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In this supplementary material, we provide additional details on optimization of our
learning objective, implementation details, and visualization of the learning process. We
also provide additional results of training a different architecture for human pose estimation
on two data sets.

1 Optimization
In this section, we provide details of optimization presented in section 3.5 of the paper.

1.1 Learning Objective
We represent the prediction distribution using a DISCO Net, which we denote by Prw, w
being the parameter of the network. Similarly, we represent the conditional distribution using
a set of DISCO Nets, which we denote by Prθθθ . The set of parameters for the conditional
networks is denoted by θθθ . We compute samples from the prediction network as {hw

k ,k =

1, · · · ,K}, and samples from conditional network as {h′θθθk ,k = 1, · · · ,K} for a given training
sample. The unbiased estimated value of the learning objective (Equation (5) of the main
paper) can be written as follows:
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In order to minimize the dissimilarity coefficient between the parameters of the pre-
diction and the conditional distributions, we employ stochastic gradient descent. We note
that jointly optimizing the objective function over the parameters of the prediction and the
conditional distribution networks is expensive in terms of memory and time, as it involves
optimizing two networks together. Therefore, first, we initialize the two networks by train-
ing them with the small amount of fully annotated pose data. We then perform iterative
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optimization using block coordinate descent to first train the parameters of the prediction
and conditional distribution and then proceed with more expensive joint optimization. Al-
gorithm for optimizing these two sets of parameters are shown in the following subsections.
Using this hybrid training strategy, we reduce the training complexity without compromising
on the accuracy.

1.2 Iterative Optimization

The coordinate descent optimization proceeds by iteratively fixing the prediction network
and estimating the conditional networks, followed by updating the prediction network for
fixed conditional networks. The parameters of both the set of networks are initialized using
the small amount of fully supervised samples available in the data set. The main advantage of
the iterative strategy is that it results in a problem similar to the fully supervised learning of
DISCO Nets at each iteration. This, in turn, allows us to readily use the algorithm developed
in [3]. Furthermore, it also reduces the memory complexity of learning, thereby allowing us
to learn a large network. The two steps of the iterative algorithm are described below.

Optimization over Conditional Network For fixed w, the learning objective corresponds
to the following:
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The above equation can be expanded as,
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The above objective function is similar to the one used in [3] for fully supervised learning.
Similar to [3], we solve it via stochastic gradient descent. Note that since it is possible to
generate samples from both the prediction and the conditional network, we can obtain an
unbiased estimate of the gradient of the objective function (3). As observed in [3], this is
sufficient to minimize the learning objective in order to estimate the DISCO Net parameters.

The above objective function is solved via stochastic gradient descent, as shown in Al-
gorithm 1.

Algorithm 1 Optimization over θ

Input: Data set D and initial estimate θ 0

for t = 1 . . .T epochs do
Sample mini-batch of b training example pairs
for n = 1 . . .b do

Sample K random noise vectors zk
Generate K candidate output from Prw(x,zk) and Prθθθ (x,zk)

end for
Compute F(θ) as given here in equation (3) here.
Update parameters θ via SGD with momentum

end for
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Optimization over Prediction Network For fixed θθθ , the learning objective corresponds
to the following:
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The above equation can be expanded as,
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Once again, using the fact that it is possible to obtain unbiased estimates of the gradients of
the above objective function, we employ stochastic gradient descent to update the parameters
of the prediction network.

Similar to the conditional network, the above objective function is optimized by using
stochastic gradient descent as shown in Algorithm 2.

Algorithm 2 Optimization over w
Input: Data set D and initial estimate w0

for t = 1 . . .T epochs do
Sample mini-batch of b training example pairs
for n = 1 . . .b do

Sample K random noise vectors zk
Generate K candidate output from Prθθθ (x,zk) and Prw(x,zk).

end for
Compute F(w) as given in equation (5) here.
Update parameters w via SGD with momentum

end for

1.3 Joint Optimization
Although the iterative optimization provides for faster convergence of our objective function,
this approach of finding a local minima along one coordinate direction at the current point, in
each iteration, often leads to an approximate solution with respect to the optimization prob-
lem at hand. To address this problem and find accurate local minima of our non-convex ob-
jective (equation (5) of main paper), we perform joint optimization of our objective function
by employing stochastic gradient descent to update the parameters of both conditional and
prediction distribution networks. We obtain the gradients by computing the unbiased esti-
mate of our objective function and update the two networks using stochastic gradient descent
as shown in Algorithm 3. Additionally, we initialize our parameters of the networks corre-
sponding to the two distributions with the values obtained after the iterative optimization.
This initialization strategy also reduces the number of iterations required for convergence,
thus reducing the training time complexity.

2 Visualization of the Learning Process
We provide visualization of the iterative learning procedure as discussed in the optimization
section of the main paper. We show a hundred different pose estimates of two examples, of
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Algorithm 3 Joint Optimization over w,θθθ

Input: Data set D, learning rate η , momentum m,
and initial estimate w0,θθθ 0

for t = 1 . . .T epochs do
Sample mini-batch of b training example pairs
for n = 1 . . .b do

Sample K random noise vectors zk
Generate K candidate output from Prθθθ (x,zk) and Prw(x,zk).

end for
Compute F(w,θθθ) as given in equation (1) here.
Update parameters w via SGD with momentum

end for

varying difficulty, over the iterations of the optimization algorithm. The pose estimates are
superimposed on the image. Hence, if all the pose estimates agree with each other, the lines
depicting the samples will be thin and opaque. In order to represent the low uncertainty in the
pose estimates of this image, we will draw a green bounding box around the image. For such
images, the expected loss is less than 3. In contrast, if the pose estimates vary significantly
from each other, then the lines depicting the samples will be spread out and less opaque. In
order to represent the high uncertainty in the pose estimates of this image, we will draw a
blue bounding box around the image. For these samples, the expected loss is more than 3.

The first case shown in figure 1 represents an easy case where the initial prediction and
conditional networks, Prw and Prθθθ , trained only on the fully annotated training set, have
low uncertainty for the predicted pose. In these images, there are no occlusions of any
human part, and the person present in the image is in the standard pose for the particular
action he is performing. For such cases, the fully annotated training data set is enough to
train the prediction network such that it has high confidence in the estimated pose, and they
do not require weakly supervised training. However, even in such cases, we see a minor
improvement in the estimated pose over the iterations of the optimization algorithm.

Figure 2 represents a moderately difficult example. Typically, such examples are those
where a person is performing commonly occurring actions, like exercising, riding a bike or
skate board, or running. In such examples, some joints are occluded and the person in the
image is in some variation of the standard pose for a particular action he is performing. The
majority of the data set are comprised of moderately difficult examples. In such cases, the
prediction network Prw has high uncertainty over the predicted pose, but conditional network
Prθθθ has high confidence and therefore low uncertainty over the predicted pose. Here we
observe that over the iterations, the prediction network gains confidence as the information
present in the conditional network is successfully transferred to it.

The final case, shown in figure 3 represents a difficult example, where the person is per-
forming an unusual or rare action, like underwater swimming or a person kicking a ball in
the air. The rarity of such poses in the supervised training set means that both prediction
and conditional networks, Prw and Prθθθ , have high uncertainty in the predicted pose. How-
ever, over the iterations, by using the information gained from other simpler examples in the
weakly supervised data set, the accuracy for such cases improves significantly.
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Figure 1: Example of superimposed pose predictions by DISCO Nets illustrating the uncer-
tainty in the pose across training iterations for an easy case. The blue box around the images
represent a high diversity coefficient value, and the green box around them represents low di-
versity coefficient value. Columns 1 and 3 are outputs of the prediction network and columns
2 and 4 are outputs of conditional network. Row 1 represents initial prediction of networks;
rows 2 and 3 represents prediction of networks in second and fifth iteration respectively and
last row represents prediction of networks when they have converged. The images in the first
and second column show an easy example of a person standing straight with his one hand
held out and the third and fourth columns show a person standing in relaxed upright pose.
where both the conditional network and the prediction network performs well from the be-
ginning of the optimization procedure. For each example, the first column shows estimated
pose from prediction network and the second column shows estimated pose from conditional
network. Best viewed in color.
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Figure 2: Example of superimposed pose predictions by DISCO Nets illustrating the uncer-
tainty in the pose across training iterations for examples with moderate difficulty. The blue
box around the images represent a high diversity coefficient value, and the green box around
them represents low diversity coefficient value. Columns 1 and 3 are outputs of the predic-
tion network and columns 2 and 4 are outputs of conditional network. Row 1 represents
initial prediction of networks; rows 2 and 3 represents prediction of networks in second and
fifth iteration respectively and last row represents prediction of networks when they have
converged. The images in the first and second column show a common action of a person
exercising and the third and fourth column shows a person riding a skate board. In these
cases, the conditional network performs well from the beginning of the optimization pro-
cedure. At convergence, both the prediction network provides accurate pose estimates for
such moderately difficult images by transferring information from conditional network. For
each example, the first column shows estimated pose from prediction network and the second
column shows estimated pose from conditional network. Best viewed in color.
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Figure 3: Example of superimposed pose predictions by DISCO Nets illustrating the uncer-
tainty in the pose across training iterations for difficult examples. The blue box around the
images represent a high diversity coefficient value, and the green box around them repre-
sents low diversity coefficient value. Columns 1 and 3 are outputs of the prediction network
and columns 2 and 4 are outputs of conditional network. Row 1 represents initial prediction
of networks; rows 2 and 3 represents prediction of networks in second and fifth iteration
respectively and last row represents prediction of networks when they have converged. The
images in the first and second column show a rare action of person swimming underwater,
and the third and fourth columns show a person in an unusual pose, where he is kicking
the ball in air. Such rarity in pose leads to high uncertainty in both the networks initially.
At convergence, both the networks provided accurate pose estimates for the difficult image
by learning from the easier images. For each example, the first column shows estimated
pose from prediction network and the second column shows estimated pose from conditional
network. Best viewed in color.
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3 Implementation Details
In this section, we provide the details of our experimental setup. We construct Prw by taking
a standard architecture for human pose estimation, namely, the stacked hourglass network
[5]. A noise filter of size 64×64 is added to the output of the penultimate hourglass module,
which itself consists of 256 64× 64 filters. The 257 channels are convolved with a 1× 1
filter to bring the number of channels back to 256. This is followed by a final hourglass
module as shown in figure 2 (closely following stacking approach of Stacked Hourglass
network [5]. We note that all parameters remain differentiable and hence can be trained via
backpropagation as discussed in Section 1 of the supplementary.

The conditional network Prθθθ is modeled exactly as the prediction network Prw, except
that there are a different output branches (consisting of 1 hourglass module), one for each
possible action class, stacked on top of penultimate hourglass module. Note that for each
action class, we have a unique set of noise filters. During forward and backward propagation
of the conditional network given an image from a particular action class, we mask the output
from every other branch not corresponding to that particular action class.

The non probabilistic pointwise network is a DISCO Net that uses the architecture shown
in figure 2 (of the main paper), but discards the last two self-diversities terms in the learning
objective (Equation (5) of main paper), and whose pointwise prediction is computed by
principle of maximum expected utility (MEU) (Equation (1) of main paper). We refer this
pointwise network as PW Net.

For the given data set D, as given in section 4 of the paper, we train our three networks,
FS, PWw and Prw on the fully annotated training set. We note that after data augmentation,
our training set (fully annotated data and the weakly annotated data) for each split, becomes
4× larger, and for the FS network, we additionally perform random crops such that the
number of training samples for all three networks are the same. Networks PWθθθ and Prθθθ are
first initialized by the weights of PWw and Prw respectively, then they are fine tuned using
action specific samples from the fully annotated training set. For training, we used η = 0.025
and momentum m = 0.9. We cross validated weight decay regularization parameter C in the
range [0.1,0.01,0.001,0.0001] for our baseline networks FS and PW and found that values
0.001 and 0.0001 works best for FS and PW respectively. We chose C = 0.01 for training
our probabilistic networks. Moreover, for our probabilistic network, Prw, we choose K = 100
samples. However, for a different task, it has been observed that results hold even for K = 2
[3].

While training the baseline non probabilistic point wise prediction network PW using
diverse data using self paced learning, we only backpropagate when the loss computed is
within some threshold t. For such network, the loss would be high when predicted pose
from PWw and PWθθθ are very different from each other. Applying threshold on the loss for
backpropagation ensures that these networks are only updated when both of them agree and
therefore, they do not learn from erroneous or less confident predictions.

For our probabilistic network, Prw, we do not require such threshold as the diversity
coefficient term in our objective function ensures that our network learns only from confident
predictions and not from samples when the network has low confidence. In other words, our
method has fewer parameters than the baseline.

We train all of these networks for 100 epochs and monitor the training and validation ac-
curacies for each epoch. We employ an early stopping strategy based on validation accuracy
to avoid over-fitting the data set. We save the network parameters corresponding to the best
validation accuracy and report our result on the held out test set.
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4 Results

In this section, we provide additional results of training the three network (FS, PW and Prw)
described in section 4 of the main paper.

4.1 Results on MPII data set

The detailed PcKh graphs on MPII data set by training an 8-stack hourglass network on
various setting described in the paper are presented in figure 4.

Figure 4: Total PcKh comparison on MPII when trained on (a) 25− 75 split, (b) 50− 50
split; and (c) 75−25 split.

In the figure, we can see that we consistently outperform the baseline FS and PW net-
works across all normalized distances. The networks trained on diverse data set (the PW and
the Prw network) performs significantly better on lower normalized scores than the FS net
which does not utilize the action annotations when there are only a few strong pose annota-
tions available. This shows the utility of using action annotations when pose annotations are
missing. The importance of using the probabilistic framework can be seen for lower normal-
ized distance for all three splits, where the Prw network effectively captures the uncertainty
present in the data set. We observe that as the number of supervised samples in our diverse
data set increase, the accuracy of all the networks improves for smaller normalized distance.
The joint training of the Prw network also improves the results over the iterative optimization
of Prw network.

4.2 Results on JHMDB data set

In this subsection, we provide additional results of training our various models based on
8-stack hourglass network [5] on the JHMDB data set [4] for 50−50 split.

The JHMDB data set, which consists of 33183 frames from 21 action class, have 13
annotated joint locations. We split the frames from each action class into {70,15,15}%
training, validation and test sets, which corresponds to 22883 frames in the training set, and
4150 frames in the validation and the test set. To create a diverse data set with 50−50 split,
we randomly drop pose annotations from 50% from the frames of the training set, similar to
those described in Section 4 of the main paper.

The result for training the FS, PW and Prw networks for the 50−50 split on the JHMDB
data set are summarized in table 1.

We observe that the accuracies of the three networks (FS, PW and Prw) holds similar
trends as we had seen for the MPII data set.
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Method FS PW Prw (iter) Prw (joint)
Total Accuracy 80.01 85.77 89.90 91.25

Table 1: Results on JHMDB data set (PCKh@0.5), where FS is trained using 50% percent-
age of fully annotated data and PW and Prw are trained on 50−50 split of fully annotated
and weakly annotated training data. Here FS and PW are the fully supervised and the point-
wise networks respectively, and Prw (iterative) and Prw (joint) is our proposed probabilistic
network trained with block coordinate optimization and joint optimization respectively.

5 Additional Results
To prove the generality of our method, we provide additional results using a different archi-
tecture, as proposed by Belagiannis et al. [2]. The authors pose the problem of estimating
human poses as regression and propose to minimize a novel Tukey’s biweight function as
loss function for their ConvNet. They empirically show that their method outperforms the
simple L2 loss. The point-wise architecture, consisting of five convolutional layers and two
fully connected layers is modified to a DISCO Net as shown in the figure 5 below. A 1024
dimensional noise vector, sampled from a uniform distribution, is appended to the flattened
CNN features, before applying fully connected layers.

Figure 5: Modified architecture, as proposed by Belagiannis et al. [2]. The figure shows
the sampling process of DISCO Net. The block CNN consists of 5 convolution layers. The
middle block is the flattened feature vector obtained after convolution. The block FC consists
of two fully connected layers.

We evaluate the performance of the FS, PW and our proposed probabilistic network Prw
on 50−50 split of two data sets, namely (i) MPII Human Pose data set [1], and (ii) JHMDB
data set [4]. The various splits of MPII Human Pose are similar to the ones described in
Section 4 of the main paper. The MPII and the JHMDB data set is split exactly as it was
done for the stacked hourglass network.

The results are summarized in Table 2. .
We observe that the results shown in Table 2 on both the data sets are consistent with our

observations on the stacked hourglass network. Networks PW and Prw trained on the diverse
data, outperforms the FS Net, which is trained only using the fully supervised annotations.
This demonstrates the advantage of using diverse learning over a fully supervised method.
Moreover, our proposed probabilistic net Prw outperforms the pointwise network PW, this
signifies the importance of modeling uncertainty over pose. We also note that performing
joint optimization, after iterative optimization step, further increases our accuracy by 1.2%
on MPII Human Pose data set and by 1.4% on JHMDB data set.
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Method MPII JHMDB
FS 41.89 54.31
PW 54.37 66.19
Prw (iterative) 56.09 71.02
Prw (joint) 57.28 72.61

Table 2: Results on MPII Human Pose data set and JHMDB data set (PCKh@0.5), where
FS is trained using 50% percentage of fully annotated data and PW and Prw are trained
on 50− 50 split of fully annotated and weakly annotated training data. Here FS and PW
are the fully supervised and the pointwise networks respectively, and Prw (iterative) and Prw
(joint) is our proposed probabilistic network trained with block coordinate optimization and
joint optimization respectively.
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