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Figure 1: UV parameterization for bounded and unbounded surfaces estimated via our proposed framework.

ABSTRACT
We present a novel self-supervised framework for learning the
discretization-agnostic surface parameterization of arbitrary 3D
objects with both bounded and unbounded surfaces. Our frame-
work leverages diffusion enabled global-to-local shape context for
each vertex to first partition the unbounded surface into multiple
patches using proposed self-supervised PatchNet and subsequently
perform independent UV parameterization of these patches by
learning forward and backward UV mapping for individual patches.
Thus, our framework enables learning a discretization-agnostic
parameterization at a lower resolution and then directly infer the
parameterization for a higher resolution mesh without retraining.
We evaluate our framework on multiple 3D objects from publicly
available SHREC [Lian et al. 2011] dataset and report superior/faster
UV parameterization over conventional methods.
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1 INTRODUCTION
Estimating the UV parameterization of arbitrary 3D surfaces lies at
the core of computer graphics and geometry processing domain,
with a wide range of applications such as 3D modeling, texture-
mapping, remeshing, simulation, etc. Formally, it is defined as the
projection of vertices of a tessellated surface (polygon mesh) onto
a 2D map (UV plane). Determining the aforementioned mapping is
not a trivial task and demands a solution with specific properties.
The estimated mapping is expected to be isometric, conformal, and
non-overlapping. Existing conventional methods [Lévy et al. 2002;
Li et al. 2018; Sander et al. 2001; Sawhney andCrane 2017;Wang et al.
2013] aim to estimate an object-centric mapping with an iterative
optimization process, focusing on minimizing an energy function
explicitly constructed to retain the desired properties. However,
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they face scalability issues while dealingwith high-resolution object
meshes and are also prone to local minima.

With the advent of deep learning, researchers are harnessing
the power of neural networks to solve various ill-posed problems,
offering tractable solutions. Neural surface parameterization has re-
cently been attempted [Aigerman et al. 2022] but under supervised,
data-driven settings, requiring a large amount of training data.
Such supervised learning solutions get subjected to data bias and
hence suffer from poor generalization to unseen, out-of-distribution
samples.

In this paper, we present a novel, self-supervised framework for
learning the discretization-agnostic surface parameterization of
arbitrary 3D objects with both bounded and unbounded surfaces
as shown in Figure 1. First, to handle unbounded surfaces (e.g., a
sphere) or surfaces with regions of extreme extrinsic-curvature,
we propose a learning-based partitioning of the given surface into
multiple bounded patches, which are independently parameterized.
To this end, we employ a self-supervised network that assigns
each 3D point of the surface to one of the patches, trained using
losses based on local features (such as face-normals) and geodesic
relationships within the patch.

Subsequently, we propose to learn the surface parameteriza-
tion of an arbitrary (bounded) 3D surface to a UV plane using a
Multi-layer Perceptron (MLP). More specifically, given a bounded
3D surface (patch), we train the forward MLP to predict per-point
UV coordinates independently. In order to ensure a meaningful
UV mapping, we enforce cycle-consistency loss between the in-
put and reconstructed surface by learning a backward mapping
(UV-to-3D) MLP. Additional losses are employed to achieve desired
properties of surface parameterization, i.e., isometric, conformal,
and area-preserving. A diffusion process [Sharp et al. 2020] over
the mesh provides multi-scale characterization of the underlying
surface, entailing a global-to-local context for each of the vertex and
hence DiffusionNet backbone is used for PatchNet, and similarly,
respective features are appended while learning surface parame-
terization in order to achieve discretization-agnostic UV mapping.
A key advantage of learning a discretization-agnostic parameter-
ization is that we can learn on meshes at a lower resolution and
then directly infer the parameterization for high resolution meshes
without retraining, as shown in Figure 3.

2 RELATEDWORK
Conventional methods for mesh parameterization can be cate-
gorised as single-patch, fixed boundary methods, e.g., harmonic
parameterization [Wang et al. 2013], single-patch, free boundary
methods, e.g., LSCM [Lévy et al. 2002]; and global parameteriza-
tion methods, e.g., Voronoi atlas parameterization [Sander et al.
2001]. Global parameterization methods can deal with meshes of
arbitrary genus. They achieve this by either partitioning the un-
bounded mesh into multiple bounded patches or detecting one or
more seams to cut the mesh, making it bounded. Boundary-First
Flattening [Sawhney and Crane 2017] and OptCuts [Li et al. 2018]
fall into this class.

Neural parameterization methods have been gaining popularity
over the past few years due to their ability to address ill-posed
problems. AtlasNet [Groueix et al. 2018], and DGP [Williams et al.
2018] propose a way of surface reconstruction and parameterization

Figure 2: The outline of proposed framework.

by training a neural network to represent a single UV chart over
the reconstructed surface. Both the methods use a fixed number
of patches for the surface parameterization but require a different
neural network for every patch, which is an overkill and difficult to
scale up. A recent work AUV-Net [Chen et al. 2022] takes a point
cloud as input and learns parameterization of aligned surfaces (e.g.,
faces and humans in T-poses) using a cycle-loss, but requires all the
meshes to have similar topology and same orientation to enable
learning. Moreover, the proposed two-patch estimation method is
very naive and cannot scale to an arbitrary number of patches. An-
other recent method [Aigerman et al. 2022] learns intrinsic mapping
of arbitrary surfaces in a supervised setup, where a conventional
method acts as the ground truth. However, it can only deal with
bounded surfaces and does not provide its provision for unbounded
surfaces (e.g., spheres).

3 METHOD
We now describe the proposed framework in detail. The input to
our framework is a mesh M = {V� F �N+ }, where V , F and NV
are the sets of vertex positions, faces and vertex-normals respec-
tively. Our framework consists of two modules: (8) Patch extraction
module and (88) Surface parameterization module.

3.1 Patch Extraction Module
Handling surfaces with regions of high extrinsic curvature or un-
bounded topology requires the 3D manifold to be partitioned into
multiple bounded patches to minimize distortion and overlap. Each
patch is defined as P: = {V: � F: �N�: } ( : = 1� 2� ���  ), where
V: ⊆ V is the set of vertices belonging to P: . F: ⊆ F is the
set of faces defined on V: and N�: ⊆ N� is the associated set of
face-normals. We propose PatchNet with parameters q?0C2� , which
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