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Figure 1: UV parameterization for bounded and unbounded surfaces estimated via our proposed framework.

ABSTRACT
We present a novel self-supervised framework for learning the
discretization-agnostic surface parameterization of arbitrary 3D
objects with both bounded and unbounded surfaces. Our frame-
work leverages diffusion enabled global-to-local shape context for
each vertex to first partition the unbounded surface into multiple
patches using proposed self-supervised PatchNet and subsequently
perform independent UV parameterization of these patches by
learning forward and backward UV mapping for individual patches.
Thus, our framework enables learning a discretization-agnostic
parameterization at a lower resolution and then directly infer the
parameterization for a higher resolution mesh without retraining.
We evaluate our framework on multiple 3D objects from publicly
available SHREC [Lian et al. 2011] dataset and report superior/faster
UV parameterization over conventional methods.
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1 INTRODUCTION
Estimating the UV parameterization of arbitrary 3D surfaces lies at
the core of computer graphics and geometry processing domain,
with a wide range of applications such as 3D modeling, texture-
mapping, remeshing, simulation, etc. Formally, it is defined as the
projection of vertices of a tessellated surface (polygon mesh) onto
a 2D map (UV plane). Determining the aforementioned mapping is
not a trivial task and demands a solution with specific properties.
The estimated mapping is expected to be isometric, conformal, and
non-overlapping. Existing conventional methods [Lévy et al. 2002;
Li et al. 2018; Sander et al. 2001; Sawhney andCrane 2017;Wang et al.
2013] aim to estimate an object-centric mapping with an iterative
optimization process, focusing on minimizing an energy function
explicitly constructed to retain the desired properties. However,
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they face scalability issues while dealingwith high-resolution object
meshes and are also prone to local minima.

With the advent of deep learning, researchers are harnessing
the power of neural networks to solve various ill-posed problems,
offering tractable solutions. Neural surface parameterization has re-
cently been attempted [Aigerman et al. 2022] but under supervised,
data-driven settings, requiring a large amount of training data.
Such supervised learning solutions get subjected to data bias and
hence suffer from poor generalization to unseen, out-of-distribution
samples.

In this paper, we present a novel, self-supervised framework for
learning the discretization-agnostic surface parameterization of
arbitrary 3D objects with both bounded and unbounded surfaces
as shown in Figure 1. First, to handle unbounded surfaces (e.g., a
sphere) or surfaces with regions of extreme extrinsic-curvature,
we propose a learning-based partitioning of the given surface into
multiple bounded patches, which are independently parameterized.
To this end, we employ a self-supervised network that assigns
each 3D point of the surface to one of the patches, trained using
losses based on local features (such as face-normals) and geodesic
relationships within the patch.

Subsequently, we propose to learn the surface parameteriza-
tion of an arbitrary (bounded) 3D surface to a UV plane using a
Multi-layer Perceptron (MLP). More specifically, given a bounded
3D surface (patch), we train the forward MLP to predict per-point
UV coordinates independently. In order to ensure a meaningful
UV mapping, we enforce cycle-consistency loss between the in-
put and reconstructed surface by learning a backward mapping
(UV-to-3D) MLP. Additional losses are employed to achieve desired
properties of surface parameterization, i.e., isometric, conformal,
and area-preserving. A diffusion process [Sharp et al. 2020] over
the mesh provides multi-scale characterization of the underlying
surface, entailing a global-to-local context for each of the vertex and
hence DiffusionNet backbone is used for PatchNet, and similarly,
respective features are appended while learning surface parame-
terization in order to achieve discretization-agnostic UV mapping.
A key advantage of learning a discretization-agnostic parameter-
ization is that we can learn on meshes at a lower resolution and
then directly infer the parameterization for high resolution meshes
without retraining, as shown in Figure 3.

2 RELATEDWORK
Conventional methods for mesh parameterization can be cate-
gorised as single-patch, fixed boundary methods, e.g., harmonic
parameterization [Wang et al. 2013], single-patch, free boundary
methods, e.g., LSCM [Lévy et al. 2002]; and global parameteriza-
tion methods, e.g., Voronoi atlas parameterization [Sander et al.
2001]. Global parameterization methods can deal with meshes of
arbitrary genus. They achieve this by either partitioning the un-
bounded mesh into multiple bounded patches or detecting one or
more seams to cut the mesh, making it bounded. Boundary-First
Flattening [Sawhney and Crane 2017] and OptCuts [Li et al. 2018]
fall into this class.

Neural parameterization methods have been gaining popularity
over the past few years due to their ability to address ill-posed
problems. AtlasNet [Groueix et al. 2018], and DGP [Williams et al.
2018] propose a way of surface reconstruction and parameterization

Figure 2: The outline of proposed framework.

by training a neural network to represent a single UV chart over
the reconstructed surface. Both the methods use a fixed number
of patches for the surface parameterization but require a different
neural network for every patch, which is an overkill and difficult to
scale up. A recent work AUV-Net [Chen et al. 2022] takes a point
cloud as input and learns parameterization of aligned surfaces (e.g.,
faces and humans in T-poses) using a cycle-loss, but requires all the
meshes to have similar topology and same orientation to enable
learning. Moreover, the proposed two-patch estimation method is
very naive and cannot scale to an arbitrary number of patches. An-
other recent method [Aigerman et al. 2022] learns intrinsic mapping
of arbitrary surfaces in a supervised setup, where a conventional
method acts as the ground truth. However, it can only deal with
bounded surfaces and does not provide its provision for unbounded
surfaces (e.g., spheres).

3 METHOD
We now describe the proposed framework in detail. The input to
our framework is a mesh M = {V, F ,N𝑉 }, where V , F and NV
are the sets of vertex positions, faces and vertex-normals respec-
tively. Our framework consists of two modules: (𝑖) Patch extraction
module and (𝑖𝑖) Surface parameterization module.

3.1 Patch Extraction Module
Handling surfaces with regions of high extrinsic curvature or un-
bounded topology requires the 3D manifold to be partitioned into
multiple bounded patches to minimize distortion and overlap. Each
patch is defined as P𝑘 = {V𝑘 , F𝑘 ,N𝐹𝑘 } ( 𝑘 = 1, 2, ... 𝐾 ), where
V𝑘 ⊆ V is the set of vertices belonging to P𝑘 . F𝑘 ⊆ F is the
set of faces defined on V𝑘 and N𝐹𝑘 ⊆ N𝐹 is the associated set of
face-normals. We propose PatchNet with parameters 𝜙𝑝𝑎𝑡𝑐ℎ , which
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Figure 3: Discretization-agnostic UV parameterization.

learns to assign each vertex ofM to one of the 𝐾 patches, as shown
in Figure 2. Here, 𝐾 is a controllable parameter and can vary based
on the acceptable amount of distortion in the input mesh. To learn
the parameters 𝜙𝑝𝑎𝑡𝑐ℎ we minimize the following cosine similarity
constraint on the estimated patches:

L𝑐𝑜𝑠 =
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𝑘=1
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where 𝑖, 𝑗 ∈ F𝑘 are the pair of faces with unit normal vectors
𝑛𝑖 , 𝑛 𝑗 ∈ N𝐹𝑘 , respectively, and |F𝑘 | is the number of faces in that
patch. The above constraint has the effect of producing locally flat
patches. However, it is possible that geodesically far apart triangles
with high cosine similarity will be assigned to the same patch,
which is undesirable. To circumvent such disjoint assignments, we
minimize the following additional constraint:

L𝑔𝑒𝑜 =

𝐾∑︁
𝑘=1

1
|P𝑘 |

©­«
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where 𝑔(𝑖, 𝑗) denotes the geodesic distance between the pair of
vertices 𝑖 & 𝑗 within the patch and |P𝑘 | is the number of vertices
in that patch. We model PatchNet using DiffusionNet [Sharp et al.
2020] architecture in order to achieve multi-scale characterization
of the underlying surface, entailing a global-to-local context for
all the vertices. Input to PatchNet is the vertices V and vertex-
normals N𝑉 and the output is predicted assignment probability for
all the vertices to each of the 𝐾 patches. Subsequently, per-face
probabilities are obtained by taking the mean probabilities of the
corresponding face vertices. We further consolidate the per-face
probabilities by taking an average over neighboring faces and then
each face is assigned to the patch with the highest probability. Note
that, in case of bounded surface with extrinsic curvature of low-
variability, the whole mesh can be considered as a single patch.
The combined objective function for patch extraction becomes
L𝑝𝑎𝑡𝑐ℎ = 𝜆𝑐𝑜𝑠L𝑐𝑜𝑠 + 𝜆𝑔𝑒𝑜L𝑔𝑒𝑜 .

3.2 Surface Parameterization Module
Each patch P𝑘 = {V𝑘 , F𝑘 ,N𝑘 } is treated as a separate bounded
surface and is independently parameterized. Let 𝑓 : R3 → R2 be
the mapping of each vertex 𝑣 ∈ V𝑘 to a 2D point 𝑢 on the UV plane.
We propose to represent 𝑓 using a forward mapping network𝑀𝐿𝑃𝑓
with learnable parameters 𝜙 𝑓 . First, the set of verticesV𝑘 for the
given patch is passed to the diffusion block to get a global shape
encoding𝜓 ∈ R128. Per-vertex input given to𝑀𝐿𝑃𝑓 is 𝑧 ∈ R131 (𝑣
concatenated with 𝜓 ) and the output is 𝑢 ∈ R2 (UV coordinate),
i.e. 𝑢 = 𝑀𝐿𝑃𝑓 (𝑧). Since we don’t have corresponding ground truth
UV coordinates, we resort to a self-supervised cycle-consistency
loss. We employ another𝑀𝐿𝑃𝑓 −1 with learnable parameters 𝜙 𝑓 −1
to represent the backward mapping 𝑓 −1 : R2 → R3.𝑀𝐿𝑃𝑓 −1 takes
𝑢 as input and predicts its corresponding 3D position, which ideally
should match with the input vertex position 𝑣 . We enforce this
consistency by minimizing the following cycle loss:

L𝑐𝑦𝑐𝑙𝑒 =
1

|V𝑘 |
∑︁
𝑣∈V𝑘

(
𝑣 −𝑀𝐿𝑃𝑓 −1 (𝑢)

)2
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Note that due to presence of non-linear activation functions in
𝑀𝐿𝑃𝑓 and 𝑀𝐿𝑃𝑓 −1 , the condition 𝜙 𝑓 .𝜙 𝑓 −1 = 𝐼 need not ehold.
Per-vertex prediction can be noisy, resulting in an irregular UV
space. Conditioning theMLPswith the diffusion-based global shape-
encoding𝜓 regularizes the UV prediction and improves the output
of 𝑀𝐿𝑃𝑓 −1 . We further add losses to enforce desired properties
of surface parameterization, namely, 𝐿𝑖𝑠𝑜 provides isometric be-
haviour, 𝐿𝑎𝑛𝑔𝑙𝑒 preserves angles of the faces and 𝐿𝑎𝑟𝑒𝑎 preserves
face-area (neglecting uniform scaling). The final objective function
for surface parameterization is given as:

L𝑢𝑣 = 𝜆1L𝑐𝑦𝑐𝑙𝑒 + 𝜆2L𝑖𝑠𝑜 + 𝜆3L𝑎𝑛𝑔𝑙𝑒 + 𝜆4L𝑎𝑟𝑒𝑎 . (4)

4 RESULTS & EVALUATION
We compute Quasi-Conformal Error (QCE) and Area Scale Error
(ASE) on the final texture atlas for quantitative and qualitative eval-
uation. Please refer to supplementary for their description.
QualitativeComparison:We compare our frameworkwith BFF[Sawhney
and Crane 2017] and OptCuts[Li et al. 2018] in Figure 4. As shown
our framework performs on-par with these methods on varying
geometrical shapes.
Quantitative Comparison: In Table 1, we compare our framework
with BFF[Sawhney and Crane 2017] and Opt-Cuts[Li et al. 2018]

BFF OptCuts Ours
Class QCE↓ |ASE|↓ QCE↓ |ASE|↓ QCE↓ |ASE|↓
Laptop 1.046 2.052 1.045 2.005 1.196 2.420
Pliers 1.112 1.909 1.128 1.391 1.274 2.895
Rabbit 1.132 2.116 1.160 2.062 1.183 0.992
Scissors 1.156 1.456 1.122 1.276 1.261 2.728
Bird 2.130 1.103 1.129 1.928 1.262 1.996

Table 1: Comparison of QCE andASEmetrics with BFF [Sawh-
ney and Crane 2017] and OptCuts [Li et al. 2018] on SHREC
dataset.
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Figure 4: Comparison of error plots for QCE and ASE with other methods. First two categories (a) bird & (b) pliers are taken
from SHREC dataset while later two (c) & (d) are Armadillo and Spot.

on a few classes of SHREC [Lian et al. 2011] dataset using QCE and
ASE metric. For each mentioned class, we train our network on 16
meshes and compute errors on 4 test sample meshes. Please note
that, instead of purely object-centric learning, here we compare on
a category-specific generalized network, and our performance is
comparable to other object-centric methods. Such generalization
can be attributed to intrinsic characterization encoded in diffusion
features used in our surface parametrization module.
Discretization-agnostic Learning: Figure 3 shows the discretization-
agnostic learning capability of our framework. We train on a mesh
with only ∼ 3𝐾 vertices and then directly infer at high resolutions
(∼ 35𝐾 and ∼ 100𝐾 vertices). Please note that the error values for
high-resolution meshes stay close to the low-resolution mesh as
can be observed in the error plots.
More importantly, discretization-agnostic learning allows us to re-
duce the computation time with significant amount when compared
to other methods. Specifically, we train our method on the deci-
mated Stanford’s Armadillo mesh with ∼ 2𝐾 vertices, and compare
our computation time with other two methods at higher resolution
(∼ 30𝐾 and ∼ 100𝐾 ) as shown in Table 2.
Please refer to our supplementary for implementation details and
detailed ablative studies.

5 CONCLUSION
We proposed a novel self-supervised learning based framework for
surface parameterization of bounded as well as unbounded surfaces.
Our framework enables discretization-agnostic learning thereby
significantly improving our inference time performance on high
resolution meshes.
Acknowledgement:We thank Dhawal Sirikonda for helping us
in the visualization of QCE error metric.

Resolution BFF OptCuts Ours
30𝐾 17.41 sec > 10 min 2.92 sec
100𝐾 61.04 sec > 10 min 5.02 sec

Table 2: Comparison of computation time for Stanford’s Ar-
madillo.
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