

Semantic Classification of Boundaries of an RGBD Image Nishit Soni¹, Anoop M. Namboodiri¹, C. V. Jawahar¹, Srikumar Ramalingam² ¹CVIT, IIIT Hyderabad, ²Mitsubishi Electric Research Lab (MERL), Cambridge, USA.

Objective

- Goal: Classify edge pixels in an image into occluding, convex, concave and planar entities using RGBD data.
- Occluding edges result from depth discontinuities and convex/concave edges result from normal discontinuities. Planar edges may result from shadows, reflection, specularities and albedo variations.

- We use both image and depth cues to infer the labels of edge pixels.
- Given a set of edge pixels from an edge detection algorithm, the goal is to assign one of the four labels to each of these edge pixels.
- Each edge pixel is uniquely mapped to one of the contour segments. Contour segments are sets of linked edge pixels.
- We formulate the problem as an optimization on a graph constructed using contour segments.
- Unary potentials are comptued from a Random forest pixel classifier.

Classification outpu

Pb edge

MRF outpu

Figure 1 : This figure summarizes the pipeline of our approach. It shows RGB and depth maps as input (1st image set), with Pb edge detection [3] (2nd image). The classification and MRF outputs are shown in the last two images respectively. Color code: red (occluding), green (planar), blue (convex), yellow (concave).

	Occluding	Planar	Convex	Concave
Recall	0.85	0.92	0.70	0.78

The feature vector uses simple yet robust geometric depth comparisons. • We use a simple Potts model for pairwise potentials.

Gupta et al. [1] Recall	0.70	0.84	0.52	0.67
Our Recall on NYU	0.76	0.85	0.56	0.69
Precision	0.86	0.81	0.93	0.89
Gupta et al. [1] Precision	0.71	0.75	0.72	0.71
Our Precision on NYU	0.79	0.80	0.77	0.71
F-measure	0.86	0.86	0.80	0.83
Gupta et al. [1] F-measure	0.71	0.79	0.61	0.69
Our F-measure on NYU	0.77	0.83	0.65	0.70

Table 1 : Precision, Recall and F-measure for each edge type on our and NYU datasets. 1st and 2nd rows of each set gives the results of our approach and comparison with [1]. The 3rd row in each set shows the results of our approach on NYU dataset.

	Occluding	Planar	Convex	Concave
Pixel Recall	0.82	0.87	0.69	0.75
Final Recall	0.85	0.92	0.70	0.78
Pixel Precision	0.84	0.85	0.90	0.86
Final Precision	0.86	0.81	0.93	0.89
Pixel F-measure	0.83	0.86	0.78	0.80
Final F-measure	0.86	0.86	0.80	0.83

Table 2 : Precision, recall and F-measure for each edge type without and with pairwise potentials.

A set of 8 points on either side of an edge pixel is considered while computing the features.

Experiments

- Annotated dataset of 500 RGBD images of varying complexities. Train to test ratio is 3:2. Algorithm tested on 100 images of NYU dataset [2].
- Recall, precision and F-measure used to evaluate the performance of the labeling algorithms (see Table 1).
- Table 2 shows the effect using pair-wise terms in classification of edge pixels and edge contour segments.
- We achieve an average F-score of 0.82 on edge classification. Use of smoothness constraints in the MRF improves it to 0.84 on our dataset. On the NYU dataset, we get an F-score of 0.74.
- Comparison of results from Gupta et al. [1] is done by computing their results on our dataset of annotated edges (see Table 1).

Classifier and MRF

- Features are extracted at each edge pixel and consists of simple yet robust geometric computations on the neighborhood pixels.
- A random forest classifier (30 trees) is used to assign the likelihood of each edge pixel for the four classes.
- Edge labeling is formulated as an inference problem in a graph, where the nodes take different labels or states.
- Contour segments form the nodes and their junctions provide the connectivity.
- The liklehood scores of edge pixels provide the unary potential. Pairwise term is based on a simple Potts model.

Figure 2 : Ground truths (above) and the corresponding results from our approach (below). Color code: red (occ), green (pln), blue (cvx), yellow (ccv).

Discussion

- We achieve high precision for each type of edge. Recalls are also high except for convex and concave edges. This is primarily a result of poor depth quantization or depth registration around the edge pixel.
- We are able to correctly classify complex convex/concave edges even with narrow regions having steep slope on either sides of the edge, provided the depth map is good.
- The primary causes of errors in our approach were found to be :
- i. missing depth values from Kinect
- ii. very small depth differences for occluding edges
- While the first problem may be solved using better sensors and using image based potentials, the second would require a higher-level understanding of the scene and objects.

References

- [1] S. Gupta, P. Arbelaez, and J. Malik. *Perceptual organization* and recognition of indoor scenes from RGBD images. In CVPR, 2013.
- [2] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support inference from RGBD images. In ECCV, 2012.
- [3] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI, 2004.

Code and dataset available at : http://cvit.iiit.ac.in/projects/semanticBoundaries

