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Figure 1: Left to right: Dragon and the moving boat in the 3D cube display. Synthetic polyhedral displays: Dragon in a 120-facet display.
Cathedral in a Dodecahedral (12-facet) display and a Teapot model in a Teapot-shaped display with 1024 facets.

Abstract

In this paper, we present the design and construction of a simple and
inexpensive 3D display made up of polygonal elements. We use a
per-pixel transformation of image and depth to produce accurate
picture and depth map on an arbitrary planar display facet from
any viewpoint. Though the facets are rendered independently, the
image and depth for rays from the eye-point through the facet pixels
is produced by our method. Thus, there are no artifacts on a facet or
at facet boundaries. Our method can be extended to any polygonal
display surface as demonstrated using synthetic setups. We also
show a real display constructed using off-the-shelf LCD panels and
computers. The display uses a simple calibration procedure and can
be setup in minutes. Frame-sequential and anaglyphic stereo modes
can be supported for any eye-orientation and at high resolutions.

1 Introduction

We describe the design and realization of a view-dependent, poly-
hedral, 3D display made from multiple planar display elements in
this paper. Producing the correct picture and depth map on an ar-
bitrary planar display element for any viewpoint is at the core of
our work. Any polyhedral or piecewise planar display surface can
be constructed using it with no artifacts. Displays around which a
viewer can walk and immersive displays that engulfs the viewer can
both be produced by it. The correct picture and depth are especially
critical for multiplanar displays at intersections of planes.

Three dimensional displays are of immense interest. A survey pa-
per from Son et al. [Son et al. 2006] lists various techniques for
displaying 3D images and 3D display construction. True 3D or
volumetric displays place their pixels in a 3D space, which can be
viewed from anywhere without any eye-wear. See the sidebar in

the article by Nayar and Anand for a summary of efforts to build
3D displays, dating back to 1948 [Nayar and Anand 2007]. Most
of these are severely limited by the technology used and are quite a
few years away from being commonplace. Nayar et al. use a glass-
etching like process and trade 2D resolution for 3D viewing [Nayar
and Anand 2007]. Their display can show colors but are sparse in
resolution. The 100 million voxel display simulates 3D by rotating
a 2D plane at high speeds in a clear dome [Favalora et al. 2002].
Holographic and auto-stereoscopic displays using lenticular lenses
hold promise but haven’t been practical. GCubik [Lopez-Gulliver
et al. 2008] proposes an autostreoscopic cube display with limited
resolution based on the integral photography rendering mechanism.
Jones et al. showed a rendering engine for 360◦ viewing of light
fields [Jones et al. 2007]. They showed view-independent 3D for
a single interocular displacement direction, but was limited in size
and colors and needed a very high speed projector and rotating mir-
ror mechanism.

View-dependent pseudo 3D displays use stereoscopy and need spe-
cial eye-wear and head-tracking. The presentation could use frame-
sequential stereo and shutter glasses, or two projectors with or-
thogonal polarizations, or red-blue display and glasses, typically
on a single monitor or projection screen. The CAVE environ-
ment extends this to an immersive view in an inside-to-outside set-
ting [Cruz-Neira et al. 1993]. Our polyhedral display has a lot in
common with the CAVE. Multiplanar projection is used by both,
with each plane handled independently. The main difference is
on the per-pixel adjustment of the image and depth that eliminates
joint inconsistencies. Stavness et al. show a cube display [Stavness
et al. 2006] based on a method similar to CAVE [Deering 1992].
This approach, however, is not geometrically correct for render-
ing to such displays as explained in section 2. Multiplanar dis-
plays, multi-projector displays, and projector-camera systems all
deal with different aspects of how a picture generated for one view
can be viewed from another or projected from off-axis [Ashdown
et al. 2004; Majumder and Brown 2007]. They use homographies
to pre-adjust the images so that it appears correct after projection.
Raskar discusses the correctness aspects of projecting to a multi-
planar display from off-axis, instead of using a two-pass approach
[Raskar 2000]. The two-pass method is expensive and interpolates
the image twice. He integrates a planar homography with the pro-
jection and suggests an approximation to handle unwanted occlu-
sions due to depth scaling.

We present a method to render the correct image and depth from
a viewer’s point of view on a multiplanar display. We integrate



the homography from the view plane to the display plane with the
rendering pipeline to generate accurate views. This can produce
incorrect depth values and ordering. We correct it using a per-pixel
transformation implemented using appropriate shaders. Though a
view is produced using multiple display elements, depths from the
viewer along the view direction are stored in the frame buffer of
each display. This guarantees consistent views on the facets and
facilitates the construction of arbitrary planar displays that align
well at the boundaries. We show results on a real cube display we
constructed and on several simulated arbitrary, polyhedral displays
in the paper and in the accompanying video.

2 Accurate View-Dependent Rendering

Since the viewer has a position and a look-direction, a symmet-
ric frustum about the view direction will preserve maximum detail.
Figure 2 shows the view plane corresponding to such a frustum in-
tersecting with a cube display. The view will be distributed to mul-
tiple display elements or facets. Let Cv be the viewer camera, Iv

the desired view, and Ii the image shown on facet i. The mapping
from Iv to Ii is a planar homography representable by a 3×3 matrix
Hiv . Each visible display facet will have such a homography.

Virtual Plane

C1
C2

C3
Cv

(0, 0)

C2 C2

(x3, y3)

(x2, y2)

(x1, y1)

(x4, y4)

Image as viewed from Cv Image after transforming to C2

Figure 2: Top: Viewer camera Cv viewing the cube. Bottom: Cor-
respondence between viewer image and display surface for homog-
raphy computation

Computing facet homography: The 3D coordinates of each
facet’s corners as well as the position and orientation of the viewer’s
eye are known in a common frame. The polygonal display area of
the facet i can be projected using Cv , giving image points corre-
sponding to facet corners. The match between points in Iv and one
facet of the cube display is shown in Figure 2. This establishes a
correspondence between the screen coordinates of facet i and the
viewer-image coordinates. In addition, the normal indicating the
viewing side of the facet is also known. These can be used to com-
pute Hiv for facet i so that the image Ii on facet i and viewer image
Iv are related using the equation Ii = HivIv . We use the algorithm
outlined in the book [Hartley and Zisserman 2004] to compute ho-
mography for each facet.

Projecting with facet homography: Each facet image Ii is ren-
dered independently using an appropriate camera. The image Ii can
be generated by applying Hiv to the image Iv . This method has its
problems. The image Iv must first be rendered completely before
applying Hiv on every pixel. The homography is not affine and is
defined only up to an unknown, per-pixel scale factor. The com-

puted image has to undergo perspective division. To avoid holes in
the images, the homography is usually applied in the reverse from
Ii to Iv with interpolation to fill non-integer pixels of Iv . This sec-
ond round of interpolation can result in more blurring. We can avoid
the additional computation load and interpolation by integrating the
homography with the rendering process.

Homography in the canonical space: The graphics pipeline
transforms primitives to the canonical or normalized device coor-
dinates before applying perspective division and viewport transfor-
mation. All coordinates vary from [−1, 1] in the canonical space,
which is obtained by applying the modelling, viewing, and projec-
tion transformations. The homography between Ii and Iv can be
computed equivalently in the canonical space of camera Cv . The
perspective division and interpolation stages follow the homogra-
phy in the rendering pipeline. This avoids additional computations
as well as the second round of pixel interpolations. This procedure
was outlined in the context of correcting for an off-axis projection
by Raskar [Raskar 2000].

We compute the homography Hiv in the canonical space of Iv and
Ii instead of the pixel space shown in Figure 2. The corresponding
coordinates of each facet should lie in the range [−1, 1]. The ho-
mography transformation for each facet can be estimated from the
correspondences and applied to the projection matrix. The process
of transforming a scene X to the facet i can now be given by the
equation Ii = V PdHivPMvX, where Pd represents perspective
division transformation and V the viewport transformation. P and
Mv are the projection and modelview matrices of the camera Cv .

2.1 Depth Correction

The above scheme generates the correct image for each facet in
a single pass. However, the final depth values may not lie in the
range [−1, 1]. This effect can be understood as follows for a point
(Xc, Yc, Zc) in the camera frame.264x′′y′′
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The final depth value z′′ after applying the homography is in gen-
eral not in [−1, 1] as Iz ∈ [−1, 1]. The relative ordering may also
be affected since w′ is a function of Ix and Iy . Applying a uni-
form z-scale factor s < 1 to all points can bring the depths within
the range, but not guarantee correct ordering (Figure 4(a)). Raskar
[Raskar 2000] suggests a scale factor of (1−|h31|−|h32|). This
doesn’t solve the problem and severe artifacts can occur due to re-
duced depth resolution (“z-fighting”) and near plane clipping. Mul-
tiplanar displays can have serious artifacts at the junctions of dis-
play planes by using this method as shown in Figure 4(b).

CAVE [Cruz-Neira et al. 1993] uses the oblique frustum projection
approach which can be used in our case. The method would be
to render each facet using a view plane parallel to the facet and
oblique frustum boundaries (Figure 3). Such rendering will have
high depth errors as the scene resides in the corners of a frustum
with a wide field of view(fov) [Akeley and Su 2006]. In the inside-
out display configuration of CAVE the fov is rarely large enough to
see these artifacts, but not so for an outside-in configuration that we
use, as seen in Figure 4. This results in poor z-resolution at facet
boundaries and produce visible artifacts in the display as seen in
Figure 4(c).
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Figure 3: The CAVE and polyhedral display setups with off-axis
frustas. Note the large fov and corner viewing for polyhedral dis-
play using this approach
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Figure 4: Solving the depth problem: comparison of approaches

Per-Pixel Depth Computation: We solve the problem exactly by
setting the depth values for each pixel as:
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Iw
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=
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−Zc
∈ [−1, 1]. (2)

Thus, the depth buffer for each facet will have the depths from the
viewer camera Cv . The image of a facet is modified by its homog-
raphy, however. The depth resolution is exactly same on all facets,
ensuring uniformity at the junctions.

We change the depth of each pixel in a fragment shader. The shader
has access to z′. The z-coordinates of the polygon vertices are sent
by the vertex shader. The rasterizer interpolates it and makes Zc

available to each pixel. The shader computes z′′′ as a ratio of these
two and sends it to the framebuffer. The image is rendered correctly
since the projection matrix is pre-multiplied by the homography.
Figure 4(d) shows the correct picture with perfect alignment at a
facet boundary for the same view.

2.2 Rendering Algorithm

The multiplanar rendering algorithm first finds the visible faces and
computes the homography from Iv to each. The scene is then ren-
dered for each facet. The modelling and viewing transformations
are the same for all facets; the projection matrix Pi for facet i is set
as HivPv . The process is outlined in Algorithm 1 along with the
vertex and fragment shaders.

Algorithm 1 PolyhedralView

1: {Main algorithm}
2: while Rendering do
3: GetViewerPosition()
4: Mv ← Modelview matrix, P ← Projection matrix
5: for each visible face i of the display do
6: Set Modelview matrix for face i as Mv

7: Hiv ← ComputeHomographyForFace(i, P, Mv)
8: Set Projection matrix for face i: Pi ← HivP
9: Render the scene using vertex and fragment shaders

10: end for
11: end while
12:
13: {Vertex Shader(V)}
14: Perform fixed-pipeline operations for vertex and lighting
15: Compute camera space vertex coordinates Vc

16: Send Vc to pixel shader with interpolation
17: Set z coordinate of output vertex as −1 for Early-Z safe
18:
19: {Fragment Shader(V)}
20: Perform fixed-pipeline operations for color
21: Transform Vc to canonical space as V ′

c

22: Divide z coordinate of V ′
c by z coordinate of Vc, set it as depth.

The vertex shader sends camera-space vertex coordinates down the
pipeline for interpolation. Our scheme stores viewer-camera depth
values in the Z-buffer as explained above. The depth range due to
the projection matrix Pi for facet i lies in another range and should
not be compared with the stored values. We, therefore, disable
early-Z culling by assigning a constant depth of −1 to all vertices.
The rasterization is not affected by it and the correct depth values
are computed later by the fragment shader. The fragment shader
gets the camera coordinates of its 3D point, which is transformed
to z′ = Iz (Equation 1) using the current projection matrix. Divid-
ing Iz by the camera space Z gives the viewer-camera depth for the
fragment, which is sent down the pipeline.

3 Display Construction

We now describe the construction of a general polyhedral display
with special reference to an inexpensive cube-display. Our scheme
can use any piecewise-polygonal arrangement of display elements.
The display geometry is specified using a model, with vertices,
polygons, and normals. The above algorithm is used to render to
each facet independently. There are no artifacts at the boundaries
as the rendering is geometrically correct. The corner coordinates
of the display elements in a global coordinate system is all that is
needed, along with the viewer location.

The displays can be made out of LCD panels or projection screens.
LCDs are cheaper, more accessible, and easier to setup. The LCDs
should be setup in the desired configuration and its geometry given
as input to the system. Any head-tracking mechanism can be used.
We try the inexpensive ones: the Wiimote and a webcam with AR-
Toolkit. ARToolkit [ARToolkit 2002] allows greater flexibility and
only needs one marker in view at any time. Large working volume
and sufficient robustness is obtained with multiple markers.

3.1 Cube Display

We illustrate the construction of a 3D display cube. Our method
can easily be scaled to any polygonal shape. The cube is made up
of up to 5 LCDs. We use off the shelf LCDs to construct the display
shown in Figure 5. We can take a fixed geometry file to specify the



display or infer it using a calibration step.

LCD Panel 3 

Markers Used for
Head Tracking

LCD Panel 1 LCD Panel 2

Camera Used for Head Tracking

Figure 5: The 3D cube display with markers and the webcam.

Calibration: Calibration is the process of establishing a common
reference frame for the display as well as the locations of the corner
points of each facet in it. We calibrate the cube using a simple pro-
cedure. The dimensions of the display area of the LCD panel are
known. Each panel has a pair of unique markers attached rigidly
to it for the use of ARToolkit. One marker of one of the facets is
designated as the origin. We first establish the transformations to
each facet’s markers by moving the camera slowly around the setup
so that adjacent pairs of facets are visible in several frames. In the
next step, the transformation between the corners of each facet’s
display area and its markers is calculated independently. This is
done by displaying an ARToolkit marker at the very center of the
screen. This helps recover the plane of the display and its center
point. Combined with the given dimensions, the facet’s corners are
now fully known. The cube can be calibrated in less than a minute,
with no special hardware or equipment. We also provide tools to
interactively adjust the calibration parameters, if the automatic pro-
cess is not sufficient. Planes can be adjusted interactively to correct
their positions. This procedure can be extended to a general polyg-
onal display. If each facet is considered independent – as when built
from independent LCDs, – markers need not be fixed on each. One
set of markers will suffice for a set of facets if they follow a known
rigid configuration.

Mono and Stereo Display: Our display can be turned into a 3D
display by generating left and right-eye views for each facet and
using a stereoscopic image delivery mechanism. The rendering
technique presented in Section 2 can do this easily. Our scheme
places no restrictions on the head pose; the head can be oriented in
any angle at any time. This is in contrast to the recent 3D display
[Jones et al. 2007] that supports only one orientation at a time due
to the basic construction issues. We use anaglyphic stereo using
red/blue channels and matched glasses for the inexpensive 3D dis-
play. Frame-sequential or shutter-glass based display can be con-
structed using high-frequency LCDs and shutter glasses.

Rendering to Multiple Facets: The rendering load grows lin-
early with the number of facets as the scene needs to be rendered
for each of them. Our low-cost setup uses distributed rendering,
with each facet connected to a entry-level client machine controlled
by a medium-capability server. The scene is replicated at the client
and the server. The viewer location is available to the server, who
sends it to each client. Each client also gets its homography Hiv

and renders the scene into the back buffer as described in Section
2. The server waits for all clients to complete rendering and issues
a request for all of them to swap their buffers at the same time.
This establishes adequate swap synchronization with no genlock

and is sufficient visually for monoscopic and anaglyphic display
modes. This, however, will not suffice for shutter-glass stereo. Our
medium-cost setup has two GPUs on a single machine connected to
four facets. This provides genlock and framelock and is sufficient
for all stereo display modes. The machine has to be of moderate
capacity as it has to render the scene four times. Layered render-
ing introduced in Shader Model 4 GPUs can reduce the rendering
load by using common vertex and geometry processing and sepa-
rate fragment processing for each facet.

Details of the 3D Cube: The display we built (Figure 5) uses
ordinary LCD panels and anaglyphic stereo system. The markers
used to track user’s head can be seen in the picture. We used a PC
with two Nvidia Quadro FX 5600 cards to drive a 4-panel cube dis-
play. Images from different point of views of this setup are shown
in Figure 6 and in Figure 8 on the last page. Shutter-based stereo
using Nvidia 3DVision glasses can be built using high-frequency
LCDs as the GPUs are genlocked. The client-server method was
used for a 5-panel display. Less than half a frame delay was in-
troduced by this arrangement, which was not visible. This display
supported anaglyphic stereo display and monoscopic walk-around
display. The video shows the display from the viewer’s and a third
person’s points of view. The LCDs have visible and thick borders,
which affect the quality of view. However, the display areas are
modelled correctly. Thus, the borders appear like supporting bars
of the box in which the object is kept.

Figure 6: 3D cube display displaying the Stanford Dragon Model

3.2 Synthetic Displays

Figure 7: Bunny on a Spherical and ship on an Icosahedral display

Our method can render to any polygonal display geometry cor-
rectly. Figures 1 and 7 show displays shapes like a Dodecahedron,
Icosahedron, a Sphere with 840 facets and a triangulated Teapot
model with 1024 facets. The accompanying video shows more ex-
amples. The video shows the view rendered directly to the viewer



camera on the upper right. The image at the center is generated us-
ing our method on a simulated display. The image on each facet is
generated independently using HivP as the projection matrix and
depth correction as described in Section 2. These are drawn on a
wire mesh with the facet geometry. The top-left image is a flattened
or opened-out view of the display. The facet-images and arrange-
ment can be seen in it. The per-pixel correction of the image and
depth guarantees correct rendering in each case.

3.3 Limitations of the Display

The main drawback of our scheme as a 3D display is its view-
dependence. Correct 3D is seen only from one viewpoint. Other
viewers will see a distorted scene due to the viewer specific ho-
mography being applied. This is a limitation common to most
view-dependent 3D displays. The inexpensive cube display we
made has several limitations, though it is low-cost and can be put
together quickly. The borders of the LCDs create fixed obstruc-
tions or “bars” that are distracting. The viewer tracking needs to
be more robust. Also, correction of colors across facets may im-
prove the appearance. Lack of genlock mechanism prevents the use
of frame-sequential stereo beyond the 4 panels driven by synchro-
nized Quadro GPUs. The basic method we presented, however, can
be used to construct arbitrary polyhedral, 3D displays using LCDs
with no or low borders, good head-tracking, and proper synchro-
nization of the images. Since, each facet is rendered independently,
a proportionate number of rendering stations are also necessary, in-
creasing the cost.

4 Conclusions and Future Work

We presented a design of an arbitrary polyhedral display with cor-
rect image and depth and the construction of an inexpensive cube
display in this paper. Our design is especially attractive to the low-
cost segments. Commodity LCDs and graphics hardware as well
as inexpensive head-tracking are sufficient to construct such a dis-
play. The simple calibration technique enables the setting up of
a cube display in a matter of a few minutes. The 3D display our
scheme enables has high resolution and full color. It can be built
to any size and can support any orientation of eyes for stereoscopy.
The scheme we presented can be used to drive any polygonal dis-
play surfaces. Single displays with a multiplanar surface can easily
be constructed as a single unit today. We would like to explore
rendering images correctly to such a display without being view
dependent.
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