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Abstract

We propose a semi-supervised self-training method for
fine-tuning human pose estimations in videos that provides
accurate estimations even for complex sequences. We sur-
pass state-of-the-art on most of the datasets used and also
show a 2.33% gain over the baseline on our new dataset
of unrestricted sports videos. The self-training model pre-
sented has two components: a static Pictorial Structure (PS)
based model and a dynamic ensemble of exemplars. We
present a pose quality criteria that is primarily used for
batch selection and automatic parameter selection. The
same criteria works as a low-level pose evaluator used in
post-processing. We set a new challenge by introducing a
full human body-parts annotated complex dataset, CVIT-
SPORTS, which contains complex videos from the sports
domain. The strength of our method is demonstrated by
adapting to videos of complex activities such as cricket-
bowling, cricket-batting, football as well as available stan-
dard datasets.

1. Introduction
Over the past few years, we have seen inspiring advance-

ments in different paradigms trying to solve the key prob-
lem of human pose estimation from image and video data.
Two such major paradigms are based on Pictorial Structures
(e.g. Yang and Ramanan [24]) and Deep Convolutional Net-
works (e.g. Tompson et al. [22]). These models perform
well on generic images having considerably comprehen-
sible human pose; however, in videos of complex activi-
ties such as sports, such methods turn out to be unreliable.
Such models put a higher emphasis on pairwise connections
among body-parts and regulate the configuration to follow
a generic trend that may be violated in conditions such as
playing sports. Videos are generally dealt with tracking
strategies like optical flow, SIFT-flow because of possess-
ing redundant temporal information, over a base model that
functions at a frame level. However, the generic base mod-
els have been observed irregular to be able to produce effi-

Figure 1. Three pairs of frames comparing Human-Pose estima-
tions using, first column: Yang and Ramanan’s [24] and second
column: Our full model. First two images are from CVIT-Sports-
Videos and third belongs to PIW [3] dataset. Percentage of correct
keypoints [24] (PCK) score above each frame shows the improve-
ment brought upon by our method over YR baseline.

cient per-frame estimations that can later be harnessed by
tracking strategies. The observed possible complications
faced by single image models include occlusions, back-
ground cluttering, limb foreshortening, illumination varia-
tion etc. Moreover, the system settings become restricted
when we rely on object tracking methods because of their
limitation to track parts that move rapidly, change shape or
reappear with a different outlook.

This work focuses on improving individual frame esti-
mations by using temporal information more observantly
before handing it to a post-processing smoothness strategy.
This results in a formulation that introduces resilience in
terms of becoming more independent of part tracks, greater
sequence lengths and pose complications. The strategy we
are proposing utilizes semi-supervised self-training to fine-
tune pose estimations in a video. The self-training model
is composed of two components: i) PS-based model that is
trained once initially and is used as it is for any arbitrary
test video and ii) dynamic ensemble of exemplars model
that is progressively augmented with newer examples in a
phase-wise manner for each video. The general framework
is identical to a PS-based framework in which exemplars
assist in enforcing part-level appearances to generalize to
newer videos. We will show that this amalgamation satiates
the need of strengthening the appearance term which oth-
erwise gets overridden by the pairwise score. Another intu-



ition behind our idea is that neighboring frames are likely to
have similar poses and thus, an exemplar generated from a
good estimation can help correct its temporal neighborhood.
We use Yang and Ramanan’s [24] (YR) model as the base
(considering this as a model example of the part-based PS
approach to pose estimation) because of its computational
efficiency and reliability, and build on it iteratively . For
its efficiency and ease of computation, we use Exemplar-
SVM (E-SVM) proposed by [10] to synthesize exemplars
from instances. The classifying boundary for an E-SVM is
sufficiently taut to disparage far-off indexed instances but
remains tolerant enough as to influence a temporal neigh-
borhood in a more direct manner. Some corrections done
by our combined model over YR baseline are shown in Fig-
ure 1. The eventual self-training framework is sensitive to
the correctness of instances picked in each phase. For this
purpose, we present a new pose quality ranking criteria that
prunes estimations based on their geometric configurations
satisfying certain criteria which are presumably valid for
any frontal-human pose. Scores obtained from this crite-
ria are also used for automatic parameter selection and in
post-processing as will be shown later.

We present an extensive evaluation of our method on dif-
ferent datasets having arbitrary sequence lengths, as well
as varying degrees of part motion and deformation. Poses
in the Wild [3] (PIW) and VideoPose [20] (VP) are stan-
dard datasets having background clutter and self-occlusion;
however, there is minimal camera motion, body deforma-
tion or rapid part movements which is present in most of
the outdoor videos today. For this purpose, we introduce
a new dataset called CVIT-SPORTS having pose configura-
tions that can be called extreme. Quantitative results show
that we surpass the state-of-the-art on most of the datasets
and lead by a huge margin on CVIT-SPORTS-Videos dataset.

Related Work. Past attempts [11] [1] using exemplars
to tackle human pose estimation rely on matching estima-
tions with exemplar 2D configurations. Such methods fall
short because of innumerable combinations of pose config-
urations and camera viewpoints. Relatively recent models
based on deformable part models give reliable estimations
in most real-life scenarios. After the initial work of Felzen-
szwalb and Huttenlocher [6], Yang and Ramanan [24] con-
sidered ‘types’ for each body part and performed efficient
structured learning. Sapp et al. [19] presented a multimodal
approach that captured a wider range of configurations.
Dong et al. [4] proposed a unified framework for human
parsing and pose estimation simultaneously. Pons-Moll
et al. [15] estimated 3D pose by reducing information to
boolean geometric relationships among body parts. Ye and
Yang [25] estimated pose and shape by embedding the de-
formation model into a Gaussian Mixture Model for single-
depth images. Initial attempts by Toshev and Szegedy [23]
and Ouyang et al. [13] have parameterized DeepNet archi-

tectures for this problem. Later improvements by Tompson
et al. [22] and Fan et al. [5] have successfully dealt with
more complicated configurations.

Most related to our work are methods that estimate poses
in a video sequence. Ferrari et al. [7] use a spatio-temporal
model in between consecutive frames and capture kinematic
constraints within a frame. Rohrbach et al. [18] try to
bring consistency among neighboring estimations based on
SIFT-flow information. Ramakrishna et al. [16] have pre-
sented an occlusion-aware model that uses symmetric parts
like shoulders and hands as supportive information. An-
other work by Yu et al. [26] infers 3D human poses from
frames by spectral embedding and retrieving similar candi-
dates from an exemplar database. Nie et al. [12] present
a spatial-temporal And-Or model that simultaneously pre-
dicts pose estimation and action event. Recent work by
Cherian et al. [3] mixes body part configurations across
the sequence to find best fit detections in each frame with
the underlying information provided by optical flow. Pfis-
ter et al. [14] used DeepNet architecture by incorporating
optical flow information of each part at mid-layer followed
by matching neighboring frames predictions across the se-
quence. Such methods rely heavily on their base model to
produce good estimations and fail otherwise. Besides, us-
ing object tracking strategies impose limitations for tracking
parts with deformation and high movement as can happen in
long videos having considerable human and camera motion.

2. Fine-tuning Pose Estimation using Semi-
Supervised Self-Training

Similar to [24], we denote I for a video frame, pi =
(x, y) for the pixel location of part i and part type ti for
the mixture component of part i, where i ∈ {1, · · · ,K},
pi ∈ {1, · · · , L} and ti ∈ {1, · · · , T}. G = (V,E) is a K-
node relational graph (in our case, a tree) The full score for
a configuration of part types and positions in a video frame
is then given by:

S(I, p, t) = S(t)+
∑
i∈V

wti
i ·φ(I, pi)+

∑
ij∈E

w
ti,tj
ij ·ψ(pi−pj)

(1)
where φ(I, pi) is a feature vector (such as HOG) and ψ(pi−
pj) = [dx dx2 dy dy2]T . dx = xi − xj and dy =
yi − yj are the relative positions on the pixel grid. S(t) =∑

i∈V b
ti
i +

∑
ij∈E b

ti,tj
ij where bis are priors on part types

and bijs are parameters that weight co-occurrences of part
types. Evidently, the first sum in Eqn 1 is an appearance
model that computes the score of a template wti

i for part
i, tuned for type ti, at location pi. The second sum is a
spring model that influences the relative placement of pi
and pj , parameterized by wti,tj

ij . Inference is carried out by
maximizing S(I, p, t) over p and t. Considering the graph
G is a tree, this is achieved efficiently using message passing



(a) Original image (b) Skeleton detected
using [24]

Figure 2. (Best viewed in color) The dominance of the pairwise
potential over the unary causes poor performance of [24] on com-
plex unseen poses. The red dot (C) denotes the detected wrist;
the black dot denotes the ground-truth wrist (G); and the pink dot
denotes the parent of the wrist (P).

[24].
While the aforementioned model showed good results in

[24], generalizing this model to complex poses and long
video sequences does not yield acceptable performance, of-
ten due to the dominance of the pairwise potential in the
random field which is influenced by the configurations seen
while training the model. An example of this issue is shown
in Figure 2. This image illustrates the complex pose when
there is a foreshortening of limbs, in this case of that from
elbow to wrist. In [24]’s 26-joint human model, there are
3 joint positions from the elbow to the wrist, viz. elbow,
mid-joint (between elbow-wrist) and wrist. The parent, P,
in the figure corresponds to the mid-joint. Due to the fore-
shortening of the limb, the mid-joint will not be detected,
and the pairwise potential forces the wrist to be placed at
location C, instead of G, to ensure inter-part compatibility
(observing the unary and pairwise potential values corrob-
orates this claim too). We note that a similar observation
of unary potentials being dominated by pairwise potentials
at the boundaries was made by Horne et al. [8] recently ,
although their work was in a completely different context.

Our studies have shown that failure cases on complex
human pose data, even when from the same domain, often
occur because: (i) unary potentials may be predicted poorly
due to the fact that the appearance terms defining a part
may not strongly resemble the appearances of the same part
as seen earlier, or (ii) the unary potential is subdued by the
pairwise potential (of already seen configurations), when a
new configuration of parts is encountered. Hence, in this
work, we propose to fine-tune pose estimation for complex
poses using a semi-supervised self-training approach that
strengthens the unary score of parts with respect to the

newer video without additional labeling effort. We achieve
this objective using three steps: (i) a pose quality ranking
SVM that identifies the quality of the pose detected by a
base model on a given image; (ii) a coarse-to-fine strategy
that uses the pose quality scores to identify suitable exem-
plars for self-training; and (iii) an ensemble of exemplar
SVMs for semi-supervised self-training to improve the
base model from [24]. While the proposed method has
been studied with [24], the ideas behind each of the steps
are independent of the method, and can easily be integrated
with other part-based models for human pose estimation.

Pose Quality Ranking SVM: Given a trained base model,
self-training refers to the process where the given model is
trained iteratively on its own output on newer data. In a typi-
cal self-training setting, the model trained on a given dataset
is applied on newer data, and the data with the most confi-
dent labeling from the new data is chosen with respective
labels to retrain the original model. Identifying data with
the most confident labels is, however, not straight-forward
when dealing with human pose labels. Our initial experi-
ments also showed that using the highest output scores of
the base model does not directly translate to pose quality,
especially when complex poses are present in the new video
sequence (similar to the illustration in Figure 2).

Hence, in this work, we use the characteristics of the ge-
ometric configuration of the pose detected on a newer video
by the base model to obtain a pose quality ranking, which
can then be used to select suitable data instances for self-
training. Table 1 shows the configuration characteristics of
the detected pose that are used for this purpose. Items 1-
18 are binary variables that indicate the presence of certain
configurations that indicate errors in the pose (for instance,
the “shoulder swap” binary variable indicates that the de-
tected position of the right shoulder is to the left of the de-
tected position of the left shoulder - which is typically an
error, barring exceptional settings). Items 19-20 are real-
valued variables that provide the pose scale, and the av-
erage half-angle between the parts. Characteristics which
are suffixed with N in Table 1 indicate that these items are
compared with a local temporal neighborhood of the video
sequence for outlierness. If the values significantly differ
from the local temporal neighborhood, the corresponding
binary variable assumes value 1. More details are provided
in Section 3.3 Figure 3 illustrates scenarios of improbable
pose configurations, which motivate the use of the afore-
mentioned characteristics to rank the detected pose quality.

Given the aforementioned characteristics, a linear
Support Vector Regressor is trained to finally provide a
pose quality ranking score. This score is used for selecting
instances in each phase of the self-training pipeline, as
described further below.



1. L-R shoulder swap 2. L-R hip swap
3. L-R torso parts intersctn. 4. Unlike L-R torso length
5/6. Converging torso width 7/8. L and R torso

from top to bottom lengths (N)
9/10. L and R legs 11/12. L and R arms

length (N) lengths (N)
13/14. L and R hip 15/16. L and R shoulder

location (N) location (N)
17. L and R shoulder 18. L-sho to neck to R-sho

distance (N) traversal distance(N)
19. Pose scale (N) 20. Half parts angle

Table 1. Our Pose Quality Ranking-SVM is trained with features
designed using above criteria. Entries with N tag are compared
with mean neighborhood entries of the same type. l-r denotes left-
right.

Coarse-to-Fine Strategy for Exemplar Selection: Instead
of directly using the obtained pose quality scores for select-
ing exemplars (video frames), we employ a coarse-to-fine
strategy over the temporal resolution of the new video se-
quence to ensure representative data instances are picked
from different temporal segments of the video sequence for
self-training. This is achieved using a two-step process:

• In the first step, temporal neighborhoods with average
pose quality scores that are greater than the mean pose
quality scores are chosen. Among these high-ranked
neighborhoods, the neighborhoods that have the high-
est mean output scores from the base method are se-
lected for further processing. This provides a coarse
selection of potential exemplars.

• In the second step, in each of the selected neighbor-
hoods, the specific exemplars with pose quality scores
greater than the mean pose quality scores of the neigh-
borhood are selected, with a suitable threshold limiting
the maximum number of exemplars that can be picked
from one temporal neighborhood.

This coarse-to-fine strategy was primarily employed to
address scenarios when the highest pose quality scores are
all in the same temporal neighborhood of the entire video
sequence, which if selected can lead to poor and biased
self-training results. This simple multi-resolution approach
significantly improved the self-training performance. We
also note that where there are ties in the pose quality score,
we use the output score of the base model to break the tie.

Ensemble of Exemplar SVMs for Semi-Supervised Self-
Training: Given a set of exemplars that capture the best
performance of the base model, we now describe how self-
training is performed using this set. Self-training has been
used with Conditional Random Fields (CRFs) successfully

Figure 3. Examples of some characteristics of configuration of
pose detected by base model used to rank quality of pose esti-
mations in a video sequence. Left column shows improbable esti-
mations at a single image level and right column shows eccentric
behavior in a temporal locality of estimations.

earlier [2][21] in natural language processing tasks, either
by using the most confidently classified data from the new
set in a SoftMax SVM formulation, or by simply using the
probabilistic outputs. However, to the best of our knowl-
edge, self-training with CRFs has not been attempted earlier
where structural SVMs are used, which poses unique chal-
lenges as in the case of human pose estimation. Besides,
many existing self-training methods tend to reinforce the
knowledge of the base supervised model. Hence, in this
work, to overcome these issues and to strengthen the unary
scores in the base model, we use the identified exemplars
to train an ensemble of exemplar SVMs [10] for each part
individually. Hence, each selected exemplar-frame leads to
the training of 26 exemplar SVMs corresponding to each of
the parts.

As in [10], exemplar SVMs are based on the simple idea
to train a classifier for each exemplar in the dataset, and then
calibrating the output scores of these exemplar SVMs to ob-
tain a final classifier. Each exemplar SVM, (wE , bE), tries
to separate an exemplar xE from a set of negative exam-
ples, NE , by the largest possible margin. This is achieved
by learning the parameters (wE , bE) that optimize the fol-
lowing convex objective:

min
(wE ,bE)

||w||2+C1h(wT xE+bE)+C2

∑
x∈NE

h(−wT x−b)

where h stands for a loss function such as the hinge loss
h(x) = max (0, 1− x). This optimization is solved as in



[10], for each of the 26 parts from the selected exemplar-
frames in our case. Negative examples are randomly chosen
from non-part windows from CVIT-SPORTS-Images set.

Instead of calibrating the resulting ensemble of exemplar
SVMs (obtained from the parts of all the selected exemplar-
frames) using the procedure in [10], we instead propose a
different approach to integrate these exemplar SVMs into
the CRF model of the base method [24]. In Equation 1 of
the base model, we redefine the unary potential term using
the exemplar SVMs as follows:∑

i∈V
(ηwti

i + (1− η)ŵti
i ) · φ(I, pi) (2)

where ŵti
i are the (normalized) weights learnt from the ex-

emplar SVM for the ith part tuned for type ti, and η is a
parameter that controls the weight given to the exemplars’
contribution to the unary score. This unary score is then
integrated into the CRF inference in [24] to obtain a new up-
dated model that can be used for detecting poses on the (rest
of the) newer video. This self-training approach provides us
a seamless way not only to integrate the ensemble of exem-
plar SVMs into the base model, but also automatically ad-
dresses the issue of calibration in the ensemble. We note
additionally that unlike other self-training methods which
tend to reinforce the knowledge of the base model, the free-
dom in the choice of negative examples in this ensemble-of-
exemplar-SVMs approach allows us to ensure newer knowl-
edge is added to the previously learned model, rather than
just reinforce old knowledge.

Given the aforementioned three steps of the proposed
methodology to fine-tune pose estimation on newer video
sequences, this entire process can be iterated in phases until
a pre-defined performance level is achieved in terms of the
pose quality scores or as meets subjective assessment. The
overall idea of our methodology is summarized in Figure 4.

3. Experiments and Results

3.1. Datasets

The datasets used to train various models and for running
different set of experiments in the paper.
Image-PARSE [17] This dataset has been used to train and
test full-human parsing models. It has a total of 305 images
containing people and is annotated with full-body pose. We
use the dataset to train the base model YR-PARSE.
FLIC [19] For comparison experiments, we have used this
human upper-body labeled dataset of around 4.5K samples
to train another base model YR-FLIC.
VideoPose [20] This dataset consists of 17 test videos from
TV shows with an average sequence length of 30 frames.
The dataset is used to assess upper-body part estimations
from different part localization algorithms.

(a) Using pose quality score for batch selection, in-
stance 3 is picked and is converted into an ensemble
of E-SVM of length equal to number of body-joints.

(b) (Best viewed in color). Base model on consecu-
tive frames with pose quality score (green) and base
method’s output score (red). Where there are ties
among the pose quality score, the base method’s out-
put score is considered to break the tie.

(c) The procured E-SVMs are incorporated in our
method equation 2 and used to infer on all frames
which leads to correction in previously wrong local-
ization.

Figure 4. Illustrative overview of proposed methodology

Poses in the Wild [3] This recently introduced dataset con-
sists of 30 video sequences of approximately 30 average se-
quence length trimmed from different Hollywood movies.
The dataset has real-life scenes having some amount of
camera and human motion and all the frames have been an-
notated with human upper-body joints. The main purpose
of this dataset is to determine the localization accuracy of
upper-body limb parts like shoulders, elbows and wrists.
CVIT-SPORTS Taking motivation from [9], a dataset con-
taining still images from sports, we present an extremely
challenging dataset of humans playing different sports. The



Figure 5. Sample frames with ground-truth annotations from
CVIT-Sports-Videos dataset with complications such as (a) Half
body self occlusion and (b) Extreme body deformation.

dataset comprises of two parts: CVIT-SPORTS-Videos and
CVIT-SPORTS-Images. All the frames in the complete
dataset have been annotated with 14 keypoints i.e full hu-
man pose. From this set, we generate a set of 26 keypoints
which we have used all through in our experiments.
CVIT-SPORTS-Videos This set has a total of 11 videos of a
human playing sports retrieved from YouTube. We have
included intricate activities like cricket-bowling, cricket-
batting and football-kicking. In total, this set has a total
of 1446 frames averaging out to 131 frames per video.
CVIT-SPORTS-Images This set has 698 images, all be-
longing to cricket-frontal-bowling class. It has 150 random
cricket-bowling-action images retrieved from Google. Rest
of the images are random frames of cricket-bowling-runup
and cricket-bowling-action from different videos. These
images are used to get negative examples for training E-
SVM in all the experiments. For both sets, in cases where
most of the body parts are not obviously visible, we have
annotated the frames to the best of our comprehensibility
by looking at previous and future frames in the sequence.
Some of these tangled cases are shown in Figure 5.

3.2. Evaluation Metric

We have used the Percentage of Correct Keypoints (PCK)
metric proposed by [24] for evaluation of the proposed
method. PCK considers only those estimated keypoints cor-
rect which lie within a pixel threshold distance of DT from
their counterpart in ground truth. The threshold distance is
determined by the formula : DT = β.max(h,w), where h
and w are the height and width of the tight bounding box
created around the ground truth pose and β is a threshold
controlling the relative correctness magnitude. β is set to
0.1 when dealing with full-body poses and to 0.2 when only
half-body poses are considered.

3.3. Implementation Details

E-SVM as Exemplars. Each instance picked using our
batch selection criteria is converted into a set of E-SVM fil-
ters. Since a full body is divided into 26 parts, we procure a

Figure 6. YR baseline estimations on a set of frames from sequence
V1. These detections are obtained in phase 1 of our pipeline.

Method PCK(%)
YR-PARSE [24] 62.67
FT @ phase 2 65.97
FT-Full 67.83
FT-Full + PP 67.95

Table 2. Performance of our approach with different settings on
example video V1 having 99 frames. Last row shows the post-
processor (PP) improvement over the final phase of our full fine-
tuning (FT-Full) model.

set of 26 E-SVMs for every picked frame and for upper body
setting, a set of 18 E-SVMs is obtained. E-SVM for a part is
trained as a linear SVM with the part features as the only
positive and 2000 negatives belonging to either background
or non-part classes. Negative 2000 random samples for each
part are picked out of many more possible candidates from
CVIT-SPORTS-Images set.
Iteration parameters and Stoppage criteria. In our
coarse-to-fine exemplar selection strategy, the number of
neighborhoods to be processed in each phase is dependent
on a combination of pose quality score and method score
where each neighborhood is restricted to a maximum size
of 10 frames. Threshold value for both scores is taken to be
the mean score of neighborhoods in consideration.

From chosen neighborhoods, a maximum of 3 instances
are picked using pose quality score and are converted into
E-SVM. η, a scalar defining the unary contribution from
YR and E-SVM in Equation 2, is automatically picked from
11 possible values (ranging from 1 to 0 with 0.1 step size)
using summation of pose quality scores for the complete
video. From the observation that higher η value in phases
ensures long-run consistency, we pick η which gives us the
first local maxima. A video is processed iteratively until a
threshold percentage of neighborhoods have been exhausted
which by validation has been set to 60%.
Pose Quality Ranking SVM training. The SVM is trained
similar to a linear incremental-SVM with the weights ini-
tialized from the domain knowledge of frontal-human-pose.
Features as mentioned in Table 1 are obtained from a sam-



Figure 7. (Best viewed in color) Phase-wise PCK performance on
sequence V1 showing the improvement trend as we iterate. Tran-
sition of color from green to red represents transition from cor-
rectness to false estimations. Indexes marked with black are in-
stances converted into E-SVM and used for testing in the same
phase, whereas gray-marked indexes are exemplar instances from
previous phases.

ple video sequence and are used to train the desired SVM.
For upper-body experiments, a separate SVM is trained by
ignoring features that correspond to lower body-parts.

3.4. Baseline

We use the PS-based model proposed by [24] as our
base model and the iterative procedure thrives on it. For
full human-body experiments, the base model YR-PARSE
is trained on 305 images from Image-PARSE [17] dataset.
Number of human body parts considered are 26 and number
of types for each part is taken to be 6. Similarly, for human
upper-body experiments, YR-FLIC base model is trained on
FLIC [19] dataset of around 4.5K labeled images. Types for
each part is again 6, whereas total number of body parts are
only 18.

We consider video sequence V1, having 99 total frames
belonging to cricket-batting domain, as our primary exam-
ple to show different experiment settings and their eventual
impact. Table 2 shows YR baseline gives average PCK score
of 62.67% on V1. Figure 6 shows YR estimations on frames
picked from different time indexes and clearly stipulates its
ineffectiveness to track body-parts when faced with occlu-
sion, part foreshortening and other complications.

3.5. Fine-tuning using Self-training

After running the first phase using base model, we pick
instances and synthesize E-SVM from them. Video length is
sub-divided intoNt number of neighborhoods and using our

Method PCK(%)
YR-PARSE [24] 72.41
FT @ phase 2 74.31
FT-Full 74.19
FT-Full + PP 74.74

Table 3. Full Performance on CVIT-SPORTS-Videos dataset with
variants. The pose setting considered is full 26 human body-joints.

Method CVIT-SPORTS-Videos PIW VP

YR [24] 64.87 70.74 63.35
[3] 42.12 71.43 71.95

YR + FS [18] 31.75 48.04 60.01
FT @ phase 2 65.20 72.78 69.11
FT-Full 64.90 72.44 68.65
FT-Full + PP 64.50 73.26 68.96

Table 4. Comparison results: Performance comparison using PCK

measure on CVIT-SPORTS-Videos, PIW [3] and VP [20]. The pose
setting used includes 6 upper-body joints.

coarse-to-fine selection strategy, we pick 3 instances from
each neighborhood finally chosen. Generated E-SVMs are
augmented in the ensemble and with the updated ensemble
and YR base model, we run equation 2 across the whole se-
quence. Same procedure is followed for subsequent phases.
The impact of iterations are more explicitly shown in Fig-
ure 7 and table 2 shows our 5.16% gain over the baseline
on sequence V1 by our full fine-tuning (FT-Full) model.
Post-processor: Neighborhood Interpolation. After get-
ting estimations from a phase decided by the stoppage cri-
teria, we run a simple post-processor (PP) that uses infor-
mation from pose quality scores. For an index, if its pose
quality score is less than both of its neighboring indexes we
choose the instance for post processing. Estimation of the
picked instance is replaced by the mean interpolation of its
neighboring estimations i.e. esti = mean(esti−1, esti+1).
Table 2 shows an improvement of 0.12% PCK on our sam-
ple video sequence V1 over our FT-Full model and a cumu-
lative 5.28% PCK gain over the baseline.

3.6. Quantitative and Qualitative Results

Diagnosing the Model. Table 3 shows PCK evaluation of
our complete iterative method along-with variants on our
CVIT-SPORTS-Videos set. The model being used estimates
full 26 human body-joints in each frame. A performance
improvement of 1.90% is achieved after running the first
phase of combined model: YR and E-SVM. Full model
shows net improvement of 1.78% and our post-processor
(PP) stretches the lead to 2.33% over the YR baseline.
Comparisons. The method presented in this work is
compared with recent well-performing methods tackling
the problem of human pose estimation in videos on three



Figure 8. Top row shows the estimations with YR [24] and second row shows the corrections being done by our FT-Full model. First two
columns are sequence of frames from CVIT-SPORTS-Videos dataset, whereas last column is from PIW [3] dataset.

Figure 9. Comparison and Failure cases: Top showing estimations
by [3] and bottom shows our FT-Full results on (a) PIW and (b) VP

dataset. (c) Failure cases from three datasets used.

datasets: i. CVIT-SPORTS-Videos ii. PIW[3] and iii. VP[20].
Cherian et al. [3] uses optical flow to process single frame
estimations and Rohrbach et al. [18] work on the same line
but using SIFT-flow. We use the codes provided by the au-
thors of both. The comparison evaluation is done on the
upper-body joints as previous methods use this setting as
shown in Figure 9 (a) and (b).

For comparisons on CVIT-SPORTS-Vidoes dataset, we
have used the upper body-parts detections from our full
model trained on PARSE [17] dataset. Table 4, first column
demonstrates our lead over previous approaches on this ex-
tremely complicated dataset using PCK evaluation.

For standard datasets PIW [3] and VP [20], we have
trained a new base model, YR-FLIC trained on FLIC [19]
dataset similar to [3]. Table 4, second and third columns
shows 2.02% and 5.76% improvements over the baseline by
our method at phase 2 (FT @ phase 2) of the iterative proce-

dure. Performance deteriorates when we run all the phases,
although surpasses previous baseline for PIW dataset.

3.7. Discussion

Our self-training method iteratively strengthens positive
unary responses across temporal sequence without any ex-
ternal manual intervention, which the baseline loses be-
cause of greater false pairwise influence. The whole itera-
tive procedure is sensitive towards the quality of exemplars
synthesized at each iteration making the task of determining
good quality exemplars of prime significance.
Failure Cases. For shorter videos like in PIW and VP
datasets, very few exemplars prominently influence the
complete sequence. Failure in grabbing correct instances
results in influencing neighborhoods inadequately as shown
in Figure 9 (c).
Parameter Selection issues. Choosing optimal parameters
in each phase is extremely relevant, otherwise the improve-
ment across the iterations reduces to a minimal amount. We
automatically determine the parameters using pose quality
score in a manner determined by validation.

4. Conclusion
We have presented a self-training approach tackling the

problem of Human Pose Estimation in videos which instead
of directly relying on the baseline’s predictions, empowers
unary response enabling us to capture intricate pose config-
urations. We have also presented a pose quality criteria to
pick instances in each iteration which also assists in auto-
matic parameter selection and functions as a low-level pose
evaluator. The setting thus obtained surpasses the previ-
ous state-of-the-art on most of the datasets used and leads
by a huge margin on our introduced CVIT-SPORTS-Videos
dataset.



References
[1] S. Carlsson and J. Sullivan. Action recognition by shape

matching to key frames. In IEEE Computer Society Work-
shop on Models versus Exemplars in Computer Vision, 2001.

[2] M. Chen, J.-T. Sun, X. Ni, and Y. Chen. Improving context-
aware query classification via adaptive self-training. In
CIKM, 2011.

[3] A. Cherian, J. Mairal, K. Alahari, and C. Schmid. Mixing
body-part sequences for human pose estimation. In CVPR,
2014.

[4] J. Dong, Q. Chen, X. Shen, J. Yang, and S. Yan. Towards
unified human parsing and pose estimation. In CVPR, 2014.

[5] X. Fan, K. Zheng, Y. Lin, and S. Wang. Combining local
appearance and holistic view: Dual-source deep neural net-
works for human pose estimation. In CVPR, 2015.

[6] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial struc-
tures for object recognition. IJCV, 2005.

[7] V. Ferrari, M. J. Marı́n-Jiménez, and A. Zisserman. Progres-
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