of this problem (aggravated by an unbounded 3D representation), we follow the ideology of providing
maximal training priors with our unique training paradigms, to enable testing with minimal information.
As we did not impose any body-model based constraint, we were able to recover deformations induced
by free-form clothing. Further, we extended VolumeNet to PoShNet by decoupling Pose and Shape, in
which we learn the volumetric pose first, and use it as a prior for learning the volumetric shape, thereby
recovering a more accurate surface.

Although volumetric regression enables recovering a more accurate surface reconstruction, they do
so without an animatable skeleton. Further, such methods yield reconstructions of low resolution at
higher computational cost (regression over the cubic voxel grid) and often suffer from an inconsistent
topology via broken or partial body parts. Hence, statistical body models become a natural choice to
offset the ill-posed nature of this problem. Although theoretically, they are low dimensional, learning
such models has been challenging due to the complex non-linear mapping from the image to the relative
axis-angle representation. Hence, most solutions rely on different projections of the underlying mesh
(2D/3D keypoints, silhouettes, etc.). To simplify the learning process, we propose the CR framework
that uses classification as a prior for guiding the regression’s learning process. Although recovering
personalized models with high-resolution meshes isn’t a possibility in this space, the framework shows
that learning such template models can be difficult without additional supervision.
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As an alternative to directly learning parametric models, we propose HumanMeshNet to learn an
“implicitly structured point cloud”, in which we make use of the mesh topology as a prior to enable
better learning. We hypothesize that instead of learning the highly non-linear SMPL parameters, learning
its corresponding point cloud (although high dimensional) and enforcing the same parametric template
topology on it is an easier task. This proposed paradigm can theoretically learn local surface deformations
that the body model based PCA space can’t capture. Further, going ahead, attempting to produce high-
resolution meshes (with accurate geometry details) is a natural extension that is easier in 3D space than
in the parametric one.

In summary, in this thesis, we attempt to address several of the aforementioned challenges and
empower machines with the capability to interpret a 3D human body model (pose and shape) from a
single image in a manner that is non-intrusive, inexpensive and scalable. In doing so, we explore different
3D representations that are capable of producing accurate surface geometry, with a long-term goal of
recovering personalized 3D human models.
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Chapter 1

Introduction

Recovering the 3D human shape from a monocular image is a severely ill-posed problem. Yet, humans
can imagine unseen parts of a known object and perform this estimation successfully. In addition to the
3D shape and pose, we also possess the ability to predict the texture on the object, its 3D orientation,
and the viewpoint from which the image was captured. Interestingly, there is an elegant experiment in
psychology which introduces the concept of “mental rotation”, according to which humans visualize
2D images (of objects) to be in the three-dimensional space to perform mental operations (rotations,
translation, etc.) on them [73].

However, this is not the case with computers. Several of the existing solutions [8, 13, 22, 50, 65, 78, 91]
are extremely limited, especially for non-rigid shapes with high articulations (such as humans), due
to limitations in sensing as well as interpretation. Specifically, concerning optical capture systems,
while marker-based capture [50] often restricts the performer’s motion and requires skin-tight clothing,
markerless multi-view systems [22] are expensive and limited to studio environments. Along similar
lines, 3D body scanners [78], although accurate, are expensive and tedious to use. Such systems that
require dedicated cameras to track and capture the human often face issues in recording human motion
in dynamic outdoor settings (for example, while biking or skiing). Although systems with inertial
sensors [8, 65, 91] address this with pose estimation from specialized sensors attached to the body, they
are often intrusive and have limited wide-scale applicability. Further, in an attempt to produce scalable
solutions, a few [13] have focused on fitting statistical body models to monocular images, but succumb
to the costly optimization process.

Recently, there has been a resurgence of data-driven algorithms such as deep-learning due to the surge
in graphical computing power (GPUs) and the availability of large-scale synthetic datasets [85]. This
enables solving ill-posed problems such as monocular reconstruction by learning priors directly from
the data. However, most of the efforts have been focused on template model recovery [41], rigid-object
reconstruction [21], or propose paradigms [76, 94] that are not directly extendable to learn personalized
human body shapes.

Therefore, in this thesis, we strive to empower machines with the capability to interpret 3D human
poses and shapes from a single image, with an eventual aim of obtaining personalized 3D models, by
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exploring 3D representations suitable for obtaining accurate surface geometry. Our designs try to address
several of the aforementioned bottlenecks and propose models with wide-scale applicability.

1.1 Motivation - “Dissecting The Problem”

(a) Input Image (b) 3D Human - View 1 (c) 3D Human - View 2

Figure 1.1: An illustration of the Problem of Monocular 3D Human Reconstruction. The figure
shows (a) the input RGB image and (b) the corresponding 3D Human aligned to the input view and (c)
rotated to another view (for aesthetic reasons).

To understand the motivation behind solving “Monocular 3D Human Reconstruction”, we shall dissect
each word of the problem to reveal several exciting prospects. Each “perspective” offered below talks
about the relevance of that facet of the problem -

The “3D” Perspective - We live in a three-dimensional world. Therefore, for problems related to the
shape and structure of an object, lifting the representation space to 3D is a natural step. Although it is
more computationally expensive, this allows for a more accurate representation of the real world.

The “Human” Perspective - To effectively interact with our 3D world, modeling its constituent ele-
ments are of paramount importance. Although there exist several such real-world objects, one of the
most common, yet, vital constituents of our world tend to be humans. Humans are widely found in most
of our scenes of interest and recovering their 3D model is a vital step for humans/human-like agents
to effectively interpret and understand our world, and perform tasks such as recognition, navigation,
prediction, and much more.

The “Reconstruction” Perspective - Successful 3D inference paves the way to solving several higher-
order problems in 3D Computer Vision such as 3D visual question answering, modeling human-
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human/human-robot interactions, temporal prediction of human actions, etc. Hence, the potential
impact of learning to represent the structure of a human in 3D is one to look forward to.

The “Monocular” Perspective - Usage of calibrated multi-camera setups is not only expensive but also
limits the applicability of the problem to those in controlled lab setups. On the other hand, although
challenging and severely ill-posed, performing monocular reconstruction makes it non-intrusive, afford-
able, and scalable to real-world environments. As shown in Figure 1.2, this problem is of high practical
importance in real-world scenarios, with applications in the animation, gaming, entertainment industry,
AR/VR, e-commerce, healthcare, robotics and many more.

Therefore, by putting all these elements together, we aim to reconstruct an accurate 3D representation
of a human in a fashion that makes it non-intrusive, cost-efficient, and applicable to real-world scenarios.
In doing so, we open a world of opportunities that blur the lines between the real and virtual world.
Further, this paves the way for solving several higher-order problems in 3D Computer Vision.

(a) (b)

(c) (d)

Figure 1.2: A wide range of applications possible because of 3D Human Shape Recovery - (a)
Procuring animatable 3D shape for gaming and animation, (b) Analysis of Sports Bio-mechanics, (c)
Augmented Reality (AR) based Chat rooms, (d) Virtual Reality (VR) based Dressing Rooms.
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1.2 Challenges

(a) (b)

(c) (d)

Figure 1.3: An illustration of the various challenges in Monocular 3D Human Reconstruction - (a)
Topological Noise due to limited views and self-occlusion, (b) Non-rigid deformations, resulting in a
large space of pose-shape space to learn in, (c) Deformations induced by free-form clothing and (d)
Background clutter

Figure 1.3 shows the challenges in Monocular 3D Human Reconstruction. An explanation of the same is
given below -

• Ill-posed nature of the problem. In addition to performing depth estimation for every visible
point in the image, any proposed model should be capable of estimating the depth of unseen parts
of the human as well. This requires the proposed model to implicitly or explicitly understand what
the shape and appearance of a typical human is. If not, it will result in noisy reconstructions such
as Figure 1.3a, where the hands are merged with the body of the person.

• Topological Noise. The absence of a sufficient number of overlapping views as well as self-
occlusions results in inaccurate surface estimation, thereby causing topological noise, as seen in
Figure 1.3a.
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• Non-rigid Deformations. “Humans” exhibit non-rigid deformations which means that the position
and orientation of points/triangles on the surface can be changed relative to both an internal and
external frame of reference. Further, unlike rigid objects such as chairs, tables, etc., the object
geometry of non-rigid human shapes evolve over time, yielding a large space of complex body
poses as well as shape variations. An illustration of the same is seen in Figure 1.3b.

• Clothing. Deformations induced by free-form clothing make it particularly challenging to estimate
the true surface of the underlying naked-body. Further, these elastic deformations can cause
self-occlusions, resulting in errors in surface estimation. A gold-standard of complex clothing is
illustrated by the frills in the saris of the dancers in Figure 1.3c.

• Background Clutter. Learning from complex environments such as Figure 1.3d with abundant
background clutter is a critical challenge, further made difficult by the lack of sufficient data
“in-the-wild”.

• Lack of Large-Scale Real-World Datasets. With a paradigm shift to data-driven algorithms, data
has become the new currency. Current datasets with image-3D pairs are either synthetic or are
captured in studio environments. Therefore, recovering 3D human shapes “in-the-wild” without
large-scale real-world datasets proves to be a challenge.

1.3 The Scope and Contributions

The central problem of this thesis is “Monocular 3D Human Body Reconstruction”, broadly defined as
the process of recovering the 3D “structure” of a human (Figure 1.1b) from the corresponding input RGB
image, captured from any random location (Figure 1.1a). Here, we limit the “structure” to encompass
only the pose and shape of the human body while maintaining accurate surface geometry. Recovering
facial expressions, hand articulations, hair features, clothing, etc. are separate challenging problems
themselves and are beyond the scope of this thesis.

In this thesis, we explore and analyze different 3D representations (volumetric, a new implicit
point-cloud, template-based) and propose transformation models (VolumeNet, HumanMeshNet, and CR
Framework) to exploit them. The 3D representation used is of primal importance due to the complexity
of learning and representation’s capability to capture an accurate surface. Therefore, through this thesis,
we progressively move to more accurate, efficient, easy-to-learn, and scalable models. To that end, the
following are the major contributions of this thesis -

• First, we exploit the volumetric grid representation for 3D human reconstruction using a novel
deep learning model - “VolumeNet”. Our model can handle non-rigid deformations induced by
free-form clothing, as a result of not imposing any body-model based constraint. At the time of
publication, this was the first work to learn an occupancy grid for non-rigid shapes. We build
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upon VolumeNet to design PoShNet, which simplifies the learning process by decoupling pose and
shape estimation and providing volumetric pose as a prior for better surface prediction.

• Second, we facilitate learning in VolumeNet with a training ideology of showing maximum
information at training time to enable prediction from minimal information. Specifically, we
propose co-training of RGB and depth, along with multi-view information while training to
facilitate reconstruction from a single RGB image.

• Third, we propose the CR framework to explore and simplify the SMPL template-based 3D
reconstruction by using classification as a prior for better parametric regression.

• Fourth, we propose a simple end-to-end multi-branch, multi-task deep network - “HumanMeshNet”
that exploits a ”structured point cloud” to recover a smooth and fixed topology mesh model from
a monocular image. The proposed paradigm can theoretically learn local surface deformations
induced by body shape variations which the PCA space of parametric body models can’t capture.
The simplicity of the model makes it efficient in terms of network size as well as feed-forward time
yielding significantly high frame-rate reconstructions, while simultaneously achieving comparable
accuracy in terms of surface and joint error, as shown on three publicly available datasets.

• Fifth, we also show the generalizability of our proposed paradigm, HumanMeshNet, for a similar
task of reconstructing the hand mesh models from a monocular image.

• Finally, we collected a real dataset of textured 3D human body models and their corresponding
multi-view RGBD, that can be used in solving a variety of other problems such as human tracking,
segmentation, etc.

1.4 Thesis Roadmap

The remainder of this thesis is organized as follows -

• Chapter 2 discusses the necessary background required for understanding the context of our
solutions. While the first half presents traditional approaches, their shortcomings, and a paradigm
shift in algorithmic solutions, the second half talks about relevant 3D representations, their
suitability, and adoption in the context of this paradigm shift.

• Chapter 3 explores the volumetric representation for extracting better surface geometry and
proposes a method, VolumeNet to exploit it. The importance of providing maximal training priors
with unique training paradigms to enable testing with minimal information is explored.

• Chapter 4 presents the CR framework to provide a “lighter model” for exploiting template body
models. It explores the idea of using classification as a prior for easing the highly non-linear
parametric learning process.
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• Chapter 5 proposes an “implicitly-structured” point-cloud representation along with a multi-task
network, HumanMeshNet to learn it. It explores methods to use the mesh topology as a prior, to
effectively address the monocular point-cloud regression problem.

• Chapter 6 presents the concluding thoughts and future directions to look out for.
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Chapter 2

Background

Broadly speaking, the scope of any problem in Computer Vision is determined by the sensing modality,
class of algorithms used, and intended application. Traditionally, 3D Human Reconstruction has been
studied in controlled studio environments with different sensory inputs. However, in addition to being
tremendously expensive, these approaches tend to be restrictive as they do not capture the 3D pose and
shape of the human in real-world scenarios.

Recently, to cater to a larger range of applications, the field has begun focusing on non-intrusive and
scalable sensing by estimating the 3D model from just a monocular RGB image. This shift has been
supported by the resurgence of data-driven algorithms (such as deep learning) in which task-specific
features are directly learned from the data, rather than designed by hand. Although there is only limited
availability of 3D Human Model data outside of lab environments, the creation of large scale synthetic
datasets such as SURREAL [85] has made this transition possible. Further, a key component of this
problem is the 3D representation used because of the high time and space complexity required to learn it.
Therefore, significant efforts have been put in this direction as well.

In this section, we shall review how the field of 3D Human Reconstruction has evolved over the years
- moving from restricted lab environments to monocular reconstruction.

2.1 Traditional Methods

Conventional approaches can be characterized based on their sensing modalities into systems that
use markers [50, 61], marker-less multi-view cameras [22, 90], inertial sensors [8, 65, 69, 91] and 3D
scanners [48, 55, 78]. Below, we shall review a few path breaking seminal work in detail.

Marker based Capture. Placing markers or sensors on the human body has been one of the most
common ways to estimate 3D skeletal motion [18, 37]. These systems are most often used for estimating
skeleton proxies from motion capture (mocap) marker sets. Although they tend to be accurate, they have
typically been critiqued for producing lifeless animations. To address this, some rely on dense marker
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Figure 2.1: Results of a Marker based Motion Capture setup - MoSh [50]. Given a marker set of 47
placed on the performer, MoSh estimates the pose and shape in addition to soft-tissue deformations.

sets [60, 61]. However, they tend to be time-consuming and difficult to label. Moreover, they don’t apply
to archival mocap data.

MoSh [50] was a seminal method to estimate both the pose and shape directly from sparse mocap
data, thereby converting a mocap system into an approximate body scanner. They argue that the relevant
surface information is already present in standard marker sets but is lost in going from a non-rigid
surface to a rigid skeleton. Even though these markers are placed at locations that move as rigidly as
possible, the surrounding soft-tissue motion often affects the surface marker motion. They show that
these perturbations, typically considered as noise, is important for realistic animation. MoSh uses a
learned statistical body model, SCAPE [9], and optimizes a cost function to infer the 3D body pose (in
terms of the observed marker locations relative to the body model) and the 3D body shape that best
explains the marker data. Further, they were also able to capture soft tissue motion by allowing the body
shape to vary over time. An overview of the results can be seen in Figure 2.1.

Although effective, several times, such sensors restrict motion and are intrusive for the performer.
Further, to ensure that the markers move rigidly with the associated limb, they require skin-tight clothing.

Markless Multi-view Capture. Markerless methods address several of the aforementioned limitations
of marker-based capture by estimating the 3D directly from multi-view cameras via triangulation or voxel
carving [22, 24, 90]. Typically, as shown in Figure 2.2, they make use of expensive high-end equipment
in large studio environments - calibrated cameras, controlled lighting, green screens, and much more to
produce high-quality results.
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Figure 2.2: An image of a typical multi-view capture setup [22] in a studio with a central stage
surrounded by RGB and IR cameras, green screen and static IR laser light sources.

Vlasic et. al. [90] presents one such system to record complex human performances such as dancing
and acrobatics. They reconstruct meshes by capturing the motion of the skeleton and the shape from
synchronized multi-view video and an articulated template of the performer. As indicated in Figure 2.3,
they follow a two-stage process - (a) geometric skeleton tracking and optimizing the fit of the skeleton
(of the template) to the visual hull, and (b) surface refinement by deforming the template to match the
observed silhouettes. The resultant output mesh had correspondences and captured high-frequency details
such as clothing information from garments. Further, to enable temporal consistency, they make use of a
bilateral filter. Liu [49] extends this concept to recover the 3D of multiple closely interacting people with
the help of a body template and multi-view segmentation.

Although impressive, these multi-camera approaches are seldom real-time. Even though real-time 3D
reconstruction has improved due to the ubiquity of RGBD cameras [56, 104], yet, the majority of systems
focus on static scenes due to algorithmic challenges in reconstructing non-rigid motion. In addition to
the challenges faced by rigid body reconstruction, the changing scene topology in the non-rigid case
makes it complicated. As shown in Figure 2.4, Fusion4D [24] is a seminal work in this direction that
produces consistent temporal reconstruction in real-time. Borrowing from the idea of anchor frames in
non-rigid tracking [22, 35], they use a voxel grid as a reference model (called as “key-volumes”) to deal
with radically different surface topologies over time.
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Figure 2.3: Gives the methodology proposed by Vlasic et. al [90] for markerless multi-view 3D
capture. Given a stream of silhouette videos and an articulated template mesh, at every frame, they fit
the skeleton to the visual hull, followed by deforming the template with linear blend skinning (LBS)
and refining the surface to fit the silhouettes. Finally, the user can edit the geometry or texture of the
sequence.

Despite the advancements in multi-view systems, they yield reconstructions with severe topological
noise [72] and often require manual clean-up. Although recent attempts replace/augment the capture
setup with high-resolution depth sensors [24, 105], making it more accurate, the fundamental limitation
of these techniques is the requirement of a calibrated multi-sensor setup that restricts their applicability
to studio environments.

Figure 2.4: An Illustration of Fusion4D - a real-time 4D reconstruction method [24]. Given multiple
RGBD frames, a per-camera segmentation mask is first calculated. This is followed by estimating a
per-frame correspondence field that is used to initialize the non-rigid alignment. The final step involves
performing the non-rigid alignment by warping the current key volume to the data volume. The system is
made more responsive to new data by additionally fusing the currently accumulated model into the data
volume. Non-rigid alignment error and the estimated correspondence fields are used to guide the fusion
process.

In the absence of a calibrated setup, the fusion between the view specific point clouds (2.5D) is done
by the registration of non-rigid point sets. We refer to [30] for an extensive literature survey. Weber [93]
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doesn’t assume any order for the input 2.5D and uses an overlap heuristic to perform the registration.
Golyanik [31] provides the Extended Coherent Point Drift (ECPD) algorithm which is a probabilis-
tic approach for point set registration that allows embedding prior matches. Some methods [28, 90]
make use of a template scan of the performer and use it to guide the registration procedure. Further,
extending mesh registration to 4D is important for temporal consistency in performance capture. To
that end, DFAUST [16] proposes a new 4D registration algorithm that uses the 3D geometry and texture
information to register all scans of the sequence to a template topology. It is to be noted that most
registration algorithms require sufficient overlap between the point clouds and are susceptible to sensor
noise, therefore, once again, limiting their applicability.

3D Scanners. There exist several different types of scanners, each with their scanning methodology
and associated use cases. To do scene/environment capture, a time of flight [20, 57] scanner such as
Lidar is commonly used. It uses a laser to probe and a range finder to estimate the depth of each point.
Triangulation based 3D laser scanners [25] are similar, except that they use a camera instead of a range
finder to detect points where the laser interacts with the subject. While time-of-flight scanners have very
high operating distances and are less accurate, triangulation based scanners have low operating ranges
and are more accurate.

Structured light scanners [48, 55] scan multiple points or their entire field of view simultaneously
by projecting a pattern of light on the subject and use a camera to interpret the deformation of the
pattern on the subject. Therefore, they’re capable of capturing real-time non-static scenes as well, unlike
time-of-flight scanners. It is common to find several hand-held scanners [78] to use triangulation or
structured light setups. Although 3D scanners are extremely accurate (see Figure 2.5), they are expensive
and tedious to use. Therefore, they have limited applicability to commercial, real-world situations.

(a) (b)

Figure 2.5: A depiction of 3D Scanning Technology. (a) Structured Lighting Hand held scanner, Artec
3D Evo [1] and (b) a sample output human mesh captured by it.
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Most of the methods discussed thus far are optical vision-based systems i.e., they require dedicated
cameras to track and capture the subject. Given this requirement, they may not be able to capture
human-motion in dynamic settings (such as skiing, cycling, etc) or everyday activities (such as cooking,
praying, etc).

Inertial Sensors. Systems built with Inertial Measurement Units (IMUs) address this fundamental
limitation of optical systems. IMUs consist of built-in sensors such as gyroscopes, accelerometers, and
magnetometers to detect position and movement, thereby making them capable of tracking human pose
without cameras. Therefore, they are more suitable for scenarios with occlusions, baggy clothing, or
outdoor scenes where tracking with a camera isn’t possible.

A good part of the early literature that uses IMUs is focused on database retrieval. While Liu [47]
uses online local models to regress the pose by querying the database with 6 IMUs, Schwarz [71] uses
the Gaussian process regression to directly regress the full pose and uses 4 IMUs for the query. Such
database based approaches are limited as they cannot capture activities not present in the dataset.

To recover arbitrary poses directly from IMUs, a sparse IMU setup wouldn’t suffice as it will result
in weak constraints on human motion and noise due to acceleration data. Therefore, the majority of
the early setups use a large number of sensors for stabilization and accuracy. For example, Xsens’
Moven [69] consists of 17 IMUs and Vlasic’s [89] system consists of 18 sensors. However, such systems
are extremely intrusive to the performer and time-consuming to setup/reproduce. Therefore, to make it
less intrusive, a few have constrained the sparse IMUs with optical inputs [8, 65]. Although interesting,
optical data introduces challenges such as occlusions or limitations in outdoor tracking.

(a) (b)

Figure 2.6: An Illustration of Sparse Inertial Pose’s [91] (SIP) optimization and results. (a) A
depiction of the joint optimization of SIP. Multiple poses fit the IMU readings in each frame (shown
by models in grey). By optimizing over all poses in the sequence, we can see a pose trajectory over
frames (in orange). (b) A depiction of the recovered SMPL models (in grey) by using 6 IMUs and the
joint optimization procedure. Note that the RGB images are shown for reference and not used in the
optimization.

Sparse Inertial Poser [91] is a seminal work that uses only 6 IMUs and constrains the problem by
using the SMPL statistical body model [12], therefore resulting in a minimally intrusive yet accurate
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system. As shown in Figure 2.6a, they optimize all the poses of a sequence simultaneously in a single
objective function and enforce coherency between the IMU readings and body model’s orientation and
acceleration.

2.2 Progression towards learn-able representations

With the resurgence of deep learning, there has been an emphasis on moving towards learn-able
representations. Below, we shall first review various 3D representations and assess their capability to be
integrated with these learn-able models, followed by the state-of-the-art methods that have adopted this
paradigm.

2.2.1 3D Representations

(a) (b) (c)

Figure 2.7: A visual depiction of various 3D Representations with a human in a canonical pose - (a)
Point Cloud, (b) Voxel-grid and (c) Mesh.

Point Cloud. A point cloud is a set of data points in space (3D). They’re are capable of capturing
objects/scenes whose structure is not known. Although extremely powerful, this unstructured nature of
theirs makes them computationally expensive to operate on. Further, from a deep learning point of view,
it was not until recently [66] that the community was able to operate on them in a fashion that captures
the global and local features of 3D objects/scenes.

Voxel-grid. A voxel is the smallest, most basic unit of 3D space. A voxel-grid is a 3D occupancy grid
made up of such voxels. Therefore, each cube in the grid represents a binary number - 0 for free and 1
for occupied. This representation can be interpreted as a discretized version of a point cloud; therefore,
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still capable of learning objects with unknown structures, with an added advantage of being easier to
operate on. However, for those applications interested in capturing only the surface information [39],
they can be inefficient as they typically fill the cubes within the surface boundary as well. Octree based
methods [92] improve upon traditional voxel-grids by providing higher granularity in regions containing
high-resolution details and lower granularity in low-resolution regions.

Mesh. A mesh consists of a point cloud with a well-defined topology imposed on it, therefore, giving
each 3D point a neighborhood. It is a collection of vertices, edges, and faces that characterize the shape of
the object in 3D. Very recently, graph-based CNNs [44] and MeshCNNs [36] are being explored to make
use of this neighborhood constraint by defining network operations such as convolutions, upsampling,
and downsampling on them.

The aforementioned representations (visually depicted in Figure 2.7) can be considered as a sampling
of the underlying manifold. A manifold is a parametric surface and learning such functions have recently
come into focus with models such as AtlasNet [33]. Recovering the parametric surface is a more chal-
lenging task and a separate research area in itself, hence, out of the scope of this thesis.

Statistical Body Models. When the structure of the object of interest is known, it makes sense of
utilizing this information in creating a 3D representation for it. This is the idea behind parametric
human-body models. As shown in Figure 2.8, some of the earliest parameterizations were based on stick
models [10], which consisted of labeled landmarks (to represent joints) and edges between them (to
indicate connectivity). These evolved into models based on geometric primitives [26] (such as cubes,
spheres, etc). Modern-day state-of-the-art statistical models are learned from thousands of 3D scans of
people. Therefore, they exhibit realism due to inherently modeling anthropomorphic constraints such as
limb/bone proportions and their associated symmetry. Although such parameterizations are typically
low dimensional (in comparison with voxel-grids or point-clouds), they do not sacrifice on the quality of
reconstruction. An added advantage is that they easily integrate with existing graphics pipelines, thereby
catering to a wide range of applications.

SCAPE [9] was one of the first statistical models built from real scans and it decomposed the human
into pose and shape. However, due to being a model built on triangle deformations, it presented challenges
in optimization and fitting. SMPL [12], on the other hand, is a vertex-based model and is, therefore,
easier to use in optimization. Some other models such as [61] model even low-level details such as skin
deformations as a function of the skeletal motion.

Since SMPL is used in our work, we shall describe it in further detail. The SMPL model decomposes
the human body shape into identity-dependent shape and non-rigid pose-dependent shape. It uses a
vertex-based skinning method that incorporates corrective blend shapes, in which each blend shape
is represented as a vector of concatenated vertex offsets. The skeletal structure of the human body is
modeled as a kinematic tree. The model consists of naked meshes of N = 6890 vertices, with pose
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(a) (b) (c)

Figure 2.8: Evolution of Body Models - (a) Skeleton Based [10], (b) Geometric Primitive Based [26]
and (c) Statistical Body Model, SMPL [12].

parameters θ ∈ IR72 (of which the first three are for the global rotation) and shape parameters β ∈ IR10.
The pose parameters are represented in terms of the relative angles

As given in Equation 2.2, the shape offset (Bs(β)) and pose offset (Bp(θ)) are applied to the base
template T , which is the statistical mean shape in the training scans Tµ. Then, as per Equation 2.1, each
body part is rotated around skeleton joints J(β) using a skinning function W . Therefore, the SMPL model
M(β, θ) is given by -

M(β, θ) =W (T (β, θ), J(β), θ,W ) (2.1)

T (β, θ) = Tµ +Bs(β) +Bp(θ) (2.2)

where T (β, θ) outputs an intermediate mesh in a T-pose after the pose deformations are applied.

2.2.2 Monocular Reconstruction

The capability of these over-fitting machines (deep learning), availability of large scale datasets with
image-3D pairs as well as a requirement for scalable and non-intrusive methods has catapulted the field
to focus on monocular 3D reconstruction.

Iterative Optimizations. Some of the early work in literature focuses on optimization-based techniques,
beginning with the SCAPE body model [9]. Guan [34] uses silhouettes, edges, and shading as cues
during the fitting process and required an initialization through a user-specified 2D skeleton. Sigal [74]
was among the first to automatically fit the parametric SCAPE to ground truth silhouettes without user
intervention. They use a discriminative method to initialize a generative model for more fine detail
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recovery. However, due to difficulties in optimization with triangle-based models such as SCAPE, the
focus shifted to vertex-based models such as SMPL [51].

Figure 2.9: Illustration of SMPLify [13], an optimization based method. Given a monocular RGB, they
use a CNN to predict 2D joint locations (hot colours denote high confidence). This is followed by fitting
a 3D model using an iterative optimization (overlayed over the input image in orange)

Further, SMPL provided the right balance between high anatomical flexibility and realism, therefore
became a popular model choice for 3D human recovery. As shown in Figure 2.9, SMPLify [13] was
amongst the first and they estimate the 2D joint locations followed by an optimization framework to fit it
to the SMPL model. Similarly, [46] predicts 91 landmarks on the human body in the image and uses an
extended version of SMPLify to fit it to the parametric model. While [6] recovers the textured SMPL
model from a monocular RGB video, [102] recovers the naked shape under clothing given static 3D
scans or 3D scan sequences.

Despite showing compelling results, the aforementioned methods are over-reliant on error-prone 2D
observations. Further, solving an iterative optimization problem is susceptible to highly complex and
costly; not enabling real to semi-real time performance.

Learning Body Models. Deep learning provided an alternate solution that learned priors automatically
from the data and addressed several of the issues with iterative optimizations. Dibra [23] presents one
of the first approaches using this paradigm by learning the shape parameters from silhouettes using
a CNN, but assume a frontal view. Subsequent methods focused on learning the parameters from an
image [41, 59, 63, 80, 83].

Tan [80] indirectly predicts the model parameters from the bottleneck layer of an encoder-decoder
architecture that is trained on silhouette prediction. As shown in Figure 2.10, HMR [41] proposes
a seminal work with an iterative regression using 3D and 2D joint loss as feedback and adversarial
supervision for each joint. However, this architecture has a large number of networks and takes 5 days to
train. [59] predicts a color-coded body segmentation that is used as a prior for predicting the parameters.
Similarly, in [63], 2D heatmaps, and silhouettes are predicted first, which are then used to predict the
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Figure 2.10: Overview of Human Mesh Recovery [41], a parametric human model recovery
method. An image ’I’ is sent to a CNN encoder, followed by. an iterative 3D regression module
that infers the SMPL parameters and minimizes the joint re-projection error. The 3D parameters are then
sent to a discriminator D to limit the parametric space to produce only valid poses and shapes.

pose and shape parameters. Although showcasing impressive results, all of the above methodologies
calculate the loss on 2D keypoints or silhouette projections of the rendered mesh, which significantly
slows down training time (due to model complexity), in addition to requiring additional supervision.

Learning Surface Representations. Although parametric body models are effective, they lack high-
resolution details (accurate geometrical information), and in an attempt to recover personalized models,
learning the surface representation for humans shapes became an area of interest.

As discussed in Section 2.2.1, the volumetric representation is a discretized form of a point cloud.
Therefore, it became a popular representation to capture the surface of an object. This was first adopted
for learning the 3D of rigid objects (e.g. cars, chairs, rooms), in which they learned a class-specific 3D
structure of objects using large scale datasets of synthetic 3D models [21, 82, 95, 96, 100]. ShapeNet[96]
proposed a deep network representation with a convolutional deep belief network to give a probabilistic
representation of the voxel-grid. Along similar lines, 3D Generative Adversarial Networks (GAN’s)
were proposed to learn a probabilistic latent space of rigid objects (such as chairs, tables) in [95].
[100] proposed an encoder-decoder network that utilizes observations from the 2D space, and without
supervision from 3D, performs reconstruction for a few classes of objects. This relationship between 2D
and 3D is further exploited in [82] where they define a loss function in terms of ray consistency and train
for single-view reconstruction.

Regarding non-rigid reconstruction, SurfNet [76] proposed to directly achieve the surface reconstruc-
tion by learning a mapping between 3D shapes and the geometry image representation (introduced in
[75]). One of the key limitations of their method is that it is only suitable for genus-0 meshes. This
constraint is frequently violated in real-world human body shapes due to topological noise [72] induced
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by complex poses, clothing, etc. Another very recent work proposed in SilNet [94] uses multi-view
silhouette images to obtain reconstructions of free form blob-like objects/sculptures. However, the use of
silhouettes limits the application to scenarios where background subtraction is assumed to be trivial. All
these initial efforts are focused on textureless 3D reconstruction and do not seem directly extend-able to
non-rigid human body shapes.

Figure 2.11: Overview of Bodynet [84], a volumetric human recovery method. The input RGB
image is given to two networks that predict the 2D pose and 2D body part segmentation. Both of
these are combined with the input RGB and fed to another network that regresses the 3D pose. All the
sub-networks’ outputs are fed to an encoder-decoder model to predict the volumetric shape, trained using
reprojection losses. The final model is fit to predict the SMPL parameters for evaluation.

Non-rigid shapes pose an additional challenge of an ever-changing topology over time in comparison
with rigid shapes. As a parallel work to ours (described in Chapter 3) for the volumetric reconstruction of
humans, Bodynet [84] proposes a complex multi-task to do the same. As shown in Figure 2.11, they had
a total of 4 networks (having respective losses computed on 2D and 3D joint locations, 2D segmentation
mask, volumetric grid, and silhouette reprojection of volumetric and SMPL model). In addition to
recovering the voxel-grid, they fit the recovered volume to the closest SMPL parameters, thereby
recovering an animatable model. Further, similar to our early attempts to exploit the mesh topology
(described in Chapter 3), another concurrent method [45] proposes a Graph Neural Network(GCN) to
recover the mesh corresponding to the SMPL body model.

Recently, early attempts have been made to learn full-body models [62] from monocular images and
enforce temporal consistency [42] as well. These are interesting fields of study which might have more
emphasis moving ahead.

Extension to Other Non-rigid Shapes. Learning of other non-rigid shapes such as faces [29, 64],
hands [17, 27, 53], clothing [5, 11], animals [106, 107] etc. have also been active fields of study.

We shall discuss hand model recovery in a bit more detail because of our initial efforts in that direction
(see Section 5.3.4). While most of the hand recovery methods typically estimate the 3D pose from
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one or multiple RGB/Depth images, hand shape estimation hasn’t been extensively explored. For a
detailed survey of the field, we refer to [79, 101]. Most of the early models only approximate the shape
of the hand [58, 81]. While personalized model such as [40] works better at tracking, they do not scale
well to a large number of users. Recent effort in [53] was the first attempt to predict both the pose and
the vertex-based full 3D mesh representation (surface shape) from a single depth image. The recently
proposed MANO [70] model is an SMPL-like model that describes both the shape and pose, and is
learned from thousands of high-resolution scans. [17] predicted the MANO parameters from a monocular
RGB image, but, they don’t show much shape variations. Similar to our attempts to exploit the mesh
topology (see Section 5.3.4), [27] uses a graph CNN to recover the hand surface from monocular RGB
image of the hand.
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Chapter 3

Volumetric Reconstruction

(a) (b) (c)

Figure 3.1: An Illustration of Volumetric Reconstruction of a Human from a Monocular image.
Given a monocular input image (a), we recover the corresponding volumetric 3D of the human (b,c).
Here, (b) shows the recovered 3D aligned to the input and (c) shows it aligned to another view, for
aethetic reasons. Note that the results shown here are after surface smoothing [43].
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Capturing dynamic scenes in a calibration-free environment via a non-intrusive method requires
innovation along both lines - sensing and interpretation. Therefore, following a ubiquitous approach, we
focus on developing efficient learning algorithms from monocular cameras. However, learning non-rigid
shapes from a monocular image is a severely ill-posed problem. Unlike rigid shapes, this non-rigid nature
of human body shapes results in additional challenges due to an object geometry that evolves over time,
resulting in a large space of pose and shape deformations.

We overcome these challenges with algorithm level novelty. A key part of the algorithm is the
underlying 3D representation used. While parametric model-based techniques [9, 12, 16] are effective,
they are non-ideal for developing personalized models with clothing details, facial features, etc. due to
following a template geometry. In this chapter, we explore the volumetric representation, in an attempt to
learn more accurate surface information via a novel deep learning model.

Further, since this learning process isn’t straightforward, a key algorithmic trick we employ is to use
additional priors that provide cues about the relative depth and symmetry of human bodies and indirectly
guide the learning process. We do so in a unique fashion by showing maximum information at training
time, to successfully predict from minimum information at test time. Specifically, we co-learn RGB
with Depth cues as well as provide multi-view information at training time, to enable reconstruction
from just single-view RGB at test time. The shared filter weights in this co-learning process enable the
model to capture the wide range of poses and shapes, in addition, to help address the challenges caused
by cluttered background, shape variations, and free form clothing. Further, we extend our model by
decoupling pose and shape to ease the learning process.

Note that the work showcased in this chapter has been published in BMVC, 2018 [87]. The full
pipeline with texture recovery isn’t showcased here as it is out of the scope of this thesis. Also, note that
qualitative results are given at the end of the chapter.

3.1 Contributions

The key contributions of this work are:

• First, we introduce a novel deep learning model, VolumeNet, to obtain 3D models of non-rigid
human body shapes from a single image. Obtaining the reconstruction of non-rigid shapes in a
volumetric form had not been attempted in the literature (at the time of publication).

• Second, we introduce the ideology of showing maximum information while training, to enable
prediction with minimum information. Specifically, we demonstrate the importance of depth cues
for this task by co-learning RGB and Depth. This, coupled with showing multi-view information
while training enables prediction from monocular RGB.

• Third, we show that our model can partially handle non-rigid deformations induced by free form
clothing (as a result of not imposing any model-based constraint while training), thus moving one
step closer towards recovering personalized models.
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• Fourth, we collected a real dataset (that shall be publicly released) of textured 3D human body
models and their corresponding multi-view RGBD, that can be used in solving a variety of other
problems such as human tracking, cloth modeling, etc. This is the first of its kind dataset that
captures the Indian demographic. We show impressive quantitative and qualitative results on four
publicly available datasets as well as our proposed dataset.

• Finally, we use VolumeNet to build PoShNet, as an attempt to simplify the learning procedure. Here,
we decouple pose and shape, and use the volumetric pose as a prior for better shape estimation.

3.2 Proposed Method: VolumeNet
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Figure 3.2: Test time flow of VolumeNet, our proposed model for Volumetric 3D Human Recon-
struction from a single image. Given a monocular input RGB image, we first obtain the image features
via a 2D CNN Encoder. This is forwarded to a multi-view module, that was taught to map the input
view to a certain part of the output space via our unique training methodology. The Decoder, a 3D
DCNN then upsamples the output of the multi-view module to produce a reconstructed volume of size
128× 128× 128. Using Poisson’s surface reconstruction algorithm [43], we then smooth the voxel-grid
to obtain the reconstructed mesh.

As shown in Figure 3.2, we propose an encoder-decoder network with a multi-view module sand-
wiched between the two. The multi-view module is used to propagate the ideology of providing as
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much information as possible while training (for the network to automatically learn priors) to enable
reconstruction from minimum information at test time. Specifically, at train time, we provide a random
number of input views (anywhere from one to eight) in each iteration, thereby allowing the network to
auto-correlate and predict from just one view at test time. Following the same ideology, as explained in
“Input Modes” below, we co-learn RGB and Depth information (RGB/D mode) by optimizing the network
to predict equally as well from both, thereby exploiting the coherence in both modalities and enabling
better prediction from only RGB. Putting both these ideas together, we thus enable reconstruction from
single view RGB at test time. The details of the network architecture are given below.

3.2.1 Network Architecture

• Encoder - The encoder consists of a 2D CNN (ResNet-18) that takes an image of size 255x255 in
one of the input modes (see below) and produces a 1024 dimensional feature vector. Each view
produces one such feature vector, which is combined in the multi-view module. We use Leaky
ReLU as the activation function in both the encoder and decoder.

• Multi-view Module - The CNN feature vectors produced by the encoder (for each view) are
combined using either a view-pooling operation [94] or a 3D-GRU [21]. The outputs are resized to
43 and fed to the decoder. While the view-pooling operation extracts the most prominent features
from each view and derives a global shape, the 3D-GRU correlates the CNN image features to the
right location of the 3D grid (as shown in Figure 3.4).

Figure 3.3: Spatially distributed 3D-GRU Grid [21] consisting of 4 × 4 × 4 3D-GRU units. The
purple cell receives the 2D CNN feature vector along with the hidden states of its neighbours (red) via a
3× 3× 3 convolution.

The 3D-GRU units are spatially distributed in a 3D grid structure. Inside the 3D grid, there are
N ×N ×N 3D-GRU units, where N is the spatial resolution of the 3D-GRU grid (in our case,
N=4). As shown in Figure 3.3, in each view, each unit (purple) in the 3D-GRU receives the same
feature vector from the encoder in addition to the hidden states from its neighbors (red) by a
3× 3× 3 convolution as inputs. For vanilla GRUs, all elements in the hidden layer ht−1 affect
the current hidden state ht, whereas a spatially structured 3D GRU only allows its hidden states
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ht(i, j, k) to be affected by its neighboring 3D-GRU units for all i, j, and k, where the neighbours
are defined by a convolutional kernel size of 3× 3× 3.

The multi-view module sends a 3D grid of hidden states to the decoder, that is upsampled to reach
the target volumetric representation. Since at training time, each voxel-grid is reconstructed from
all of 1 to V views, even though the order of the views aren’t maintained, this configuration forces a
3D-GRU unit to handle the mismatches between a particular region of the predicted reconstruction
and the ground truth model such that each GRU unit learns to reconstruct one part of the voxel
space (see Figure 3.4).

Figure 3.4: An Illustration of correlation of image features with locations in the 3D GRU grid.If
the input image is taken from the front/side view (for e.g.), the input gates corresponding to the front
and side view respectively activate (opens). If the view of an object taken from the back is fed into the
network, the input gate will open up for the voxels on the back. This operation allows the network to put
image features to the right position [21].

• Decoder - The decoder consists of 3D DCNN (Deconvolutional ResNet-18) that up-samples the
output of the multi-view module to 1283. We stop at this resolution because of the associated
computational complexity with higher resolutions. Finally, a mesh is obtained from the voxel-grid
via Poisson’s surface reconstruction algorithm [43].

3.2.2 Input Modes

To capture the large space of complex pose and shape deformations of humans, we experiment with four
input modes:

• RGB - This setup is commonly used in rigid body reconstructions [21, 82]. However, we quali-
tatively and quantitatively show in Section 3.3.2 that this setup in inadequate for reconstructing
non-rigid shapes.

• D - The premise behind this mode is that depth-maps give us information about the geometry of the
object, which as seen in Section 3.3.2, help in significantly enhancing the reconstruction quality.
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• RGBD - To exploit both the depth and color channels, we augment RGB with D in a 4 channel
input setup.

• RGB/D - Lastly, we propose a unique training methodology that gives us superior performance
in comparison with the above 3 modes. Here, at train time, for each mesh, we perform two
feedforwards - one with input as RGB and another with input as Depth (replicated to all three
channels). The outputs of both modalities are given equal weightage in the joint optimization as
shown below (Equation 3.1), in which LRGB and LD are both given by Equation 3.2. Thus, this
allows good reconstruction from just RGB at test time by leveraging upon Depth information at
train time.

Lfinal = LRGB + LD (3.1)

Intuitively, this strategy is equivalent to sharing weights between the RGB and D spaces, to exploit
the coherence between RGB and D; thus combining the advantages from both the spaces.

3.3 Experiments & Results

In this section, we provide necessary implementation details and corroborate our method of single
view non-rigid 3D reconstruction by means of qualitative and quantitative evaluation. For visual results,
refer to our supplementary video [2, 4].

3.3.1 Datasets

(a) (b) (c) (d) (e)

Figure 3.5: An Illustration of the diversity in poses, shapes and clothing in our 3D dataset. While
(a), (b) are relatively tight clothing, (c) salwar kameez, (d) dhoti (e) kurta are free-form clothing.

Our Data: As shown in Figure 3.6, we setup a calibrated multi-camera 3D Capture System with 5 v2
Microsoft Kinect [56] cameras vertically mounted on stands, all connected to a workstation grade server
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to store and process the captured data in real time, from each of the devices. Our current motion capture
system works at the rate of 30 fps, but, can be extended to high speed capture scenarios with the help
of additional hardware (such as point-grey cameras) and the associated processing and synchronisation.
Briefly, the setup and working of our system can be encapsulated in the 3 stages -

• Calibration - Each pair of Kinect cameras are first calibrated using a checkerboard pattern. The
calibration process entails finding the corners of the checkerboard in each frame and solving the
equation which gives the transformation between each pair of cameras.

• Capture - Each Kinect camera captures the RGB and Depth image. The Depth image provides the
view-specific colored point clouds (2.5D) using the camera’s intrinsic parameters. The transforma-
tion matrices between each pair of cameras obtained in the calibration process (step 1) are used to
merge the view-specific 2.5D to get a consistent colored 3D point cloud.

• Post-processing - The 3D point clouds obtained in the previous step are often noisy due to errors in
calibration, sensor noise, etc. and are therefore cleaned by thresholding (to remove noisy surface
points). This cleaned 3D point cloud is converted to a mesh using surface reconstruction algorithms
such as Poisson’s Algorithm to obtained a coloured 3D mesh.

Figure 3.6: Setup of our 5-Kinect 3D Motion Capture System.

Using this system, we’ve captured the first of its kind 3D Models specific to the Indian population.
Our continuously expanding dataset consists of male and female models of various shapes performing
actions ranging from simple marching and punching sequences to complicated dance actions (as shown
in Figure 3.5). In addition to the complexity in poses and shapes, we’ve captured data in a wide range of
clothing attires from skin-tight clothing to traditional free-form clothing such as kurtas, salwar kameez,
dhoti, etc.

As shown in Figure 3.5, this diverse data is very valuable as it can be used to solve several problems
such as 3D Human Surface Reconstruction, Cloth Modeling, Texture Recovery, etc. A subset of this data
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(with settings similar to Figure 3.5a) consisting of 5 mesh sequences, each containing 200 to 300 frames
with significant pose and shape variation was used for training and testing our pipeline.

MPI Datasets: First, we use the parametric SMPL model [12, 85] to generate synthetic data as follows -
10 mesh sequences, each containing 300 frames, i.e., 3000 meshes, consisting of an equal number of
male and female models. We use a virtual Kinect setup to obtain RGB and Depth from 8 locations for
this setup. Secondly, we use data from FAUST [15] which consists of 300 high-resolution human meshes,
each having approximately 250,000 vertices. Each scan is a high-resolution, triangulated, non-watertight
mesh acquired with a 3D multi-stereo system. There are a total of 10 different subjects in 30 different
poses. The 300 meshes come divided into 2 sequences, one having complete meshes and the other having
broken/incomplete parts - the former used for training, and the latter for testing.

MIT’s Articulated Mesh Animation [90]: This dataset consists of 5 mesh sequences (approx. 175 to
250 frames each). It provides RGB images from 8 views and the corresponding 3D meshes for each
frame. The total number of meshes used from this dataset for training are 1,525.

3.3.2 Implementation Details

Network’s Training. We used Nvidia’s GTX 1080Ti, with 11GB of VRAM to train our models. A
batch size of 5 with the ADAM optimizer having an initial learning rate of 10−4 and a weight decay of
10−5 is used to get optimal performance. Further, a standard 80 : 20 split between the training and testing
datasets is adhered to. In order to ensure that reconstruction is feasible from single as well as multiple
views, we choose a random number of views from available views for training a mesh in each iteration.
Using this randomization in training, we are providing sufficient view information to the network so
that it can learn the space of body pose and shape variations and hence able to achieve single view
reconstruction at test time.

Loss Function. We use Voxel-wise Cross Entropy to train the reconstruction models. It is the sum of the
cross-entropies for each pair of predicted and target voxel values. Let ’p’ be the predicted value at voxel
(i, j, k) and ’y’ the corresponding expected value. Then, the loss is defined as :

L(p, y) =
∑
i,j,k

y(i,j,k)log(p(i,j,k)) + (1− y(i,j,k))log(1− p(i,j,k)) (3.2)

Evaluation Metric. The primary metric used to evaluate our performance is the Intersection over Union
(IoU), which is a comparison between the area of overlap and the total area encompassing both the
objects. Larger its value, the better the quality of reconstruction.
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Dataset Multi-View RGB (Baseline) D RGBD RGB/D (Ours)

MPI-SMPL [85]
3D-GRU 0.6903 0.7709 0.7541 0.8040
Max Pool 0.7144 0.7633 0.7550 0.7816

MIT [90]
3D-GRU 0.0103 0.7403 - 0.7547
Max Pool 0.0081 0.7205 - 0.7480

MPI-FAUST [16]
3D-GRU 0.8113 0.8629 0.8356 0.8644
Max Pool 0.8150 0.8661 0.8366 0.8521

OUR DATA
3D-GRU 0.6816 0.7963 0.8114 0.8241
Max Pool 0.6883 0.7844 0.8017 0.8066

Table 3.1: A comparison of IoU values tested using a single view on datasets [90, 85, 16], under the
various input modes, when trained with two different view modules.

Let ’p’ be the predicted value at voxel (i, j, k) and ’y’ the corresponding expected value. ’I’ is an
indicator function which gives a value of 1 if the expression it is evaluating is true, if not, it gives 0. ’t’ is
an empirically decided threshold of 0.5 above which the cell is considered as filled.

IoU =

∑
i,j,k[I(p(i, j, k) > t)I(y(i, j, k))]∑

i,j,k[I(p(i, j, k) > t) + I(y(i, j, k))]
(3.3)

Baseline. As described in Section 2.2.2, there are several standard encoder-decoder networks that
use single/multi-view RGB image(s) for voxelized reconstruction of rigid objects. Therefore, as a
baseline, we interpret this setting of using only RGB image(s) for both training and testing the recon-
struction network. Further, the qualitative and quantitative results are compared and evaluated on ground
truth data generated using traditional Multi-View Geometry (MVG) setups (from up to 22 views), on
four datasets of varying complexity. For rendered sample outputs, please refer to the supplementary video.

3.3.3 Results & Discussion.

Figure 3.7: Clothing induced deformations captured by our proposed method, VolumeNet, on [90].
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Quantitative results (IOU metric) in Table 3.1 suggest that for a variety of datasets of varying com-
plexity and irrespective of the method of combining multiple views, the depth information is very critical
for accurate reconstruction of human models. It is interesting to notice that the difference in IoU values
between RGB and RGB/D widens under two scenarios - a) when the dataset has very complicated
poses (such as the handstand sequence in MIT) and b) when the background becomes more complicated.
Figure 3.8 re-emphasizes this ineffectiveness of using RGB alone, in which the first and second rows
show the reconstructions from MIT’s handstand and our captured data, respectively. The intuition behind
the working of this training paradigm is that the co-learning of the shared filter weights of the two
modalities acts as a regularization for one another, thus enhancing the information seen by the network.

Figure 3.9 shows the robustness of the learned model performing a vast range of actions. This
robustness while reconstructing from a single image can be attributed to the network’s ability to exploit
the symmetry associated with non-rigid human shapes. As a result of not imposing any body-model
constraint, we were able to partially handle non-rigid deformations induced by free form clothing as
shown in Figure 3.7. While the current pipeline has not been trained to explicitly capture the temporal
information available in sequences, results on MIT’s Samba dance sequence [90] shown in Figure 3.7
show great promise for reconstructing performance capture scenarios from a single image.

(a) Input RGB (b) Ground Truth (MVG) (c) Baseline (RGB) (d) Ours (RGB/D)

Figure 3.8: Qualitative comparison of VolumeNet with the baseline.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: Qualitative Results of VolumeNet. A comparison of 3D Shapes obtained using VolumeNet,
our monocular reconstruction network (first row) with ground truth models (second row) obtained with
through multi-view setup with 22 cameras.
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3.4 PoShNet: Decoupling Pose and Shape

In this section, we try to build upon VolumeNet and simplify the regression problem by using domain-
specific information about non-rigid human shapes. We decouple learning pose and shape as well as
guide the shape estimation with a pose prior. It is to be noted that the ideas in this section are a work in
progress and aren’t peer-reviewed yet. Qualitative results are given at the end of the chapter.
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Figure 3.10: Overview of the test-time flow of PoShNet - Decoupling of Volumetric Pose and Shape.
Given an input image (a), PoseNet (b) recovers a volumetric pose (c). Further, Shapenet (d) uses the
same input image (a) to predict surface modifications to the volumetric pose (c) via the shape correction
feature (e), to recover a modified volumetric shape (f) with accurate surface information. The final step
involves Poisson’s surface reconstruction algorithm [43] to recover a smooth mesh (g).

Network Architecture. We use domain-specific information by decomposing the learning into estimat-
ing the volumetric pose first, followed by volumetric shape completion/editing. As shown in Figure 3.10,
we do so using PoseNet and ShapeNet, each having the same architecture as VolumeNet (see Figure 3.2).
Hence, the training methodologies and input modes of VolumeNet extend here.

We follow a two-step procedure for training PoShNet -

• First, we train PoseNet to recover the volumetric pose of the human while ignoring shape informa-
tion. This is facilitated by using the SMPL body model [51] to create ground truth 3D with correct
pose information, but, template shape information.
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Dataset VolumeNet PoShNet
MPI-SMPL [85] 0.804 0.921

MIT [90] 0.7547 0.844

Table 3.2: A quantitative comparison of IoU values between VolumeNet and PoShNet.

• Second, we train ShapeNet to use the same input image(s) as PoseNet and predict a shape correction
feature (of the same size as volumetric pose grid), which when added to PoseNet’s output enhances
the surface information as well as corrects mistakes made by the PoseNet. Specifically, we add the
final layer outputs produced by both PoseNet and ShapeNet, while back-propagating only through
ShapeNet. Therefore, ShapeNet is forced to learn just surface information. The ground truth used
in this step contains accurate surface geometry estimated with a calibrated multi-view setup.

Loss Function. While both ShapeNet and PoseNet use Voxel-wise Cross-Entropy (see Equation 3.2) for
training, ShapeNet is trained by combining its output (shape completion feature) with that of PoseNet’s
prediction. This is elaborated as follows - at each voxel (i, j, k), if OP is PoseNet’s output and OS is
ShapeNet’s output, both are combined as follows to give ’p’, the final predicted value -

p(i,j,k) = OP(i,j,k) +OS(i,j,k)∀(i, j, k) (3.4)

This final predicted value, p, is used to calculate the loss against the ground truth’s expected value
using Equation 3.2.

Results & Discussion. As shown in Table 3.2, the decoupling strategy achieves superior surface
reconstruction by breaking down the direct volumetric regression into two simpler sub-problems - pose
and shape estimation, and guiding the shape estimation with a pose prior. Figure 3.12 shows the
effectiveness of this approach, allowing ShapeNet to recover detailed deformations induced by free-form
clothing. Such a modular approach opens up the possibility to extend this concept to add facial features,
hair details, hand articulations, etc. in an end-to-end manner.

It is to be noted that our approach is superior to directly reconstructing the boundary voxels because we
have eased the job of ShapeNet by - (a) already predicting the pose, and (b) providing an initial template
volume in that pose, thereby allowing it to effectively utilize the volume prior via 3D convolutions.

Shortcomings. As a part of our experimentation, we explored different ways of combining and operating
the pose and shape networks - (a) concatenation/additions at a multitude of intermediate feature levels,
(b) directly operating on the volumetric pose’s output with another 3D DCNN and (c) joint training of
both networks, and (d) varying activation and loss function. Although the results of PoShNet prove to be
superior, all of them (including PoShNet) suffer from instability. This can be perhaps be associated with
the fact that two models control a single output space, causing multiple sources of error. Further, training
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and testing PoShNet is extremely computationally expensive due to two pairs of 3D DCNNs, one each
from PoseNet and ShapeNet.

3.5 Limitations

Figure 3.11: Limitations with Volumetric Reconstruction - 3D Models with Broken limbs recon-
structed under certain difficult conditions - occlusions in input views and/or difficult poses.

• The human body has a natural symmetry and structure. Using an unbounded space (volumetric)
to learn a structured object is sub-optimal. As seen in Figure 3.11, sometimes, the reconstruction
can have broken hands/legs, i.e., exhibit the lack of a consistent topology. In other words, if we
know that most humans have 2 hands, 2 legs, and one head, it would be more efficient to start the
learning process from that point, rather than learning from scratch every-time. Hence, making use
of a parametric template to learn the structure (pose), followed by a surface refinement for finer
details might be a direction worth looking at.

• Learning a volumetric model is extremely expensive due to costly 3D convolutions. Further,
although we’re interested only in the surface boundary, a volumetric regression ends up filling the
voxels within the surface as well, which adds additional strain on the learning algorithm.

3.6 Conclusion

Monocular 3D Human Reconstruction is a severely ill-posed problem due to self-occlusions caused
by complex body poses and shapes, clothing obstructions, lack of surface texture, background clutter,
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single view, etc. We proposed a novel deep learning pipeline that exploits the volumetric space to learn
a more accurate surface and overcome these challenges with innovation in our training methodology
by co-learning RGB with Depth cues as well as providing multi-view information so that single view
reconstruction from only RGB is possible at test time. Further, we make the learning process easier
by decoupling pose and shape estimation, while using the volumetric pose as a prior for better shape
estimation. We show superior reconstruction performance using the proposed method in terms of
quantitative and qualitative results on both publicly available datasets (by simulating the depth channel
with virtual Kinect) as well as real RGBD data collected with a calibrated multi Kinect setup. As a part
of future work, it will be practical to extend this to exploiting the temporal consistency for the task of
reconstruction, for the case of continuous mesh sequences.
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(a) Input RGB (b) PoseNet (c) ShapeNet

Figure 3.12: Qualitative Results of PoShNet on MIT [90]. Given an input image (a), the figure shows
the volumetric pose predicted by PoseNet, followed by the modified surface predicted by ShapeNet (c).
Note that the results depicted here are after smoothing [43].
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Chapter 4

Learning Statistical Body Models

Although volumetric regression enables recovering a more accurate surface reconstruction, it does
so without an animatable skeleton. Such methods yield reconstructions of low resolution at higher
computational cost (regression over the cubic voxel grid) and often suffer from an inconsistent topology
via broken or partial body parts. Hence, statistical body models come as a natural choice because of
the strong priors provided by the model offsets the ill-posed nature of the problem. Such models are
created from thousands of scans of real people and inherently model anthropomorphic constraints such
as limb/bone proportions. Further, their low dimensional space theoretically makes it easier to learn (in
comparison with voxel-grids or point-clouds). An added advantage is that they easily integrate with
existing graphics pipelines, thereby catering to a wide range of applications. Although they have often
been critiqued with being incapable of capturing surface information, such models have the possibility
of being integrated with physics-based clothing models in the future, and hence are an interesting
representation to explore.

Recently, several end-to-end deep learning solutions for estimating the 3D parametric body model
from a monocular image have been proposed [41, 59, 63, 80, 83, 98]. They all attempt to estimate the
pose (relative axis-angles) and shape (PCA space) parameters of the SMPL [51] body model from a
single image, which is a complex non-linear mapping. To get around this complex mapping, several
methods transform them into rotation matrices [59, 63] or learn from 2D/3D keypoint and silhouettes
projections of the predicted mesh [41, 59, 63]. Additionally, [41] proposes an alternate method for
training (Iterative Error Feedback) as well as body-joint specific adversarial losses, which takes up to 5
days to train. Hence, learning the parametric body model hasn’t been straightforward.

In this chapter, we explore a method to ease the learning process by providing a strong prior in the
form of an approximate estimate. It is to be noted that the ideas in this chapter are a work in progress and
are not yet peer-reviewed. We showcase some preliminary findings in this direction.

4.1 Contributions

To summarize, our primary contributions are as follows -
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• Firstly, we propose a novel model - the CR framework to address the problem of complicated
learning paradigms for parametric models.

• The proposed framework is the first of its kind for this problem, and aims at using classification to
guide the body model regression. It acts as a strong prior by providing an approximate estimate
from an image.

2D
 CN

N
(Resnet-18)

2D
CN

N
(Resnet-18)

(a) Input RGB
(255x255)

(b) Classification 
Network

(d) Regression
Network

(c) Predicted Prior (e) Fully Connected
Layers

Concat

(f) Refined Model

Figure 4.1: Overview of CR Framework to predict parametric body models. Given an input RGB
image (a), the model first predicts an approximate prior (c) via the classification network (b). Then,
from the same input RGB (a), the regression network (d), produces a CNN feature vector, which gets
concatenated with the predicted prior (c). These are then passed through 3 fully connected layers (e) to
predict the refined model (f).

4.2 Proposed Method: CR Framework

Network Architecture. In order to ease the learning process, we break down the problem into two parts
- (a) to generate an approximate estimate and (b) to refine that estimate. As shown in Figure 4.1, we
accomplish this with the help of (a) a 2D CNN (Resnet-18) that performs classification and (b) another
2D CNN (Resnet-18) that performs regression. A two-step procedure to train the CR Framework is
outlined below -
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• First, we solve a multi-label classification problem to map the input RGB image to 3 out of 500
possible priors (SMPL models). These 500 representative SMPL models have been learned from
large-scale data to signify a wide range of poses and shapes, thereby acting as a smart initial
estimate (refer to Section. 4.3.2 for more on data generation). The final predicted prior is then
obtained from a linear combination of 3 candidate priors (weighed by the predicted probability).

• The second step involves a refinement of the prior. For this, the regression network’s 1D feature
vector is concatenated with the predicted prior and modified using fully-connected (FC) layers
to obtain the refined model. The classification network’s weights are frozen and loss is back-
propagated only through the FC layers and regression network to guide the refining of the model
with the RGB image.

Loss Function. In the first stage, we solve a multi-label classification problem and therefore use binary
cross-entropy (Equation 4.1). If ’p’ is the predicted value, ’y’ is the ground truth and ’N ’ is the total
number of classes, then, the loss is given by -

L(p, y) =
−1
N

N∑
i=1

yilog(pi) + (1− yi)log(1− pi) (4.1)

Further, in the second stage, we follow NBF [59] and use the L2 norm (Equation 4.2) to capture
differences between the predicted parameters and underlying joints with their respective ground truth.
If ’P ’, ’P̂i’ represent the predicted and ground truth model parameters and ’J’, ’Ĵi’ represents the
predicted and ground truth underlying 3D joints (recovered using the SMPL joint regressor [51]), then,
the regression loss is defined as -

L =
∑
∀Pi,Ji

||Pi − P̂i||2 + ||Ji − Ĵi||2 (4.2)

4.3 Experiment & Results

4.3.1 Datasets

SURREAL. This dataset provides synthetic image examples with 3D shape ground truth. The dataset
draws poses from MoCap [38] and body shapes from body scans [68] to generate valid SMPL instances
for each image. Although this dataset is synthetically generated, it emulates complex real poses and
shapes, coupled with challenging input images that contain background clutter and are reflective with
low resolution. It has a total of 1.6 million training and 15,000 test samples. Further, since [63, 86] show
a good domain transfer to real data by training on SURREAL, the quality of SURREAL to correlate with
real data is proven.
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4.3.2 Implementation Details.

Data Generation. The ground truth for training the classification model is generated in a data-driven
manner by first performing a Gaussian Mixture Model-based clustering [99] using a 1D concatenation of
SMPL parameters [51] and 3D joint locations (flattened) as the feature, to obtain 500 cluster centers. The
cluster centers obtained are representative of a wide variety of candidate models. This is followed by an
assignment of the dataset’s image-3D pairs to their respective top-3 cluster centers with a multi-label
one-hot encoding. Due to numerical bottlenecks in clustering data points in the order of millions, we
subsample the dataset and execute the above procedure.

Further, the input images are pre-processed by using ground truth bounding boxes given by the dataset
to obtain a square crop of the human. This is a standard step performed by most comparative 3D human
reconstruction models.

Training Rubrics. We use Nvidia’s GTX 1080Ti, with 11GB of VRAM to train our models. A batch
size of 96 is used for SURREAL. We use the ADAM optimizer with an initial learning rate of 10−4, to
get optimal performance. Further, a standard 80 : 20 split between the training and testing datasets is
adhered to. Attaining convergence on SURREAL takes 10 hours for the entire framework.

Evaluation Metric. Since we’re estimating a parametric model where the surface vertices are a linear
combination of the transformations induced by the underlying joints (i.e., the surface is a function of the
internal 3D skeleton), like NBF [59], we focus on the 3D joint error in estimating the quality of the fits,
defined as the mean-per joint error between the ground truth and predicted joints in 3D.

Baseline. As a baseline, we use a Resnet-18 to directly predict parameters from the input image with an
L2 loss on the parameters. This enables us to show the novelty introduced by our pipeline.

4.3.3 Results & Discussion.

No. of Clusters Clustering Feature JointErrorSegMask JointErrorRGB
100 Joint 71.1 87.8
100 Param 72.3 89.3
500 Joint 69.3 86.2
500 Param—Joint 64.5 79

Table 4.1: Impact of different clustering parameters on the joint error with 2 input configurations - using
Segmentation Mash and RGB Image.

Ablation Study. To provide an effective prior, it is essential for our clustering to effectively capture the
diversity in the space and map it to the input images. Table 4.1 shows our experiments with different
clustering parameters on two different input configurations - RGB and Segmentation Mask. We show
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that as the number of clusters increase, the joint error reduces. This acts as a proof of concept that the CR
Framework is effective. However, if the number of clusters becomes too high (above 500), it reduces
the classification accuracy and induces noise into the estimated prior. As indicated in the table, the best
feature for clustering was by flattening and concatenating the parameters and 3D joints. Also, much like
shown in Chapter 5, the segmentation mask acts as a very powerful prior. Figure 4.2 gives the TSNE
representation of 100 clusters in our dataset showing patterns/structures captured by the clustering.

Along similar lines, Table 4.2 shows a few different ways of providing the prior. ’Top 1’ indicates
providing only the parameters of the highest probability cluster center as prior. Similarly, ’Concat Top 3’
indicates concatenating the top 3 predicted parameters and and ’L.C Top 3’ indicates constructing the
final prior by taking a linear combination of the top 3 predictions and weighing them by their predicted
probabilities. Assuming that clustering captures the 3D Human pose and shape space, informally, the
500 clusters can be thought of as basis vectors and their linear combination can capture any motion. As
indicated in the table, this configuration provides the best prior.

Table 4.3 shows the effectiveness of the CR framework with different input modalities. CR beats our
baseline by a significant margin with RGB as its input. In configuration RGB/D, we further improve the
learning by making use of our training methodology proposed in Chapter 3 of co-learning RGB with
synthetically generated Depth to improve the test time reconstruction from only RGB. In this setting,
the test time error of RGB reduces to 79, while that of Depth is 61mm. Knowing the effectiveness of
Body Part Segmentation Masks from Chapter 5, we show that reconstruction from ground truth masks
reduces the joint error to make it comparable to state-of-the-art RGB reconstruction methods. Further,
with monocular depth, CR produces the best results, with a joint error of 57.2. Although these additional
modalities work significantly better, we focus on reconstruction from RGB due to its ubiquitous nature.

Method Joint Error
Top 1 82.15

Concat Top 3 80.72
L.C Top 3 79

Table 4.2: Quantitative evaluation of the best method
of constructing the final prior.

Input Network Joint Error
RGB Baseline 104
RGB CR 92

RGB/D [87] CR 61(D), 79(RGB)
Seg. Mask CR 64.5

Depth CR 57.2

Table 4.3: An evaluation of the performance of CR
with different input modalities.

Method Joint Error
Tung et al. [83] 64.4

SMPLR [52] 55.8
HMNet [88] 71.9

Baseline 104
CR 79

Table 4.4: A comparison of CR with state-of-the-art methods.
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Figure 4.2: TSNE representation of 100 clusters, each represented by a different colour.

Comparison with state-of-the-art. With regard to monocular RGB reconstruction, CR falls behind
state-of-the-art methods. This is indicated in Table 4.4. The qualitative results shown in Figure 4.3
provide some insight into this. As seen in the figure, the estimated prior is impressive, in terms of pose,
shape, and global rotation. Hence, optimizing the classification network further isn’t necessary. The
regression network, on the other hand, isn’t able to make use of this strong estimate and refine it. There
might be two possible explanations for this -

• We found that although the combination of the two networks (C and R) happens at the later FC
layers, the number of parameters is of the order of few millions, and increasing them reduces the
performance. This could indicate that the difficulty of the problem is a bottleneck and it requires
additional priors (possibly on the loss side) to learn better.

• Alternatively, the regression network’s architecture is sub-optimal and requires better constructs
and design to exploit the strong initial prediction.

4.4 Conclusion and Future Work

Monocular 3D Reconstruction is a severely ill-posed problem. Statistical Body Models are a natural
choice since they are low-dimensional, yet constructed from thousands of real scans of humans. However,
learning them hasn’t been straightforward, with solutions relying on various projections of the predicted
mesh. In this chapter, we presented the CR framework, as an attempt to simplify this learning procedure.
The model provided an initial estimate via classification and attempted to refine it with a regression-based
model. We showcased several results that acted as a proof of concept regarding the effectiveness of such
a prior. However, the refinement of the prior requires more exploration. As a future direction, we would
like to explore alternate architectures with increased 2D supervision and possibly joint learning.
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(a) Input RGB (b) Estimate from Classification (c) Refined Model

Figure 4.3: Qualitative Results of the CR Framework on SURREAL [85].
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Chapter 5

Implicit Point Cloud Reconstruction

(a) (b) (c)

Figure 5.1: We present an early method to integrate Deep Learning with the sparse mesh repre-
sentation(b), to successfully reconstruct the 3D mesh of a human from a monocular image (a). (b)
represents the reconstructed 3D mesh aligned to the input image, and (c) is a rotated version of the same,
for aesthetic reasons.
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Some of the recent deep learning methods employ volumetric regression to recover the voxel grid
reconstruction of human body models from a monocular image [84, 87]. Although volumetric regression
enables recovering a more accurate surface reconstruction, they do so without an animatable skeleton [87],
which limits their applicability for some of the aforementioned applications. [84] attempted to overcome
this limitation by fitting a parametric body model on the volumetric reconstruction using a silhouette
reprojection loss. Nevertheless, in general, such methods yield reconstructions of low resolution at higher
computational cost (regression over the cubic voxel grid) and often suffer from an inconsistent topology
via broken or partial body parts.

Alternatively, the parametric body model [9, 51, 70] based techniques address some of the above
issues, however, at the cost of accurate surface information [13, 34, 46, 74]. Recently, several end-to-end
deep learning solutions for estimating the 3D parametric body model from a monocular image have been
proposed [41, 59, 63, 80, 83, 98]. They all attempt to estimate the pose (relative axis-angles) and shape
parameters of the SMPL [51] body model, which is a complex non-linear mapping. To get around this
complex mapping, several methods transform them into rotation matrices [59, 63] or learn from the
2D/3D keypoint and silhouettes projections (a function of the parameters) [41, 59, 63]. Additionally,
[41] proposes an alternate method for training (Iterative Error Feedback) as well as a body joint-specific
adversarial loss, which takes up to 5 days to train. In other words, learning the parametric body model
hasn’t been straightforward and has resulted in complex and indirect solutions that in-fact rely on different
projections of the underlying mesh.

Directly regressing to point cloud or mesh data from image(s) is a severely ill-posed problem and
there are very few attempts in deep learning literature in this direction [54, 97]. With regard to point
cloud regression, most of the attempts are focused on rigid objects, where learning is done in a class-
specific manner. Apart from a very recent work [45], learning a mesh hasn’t been explored much for
reconstruction, primarily because of the lack of deep learning constructs to do so.

In this chapter, we attempt to work in between a generic point cloud and a mesh - i.e., we learn an
“implicitly structured” point cloud. We hypothesize that in order to perform parametric body model-based
reconstruction, instead of learning the highly non-linear SMPL parameters, learning its corresponding
point cloud (although high dimensional) and enforcing the same parametric template topology on it is an
easier task. This is because, in SMPL like body models, each of the surface vertices is a sparse linear
combination of the transformations induced by the underlying joints i.e., implicitly learning the skinning
function by which parametric models are constructed is easier than learning the non-linear axis-angle
representation itself (parameters). Further, such models lack high-resolution local surface details as well.
Therefore, there are far fewer “representative” points that we have to learn. Consequently, in comparison
with generic point cloud regression, this is an easier task because of this implicit structure that exists
between these points.

Going ahead, attempting to produce high-resolution meshes is a natural extension that is easier in
3D space than in the parametric one. Therefore, we believe that this is a direction worth exploring and
we present an initial solution in that direction - HumanMeshNet that simultaneously performs shape

45



estimation by regressing to template mesh vertices (by minimizing surface loss) as well receives a body
pose regularisation from a parallel branch in multi-task setup. The image to mesh vertex regression
is further explicitly conditioned on the neighborhood constraint imposed by the mesh topology, thus
ensuring a smooth surface reconstruction. Figure 5.2 outlines the architecture of HumanMeshNet.

Ours is a relatively simpler model as compared to the majority of the existing methods for volumetric
and parametric model prediction (e.g., [84]). This makes it efficient in terms of network size as well as
feed-forward time yielding significantly high frame-rate reconstructions. At the same time, our simpler
network achieves comparable accuracy in terms of surface and joint error w.r.t. majority of state-of-the-art
techniques on three publicly available datasets. The proposed paradigm can theoretically learn local
surface deformations induced by body shape variations which the PCA space of parametric body models
can’t capture. In addition to predicting the body model, we also show the generalizability of our proposed
idea for solving a similar task with different structure - non-rigid hand mesh reconstructions from a
monocular image. Note that the work in this chapter has been published in ICCV-W, 2019 [88].
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Figure 5.2: Overview of HumanMeshNet [88] - A Multi-Task 3D Human Mesh Reconstruction
Model. Given a monocular RGB image (a), we first extract a body part-wise segmentation mask using [7]
(b). Then, using a joint embedding of both the RGB and segmentation mask (c), we predict the 3D joint
locations (d) and the 3D mesh (e), in a multi-task setup. The 3D mesh is predicted by first applying a
mesh regularizer on the predicted point cloud. Finally, the loss is minimized on both the branches (d) and
(e).
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5.1 Contributions

To summarize, the key contributions of this work are:

• We propose a simple end-to-end multi-branch, multi-task deep network that exploits a “structured
point cloud” to recover a smooth and fixed topology mesh model from a monocular image.

• The proposed paradigm can theoretically learn local surface deformations induced by body shape
variations which the PCA space of parametric body models can’t capture.

• The simplicity of the model makes it efficient in terms of network size as well as feed forward time
yielding significantly high frame-rate reconstructions, while simultaneously achieving comparable
accuracy in terms of surface and joint error, as shown on three publicly available datasets.

• We also show the generalizability of our proposed paradigm for a similar task of reconstructing the
hand mesh models from a monocular image.

5.2 Proposed Method: HumanMeshNet

To learn this structured point cloud, we use an encoder- and multi-decoder model, which we describe
in this section. Figure 5.2 gives an overview of our end-to-end pipeline. Our model consists of three
primary phases:

Phase 1 - RGB to Partwise Segmentation: Given an input RGB image of size 224x224, we first predict
a discrete body part label for each pixel in the input image (for a total of 24 body parts) using just the
body part labeling network from [7]. A part-wise segmentation enables tracking of the human body in
the image, making it easier for shape estimation.

Phase 2 - Image Encoders and Joint Embedding: Both the RGB image and segmentation mask are
passed through separate encoders, each a Resnet-18, and their respective CNN feature vectors, each of
dimension 1000 are concatenated together to obtain a joint embedding.

Such fusion of RGB and segmentation mask was employed to combine complementary information
from each modality. This is important as a segmentation mask predictions can be very noisy in many
scenarios (see Figure 5.3), e.g., low lighting, the distance of the person from the camera, sensing noise,
etc., leading to failures like interchanged limbs or missing limbs.

Phase 3 - Multi-branch Predictions: From our concatenated feature embedding, we branch out into
two complementary tasks via Fully Connected layers (FCs). Each branch consists of two FCs, each
of dimension 1000 followed by the respective output dimensions for the 3D joints, and 3D surface
respectively. It is to be noted that our predictions are in the camera frame.

47



(a) (b) (c) (d)

Figure 5.3: Noisy Segmentation Masks predicted from images (a) and (c) in Phase 1. The figure
shows (b) missing body part masks (d) confusing between leg limbs.

Loss Function. We use a multi-branch loss functions to train our network i.e, LS , LJ and LJS . We
regularized the loss functions such that they contribute equally to the overall loss. This translates to
Equation 5.1.

L = LS + (λ1 ∗ LJ) + (λ2 ∗ LJS) (5.1)

The surface loss LS in Equation 5.2 gives the vertex-wise Euclidean distance between the predicted
vertices Vi and ground truth vertices V̂i for the 3D mesh prediction branch in Figure 5.2 (e).

LS =
∑
∀Vi

||Vi − V̂i||2 (5.2)

However, this loss does not ensure prediction of smooth surfaces as each vertex is independently predicted.

Nevertheless, each mesh vertex has a neighborhood structure that can be used to further refine the
estimate of an individual vertex. Here we make use of smoothing regularisation [77] (as shown in
Equation 5.3), where the position of each vertex, Vi, is replaced by the average position, of its neighbours
N(Vj).

Vi =
1

|N(Vi)|
∑

Vj∈N(Vi)

Vj ∀Vi (5.3)

This is achieved by first applying the smoothness mesh regularization given by Equation 5.3 and then
calculating LS . This helps in limiting the number of surface jitters or irregularities.

In order to enforce 3D joints consistency, we minimize joint loss LJ defined in Equation 5.4, which
gives the euclidean distance between the predicted joints Ji and ground truth joints Ĵi in the 3D joint
prediction branch as shown in Figure 5.2(d).

LJ =
∑
∀Ji

||Ji − Ĵi||2 (5.4)
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The 3D joints JSi under the surface are recovered using the SMPL joint regressor [51]. We also
minimize the loss LJS defined in Equation 5.5 which gives the euclidean distance between the joints Ji
predicted from the joints branch and the joints JSi from the surface branch. It helps both the branches to
learn consistently with each other.

LJS =
∑
∀Ji

||Ji − JSi||2 (5.5)

Network Variants: We define two different variants of HumanMeshNet in order to perform an extensive
analysis:

(a) HumanMeshNet (HMNet) - The base version which uses an “off-the-shelf” body part segmentation
network ( [7]).

(b) HumanMeshNetOracle (HMNetOracle) - A refined version using a more accurate body part seg-
mentation given by the dataset. However, in some datasets (e.g., UP-3D, [46]), these segmentation
masks can be noisy due to manual annotations.

(a) Input Image (b) SMPLify [13] (c) HMNet (Ours)

Figure 5.4: This figure depicts the poor quality of ground truth fits provided on UP-3D. (a) The
input RGB image is fit using SMPLify [13] to give (b) the ground truth. Our fit (c) makes use of more
accurate markers or keypoints in a multi-branch setup, to account for noisy ground truth mesh data.
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5.3 Experiments & Results

In this section, we show a comprehensive evaluation of the proposed model and benchmark against the
state-of-the-art optimization and deep learning-based Parametric (P), Volumetric (V) and Surface-based
(S) reconstruction algorithms. It is to be noted that we train on each dataset separately and report on its
given test sets. All of the trained models and code shall be made publicly available, along with a working
demo. Please view our supplementary video [3] for more results.

Figure 5.5: Qualitative Results on SURREAL [86] where (a) represents the input view, (b) our mesh
reconstruction aligned to the input view, and (c) aligned to another arbitrary view.

5.3.1 Datasets

SURREAL [86]: This dataset provides synthetic image examples with 3D shape ground truth. The
dataset draws poses from MoCap [38] and body shapes from body scans [68] to generate valid SMPL
instances for each image. Although this dataset is synthetically generated, it emulates complex real poses
and shapes, coupled with challenging input images that contain background clutter and are reflective
with low resolution. It has a total of 1.6 million training and 15,000 test samples.

UP-3D [46]: It is a recent dataset that collects color images from 2D human pose benchmarks and uses
an extended version of SMPLify [13] to provide 3D human shape candidates. The candidates were
evaluated by human annotators to select only the images with good 3D shape fits. It comprises of 8,515
images, where 7,126 are used for training and 1,389 for testing. However, the ground truth meshes are
sometimes inaccurately generated as shown in Figure 5.4. We separately train the network and report
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results on the full test set of UP-3D.

(a) (b) (c) (a) (b) (c)

Figure 5.6: Qualitative Results on UP-3D [46] where (a) represents the input view, (b) our mesh
reconstruction aligned to the input view, and (c) aligned to another arbitrary view.

Human3.6M [38]: It is a large-scale pose dataset that contains multiple subjects performing typical
actions like “eating” and “walking” in a lab environment. It consists of a downsampled version of the
original data with 300,000 image-3D joint pairs for training and 100,000 such for testing. Since ground
truth 3D meshes for any of the commonly reported protocols [13] for evaluation aren’t available anymore,
we finetune SURREAL-pretrained network using joint loss only. We report the joint reconstruction
error (trained as per Protocol 2 of [13]) and therefore compare with those methods that don’t use mesh
supervision for this dataset in Table 5.3.
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(a) (b) (c) (a) (b) (c)

Figure 5.7: Qualitative Results on Human3.6M, where (a) represents the input view, (b) our mesh
reconstruction aligned to the input view, and (c) aligned to another arbitrary view.

5.3.2 Implementation Details

Data Pre-processing. We use the ground truth bounding boxes from each of the datasets to obtain a
square crop of the human. This is a standard step performed by most comparative 3D human reconstruc-
tion models.

Network Training. We use Nvidia’s GTX 1080Ti, with 11GB of VRAM to train our models. A batch
size of 64 is used for SURREAL and Human 3.6M datasets and a batch size of 16 for the UP3D dataset.
We use the ADAM optimizer having an initial learning rate of 10−4, to get optimal performance. Attain-
ing convergence on the SURREAL and Human3.6M takes 18 hours each, while on UP-3D takes 6 hours.
We use the standard splits given by the datasets, for benchmarking, as indicated in Section 5.3.1.

Procrustes Analysis (PA). In order to evaluate the quality of the reconstructed mesh, we also report
results after solving the Orthogonal Procrustes problem [32], in which we scale the output to the size
of the ground truth and solve for rotation. Additionally, we also quantitatively evaluate without this
alignment.

Evaluation Metric.

52



(a) Surface Error (mm): Gives the mean-per-vertex error between the ground truth and predicted mesh.

(b) Joint Error (mm): Gives the mean-per joint error between the ground truth and predicted joints.
All reported results are obtained from the underlying joints of the mesh, rather than the alternate
branch unless otherwise mentioned.

(c) PA. Surface/Joint Error (mm): It is the surface/joint error after Procrustes Analysis (PA).

Surface Joint
Output Method Error Error

P
Tung et al. [83] 74.5 64.4

Pavlakos et al. [63] 151.5 -
SMPLR [52] 75.4 55.8

V BodyNet [84] 65.8 -

S
Baseline 101 85.7

HMNet[subsampled] 86.9 72.4
HMNet 86.6 71.9

HMNetOracle 63.5 49.1

Table 5.1: Comparison with state-of-the-art methods on SURREAL’s test set [86].

5.3.3 Comparison with State-of-the-art

Baseline. We define our baseline as the direct prediction of a point cloud from an RGB image, using a
Resnet-50. This enables us to show the novelty introduced by our pipeline and the usefulness of learning
in this output space.

Results & Discussion. For qualitative results on all of the three datasets refer to Figures 5.5- 5.7. A
large amount of training data is required to learn a vast range of poses and shapes. However, [63, 86]

Surface Joints PA. Surface PA. Joint
Output Method Error Error Error Error

P Pavlakos et al. [63] 117.7 - - -
P Lasner et al. [46] 169.8 - - -
P NBF [59] - - - 82.3
V BodyNet [84] 80.1 - - -
S Baseline 151.4 130.8 93.8 83.7
S HMNet 130.4 112.5 77.6 69.6
S HMNetOracle 60.3 51.5 42.9 37.9

Table 5.2: Comparison with other methods on UP3D’s full test set [46].
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3D mesh PA. Joint
Supervision Method Error

No

Ramakrishnan et al. [67] 157.3
Zhou et al. [103] 106.7
SMPLify [14] 82.3

SMPLify 91 kps [46] 80.7
Pavlakos et al. [63] 75.9

HMR [41] 56.8
HMNet(Ours) 60.9

Yes
NBF [59] 59.9

SMPLR [52] 56.4
CMR [45] 50.1

Table 5.3: Joint Reconstruction error as per Protocol 2 of Bogo et al. [13] on Human 3.6M [38]. Refer to
Section 5.3.1 for details on 3D mesh supervision.

show a good domain transfer to real data by training on the synthetic SURREAL dataset. Since our
supervision is dominated by surface meshes, SURREAL plays an important role in benchmarking our
method. We show comparable performance on it, as indicated by Table 5.1. In Table 5.1, we also
show our results with a subsampled mesh (subsampled as per [45]) from 6890 to 1723 vertices with
almost no change in reconstruction error. This is a good proof of our hypothesis that there are far fewer
representative points to learn in this structured point cloud.

UP-3D is an “in the wild” dataset, however, has inaccurate ground truth mesh annotations, as shown
in Figure 5.4. Most circumvent this issue, by avoiding 3D supervision altogether and projecting back
to a silhouette or keypoints [41, 63]. Further, training on such a small dataset doesn’t provide a good
generalization. Therefore, we observe a higher error in HMNet. However, HMNetOracle produces
a significant increase in accuracy with the increase in quality of the input image and segmentation
mask (Table 5.4). Similar to state-of-the-art methods [45, 84, 87], we rely on 3D body supervision
and providing more supervision like silhouette and 2D keypoint loss like [41, 84] can improve the
performance further. For Human3.6m, we compare with those that don’t use mesh supervision (since this
data is currently unavailable) and achieve comparable performance.

5.3.4 Discussion

Ablation Study: Directly regressing the mesh from RGB leads to sub-par performance. Limbs are typi-
cally the origin of maximum error in reconstruction, and the segmentation mask provides a better tracking
in scenarios such as leg-swap shown in Figure 5.8. The first two rows of Table 5.4 quantitatively explain
this behavior. Further, by having a more accurate segmentation mask, HMNetOracle achieves a significant
reduction in surface error (↓ 34.7mm). In scenarios with inaccurate ground truth 3D (Figure 5.4), the reg-
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Config. Input PA. Surface PA. Joint
Error Error

Baseline RGB 93.8 83.7
Single Task SMDP 82.9 74.6
Single Task RGB+SMDP 79.2 71.04

HMNet RGB+SMDP 77.6 69.6
HMNetOracle RGB+SMGT 42.9 37.9

Table 5.4: Effect of each network module on the reconstruction error on UP-3D dataset. SMDP and
SMGT denotes segmentation obtained from Densepose and groundtruth respectively.

ularisation 3D joint loss in our multi-branch setup helps us in recovering better fits (row 4 for UP3D). In
datasets such as Human3.6m where accurate MoCap markers are given, this multi-branch loss provides a
good boost - with and without joint loss, the joint reconstruction error is 60.9mm v/s 67.3mm respectively.

(a) Input RGB (b) Baseline (c) Predicted Mask (d) Our Output

Figure 5.8: Shows the impact of the body-segmentation mask. Given an input RGB image (a), this
figure depicts a comparison of the baseline (b), against our output, HMNet (d). The predicted part-wise
segmentation mask (c) assists HMNet to track the body parts and therefore solve the confusion between
the legs as well as complex poses.

Effect of Mesh Regularisation Our mesh regularization module adds a smoothing effect while training,
therefore ensuring that the entire local patch should move towards the ground truth for minimizing the
error. Figure 5.9 shows the impact of this regularization. The error goes down from 83.7 to 63.5mm after
the regularisation, in SURREAL.
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Figure 5.9: Results showing the effect of our mesh regularization module while learning. The figure
on the left shows the irregularities in the mesh reconstructed, without our regularization, while the one on
the right shows the smoothness induced by our regularizer.

Recovering Shape Variations Most parametric models prediction work with a neutral template
model [41], and would have to learn the gender from the image. In our method, a direct mesh re-
gression can learn the local shape variations (as long as training data has such variations) which extend to
inherently learning gender invariant meshes. Two such samples are showing in Figure 5.10.

(a) Input RGB (b) Our Output (view 1) (c) Our output (view 2)

Figure 5.10: Sample Shape Variations recovered by our model, given a low resolution input image
(a), rendered from the recovered view (b) and another arbitrary view (c)

Generalizability to Hand Mesh Models. We show the generalizability of our model to a similar task
with a different structure. First, we populated a SURREAL like synthetic hand dataset using the MANO
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hand model [70], similar to [27] with a total of 70,000 image-mesh pairs. We train our model on this
dataset to predict hand surface and joints from an input RGB image using the same pipeline described in
Figure 5.2. The training setting remains the same as earlier, and we obtain impressive qualitative results
as shown in Figure 5.12. An interesting result is that of the mesh in the second block of Figure 5.12, in
which the thumb and the index finger are merged. Due to using a surface representation directly, invalid
configurations can be generated. The average surface error across the test dataset is 1mm, which acts
as a proof of concept that polygonal mesh reconstruction of non-rigid hands (although in a simplistic
scenario), is feasible.

Network Runtime. Table 5.5 list out run-time of various methods. Comparing this with HMNet with
HMNetOracle, it is evident that a major part of HMNet’s complexity arises from the multi-human
pixel-wise class prediction, which runs at around 30 FPS for an image of size 224x224. [19] is an
accurate real-time body part segmentation network which runs at 120 FPS, and can be incorporated into
our system to produce accurate, real-time reconstructions.

Method Output FPS
SMPLify [13]

P
0.01

SMPLify, 91 kps [46] 0.008
Decision Forests [46] 7.69

HMR [41]
P

25
Pavlakos [63] 20

Direct Prediction [46] 2.65
Baseline

S
175.4

HMNet 28.01
HMNetOracle 173.17
Fusion4D [24] S 31

Table 5.5: Overview of the run time (in Frames Per Second, FPS) of various algorithms. Numbers have
been picked up from the respective papers. All methods have used 1080Ti or equivalent GPU.

Limitations and Future Work. Since we do not enforce any volume consistency, skewing/thinning
artifacts (Figure 5.11)might be introduced in our meshes. We would like to account for these in a
non-handcrafted anthropomorphically valid way by either learning the SMPL parameters on top of it
using an MLP similar to [45] or by using a GAN to penalize fake/invalid human meshes. Further, we
have made use of the mesh topology in two ways in this work - (a) implicitly, to make the learning easier,
and (b) for smoothing. Going ahead, we would like to make use of the mesh topology and geometry
details is a more explicit manner, by using intrinsic mesh/surface properties. We believe that this is a
largely unexplored space and applying such a regularization can result in better exploitation of surface
geometry for reconstruction.
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Figure 5.11: Failure Cases of Our Method.

5.4 Conclusion

We proposed a multi-branch multi-task HumanMeshNet network that simultaneously regresses
to the template mesh vertices as well as body joint locations from a single monocular image. The
proposed method achieves comparable performance with significantly lower modeling and computational
complexity on three publicly available datasets. We also show the generalizability of the proposed
architecture for a similar task of predicting the mesh of the hand. Looking forward, we would like to
exploit intrinsic mesh properties to recover a more accurate surface reconstruction.
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Figure 5.12: Reconstruction Results on our Hand Mesh. The first row denotes the input RGB image,
the second the recovered mesh aligned to the same view and the final row aligned to an arbitary view.
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Chapter 6

Conclusion and Open Problems

Monocular 3D Human Reconstruction is a severely ill-posed problem due to self-occlusions caused
by complex body poses and shapes, clothing obstructions, lack of surface texture, background clutter,
single view, etc. Yet, the human sensory system can perceive, interpret, and predict unseen parts of
know objects with ease. In this thesis, we attempt to empower machines with the capability to interpret
3D human poses and shapes from a single image in a manner that is non-intrusive, inexpensive, and
has wide-scale applicability. In doing so, we progressively explore different 3D representations that are
capable of producing accurate surface geometry, aimed at the long-term goal of recovering personalized
3D models.

Our first effort into learning a surface representation comes with VolumeNet, which predicts a voxel-
grid from a monocular image. This was the first of its kind model for non-rigid human shapes at that time.
To circumvent the ill-posed nature of this problem (aggravated by an unbounded 3D representation),
we follow the ideology of providing maximal training priors with our unique training paradigms, to
enable testing with minimal information. Specifically, co-learning of RGB and Depth, with randomized
multi-view information while training enables superior reconstruction at test time from monocular RGB.
Further, as we did not impose any body-model based constraint, we were able to recover deformations
induced by free-form clothing. We extend VolumeNet to PoShNet by decoupling Pose and Shape, in
which we learn the volumetric pose first, and use it as a prior for learning the volumetric shape. Although
this proves to be far more accurate in recovering geometric details, the instability and complexity in
learning 2 volumetric networks coupled with poor feed-forward time proved to be a disadvantage.

Although volumetric regression enables recovering a more accurate surface reconstruction, it does
so without an animatable skeleton [87]. Such methods yield reconstructions of low resolution at higher
computational cost (regression over the cubic voxel grid) and often suffer from an inconsistent topology
via broken or partial body parts. Therefore, we explored learning parametric body models. Learning such
models hasn’t been straightforward due to the complex non-linear image to relative axis-angle mapping.
It has resulted in complicated indirect solutions that rely on different projections of the underlying mesh
(2D/3D keypoints, silhouettes, etc.). Therefore, to simplify the learning process, we proposed the CR
framework which uses classification as a prior t the regression model. Although the CR framework
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requires more exploration, it is evident that learning such templates can be very challenging without
additional supervision. Moreover, recovering personalized models with high-resolution meshes isn’t a
direct possibility is this space.

Directly regressing to point cloud or mesh data from image(s) is a severely ill-posed problem and
there are very few attempts in deep learning literature in this direction [54, 97]. With regard to point cloud
regression, most of the attempts are focused on rigid objects, where learning is done in a class-specific
manner. Apart from a very recent work [45], learning a mesh also hasn’t been explored much for
reconstruction, primarily because of the lack of deep learning constructs to do so.

As an alternative to directly learning parametric models, we focused on learning an implicitly
structured point cloud (i.e., built from a statistical body model via a skinning function). In HumanMeshNet
we predicted an implicitly structured point-cloud with the intuition that since each of the surface vertices
is a sparse linear combination of the transformations induced by the underlying joints, learning this
structured point-cloud becomes easier. We used the mesh topology as an implicit prior to easing the
learning process for this highly ill-posed problem. This proposed paradigm can theoretically learn local
surface deformations that body-model based PCA space can’t capture. Further, learning high-resolution
point-clouds/meshes are a natural extension in this space. The simplicity of the model makes it efficient in
terms of network size as well as feed-forward time yielding significantly high frame-rate reconstructions,
while simultaneously achieving comparable accuracy in terms of surface and joint error, as shown on
three publicly available datasets.

Though there has been significant progress in this field in the past few years, there are still several
important questions to answer and interesting solutions await us. A few directions to look out for -

• Extension to video-based 3D Human reconstruction is a natural step ahead. Human motion can act
as a prior and frame-level reconstructions can be refined with trajectory information. Enforcing
temporal consistency in such scenarios can turn out to be the key.

• Although the 3D shape and pose of hands, face, body, and clothing are learned separately today, it
is evident that having a unified model that does all of the above in an end-to-end manner will be
the gold-standard that several will aim at.

• Producing high resolution meshes with soft-tissue deformations from monocular images with
deep-learning-based solutions.

• Reconstructing 3D models during human-human and human-object interactions will take us a
step closer towards 3D scene understanding and manipulation, a very promising area with several
applications in robotics.

• Multi-modal learning for reconstructing humans in dynamic outdoor scenes (such as skiing, biking,
etc) or during everyday activities (such as praying, eating, etc). Due to limitations of optical-based
systems for tracking in such scenarios, solutions will have to be built that make use of multi-sensory
data.
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• Reinforcement Learning based solutions for 3D Human Reconstruction, mimicking the natural
human learning process.

• 3D Visual Question Answering, to enable robot/agent navigation.

• System Identification - Modeling and reconstructing real-world materials, textures, etc. to learn
physical properties and how an agent can interact with them.
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