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Abstract

3D Human Body Reconstruction from a monocular im-
age is an important problem in computer vision with ap-
plications in virtual and augmented reality platforms, ani-
mation industry, en-commerce domain, etc. While several
of the existing works formulate it as a volumetric or para-
metric learning with complex and indirect reliance on re-
projections of the mesh, we would like to focus on implic-
itly learning the mesh representation. To that end, we pro-
pose a novel model, HumanMeshNet, that regresses a tem-
plate mesh’s vertices, as well as receives a regularization
by the 3D skeletal locations in a multi-branch, multi-task
setup. The image to mesh vertex regression is further reg-
ularized by the neighborhood constraint imposed by mesh
topology ensuring smooth surface reconstruction. The pro-
posed paradigm can theoretically learn local surface defor-
mations induced by body shape variations and can there-
fore learn high-resolution meshes going ahead. We show
comparable performance with SoA (in terms of surface and
joint error) with far lesser computational complexity, mod-
eling cost and therefore real-time reconstructions on three
publicly available datasets. We also show the generalizabil-
ity of the proposed paradigm for a similar task of predict-
ing hand mesh models. Given these initial results, we would
like to exploit the mesh topology in an explicit manner going
ahead.

1. Introduction

Recovering a 3D human body shape from a monocu-
lar image is an ill-posed problem in computer vision with
great practical importance for many applications, including
virtual and augmented reality platforms, animation indus-
try, e-commerce domain, etc. Some of the recent deep

Figure 1: We present an early method to integrate Deep
Learning with the sparse mesh representation, to success-
fully reconstruct the 3D mesh of a human from a monocular
image

learning methods employ volumetric regression to recover
the voxel grid reconstruction of human body models from a
monocular image [31, 29]. Although volumetric regression
enables recovering a more accurate surface reconstruction,
they do so without an animatable skeleton [31], which limits
their applicability for some of the aforementioned applica-
tions. [29] attempted to overcome this limitation by fitting
a parametric body model on the volumetric reconstruction
using a sillhoute reprojection loss. Nevertheless, in gen-
eral, such methods yield reconstructions of low resolution at
higher computational cost (regression over the cubic voxel
grid) and often suffer from broken or partial body parts.

Alternatively, the parametric body model [2, 15, 23]
based techniques address some of the above issues, how-
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Figure 2: Overview of our Multi-Task 3D Human Mesh Reconstruction Pipeline. Given a monocular RGB image (a), we first
extract a body part-wise segmentation mask using [1] (b). Then, using a joint embedding of both the RGB and segmentation
mask (c), we predict the 3D joint locations (d) and the 3D mesh (e), in a multi-task setup. The 3D mesh is predicted by first
applying a mesh regularizer on the predicted point cloud. Finally, the loss is minimized on both the branches (d) and (e).

ever, at the cost of accurate surface information [24, 10, 3,
14]. Recently, several end-to-end deep learning solutions
for estimating the 3D parametric body model from a monoc-
ular image have been proposed [12, 27, 28, 20, 19, 33].
They all attempt to estimate the pose (relative axis-angles)
and shape parameters of the SMPL [15] body model, which
is a complex non-linear mapping. To get around this
complex mapping, several methods transform them to ro-
tation matrices [19, 20] or learn from the 2D/3D key-
point and silhouettes projections (a function of the parame-
ters) [19, 12, 20]. Additionally, [12] proposes an alternate
method for training (Iterative Error Feedback) as well as a
body joint specific adversarial losses, which takes upto 5
days to train. In other words, learning the parametric body
model hasn’t been straightforward and has resulted in com-
plex and indirect solutions that actually rely on different
projections of the underlying mesh.

Directly regressing to point cloud or mesh data from im-
age(s) is a severely ill-posed problem and there are very few
attempts in deep learning literature in this direction [32, 18].
With regard to point cloud regression, most of the attempts
have focused on rigid objects, where learning is done in a
class specific manner. Apart from a very recent work [13],
learning a mesh hasn’t been explored much for reconstruc-
tion, primarily because of lack of deep learning constructs
to do so.

In this paper, we attempt to work in between a generic
point cloud and a mesh - i.e., we learn an ”implicitly struc-
tured” point cloud. We hypothesize that in order to per-
form parametric body model based reconstruction, instead
of learning the highly non-linear SMPL parameters, learn-
ing its corresponding point cloud (although high dimen-

sional) and enforcing the same parametric template topol-
ogy on it is an easier task. This is because, in SMPL like
body models, each of the surface vertices is a sparse linear
combination of the transformations induced by the under-
lying joints i.e., implicitly learning the skinning function
by which parametric models are constructed is easier than
learning the non-linear axis-angle representation itself (pa-
rameters). Further, such models lack high-resolution local
surface details as well. Therefore, there are far fewer ”repre-
sentative” points that we have to learn. In comparison with
generic point cloud regression as well, this is an easier task
because of this implicit structure that exists between these
points.

Going ahead, attempting to produce high resolution
meshes are a natural extension that is easier in 3D space
than in the parametric one. Therefore, we believe that this
is a direction worth exploring and we present an initial so-
lution in that direction - HumanMeshNet that simultane-
ously performs shape estimation by regressing to template
mesh vertices (by minimizing surface loss) as well receives
a body pose regularisation from a parallel branch in multi-
task setup. The image to mesh vertex regression is further
explicitly conditioned on the neighborhood constraint im-
posed by the mesh topology, thus ensuring a smooth sur-
face reconstruction. Figure 2 outlines the architecture of
HumanMeshNet.

Ours is a relatively simpler model as compared to the
majority of the existing methods for volumetric and para-
metric model prediction (e.g., [29]). This makes it effi-
cient in terms of network size as well as feed forward time
yielding significantly high frame-rate reconstructions. At
the same time, our simpler network achieves comparable



accuracy in terms of surface and joint error w.r.t. major-
ity of state-of-the-art techniques on three publicly available
datasets. The proposed paradigm can theoretically learn lo-
cal surface deformations induced by body shape variations
which the PCA space of parametric body models can’t cap-
ture. In addition to predicting the body model, we also show
the generalizability of our proposed idea for solving a sim-
ilar task with different structure - non-rigid hand mesh re-
constructions from a monocular image.
To summarize, the key contributions of this work are:

• We propose a simple end-to-end multi-branch, multi-
task deep network that exploits a ”structured point
cloud” to recover a smooth and fixed topology mesh
model from a monocular image.

• The proposed paradigm can theoretically learn local
surface deformations induced by body shape variations
which the PCA space of parametric body models can’t
capture.

• The simplicity of the model makes it efficient in terms
of network size as well as feed forward time yielding
significantly high frame-rate reconstructions, while si-
multaneously achieving comparable accuracy in terms
of surface and joint error, as shown on three publicly
available datasets.

• We also show the generalizability of our proposed
paradigm for a similar task of reconstructing the hand
mesh models from a monocular image.

2. Related Work
Estimating 3D Body Models: The traditional approach

for parametric body model fitting entails iteratively optimiz-
ing an objective function with 2D supervision in the form of
silhouettes, 2D key points etc [24, 10, 3, 14]. However, they
often involve manual intervention and are time-consuming
to solve as well as susceptible to converge at local optima.

On the deep learning front, [12] proposes an iterative
regression with 3D and 2D joint loss as a feedback and an
adversarial supervision for each joint. However, this archi-
tecture has a large number of networks and takes 5 days
to train. [19] predicts a colour-coded body segmentation
that is used as a prior to predict the parameters. Similarly,
in [20], 2D heatmaps and silhouettes are predicted first,
which are then used to predict the pose and shape param-
eters. All of the above methodologies calculate the loss on
2D keypoints or silhouette projections of the rendered mesh,
which significantly slows down training time (due to model
complexity), in addition to requiring additional supervision.
[29] proposes a complex multi-task network with a total
of six networks (having respective losses computed on 2D
and 3D joint locations, 2D segmentation mask, volumetric

grid and silhouette reprojection of volumetric and SMPL
model). This makes it a significantly heavy network with
a longer feed forward time. The focus of reconstruction is
to retrieve the boundary of the subject in 3D space. How-
ever, in a volumetric representation, predicting the volume
within the surface is counterproductive. On the other hand,
we focus on direct image to mesh vertex regression for re-
covering the surface points. The most recent state-of-the-art
work proposed in [13] also recovers sparse surface points
using Graph Neural Network(GCN). However GCNs expe-
rience troubles learning the global structure because of its
neighbourhood aggregation scheme [34].

Estimating Hand Models: While most of the hand re-
covery methods typically estimate the 3D pose from one or
multiple RGB/Depth images, hand shape estimation hasn’t
been extensively explored. For a detailed survey of the field,
we refer to [26, 35]. Recent effort in [17] was the first at-
tempt to predict both the pose and the vertex based full 3D
mesh representation (surface shape) from a single depth im-
age. The recently proposed MANO [23] model is an SMPL
like model that describes both the shape and pose, and is
learned from thousands of high resolution scans. [5] pre-
dicted the MANO parameters from a monocular RGB im-
age, but, they don’t show much shape variations. [8] use
a graph CNN to recover the hand surface from monocular
RGB image of the hand.

3. Proposed Method: HumanMeshNet
In order to learn this structured point cloud, we use an

encoder- and multi-decoder model, which we describe in
this section. Figure 2 gives an overview of our end-to-end
pipeline. Our model consists of three primary phases:

Phase 1 - RGB to Partwise Segmentation: Given an input
RGB image of size 224x224, we first predict a discrete
body part label for each pixel in the input image (for a total
of 24 body parts) using just the body part labeling network
from [1]. A part-wise segmentation enables a tracking of
the human body in the image, making it easier for shape
estimation.

Phase 2 - Image Encoders and Joint Embedding: Both
the RGB image and segmentation mask are passed through
separate encoders, each a Resnet-18, and their respective
CNN feature vectors, each of dimension 1000 are concate-
nated together to obtain a joint embedding.

Such fusion of RGB and segmentation mask was
employed to combine complementary information from
each modality. This is important as a segmentation mask
predictions can be very noisy in many scenarios (see
Figure 3), e.g., low lighting, distance of the person from
the camera, sensing noise, etc., leading to failures like
interchanged limbs or missing limbs.
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Figure 3: Noisy Segmentation Masks predicted from im-
ages (a) and (c) in Phase 1. The figure shows (b) missing
body part masks (d) confusing between leg limbs.

Phase 3 - Multi-branch Predictions: From our concate-
nated feature embedding, we branch out into two com-
plementary tasks via Fully Connected layers (FCs). Each
branch consists of two FCs, each of dimension 1000 fol-
lowed by the respective output dimensions for the 3D joints,
and 3D surface respectively. It is to be noted that our pre-
dictions are in the camera frame.
Loss Function. We use a multi-branch loss functions to
train our network i.e, LS , LJ and LJS . We regularized the
loss functions such that they contribute equally to the over-
all loss. This translates to Equation 1.

L = LS + (λ1 ∗ LJ) + (λ2 ∗ LJS) (1)

The surface loss LS in Equation 2 gives the vertex-wise
Euclidean distance between the predicted vertices Vi and
ground truth vertices V̂i for the 3D mesh prediction branch
in Figure 2 (e).

LS =
∑
∀Vi

||Vi − V̂i||2 (2)

However, this loss does not ensure prediction of smooth sur-
faces as each vertex is independently predicted.

Nevertheless, each mesh vertex has a neighborhood
structure that can be used to further refine the estimate of
individual vertex. Here we make use of smoothing regular-
isation [25] (as shown in Equation 3), where the position of
each vertex, Vi, is replaced by the average position, of its
neighbours N(Vj).

Vi =
1

|N(Vi)|
∑

Vj∈N(Vi)

Vj ∀Vi (3)

This is achieved by first applying the smoothness mesh reg-
ularization given by Equation 3 and then calculating LS .
This helps in limiting the number of surface jitters or irreg-
ularities.

In order to enforce 3D joints consistency, we minimize
joint loss LJ defined in Equation 4, which gives the eu-
clidean distance between the predicted joints Ji and ground

truth joints Ĵi in the 3D joint prediction branch as shown in
Figure 2(d).

LJ =
∑
∀Ji

||Ji − Ĵi||2 (4)

The 3D joints JSi under the surface are recovered using
the SMPL joint regressor [15]. We also minimize the
loss LJS defined in Equation 5 which gives the euclidean
distance between the joints Ji predicted from the joints
branch and the joints JSi from the surface branch. It helps
both the branches to learn consistently with each other.

LJS =
∑
∀Ji

||Ji − JSi||2 (5)

Network Variants: We define two different variants of Hu-
manMeshNet in order to perform an extensive analysis:

(a) HumanMeshNet (HMNet) - The base version which
uses an ”off-the-shelf” body part segmentation net-
work ( [1]).

(b) HumanMeshNetOracle (HMNetOracle) - A refined
version using a more accurate body part segmentation
given by the dataset. However, in some datasets (e.g.,
UP-3D, [14]), these segmentation masks can be noisy
due to manual annotations.

4. Experiments & Results
In this section, we show a comprehensive evaluation of

the proposed model and benchmark against the state-of-the-
art optimization and deep learning based Parametric (P),
Volumetric (V) and Surface based (S) reconstruction algo-
rithms. It is to be noted that we train on each dataset sep-
arately and report on its given test sets. All of the trained
models and code shall be made publicly available, along
with a working demo. Please view our supplementary video
for more results.

4.1. Datasets

SURREAL [30]: This dataset provides synthetic image
examples with 3D shape ground truth. The dataset draws
poses from MoCap [11] and body shapes from body
scans [22] to generate valid SMPL instances for each
image. Although this dataset is synthetically generated,
it emulates complex real poses and shapes, coupled with
challenging input images that contain background clutter
and are reflective with low resolution. It has a total of 1.6
million training and 15,000 test samples.

UP-3D [14]: It is a recent dataset that collects color
images from 2D human pose benchmarks and uses an
extended version of SMPLify [3] to provide 3D human
shape candidates. The candidates were evaluated by human
annotators to select only the images with good 3D shape
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Figure 4: This figure depicts the quality of ground truth fits
provided on UP-3D. (a) The input RGB image is fit using
SMPLify [3] to give (b) the ground truth. Our fit (c) makes
use of more accurate markers or keypoints in a multi-branch
setup, to account for noisy ground truth mesh data.

fits. It comprises of 8,515 images, where 7,126 are used for
training and 1,389 for testing. However, the ground truth
meshes are sometimes inaccurately generated as shown
in Figure 4. We separately train the network and report
results on full test set of UP-3D.

Human3.6M [11]: It is a large-scale pose dataset that
contains multiple subjects performing typical actions like
”eating” and ”walking” in a lab environment. It consists of
a downsampled version of the original data with 300,000
image-3D joint pairs for training and 100,000 such for
testing. Since ground truth 3D meshes for any of the com-
monly reported protocols [4] for evaluation aren’t available
anymore, we finetune SURREAL-pretrained network using
joint loss only. We report the joint reconstruction error
(trained as per Protocol 2 of [4]) and therefore compare
with those methods that don’t use mesh supervision for this
dataset in Table 3.

4.2. Implementation Details

Data Pre-processing We use the ground truth bounding
boxes from each of the datasets to obtain a square crop
of the human. This is a standard step performed by most
comparative 3D human reconstruction models.

Network Training We use Nvidia’s GTX 1080Ti, with
11GB of VRAM to train our models. A batch size of 64 is
used for SURREAL and Human 3.6M datasets and a batch
size of 16 for UP3D dataset. We use the ADAM optimizer
having an initial learning rate of 10−4, to get optimal per-
formance. Attaining convergence on the SURREAL and
Human3.6M takes 18 hours each, while on UP-3D takes 6
hours. We use the standard splits given by the datasets, for
benchmarking, as indicated in Section 4.1.

Procrustes Analysis (PA) In order to evaluate the quality
of the reconstructed mesh, we also report results after
solving the Orthogonal Procrustes problem [9], in which
we scale the output to the size of the ground truth and solve

for rotation. Additionally, we also quantitatively evaluate
without this alignment.

Evaluation Metric

(a) Surface Error (mm): Gives the mean-per-vertex error
between the ground truth and predicted mesh.

(b) Joint Error (mm): Gives the mean-per joint error be-
tween the ground truth and predicted joints. All re-
ported results are obtained from the underlying joints
of the mesh, rather than the alternate branch, unless
otherwise mentioned.

(c) PA. Surface/Joint Error (mm): It is the surface/joint
error after Procrustes Analysis (PA).

4.3. Comparison with State-of-the-art

Baseline We define our baseline as the direct prediction of
a point cloud from an RGB image, using a Resnet-50. This
enables us to show the novelty introduced by our pipeline
and the usefulness of learning in this output space.

Results & Discussion For qualitative results on all of the
three datasets refer to Figures 5, 6. A large amount of
training data is required to learn a vast range of poses and
shapes. However, [30, 20] show a good domain transfer to
real data by training on the synthetic SURREAL dataset.
Since our supervision is dominated by surface meshes,
SURREAL plays an important role in benchmarking our
method. We show comparable performance on it, as indi-
cated by Table 2. In Table 2, we also show our results with
a subsampled mesh (subsampled as per [13]) from 6890
to 1723 vertices with almost no change in reconstruction
error. This is a good proof of our hypothesis that there are
far fewer representative points to learn in this structured
point cloud.

UP-3D is an ”in the wild” dataset, however, has inac-
curate ground truth mesh annotations, as shown in Fig-
ure 4. Most circumvent this issue, by avoiding 3D super-
vision altogether and projecting back to a silhouette or key-
points [12, 20]. Further, training on such a small dataset
doesn’t provide a good generalisation. Therefore, we ob-
serve a higher error in HMNet. However, HMNetOracle
produces a significant increase in accuracy with the increase
in quality of the input image and segmentation mask (Ta-
ble 4). Similar to state-of-the-art methods [29, 31, 13],
we rely on 3D body supervision and providing more super-
vision like silhouette and 2D keypoint loss like [29, 12]
can improve the performance further. For Human3.6m, we
compare with those that don’t use mesh supervision (since
this data is currently unavailable) and achieve comparable
performance.
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Figure 5: Qualitative Results on SURREAL [30] (first six columns) and UP-3D [14] (next six columns) where (a) represents
the input view, (b) our mesh reconstruction aligned to the input view, and (c) aligned to another arbitrary view.

Surface Joints PA. Surface PA. Joint
Output Method Error Error Error Error

P Pavlakos et al. [20] 117.7 - - -
P Lasner et al. [14] 169.8 - - -
P NBF [19] - - - 82.3
V BodyNet [29] 80.1 - - -
S Baseline 151.4 130.8 93.8 83.7
S HMNet 130.4 112.5 77.6 69.6
S HMNetOracle 60.3 51.5 42.9 37.9

Table 1: Comparison with other methods on UP3D’s full test set [14].

Surface Joint
Output Method Error Error

P
Tung et al. [28] 74.5 64.4

Pavlakos et al. [20] 151.5 -
SMPLR [16] 75.4 55.8

V BodyNet [29] 65.8 -

S Baseline 101 85.7
HMNet[subsampled] 86.9 72.4

HMNet 86.6 71.9
HMNetOracle 63.5 49.1

Table 2: Comparison with state-of-the-art methods on SUR-
REAL’s test set [30].

3D mesh PA. Joint
Supervision Method Error

No

Ramakrishnan et al. [21] 157.3
Zhou et al. [36] 106.7
SMPLify [4] 82.3

SMPLify 91 kps [14] 80.7
Pavlakos et al. [20] 75.9

HMR [12] 56.8
HMNet(Ours) 60.9

Yes
NBF [19] 59.9

SMPLR [16] 56.4
CMR [13] 50.1

Table 3: Joint Reconstruction error as per Protocol 2 of
Bogo et al. [4] on Human 3.6M [11]. Refer to Section 4.1
for details on 3D mesh supervision.
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Figure 6: Qualitative Results on Human3.6M, where (a) represents the input view, (b) our mesh reconstruction aligned to the
input view, and (c) aligned to another arbitrary view.

4.4. Discussion

Ablation Study: Directly regressing the mesh from
RGB leads to sub-par performance. Limbs are typically the
origin of maximum error in reconstruction, and the segmen-
tation mask provides a better tracking in scenarios such as
leg-swap shown in Figure 7. The first two rows of Table 4
quantitatively explain this behaviour. Further, by having a
more accurate segmentation mask, HMNetOracle achieves
a significant reduction in surface error (↓ 34.7mm). In
scenarios with inaccurate ground truth 3D (Figure 4), the
regularisation 3D joint loss in our multi-branch setup helps
us in recovering better fits (row 4 for UP3D). In datasets
such as Human3.6m where accurate MoCap markers are
given, this multi-branch loss provides a good boost - with
and without joint loss, the joint reconstruction error is
60.9mm v/s 67.3mm respectively.

(a) (b) (c) (d) (a) (b) (c) (d)

Figure 7: Given an input RGB image (a), this figure de-
picts a comparison of the baseline (b), against our output,
HMNet (d). The predicted part-wise segmentation mask (c)
assists HMNet to track the body parts and therefore solve
the confusion between the legs as well as complex poses.

Effect of Mesh Regularisation Our mesh regularization
module adds a smoothing effect while training, therefore
ensuring that the entire local patch should move towards the
ground truth for minimizing the error. Although intrinsic
geometry based losses can also be used here, we hypothe-
size that they have a larger impact when more complex local
surface deformations (e.g., facial expressions) are present.
Figure 8 shows the impact of this regularization.

Config. Input PA. Surface PA. Joint
Error Error

Baseline RGB 93.8 83.7
Single Task SMDP 82.9 74.6
Single Task RGB+SMDP 79.2 71.04

HMNet RGB+SMDP 77.6 69.6
HMNetOracle RGB+SMGT 42.9 37.9

Table 4: Effect of each network module on the reconstruc-
tion error on UP-3D dataset. SMDP and SMGT denotes
segmentation obtained from Densepose and groundtruth re-
spectively.

Figure 8: Results showing the effect of our mesh regular-
ization module while learning. The figure on the left shows
the irregularities in the mesh reconstructed, without our reg-
ularization, while the one on the right shows the smoothness
induced by our regularizer.

Recovering Shape Variations Most parametric mod-
els prediction work with a neutral template model [12],
and would have to learn the gender from the image. In
our method, a direct mesh regression can learn the local
shape variations (as long as training data has such varia-
tions) which extend to inherently learning gender invariant
meshes. Two such samples are showing in Figure 9.
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Figure 9: Sample Shape Variations recovered by our model
given an input image (a), rendered from the recovered view
(b) and another arbitrary view (c)

Generalizability to Hand Mesh Models. We show the
generalizability of our model to a similar task with a
different structure. First, we populated a SURREAL like
synthetic hand dataset using the MANO hand model [23],
similar to [8] with a total of 70,000 image-mesh pairs. We
train our model on this dataset to predict hand surface and
joints from an input RGB image using the same pipeline
described in Figure 2. The training setting remains the
same as earlier, and we obtain impressive qualitative results
as shown in Figure 10. The average surface error across
the test dataset is 1mm, which acts as a proof of concept
that polygonal mesh reconstruction of non-rigid hands
(although in a simplistic scenario), is feasible.

(a) (b) (c) (d) (e) (f)

Figure 10: Reconstruction Results on our Hand Mesh. Each
column consists of the RGB image, its corresponding re-
construction from the same view, and from another arbitrary
view.

Network Runtime. Table 5 list out run-time of various
methods. Comparing this with HMNet with HMNetOracle,
it is evident that a major part of HMNet’s complexity arises
from the multi-human pixel wise class prediction, which
runs at around 30 FPS for an image of size 224x224. [6] is
an accurate real time body part segmentation network which
runs at 120 FPS, and can be incorporated into our system to
produce accurate, real time reconstructions.

Limitations and Future Work. Since we do not enforce

Method Output FPS
SMPLify [3]

P
0.01

SMPLify, 91 kps [14] 0.008
Decision Forests [14] 7.69

HMR [12]
P

25
Pavlakos [20] 20

Direct Prediction [14] 2.65
Baseline

S
175.4

HMNet 28.01
HMNetOracle 173.17
Fusion4D [7] S 31

Table 5: Overview of the run time (in Frames Per Second,
FPS) of various algorithms. Numbers have been picked up
from the respective papers. All methods have used 1080Ti
or equivalent GPU.

any volume consistency, skewing/thinning artifacts might
be introduced in our meshes. We would like to account
for these in a non-handcrafted anthropomorphically valid
way by either learning the SMPL parameters on top of it
using an MLP similar to [13] or by using a GAN to pe-
nalize fake/invalid human meshes. Further, we have made
use of the mesh topology in two ways in this work - (a)
implicitly, to make the learning easier and (b) for smooth-
ing. Going ahead, we would like to make use of the mesh
topology and geometry details is a more explicit manner, by
using intrinsic mesh/surface properties. We believe that this
is a largely unexplored space and applying such a regular-
ization can result in better exploitation of surface geometry
for reconstruction.

Figure 11: Failure Cases of Our Method.

5. Conclusion

We proposed a multi-branch multi-task HumanMeshNet
network that simultaneously regresses to the template mesh
vertices as well as body joint locations from a single monoc-
ular image. The proposed method achieves comparable per-
formance with significantly lower modelling and computa-
tional complexity on three publicly available datasets. We
also show the generalizability of the proposed architecture
for a similar task of predicting the mesh of the hand. Look-
ing forward, we would like to exploit intrinsic mesh prop-
erties to recover a more accurate surface reconstruction.
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