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Abstract

Semantic segmentation is an essential primitive in real-time systems such as autonomous navigation,
which require processing at high frames per second. Hence for models to be practically applicable, it
is essential that they have to be compact, fast as well as achieve high prediction accuracies. Previous
research into semantic segmentation has focused on creating high-performance deep learning architec-
tures. Most of the time, these best-performing models are complex, deep, have large processing times,
and demand a significantly higher amount of processing capacity. Another relevant area of research is
model compression, by which we can obtain lightweight models. Considering that there also have been
works that produced mainstream light-weight semantic segmentation models at the expense of perfor-
mance, we design models that bring a desirable balance between performance and latency. Specifically,
methods and architectures that give a high performance while being real-time and working on resource-
constrained settings. We identify the redundancies in the existing state-of-the-art approaches and pro-
pose compact architecture family called ESSNet with accuracy comparable to the state-of-the-art while
utilizing only a fraction of the space and computational power of those networks. We propose convolu-
tional module designs with sparse coding theory as a premise and we also present two real-time encoder
backbones employing our proposed modules. We empirically evaluate the efficacy of our proposed lay-
ers and compare them with existing approaches. Secondly, we explore the need for optimization during
the training phase in the proposed models and present a novel training method called Gradual Grouping
that results in models with improved implementation efficiency vs accuracy trade-offs. Additionally, we
conduct extensive experiments by varying architecture hyper-parameters such as network depth, ker-
nel sizes, dilation rates, split branching and additional context extraction modules. We also present a
compact architecture using multi-branch separable convolutional layers with different dilation rates.
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Chapter 1

Introduction

1.1 Motivation

This thesis is motivated by the practical requirement of semantic segmentation in scene understand-
ing applications on resource-constrained edge devices. Scene understanding is a fundamental computer
vision problem. Semantic segmentation is a crucial task since it provides relevant context for the actions
to be taken based on comprehending the scene at a pixel level [11]. Despite advances in the hardware,
most real world scene understanding applications such as autonomous driving [73, 62], intelligent vi-
sual surveillance, driver assistance applications [14], augmented reality [47], intelligent transportation
systems, scene tagging, and medical image diagnosis [75] still have the need for computationally cheap,
small-sized networks for real-time processing.

In June of 2022, a fleet of self-driving cars by a company stopped moving in the middle of the
highway, causing a huge traffic jam1. The cars lost contact with company servers for 90 minutes, leading
to a dozen vehicles being frozen in the middle of the road, blocking lanes and crosswalks. It is nonviable
to rely on remote computing clusters for heavy computation of critical applications due to issues with
network connectivity and privacy. This illustrates the need for computing on edge devices in resource-
constrained settings. These advanced scene understanding applications operate in resource-constrained
environments with limited energy overhead, restricted onboard compute capacity, and memory. They
require online processing of data locally on edge devices, and at the same time, the machine learning
models deployed need to run in real-time. Therefore there has been a growing emphasis on developing
real-time systems with minimal processing needs.

There have been giant strides in the accuracy of semantic segmentation due to the pervasiveness of
deep learning [23, 20, 4]. However, as the task of semantic segmentation is computationally intensive,
most of the proposed deep learning-based models do not serve real-time needs [11, 18, 23, 42]. The
most popular architectures for semantic segmentation uses an encoder-decoder structure [42, 59]. We
input the image into the encoder, which produces a compact representation. The decoder then intelli-
gently upsamples the representation until it produces a semantic label for each pixel of the input image.

1https://www.wired.com/story/cruises-robot-car-outages/
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In this thesis, we discuss other architectures used in literature, such as multi-scale, context module, and
feature fusion-based models [49, 9, 13, 22, 39]. These models attempt to produce the most accurate
semantic segmentation. Various model compression approaches have been proposed to improve the
implementation efficiency of segmentation models. Explicit model compression applies post-hoc tech-
niques to heavy networks after or during training, whereas implicit model compression uses lightweight
structures and layers in the network architecture. Broadly they can be grouped under pruning [21, 36],
quantization [19, 20], and architecture design [69, 6, 28] approaches. Efficient architecture design in-
volves proposing novel neural network layers with minimal parameters that are expressive [52, 2]. These
three approaches are orthogonal i.e. they can be applied together to improve performance. In our work,
we use a combination of these approaches to design lightweight, high-performing architectures.

In this thesis, we investigate the feasibility of improving the overall performance of real-time seg-
mentation models.

Figure 1.1: Proposed segmentation model for scene understanding applications on edge devices in a resource-
constrained setting.

2



1.2 Contribution

The following are our contributions in this thesis:

• We comprehensively analyze the most effective convolutional design strategies and utilize them
to alleviate the efficiency constraints. We present a component-wise analysis of real-time seg-
mentation models, examine the shortcomings, and propose efficient convolutional layer designs
that reduce redundancies without compromising on the performance.

• We evaluate the effectiveness of our proposed convolutional layers by implementing them in real-
time semantic segmentation backbones ESSNetA, and ESSNetB. Our proposed networks called
ESSNet are empirically demonstrated to be highly efficient and equally accurate while learning
fewer parameters. Our proposed models run over 40FPS on a single GTX 1080Ti GPU with
compact model size making them suitable for real-time applications on edge devices.

• We propose a novel training procedure called Gradual Grouping that optimizes the model at a
higher dimensional subspace and transforms a dense convolution to a grouped convolution where
the channel grouping is learnt while training. This method overcomes the limitations of leveraging
sparse convolutions in the architecture design.

• We derive meaningful insights into the scalability and effectiveness of encoder-decoder style mod-
els in the context of semantic segmentation. We comprehend the significance of each design el-
ement in segmentation architectures and determine the components that are the best fit to build
our proposed models. We conduct extensive ablation experiments on the network architecture by
adding new blocks to the models.

• We propose a novel segmentation network WSPD-Net that incorporates a pyramid structure in the
convolutional layer with differential dilation rates that is much more effective without increasing
computational complexity. In this network, we employ a heterogeneous combination of spatially
factorized and depthwise separable convolutional layers. We also exploit different kernel sizes
with varying-sized receptive fields, which are proven to better segment diverse-sized objects.

1.3 Thesis Outline

In this chapter, we have introduced the problem statement, our motivation and contribution to the
thesis. The remaining thesis is divided into four chapters.

• In Chapter 2, we present an overview of semantic segmentation. We detail the pertinent literature
in context to model compression. We introduce the relevant datasets, and evaluation methodolo-
gies for semantic segmentation.

3



• In Chapter 3, we discuss several efficient CNN design strategies that were proven to be successful
and present novel convolutional layer designs concerning segmentation architectures. We present
various design considerations for segmentation architectures. We extensively examine the choice
of each component in the architecture. In addition, we present efficient real-time segmentation
networks and a novel training algorithm. We empirically demonstrate the effectiveness of our
proposed layers. We benchmark our architectures on the Cityscapes dataset.

• In Chapter 4, we detail the identification of key elements concerning real-time segmentation net-
works. We discuss the benefits and merits of each architecture design hyper-parameter. Further-
more, we present a novel module design and introduce a real-time architecture that achieves better
balance between run-time and performance.

• In Chapter 5, we present the thesis summary, conclusions and the possible future directions.

4



Chapter 2

Background and Related Works

2.1 Semantic Segmentation: Preliminary

Semantic image segmentation is the challenge of dividing an image into a group of meaningful
sections that are not overlapped and correspond to entities or portions of object classes that may provide
semantics or high-level structural information [62, 14]. Classification, detection, and segmentation are
visual perception tasks. Semantic segmentation aims to anticipate semantic labels at the pixel level for
a image [63].

Image classification task assigns a single label to the whole image; in object detection, the precise
location of target needs to be known. Unlike image classification, multiple objects belonging to the same
class are treated as if they were a single item in semantic segmentation. On the other hand, instance
segmentation considers numerous objects belonging to the same class as if they were separate unique
objects (or instances). Figure 2.1 shows an example of semantic segmentation task. The segmentation
output generated is a dense prediction, where each pixel of the input image is assigned a unique class
label from a predefined set of categories. In order to be effective, semantic segmentation should be
able to achieve high similarity within segments while achieving low association between segments.
The segmentation border should correspond to human perception, and semantic segmentation should
consider key characteristics while disregarding small-scale variation. In other words, semantic image
segmentation should deconstruct an image into a limited collection of meaningful areas, each of which
is of significant size.

2.2 Overview of Deep Learning Architectures for Semantic Segmenta-

tion

In this section, we discuss various deep learning-based approaches towards semantic segmentation,
and categorize various models based on their architectures. Before the advent of deep learning, semantic
segmentation was accomplished with a classifier that labels each superpixel in an image [16]. The

5



Figure 2.1: This figure shows example of semantic segmentation of an image. Pixels belonging to a particular
class are assigned the same label. 1-fence, 2-grass, 3-snow, 4-person, 5-tree.

introduction of deep learning led to the development of algorithms that employed object detection to
categorize areas acquired from segmentation based on low and mid-level characteristics [18].

2.2.1 Fully Convolutional Networks

The Fully Convolutional Network (FCN) [42] achieved a major breakthrough in the early deep learn-
ing works for semantic segmentation by providing dense class predictions for each pixel. In this work,
it was suggested that fully connected layers should be removed from Deep Convolutional Neural Net-
works (DCNNs) to develop an end-to-end semantic segmentation model. By modifying classification
networks so that they only contain fully convolutional layers, an FCN model can generate spatial seg-
mentation maps for images of any resolution. Upsampling the output feature maps to a pixel format
of any resolution is accomplished with the help of deconvolutional/transposed convolutional layers of

6



this model. These layers make up an essential part of the decoding phase of this paradigm. They are
responsible for regaining the initial spatial dimensions of the image and communicating the ”where”
information contained within it. Aditionally, it suggests making use of skip connections across layers
that are not contiguous to one another. To prevent any information from being lost due to max-pooling
layers or dropouts, the feature maps of layers that are not related to one another are upsampled and
concatenated.

FCNs are one of the early trademark models in semantic segmentation architectures. This approach
shows how information from successful classification networks may be applied to other computer vi-
sion applications. Fully convolutional layers have fewer parameters and marginal weights than fully
connected layers, resulting in faster training and inference time for any image. In practical applica-
tions such as medical image segmentation and autonomous driving, more refined localization of class
labels is required in addition to accurate pixel-level predictions. However, there have been many subse-
quent approaches based on the idea of fully connected layers addressing the drawbacks of FCNs, such
as high inference times and inefficiency in processing global contextual information generating coarse
segmentation maps.

2.2.2 Encoder-Decoder Architectures

The encoder-decoder models were proposed to improve the idea of deconvolutional layers and skip
connections in the FCN architecture. In the Encoder-Decoder architectures, the fundamental concept is
to combine a contracting route (encoder) that extracts the ”what” information with a laterally applied
expanding path (decoder) that retrieves the ”where” information such as object details and image size.
Convolutional and downsampling techniques are used to train the encoder-decoder networks on the
latent space representations. Following that, these representations are decoded using upsampling and
deconvolutional processes.

Deconvnet [46] was designed in response to the inference that, despite the use of transposed convo-
lutional layers for FCN upsampling, there was a limitation in learning true deconvolutions to provide a
finer segmentation output. Deconvnet proposes the concept of learning a multilayer deconvolution net-
work with VGGNet serving as the encoder backbone. The input image may be reconstructed from its
feature representation using the deconvolution network, and these learned filters enable capturing class-
specific shape information. Thus, encoder-decoders generate abstract hierarchical features with high
localization precision. Individual object proposals are applied to the trained network to get instance-
wise segmentation, concatenated to form the final semantic segmentation.

U-Net [59], on the other hand, establishes additional shortcut connections between these two mod-
ules. Simultaneously, these shortcuts allow the omission of certain layers while back-propagating the
errors during training, avoiding issues such as vanishing gradients. This design was developed initially
for biomedical image segmentation and worked well even when the training data is scarce. Badri-
narayanan et al. proposed SegNet [2], a technique very similar to the U-Net. The primary distinction
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is SegNet does not pass whole feature maps from the encoding to the decoding phase. This approach
transfers the pooling indices with the maximum value without using deconvolution operations.

2.2.3 Multi-Scale, Context Module, and Feature Fusion Based Models

A different line of the study suggests input multi-scaling to resolve the classification or localization
dilemma while capturing both broad context and minute details. Semantic segmentation may be accom-
plished effectively by combining features extracted from different input scales, enabling the network to
access data at various degrees of detail. This strategy is used in Farabet [13] and Lin [38]. However,
this sort of Image Pyramid technique in semantic segmentation has a significant disadvantage: it does
not scale well for DCNNs owing to issues such as GPU memory constraints.

Numerous strategies in this field have concentrated on enhancing the details of the image at the
expense of losing context at various phases. When the global context explains local misunderstanding,
a considerable amount of misclassified pixels can be recovered, resulting in a smoother segmentation
output. A global contextual module was suggested to be included by ParseNet et al. Wei Liu [41]. This
would be accomplished by enhancing the features at each location with the average feature for each
layer and then running segmentation on the resulting feature map. Hariharan et al. [22] propose Spatial
Pyramid Pooling layers that do the pooling operation using different kernel/stride sizes to the feature
maps and then flatten and concatenate to make fixed-length representations. Atrous Spatial Pyramid
Pooling module having a pyramid multiple dilation rates is incorporated in the Deeplab architectures
[4].

PSPNet [88] uses ResNet with dilations as a feature extractor. The feature maps generated at various
scales corresponding to a pyramid level are upsampled and concatenated along the channel dimension.
This alleviates the learning ability of a scene’s global context representation. Though PSPNet produces
good accuracy, it has a very high computational cost, almost as heavy as fully convolutional neural
networks. BiseNet [82] uses two branches starting from the encoder with two different resolutions(i.e.,
high and low) at each branch processed separately. Wider channels and shallower layers of the network
process the high-resolution image to capture the spatial details, whereas narrower channels and deeper
layers process the low-resolution image to capture high-level or global information. These two branches
are connected through attention refinement modules and feature fusion modules.

Recent literature [31, 37, 77, 10], propose adding shortcut connections, dual path decoder with sub-
stage aggregation, multi-path refinement, and attention pyramid modules to extract dense features in the
network. Other works presented projections from encoder feature space integrating interleaved pyramid
fusion modules to improve segmentation results [49, 50]. However, all these networks have complex
architectures and are not compressed enough to be deployed on edge devices.

Different classes of deep learning-based semantic segmentation architectures have been proposed,
as discussed above. Most of the models follow the fully convolutional networks (FCNs) [42] approach.
Early works designing convolutional neural network architectures for semantic segmentation concen-
trated on accuracy (weighted IOU). Most of the semantic segmentation models follow an Encoder-
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Decoder type of architecture. In the encoder part of these networks, the feature extractors are robust
object detectors like ResNet, ResNext, etc. PSPNet [88] achieves accuracies above 80%. However
PSPNet [88], runs at more than 100 GFLOPs. Our work is more focused on obtaining models with
< 20 GFLOPs.

2.3 Model Compression

Deep learning methods produce remarkable results at the cost of enormous size and computation
overhead. This means that deep models cannot be trained without considerable computational power
and cannot be deployed on low-powered edge devices. Model compression methods try to identify the
redundant connections in large neural networks and prune them, resulting in smaller networks with com-
parable performance. Studies have shown that starting from an over-parameterized model and removing
redundant connections gives better results than starting from a small model [15].

Compressing deep models is beneficial for several reasons. They result in small models with low
computational requirements, which means they can be run on low-powered devices. This ensures that
they can be deployed in applications like mobile phones, self-driving cars, and embedded systems.
Smaller networks also allow training at lower costs and without specialized hardware.

Model compression techniques can be divided into two broad areas: explicit model compression
and efficient convolutional filter designs. Explicit model compression works on the premise that neural
networks are over-parameterized. The process involves finding redundant parameters and pruning them
to obtain a smaller model with similar performance as the original one. Another technique to obtain
small networks is to redesign the convolutional layers which have fewer parameters carefully. Efficient
architecture design aims to make the architecture compact apriori.

In the following section, we delve into the different techniques of model compression and their
working.

2.3.1 Efficient Pruning Techniques

Neural network pruning is a model compression technique that optimizes the model for real-time
inference for resource-constrained devices. The redundant elements of a network are found and removed
to leave a compact and efficient network. The pruning may happen at different scales. In filter pruning
[36], entire convolutional filters are removed at once. This is usually achieved by ranking the filters in
order of importance according to some measure and removing the least essential filters. This technique
can be applied, which results in high compression ratios. Other techniques are to remove either single
neurons or weights at a time. This results in better accuracy as we can be more precise with what is
removed from the network.

Son Han [21] introduced weight pruning and neuron pruning, where they significantly reduced the
parameter count without obtaining a loss in accuracy. In weight pruning, the matrices are made sparse
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by dropping the weights which are 0 after training. Pruning low-weight connections involve removing
weights below a certain threshold. The outcome of ensuring sparsity in compressing neural networks is
that sparse matrices can be stored in an optimized way, i.e., storage in HDD is efficient.

However, sparse matrices take up the same amount of memory in RAM; therefore optimal sparse
matrix multiplication algorithms have to be written from scratch for even the most fundamental opera-
tions, such as forward pass operations. Wei Pan [51] introduced regularisers to help in the process of
dropping neurons during the training of a neural network. The neurons, along with the incoming and
outgoing weights, are dropped permanently resulting in drastic neural network compression.

Another way to classify pruning techniques is the time at which pruning is done. Many works take
a fully trained model as input and prune it to a desired sparsity and accuracy. Other works change the
objective function while training the networks so that it naturally results in a model with sparse weights.
We have adopted this approach in this thesis. There have been a few works which prune the model
before it has been trained, with data-centric techniques. We discuss these techniques in detail below.

Quantization is another way to handle the model storage problem by further compressing the pa-
rameters of CNNs. While pruning algorithms are used to achieve model compression by lowering the
total number of weights, the idea of quantization is to decrease the size of the weights that are already
present. In Binary Quantization, Gong et al. [19] quantize the sign of the parameter matrix by making
them either +1 or -1. This drastically compresses the size by 32x as each neuron is represented by 1 bit.
Binary matrix multiplications have a run time that is seven times better, but the accuracy loss that comes
with using this approach is unacceptably high. Another method, called 8-bit uniform quantization, splits
the maximum and minimum weight values into 256 equally spaced divisions in a uniform manner. Fol-
lowing this step, the weights are rounded to the closest point, and then they are stored as 8-bit integers.
This technique may reduce the data size by a factor of four, and its execution time is much less for 8-bit
matrices. The decrease in accuracy seen with 8-bit uniform quantization is comparable to the accuracy
drop experienced with binary quantization. The K-means clustering algorithm is applied to the weights
in non-uniform quantization or weight sharing. It is necessary to maintain a mapping between integers
and cluster centres. To code the clusters, we only require log (k) bits resulting in a compression factor
rate of 32/log (k). The compression rate in this instance is equal to 4 [20].

2.3.1.1 Pruning Pre-trained Models

These pruning methods start with a pre-trained network, and then identify and remove redundant
connections and fine-tune the network. The last two steps are repeated until the desired sparsity and
accuracy are reached. There are several methods for detecting redundant parameters. In [36], the
magnitude of the filter is used as a measure of filter relevance, and filters with low magnitude are
pruned. Other works use the same criterion but for weights [21]. In Play and Prune [66], importance
is given to choosing the correct rate of pruning while the criteria for choosing filters is l1 norm-based.
In [55], each convolutional filter is visualized using activation maximization. The redundant filters are
detected by comparing the similarity of filter visualizations and removed.
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2.3.1.2 Pruning while Training

Pruning while training is also called dynamic pruning. In these methods, the training objective is
modified so that the training procedure automatically produces sparse weights. In addition to the training
loss, the objective involves a regularization parameter that favours sparse weights. A commonly used
regularization function is the l1 norm of the weights. This function tries to push individual weights to
zero. However, they are not very helpful in pruning entire neurons. Thus some works such as [1] and
[2] use an additional group lasso [83][64] constraint, which pushes entire groups of weights to zero at
once. The group lasso regularizer is defined as

∑
g∈G

√
dg‖βg‖2 where g represents a group, dg is the

number of elements in the group and G is the set of all groups. βg is the regression coefficient of the
group. [90] uses an l2,0 norm-based regularizer instead of an l1 norm. A different approach to pruning
while training is proposed by [12], based on the ideas proposed in [15].

2.3.1.3 Pruning Untrained Models

Some works prune models with completely random weights. The premise of such algorithms is that
the performance of a subnet is based on the type of connections and architecture. These algorithms
use a single pass through the dataset to identify an optimum subnet for the dataset. The subnet is then
trained generally with the given dataset. Three such works are [76] [35] and [74]. In the work “Pruning
From Scratch”, [76], the authors take an uninitialized model with random weights and add scalar ’gates’
to each channel, whose value is multiplied into the layer output. They adopt sub-gradient descent to
change the gates while keeping the model weights unmodified. The channels are pruned based on the
gate values.

2.4 Need for Efficiency in Semantic Segmentation

Although there have been a plethora of high-performance segmentation models based on deep learn-
ing, the necessity for efficiency and the demand for lower inference time is still vital in resource-
constrained environments. Real-world applications like intelligent systems [14], autonomous driving
[62], and medical diagnosis [75] require an extremely accurate grasp of the semantic information at
each pixel level in addition to the ability to make quick decisions.

2.4.1 Real-Time Semantic Segmentation

Real-time semantic segmentation is most essential and valuable for autonomous navigation of ve-
hicles. For self-driving cars, the most important goal is to learn about their environment and adapt
accordingly. When operating in an unfamiliar area, the ability of a vehicle to comprehend the situa-
tion in real-time is critical. For this problem, real-time semantic segmentation presents a solution that

11



uses image pixel-level categorization in many semantic categories, such as cars, pedestrians, and traffic
signals to meet the majority of vehicle demands in an integrated manner.

There are many challenges on the road to achieving the target of deploying neural networks on
scale. First and foremost, we need to make them power efficient. Models like AlexNet use tremendous
amounts of power for simply a forward pass. There is a real need to develop efficient deep networks,
which are extremely compact (under 10MBs at runtime) and will ensure low power consumption. They
also have to be very fast, and essentially requiring a very meager amount of FLOPs per forward pass.
Also, these features are essential since any image-based application, unlike Alexa etc., cannot leverage
cloud services for multiple reasons. Requirements for processing are often real-time; collecting images
is a major issue since it violates the privacy of nearby people, and it is simply impossible currently
to provide a large enough bandwidth to everyone that is capable of transferring image data with defi-
cient power consumption on-the-fly. Hence, compressing neural network models to run locally, power
efficiently, and in real-time has been an important objective pursued as a research problem.

PSPNet which produces high accuracy has 65.7 million parameters and runs at 1FPS which is ex-
tremely inefficient. More recent works that focus on real-time efficient segmentation are ERFNet [58],
ENet [52], ICNet [87], SegNet basic [2] and Clockwork FCNs [63]. All these networks propose differ-
ent architectural modifications targeting the optimization of different network aspects. Enet [52] is one
among the first to show efficient the design principles for designing real-time segmentation networks.
However, ENet has only 0.4 million parameters and runs in real-time, but the accuracy is significantly
low compared to PSPNet.

2.5 Datasets and Evaluation Metrics

2.5.1 Urban Street Semantic Image Data Sets

Citiscapes [8] is one of the most popular datasets for segmentation. It is large-scale image dataset
which consists of scenes of streets and urban landscapes. Citiscapes includes detailed semantic seg-
mentation annotation for each image. Around 25,000 images are collected from 50 cities and taken at
different conditions of lighting and seasons. The images are annotated with 30 classes, of which class
labels exist for 19 classes. The rest have instance annotations. These classes are organized into the
following eight categories: flat, building, nature, vehicle, sky, object, person, and void. The dataset pro-
vides fine annotation for 5000 images and coarse annotation (category-level) for the rest of the images.
As there are two distinct semantic granularities, namely classes and categories, we present two distinct
mean performance scores and refer to them as IoUcategory (8 categories) and IoUclass (19 classes)
respectively.

CamVid, KITTI, and SYNTHIA are a few examples of other image data sets that may be used for
the semantic segmentation of urban street data. These tend to be dominated by the Cityscapes picture
collection for a variety of reasons, the most important being that the Cityscapes set is far larger. It is
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one of the most extensively used datasets, where state-of-the-art semantic segmentation architectures
benchmark themselves against it.

The only image collection that can be termed largescale is the SYNTHIA image set, which has more
than 13,000 annotated photos. However, the SYNTHIA image set was created artificially, a significant
constraint for safety-critical systems such as autonomous vehicles.

2.5.2 Performance Evaluation

In this section, we discuss the various metrics to evaluate the performance of semantic segmentation
models. The following is a concise description of the primary measurements that are most often used in
assessing the efficiency of semantic segmentation models during test and validation.

2.5.2.1 Accuracy

Accuracy is the measure of how faithful the model prediction is to the ground truth, usually provided
by a human. To evaluate semantic segmentation, we commonly use mean pixel accuracy and intersection
over union, which we define below.

Pixel accuracy (PA), is the ratio of the number of correctly identified pixels to the total number of
pixels. Here, xab stands for a pixel that belongs to class a but is predicted as belonging to class b. Thus,
xij stands for the false positives, xji stands for the false negatives and xii are the correctly classified
pixels. c is the number of semantic classes.

PA =

∑c
i=1 xii∑c

i=1

∑c
j=1 xij

The Mean Pixel Accuracy(mPA) determines the ratio of accurate pixels on a per-class basis and then
takes that ratio and averages it out across the whole number of classes.

mPA =
1

c

c∑
i=1

xii∑c
j=1 xij

When the classes are severely unbalanced, one or more classes predominate the image, while other
classes comprise just a minor fraction of the whole image. Pixel accuracy is a relatively simple tech-
nique, but it is also quite susceptible to being skewed by classes that occupy a significant amount of the
image.

A more popular evaluation measure for segmentation is Intersection over Union (IoU). It does not
suffer from the drawbacks of pixel accuracy. IoU is calculated per class by counting the number of ’true
positive’ pixels (those pixels correctly predicted to be in a class c) and dividing it by the number of
pixels in class c as well as all pixels predicted to be in class c.

IoU =

∑c
i=1 xii∑c

i=1

∑c
j=1 xij +

∑c
i=1

∑c
j=1 xji −

∑c
i=1 xii

13



Mean IoU (mIoU) is calculated as the overall class weighted average of the IoU. mIoU is the most
efficient metric used to evaluate the models performance reflecting how well the model performs across
all the classes.

mIoU =
1

c

c∑
i=1

xii∑c
j=1 xij +

∑c
j= xji − xii

As seen from the above definitions, the Pixel Accuracy does not take into account the false positives and
hence, the IoU metric provides more accurate scores than the pixel accuracy.

2.5.2.2 Computational Complexity

The computational efficiency of networks is measured primarily based on two metrics: the speed at
which the deep neural network runs and the amount of memory that the model occupies.

• Inference time: Execution time for a frame is assessed as the total amount of time required to
process an image. This time is referred to as the inference time. The performance of the inference
time metric is heavily dependent on the hardware that is being used for each deep neural network
architecture. Every measure of an algorithm’s execution time (i.e the model of GPU’s used while
running the network) is listed with a comprehensive explanation of the hardware being used for
state-of-the-art comparison.

• Frames per second: This is an industry-standard statistic used to evaluate the amount of time
required for a neural network to evaluate a sequence of image frames from the given test data
source. It is the inverse of inference time. It is essential to have a precise understanding of the
amount of frames that a model can handle in less than one second for applications requiring real-
time processing. Most real-time segmentation networks report their performance based on frames
per second (FPS). To calculate the FPS for our models, we set the batch size to 1 during test time.

• Measures of efficiency: The memory of the model may be calculated as the disk space, which
is the amount of parameters in the model or the space the network takes up when loaded. In
this work, we use the first definition, i.e. parameter count in the model to quantify the level of
computational burden. Another related measure is the computational complexity of the model,
measured in FLOPS (floating-point operations). We present the computational complexity of our
proposed model in giga-FLOPS (GFLOPS).

2.5.3 Loss Function for Semantic Segmentation

In order to obtain pixel-wise categorization in semantic segmentation, we employ the use of categor-
ical cross-entropy loss function between predicted and target class distribution of pixels. The pixel-wise
loss is determined by adding up the log losses of all of the relevant classes. This score is iterated through
all of the pixels, and then the average is calculated. This is different from L1, L2 loss functions that
most regression models use.
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)
Because the pixel vector predictions for each class are analyzed by the cross entropy loss on an

individual basis before averaging the results across all pixels, we are effectively claiming that each pixel
in the picture has access to an equal amount of learning. Because of this, training may be dominated
by the class that is the most frequent in the picture, which may be an issue if the representation of
various classes in the image is not balanced. Long et al. [42] proposes the strategy of assigning weights
for individual output channels in the loss function to resolve the issue of disparity amongst the classes
within the dataset. Ronneberger et al. [59] provide a loss weighing strategy for each pixel in U-Net
where they give a precalculated weight map. This system gives a more significant weight to the pixels
that are located around the borders of the segmented objects. Dice loss [68] is another loss function
used in combination with the pixel-wise cross entropy loss as solution for the class disproportion issue
in semantic segmentation.
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Chapter 3

Designing Efficient Convolutional layers for Semantic Segmentation

Our work mainly focuses on designing efficient semantic segmentation architectures and training
methods that enhance computational efficiency. There are two significant contributions that we intro-
duce in this chapter. Firstly, we introduce three new convolutional modules using the concept of convo-
lutional factorization. Based on these proposed modules, we achieve compressed segmentation network
structures. We design compact neural network architectures for real-time semantic segmentation from
scratch that are end-to-end trainable, achieving an optimal balance between accuracy and computational
complexity. We evaluate the effectiveness of our proposed convolutional layers by implementing them
in two distinct encoder backbones: ESSNetA and ESSNetB. Secondly, we present a new methodology
to compress a pre-trained network distinct from the conventional model compression approaches. We
propose to obtain highly efficient semantic segmentation architectures by devising specialized training
techniques for grouped convolutions.

Segmentation architectures in the era of deep learning can be divided into high accuracy networks
and high inference-speed networks. Most performance-oriented, highly accurate architectures such as
Unet[59], DeepLab architectures[4][7], and DeConvNet[46] are ponderous, have compound architec-
tures with heavy computational overhead. Whereas high inference-speed architectures such as ENet[52],
ICNet[87] and SQ Net[72] are highly efficient in terms of size and frames per second (FPS), but they
sacrifice performance. A significant amount of work has been put into enhancing the accuracy of con-
ventional models with substantial computational requirements even in the testing stage. Nevertheless,
the networks themselves need to be simplified for these models to be implemented into compact devices
and in various portable devices for scene understanding applications. Such efficacy can be accomplished
by using more concise models; by applying efficient convolutional blocks and optimizing the training
of a complex model. Optimization during training is achieved by compressing the learned information
into a more compact model; achieving a memory-efficient network during the test time that reproduces
the complex model.

The holy grail of semantic segmentation research is to attain a better balance between model size
and accuracy. In this chapter, we analyze the different architecture components used in various state-of-
the-art real-time semantic segmentation models, and we further validate the effectiveness of each design
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component. In addition, we propose network design variants that minimize the model size without
degradation in accuracy along with inference times feasible for portable embedded real-time solutions.

We design a highly compact model ESSNet having 5.78 GFLOPs and 0.43 million parameters, result-
ing in 68.4% segmentation accuracy. We also propose two other variants of the real-time segmentation
networks that give 1.5x, 2x reduction in FLOPs compared to the baseline architecture with only 0%, 2%
reduction in accuracies, respectively. The experiments demonstrate that our approach delivers cutting-
edge results in terms of parameters and accuracy trade-off for real-time semantic segmentation on the
Cityscapes dataset. In this chapter, our effort is more oriented towards designing efficient and effective
CNN modules in alignment with model compression methodologies by fixing the macro architecture
design parameters. In the next chapter, we venture with architecture design elements such as additional
context extraction modules, varying filter kernel sizes in each layer, symmetry of the architecture, and
effective receptive field of the network.

We propose a novel training methodology called Gradual Grouping, which prunes the superfluous
connections between layers of a dense network. In this method, we propose to gradually compress
a model during training, and the resultant sparse model is implemented efficiently at test time. Our
approach is inspired by lifting methods in linear programming, where better optimization is feasible
in a higher-dimensional representation. We choose ERFNet [58] as our baseline architecture which is
already an efficient and real-time model, and we draw comparisons to our proposed models concerning
this architecture.

In section 3.2, we describe the efficient CNN layer designs that we use. Finally, in Section 3.5, we
describe our novel training procedure.

3.1 Design Elements for Efficient CNN Design

In order to lessen the burden of extensive computation of a standard convolutional layer, many heuris-
tics have been incorporated which are discussed in this section. A more recent approach to model com-
pression is to design the architecture with specific insights about the information flow required to give
accurate predictions. We leverage the efficient convolutional design techniques that were proven to be
successful for image classification and incorporate them into segmentation networks. In this section, we
explain all these approaches in detail.

3.1.1 Filter kernel factorization

Filter kernel factorization transforms conventional convolutional layers, which are full-rank matrices
into more computationally efficient low-rank matrices that can be approximated as linear summation
of basis vectors [29]. Learning models with these efficient representations and avoiding redundant
parameters helps to reduce over-fitting, boost generalization, and ultimately increase accuracy.
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Figure 3.1: Figure shows two factorization methods: spatial decomposition and channel decomposition. The
feature maps are shown in gray, whereas the convolutional weight matrix (filter kernel) is shown in blue. The
first figure shows a regular convolution, where the kernel is 3-dimensional. The 2-D filter kernel is factorized in
spatial decomposition into two 1-D kernels. For channel decomposition, the weights tensor is decomposed into
depth-wise convolutional weights and point-wise convolutional weights respectively as shown in the bottom part
of figure [24].

In this section, we discuss different types of kernel factorizations that provide the basis for optimiz-
ing computational efficiency of various semantic segmentation architectures. We calculate the number
of parameters and FLOPs for each type of convolution and draw a comparison between each of them:
regular convolutions, depthwise-separable convolutions and spatially separable convolutions.

At the beginning of the deep learning era, many deep networks used large-size filters in the initial lay-
ers. Simonyan et al. [65] demonstrated that a convolutional layer with 7x7 filters could be replaced with
sequential stacking of three smaller-sized 3x3 filters along with adding three ReLU layers in between
them which uses only half the computational parameters in comparison to larger kernels. Jaderberg et
al. [30] have proposed spatial decomposition of a regular convolution by exploiting the redundancy
between different channels and filters. They use optimization to reduce the reconstruction error of the
full rank filters that are already learned. By taking advantage of channel-wise feature map redundancy,
Zhang et al. [85] have proposed channel decomposition to decompose a regular convolution by low-
rank matrix decomposition, as seen in Figure 3.1. Ioannou et al. [29] provide an approach to learning
convolutional filters that may be formulated as linear combinations of basis filters and training these
low-rank filters from scratch, unlike [30].
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Let us take X ∈ RHin×Win×Cin as the incoming feature map and Y ∈ RHout×Wout×Cout as the out-
going feature map, where Cin and Cout are the number of input channels and output channels, Hin,Win

are the input feature maps spatial dimensions, and Hout , Wout are the spatial sizes of the output fea-
ture maps. W ∈ RCin×Kw×Kh×Cout is the weights tensor of the convolutional layer, and the bias is
b ∈ RCout . The jth filter in the convolutional layer with index i is f ji ∈ RKw×Kh . A regular convolution
layer and the output of filter can be written as:

z(u, v)ji = ϕi

bji +

Cin∑
c=1

α∑
m=−α

β∑
n=−β

f̄ ji · χ(u+m, v + n)Tc

 (3.1)

Yi =

Cout∑
j=1

Hout ×Wout × z(u, v)ji (3.2)

where ϕ(·) is the non-linearity, α, β are scalar values where α = (Kw − 1) /2, β = (Kh − 1) /2,
f̄ ji is the 2- dimensional matrix. χ(u+m, v + n)c is the analogous 2-dimensional matrix where (u, v)

is the center of the feature map with index c and the same filter sizes. Based on equations 3.1 and 3.2,
the number FLOPs can be computed as:

Cin × Cout ×Kh ×Kw ×Hout ×Wout (3.3)

The conventional convolutional layer complexity quadratically depends on size of the kernel, number
of incoming and outgoing channels, spatial extent of the output. Hence, in our architectures, whenever
the feature map size reduces by half, the number of channels increases proportionally to maintain the
cost. For simplicity, we set Kw ≡ Kh ≡ K,Hin ≡ Win ≡ Hout ≡Win ≡ HW,Cin ≡ Cout ≡ C and
we omit the influence of bias. Hence, a regular convolution has HW 2×K2×C2 FLOPs and C2×K2

parameters.

3.1.1.1 Spatial Kernel Factorization/Asymmetric Convolution

This method factorizes a two-dimensional kernel into two asymmetric one-dimensional kernels which
approximates the original kernel. For example, consider a 3× 3 kernel, which requires 9×HW 2×C2

FLOPs. We show that this filter can be decomposed into two filters of dimension 3×1 and 1×3, which
requires only 6×HW 2 × C2 FLOPs.

Mamalet et al. [43] propose learning separable filters by training networks from scratch that are com-
prised of consecutive convolutional layers of horizontal and vertical 1-dimensional filters. It has been
proposed by Alvarez and Petersson et al. [1] that each N-dimensional kernel may be broken down into
N layers of successively smaller 1-dimensional kernels along with non-linearity between the 1D kernels.

In this case, we show decomposition for 2-dimensional kernels implying that any 2D convolution
(we take equal kernel size K for simplicity, W 2D ∈ RCin×K×K×Cout ) can be factorized into a pair of
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2 1-dimensional convolutions(W 1D ∈ RCin×K×Cout). As discussed in the previous section most low-
rank approximations [30] are constructed on already trained matrices. Nevertheless, this strategy calls
for further fine-tuning, and the filters that are produced may not be separable. By relaxing the rank-1
constraint of the full rank convolutional filter, fi can be written as a linear combination of a sequence of
separable 1D basis filters [67] as shown below.

fi =
r∑
r=1

αri h̄
r
i (w̄ri )

T (3.4)

where h̄ri and (w̄ri ) are vectors of length K, αri is a scalar weight, and r is the rank of fi. In
continuation to the above equations, the factorized layer can be expressed as:

z(u, v)ji = ϕi

Cin∑
c=1

α∑
−α

w̄jiϕi

 β∑
−β

χ(u+m, v + n)Tc h̄
j
i

 (3.5)

where m is in the range [−α, α], n is in [−β, β] and the bias is omitted [39]. From the above
equations, it turns out that parameter count for asymmetric factorization is 2 × K × C2 and FLOP
count is 2×K ×HW 2 × C2. Szegedy et al. [71] in the inception module makes use of the separable
asymmetric 3x3 convolutions and demonstrates that the computational cost is 33% cheaper.

3.1.1.2 Depthwise Separable Convolutions

In this method, the cross-channel and spatial correlation are subsequently calculated separately, re-
sulting in a significant reduction in the number of parameters, which in turn results in fewer floating
point operations and a faster execution time. Using this factorization we show that compared to a regu-
lar convolution, in the case of a 3x3 kernel, there is 9x reduction in FLOPs and the number of parameters.

Depth-wise separable convolutions are a crucial component of interest in many recent efficient deep
neural networks like mobilenets[26] and shufflenets[84]. In a standard convolution, features are filtered
and combined to form new representations implying that the interchannel and intra-channel computa-
tions are carried out in a single step with highly redundant parameters. Depthwise separable convolu-
tions perform the same operation in two phases: spatial convolution, where a single filter is convolved
with a single input channel along the spatial dimensions (intra channel) subsequently followed by point-
wise convolutions, which are linear channel projections as seen in figure 3.1. Depthwise separable
convolutions [57, 6], as seen in Xception network, comprises of a depthwise convolution performed
over each channel of an input layer and followed by a 1× 1 convolution.

Based on 3.1 and 3.2 we see that in depth-wise phase Cin ≡ Cout ≡ 1 with Cin × Yi number of
outputs, and in point-wise phase f li and χ are both 1 D vector and Kw ≡ Kh ≡ 1. The number of
FLOPs in the depth-wise separable convolutions are calculated to be:
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Hin ×Win × Cin ×Kw ×Kh +Hout ×Wout × Cin × Cout (3.6)

Hence, this form of factorization needs K2 ×HW 2 × C +HW 2 × C2 FLOPs and K2 × C + C2

parameters in total. Compared to a regular convolution, using depthwise separable convolution, we can
reduce the computational cost by 1/C + 1/K2 [26]. A series of these layers result in a drastic reduction
of multiplications as the depth of the network increases. The cardinality of HW 2 ×K2 is in the order
of 106; hence the reduction factor plays a huge difference in the network.

3.1.2 Grouped Convolutions

Grouped convolution is another way of building structured sparse convolutions. A grouped convo-
lution layer with a group parameter g decreases the parameter and FLOPs of the layer by a factor of g.
Grouped convolutions were first used by Alexnet [44] [34]. ResNext[80] uses grouped convolutions in
the ResNet convolutional blocks, which otherwise consume a huge number of parameters in the network
architecture.

When filter groups are applied, the input feature map channels are divided into g independent groups,
and C ′/g number of filters are applied to each group, as seen in the figure 3.2. Each filter operates on
Cin/g portion of the input channels, thus filter dimensions in the channel space reduce from Kh ∗Kw ∗
Cin to Kh ∗Kw ∗ Cin/g [3]. Applying filter groups does not change the size of the input and output
feature maps, but it does make the model much easier to run and reduce the number of parameters.
Depthwise convolutions can also be seen as a particular case of grouped convolutions where the number
of groups equals to the number of input channels.

3.1.3 Channel Shuffling

If multiple group convolutions are stacked together, outputs from a certain channel are only derived
from a small fraction of input channels. It is clear that outputs from a certain group only relate to the
inputs within the group. This property blocks information flow between channel groups and weakens
representation. By grouping in 1x1 point-wise convolution, we could reduce the number of parameters
consumed, but the information flow across groups is blocked. The input and output channels will be
entirely related if we allow group convolution to obtain input data from different groups (see Figure 3.3).
Specifically, for the feature map generated from the previous group layer, we can divide the channels
in each group into several subgroups, then feed each group in the next layer with different subgroups.
This can be efficiently implemented by a channel shuffle operation [84]. The output channel dimension
vector is first reshaped, a transpose operation is applied, and the resultant is flattened before passing it
to the succeeding layer. Channel shuffling operation is differentiable and can be included in end-to-end
training, enabling cross-group information flow for multiple group convolutions.
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Figure 3.2: Figure demonstrates grouped convolutions with different group sizes. The first part shows regular
convolution, and the second part shows when number groups are 2, C ′ filters are divided into C ′/g number of
filters and each filter operates on Cin/g channels. The third part shows when group size is 4 and the last one is a
case of depthwise separable convolutions(g = Cin) where each channel operates on a single filter separately.

3.1.4 1x1 Convolutions

Efficient layer designs started with GoogLeNet [69], which proposed to reduce the input channels to
3x3 convolutions. Xception [6] took it further by using 1x1 convolutions after depth-wise 3x3 separable
convolutions. 1x1 convolutions are seen as low dimensional embeddings [40], which compute cross-
channel correlation. The new feature maps have lesser channels than the input. This technique is proven
to be successful to reduce the computational burden in deeper networks where the number of filters and
filter sizes are more [23], [70],[26]. Integrating these blocks reduces the amount of computation to be
done by successive spatial filters as they operate on lower dimensional input space.

In SqueezeNet [28] Iandola introduces the design strategy to maintain minimum parameters in each
layer, and minimize the number of large-size filters. They introduce squeeze layers to decrease the
input channels to more extensive filters and subsequent expand layers. Mobilenet[26] uses 1x1 con-
volutions to expand the feature maps after the feature transformation step. Inception[71] module uses
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Figure 3.3: Depthwise separable convolutions in the figure show a depthwise convolution performed over each
channel of an input layer followed by a 1×1 convolution, grouped convolutions can be thought of as a dense
convolution with certain weights zeroed out which is a simple way of having structured sparsity in convolutions,
and channel shuffling operation enables cross-group information flow for multiple group convolutions.

the strategy to split, reduce, transform and merge. This module uses 1x1 convolutions in the reduction
step. ResNext[80] module performs split, reduce, transform, expand and merge operations. In these
redesigned CNN modules, 1x1 convolutions are used in the reduction step or expansion steps. In the
later sections, we utilize the functionality of these operations in our convolutional layers and upsampling
blocks.

3.1.5 Residual Convolutional Layer

If x denotes the input to a convolutional layer, in a standard convolution, a mapping function F (x)

has to be learned to find the appropriate weights (Wc) such that

F (x) = M (x,Wc)

whereas in a residual layer, the skip connection optimizes this mapping better where (Wr) are the
parameters to be learned and F (x) is written as

F (x) = MR (x,Wr) + x

It was shown by [23] that stacking convolutional layers without residual connections cause degradation
in deeper networks. Hence we choose to add residual connections in all our proposed layers, as the
network configurations have more than 20 layers.

The residual block choice can be either a bottleneck design or a non-bottleneck design, as seen in
ResNet[23]. In the bottleneck layer design, the 1x1 convolutions are deployed in the reduce and merge
phase. α is the scaling factor by which the number of channels are reduced in the middle 3x3 layer.
Hence, in a bottleneck layer, Cin = Cout = Cmid × α. ResNet shows that number of parameters is
quadratically proportional to the width(controlled by α) and directly proportional to the depth of the
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network. Decreasing the width results in a loss of accuracy, which is compensated by increasing the
depth at a lower parameter cost[81]. ENet[52] chooses a bottleneck layer, whereas ERFNet[58] chooses
a 1D factorized version of the non-bottleneck layer.

3.2 Proposed Efficient Architecture Design Pipeline

In the above discussion, we have seen various approaches toward efficiency. With the help of those
design principles, we make design choices that are suitable for efficiency-oriented architecture imple-
mentations. We have designed three convolutional layers: D, DGC, and DGCS as seen in Figure 3.4.

• D: We choose a non-bottleneck design[23], having a shortcut between the input and the output
of the second 1x1 convolution block. We do a depthwise convolution factorization of the regular
3x3 convolution blocks. There is a significant reduction in computation burden because sharing
weights make these separable convolutions quite efficient with improved runtime performance.
This convolution factorization, not only helps in model compression but also regularize the net-
work and promote generalization.

• DGC: Inside depthwise separable convolutions, most of the FLOPs are found within the 1x1
convolutions making them computational bottlenecks. As we explore the possibilities to compress
the model further, we discover that merging grouped convolutions inside the 1x1 convolutions
yields a more effective architecture for us. Hence we group the convolutions in a point-wise stage
after the depthwise convolution, and the number of groups is a controllable parameter C.

• DGCS: We further add channel shuffling [84] to facilitate information flow after filter groups in
1x1 convolutions in the DGC module. In our proposed layer architecture (see DGCS in Figure
3.4), we do a channel shuffle operation after a grouped 1x1 point-wise convolution before passing
information to the next convolution block.

Based on these proposed convolutional layers, we introduce three encoder-decoder backbone variants
of efficient network architectures: ESSNetA, ESSNetB, and ESSNet .

We study the effectiveness of our proposed residual layers intending to achieve real-time perfor-
mance, and we validate the placement of these layers. A detailed discussion of these proposed archi-
tectures is done in the following sections. We present a comprehensive assessment of efficiency vs
performance for all the proposed designs.

3.2.1 Encoder Architecture

In the encoder design, many architectures deploy more convolutional layers after the input image to
extract suitable feature vectors with more information. Nevertheless, processing large-size input images
with convolutional operations are costly in terms of parameters and FLOPs. In this architecture, we use
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Figure 3.4: Different types of residual layers used in the proposed architecture. D, DGC and and DGCS are our
proposed layer architectures and downsampler block.

two downsampling blocks initially to downsample the image before using the convolutional layers and
also have small feature map sizes for convolutional operations to improve efficiency.

The downsampling operation in the encoder is the concatenation of the parallel outputs: max pooling
layer and a strided convolution operation, as seen in Figure 3.4. As the initial layers are primary feature
extractors and visual information processing is done in the later layers, early downsampling plays a key
role in achieving an efficient encoder. However, a reduction in feature map resolution would also incur
a loss in spatial details that would be difficult to recover in the decoder and thus lower accuracy. We
found that using three downsampler blocks in our architecture strikes a good place. The output spatial
dimensions at the end of the encoder are one eighth the size of the input image spatial dimensions. We
also used dilated convolutions in the convolutional layers with changing dilation factors for gathering
more context information in the later part of the encoder.

The encoders of compact semantic segmentation networks are feature extractors that resemble robust
object detectors [23, 80]. PSPNet, a popular segmentation network, achieves accuracies above 80% but
has more than 100 GFLOPs. Our work is more focused on obtaining models with < 20 GFLOPs.
Our encoder in semantic segmentation should be similar to a lightweight image recognition backbone
architecture because the increasing the depth of the network increases the cost burden proportionally.

3.2.2 Decoder Architecture

In an Encoder-Decoder architecture, the number of upsampling and downsampling operations should
be the same because the final output is a pixel-wise classification map from each input image pixel to a
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certain class. The conventional method to increase the spatial dimensions of the feature maps is upsam-
pling through interpolations and unpooling operations. DeconvNet[46], SegNet[2] and ENet[52] use
max-unpooling operations in the decoder for upsampling, where the pooling indices are shared from
the encoder to the decoder. The drawback of the max unpooling operation is that all the max activation
indices from pooling operations must be stored at each level. However, we use transposed convolutions
with a stride factor as discussed below, which does not require sharing the pooling indices, simplifying
the memory and computational operations[58].

Upsampling in neural network pipeline can be made learnable. This learnable upsampling is known
as deconvolution operation or transposed convolution[42]. Compared to a conventional convolution
matrix, the relationship between the input and the output is processed in the opposite direction (single
input activation to multiple outputs). If the upsampling has to be done by a factor x, then it implies
that the convolution operation in the backward direction has input stride 1/x. The regular convolution
and the transposed convolution operations create the same connectivity; however with the transposed
convolution, the connection is formed reversely. Unlike a predetermined interpolation technique, the
weights used in the transposed convolution are learned through end-to-end network training guided by
the loss function. The input feature map is upsampled by inserting zeros in between the values. This
is done so that the direct convolution achieves the same result as the transposed convolution operation.
The stride factor can control the amount of spatial change reversion by the deconvolution operation.
However, owing to the need to add zeros in order to up-sample the input before the convolution is still
not very efficient.

The prominent role of the decoder is to upsample the output of the encoder by fine-tuning the details
and recover the final resolution of the image. Unlike semantic segmentation architectures like SegNet[2]
and UNet[59], which have a symmetric encoder-decoder architecture, we use a smaller decoder than the
encoder. Nevertheless, Enet[52] is extremely compact but has a lower accuracy because the decoder
size is too small, and because of the small size of the receptive field, large objects are not segmented
accurately. We have also conducted experiments with the conventional setting of directly upsampling
the encoder output using bilinear interpolation instead of a decoder(see section 4.1). As the predictions
are at a shallow resolution directly after the encoder and loss function, small objects are not recognized,
and the receptive field is not large enough to classify large objects. We do not use skip connections from
the encoder to the decoder in our architecture unlike UNet[59], as adding skip connections did not show
much improvement in our experiments.

3.3 Baseline Architecture

Our baseline segmentation architecture is inspired by ERFNet[58], considering the balance between
FLOP count and accuracy. This model runs on a single GPU with frames per second (FPS) greater than
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30 FPS at 0.5 Mpx resolution on the Cityscape dataset, which is good enough for scene understanding
applications. ERFNet proposes an efficient convolutional block called Non-Bottleneck-1D layer as the
core of the architecture. Most architectures use bottleneck layers because they are more efficient. How-
ever, ERFNet chooses to use the non-bottleneck layer, as shown by Szegedy et al. [71] as non-bottleneck
layers show performance improvements in shallow architectures like ResNet. This architecture utilizes
the concept that the learning capacity of the model increases with wider networks. As seen in the Incep-
tion modules [71], changing the bottleneck layers to non-bottleneck increases the parameters by 16x and
increases the filters by 4x. Hence, they spatially factorize the non-bottleneck layer resulting in a 33% re-
duction of parameters, which is a final 11x increase compared to the bottleneck layer. This architecture
was proposed as an improvement over the ENet [52], which is highly efficient (runs at < 2GFLOPS)
but has low accuracies (57% IOUs). ERFNet model obtains 70% accuracy at 27.7 GFLOPs.

Figure 3.5: Our proposed backbone architecture ESSNetAwith a combination of Non-Bt-1D, and Conv-module
layers in the encoder.
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3.4 Experiments and Results

Our proposed architectures along with their layer-wise description and the segmentation results are
discussed in the following sections. We assess the efficiency of our proposed convolutional layer designs
through various experiments.

3.4.1 Implementational Details

We use Cityscapes Dataset [8] as described in the previous chapter in all our experiments. All
the models are trained only using the train set. To asses the performance of the architecture, we use
Intersection over Union (IoU) scores as an accuracy metric. We report meanIoU, which is the validation
accuracy on all the 19 classes of the Cityscapes dataset. We use the Weighted Cross-Entropy Loss
function [86][5], which weighs each class to reduce class imbalance, as in equation 3.7. `(x, y) = L =

{l1, . . . , lN}>, where x is the input, y is the target, w is the weight, C is the number of classes, and N
is the batch size.

ln = −
C∑
c=1

wc log
exp (xn,c)∑C
i=1 exp (xn,i)

yn,c (3.7)

Here, we initialize our weights wc with a specifically designed class weighing technique as used in
[52] to correct the imbalance in data between the various classes, according to the equation 3.8. Unlike
the inverse class probability weighing technique, this technique uses weights that are bounded as the
probability approaches 0 and the value of γ restricts the class weights. We set the hyper parameter γ to
1.10.

wc =
1

ln (γ + pc)
(3.8)

The experiments are done in PyTorch with CUDA 9.0 and CUDNN back ends. Training is done
with a batch size inversely proportional to the size of each of the proposed compressed models. L2

regularization is used to avoid over-fitting with a weight decay rate of 2e−4. Learning rate of 5e−4

and momentum of 0.9 are given as inputs to the Adam optimizer[33]. We use the reduce on plateau
learning rate scheduler with a factor of 0.5 in order to accelerate convergence. We use batch normal-
ization between each convolutional layer and following the non-linearity. The two hyper parameters
for batch normalization: ε and bmomentum, are set to 0.001, 0.1 respectively. We use ReLU[45] non lin-
ear activation function in the convolutional modules and downsampler blocks. We use dropout[25] as
the regularization while training with a constant of 0.3. As a part of data augmentation strategy at the
time of training, we perform random horizontal and vertical flips. We also perform small translations
around both the axes and scaling with random factors between 0.5 to 2. The data set is at a resolution
of 2048x1024. Our trained model, gives the output class probability map at 1024x512 resolution, but
we rescale the output by interpolation to the original dataset resolution in order to validate the proposed
models. All the proposed models were implemented on Nvidia GTX 1080Ti GPU.
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3.4.2 Encoder-Decoder Training

In order to determine the full extent of our architecture’s capabilities, we train the encoder and the de-
coder in two different processes. First, we train the encoder in its unique way, either from scratch using
only the Cityscapes dataset or using the pretrained method and then connecting the decoder so that we
may continue training the whole architecture. In the pretrained training approach, the weights of the en-
coder are initialized from a more extensive dataset such as ImageNet[60]. We achieve this by modifying
the encoder’s last layers to generate a single prediction instead of multiple classification outputs (1000
classes) as in ImageNet. This is done by adding additional pooling layers and a fully connected layer.
After we have finished training this modified encoder, we will get rid of the additional layers, connect
the decoder, and do a combined training. In training from scratch approach, we use only the Cityscapes
dataset to train the encoder. Since the encoder output is 1/8th the size of the final mapping, we train the
encoder using segmentation annotations from Cityscapes that have been downsampled to 1/8th size by
attaching a convolutional layer that produces output channel dimension equal to the number of classes.
Subsequently, we remove the extra layers and attach the decoder so that we can train end-to-end on the
Cityscapes dataset.

3.4.3 Network Configuration

Table 3.1: Proposed Backbone Architecture ESSNetB
Layer Type out-chann out-Res

E
N

C
O

D
E

R

1 Downsampler block 16 512x256
2 Downsampler block 64 256x128

3-7 5 x Conv-module 64 256x128
8 Downsampler block 128 128x64
9 Conv-module(dilated 2) 128 128x64
10 Conv-module(dilated 4) 128 128x64
11 Conv-module(dilated 8) 128 128x64
12 Conv-module(dilated 16) 128 128x64
13 Conv-module(dilated 2) 128 128x64
14 Conv-module(dilated 4) 128 128x64
15 Conv-module(dilated 8) 128 128x64
16 Conv-module(dilated 16) 128 128x64

D
E

C
O

D
E

R 17 Deconvolution(upsampling) 64 256x128
18-19 2 x Non-bt-1D 64 256x128

20 Deconvolution(upsampling) 16 512x256
21-22 2 x Non-bt-1D 16 512x256

23 Deconvolution(upsampling) C 1024x512

The layer-wise disposal of our proposed backbone ESSNetB is seen in Table 3.1. ESSNetB is con-
structed by progressively stacking the proposed convolutional layers to optimize their learning perfor-
mance and efficiency. All the residual layers in the encoder of this network are configured with our
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proposed convolutional layers, and downsampler blocks as seen in Figure 3.4. Whereas, the decoder is
built with Non-bt-1D layers and upsampling blocks. The Conv-module seen in Table 3.1 is configured
with either D, DGC or DGCS layers as described in section 3.2.

ESSNetB-D architecture comprises of proposed layer D throughout the encoder. When the Conv-
module in ESSNetB architecture is configured with DGC layer, the network is named as ESSNetB-DGC
where C is the value of the number of groups. If Conv-module has DGCS configuration, then the net-
work is named ESSNetB-DGCS, where C indicates the number of groups and S indicates that a shuffle
operation is being done. A more detailed architecture of this network describing all the layers as seen
in Figure 3.6. Dilation is combined with depthwise separable convolutions, making the resulting layer
sparse and increasing the effective receptive field. Each residual layer has a single discrete dilation rate.
As these layers with dilation rates 2, 4, 8, and 16 are sequentially stacked, the encoder learns the rep-
resentations from a large effective receptive field. Upsampler block architecture includes deconvolution
layers, simplifying memory and computation requirements. The final layer of the decoder has a volume
with the number of channels equal to the number of classes in the dataset, and each channel 1D map in
the final layer is per-pixel probability of that respective class. All the results are reported and compared
using this nomenclature.

Table 3.2: Results of our proposed convolutional layers applied to ESSNetB backbone architecture

Models IOU Params GFLOPs
ERFNet (Baseline) 70.45 2038448 27.705
ESSNetB-D 68.55 683568 10.597
ESSNetB-DG2 65.35 395568 8.852
ESSNetB-DG4 61.42 319792 7.980
ESSNetB-DG8 59.15 281904 7.543
ESSNetB-DG2S 65.36 395568 8.852
ESSNetB-DG4S 61.27 319792 7.980
ESSNetB-DG8S 59.89 281904 7.543

3.4.4 Comparison with Depthwise Separable, Groups and Shuffle Layers

The performance results along with model size of each network with ESSNetB backbone is seen in
Table 3.2. ESSNetB-D model gives an accuracy of 68.55%, having 0.55 million parameters and 10.6
GFlops. This model achieves 3X compression with an accuracy degradation of 2% compared to the
baseline model. This model attains a competent balance between model size and accuracy, achieving
efficiency.

We further use grouped convolutions to decrease the FLOP count and number of parameters. We use
filter groups with varying sizes in the subsequent 1x1 pointwise convolutions as they are the performance
bottlenecks with most parameters after the 3x3 depthwise convolutions. This results in the models
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Figure 3.6: Figure shows our proposed backbone architecture-ESSNetB with the convolution module applied
throughout the encoder. Our various experiments demonstrate the effectiveness of our proposed Conv-module
and the resulting network performance.

ESSNetB-DG2, ESSNetB-DG4, ESSNetB-DG8 with group sizes 2, 4 and 8 respectively. As seen in
Table 3.2, we observe the effect of group size on the model performance by keeping the other parameters
constant. These models are sufficiently compressed in terms of FLOPs, with the ESSNetB-DG8 model
being only 7.5 GFLOPs. However, the accuracy degradation for ESSNetB-DG8 is over 10%, which is
likely to be unacceptable. Figure 3.7 shows the segmentation output of our lightweight model ESSNetB-
DG8.

We now look at the effect of shuffling on the performance. Shuffled convolutions were affixed to im-
prove the accuracies of grouped convolutions. They have the same parameters and FLOPs as grouped
convolutions since shuffle operation is essentially rearranging of the channels. The models ESSNetB-
DGCS (where C=2,4,8) are also mentioned in Table 3.2. Nevertheless, we observe that shuffling opera-
tion is not affecting the accuracy eminently in our case.

These proposed networks achieve a competitive balance between efficiency and prediction accu-
racy compared to other real-time semantic segmentation models such as ENet and ERFNet. Besides
employing efficient CNN designs, we attain our goal through limiting macro-architecture level design
hyperparameters such as network depth, channels per layer, input image size and size of the decoder.
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Figure 3.7: Qualitative examples of the validation set and their segmented output from our model ESSNetB-DG8
with group size equal to 8. We see that the segmentation output is not well defined and reflects the accuracy
drop. Though the model is lightweight, the disconnectivity between input feature maps and output feature maps
increases as the group size increases.
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3.4.5 Selective Application of CNN Modules

We devise yet another network architecture, as shown in Figure 3.5, based on the selective application
of proposed layers, namely ESSNetA . ESSNetA encoder backbone has a selective fusion of Non-bt-1D
layers and our proposed convolutional layers, while the decoder is same as ESSNetB .

As discussed earlier, in ESSNetB networks incorporating compressed layers throughout the encoder
results in an accuracy drop. From conventional model compression techniques like pruning and quanti-
zation, we adapt the idea to apply compression techniques only to the later layers in the network. In this
network architecture ESSNetA seen in Table 3.3, we selectively incorporate our proposed Conv-module
layers in the encoder, leaving a few initial layers after the Downsampler block to be Non-bt-1D layers.

Table 3.3: Proposed Backbone Architecture ESSNetA
Layer Type out-chann out-Res

E
N

C
O

D
E

R

1 Downsampler block 16 512x256
2 Downsampler block 64 256x128

3-5 3 x Non-bt-1D 128 128x64
5-7 2 x Conv-module 64 256x128
8 Downsampler block 128 128x64
9 Non-bt-1D(dilated 2) 128 128x64
10 Non-bt-1D(dilated 4) 128 128x64
11 Non-bt-1D(dilated 8) 128 128x64
12 Non-bt-1D(dilated 16) 128 128x64
13 Conv-module(dilated 2) 128 128x64
14 Conv-module(dilated 4) 128 128x64
15 Conv-module(dilated 8) 128 128x64
16 Conv-module(dilated 16) 128 128x64

D
E

C
O

D
E

R 17 Deconvolution(upsampling) 64 256x128
18-19 2 x Non-bt-1D 64 256x128

20 Deconvolution(upsampling) 16 512x256
21-22 2 x Non-bt-1D 16 512x256

23 Deconvolution(upsampling) C 1024x512

Table 3.4: Results of our proposed convolutional layers applied to ESSNetA backbone architecture - Selective
Application of depthwise separable convolutions, grouping and shuffling

Models IOU Params GFlops
ESSNetA-D 69.26 1291648 19.025

ESSNetA-DG2 69.71 1238960 18.998
ESSNetA-DG4 68.98 1202096 18.595
ESSNetA-DG8 69.57 1183664 18.394

ESSNetA-DG2S 70.62 1238960 18.998
ESSNetA-DG4S 69.59 1202096 18.595
ESSNetA-DG8S 69.57 1183664 18.394
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When the Conv-module layer is modeled with DGC and DGCS layers (see Fig 3.4), the network is
named ESSNetA-DGC, and ESSNetA-DGCS, respectively. Table 3.3 shows the specific positioning of
convolutional layers used. Table 3.4 contains the results of these experiments. The networks ESSNetA-
DGC refer to models where groups = C is used for selected 1x1 convolutions. We also conducted
experiments with the corresponding shuffle convolution versions.

We observe that the model ESSNetA-DG2S without a decoder incurs only a 1% reduction in ac-
curacy while giving a 2X improvement in FLOPs. Also, the model ESSNetA-DG2S gives a 1.5X im-
provement in FLOPs without incurring any loss in accuracy. As discussed in section 3.1.1, our proposed
convolutional layers D and DGC are nearly 3X, 3CX times more efficient than the Non-bt-1D layer. As
seen from tables 3.4 and 3.2, ESSNetB has significantly fewer parameters and GFLOPs than ESSNetA
because the encoder is entirely configured with our proposed efficient convolutional layers.

We empirically demonstrate the effectiveness of our proposed efficient convolutional layers in real-
time semantic segmentation backbones. These proposed CNN modules have shown to be effective and
can be generalized to other segmentation networks with residual convolutional layers. We experiment
with different group numbers and shuffle operations. We observe that extreme sparsity induced by these
techniques can reduce the FLOPs significantly but incurs as much as 10% degradation in accuracies.

3.5 Gradual Training of Grouped Convolutions

Although dense connectivity in non-compressed models allow feature re-use, there are redundant
connections where early features are not required in the later layers. Grouped convolution is an effective
technique to induce sparsity in the network and thereby significantly reduces the FLOPs. Nevertheless,
in highly sparse networks, there is not enough information flow leading to unacceptable reduction in
accuracy as seen in section 3.4.4. We propose reducing the redundant weights during training, which
enables the resultant model to be implemented efficiently at test time. We introduce a novel training
procedure that can be easily implemented, specifically targeting grouped convolutions. In this training
process, the model starts as a dense model and gradually evolves towards a lighter model with larger
group size. This method allows the gradient descent to happen initially at a higher dimensional model
space and gradually evolve towards a lower dimensional subspace of grouped convolutions.

We have reviewed several model compression methods such as pruning, vector quantization, hash-
ing, and shrinking to compress the size of heavy pre-trained networks in the previous chapter. For quite
a while in the past, the focus has been on pruning and quantization of networks. Quantizing networks
have been using low precision weights; XNORNet[56] uses 1-bit quantization (binary weights) to train
networks. By leveraging this, convolutions can be done by fast XNOR-Popcount operations and net-
works can be accelerated by multiple orders of magnitude occupying significantly less space. Pruning
tries to only keep important parts of the network by removing unimportant connections and neurons in
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Figure 3.8: Our proposed training procedure for obtaining improved accuracy in grouped convolution-based ar-
chitectures. A crucial observation is that grouped convolution can be thought of as a dense convolution with
multiple weights being 0 (the blue edges). Note that here each edge represents a convolutional filter of w × w.
In our method, we start with a dense convolution and multiply the blue edges by a mask matrix. As the training
progresses the group structures are dynamically optimized according to the objective loss function of the entire
network. We also have a fine-tuning phase where pruned weights remains 0. Finally, at test time, the convolutions
can be implemented as a grouped convolution, giving better efficiency. Since the optimization happening at train-
ing time is in the higher dimensional space of dense convolutions, we can obtain better accuracy than traditional
training for grouped convolutions.

the network, making it compact and fast. These two are the remedial approaches, which take a network
design and try to compress it.

There have been works on architecture search [53, 92, 91] where a separate machine learning al-
gorithm is used to drive a heuristic search procedure to pick an efficient architecture. However, these
methods require large server farms and have not yet proved their utility for a dense prediction task like
semantic segmentation. CondenseNet [27] proposes a simple architecture search procedure integrated
with the training of the base network focusing on classification benchmarks. In our work, the architec-
ture is fixed beforehand, unlike [27]. However, we propose novel training algorithm which overcomes
the limitation of sparsity, and lack of information flow between the layers giving improved accuracies.

Figure 3.8 shows our proposed training procedure with a special focus on grouped convolutions,
which can improve the accuracies. We first observe that grouped convolutions can be considered as
dense convolutions with certain weights zeroed out. Hence the space of grouped convolutions is nothing
but a linear subspace of dense convolutions. Traditional training procedures start out with a grouped
convolution model; hence the gradient descent optimization will only happen in the low dimensional
subspace of grouped convolutions. In this training method, we gradually evolve a dense convolution
towards a grouped convolution. It is a well-known result in linear programming lifting that optimization
in a higher-dimensional space can often lead to convergence towards better minima.

In this proposed training procedure, the network starts out as a model with no groups, which is
equivalent to saying that the total number of groups is equal to one and gradually evolves to a model with
the number of groups equal to targeted group number. In this training process, the dense connections
which we had initially gradually reduce to sparse group connections. At the time of test, the model
has connections only within groups and can be implemented as grouped convolution. This reduces the
number of FLOPs significantly at the time of validation and testing.
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3.5.1 Proposed Training Protocol

In the proposed training procedure, a ESSNetA-D (see Table 3.3), ESSNetB-D encoder model (see
Table 3.1) evolve into a ESSNetA-DGC, ESSNetB-DGC encoder model (see Sec 3.4.3), respectively.
C is the targeted number of groups. This process trains the encoder and decoder in two phases. The
meanIoU value is calculated only after the model settles to a ESSNetA-DGC, ESSNetB-DGC model
respectively. The training is done using a controllable parameter alpha. As the value of alpha changes
with the increasing number of epochs, the connections become sparse (see Figure 3.8). When the value
of alpha is 1, it is a ESSNetA-D, ESSNetB-D model correspondingly. In the initial epochs, alpha
gradually decrements from 1 to 0. When the alpha value becomes zero, it is ESSNetA-DGC, ESSNetB-
DGC model respectively. In the last few epochs, the model is fine-tuned keeping the alpha value zero,
and the model converges. As the grouping techniques are applied only in the encoder, the controllable
parameter alpha is used only in training the encoder.

Using these pretrained encoder weights, the encoder decoder architecture is trained. We remove the
last layer from the encoder and attach the decoder to train the full network as discussed in Section 3.4.2.
Since the encoder model uses pretrained gradual grouping weights, the encoder is well initialized, but
decoder weights are not trained. The initialization gained through gradual grouping is lost when the
encoder is trained again along with decoder. To overcome this, we almost freeze the encoder, which is
equivalent to giving a significantly low learning rate of 5 ∗ e−20 to the encoder for a few initial epochs.
Whereas, the decoder will have a learning rate of 5 ∗ e−04 in the initial epochs. We start with a learning
rate of 5∗e−04, and a learning rate scheduler is used to decrease the learning rate, so that the convergence
is accelerated. In the later epochs, the encoder and decoder start training together with the same learning
rate. The proposed novel training procedure can be easily implemented, specifically targeting grouped
convolutions.

3.5.2 Validation of Our Proposed Designs

In this section, we validate our proposed method with ESSNet architecture. We further try to reduce
the number of FLOPs by attaching a light-weight decoder to the existing encoder model proposed in
ESSNetB . In ESSNet backbone, all the residual layers in the encoder and decoder are configured with
our proposed convolutional layers. We have applied compression to only the encoder part in ESSNetA
and ESSNetB networks. In ESSNet, we apply compression on the decoder by utilizing the efficient
Conv-module layers in place of Non-bt-1D layers. We also alter the 3x3 deconvolution (upsampling)
operation to 1x1 upsampling. As discussed in Section 3.1.4, we use 1×1 convolutions to generate
new features by calculating linear combinations of preexisting ones in the residual layers and also,
to generate lower dimensional feature maps in our upsampling blocks. For the predictions to retain
detail, ideally, the decoder should restore the resolution of encoded features. We tend to make the
upsampling procedure as simple as possible to maintain real-time processing speeds. Thereby, our
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proposed ESSNet backbone network is extremely compact compared to the baseline architecture. We
train ESSNet encoder using gradual grouping as described in Sections 3.4.2 and 3.5.1.

Figure 3.9: Figure shows the application of the proposed Conv-module both in the encoder and the decoder along
with the modified upsampling block in our final proposed model: ESSNet

The results of the gradual grouping training are given in Table 3.5. As it can be seen, the FLOPs vs.
accuracy trade-off has decreased significantly with our proposed method on the ESSNet architecture.
Specifically, the ESSNet-DGC models, with varying group sizes, when trained with gradual grouping,
significantly improve accuracy over the usual training. Our proposed model gives accuracies of 68%
while having only 5.77 GFLOPs (5X reduction in FLOPs). By implementing this proposed training pro-
cedure in ESSNet models, the accuracy degradation reduces, resulting in performance efficient compact
networks. ESSNet-DG2 has 6X reduction in model size and 66% mIOU as seen in Table 3.5.

Our first approach is to employ the proposed compact layers in all the residual blocks of the encoder,
while the decoder is still not optimized. In the second approach, we design architecture variants that
achieve substantial compression compared to various other models with insignificant loss in accuracy
by exquisitely applying the proposed CNN blocks. In this chapter, we stick to a constant macro architec-
ture. We closely examine the trade-offs for each design choice and thereby choose our implementation
techniques.
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Figure 3.10: Performance trade-off graph for all the models studied. Note that the green points representing mod-
els trained by gradual grouping give the best performance trade-offs. Also, the selective application of proposed
layers (orange points) hardly degrades the accuracy while still giving a reasonable reduction in GFLOP of 1.5X
over the baseline ERFNet, which runs at 27.7 GFLOPs.

Table 3.5: Gradual Training of Grouped Convolutions. As can be seen, our proposed models have FLOPs ranging
from 5.77 GFLOPs to 3.15 GFLOPs, while the best accuracy is around 68%. Improvement in accuracy is seen
due to gradual training from the traditional training method (reported in Table 3.2)

Models IOU Params GFLOPs
ERFNet (Baseline) 70.45 2038448 27.705
ESSNet-D 68.39 431312 5.773
ESSNet-DG2 66.10 279760 4.029
ESSNet-DG4 63.80 203984 3.156

3.6 State of the Art Comparison

We quantitatively compare our proposed models with other state-of-the-art methods. Table 3.6,
shows the results on the Cityscapes dataset in terms of FLOPs, Parameters, FPS and accuracy (mIoU).
Our proposed models give consistent results in terms of all the metrics. Our proposed model ESSNet-
DG2 is almost 100x compressed than PSPNet. Although ENet is heavily compressed in terms of model
size, the performance degradation is almost 30% compared to PSPNet. Our proposed models achieve
comparable compression with ENet while having nearly 10% improvement in terms of accuracy. Our
most compact model ESSNet-DG4 achieves 49FPS, and 63.8% mIoU, which is superior to ENet in both
the metrics. Figures 3.13, 3.14 show class-wise performance in comparison to the state-of-art models
(Per-Class IoU(%) for each of the 19 classes).
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Figure 3.11: Examples of qualitative results demonstrating input images from the Cityscapes dataset, ERF Net
output and our proposed ESSNet-DG2 model with gradual grouping segmentation output. We observe that our
proposed model with 7x lesser parameters gives a segmentation output that yields consistent results for all the
classes, and the segmentation is qualitatively good. Both the networks accurately predict the road and objects in
the scene. However, we observe that the reduction in accuracy reflects in the prediction of small size objects such
as ”bicycles”,”fence”, and ”riders”, which are at far distances in the scene. We also observe that the segmentation
boundaries are slightly not well defined when objects of the same class like ”car” are at a closer distance than
the ground truth. All of our proposed network variants have significantly lesser parameters and memory footprint
compared to other high-performance segmentation models. These proposed models are meant to be used in
real-time applications with system-on-chip (soc) devices that can be mounted on vehicles in numerous scene
understanding applications.
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Our proposed models achieve an optimal balance between model size and performance making them
an ideal choice for the task of real-time semantic segmentation. Figure 3.11 shows a qualitative com-
parison of our proposed ESSNet-DG2 model output with ERFNet output and groundtruth.

Figure 3.12: The accuracy (mIoU) and inference speed (FPS) trade-off for different state-of-the-art semantic
segmentation approaches on Cityscapes test set. Each colour represents the input image size at the time of test as
listed in table 3.6. Models that run at FPS > 30 are considered to be real-time models.

3.7 Summary

We approach the problem of designing highly efficient CNNs for semantic segmentation, specifically
focusing on autonomous navigation. For this purpose, we study the ERFNet model, which is already
among the most efficient, real-time models on the Cityscapes dataset. We comprehensively analyze the
most effective design methodologies and determine the components that are the best fit to build our
proposed models. We obtain our lightweight networks benefiting from residual blocks, spatial kernel
factorization, depthwise separable convolutions, and grouped convolutions. The core residual blocks
help eliminate the degradation problem in deep neural networks and also help in speeding up the train-
ing time.

Through thorough experimentation, we empirically establish the effectiveness of our proposed mod-
els. Depth-wise separable convolutions used in classification models like MobileNet [26], Xception
[6] and ResNeXt [80] are proved to be efficient. Our main idea was to translate this efficiency into
segmentation models. Though grouped convolutions are a great way to induce structured sparsity, we
apprehend that grouped convolutions coupled with depthwise separable convolutions can significantly
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Figure 3.13: Performance of Per-Class IoU of our proposed models on each class in the Cityscapes dataset
compared to other state-of-the-art real-time segmentation models

.

compress the network but leads to accuracy degradation. We infer that the decoder is not meant for
further feature extraction, but its function is only to recover the feature representations to meaning-
ful probability maps. Apart from initializing the training from scratch, we also experiment with the
pretrained approach. In this process, we take advantage of the regularization opportunity offered by
knowledge transfer[48] from large recognition datasets such as ImageNet[60].

We propose segmentation frameworks ESSNetA , ESSNetB , and ESSNet that are competitively
accurate, lightweight, and fast enough for real-time applications. Our main result is to obtain a semantic
segmentation model with 5.8 GFLOPs running time with IOU scores of 68%. We propose a novel
training procedure that can be easily implemented, specifically targeting grouped convolutions. The
procedure starts with dense convolutions and gradually evolves toward grouped convolutions as the
training progresses, allowing the optimization to be done in a higher-dimensional space. We empirically
show that this procedure on our proposed efficient architecture results in a model running at 4.1 GFLOPs
while giving accuracies equitable to other state-of-the-art networks.
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Figure 3.14: Performance of Per-Class IoU of our proposed models on each class in the Cityscapes dataset
compared to other state-of-the-art real-time segmentation models.

Table 3.6: Our proposed models benchmark on the Cityscapes dataset compared to various other state-of-the-art
approaches.

Models InputSize GFLOPs Params(M) Frame(FPS) mIoU(%)
FCN-8S[42] 512× 1024 136.2 134 2 63.1
PSPNet[88] 713× 713 412.2 250.8 0.78 81.2
DeepLab[23] 512× 1024 457.8 262.1 0.25 63.1
ICNet[87] 1024× 2048 28.3 26.5 30.3 69.5
ESSNet -D 512× 1024 5.78 0.43 47 68.39
ESSNet -DG2 512× 1024 4.03 0.28 49 66.10
ESSNet -DG4 512× 1024 3.16 0.21 49 63.80
FRRN[54] 512× 1024 235 - 0.25 71.8
SegNet[2] 640× 360 286 29.5 16.7 57
ENet[52] 1280× 720 3.8 0.4 46.8 58.3
SQNet[72] 1024× 2048 270 - 16.7 59.8
CRF-RNN[89] 512× 1024 - - 1.4 62.5

Table 3.7: Comparison between different type of convolutions. Here, k×k is the kernel size, kd = (k−1)·d+1, d
is the dilation rate, c and ĉ are the input and output channels respectively, and g is the number of groups.

Convolution type Parameters Eff. receptive field
Standard k2cĉ k × k
Group k2cĉ

g k × k
Depth-wise separable k2c+ cĉ k × k
Depth-wise dilated separable k2c+ cĉ kd × kd
Asymmetric 2kcĉ k × k
Dilated k2cĉ kd × kd
Bottleneck cc′ + k2c′ + c′ĉ k × k
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Chapter 4

Design Considerations for Efficient Architectures

In the previous chapter, we analyzed the efficacy of sparse convolutions, and evaluated the differ-
ence in the performance of various cost-cutting design methods of convolutional layers. In this chapter,
we propose architectures that are sufficiently accurate compared to the other state-of-the-art approaches
while using notably less number of network parameters and producing substantially faster segmentation
outputs. In the previously proposed frameworks, our overall design strategy was lightweight convolu-
tions in deep convolutional neural networks (DCNNs). We aimed to enlarge the receptive field, which
is crucial to obtain accurate semantic information by deepening the network, downsizing feature maps,
and using dilated or atrous convolutions.

In this chapter, we perform experiments with varying macro architecture hyper-parameters such as
depth of the network, size of decoder and additional context extraction modules. The concept behind
the design technique employed and its benefits, drawbacks, and implications on the segmentation output
are discussed in this chapter. Furthermore, we propose a novel segmentation network WSPD-Net that
incorporates a pyramid structure in the convolutional layer with differential dilation rates that is much
more effective without increasing computational complexity. In this network, we exploit different ker-
nel sizes with varying-sized receptive fields, which are proven to better segment diverse sized objects
[32],[78]. This proposed framework is also end-to-end trainable but the design methodology is shallow
and symmetric as opposed to ESSNet models which employ sparse and deep convolutional layers.

4.1 Variations in the Decoder

In this section, we explore the instrumentality of the decoder in a real-time segmentation network,
and discuss our proposed techniques to improve the results. To make the model lighter, we experiment
with various versions of the decoder and compare the computational operations vs accuracy to attain a
suitable balance between both. As discussed in section 3.5, ESSNet-D architecture has a lightweight de-
coder employing 1x1 convolutions in the upsampling(trans2x) block along with proposed convolutional
layers-D. Optimizing only the upsampling block in ESSNetB-D decoder results in 7.4 GFlops, and the
accuracy is 66.51%. We present exploratory work on lightweight decoders. We study decoder variants
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with stride factors of 4x and 8x, respectively named ESSNet-trans4x and ESSNet-trans8x. We also
experimented by completely removing the decoder (i.e., deconvolution operation) and used bi-linear
interpolation by a factor of 8, which is a straightforward technique for restoring the original image res-
olution. Transposed convolutions accomplish upsampling by adding blank spaces between successive
pixels in the original feature maps, much like dilated convolutions, and executing conventional convo-
lution operations on the upsampled feature maps. ESSNet-trans4x has two deconvolution operations,
one with a upsampling factor of 4 followed by the two proposed convolutional layers and the final
deconvolution layer.

As seen in Table 4.1, ESSNet-trans4x has 5.3GFLops and gives an accuracy of 62.12%, ESSNet-
trans8x has only one upsampling operation with an upsampling rate of 8 and gives an accuracy of
60.39% with 4.9 GFlops. ESSNet-nodec model completely removes the decoder and bilinearly inter-
polates the output of the encoder by a factor of 8 having 4.7GFlops. Although utilising transposed
convolution with a high upsampling rate, such as 4x or 8x results in a decoder that is much lighter than
the original decoder and the accuracy drops substantially lower than the baseline model. Therefore, the
poor performance of transposed convolution with a high upsampling rate is attributable to the excessive
insertion of blank spaces, degrading the high-level feature representations produced during the encoder
phase. ESSNet-no decoder model has only 1/6 GFlops and 1/2 the number of parameters compared
to the baseline model. For performance reasons, we always have the last convolutional layer as a full
convolution without any modifications.

Table 4.1: We evaluate the variations in decoder as against the upsampling rate with the number of GFlops

Models IOU GFLOPs
ESSNet-enc-UPS(proposed) 66.51 7.41
ESSNet-trans4x 62.12 5.31
ESSNet-trans8x 60.39 4.89
ESSNet-nodec 57.33 4.70

4.2 Pyramid Pooling Module

We experiment with improvising on the architecture by adding a pyramid pooling module. This
module is devised to incorporate the global contextual prior[88]. However, PSPNet has a heavy back-
bone, a ResNet feature extractor that uses huge computational resources. In this network, we utilize
our proposed lightweight encoder as the backbone and add the Pyramid Pooling module on top of the
encoder’s final layer feature map. We utilize four pyramid levels which are 1/8x, 1/4x, 1/2x, and 1x size
scale blocks to the size of the final convolutional block of the encoder. The number of channels of these
pyramid blocks are 128 which is same as the last encoder block. The number of channels of the pyramid
blocks is reduced to 1/4 (i.e., 32) by a 1x1 convolution operation. Followed by the low-dimesional pro-
jection, these feature maps are bi-linearly upsampled to the same size as the original feature map taken
from the encoder. Thereafter, all these five maps are concatenated along the channel dimension (256
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channels), resulting in a robust feature map containing local and global information, as seen in fig 4.1.
This is further attached to the upsampling block with a stride factor of 4, followed by convolutional lay-
ers and the final class probability layer. We skip one upsampling block and the following convolutional
blocks (i.e., layers 17-19) from the ESSNetB architecture as seen in table 3.2 to reduce the size of the
decoder.

The encoder is trained from the down-sampled annotations as ground truth for the first 95-100
epochs, and in the second step, we train the complete architecture end-to-end, including the pyramid
module to get the segmentation output. The training protocol is the same as the earlier architectures
using Adam optimizer and weighted cross-entropy loss function. We do additional data augmentation
with random cropping for better invariance of the model to aspect ratio and scale changes.

Figure 4.1: This figure shows the addition of pyramid pooling block before the decoder

All the layers in the encoder are our proposed convolutional modules with 3x3 depthwise separa-
ble convolutions followed by 1x1 grouped convolutions. However, the additional 1x1 convolutional
projections in the pyramid pooling module outweigh the lightweight decoder. Thus, we do not see a
significant computational gain in the network. For the architecture, as seen in figure 4.1, the proposed
convolutional modules with group size 2, 4 and 8 give accuracies 65%, 62.7% and 59.4% respectively.
Although the mean IoU is not as expected, we see improvement in the per-class IoU for classes like
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Fence, Traffic Light, Truck, and Bicycle. The spatial details contained in low-level features are still
ignored in these models and leading to incorrect identifications of small objects and boundary informa-
tion. The multi-level context extraction module is more effective in the networks with deeper layers
as the high-resolution features are captured better. Additional pretraining on the ImageNet dataset has
been shown to improve accuracy by 2% in each case. Though the resultant advantages do not directly
translate as much as for the architectures designed for competitive ImageNet performance, the models
based on ImageNet pretrained encoders are observed to be benefited from the regularization induced
by transfer learning. We also overcome the risk of over-fitting with this method. Whenever we use
ImageNet pretraining, the pretrained parameters are updated by a learning rate of 1.25e−4 and a weight
decay rate of 0.5e−4, which is 4x smaller than the previous learning rate and weight decay parameters.
Due to additional computations, the forward pass time is higher than the previous ESSNetmodels. We
observe that an additional hierarchical global prior did not show much improvement in the mIoU re-
sults using our light-weight architecture on the Cityscapes dataset. We further experiment by providing
additional 20K coarse data annotations from the Cityscapes dataset in the training phase. Using this
data augmentation with coarsely annotated data and using cropped images for training further improves
the model accuracy by 1.2%. However, the pyramid pooling block is proved to improve accuracy on
datasets with distortions, varying brightness, and different focal angels like fish-eyed images, as shown
in [61],[79],[39].

4.3 Efficient Dilated Convolution Module

Unlike the previous Encoder-Decoder architectures we have seen, in this section, we explore a dif-
ferent direction of designing the network. SegNet and UNet have shown symmetric architectures for
semantic segmentation. However, in the previous chapter, we introduced architectures with a larger
encoder and a light-weight decoder. We also used the same kernel size throughout. In this design, we
explore ways to reduce the computational complexity by widening the filter kernels in some layers,
and at the same time, reducing the number of convolutional layers. The idea behind WSPD-Net is to
better encode the spatial information by learning representations from a larger effective receptive field
with minimal additional computation cost. In DWS-Dil block, the idea is to leverage the representation
capacity of large and dense layers at a lower cost.

In addition to the Non-Bt-1D layers as seen in the previous chapter, that are factorized spatially
as 3x1 and 1x3, we also use 5x1 and 1x5 convolutions that are larger kernels and help extract broader
scale information like in ENet[52]. We propose to stack the smaller kernels in the early layers and larger
kernels in the encoder’s deeper layers to capture low scale feature maps from the initial layers. Likewise,
our proposed convolutional layer in the previous chapter has 3x3 depthwise convolutions to make the
connections sparse, and the layers are subsequently stacked with different dilation rates of 2,4,8,16 in
each layer. A filter of sizeK xK having dilation rate d, with an expansion of (d−1)∗(d−1) will cover
(d−1)∗K∗(d−1)∗K pixels. Dilated convolutions are of great use for semantic segmentation networks
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because the receptive field increases exponentially, implying a better grasp of contextual details without
extra calculations[78].

Figure 4.2: Different convolutional layers used in our proposed WSPD-Net architecture. Non-Bt-1D(3K), Non-
Bt-1D(5K) are spatially factorized residual layers with kernel sizes 3,5 respectively. DWS-Dil is our proposed
layer with four different dilation rates used parallely in the same residual layer. This proposed layer not only
reduces the complexity of the computations but also makes it possible for the network to learn representations
from a greater effective receptive field.

However, we observe that using dilation with depthwise factorization as a direct combination leads to
extreme sparsity in the feature maps implying significantly less connectivity to the neighboring pixels,
which causes loss of information. From this inference, we propose to design a novel block (DWS-Dil)
that effectively integrates dilated convolutions in the efficient convolutional layer in a pyramid fash-
ion. The cross-channel information loss is unavoidable given that the dilated convolutional operation is
spatially discontinuous according to the dilation rate. Hence, we place the depthwise separable convo-
lutions after the first set of asymmetric convolutions to reduce the effect of excessive sparsity and poor
information flow in the encoder.

Considering the design choices we made in this network, i.e., using wider spatially factorized kernels
and dense dilated blocks, we reduce the number of layers (i.e., shallower architecture) in comparison
to the previous networks. Similar to the previous architectures i.e., ESSNetA , ESSNetB , we use three
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Table 4.2: Proposed WSPD-Net(symmetric and parallely dilated network) architecture
Layer Type out-chann out-Res

E
N

C
O

D
E

R
1 Downsampler block 16 512x256

2-4 3 x Non-bt-1D(3K) 16 512X256
5 Downsampler block 64 256x128

6-7 2 x Non-bt-1D(5K) 64 256x128
8 Downsampler block 128 128x64

9-11 2 x DWS-Dil 128 128x64

D
E

C
O

D
E

R

12 Deconvolution(upsampling) 64 256x128
13-14 2 x Non-bt-1D(5k) 64 256x128

15 Deconvolution(upsampling) 16 512x256
16-17 2 x Non-bt-1D(3K) 16 512x256

18 Deconvolution(upsampling) C 1024x512

downsampling blocks with the exact spatial sizes of feature maps at each downsampling stage and three
upsampling blocks. We lowered the number of encoder layers by five in the encoder’s later stages while
retaining all of the decoder’s layers from the baseline architecture.

Rather than using two downsampling blocks subsequently, we apply convolutional layers after the
first downsampling block allowing superior feature extraction. Hence, this is more of a symmetric
structure like SegNet with fewer parameters. The experimental setup is the same as seen in ESSNetA
and ESSNetB architectures, and the network is trained end-end on the Cityscapes dataset. The detailed
network configuration is listed below. This architecture is compact and has 18 layers, whereas the
baseline architecture has 23 layers.

The design choices in this architecture are different from the previous trend of choices in terms of
size, number of layers, and direction of expansion. In the previous chapter, we have seen variations
in the convolutional layers keeping the macro architecture the same. We experiment with design pa-
rameters such as the number of layers, kernel dimensions, size of encoder-decoder, dilation rates, and
combination of factorized filter kernels.

The significant contribution to this design is our novel DWS-Dil block reduces the direct loss of
sequential processing of dilated feature maps but rather parallelly does the same in a concentrated man-
ner. This architecture performs better in terms of processing time and has fewer parameters than our
baseline architecture ERFNet. This model has 0.67 million parameters, whereas the baseline model has
0.72 million parameters. This model runs at 51FPS on Nvidia GTX 1080Ti GPU, which is faster than
the previous models and gives an accuracy of 69.72%. Figure 4.3 shows the segmentation output of this
network. We observe that the classes that are under represented have lower per-class mIou than classes
that are well represented. Pretraining the network with coarse annotation helps overcome this problem
by giving a slight enhancement in accuracy on classes having a lesser representation than others in the
dataset [17]. This architecture produces near state-of-the-art performance with better inference time and
fewer parameters.
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Figure 4.3: Segmentation Output of WSPD-Net Architecture

4.4 Summary

We explore various design guidelines from previous literature to tackle the problem of designing
efficient segmentation architectures that retain the capacity of deep networks without its limitations. We
also validated the effect of various transposed convolutions with 2x, 4x, and 8x upsampling rates in
the upsampling block of the decoder. We also experimented by removing the decoder, resulting in the
smallest model with 4.7GFlops, but we observed a significant drop in accuracy. We proposed an archi-
tecture design incorporating the pyramid pooling module to integrate the fine-grained local information
with global contextual information.

Using the results, we propose a novel segmentation network WSPD-Net. In this network, we employ
a heterogeneous combination of spatially factorized and depthwise separable CNN layers. Additionally,
we employ an aggregated structure of dilated convolutions in a subset of the encoder’s blocks to boost
contextual extraction capability without negatively impacting the encoder’s efficiency. Our designed
DWS-Dil layer generalizes the use of factorized dilated convolutions in an efficient manner. Our pro-
posed WSPD-Net achieves the goal of a real-time segmentation model attaining near state-of-the-art
accuracy while maintaining a low level of latency.
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Chapter 5

Conclusions and Future Work

This chapter presents the summary of the thesis and the conclusions drawn from our work. In addi-
tion, a brief discussion of the future work is presented.

5.1 Summary

This thesis addresses the problem of real-time semantic segmentation and presents solutions that
enhance the model efficiency while maintaining the state-of-the-art accuracy level. We present simple
yet efficient architectures for the task of image semantic segmentation. Our proposed networks are de-
signed to achieve high accuracy and processing speeds for practical applications in resource-constrained
environments.

In Chapter 2, we introduced the semantic segmentation task and presented a detailed discussion of
various deep learning approaches to this problem. A study of existing literature for relevant model
compression techniques was presented. We discuss in detail the significance of real-time semantic
segmentation in light of the increasing popularity of autonomous vehicles. We detailed how various
state-of-the-art methods have approached this problem to overcome the computational burden in tradi-
tional semantic segmentation networks. We have discussed the merits and demerits of existing model
compression approaches.

In Chapter 3, we discussed how previous literature for image classification tasks had approached
the individual components in deep convolutional neural networks. A fruitful discussion is presented
on the encoder and decoder components in the proposed architecture pipeline providing vital insights
into network design. Various strategies were introduced, such as spatial factorization, depth-wise sep-
arable convolutions, grouped convolutions, and channel shuffling. We identified various computational
bottlenecks in the existing architectures and adapted the most suitable techniques for boosting the ef-
ficiency of the models while preserving accuracy. A detailed calculation of the computational burden
for each design choice was provided. The performance of the proposed models was assessed by weigh-
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ing the trade-off between the accuracy metric and the efficiency metric. A novel training framework
using model compression technique for grouped convolutions, called gradual grouping, was presented.
The procedure starts with dense convolutions and gradually evolves toward grouped convolutions as
the training progresses, allowing the optimization to be done in higher-dimensional space. We suc-
cessfully obtained an optimal trade-off between performance and efficiency for real-time segmentation
architectures. A quantitative comparison of our proposed models with various state-of-the-art methods
is presented. To the best of our knowledge, this type of compression approach was never used in the
previous works for semantic segmentation, and this is the first such effort. We thoroughly examine the
aspects of each design choice and discuss their impacts on qualitative and quantitative performance. We
also validate the benefit of pretraining the encoder on Imagenet and using a custom decoder.

Chapter 4 empirically analyzes the fundamental network design strategies in the existing literature.
We derive valuable insights into the efficacy of the decoder, and we incorporate a pyramid structure
in the added design components to improve the quality of segmentation. Each section details several
experiments and results of the proposed meta-architecture changes to the networks. Our proposed ar-
chitecture WSPD-Net details the benefits and merits of parallelly using different dilation rates in the
same convolutional layer. Our proposed module DWS-Dil, not only reduces computational complexity
by kernel factorization but also improves the effective receptive field. We carefully design our encoder
and decoder blocks in a way that maximizes the trade-off between low-resolution features, which are
more effective and include more context, and the high-resolution features, which have better feature
localization at the pixel level but are more expensive to compute.

5.2 Conclusion

Real-time semantic segmentation is a crucial part of the early pipeline of several critical computer
vision applications, such as autonomous vehicles, ADAS systems, or robot-assisted surgery. In these
applications, time is of the essence, and any delays may result in disastrous consequences. Thus, im-
provements in real-time semantic segmentation affects downstream benefits for many computer vision
tasks. In this work, we propose methods and architectures that give high performance in real-time and
working on resource-constrained settings.

This thesis comprehensively analyzes the various key components in designing real-time semantic
segmentation architectures. We overcome the limitations of increased network complexity and redun-
dant computational overhead by designing efficient convolutional layers and strategically placing these
layers in the network. We choose the suitable design elements that result in a beneficial compromise
between latency and accuracy. With the help of these design choices, we propose end-to-end trainable
lightweight architectures. Secondly, we explore the need for optimization during the training phase in
the proposed models. We devise a novel training method derived from the model compression tech-
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niques, resulting in a highly compact deep learning model, achieving improved results. A substantial
amount of work has been done in comparing our proposed models with the existing real-time semantic
segmentation architectures. We also exhaustively explore the essential components unique to semantic
segmentation tasks that affect the performance and segmentation quality and take them into account in
our proposed architecture designs.

5.3 Future Directions

Although our proposed models achieve an excellent accuracy/efficiency balance with limited com-
putational budgets, there are still some areas for improvement. In this section, we discuss potential
directions in which the proposed models could be extended for further improvement.

Our proposed networks attain significant compression with minor compromise in performance. At-
taining best accuracy in constrained budgets is still an open research problem to pursue. A significant
percentage of information is lost during the encoding process, which results in the low performance of
the semantic segmentation network. A possible direction of research to solve this problem is to reintro-
duce the input information in the network by adding a low-resolution version of the input to intermediate
areas or by using a parallel sub-network.

Our encoder network relies primarily on the dilated convolutions, which cause gridding effects in
the output. Further research is required to design architectures without this drawback. In this work,
we propose a convolutional layer that incorporates distinct dilation rates in a spatial direction. An
interesting way would be to integrate distinct dilation rates in the channel direction at a low cost. Another
possible focus is to streamline the decoder block, as the compressed upsampling operation does not show
satisfactory performance in recovering the input information. Further research should be undertaken to
explore how the decoder can be efficiently designed such that performance is not impacted.
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