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Abstract

Open-Vocabulary Keyword spotting solves the problem of spotting audio keywords in an utterance.
The keyword set can incorporate keywords the system has seen and not seen during training, functioning
as zero-shot keyword spotting. The traditional method involves using ASR to transcribe audio to text
and search in the text space to spot keywords. Other methods include obtaining the posteriors from a
Deep Neural Network (DNN) and using template matching algorithms to find similarities. Keyword
spotting does not require transcribing the entire audio and focuses on detecting the specific words of
interest.

In this thesis, we aim to explore the usage of the Automatic Speech Recognition (ASR) system for
Keyword Spotting. We demonstrate that the intermediate representation of ASR can be used for open
vocabulary keyword spotting. With this, we show the effectiveness of using Connectionist Temporal
Classification (CTC) loss for learning word embeddings for keyword spotting. We propose a novel
method of using the CTC loss function with the traditional triplet loss function to learn word embeddings
for keyword spotting on the TIMIT English language audio dataset. We show this method achieves an
Average Precision (AP) of 0.843 over 344 words unseen by the model trained on the TIMIT dataset.
In contrast, the Multi-View recurrent method that learns jointly on the text and acoustic embeddings
achieves only 0.218 for out-of-vocabulary words.

We propose a novel method to generalize our approach to Tamil, Vallader, and Hausa low-resource
languages. Here we use transliteration to convert the Tamil language script to English such that the
Tamil words sound similar written with English alphabets. The model predicts the transliterated text
for input Tamil audio with CTC and triplet loss functions. We show that this method helps transfer the
knowledge learned from high resource language English to low resource language Tamil.

We further reduce the model size to make it work in a small footprint scenario like mobile phones.
To this extent, we explore various knowledge distillation loss functions such as MSE, KL Divergence,
and CosEmbedding loss functions. We observe that small-footprint ASR representation is competitive
with knowledge distillation methods for small-footprint keyword spotting.

This methodology makes use of existing ASR networks trained with massive datasets. It converts
them into open vocabulary keyword spotting systems that can also be generalized to low-resource lan-
guage.
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Chapter 1

Introduction

The internet can provide a vast amount of information in a reliable manner and has become an
integral part of our lives. This information which is stored on huge databases, is searched primarily
by text. However, social media constantly produces massive amounts of non-textual data (e.g., audio,
video, etc.). Therefore, retrieval algorithms only based on text can give minimal search results. We can
use speech to search these online contents as it directly correlates with the audio form.

This problem is approached by spoken term detection, where the user-generated spoken query is
used to search through the database and retrieve audio documents containing the query. The traditional
method involves using Automatic Speech Recognition (ASR) to transcribe audio to text and search in
the text space through string matching to spot keywords of interest. Here, both the spoken keyword
query and the audio utterances from the database are converted to text comprising of words, characters,
and symbols. Then text-based informational retrieval techniques are applied to detect the keywords.
In these approaches, the performance of a spoken term detection system is largely dependent on the
accuracy of the underlying ASR system [29, 4]. However, building a good ASR system requires a large
quantity of annotated data, and very few languages have such resources. Thus, these approaches become
quite challenging when such methods are used to search through low-resource languages.

This motivated us to focus on Keyword Spotting. In speech processing, keyword spotting deals with
the identification of keywords in utterances, as depicted in Figure 1.1. Such systems should be able to
retrieve test utterances that have audio query samples in them and can be known as query-by-example
spoken term detection. The system handles zero-resource tasks as the query keywords can be audio
samples the system has not seen during training. Thus this method can be extended to low-resource
languages with no constraints on lexicons and accents. This essentially is a problem of finding a similar
pattern in audio. Thus the keywords are expressed as articulate sounds with information encoded, and
keyword spotting involves detecting such information. We can search multilingual audio archives such
as social media and radio broadcasts with such a keyword spotting system. Recent works on query-
by-example spoken term detection involve template matching approaches such as DTW for improved
performance compared to traditional statistical speech processing methods in zero-resource conditions
[35, 42]. The two main steps involved in these approaches are feature extraction and template matching.
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Figure 1.1: Keyword Spotting: Detecting the presence of a query keyword in a test utterance.

The features extracted are the posterior probabilities of a set of phonetic classes. These are estimated
outputs of the deep neural network (DNN) and have been successfully used for this purpose [42]. The
Dynamic Time Warping algorithm (DTW) [38] compares the query with the test utterance and provides
a similarity score. Deep Neural Networks are researched to improve the Keyword Spotting systems’
performance and achieve real-life scenarios.

In this thesis, we propose our approach to achieving a low-dimensional subspace representation
of speech for QbE-STD. We utilize this approach to improve the state-of-the-art system performance
by generating features for Keyword Spotting and generalizing the method to low-resource language
systems.

The rest of this chapter is organized as follows. In Section 1.1, we discuss our motivation behind the
approach proposed in this thesis. We discuss the application that we built and future potential applica-
tions in section 1.2. We share the problem context in Section 1.3. We summarize the contributions of
this thesis in Section 1.4. Finally, the chapter-wise outline is presented in Section 1.5

1.1 Motivation

There is a recent trend in the growth of on-device voice-based artificial intelligence machines such
as Alexa, Google Home, Siri, and Cortana on wearables and mobile devices. However, to develop such
systems, huge training data and resources are required for efficient performance in the real-world sce-
nario. We propose a deep neural network architecture that functions as a high-performance KWS system
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for arbitrary keyword sets. We use an ASR trained on large speech corpus as a backbone to build our
KWS system. This ASR functions as a transfer network. We conduct experiments using Google Speech
Commands Dataset V2 and TIMIT datasets. We adopt this system from a high-resource language setting
to a low-resource language scenario and measure its performance using three low-resource languages
from the MSWC (Multilingual Spoken Words Corpus) dataset. The proposed network is competitive
with state-of-the-art performance in both experiments.

A spoken utterance is a sequence of words expressed to convey information made up of phones. The
human speech production process produces speech by the use of the nose, throat, and vocal cord as part
of the articulatory mechanism. Thus the generated speech data lies in a non-linear dimensional space [7,
25]. A union of low-dimensional spaces can model the non-linear high-dimensional speech manifolds.
Sparse approximation techniques can also model these non-linear speech activities [44, 10]. Large
vocabulary and noise robust speech recognition utilize this property to operate on higher dimensional
manifolds [44, 10]. This thesis aims to utilize this low-dimensional structure to improve the QbE-STD
system.

In this work, we train a Deep Neural Network (DNN) in a high-resource language such as English and
other low-resource languages such as Tamil, Vallader, and Hausa to extract features. This work achieves
significant improvements over the state-of-the-art baselines for open-vocabulary keyword spotting. The
methodology adapts the system from one language to another and has been a motivation to extend the
work to a low-resource language scenario. We focus on DNN-based learning due to its strong modeling
capability and success in several other problems e.g., speech recognition [18, 12], image classification
[47, 15], machine translation [2, 34], etc.

1.2 Applications

We will discuss about two main applications of KWS. Phone call based News search by keyword
spotting, and Scam call detection by keyword spotting.

1.2.1 Phone call based News Search

The main motivation behind the project was raised when we wanted to build a voice-based news
application through telephone communication. We wanted to build this application to cater to the needs
of people who have cell phones without an internet connection or non-smartphone users. Around 18
percent of the Indian population do not have an internet connection while they have access to a mobile.

We built this application such that the user was able to call a mobile number and ask for news
topics, e.g. ’cricket scores’ or ’election results’. The user is served with news articles related to cricket
scores and election results. We built this application using the Automatic Speech Recognition model
DeepSpeech2 to convert the input user audio query to text and search news articles in the text space, and
convert the relevant new article back to the audio using the Text-to-Speech system Tacotron. The audio

3



Figure 1.2: Phone call-based News search: The user makes a call to the system; the user speech is
recognized using ASR to search relevant news queries; these news queries are converted to audio using

TTS and is served back to the user. The ASR system is later replaced by our KWS system.

is served back to the user in the same phone call. We run our news application in a flask server. Twilio
API handles data transfer from the telephone network to the web server and vice versa. This is depicted
in the Figure 1.2

The ASR model in the pipeline had to be run on GPUs to recognize audio. Hence we wanted to
replace the ASR model with a Keyword Spotting model. Such the KWS model should be able to spot
keywords from the user’s voice query that is relevant to the latest news articles and serve them news
based on that. The additional constraint to such a KWS model is that the relevant news keywords
keep changing over a week, and hence the model should be able to perform open vocabulary keyword
spotting. The ultimate goal from there is to build such a system for low resource Indian language
environment.

1.2.2 Scam Call Detection

There is an alarming increase in the number of scam calls people receive these days. In India, as many
as 31% of those who continued with these interactions lost money in 2021. The growth of smartphone
access to kids and the elderly unaware of such schemes are the primary victims. Though the scammers
use the latest technology to conceal their identity, the conversation to do such tasks is almost similar.

We propose a keyword spotting approach where such scenarios can be averted. We begin by finding
out the list of keywords that are used in the conversation by the scammers to deceive people. We can
then use our keyword spotting model to detect these keywords. When these keywords are detected in the
conversation, the user is alerted of a potential scam threat. This helps the elderly and innocent kids to
consult and avoid treacherous scenarios. Unlike ASR, the keyword spotting system does not transcribe
the entire audio and preserves user privacy.
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1.3 Problem Context

There are many problems related to keyword spotting in audio under various constraints, such as
fixed-vocabulary or open vocabulary keyword spotting with training pairs and transcripts. We realized
that there is less work focused on analyzing Automatic Speech Recognition for open vocabulary Key-
word Spotting. Hence, we focus on analyzing the Automatic Speech Recognition model for keyword
spotting.

The ASR has not directly been trained to do keyword spotting. Analyzing an ASR and making it
usable for a keyword spotting task is challenging. Hence we find a viable way to use the ASR system
for KWS and then modify the ASR system by fine-tuning it for keyword spotting tasks. On the other
hand, the keyword set is open, and hence the model should be able to work for the keywords the model
has never seen.

Open Source ASR models pre-trained on huge datasets and with huge resources can be easily lever-
aged when these ASRs are directly modified into a KWS system with little modification than building a
KWS for open vocabulary grounds up.

1.4 Contribution

Our contributions are as follows:

1. We demonstrate that intermediate representations from ASR when fine-tuned using triplet and
Connectionist Temporal Classification (CTC) loss functions on keyword audio segments extracted
from the TIMIT [9] dataset can provide generalized keyword spotting abilities.

2. We then further generalize our approach to low-resource language Tamil from the MSWC [32]
dataset. To apply CTC loss on low-resource language transcripts, we convert the low-resource
language characters to English using transliteration.

3. Finally, we train our model on the Google Speech Commands dataset [50] and compare our results
on in-vocabulary classification tasks by using kNN on our acoustic word embeddings and show
that they provide comparable in-vocabulary results to the state of the art while having improved
generalization abilities.

4. We further work towards reducing the size of the model to make it work in a small footprint sce-
nario by using various knowledge distillation loss functions. We realize that small footprint ASR
representation is directly competitive with knowledge distillation methods for keyword spotting.
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1.5 Thesis Organisation

We organize the thesis as follows: Chapter 2 presents the overview of related works in the literature
to address keyword spotting. We summarize the various methodologies used to build the KWS model.
We discuss the different methods to pre-process the speech signals before using them for training. We
elaborate on the datasets used in this work. We share details on evaluation methods as well.

In Chapter 3, we present the basics of the Automatic Speech Recognition system and training loss
function. We discuss our proposed method of using the triplet loss function in ASR training to obtain
representation used for open vocabulary keyword spotting. We discuss about the training details and
its performance on fixed vocabulary keyword tasks in addition. We discuss the qualitative results of
the system and visualize the results using tSNE plots. We explain how this method can be extended
to continuous audio as opposed to isolated audio segments. We provide empirical evidence for all our
claims.

Chapter 4, concerns adapting the framework for low-resource languages in the same open vocab-
ulary setting. We explain the effectiveness of transliteration in helping to adapt pre-trained ASR for
low-resource languages. We further venture into reducing the size of the model to make it work in a
small footprint scenario. We discuss various distillation techniques for the small footprint approach and
conclude with the effectiveness of small-footprint ASR representation against distillation techniques.

In Chapter 5, we discuss all the contributions made in our work and the summary of its uses. We
share future directions that can build on this work and other potential problems we encountered in the
same research direction.
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Chapter 2

Background

2.1 Introduction

In this chapter, we provide a brief background on the task of query-by-example spoken term detec-
tion (QbE-STD). We summarize several techniques proposed in the literature for solving QbE-STD in
Section 2.2. The details of different acoustic feature vectors used in this thesis to represent the speech
signal are provided in Section 2.3. Then we describe different monolingual and multilingual databases
used to train and evaluate the proposed systems in Section 2.4. Several evaluation metrics are used to
thoroughly examine and compare our system with the state-of-the-art, as summarized in Section 2.5.
Finally, we present a brief description of our baseline system in Section 2.6.

2.2 Related Work

Initially, we summarize the various approaches to solving open vocabulary query-by-example key-
word spotting. The first approach involves spotting the keywords in two steps: (i) feature extraction and
(ii) template matching. Feature extraction involves representing the spoken query using Mel Frequency
Cepstral Coefficients (MFCC) or Perceptual Linear Prediction (PLP) based on spectral features. Tem-
plate matching tasks are investigated on these features [45]. Later posterior features from the models
trained using supervised and unsupervised methods are explored [14]. This posterior features method
has better performance than template matching on features. Given GMM models and a test feature
vector, the log-likelihood value of that feature set belonging to a particular GMM is given by the pos-
terior probability. Posterior features have been widely used in template-based systems [55, 37]. Deep
Boltzmann Machine (DBM) is used to extract posterior features. These features are trained based on
unsupervised as well as semi-supervised manner. The DBM trained in an unsupervised manner captures
the hierarchical structural information in the data. In [56], the authors initially train a DBM with unla-
beled data and adapt it to a small amount of labeled data by fine-tuning it. The posteriors from GMM
are used as labels for DBM training [56]. The posteriors that are obtained from DBM in these cases
have improved performance than the posteriors from GMM.
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The posterior features obtained from supervised learning methods involve training a DNN with la-
beled data. The DNN trained with the labeled data containing characters and phones adapts to low-
resource, and zero-resource languages [14, 42]. Template matching is performed on the extracted pos-
terior features on these DNNs to do Query-by-Example Keyword spotting. The contents of the speech
signals characterize these posteriors irrespective of the underlying language [42]. The DNNs trained
with bottleneck layers to perform Keyword Spotting in a multilingual setting with the bottleneck fea-
tures [3].

We obtain the frame-level distance matrix by comparing the embeddings of the spoken query and
the test utterance. A DTW algorithm calculates the similarity between the spoken query and the test
utterance from the distance matrix. The query can occur anywhere in the test utterance; hence, the
DTW algorithm checks for the entire matrix for the similarity to be high; hence, heavy computation is
required. The segmental DTW processes the distance matrix in segments of bands tolerance to temporal
distortion [37]. Segmental DTW does not take care of speaking rates in the signals. The slope of the
warping path in the distance matrix is penalized while spotting the keyword in the utterance in slope-
constrained DTW [55]. Slope-constrained DTW reduces the computations as the query frames map to
fewer utterance frames. The sub-sequence DTW [36] enforces the insertion cost as 0 at the start of the
query and its end. It allows the warping path to find the query without concern for the query’s beginning
and end point in the matrix.

The speech signal’s acoustic units are discovered and modeled using Hidden Markov Models (HMM).
The units used in these models are phones or sub-phones. During Keyword spotting, We convert the
spoken query and the test utterance into the HMMs’ symbolic units, and the query is retrieved using
search techniques on these symbolic units. Most keyword spotting systems use dynamic programming
to search for the optimal keyword spotting solution or use DTW to counter the length mismatch of the
keyword in the query and the target term [8, 53]. The recent trend involves building a representation
space for open vocabulary keyword spotting. The query and utterances are converted to this space and
compared [40, 17]. We are approaching this problem in a similar direction.

In recent years, various forms of the neural network have proven to be useful for keyword spotting.
A convolutional neural network (CNN) is trained on frame-level similarities between the posteriors of
a spoken query and a test utterance in [41]. A Siamese CNN network is used to generate the embed-
ding space in [22]. A multitask objective of learning acoustic word embedding with triplet loss and
cross-entropy loss has been explored in [46]. Seq2seq models are used for KWS. The text and audio
representation are brought together by the encoder, decoder, and a feed-forward neural network [1].
ASR posteriors are used to search queries in [43]. An encoder network with an attention mechanism is
used to learn the representation for the query in [54]. An LSTM is trained to discriminate phones with
the CTC criterion, and a substring matching algorithm is used to detect the keyword in [58]. The rep-
resentations are obtained for fixed vocabulary KWS using triplet loss and are classified using k-Nearest
Neighbour (kNN) in [49]. Recurrent Neural Networks combined with convolution are used in KWS
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[6, 24, 30]. Few-shot keyword spotting method has been experimented in [31]. Siamese Recurrent
Autoencoders[57] have approached a similar task.

While these contributions have been focused on the task of KWS and have made significant contri-
butions to the task, our contribution differs in terms of being focused on generalizing the KWS ability to
a set of arbitrary keywords rather than a fixed small command set. The KWS task used here is the same
as that in the literature [16], which is similar to an isolated word recognition task, and it is different from
detecting keywords from a continuous speech signals [8, 30].

2.3 Feature Vectors

This section describes different feature vectors used in this thesis to represent speech signal.

2.3.1 Spectrogram

(a) Sample Waveform

(b) Example to depict a Spectrogram of the Sample Waveform: 2D image with frequency as x-axis and
time as y-axis

Figure 2.1: Example to depict a Spectrogram of the Sample Waveform

Spectrograms are a visual representation of audio. We represent a signal as s(t) with t representing
time dimension. We process a small window ω of audio at a time. We calculate the magnitudes of
various frequencies on these chunks using Fourier Transform. We place the vectors one after another
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as we move the window of the processing audio. We use Short-Time Fourier Transform (STFT) while
computing the spectrogram. We take the squared magnitude of STFT to obtain the spectrogram. We can
express this as:

spectrogram(t, ω) = |STFT (t, ω)|2 (2.1)

The spectrogram is a matrix. To visualize it, we can view the matrix as an image with the i, j-th
entry in the matrix corresponding to the intensity or color of the i, j-th pixel in the image. Spectrogram
of a sample audio is shown in Figure 2.1b

2.3.2 Mel Frequency Cepstral Coefficients

Figure 2.2: Example to depict an MFCC of the Sample Waveform: The frequency bands are equally
spaced on the mel scale, approximates the human auditory system, and hence have lesser features than

the spectrogram.

In speech processing, Mel Frequency Cepstral Coefficients, commonly known as MFCC feature [5]
is a short-term power spectrum based representation of speech signal. These features are widely used
in automatic speech recognition and speaker recognition systems, which are extracted by windowing
the speech signal into short segments. Generally, a sliding window of 25ms with a shift of 10ms is
used. The short segments are assumed to be stationary and are referred to as a frame. Fast Fourier
transform (FFT) is applied to the sequence of frames to compute the corresponding power spectrum.
A filter-bank analysis follows this step to obtain the energies in various frequency regions. The filter
banks are computed by applying triangular filters, typically 40 filters. The filters are linearly spread in
the mel domain, which is chosen to mimic the human auditory perception. The final step is to compute
the discrete cosine transform of the log of the filter-bank energies. It is required to de-correlate the
filter-bank energies. Typically for speech recognition and related tasks, the first 13 coefficients are used.
These coefficients are concatenated with their delta (∆), and double-delta (∆∆) features in order to
incorporate the trajectory information of features. Let the MFCC feature vectors for an utterance is
represented by, X = [x1,x2, . . . ,xT ]. The corresponding delta features are computed using linear
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regression over a window of W as follows:

∆t =

∑W
w=1w (xt+w − xt−w)

2
∑W

w=1w
2

(2.2)

where, ∆t is the delta feature vector for the t-th frame of an utterance X. The double-delta features can
be obtained by successively applying to Equation (2.2). MFCC features of a sample audio is shown in
the Figure 2.2 .

2.3.3 Posterior Features

Posterior features are a representation of audio after processing it through a model. The output from a
DNN representing a specific task’s features can be considered posterior features. These features consist
of rich information on the audio corresponding to the DNN task. For example, the posteriors from the
ASR consist of character information from the audio. DNNs such as convolutional layers and Recurrent
layers can be used to generate these features [14, 42]. Template matching on these features has shown
performance improvement. In [42, 39], keyword spotting is performed using phone-based posteriors.
The audio features are converted to either spectrogram or MFCC. A DNN is trained to predict phones
using these features and can then be used to get posterior features for query audio.

2.3.4 Bottleneck Features

Auto-encoders encode the information to a lower dimension and then retrieves the information back
from these low dimensional representation. The bottleneck layers have lesser dimensions when com-
pared with the other layers [19, 52, 48]. Here the information is made to pass through a hidden bot-
tleneck layer, and the representation obtained from such a layer is called the bottleneck features [19].
For classification tasks, [52] has used these bottleneck features. We can test the performance of such
bottleneck features on low-resource languages [48].

The primary difference is that the network has a bottleneck layer, and posterior features are that the
bottleneck features come out of the bottleneck layer instead of the output layer.

2.4 Databases

We have used four databases to train and evaluate different systems proposed in this work. We
present a brief description of these datasets in the following sections.

2.4.1 Librispeech

The Librispeech is an English speech dataset curated for building speech recognition systems. The
dataset is built as part of the LibriVox project. The dataset contains almost 1000 hours of spoken audio
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along with their transcripts. The sampling rate of these audio files is 16kHz. The dataset is available
for free download. The DNN acoustic models, when trained with the librispeech dataset, gave higher
performance on Wall Street Journal (WSJ) dataset than the models trained on WSJ dataset.

The dataset is split into three subsets with an approximate duration of 100, 360, and 500 hours.
An automatic procedure is used to find the clean samples from the noisy samples. If the sample is
transcribed with a lesser error rate on the test ASR is considered less noisy if not, they are kept in the
nonclean set. The clean pool is randomly split into 100 and 360 clean sets. The maximum duration of
the audio for each speaker is 25 minutes to avoid data imbalance in the training set. Similarly, for the
dev and test set, the maximum duration is 8 minutes. The dev and test set is 5 hours and 20 minutes
each.

2.4.2 Google Speech Commands

The Google Speech Commands dataset [50] is a fixed-vocabulary keyword spotting dataset. The
dataset is curated for 35 keywords. The keywords have samples ranging from 1000 to 4000. The length
of the keywords ranges from 2 to 8. The focus of such a dataset is to build keyword spotting systems
capable of performing accurately for these keywords only. The dataset is spoken by 2618 English
speakers having different accents and speaking styles. The training, validation, and test set contains
84843, 9981, and 11005 samples. The word choice and the utterance count are given in table 2.1

Table 2.1: List of Words in Google Speech Commands Dataset with the utterance count

Words Utterances Words Utterances Words Utterances

Backward 1,664 Happy 2,054 Sheila 2,022
Bed 2,014 House 2,113 Six 3,860
Bird 2,064 Learn 1,575 Stop 3,872
Cat 2,031 Left 3,801 Three 3,727
Dog 2,128 Marvin 2,100 Tree 1,759

Down 3,917 Nine 3,934 Two 3,880
Eight 3,787 No 3,941 Up 3,723
Five 4,052 Off 3,745 Visual 1,592

Follow 1,579 On 3,845 Wow 2,123
Forward 1,557 One 3,890 Yes 4,044

Four 3,728 Right 3,778 Zero 4,052
Go 3,880 Seven 3,998

2.4.3 TIMIT

The Texas Instruments/Massachusetts Institute of Technology (TIMIT) dataset is used to build Au-
tomatic Speech Recognition systems. The dataset is curated to learn the relationship between the audio
and the corresponding phones. Hence the text sentences for building the dataset has a diverse set of
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phones to capture the different accents and styles. The dataset is built by 630 speakers from 8 major
dialects of American English. Each speaker utters 10 phonetically rich sentences. The time alignment
of the phonemes in this speech is provided in this dataset. The dataset has a total of 6300 utterances.
There are three types of sentences the TIMIT dataset can be divided.

• Dialect: The dialect sentences have the capability to expose the variations in the dialect of dif-
ferent speakers. All 630 speakers read these sentences. An example of such a dialect sentence
includes ”She had your dark suit in greasy wash water all year.”. The pronunciation of the word
”greasy” is different in different dialect speakers.

• Compact: The phonetically compact sentences are hand-designed to compass all pairs of phones.
These sentences are compact as well as comprehensive. Since there are extra phones in the sen-
tences than average, these sentences are considered to be difficult. Each speaker read 5 of these
sentences, and 7 different speakers spoke each text.

• Diverse: In order to add diversity in the sentence types and their phones, the sentences are col-
lected from text sources - the Brown Corpus [27], and stage plays. These texts increased the
variety of allophonic contexts in the dataset. Each speaker read 3 of these sentences, with each
sentence being read by only a single speaker.

Table 2.2: Number of speakers per sentence and Number of sentences per speaker information of the
various sentence types in the TIMIT dataset

Sentence Type Sentences Speakers/Sentence Total Sentences/Speaker

Dialect 2 630 1260 2
Compact 450 7 3150 5
Diverse 1890 1 1890 3

We use TIMIT [9] dataset to train and test our architecture and the baseline. TIMIT dataset contains
approximately five hours of speech. We segment words based on word boundaries instead of voice
activity detection in this work. After that, the speech segments are grouped into separate words, and
functional words like articles and conjunctions are removed. Finally, words with more than four letters
are chosen. The TIMIT dataset has its default train and test split. The train and test splits contain 12261
and 3988 audio segments, consisting of 1645 and 571 unique words. Out of the 571 unique words, 227
words are in vocabulary, and the remaining 344 words are zero-shot out of vocabulary. All the audio
files are segmented such that the length of the audio is 1 second.

2.4.4 Multilingual Spoken Words Corpus

Multilingual Spoken Words Corpus (MSWC) [33] is a dataset solely curated for keyword spotting.
The dataset contains an isolated audio sample for words from more than 50 languages. The dataset
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is collected from audio sentences collectively spoken by around 5 billion people to build research and
commercial applications. The total number of samples amounts to 23.4 million, each with a length
of 1 second. The total number of keywords from all the languages amounts to 340 K. The keywords
are curated from the audio repository of 6000 hours. The dataset has a wide range of applications,
such as speech recognition and keyword spotting to call center automation. The keyword timing in the
spoken sentences is obtained by forced alignment, and then these keywords are cropped from the audio
sentences. All the alignments are provided along with the dataset.

The dataset has audio samples for training and testing for previously unavailable languages. For
example, the Italian and Ukrainian languages did not have audio keyword spotting datasets, and now
they have around 560K and 64K audio keyword samples. The dataset is curated by processing audio
samples from almost 50 languages. The dataset that had less than 10 hours of audio recordings is con-
sidered a low-resource language. When the available audio recording is between 10-100 hours, they
are referred to as a medium-resource language. If more than 100 hours are available, they are referred
to as a high-resource language. Examples of low-resource languages include Tamil and Vallader; ex-
amples of medium-resource languages include Czech and Dutch; examples of high-resource languages
include English and French. The dataset contains 26 low-resource and 12 high, and 12 medium-resource
languages, totaling 50 languages.

1. Tamil: The MSWC corpus [32] has spoken word segments for keywords in many languages. We
selected the Tamil language to understand how the method generalizes to low-resource languages
as it had very low audio samples for training. The split had a total of 190 keywords and a total
of 1884 audio samples. We split the dataset into 150 keywords for in-vocabulary training and
the remaining keywords for zero-shot out-of-vocabulary testing. We chose 177 samples from 28

in-vocabulary words and all the 294 samples from out-of-vocabulary words for testing.

2. Vallader: We choose another low-resource language, Vallader. The total number of words
used for training is 233. The in-vocabulary words used for evaluating results are 66, and out-
of-vocabulary words used to evaluate the results are 59 The total number of in-vocabulary and
out-of-vocabulary pairs are 0.5 million. The number of in-vocabulary pairs is 0.1 million. The
number of out-of-vocabulary pairs is 0.1 million.

3. Hausa: The final low resource language we chose for the experiment is Hausa. The total number
of words used for training is 240. The total number of in-vocabulary and out-of-vocabulary words
used to evaluate the performance is 77 and 61 words. The total number of in-vocabulary and out-
of-vocabulary pairs is 1.8 million. The number of in-vocabulary pairs is 0.3 million. The number
of out-of-vocabulary pairs is 0.5 million.
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2.4.5 LRW Dataset

The Lip Reading in the Wild (LRW) dataset is videos of people talking captured in a camera with
speech using a microphone. The dataset focuses on recognizing what the user has said just by observing
the lip movements without using audio. We focus on a different task; we want to use the audio recorded
on these videos for our keyword spotting task. Hence we extract all the audio from these videos and
discard the videos for our experiments. From this dataset, we have almost over a million instances of
the spoken word corresponding to 500 keywords spoken by over a thousand different speakers.

The authors have used the British television program to build this dataset. They have extracted almost
1000s of hours of talking faces covering a huge vocabulary of 1000. There were almost 1M instances
for these keywords spoken by 1000 different speakers.

We have a disjoint set of samples for training, validation, and testing. The keywords list is obtained
by selecting the top 500 words from the dataset’s list of frequently occurring words. The length of
the keywords is between 5 to 10, so they have an average spoken duration of 1 second each. Smaller
words are avoided as these words provide contexts when present in sentences and avoid ambiguity. We
exploit the presence of a large number of samples( 1000) for each of the 500 keywords for evaluating
our keyword spotting system.

2.5 Evaluation Metrics

The performance of a QbE-STD system is evaluated using statistical classification theory. We use
two different metrics to evaluate our systems: Average Precision and Accuracy.

Average Precision: We have a test set and query set of cropped audio, each set has one sample of
the keyword list. We want to retrieve the right sample from the test set for every sample in the query
set. We use cosine similarity to compare the similarity between the representation of audio files. The
performance is evaluated based on ranking metrics. We sort this set of pairs by ascending distance and
compute the average precision (AP) of ranking target over non-target trials. We repeat this for each
class and average the per class AP score to produce the reported mean average precision (mAP). For
each keyword-clip pair, the match is considered correct if both the audio with the highest similarity
contains the same keyword. The formulation is given as:

Precision is the fraction of the documents retrieved that are relevant to the user’s information need.

precision =
| { relevant documents } ∩ { retrieved documents } |

| { retrieved documents } |
(2.3)

The finite sum is equivalent to

AveP =

∑n
k=1 P (k)× rel(k)

number of relevant documents
(2.4)

P (k) is the precision at cut-off k in the list. rel(k) is an indicator function equaling 1 if the item at
rank k is a relevant document, zero otherwise.
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Mean average precision (MAP) for a set of queries is the mean of the average precision scores for
each query.

MAP =

∑Q
q=1 AveP(q)

Q
(2.5)

where Q is the number of queries.
Accuracy: Accuracy is a metric for evaluating classification models. Informally, accuracy is the

fraction of predictions our model got right. Formally, accuracy has the following definition:

Accuracy =
Number of correct predictions
Total number of predictions

(2.6)

Chapter 3 uses Average Precision as the evaluation metric in the similar fashion it is used in [16].
Chapter 4 Low Resource Language Adaptation uses the same AP in [16] while the Small-footprint uses
the above MAP equation 2.5 evaluation setting.

2.6 Test of Statistical Significance

We draw the Critical Difference (CD) diagram. We use Friedman Test and post-hoc pair-wise Ne-
menyi test. The Friedman Test captures the treatment across multiple test attempts. For example, If we
ask ten vendors to sell ten different items, do any of the items sell well across all the vendors? The items
are the various methods tested, and the vendors are the various datasets used. And Friedman Test is a
non-parametric test.

The Nemenyi test is a post-hoc test. The focus of the test is to see if any groups of data that differ
after a global statistical test has rejected the null hypothesis that the performance of the comparisons on
the groups of data is similar. The test makes pair-wise tests of performance.
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Chapter 3

Generalized ASR representation for Keyword Spotting

3.1 Introduction

In this chapter, we discuss about the DeepSpeech2 ASR and the representation that has been used
from the Deepspeech2 ASR for keyword spotting. We propose our novel method to use this ASR
training for keyword spotting alongside the triplet loss function. We explain the training methodology
and discuss its results. We present the qualitative and visual analysis of the representations. And finally,
we discuss how this method can be extended to continuous audio.

3.2 Automatic Speech Recognition

Automatic Speech Recognition pipelines initially had hand-engineered domain features discovered
over decades. Recently, We are training Deep Neural Network architectures in an end-to-end fashion
for many speech processing tasks such as ASR, speaker detection, speaker diarization, etc. Such an
end-to-end model replaces the hand-engineered pipelines while at the same time providing improved
performance on these tasks [13]. The Amazon Mechanical Turk human workers are on-demand workers
assigned to tasks such as Speech Recognition, and their performance is considered the human baseline
for some tasks. DeepSpeech2 ASR performs better than Amazon Mechanical Turk human workers’
performance on several benchmarks. DeepSpeech2 works for multiple languages with little changes in
the architecture and can be deployed quickly and hence production ready. The Deep Neural Network-
based ASRs are becoming more prominent and are a ubiquitous way for speech recognition. Due
to the extensive research in the direction of DNN, the various components of the ASR system, such
as collecting the training datasets, and training these models with various architecture designs, have
evolved easily.

The traditional ASRs depend on hand-engineered features for each of the components. The acoustic
speech signal has numerous information in it. These components involve feature extraction, building
acoustic and language models with speaker adaptation, etc. Such a system is difficult to adapt to a
new scenario, and since each component depends on one another, failure in one module could harm the
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Figure 3.1: (a) DeepSpeech2 ASR Architecture with 2CNN, 5GRU and fully connected layer (b) Key-
word Embedding is obtained by taking the average the output of the final GRU layer.

others. Such a system suffers from adapting to new languages and systems. Adapting to new scenarios
and applications has become a requirement to provide acceptable accuracy. The method of recognizing
speech by humans is totally different. We have the innate ability to understand the words spoken in
our childhood through our feedback mechanism. We later adopt these methods to recognize speech in
difficult environments. Other tasks like reading and writing help to understand the words spoken much
more clearly. Hence we do not explore hand-engineered features but focus on DNN-based methods for
our keyword spotting task.

We show that the focus on building ASR models can be an advantage in modifying such systems for
recognizing specific keywords. We believe the system we propose to build can handle new keywords
efficiently with small changes and can adapt to new languages with minimal intervention. Our keyword
spotting system methodology allows us to compete with state-of-the-art systems in several low-resource
test languages: Tamil, Hausa, Vallader, and English.
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Table 3.1: Intermediate features dimension of the data in DeepSpeech2 layers. The keyword embedding
will be of dimension 1600 from final gru5 layer.

Layer No. DNN Type Input Features Size Output Features Size
1 cnn1 160 2560
2 cnn2 2560 1280
3 gru1 1280 1600
4 gru2 1600 1600
5 gru3 1600 1600
6 gru4 1600 1600
7 gru5 1600 1600
8 fc 1600 29

3.3 Methodology

3.3.1 Pretrained ASR with CTC loss

We use DeepSpeech2 ASR for this work. DeepSpeech2 is an end-to-end trained Deep Neural Net-
work that converts audio to text. This model is pretrained by OpenSeq2Seq framework [28]. We use
audio spectrograms as the input to this model. A Hanning window of 20 ms and a stride of 10 ms is
applied to the audio input while generating the spectrograms. The audio sampling rate is 16kHz, and
our input dimension is 160.

The Convolutional Neural Network forms the first two layers of the DeepSpeech2 architecture with
an output feature map of 32. The kernels used in these two layers are of the size 41x11 and 21x11,
respectively. A convolution kernel of 41x11 has a size of 41 in the time domain and 11 in the frequency
domain. The kernel stride is 2 in the time domain on both the convolutional layers, and in the frequency
domain, the stride is 2 in the first layer. These convolutional layers output features of dimensions 2560

and 1280 after the first and second layers. Gated Recurrent Units (GRU) follow these convolutional
layers. There are 5 bidirectional GRU with a hidden state dimension of 800. A fully connected layer
follows the GRUs that map the embeddings to a softmax output of 29. The output classes correspond to
the number of characters with a special blank symbol. Batch normalization and a ReLU non-linearity
follow each convolutional and recurrent layer. We train this network with the CTC loss function. The
ASR Model used in this work is shown in 3.1. The CTC loss function is given as:

L1 = − log p(l|x) (3.1)

where the probability of a label sequence l given an input sequence x is defined as:

p(l | x) =
∑

π∈B−1(l)

p(π | x) =
∑

π∈B−1(l)

T∏
t=1

ASRK
t (x) [πt] (3.2)
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where B removes the repeated symbols and blanks, B−1 is its inverse image, T is the length of the
label sequence l, and ASRK

t (x) [πt] is unit j of the model output from the top softmax layer at time t,
interpreted as the probability of observing label j at time t.

The acoustic word embedding for the keyword audio segments are obtained from the output of the
final GRU layer. The output dimension of the final GRU layer is 1600 for each time instance. We take
the average of this representation across time dimension to obtain a fixed representation of size 1600
for variable length audio. This is shown in the figure 3.1(b). These features can also be considered
bottleneck features.

Figure 3.2: Generalized Keyword Spotting Embedding Representation: A pretrained DeepSpeech2
ASR Net is trained with CTC loss and triplet loss for obtaining the acoustic word embeddings used for

Keyword Spotting

3.3.2 Adding Triplet loss with CTC loss

A triplet network has three copies of a feed-forward neural network with shared parameters as de-
scribed in [21]. The triplet network intakes three samples: anchor, positive and negative for each of the
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network copy and is denoted as x, x+ and x− respectively. The network intakes these three samples and
produces three embeddings for each sample. Then we calculate the distance between the embeddings
of the anchor with the embeddings generated for the other two samples. We denote the distance method
as D. The triplets are denoted as x, x+, x−. We denote x as the anchor input sample, x+ represents
the positive sample that is the same class as the anchor, and finally x− represents the sample from a
different class. We denote the representation obtained from the network for each of these audio samples
as Net(x),Net(x+),Net(x−). We express the output of the triplet network as:

TripletNet
(
x,x−,x+

)
=

[
D [Net(x),Net (x−)]

D [Net(x),Net (x+)]

]
∈ R2

+ (3.3)

In this scenario, we average the stack of the frame-level embeddings Net(xt) from the output of the
embedding model Net(x). While in [17] the embeddings of the last frame Net(xT ) from the embedding
models output are used.

The embedding sub-network receives each of the input samples (x, x+, x−) independently. The pair-
wise distance between the positive samples pair D [Net(x),Net (x+)] is computed. This is computed
between the anchor Net(x) and the positive Net (x+) sample. Then the pairwise distance between the
negative samples pairD [Net(x),Net (x−)] is calculated. This is computed between the anchor Net(x)

and the negative Net (x−) sample. The cosine distance is used in [17] as a distance metric. We use the
same cosine similarity as the distance metric. We pass these two distances into the comparator. The loss
function used to train the triplet network is given as:

L2
(
x,x+,x−

)
= max(D[ Net(x),Net

(
x+
)]

−D
[
Net(x),Net

(
x−
)]

+ α, 0
) (3.4)

where the distance between the anchor and the positive sample is minimized, while the distance be-
tween the anchor and the negative sample is maximized, α denotes the margin between the positive
and negative sample, and D denotes the distance measurement. We then append the triplet loss with
the calculated CTC loss for backpropagation (Figure 3.2). The total loss of the model can be given as
follows: (λ1 and λ2 are the weights assigned to the CTC and triplet loss)

L = λ1L1 + λ2L2 (3.5)

3.4 Training

HyperParameters for TIMIT training: We used the OpenSeq2Seq [28] DeepSpeech2 pretrained
model for our proposed KWS model. The raw signal is applied with data augmentation operations such
as adding noise and speed perturbation. The model is trained with a polynomial decay learning rate
with power 0.5 and uses an initial learning rate of 1 × e−3. In addition, an L2 penalty of 1 × e−5 is
used. We use a batch size of 32 and the Adam optimizer [26]. We train the model up to 500 epochs and
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select the last model to report the accuracy on the test set. The value of λ1 is 1 and λ2 is 20. We keep
the hyperparameters constant for all the experiments in this work. We also train a few other models:
with CTC loss and triplet loss separately after loading the pretrained weights, with CTC and triplet loss
together without loading pretrained weights. We also measure the performance of the pretrained model
without any training.

Triplet Mining: The triplets for the triplet loss are mined online for each batch rather than mining
it beforehand. A batch-hard strategy is used where the distance between all the pairs in a batch is
calculated, and then for each reference sample, the positive sample, which lies farthest, and the negative
sample, which lies closest, are considered for calculating the triplet loss. Each batch has more than one
sample for each keyword to help learn the similarity between the positive pairs, and each batch has more
than one keyword, with each keyword on default having an equal number of samples.

Baseline Training: We use the Multi-view Recurrent Neural Acoustic Word Embeddings system
implemented by [17] as a baseline. They have approached the problem of bringing similar audio
keywords into the same embedding space and bringing the audio and its text representation into the
same embeddings space. They have shown the latter as better among the two. They have used two
LSTM networks; one takes audio as the input while the other takes text as input and tries to bring these
two representations closer. They have used the contrastive loss as the training loss, which tries to bring
positive pairs closer and negative pairs farther. We train their Multi-View code for 1000 epochs with
their best performing objective for baseline comparison.

Fixed Vocabulary Training: We compare our model’s performance for classification tasks on the
Speech Commands dataset using kNN. We train our architecture with this dataset and obtain the em-
beddings for the test set that are later classified using the kNN algorithm. We train our model for 300
epochs for this task. We use [49] to compare the results. They have used a triplet loss-based embedding
trained on same dataset and used a variant of kNN to show accuracy performance.

We perform additional end-to-end training with the speech commands dataset. We add additional
training layers to do end-to-end training. We attach a fully connected layer to the DeepSpeech2 back-
bone to reduce the model dimension from 1600 to 35 classes. We then add a softmax layer to the fully
connected layer to produce probabilities for each class. We show this in Figure 3.3. The model is
trained with a cross-entropy loss function for 300 epochs. We observe the top-1 accuracy results from
softmax probability outputs for this experiment. We perform the fixed vocabulary training to compare
our method’s performance against the fixed vocabulary keyword classification task.

3.5 Results
TIMIT evaluation: For each pair of words from the test data set, the word discrimination system

decides whether the pair contains the same or different words. We obtain the embeddings from the
trained model for the test data set and decide whether a pair of audio samples are similar or dissimilar.
We compare the predicted labels with the actual ground truth labels to estimate average precision. Thus
we measure the overall system performance. We calculate the distance between the acoustic embeddings
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Figure 3.3: Blocks depicting ASR network from pretrained model attached to a Transfer network to
achieve fixed-vocabulary KWS training.

Table 3.2: Average Precision evaluation for Generalized Keyword Spotting model and Multi-View
model on TIMIT dataset for ALL(both IV and OOV), in-vocabulary(IV) and zero-shot out-of-

vocabulary(OOV) test keywords samples.

Model ALL IV OOV
Multi-View [17] 0.328 0.528 0.218
Pretrained ASR 0.848 0.911 0.803

Pretrained + CTC 0.903 0.954 0.750
Pretrained + Triplet 0.936 0.975 0.700

CTC + Triplet 0.965 0.990 0.800
Pretrained + CTC + Triplet 0.971 0.991 0.843

for each pair of words from the test set. A threshold was applied to determine if the pair represents the
same or different words. The total number of pairs in the test set was 7.9 million for the TIMIT dataset.
This includes both in-vocabulary and out-of-vocabulary words. A precision-recall curve was obtained
from which the AP was estimated by sweeping the threshold value. We calculate the AP value for all
the trained models on the TIMIT dataset and report the results in Table 3.2. It can be observed that the
performance of the model that was trained with loading pretrained weights and CTC and triplet loss
has significant performance improvement over Multi-View and other models. We also observed that the
model with Triplet + CTC loss was able to converge relatively faster than the model with only triplet
loss.

The performance of in-vocabulary and out-of-vocabulary words is calculated separately for both
Multi-View and our model and are reported in Table3.2. The total number of pairs used to calculate AP
in in-vocabulary is 1.7 million, and out-of-vocabulary is 2.2 million.
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Table 3.3: Accuracy evaluation of our model on classification task trained on Google Speech Com-
mands dataset V2. The number of target classes is 35. We use our Pretrained+CTC+Triplet embeddings
with kNN for accuracy comparison. We additionally show the performance of end-to-end training on

our DeepSpeech2 method.

Model Accuracy
Pretrained ASR 85.7

Attention RNN [6] 93.9
AST [11] 98.1

Res15 [49] 97.0
Pretrained + FC-Softmax 94.4

Pretrained + CTC + Triplet 96.2

Table 3.4: The Effects of various combinations of CTC, triplet and Cross-entropy loss functions on
Fixed Vocabulary Training. The accuracy of the models that has used cross-entropy is evaluated directly

from softmax layer while the other models are evaluated through KNN.

S.No. CTC Loss Triplet Loss Cross-Entropy Loss Accuracy(Softmax) Accuracy(KNN)
1 Yes Yes Yes 96.3 NA
2 Yes Yes No NA 96.2
3 Yes No No NA 95.5
4 No Yes No NA 86.1
5 No No Yes 94.4 NA
6 Yes No Yes 96.2 NA
7 No Yes Yes 96.5 NA

Speech Commands Evaluation: We obtain all the embeddings for the train and test set from our
model trained on Google Speech Commands dataset V2 (35 classes) with triplet and CTC loss. We then
apply kNN to classify the test set to calculate accuracy. We compare our results with [49, 6, 11]. We
achieve a classification accuracy of 96.2%. We have tested kNN for several values of k and have found
that for the speech commands dataset, the best performing value for k is 7. For the KWS application,
larger datasets occupy a lot of memory for the kNN part of the model. Our approach has the potential to
achieve competitive results on classification tasks through kNN for small keyword sets. The end-to-end
training on the same DeepSpeech2 backbone with Fully Connected and Softmax layer achieves 94.4%.
Our method performs slightly better than end-to-end training on the same backbone showing the method
is able to generalize to strong cross-entropy loss-based methods. The results are shown in Table 3.3.

3.6 Analysis

We show the nearest neighbors for four sample queries in the test set in Table 3.5. Our model per-
forms better than the pretrained model for the keyword magnetic and the keyword livestock even though
it is unseen during training even, while the triplet model has missed livestock. The model improves the
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representation of keyword getting from the pretrained model after seeing it. The model preserves the
representation for the keyword program while the triplet model fails to retrieve it. It can be observed
that the keywords that lie closer have similar phonemes for our model in all the cases in Table 3.5.

Table 3.5: Keywords retrieved by the Pretrined ASR vs Pretrained + triplet vs Our Pretrained + CTC +
Triplet model on OOV and IV keywords. Bold represents query and the closest sample belonging to the

same keyword.

Model Query: Top 3 unique nearest neighbours
Pretrained magnetic: economic, barometric, diagram
Pre + triplet magnetic(oov): magnetic, money, nobody
Ours magnetic(oov): magnetic, money, barometric
Pretrained livestock: livestock, stopwatch, stockings
Pre + triplet livestock(oov): muscular, catastrophic, extra
Ours livestock(oov): livestock, extra, electron
Pretrained getting: looking, would, meeting
Pre + triplet getting(iv): began, getting, bedroom
Ours getting(iv): getting, heating, eating
Pretrained program: program, arriving, problem
Pre + triplet program(iv): causeway, cranberry, corduroy
Ours program(iv): program, problem, popular

3.6.1 Statistical Significance Testing

Figure 3.4: Statistical Significance Test depicting the efficient performance of our model. Our method
with Pretrained + Triplet + CTC on the far right denotes that the method performs better compared to

others.

We take the outcomes of multiple treatments of the data over multiple observations and create the
Critical Difference (CD) diagram. For example, we compare the performance of multiple methodologies
with different datasets to see the effect of each method. The treatments across multiple test attempts are
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tested with the Friedman test. We then perform a post-hoc pairwise Neymani test to find the data groups
that differ. The x-axis denotes the average rank, and each tested methodology lies on this 1-D graph.
The null hypothesis is that there is no difference in the proposed method. If a horizontal line below
the x-axis connects two methods, they are not statistically significant. If they are not connected, then
they are statistically significant. Our Pretrained + CTC + Triplet method’s rank is higher than all other
methods. Hence our method is statistically significant over all other methods. The CD is 0.09.

3.6.2 Distance Distribution between embeddings of Positive and Negative Pairs

Figure 3.5: Graph showing overlapping distributions of positive and Negative pairs that lie close to
each other, causing non-clear boundaries to do keyword spotting.

Figure 3.6: Graph showing separated distributions of positive and Negative pairs that enable to spot
keywords with higher confidence.
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We take 1000 triplets by choosing 1000 positive and negative pairs. We calculate the distances
between the AWE of these samples. All the models are tested on the same pair of audio samples to show
uniformity during evaluation. The results are shown on the TIMIT dataset. The similarity distribution
of positive and negative pairs of the pretrained model is shown in Figure 3.5. It can be observed that
both the curves lie close to one other. The similarity distribution of samples of our model is shown in
Figure 3.6. Here it can be observed that the positive distribution and the negative distribution are well
separated. From Figure 3.6, it can be observed that the optimal similarity threshold for a pair of audio
samples to be of the same class is where both the positive and negative samples’ boundaries meet which
is around 0.3.

Figure 3.7: tSNE Plot of TIMIT keywords from Pretrained Model.

3.6.3 t-SNE Plots

We use the tSNE plot to visualize the learned embedding space. We show the tSNE plots for the
pretrained ASR model and our model trained on TIMIT and google speech commands dataset. The
resulting plots are presented in Fig. 3.7 3.8a, 3.8b, respectively. We observe from the diagram that
samples from similar classes lie closer and samples from different classes lie farther. The number of
training samples is very few for many training classes. The classes with many training samples have
more efficiently clustered from other classes. The distance between these clusters indicates the phonetic
similarity between these keywords.
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(a) tSNE Plot of TIMIT keywords from Our (Pretrained + CTC + Triplet) model. Comparison
between the plot depicts the better embedding representation of our model over the pretrained model

as the intra-distance is lower and inter-distance is higher between keywords in our model.

(b) tSNE Plot of Google Speech commands keywords from Our(Pretrained + CTC + Triplet) Model
depicting keywords being grouped together, denoting the efficiency of the representation.

Figure 3.8: tSNE plots of Our Model on TIMIT and GSC dataset
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We need to analyze further to find the phonetic similarity between the keywords in the tSNE plot.
The amount of training data to their corresponding plots can give insights into adapting the setting to
low resource languages. The classes are better clustered in Google Speech Commands (GSC) dataset
when compared to TIMIT dataset and is because the number of classes is lesser in the GSC dataset than
in the TIMIT dataset.

3.7 Extension to continuous audio

When we want to spot keywords in continuous audio, we use a sliding window approach. Here
continuous audio represents an utterance that has multiple spoken words in it. This is illustrated in Fig.
3.9.

Figure 3.9: Schematic Diagram of methodology to extend our kws approach to continuous audio: A
sliding window approach is used to encode embeddings at regular interval which are then compare with
keywrod embedding. The maximum similarity value among the computed similarities is acknowledged

as the similarity score between the audio Embedding and the query.

Given frame sequences of a spoken query and a spoken document, Representation Encoder from our
model can represent these sequences as embeddings. These embeddings are then averaged for every
window of 0.5 second to give the fixed embedding dn with a window shift of 0.25 second to give
d=d1,d2,...,dn

The query word embedding is matched with embedding obtained by averaged at each window of
the document embedding sequentially and their similarity score is obtained. This is the sub sequence
matching.
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S(q,d) = max (S1, S2, . . . , Sn) (3.6)

Sn = Sim (q,dn) (3.7)

Cosine Similarity is used in the similarity measure. The relevance score (q,d) between the query
and the document is then the maximum out of all dn’s obtained in the Equation. The optimal window
size for KWS detection varies per utterance based on speech rate, noise, and adjacent utterance. This is
shown in Fig. 3.9
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Chapter 4

Low Resource Language Adaptation and Small-Footprint KWS

In this chapter, we discuss the transliteration used to convert low-resource language script to English.
Transliteration is used to convert low-resource language scripts to English. We share the details of the
low-resource language transliteration and training procedure. We evaluate and compare our results of
various methods. We discuss results on three low-resource languages. Then we move towards small
footprint keyword spotting using distillation, whose focus is on reducing the size of the model. We
discuss the effect of various distillation loss functions on keyword spotting tasks. Finally, we evaluate
the results of small footprint ASR against distillation methods.

4.1 Transliteration

Transliteration refers to the conversion of characters from one language to another. The focus of
transliteration is not the sound or pronunciation but the most accurate way of representing characters
from one language with the characters from another. Transliteration is different from translation. Trans-
lation tries to replace words and sentences from one language to another without concern for pronun-
ciations, and the resulting character sets are different for source and different. On the other hand,
transliteration tries to convert characters from one language to another with minimal disturbance to
pronunciation. For example, In the Hindi language, the transliteration of ”namaste” is .

It is normal for transliteration to have more than one representation in target language when convert-
ing from the source language. For example, the Hindi text can be both converted to ”namaste”
or ”nemaste” due to the fuzzy nature of how the word is pronounced by each individuals.

We created a dataset of transliteration text for all the Tamil keywords in the MSWC dataset. This
transliteration is created by a Tamil language expert whose native language is Tamil. All Tamil language
keyword scripts are transliterated to English such that keywords sound as similar as possible to ASR’s
English character vocabulary. Though few phonemes in the Tamil language don’t exist in English and
several Tamil phonemes sound differently, these characters are converted to the closest sounding English
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characters. We also share our transliteration dataset of Tamil keywords in the MSWC dataset here1. We
are sharing few examples of the transliteration below.

4.2 Zero Shot Out-Of-Vocabulary Generalization

This method is easily generalized to Zero-Shot Out Of Vocabulary keywords. This is possible be-
cause we operate at the embedding space directly. We obtain the acoustic word embedding for any audio
segment from our model as shown in Figure 3.2. The audio sample can be from keywords the model has
or has not seen. During prediction, we convert all the sample audio keyword files into this embeddings
space. Then, for every test audio sample, we first obtain the word embedding by passing it through
the model. Then we compare the test audio embedding with all the keyword embeddings using cosine
similarity. When the similarity is above a certain fixed threshold, we say the keyword and the test audio
is a match.

While the cosine similarity comparison method has been the key, the other generalization methods
use a modified version with one or few train samples for the keywords. In the work [23], the model
requires configuration with a sample keyword audio and respective threshold values for prediction.
While our method does not require configuration for each keyword and the threshold is constant. In
the work [31], a keyword-specific classification layer is trained with five training samples and uses this
classifier for predicting those words. In contrast, our method does not require any sample for out of
vocabulary zero-shot prediction. Other works have focused on fixed vocabulary keyword spotting and
require retraining to add new classes.

4.3 Low resource Language Training and Evaluation

Low resource Language Training: The model is trained on MSWC Tamil split for 1000 epochs
on the training set. We train three models: with only triplet loss, triplet and CTC loss with pretrained
weights, and without pretrained weights. The performance is measured on in-vocabulary and zero-shot
out-of-vocabulary words from the test split from the same dataset. The CTC loss is applied to the
transliterated text during training.

Tamil Language Evaluation: We calculate the AP value for the generalized keyword spotting mod-
els for low resource language on the Tamil MSWC test dataset, and the results are reported in Table 4.1.
It can be observed that pretraining and fine-tuning with CTC and triplet loss has helped the model in
achieving better performance in the Tamil language. Although pretraining and fine-tuning with only
triplet loss has not helped in generalization. The total number of pairs in the test set was 110K. The
total number of pairs used to calculate AP in in-vocabulary is 15K, and out-of-vocab is 43K. We hereby
share this as the initial benchmark for low-resource zero-shot out of vocabulary keyword spotting.

1https://github.com/Kirandevraj/GeneralizedKWS
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Figure 4.1: Few samples from the Tamil Transliteration dataset
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Table 4.1: Average Precision evaluation for Generalized Keyword Spotting Model for Low Resource
Language trained on Tamil split of MSWC dataset. The columns indicate ALL(both IV and OOV),

in-vocabulary(IV) and zero-shot out-of-vocabulary(OOV) test keywords samples.

Model ALL IV OOV

Pretrained + Triplet 0.030 0.061 0.057
CTC + Triplet 0.161 0.300 0.253

Pretrained + CTC + Triplet 0.295 0.587 0.321

Vallader Language Evaluation: The total number of words used for training is 233. The IV words
used for evaluating results is 66 and OOV words used to evaluate the results is 59 The total number of
IV and OOV pairs is 0.5 million. The number of IV pairs is 0.1 million. The number of OOV pairs is
0.1 million.

Table 4.2: Average Precision evaluation for Generalized Keyword Spotting Model for Low Resource
Language trained on Vallader split of MSWC dataset. The columns indicate ALL(both IV and OOV),

in-vocabulary(IV), and zero-shot out-of-vocabulary(OOV) test keywords samples.

Model ALL IV OOV

Pretrained + Triplet 0.025 0.039 0.048
CTC + Triplet 0.313 0.450 0.536

Pretrained + CTC + Triplet 0.383 0.545 0.566

Hausa Language Evaluation: The total number of words used for training is 240. The total number
of IV and OOV used to evaluate the performance is 77 and 61 words. The total number of IV and OOV
pairs is 1.8 million. The number of IV pairs is 0.3 million. The number of OOV pairs is 0.5 million.

Table 4.3: Average Precision evaluation for Generalized Keyword Spotting Model for Low Resource
Language trained on Hausa split of MSWC dataset. The columns indicate ALL(both IV and OOV),

in-vocabulary(IV) and zero-shot out-of-vocabulary(OOV) test keywords samples.

Model ALL IV OOV

Pretrained + Triplet 0.082 0.135 0.187
CTC + Triplet 0.408 0.552 0.604

Pretrained + CTC + Triplet 0.428 0.554 0.634

It can be observed that our method performs efficiently when compared with other methods in all
the three low resource languages both in in-vocabulary and out-of-vocabulary scenario. Hence we can
understand that the transliteration has contributed at a very high scale when compared to triplet loss
functions in low resource scenario.
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4.4 Small Footprint KWS through Knowledge Distillation

We focus on building a small footprint KWS to be able to run this keyword spotting application
on a smaller device. We approach the small footprint task by knowledge distillation in the form of
teacher-student network training to reduce the size of the model while retaining the performance. The
performance of a neural network increases with an increase in the number of trainable parameters for
complex tasks. However, in such scenarios, there is an additional constraint of increased computing
resources and the training data required to train such networks efficiently. To overcome this issue, we
focus on building a network with lesser parameters on low computational resources and lesser train-
ing data using Knowledge Distillation (KD) approaches. Knowledge distillation involves transferring
knowledge from a larger teacher network to a smaller student network. KD helps the student network to
learn with lesser computational resources and training data while training faster. The primary techniques
to perform KD involve either transferring class probabilities or the hidden representation between the
teacher and the student networks.

For classification tasks, the final layer of the network is usually softmax. The softmax layer assigns
the probability values to each class for a particular input. The sum of these probability values is 1. These
probability values are usually preferred in KD compared to one hot encoding since the probabilities
have additional information about other classes that are close and farther. Hinton et al. [20] use the
KL Divergence loss to perform KD between the softmax layers of teacher and student. KD in the
Speech Recognition system happens at the softmax layer predicting character labels at each input frame
other than the one-hot encoding of the character labels. However, the hidden representations hold the
knowledge used in the KD process to train a student’s hidden layer representation.

We show the schematic diagram of knowledge distillation in Figure 4.2. The representation between
the teacher and student is compared to calculate the loss. This is denoted as LRKD. We explore three
main knowledge distillation methods to reduce the size of the student model, namely Mean Squared
Error loss, KL Divergence Loss, and CosEmbedding loss. We have discussed these loss functions in the
following sections.

4.4.1 MSE Loss

It has been observed that MSE loss helps in ASR distillations [51]. We explore the same for Keyword
Spotting.

Let us denote the hidden representation of the i-th and j-th layer of the teacher and student network
as y(i) and ŷ(j). Here we assume that both the models have similar architecture. The teacher model in
the speech recognition system trained with a CTC framework accepts the speech signal x as input. The
hidden layer output is represented as y(i)(x) ∈ RT×Dt , where T represents the total number of frames
with the hidden layer dimension Dt. Similarly for the student model, the hidden layer is represented
as ŷ(i)(x) ∈ RT×Ds , where Ds denotes the hidden layer width. The hidden layer dimension Dt and
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Figure 4.2: Schematic diagram of Knowledge Distillation for Small footprint KWS. We experiment
with MSE, KL Divergence and CosEmbedding Loss function at the representation level KD to obtain

small footprint keyword spotting model.

Ds from the teacher and student network are similar. We apply the MSE loss between the teacher and
student representation as :

LRKD =
∑
x∈Z

∑
(i,j)∈I

∥∥∥(y(i)(x)−
(
ŷ(j)(x)

))∥∥∥2
2

(4.1)

We apply the MSE loss for distillation purposes and observe the performance of the student embed-
dings for keyword spotting tasks.

4.4.2 KL Divergence Loss

We apply the KL divergence loss as the objective function of KD on the probability distribution be-
tween the teacher and student network with a scaling parameter. Kullback-Leibler divergence measures
the difference in the probability distribution of two networks and is a distance measure but not a metric.
We estimate an approximate distribution from a true distribution in Bayesian theory. In the KL diver-
gence measure, we try to measure the approximate distribution ŷ from the true distribution y. We use
the same KL Divergence loss to build a light weight keyword spotting model. The expression of KL
divergence loss can be given as:
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LRKD(ŷ||y) =

M∑
c=1

ŷc log
ŷc
yc

(4.2)

Here ŷ is the student models predictions, and y is the teacher models predictions. M is the number
of classes, ŷc is the logit value of class c from the student network, and ŷc is the logit value of class c
from the teacher network. Here a softmax function is applied on the embeddings output and then KL
Divergence loss is applied on these softmax intermediate layers output and the c corresponds to the size
of the intermediate dimensional vectors.

4.4.3 Cosine Embedding Loss

This is similar to the triplet loss used in the previous section, where cosine distance is used to measure
the distance between the teacher and the students’ intermediate layers. The cosine distance between two
vectors is given as :

cos(y, ŷ) =
y · ŷ
|y||ŷ|

(4.3)

The Cosine Embedding Loss is given as:

loss(y, ŷ, l) =

1− cos (y, ŷ) , if l = 1

max (0, cos (y, ŷ)−margin) , if l = −1
(4.4)

The cos embedding loss tells how close the embeddings should be when the label l is 1 and how far
the embeddings should be when the label l is -1. Hence cosine similarity works on embeddings that are
nonlinear and embeddings of semi-supervised models.

For our student teacher training, we consider the y as the teachers’ intermediate representation and ŷ
as the students’ intermediate representation, and the margin helps in penalizing the similarity between
the similar samples and dissimilar samples representation based on the label l.

4.4.4 Knowledge Distillation Results

MSE for Distillation: The training dataset used for the experiment librispeech. The Teacher model
used for the experiment is DeepSpeech2 architecture with 56 million parameters, and the student model
size is 1.3 million parameters. The student model has one CNN and GRU layer then followed by a fully
connected layer. We conducted experiments with the combinations of MSE loss and CTC loss, with
distillation applied to more than one layer in the network. The CTC loss is applied to the experiments
where it is listed in the loss function column in the table 4.4. Only the parameters of the student network
are updated during training.

Results Discussion: It can be observed from the table 4.4 that MSE loss on its own has failed to
contribute to the distillation of knowledge, while the distilled model performs well when trained with
the combination of CTC loss. At the same time, we can see a slight improvement in distillation applied
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Table 4.4: Effect of MSE loss function on Distillation for small footprint KWS on both TIMIT and
LRW dataset

S.No. Loss Function Distillation Layers TIMIT LRW

1 CTC + MSE RNN 0.569 0.355
2 Only MSE RNN 0.088 0.018
3 Only MSE RNN and CNN 0.043 0.018
4 CTC + MSE RNN and CNN 0.687 0.549

to more than one location. Distillation applied on both RNN and CNN layers performs slightly better
than distillation applied only on the RNN layer.

Comparison of MSE, KL Div and CosEmbedding loss for distillation: We conduct experiments
using all the three loss functions for reducing the size of the keyword spotting model to do small footprint
keyword spotting. We measure the performance of the student model with reduced size for the open
vocabulary keyword spotting task after training with MSE, KL Div, and CosEmbedding loss functions
individually and report the results in the table 4.5. The student network for these experiments is constant
and has one CNN layer and one RNN layer totaling 2.5 million parameters.

Table 4.5: Performance of MSE, CosEmbedding and KL Divergence loss functions on distillation for
small footprint KWS on TIMIT dataset

S.No. Loss Function TIMIT

1 MSE Loss 0.538
2 Cosine Embeddings Loss 0.569
3 KL Divergence Loss 0.534

Results Discussion: It can be observed that CosEmbedding loss function helps in improving the
performance of the student model in distillation from a Deepspeech2 teacher model. However, the
model performance is insufficient to apply to real-world small footprint keyword spotting scenarios.

4.5 Distillation vs Small Footprint ASR

We sensed that the distillation loss functions could hinder the CTC loss function’s contribution to
learning representation for keyword spotting. We focused on building a small footprint ASR and ex-
tracting the small footprint KWS model from a small footprint ASR without any distillation involved.
Hence we have to train an ASR with varying parameters to analyze the keyword spotting results.

4.5.1 Small Footprint ASR Training

The ASR training is similar to the one described in the previous chapter with the CTC loss function.
Modern ASRs take the speech processed in the form of either spectrogram, MFCC, fbank, or some
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other features as input rather than raw audio. The raw audio has many data points for a single second of
audio and cannot be input to the ASR. These are a sequence of vectors with a dimension D representing
a fraction of the input audio. The ASR outputs the probability scores for each possible character for
each input frame. The CTC loss converts this output by replacing repeating characters not separated by
blank characters into a single character. In this manner, ASR handles the task of transforming variable
length inputs into variable length outputs. The number of parameters used for such training is always
huge as the input space is very high dimensional, and we want to capture the spoken words from it.
However, our task is keyword spotting which doesn’t require the audio to be transcribed but brings the
representations of similar audio keywords closer. Hence we try to build a small footprint ASR whose
focus will be on building an efficient representation of keyword audio rather than an efficient ASR.

However, the number of parameters used in this ASR is much smaller than the one used in the
previous models. The results of KWS Model evaluated on small footprint ASR is shown in table 4.6.
The training data used for this experiment is Librispeech and is evaluated in TIMIT and LRW datasets.
The model parameters is varied by varying the number of RNN layers and the hidden dimension of the
RNN layers.

Table 4.6: Effect of Model Parameters on small footprint keyword spotting performance.

Model Architecture Embedding
Dimension

Model
Parameters Input Features TIMIT LRW

2CNN 3BiLSTM 1024 18.1M logfbank 0.916 0.819
2CNN 5BiLSTM 96 1.8M spectrogram 0.752 0.607
2CNN 3LSTM 64 316K MFCC 0.473 0.197

2CNN 7BiLSTM 1024 56M[Pretrained] spectrogram 0.857 0.802

Results Discussion: From table 4.6, it can be observed that reducing the size of the model from
56M to 18.1 has helped in improving the KWS results. But while reducing the model further, the
model’s performance has reduced. It can be observed that training a small footprint ASR has better
performance in keyword spotting 4.6 than the distillation techniques observed in Table 4.5. This is
also due to the fact that the ASR training has been periodically checked for keyword spotting and the
training is stopped irrespective of the Word Error Rate of the ASR model. With further training, the
ASR model WER decreases but the keyword spotting performance decreases. This is the reason for the
ASR model to perform better when trained from scratch and involves early stopping while focusing on
keyword spotting performance. It can be observed that the small footprint ASRs are quite competitive
with distillation techniques for small footprint Keyword Spotting. This also shows that Knowledge
transfer through distillation in Speech Processing tasks is quite challenging when compared to building
the solution from scratch.

39



Chapter 5

Conclusion and Future Directions

In this thesis, we propose a novel method of learning acoustic word embeddings by transferring pre-
trained ASR architecture for KWS with triplet network and CTC. We show that this method efficiently
detects keywords the model has not seen during training. By comparing it with other benchmarks,
we show that this method is competitive on open-vocabulary audio keyword spotting tasks. Hence the
system can be extended to detect any audio keywords while having the opportunity to fine-tune the key-
words to improve performance. This method utilizes the knowledge learned during ASR training for the
speech recognition task.

We show that the transliteration can be used to utilize the system trained on the English language
to be directly used to low resource language by transliterating the low resource language to English
character. We show initial zero-shot generalization results for low-resource languages and share the text
transliteration for Tamil language keywords in the MSWC dataset. It is also observed that pretraining in
one language helps in KWS on a different low-resource target language. We also confirm the findings
on other low-resource languages Vallader and Hausa.

Finally, we focus on reducing the model parameters by Knowledge Distillation techniques to make
the KWS model work in a small footprint scenario. We observe that the CTC loss function plays a
significant role in training a small footprint KWS model compared to the distillation loss functions.
Hence we understand that representation learned from a small footprint ASR can produce a better KWS
model even when the Word Error Rates of such small footprint ASR models are high.

5.1 Future Directions

The transliteration helps adapt a pretrained ASR for a low-resource language. It would be interesting
to see how a pretrained English ASR recognizes a low-resource language when fine-tuned with limited
training data. The predicted ASR’s English alphabets can be converted to the low-resource language
script using transliteration. There are not many efficient transliteration packages available for many low-
resource languages. Using an ASR to perform transliteration would be an interesting area to explore.
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The keyword spotting system can be used to detect the intention of the audio when specific keywords
are matched. This helps in building an alert system based on the contents of the audio. Such systems are
possible with keyword spotting systems as the entire audio is not transcribed but by looking for specific
keywords.
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